]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fuse/dev.c
fuse: support writable mmap
[mirror_ubuntu-bionic-kernel.git] / fs / fuse / dev.c
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2006 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26 /*
27 * Lockless access is OK, because file->private data is set
28 * once during mount and is valid until the file is released.
29 */
30 return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35 memset(req, 0, sizeof(*req));
36 INIT_LIST_HEAD(&req->list);
37 INIT_LIST_HEAD(&req->intr_entry);
38 init_waitqueue_head(&req->waitq);
39 atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45 if (req)
46 fuse_request_init(req);
47 return req;
48 }
49
50 struct fuse_req *fuse_request_alloc_nofs(void)
51 {
52 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
53 if (req)
54 fuse_request_init(req);
55 return req;
56 }
57
58 void fuse_request_free(struct fuse_req *req)
59 {
60 kmem_cache_free(fuse_req_cachep, req);
61 }
62
63 static void block_sigs(sigset_t *oldset)
64 {
65 sigset_t mask;
66
67 siginitsetinv(&mask, sigmask(SIGKILL));
68 sigprocmask(SIG_BLOCK, &mask, oldset);
69 }
70
71 static void restore_sigs(sigset_t *oldset)
72 {
73 sigprocmask(SIG_SETMASK, oldset, NULL);
74 }
75
76 static void __fuse_get_request(struct fuse_req *req)
77 {
78 atomic_inc(&req->count);
79 }
80
81 /* Must be called with > 1 refcount */
82 static void __fuse_put_request(struct fuse_req *req)
83 {
84 BUG_ON(atomic_read(&req->count) < 2);
85 atomic_dec(&req->count);
86 }
87
88 static void fuse_req_init_context(struct fuse_req *req)
89 {
90 req->in.h.uid = current->fsuid;
91 req->in.h.gid = current->fsgid;
92 req->in.h.pid = current->pid;
93 }
94
95 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
96 {
97 struct fuse_req *req;
98 sigset_t oldset;
99 int intr;
100 int err;
101
102 atomic_inc(&fc->num_waiting);
103 block_sigs(&oldset);
104 intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
105 restore_sigs(&oldset);
106 err = -EINTR;
107 if (intr)
108 goto out;
109
110 err = -ENOTCONN;
111 if (!fc->connected)
112 goto out;
113
114 req = fuse_request_alloc();
115 err = -ENOMEM;
116 if (!req)
117 goto out;
118
119 fuse_req_init_context(req);
120 req->waiting = 1;
121 return req;
122
123 out:
124 atomic_dec(&fc->num_waiting);
125 return ERR_PTR(err);
126 }
127
128 /*
129 * Return request in fuse_file->reserved_req. However that may
130 * currently be in use. If that is the case, wait for it to become
131 * available.
132 */
133 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
134 struct file *file)
135 {
136 struct fuse_req *req = NULL;
137 struct fuse_file *ff = file->private_data;
138
139 do {
140 wait_event(fc->reserved_req_waitq, ff->reserved_req);
141 spin_lock(&fc->lock);
142 if (ff->reserved_req) {
143 req = ff->reserved_req;
144 ff->reserved_req = NULL;
145 get_file(file);
146 req->stolen_file = file;
147 }
148 spin_unlock(&fc->lock);
149 } while (!req);
150
151 return req;
152 }
153
154 /*
155 * Put stolen request back into fuse_file->reserved_req
156 */
157 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
158 {
159 struct file *file = req->stolen_file;
160 struct fuse_file *ff = file->private_data;
161
162 spin_lock(&fc->lock);
163 fuse_request_init(req);
164 BUG_ON(ff->reserved_req);
165 ff->reserved_req = req;
166 wake_up_all(&fc->reserved_req_waitq);
167 spin_unlock(&fc->lock);
168 fput(file);
169 }
170
171 /*
172 * Gets a requests for a file operation, always succeeds
173 *
174 * This is used for sending the FLUSH request, which must get to
175 * userspace, due to POSIX locks which may need to be unlocked.
176 *
177 * If allocation fails due to OOM, use the reserved request in
178 * fuse_file.
179 *
180 * This is very unlikely to deadlock accidentally, since the
181 * filesystem should not have it's own file open. If deadlock is
182 * intentional, it can still be broken by "aborting" the filesystem.
183 */
184 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
185 {
186 struct fuse_req *req;
187
188 atomic_inc(&fc->num_waiting);
189 wait_event(fc->blocked_waitq, !fc->blocked);
190 req = fuse_request_alloc();
191 if (!req)
192 req = get_reserved_req(fc, file);
193
194 fuse_req_init_context(req);
195 req->waiting = 1;
196 return req;
197 }
198
199 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
200 {
201 if (atomic_dec_and_test(&req->count)) {
202 if (req->waiting)
203 atomic_dec(&fc->num_waiting);
204
205 if (req->stolen_file)
206 put_reserved_req(fc, req);
207 else
208 fuse_request_free(req);
209 }
210 }
211
212 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
213 {
214 unsigned nbytes = 0;
215 unsigned i;
216
217 for (i = 0; i < numargs; i++)
218 nbytes += args[i].size;
219
220 return nbytes;
221 }
222
223 static u64 fuse_get_unique(struct fuse_conn *fc)
224 {
225 fc->reqctr++;
226 /* zero is special */
227 if (fc->reqctr == 0)
228 fc->reqctr = 1;
229
230 return fc->reqctr;
231 }
232
233 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
234 {
235 req->in.h.unique = fuse_get_unique(fc);
236 req->in.h.len = sizeof(struct fuse_in_header) +
237 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
238 list_add_tail(&req->list, &fc->pending);
239 req->state = FUSE_REQ_PENDING;
240 if (!req->waiting) {
241 req->waiting = 1;
242 atomic_inc(&fc->num_waiting);
243 }
244 wake_up(&fc->waitq);
245 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
246 }
247
248 static void flush_bg_queue(struct fuse_conn *fc)
249 {
250 while (fc->active_background < FUSE_MAX_BACKGROUND &&
251 !list_empty(&fc->bg_queue)) {
252 struct fuse_req *req;
253
254 req = list_entry(fc->bg_queue.next, struct fuse_req, list);
255 list_del(&req->list);
256 fc->active_background++;
257 queue_request(fc, req);
258 }
259 }
260
261 /*
262 * This function is called when a request is finished. Either a reply
263 * has arrived or it was aborted (and not yet sent) or some error
264 * occurred during communication with userspace, or the device file
265 * was closed. The requester thread is woken up (if still waiting),
266 * the 'end' callback is called if given, else the reference to the
267 * request is released
268 *
269 * Called with fc->lock, unlocks it
270 */
271 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
272 __releases(fc->lock)
273 {
274 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
275 req->end = NULL;
276 list_del(&req->list);
277 list_del(&req->intr_entry);
278 req->state = FUSE_REQ_FINISHED;
279 if (req->background) {
280 if (fc->num_background == FUSE_MAX_BACKGROUND) {
281 fc->blocked = 0;
282 wake_up_all(&fc->blocked_waitq);
283 }
284 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
285 clear_bdi_congested(&fc->bdi, READ);
286 clear_bdi_congested(&fc->bdi, WRITE);
287 }
288 fc->num_background--;
289 fc->active_background--;
290 flush_bg_queue(fc);
291 }
292 spin_unlock(&fc->lock);
293 wake_up(&req->waitq);
294 if (end)
295 end(fc, req);
296 else
297 fuse_put_request(fc, req);
298 }
299
300 static void wait_answer_interruptible(struct fuse_conn *fc,
301 struct fuse_req *req)
302 {
303 if (signal_pending(current))
304 return;
305
306 spin_unlock(&fc->lock);
307 wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
308 spin_lock(&fc->lock);
309 }
310
311 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
312 {
313 list_add_tail(&req->intr_entry, &fc->interrupts);
314 wake_up(&fc->waitq);
315 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
316 }
317
318 /* Called with fc->lock held. Releases, and then reacquires it. */
319 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
320 {
321 if (!fc->no_interrupt) {
322 /* Any signal may interrupt this */
323 wait_answer_interruptible(fc, req);
324
325 if (req->aborted)
326 goto aborted;
327 if (req->state == FUSE_REQ_FINISHED)
328 return;
329
330 req->interrupted = 1;
331 if (req->state == FUSE_REQ_SENT)
332 queue_interrupt(fc, req);
333 }
334
335 if (!req->force) {
336 sigset_t oldset;
337
338 /* Only fatal signals may interrupt this */
339 block_sigs(&oldset);
340 wait_answer_interruptible(fc, req);
341 restore_sigs(&oldset);
342
343 if (req->aborted)
344 goto aborted;
345 if (req->state == FUSE_REQ_FINISHED)
346 return;
347
348 /* Request is not yet in userspace, bail out */
349 if (req->state == FUSE_REQ_PENDING) {
350 list_del(&req->list);
351 __fuse_put_request(req);
352 req->out.h.error = -EINTR;
353 return;
354 }
355 }
356
357 /*
358 * Either request is already in userspace, or it was forced.
359 * Wait it out.
360 */
361 spin_unlock(&fc->lock);
362 wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
363 spin_lock(&fc->lock);
364
365 if (!req->aborted)
366 return;
367
368 aborted:
369 BUG_ON(req->state != FUSE_REQ_FINISHED);
370 if (req->locked) {
371 /* This is uninterruptible sleep, because data is
372 being copied to/from the buffers of req. During
373 locked state, there mustn't be any filesystem
374 operation (e.g. page fault), since that could lead
375 to deadlock */
376 spin_unlock(&fc->lock);
377 wait_event(req->waitq, !req->locked);
378 spin_lock(&fc->lock);
379 }
380 }
381
382 void request_send(struct fuse_conn *fc, struct fuse_req *req)
383 {
384 req->isreply = 1;
385 spin_lock(&fc->lock);
386 if (!fc->connected)
387 req->out.h.error = -ENOTCONN;
388 else if (fc->conn_error)
389 req->out.h.error = -ECONNREFUSED;
390 else {
391 queue_request(fc, req);
392 /* acquire extra reference, since request is still needed
393 after request_end() */
394 __fuse_get_request(req);
395
396 request_wait_answer(fc, req);
397 }
398 spin_unlock(&fc->lock);
399 }
400
401 static void request_send_nowait_locked(struct fuse_conn *fc,
402 struct fuse_req *req)
403 {
404 req->background = 1;
405 fc->num_background++;
406 if (fc->num_background == FUSE_MAX_BACKGROUND)
407 fc->blocked = 1;
408 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
409 set_bdi_congested(&fc->bdi, READ);
410 set_bdi_congested(&fc->bdi, WRITE);
411 }
412 list_add_tail(&req->list, &fc->bg_queue);
413 flush_bg_queue(fc);
414 }
415
416 static void request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
417 {
418 spin_lock(&fc->lock);
419 if (fc->connected) {
420 request_send_nowait_locked(fc, req);
421 spin_unlock(&fc->lock);
422 } else {
423 req->out.h.error = -ENOTCONN;
424 request_end(fc, req);
425 }
426 }
427
428 void request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
429 {
430 req->isreply = 0;
431 request_send_nowait(fc, req);
432 }
433
434 void request_send_background(struct fuse_conn *fc, struct fuse_req *req)
435 {
436 req->isreply = 1;
437 request_send_nowait(fc, req);
438 }
439
440 /*
441 * Called under fc->lock
442 *
443 * fc->connected must have been checked previously
444 */
445 void request_send_background_locked(struct fuse_conn *fc, struct fuse_req *req)
446 {
447 req->isreply = 1;
448 request_send_nowait_locked(fc, req);
449 }
450
451 /*
452 * Lock the request. Up to the next unlock_request() there mustn't be
453 * anything that could cause a page-fault. If the request was already
454 * aborted bail out.
455 */
456 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
457 {
458 int err = 0;
459 if (req) {
460 spin_lock(&fc->lock);
461 if (req->aborted)
462 err = -ENOENT;
463 else
464 req->locked = 1;
465 spin_unlock(&fc->lock);
466 }
467 return err;
468 }
469
470 /*
471 * Unlock request. If it was aborted during being locked, the
472 * requester thread is currently waiting for it to be unlocked, so
473 * wake it up.
474 */
475 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
476 {
477 if (req) {
478 spin_lock(&fc->lock);
479 req->locked = 0;
480 if (req->aborted)
481 wake_up(&req->waitq);
482 spin_unlock(&fc->lock);
483 }
484 }
485
486 struct fuse_copy_state {
487 struct fuse_conn *fc;
488 int write;
489 struct fuse_req *req;
490 const struct iovec *iov;
491 unsigned long nr_segs;
492 unsigned long seglen;
493 unsigned long addr;
494 struct page *pg;
495 void *mapaddr;
496 void *buf;
497 unsigned len;
498 };
499
500 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
501 int write, struct fuse_req *req,
502 const struct iovec *iov, unsigned long nr_segs)
503 {
504 memset(cs, 0, sizeof(*cs));
505 cs->fc = fc;
506 cs->write = write;
507 cs->req = req;
508 cs->iov = iov;
509 cs->nr_segs = nr_segs;
510 }
511
512 /* Unmap and put previous page of userspace buffer */
513 static void fuse_copy_finish(struct fuse_copy_state *cs)
514 {
515 if (cs->mapaddr) {
516 kunmap_atomic(cs->mapaddr, KM_USER0);
517 if (cs->write) {
518 flush_dcache_page(cs->pg);
519 set_page_dirty_lock(cs->pg);
520 }
521 put_page(cs->pg);
522 cs->mapaddr = NULL;
523 }
524 }
525
526 /*
527 * Get another pagefull of userspace buffer, and map it to kernel
528 * address space, and lock request
529 */
530 static int fuse_copy_fill(struct fuse_copy_state *cs)
531 {
532 unsigned long offset;
533 int err;
534
535 unlock_request(cs->fc, cs->req);
536 fuse_copy_finish(cs);
537 if (!cs->seglen) {
538 BUG_ON(!cs->nr_segs);
539 cs->seglen = cs->iov[0].iov_len;
540 cs->addr = (unsigned long) cs->iov[0].iov_base;
541 cs->iov ++;
542 cs->nr_segs --;
543 }
544 down_read(&current->mm->mmap_sem);
545 err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
546 &cs->pg, NULL);
547 up_read(&current->mm->mmap_sem);
548 if (err < 0)
549 return err;
550 BUG_ON(err != 1);
551 offset = cs->addr % PAGE_SIZE;
552 cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
553 cs->buf = cs->mapaddr + offset;
554 cs->len = min(PAGE_SIZE - offset, cs->seglen);
555 cs->seglen -= cs->len;
556 cs->addr += cs->len;
557
558 return lock_request(cs->fc, cs->req);
559 }
560
561 /* Do as much copy to/from userspace buffer as we can */
562 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
563 {
564 unsigned ncpy = min(*size, cs->len);
565 if (val) {
566 if (cs->write)
567 memcpy(cs->buf, *val, ncpy);
568 else
569 memcpy(*val, cs->buf, ncpy);
570 *val += ncpy;
571 }
572 *size -= ncpy;
573 cs->len -= ncpy;
574 cs->buf += ncpy;
575 return ncpy;
576 }
577
578 /*
579 * Copy a page in the request to/from the userspace buffer. Must be
580 * done atomically
581 */
582 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
583 unsigned offset, unsigned count, int zeroing)
584 {
585 if (page && zeroing && count < PAGE_SIZE) {
586 void *mapaddr = kmap_atomic(page, KM_USER1);
587 memset(mapaddr, 0, PAGE_SIZE);
588 kunmap_atomic(mapaddr, KM_USER1);
589 }
590 while (count) {
591 int err;
592 if (!cs->len && (err = fuse_copy_fill(cs)))
593 return err;
594 if (page) {
595 void *mapaddr = kmap_atomic(page, KM_USER1);
596 void *buf = mapaddr + offset;
597 offset += fuse_copy_do(cs, &buf, &count);
598 kunmap_atomic(mapaddr, KM_USER1);
599 } else
600 offset += fuse_copy_do(cs, NULL, &count);
601 }
602 if (page && !cs->write)
603 flush_dcache_page(page);
604 return 0;
605 }
606
607 /* Copy pages in the request to/from userspace buffer */
608 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
609 int zeroing)
610 {
611 unsigned i;
612 struct fuse_req *req = cs->req;
613 unsigned offset = req->page_offset;
614 unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
615
616 for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
617 struct page *page = req->pages[i];
618 int err = fuse_copy_page(cs, page, offset, count, zeroing);
619 if (err)
620 return err;
621
622 nbytes -= count;
623 count = min(nbytes, (unsigned) PAGE_SIZE);
624 offset = 0;
625 }
626 return 0;
627 }
628
629 /* Copy a single argument in the request to/from userspace buffer */
630 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
631 {
632 while (size) {
633 int err;
634 if (!cs->len && (err = fuse_copy_fill(cs)))
635 return err;
636 fuse_copy_do(cs, &val, &size);
637 }
638 return 0;
639 }
640
641 /* Copy request arguments to/from userspace buffer */
642 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
643 unsigned argpages, struct fuse_arg *args,
644 int zeroing)
645 {
646 int err = 0;
647 unsigned i;
648
649 for (i = 0; !err && i < numargs; i++) {
650 struct fuse_arg *arg = &args[i];
651 if (i == numargs - 1 && argpages)
652 err = fuse_copy_pages(cs, arg->size, zeroing);
653 else
654 err = fuse_copy_one(cs, arg->value, arg->size);
655 }
656 return err;
657 }
658
659 static int request_pending(struct fuse_conn *fc)
660 {
661 return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
662 }
663
664 /* Wait until a request is available on the pending list */
665 static void request_wait(struct fuse_conn *fc)
666 {
667 DECLARE_WAITQUEUE(wait, current);
668
669 add_wait_queue_exclusive(&fc->waitq, &wait);
670 while (fc->connected && !request_pending(fc)) {
671 set_current_state(TASK_INTERRUPTIBLE);
672 if (signal_pending(current))
673 break;
674
675 spin_unlock(&fc->lock);
676 schedule();
677 spin_lock(&fc->lock);
678 }
679 set_current_state(TASK_RUNNING);
680 remove_wait_queue(&fc->waitq, &wait);
681 }
682
683 /*
684 * Transfer an interrupt request to userspace
685 *
686 * Unlike other requests this is assembled on demand, without a need
687 * to allocate a separate fuse_req structure.
688 *
689 * Called with fc->lock held, releases it
690 */
691 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
692 const struct iovec *iov, unsigned long nr_segs)
693 __releases(fc->lock)
694 {
695 struct fuse_copy_state cs;
696 struct fuse_in_header ih;
697 struct fuse_interrupt_in arg;
698 unsigned reqsize = sizeof(ih) + sizeof(arg);
699 int err;
700
701 list_del_init(&req->intr_entry);
702 req->intr_unique = fuse_get_unique(fc);
703 memset(&ih, 0, sizeof(ih));
704 memset(&arg, 0, sizeof(arg));
705 ih.len = reqsize;
706 ih.opcode = FUSE_INTERRUPT;
707 ih.unique = req->intr_unique;
708 arg.unique = req->in.h.unique;
709
710 spin_unlock(&fc->lock);
711 if (iov_length(iov, nr_segs) < reqsize)
712 return -EINVAL;
713
714 fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
715 err = fuse_copy_one(&cs, &ih, sizeof(ih));
716 if (!err)
717 err = fuse_copy_one(&cs, &arg, sizeof(arg));
718 fuse_copy_finish(&cs);
719
720 return err ? err : reqsize;
721 }
722
723 /*
724 * Read a single request into the userspace filesystem's buffer. This
725 * function waits until a request is available, then removes it from
726 * the pending list and copies request data to userspace buffer. If
727 * no reply is needed (FORGET) or request has been aborted or there
728 * was an error during the copying then it's finished by calling
729 * request_end(). Otherwise add it to the processing list, and set
730 * the 'sent' flag.
731 */
732 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
733 unsigned long nr_segs, loff_t pos)
734 {
735 int err;
736 struct fuse_req *req;
737 struct fuse_in *in;
738 struct fuse_copy_state cs;
739 unsigned reqsize;
740 struct file *file = iocb->ki_filp;
741 struct fuse_conn *fc = fuse_get_conn(file);
742 if (!fc)
743 return -EPERM;
744
745 restart:
746 spin_lock(&fc->lock);
747 err = -EAGAIN;
748 if ((file->f_flags & O_NONBLOCK) && fc->connected &&
749 !request_pending(fc))
750 goto err_unlock;
751
752 request_wait(fc);
753 err = -ENODEV;
754 if (!fc->connected)
755 goto err_unlock;
756 err = -ERESTARTSYS;
757 if (!request_pending(fc))
758 goto err_unlock;
759
760 if (!list_empty(&fc->interrupts)) {
761 req = list_entry(fc->interrupts.next, struct fuse_req,
762 intr_entry);
763 return fuse_read_interrupt(fc, req, iov, nr_segs);
764 }
765
766 req = list_entry(fc->pending.next, struct fuse_req, list);
767 req->state = FUSE_REQ_READING;
768 list_move(&req->list, &fc->io);
769
770 in = &req->in;
771 reqsize = in->h.len;
772 /* If request is too large, reply with an error and restart the read */
773 if (iov_length(iov, nr_segs) < reqsize) {
774 req->out.h.error = -EIO;
775 /* SETXATTR is special, since it may contain too large data */
776 if (in->h.opcode == FUSE_SETXATTR)
777 req->out.h.error = -E2BIG;
778 request_end(fc, req);
779 goto restart;
780 }
781 spin_unlock(&fc->lock);
782 fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
783 err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
784 if (!err)
785 err = fuse_copy_args(&cs, in->numargs, in->argpages,
786 (struct fuse_arg *) in->args, 0);
787 fuse_copy_finish(&cs);
788 spin_lock(&fc->lock);
789 req->locked = 0;
790 if (req->aborted) {
791 request_end(fc, req);
792 return -ENODEV;
793 }
794 if (err) {
795 req->out.h.error = -EIO;
796 request_end(fc, req);
797 return err;
798 }
799 if (!req->isreply)
800 request_end(fc, req);
801 else {
802 req->state = FUSE_REQ_SENT;
803 list_move_tail(&req->list, &fc->processing);
804 if (req->interrupted)
805 queue_interrupt(fc, req);
806 spin_unlock(&fc->lock);
807 }
808 return reqsize;
809
810 err_unlock:
811 spin_unlock(&fc->lock);
812 return err;
813 }
814
815 /* Look up request on processing list by unique ID */
816 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
817 {
818 struct list_head *entry;
819
820 list_for_each(entry, &fc->processing) {
821 struct fuse_req *req;
822 req = list_entry(entry, struct fuse_req, list);
823 if (req->in.h.unique == unique || req->intr_unique == unique)
824 return req;
825 }
826 return NULL;
827 }
828
829 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
830 unsigned nbytes)
831 {
832 unsigned reqsize = sizeof(struct fuse_out_header);
833
834 if (out->h.error)
835 return nbytes != reqsize ? -EINVAL : 0;
836
837 reqsize += len_args(out->numargs, out->args);
838
839 if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
840 return -EINVAL;
841 else if (reqsize > nbytes) {
842 struct fuse_arg *lastarg = &out->args[out->numargs-1];
843 unsigned diffsize = reqsize - nbytes;
844 if (diffsize > lastarg->size)
845 return -EINVAL;
846 lastarg->size -= diffsize;
847 }
848 return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
849 out->page_zeroing);
850 }
851
852 /*
853 * Write a single reply to a request. First the header is copied from
854 * the write buffer. The request is then searched on the processing
855 * list by the unique ID found in the header. If found, then remove
856 * it from the list and copy the rest of the buffer to the request.
857 * The request is finished by calling request_end()
858 */
859 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
860 unsigned long nr_segs, loff_t pos)
861 {
862 int err;
863 unsigned nbytes = iov_length(iov, nr_segs);
864 struct fuse_req *req;
865 struct fuse_out_header oh;
866 struct fuse_copy_state cs;
867 struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
868 if (!fc)
869 return -EPERM;
870
871 fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
872 if (nbytes < sizeof(struct fuse_out_header))
873 return -EINVAL;
874
875 err = fuse_copy_one(&cs, &oh, sizeof(oh));
876 if (err)
877 goto err_finish;
878 err = -EINVAL;
879 if (!oh.unique || oh.error <= -1000 || oh.error > 0 ||
880 oh.len != nbytes)
881 goto err_finish;
882
883 spin_lock(&fc->lock);
884 err = -ENOENT;
885 if (!fc->connected)
886 goto err_unlock;
887
888 req = request_find(fc, oh.unique);
889 if (!req)
890 goto err_unlock;
891
892 if (req->aborted) {
893 spin_unlock(&fc->lock);
894 fuse_copy_finish(&cs);
895 spin_lock(&fc->lock);
896 request_end(fc, req);
897 return -ENOENT;
898 }
899 /* Is it an interrupt reply? */
900 if (req->intr_unique == oh.unique) {
901 err = -EINVAL;
902 if (nbytes != sizeof(struct fuse_out_header))
903 goto err_unlock;
904
905 if (oh.error == -ENOSYS)
906 fc->no_interrupt = 1;
907 else if (oh.error == -EAGAIN)
908 queue_interrupt(fc, req);
909
910 spin_unlock(&fc->lock);
911 fuse_copy_finish(&cs);
912 return nbytes;
913 }
914
915 req->state = FUSE_REQ_WRITING;
916 list_move(&req->list, &fc->io);
917 req->out.h = oh;
918 req->locked = 1;
919 cs.req = req;
920 spin_unlock(&fc->lock);
921
922 err = copy_out_args(&cs, &req->out, nbytes);
923 fuse_copy_finish(&cs);
924
925 spin_lock(&fc->lock);
926 req->locked = 0;
927 if (!err) {
928 if (req->aborted)
929 err = -ENOENT;
930 } else if (!req->aborted)
931 req->out.h.error = -EIO;
932 request_end(fc, req);
933
934 return err ? err : nbytes;
935
936 err_unlock:
937 spin_unlock(&fc->lock);
938 err_finish:
939 fuse_copy_finish(&cs);
940 return err;
941 }
942
943 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
944 {
945 unsigned mask = POLLOUT | POLLWRNORM;
946 struct fuse_conn *fc = fuse_get_conn(file);
947 if (!fc)
948 return POLLERR;
949
950 poll_wait(file, &fc->waitq, wait);
951
952 spin_lock(&fc->lock);
953 if (!fc->connected)
954 mask = POLLERR;
955 else if (request_pending(fc))
956 mask |= POLLIN | POLLRDNORM;
957 spin_unlock(&fc->lock);
958
959 return mask;
960 }
961
962 /*
963 * Abort all requests on the given list (pending or processing)
964 *
965 * This function releases and reacquires fc->lock
966 */
967 static void end_requests(struct fuse_conn *fc, struct list_head *head)
968 {
969 while (!list_empty(head)) {
970 struct fuse_req *req;
971 req = list_entry(head->next, struct fuse_req, list);
972 req->out.h.error = -ECONNABORTED;
973 request_end(fc, req);
974 spin_lock(&fc->lock);
975 }
976 }
977
978 /*
979 * Abort requests under I/O
980 *
981 * The requests are set to aborted and finished, and the request
982 * waiter is woken up. This will make request_wait_answer() wait
983 * until the request is unlocked and then return.
984 *
985 * If the request is asynchronous, then the end function needs to be
986 * called after waiting for the request to be unlocked (if it was
987 * locked).
988 */
989 static void end_io_requests(struct fuse_conn *fc)
990 {
991 while (!list_empty(&fc->io)) {
992 struct fuse_req *req =
993 list_entry(fc->io.next, struct fuse_req, list);
994 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
995
996 req->aborted = 1;
997 req->out.h.error = -ECONNABORTED;
998 req->state = FUSE_REQ_FINISHED;
999 list_del_init(&req->list);
1000 wake_up(&req->waitq);
1001 if (end) {
1002 req->end = NULL;
1003 /* The end function will consume this reference */
1004 __fuse_get_request(req);
1005 spin_unlock(&fc->lock);
1006 wait_event(req->waitq, !req->locked);
1007 end(fc, req);
1008 spin_lock(&fc->lock);
1009 }
1010 }
1011 }
1012
1013 /*
1014 * Abort all requests.
1015 *
1016 * Emergency exit in case of a malicious or accidental deadlock, or
1017 * just a hung filesystem.
1018 *
1019 * The same effect is usually achievable through killing the
1020 * filesystem daemon and all users of the filesystem. The exception
1021 * is the combination of an asynchronous request and the tricky
1022 * deadlock (see Documentation/filesystems/fuse.txt).
1023 *
1024 * During the aborting, progression of requests from the pending and
1025 * processing lists onto the io list, and progression of new requests
1026 * onto the pending list is prevented by req->connected being false.
1027 *
1028 * Progression of requests under I/O to the processing list is
1029 * prevented by the req->aborted flag being true for these requests.
1030 * For this reason requests on the io list must be aborted first.
1031 */
1032 void fuse_abort_conn(struct fuse_conn *fc)
1033 {
1034 spin_lock(&fc->lock);
1035 if (fc->connected) {
1036 fc->connected = 0;
1037 fc->blocked = 0;
1038 end_io_requests(fc);
1039 end_requests(fc, &fc->pending);
1040 end_requests(fc, &fc->processing);
1041 wake_up_all(&fc->waitq);
1042 wake_up_all(&fc->blocked_waitq);
1043 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1044 }
1045 spin_unlock(&fc->lock);
1046 }
1047
1048 static int fuse_dev_release(struct inode *inode, struct file *file)
1049 {
1050 struct fuse_conn *fc = fuse_get_conn(file);
1051 if (fc) {
1052 spin_lock(&fc->lock);
1053 fc->connected = 0;
1054 end_requests(fc, &fc->pending);
1055 end_requests(fc, &fc->processing);
1056 spin_unlock(&fc->lock);
1057 fasync_helper(-1, file, 0, &fc->fasync);
1058 fuse_conn_put(fc);
1059 }
1060
1061 return 0;
1062 }
1063
1064 static int fuse_dev_fasync(int fd, struct file *file, int on)
1065 {
1066 struct fuse_conn *fc = fuse_get_conn(file);
1067 if (!fc)
1068 return -EPERM;
1069
1070 /* No locking - fasync_helper does its own locking */
1071 return fasync_helper(fd, file, on, &fc->fasync);
1072 }
1073
1074 const struct file_operations fuse_dev_operations = {
1075 .owner = THIS_MODULE,
1076 .llseek = no_llseek,
1077 .read = do_sync_read,
1078 .aio_read = fuse_dev_read,
1079 .write = do_sync_write,
1080 .aio_write = fuse_dev_write,
1081 .poll = fuse_dev_poll,
1082 .release = fuse_dev_release,
1083 .fasync = fuse_dev_fasync,
1084 };
1085
1086 static struct miscdevice fuse_miscdevice = {
1087 .minor = FUSE_MINOR,
1088 .name = "fuse",
1089 .fops = &fuse_dev_operations,
1090 };
1091
1092 int __init fuse_dev_init(void)
1093 {
1094 int err = -ENOMEM;
1095 fuse_req_cachep = kmem_cache_create("fuse_request",
1096 sizeof(struct fuse_req),
1097 0, 0, NULL);
1098 if (!fuse_req_cachep)
1099 goto out;
1100
1101 err = misc_register(&fuse_miscdevice);
1102 if (err)
1103 goto out_cache_clean;
1104
1105 return 0;
1106
1107 out_cache_clean:
1108 kmem_cache_destroy(fuse_req_cachep);
1109 out:
1110 return err;
1111 }
1112
1113 void fuse_dev_cleanup(void)
1114 {
1115 misc_deregister(&fuse_miscdevice);
1116 kmem_cache_destroy(fuse_req_cachep);
1117 }