]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fuse/dev.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core-2.6
[mirror_ubuntu-bionic-kernel.git] / fs / fuse / dev.c
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/poll.h>
14 #include <linux/uio.h>
15 #include <linux/miscdevice.h>
16 #include <linux/pagemap.h>
17 #include <linux/file.h>
18 #include <linux/slab.h>
19
20 MODULE_ALIAS_MISCDEV(FUSE_MINOR);
21
22 static struct kmem_cache *fuse_req_cachep;
23
24 static struct fuse_conn *fuse_get_conn(struct file *file)
25 {
26 /*
27 * Lockless access is OK, because file->private data is set
28 * once during mount and is valid until the file is released.
29 */
30 return file->private_data;
31 }
32
33 static void fuse_request_init(struct fuse_req *req)
34 {
35 memset(req, 0, sizeof(*req));
36 INIT_LIST_HEAD(&req->list);
37 INIT_LIST_HEAD(&req->intr_entry);
38 init_waitqueue_head(&req->waitq);
39 atomic_set(&req->count, 1);
40 }
41
42 struct fuse_req *fuse_request_alloc(void)
43 {
44 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_KERNEL);
45 if (req)
46 fuse_request_init(req);
47 return req;
48 }
49
50 struct fuse_req *fuse_request_alloc_nofs(void)
51 {
52 struct fuse_req *req = kmem_cache_alloc(fuse_req_cachep, GFP_NOFS);
53 if (req)
54 fuse_request_init(req);
55 return req;
56 }
57
58 void fuse_request_free(struct fuse_req *req)
59 {
60 kmem_cache_free(fuse_req_cachep, req);
61 }
62
63 static void block_sigs(sigset_t *oldset)
64 {
65 sigset_t mask;
66
67 siginitsetinv(&mask, sigmask(SIGKILL));
68 sigprocmask(SIG_BLOCK, &mask, oldset);
69 }
70
71 static void restore_sigs(sigset_t *oldset)
72 {
73 sigprocmask(SIG_SETMASK, oldset, NULL);
74 }
75
76 static void __fuse_get_request(struct fuse_req *req)
77 {
78 atomic_inc(&req->count);
79 }
80
81 /* Must be called with > 1 refcount */
82 static void __fuse_put_request(struct fuse_req *req)
83 {
84 BUG_ON(atomic_read(&req->count) < 2);
85 atomic_dec(&req->count);
86 }
87
88 static void fuse_req_init_context(struct fuse_req *req)
89 {
90 req->in.h.uid = current_fsuid();
91 req->in.h.gid = current_fsgid();
92 req->in.h.pid = current->pid;
93 }
94
95 struct fuse_req *fuse_get_req(struct fuse_conn *fc)
96 {
97 struct fuse_req *req;
98 sigset_t oldset;
99 int intr;
100 int err;
101
102 atomic_inc(&fc->num_waiting);
103 block_sigs(&oldset);
104 intr = wait_event_interruptible(fc->blocked_waitq, !fc->blocked);
105 restore_sigs(&oldset);
106 err = -EINTR;
107 if (intr)
108 goto out;
109
110 err = -ENOTCONN;
111 if (!fc->connected)
112 goto out;
113
114 req = fuse_request_alloc();
115 err = -ENOMEM;
116 if (!req)
117 goto out;
118
119 fuse_req_init_context(req);
120 req->waiting = 1;
121 return req;
122
123 out:
124 atomic_dec(&fc->num_waiting);
125 return ERR_PTR(err);
126 }
127
128 /*
129 * Return request in fuse_file->reserved_req. However that may
130 * currently be in use. If that is the case, wait for it to become
131 * available.
132 */
133 static struct fuse_req *get_reserved_req(struct fuse_conn *fc,
134 struct file *file)
135 {
136 struct fuse_req *req = NULL;
137 struct fuse_file *ff = file->private_data;
138
139 do {
140 wait_event(fc->reserved_req_waitq, ff->reserved_req);
141 spin_lock(&fc->lock);
142 if (ff->reserved_req) {
143 req = ff->reserved_req;
144 ff->reserved_req = NULL;
145 get_file(file);
146 req->stolen_file = file;
147 }
148 spin_unlock(&fc->lock);
149 } while (!req);
150
151 return req;
152 }
153
154 /*
155 * Put stolen request back into fuse_file->reserved_req
156 */
157 static void put_reserved_req(struct fuse_conn *fc, struct fuse_req *req)
158 {
159 struct file *file = req->stolen_file;
160 struct fuse_file *ff = file->private_data;
161
162 spin_lock(&fc->lock);
163 fuse_request_init(req);
164 BUG_ON(ff->reserved_req);
165 ff->reserved_req = req;
166 wake_up_all(&fc->reserved_req_waitq);
167 spin_unlock(&fc->lock);
168 fput(file);
169 }
170
171 /*
172 * Gets a requests for a file operation, always succeeds
173 *
174 * This is used for sending the FLUSH request, which must get to
175 * userspace, due to POSIX locks which may need to be unlocked.
176 *
177 * If allocation fails due to OOM, use the reserved request in
178 * fuse_file.
179 *
180 * This is very unlikely to deadlock accidentally, since the
181 * filesystem should not have it's own file open. If deadlock is
182 * intentional, it can still be broken by "aborting" the filesystem.
183 */
184 struct fuse_req *fuse_get_req_nofail(struct fuse_conn *fc, struct file *file)
185 {
186 struct fuse_req *req;
187
188 atomic_inc(&fc->num_waiting);
189 wait_event(fc->blocked_waitq, !fc->blocked);
190 req = fuse_request_alloc();
191 if (!req)
192 req = get_reserved_req(fc, file);
193
194 fuse_req_init_context(req);
195 req->waiting = 1;
196 return req;
197 }
198
199 void fuse_put_request(struct fuse_conn *fc, struct fuse_req *req)
200 {
201 if (atomic_dec_and_test(&req->count)) {
202 if (req->waiting)
203 atomic_dec(&fc->num_waiting);
204
205 if (req->stolen_file)
206 put_reserved_req(fc, req);
207 else
208 fuse_request_free(req);
209 }
210 }
211
212 static unsigned len_args(unsigned numargs, struct fuse_arg *args)
213 {
214 unsigned nbytes = 0;
215 unsigned i;
216
217 for (i = 0; i < numargs; i++)
218 nbytes += args[i].size;
219
220 return nbytes;
221 }
222
223 static u64 fuse_get_unique(struct fuse_conn *fc)
224 {
225 fc->reqctr++;
226 /* zero is special */
227 if (fc->reqctr == 0)
228 fc->reqctr = 1;
229
230 return fc->reqctr;
231 }
232
233 static void queue_request(struct fuse_conn *fc, struct fuse_req *req)
234 {
235 req->in.h.unique = fuse_get_unique(fc);
236 req->in.h.len = sizeof(struct fuse_in_header) +
237 len_args(req->in.numargs, (struct fuse_arg *) req->in.args);
238 list_add_tail(&req->list, &fc->pending);
239 req->state = FUSE_REQ_PENDING;
240 if (!req->waiting) {
241 req->waiting = 1;
242 atomic_inc(&fc->num_waiting);
243 }
244 wake_up(&fc->waitq);
245 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
246 }
247
248 static void flush_bg_queue(struct fuse_conn *fc)
249 {
250 while (fc->active_background < FUSE_MAX_BACKGROUND &&
251 !list_empty(&fc->bg_queue)) {
252 struct fuse_req *req;
253
254 req = list_entry(fc->bg_queue.next, struct fuse_req, list);
255 list_del(&req->list);
256 fc->active_background++;
257 queue_request(fc, req);
258 }
259 }
260
261 /*
262 * This function is called when a request is finished. Either a reply
263 * has arrived or it was aborted (and not yet sent) or some error
264 * occurred during communication with userspace, or the device file
265 * was closed. The requester thread is woken up (if still waiting),
266 * the 'end' callback is called if given, else the reference to the
267 * request is released
268 *
269 * Called with fc->lock, unlocks it
270 */
271 static void request_end(struct fuse_conn *fc, struct fuse_req *req)
272 __releases(&fc->lock)
273 {
274 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
275 req->end = NULL;
276 list_del(&req->list);
277 list_del(&req->intr_entry);
278 req->state = FUSE_REQ_FINISHED;
279 if (req->background) {
280 if (fc->num_background == FUSE_MAX_BACKGROUND) {
281 fc->blocked = 0;
282 wake_up_all(&fc->blocked_waitq);
283 }
284 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
285 clear_bdi_congested(&fc->bdi, READ);
286 clear_bdi_congested(&fc->bdi, WRITE);
287 }
288 fc->num_background--;
289 fc->active_background--;
290 flush_bg_queue(fc);
291 }
292 spin_unlock(&fc->lock);
293 wake_up(&req->waitq);
294 if (end)
295 end(fc, req);
296 fuse_put_request(fc, req);
297 }
298
299 static void wait_answer_interruptible(struct fuse_conn *fc,
300 struct fuse_req *req)
301 __releases(&fc->lock)
302 __acquires(&fc->lock)
303 {
304 if (signal_pending(current))
305 return;
306
307 spin_unlock(&fc->lock);
308 wait_event_interruptible(req->waitq, req->state == FUSE_REQ_FINISHED);
309 spin_lock(&fc->lock);
310 }
311
312 static void queue_interrupt(struct fuse_conn *fc, struct fuse_req *req)
313 {
314 list_add_tail(&req->intr_entry, &fc->interrupts);
315 wake_up(&fc->waitq);
316 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
317 }
318
319 static void request_wait_answer(struct fuse_conn *fc, struct fuse_req *req)
320 __releases(&fc->lock)
321 __acquires(&fc->lock)
322 {
323 if (!fc->no_interrupt) {
324 /* Any signal may interrupt this */
325 wait_answer_interruptible(fc, req);
326
327 if (req->aborted)
328 goto aborted;
329 if (req->state == FUSE_REQ_FINISHED)
330 return;
331
332 req->interrupted = 1;
333 if (req->state == FUSE_REQ_SENT)
334 queue_interrupt(fc, req);
335 }
336
337 if (!req->force) {
338 sigset_t oldset;
339
340 /* Only fatal signals may interrupt this */
341 block_sigs(&oldset);
342 wait_answer_interruptible(fc, req);
343 restore_sigs(&oldset);
344
345 if (req->aborted)
346 goto aborted;
347 if (req->state == FUSE_REQ_FINISHED)
348 return;
349
350 /* Request is not yet in userspace, bail out */
351 if (req->state == FUSE_REQ_PENDING) {
352 list_del(&req->list);
353 __fuse_put_request(req);
354 req->out.h.error = -EINTR;
355 return;
356 }
357 }
358
359 /*
360 * Either request is already in userspace, or it was forced.
361 * Wait it out.
362 */
363 spin_unlock(&fc->lock);
364 wait_event(req->waitq, req->state == FUSE_REQ_FINISHED);
365 spin_lock(&fc->lock);
366
367 if (!req->aborted)
368 return;
369
370 aborted:
371 BUG_ON(req->state != FUSE_REQ_FINISHED);
372 if (req->locked) {
373 /* This is uninterruptible sleep, because data is
374 being copied to/from the buffers of req. During
375 locked state, there mustn't be any filesystem
376 operation (e.g. page fault), since that could lead
377 to deadlock */
378 spin_unlock(&fc->lock);
379 wait_event(req->waitq, !req->locked);
380 spin_lock(&fc->lock);
381 }
382 }
383
384 void fuse_request_send(struct fuse_conn *fc, struct fuse_req *req)
385 {
386 req->isreply = 1;
387 spin_lock(&fc->lock);
388 if (!fc->connected)
389 req->out.h.error = -ENOTCONN;
390 else if (fc->conn_error)
391 req->out.h.error = -ECONNREFUSED;
392 else {
393 queue_request(fc, req);
394 /* acquire extra reference, since request is still needed
395 after request_end() */
396 __fuse_get_request(req);
397
398 request_wait_answer(fc, req);
399 }
400 spin_unlock(&fc->lock);
401 }
402
403 static void fuse_request_send_nowait_locked(struct fuse_conn *fc,
404 struct fuse_req *req)
405 {
406 req->background = 1;
407 fc->num_background++;
408 if (fc->num_background == FUSE_MAX_BACKGROUND)
409 fc->blocked = 1;
410 if (fc->num_background == FUSE_CONGESTION_THRESHOLD) {
411 set_bdi_congested(&fc->bdi, READ);
412 set_bdi_congested(&fc->bdi, WRITE);
413 }
414 list_add_tail(&req->list, &fc->bg_queue);
415 flush_bg_queue(fc);
416 }
417
418 static void fuse_request_send_nowait(struct fuse_conn *fc, struct fuse_req *req)
419 {
420 spin_lock(&fc->lock);
421 if (fc->connected) {
422 fuse_request_send_nowait_locked(fc, req);
423 spin_unlock(&fc->lock);
424 } else {
425 req->out.h.error = -ENOTCONN;
426 request_end(fc, req);
427 }
428 }
429
430 void fuse_request_send_noreply(struct fuse_conn *fc, struct fuse_req *req)
431 {
432 req->isreply = 0;
433 fuse_request_send_nowait(fc, req);
434 }
435
436 void fuse_request_send_background(struct fuse_conn *fc, struct fuse_req *req)
437 {
438 req->isreply = 1;
439 fuse_request_send_nowait(fc, req);
440 }
441
442 /*
443 * Called under fc->lock
444 *
445 * fc->connected must have been checked previously
446 */
447 void fuse_request_send_background_locked(struct fuse_conn *fc,
448 struct fuse_req *req)
449 {
450 req->isreply = 1;
451 fuse_request_send_nowait_locked(fc, req);
452 }
453
454 /*
455 * Lock the request. Up to the next unlock_request() there mustn't be
456 * anything that could cause a page-fault. If the request was already
457 * aborted bail out.
458 */
459 static int lock_request(struct fuse_conn *fc, struct fuse_req *req)
460 {
461 int err = 0;
462 if (req) {
463 spin_lock(&fc->lock);
464 if (req->aborted)
465 err = -ENOENT;
466 else
467 req->locked = 1;
468 spin_unlock(&fc->lock);
469 }
470 return err;
471 }
472
473 /*
474 * Unlock request. If it was aborted during being locked, the
475 * requester thread is currently waiting for it to be unlocked, so
476 * wake it up.
477 */
478 static void unlock_request(struct fuse_conn *fc, struct fuse_req *req)
479 {
480 if (req) {
481 spin_lock(&fc->lock);
482 req->locked = 0;
483 if (req->aborted)
484 wake_up(&req->waitq);
485 spin_unlock(&fc->lock);
486 }
487 }
488
489 struct fuse_copy_state {
490 struct fuse_conn *fc;
491 int write;
492 struct fuse_req *req;
493 const struct iovec *iov;
494 unsigned long nr_segs;
495 unsigned long seglen;
496 unsigned long addr;
497 struct page *pg;
498 void *mapaddr;
499 void *buf;
500 unsigned len;
501 };
502
503 static void fuse_copy_init(struct fuse_copy_state *cs, struct fuse_conn *fc,
504 int write, struct fuse_req *req,
505 const struct iovec *iov, unsigned long nr_segs)
506 {
507 memset(cs, 0, sizeof(*cs));
508 cs->fc = fc;
509 cs->write = write;
510 cs->req = req;
511 cs->iov = iov;
512 cs->nr_segs = nr_segs;
513 }
514
515 /* Unmap and put previous page of userspace buffer */
516 static void fuse_copy_finish(struct fuse_copy_state *cs)
517 {
518 if (cs->mapaddr) {
519 kunmap_atomic(cs->mapaddr, KM_USER0);
520 if (cs->write) {
521 flush_dcache_page(cs->pg);
522 set_page_dirty_lock(cs->pg);
523 }
524 put_page(cs->pg);
525 cs->mapaddr = NULL;
526 }
527 }
528
529 /*
530 * Get another pagefull of userspace buffer, and map it to kernel
531 * address space, and lock request
532 */
533 static int fuse_copy_fill(struct fuse_copy_state *cs)
534 {
535 unsigned long offset;
536 int err;
537
538 unlock_request(cs->fc, cs->req);
539 fuse_copy_finish(cs);
540 if (!cs->seglen) {
541 BUG_ON(!cs->nr_segs);
542 cs->seglen = cs->iov[0].iov_len;
543 cs->addr = (unsigned long) cs->iov[0].iov_base;
544 cs->iov++;
545 cs->nr_segs--;
546 }
547 down_read(&current->mm->mmap_sem);
548 err = get_user_pages(current, current->mm, cs->addr, 1, cs->write, 0,
549 &cs->pg, NULL);
550 up_read(&current->mm->mmap_sem);
551 if (err < 0)
552 return err;
553 BUG_ON(err != 1);
554 offset = cs->addr % PAGE_SIZE;
555 cs->mapaddr = kmap_atomic(cs->pg, KM_USER0);
556 cs->buf = cs->mapaddr + offset;
557 cs->len = min(PAGE_SIZE - offset, cs->seglen);
558 cs->seglen -= cs->len;
559 cs->addr += cs->len;
560
561 return lock_request(cs->fc, cs->req);
562 }
563
564 /* Do as much copy to/from userspace buffer as we can */
565 static int fuse_copy_do(struct fuse_copy_state *cs, void **val, unsigned *size)
566 {
567 unsigned ncpy = min(*size, cs->len);
568 if (val) {
569 if (cs->write)
570 memcpy(cs->buf, *val, ncpy);
571 else
572 memcpy(*val, cs->buf, ncpy);
573 *val += ncpy;
574 }
575 *size -= ncpy;
576 cs->len -= ncpy;
577 cs->buf += ncpy;
578 return ncpy;
579 }
580
581 /*
582 * Copy a page in the request to/from the userspace buffer. Must be
583 * done atomically
584 */
585 static int fuse_copy_page(struct fuse_copy_state *cs, struct page *page,
586 unsigned offset, unsigned count, int zeroing)
587 {
588 if (page && zeroing && count < PAGE_SIZE) {
589 void *mapaddr = kmap_atomic(page, KM_USER1);
590 memset(mapaddr, 0, PAGE_SIZE);
591 kunmap_atomic(mapaddr, KM_USER1);
592 }
593 while (count) {
594 if (!cs->len) {
595 int err = fuse_copy_fill(cs);
596 if (err)
597 return err;
598 }
599 if (page) {
600 void *mapaddr = kmap_atomic(page, KM_USER1);
601 void *buf = mapaddr + offset;
602 offset += fuse_copy_do(cs, &buf, &count);
603 kunmap_atomic(mapaddr, KM_USER1);
604 } else
605 offset += fuse_copy_do(cs, NULL, &count);
606 }
607 if (page && !cs->write)
608 flush_dcache_page(page);
609 return 0;
610 }
611
612 /* Copy pages in the request to/from userspace buffer */
613 static int fuse_copy_pages(struct fuse_copy_state *cs, unsigned nbytes,
614 int zeroing)
615 {
616 unsigned i;
617 struct fuse_req *req = cs->req;
618 unsigned offset = req->page_offset;
619 unsigned count = min(nbytes, (unsigned) PAGE_SIZE - offset);
620
621 for (i = 0; i < req->num_pages && (nbytes || zeroing); i++) {
622 struct page *page = req->pages[i];
623 int err = fuse_copy_page(cs, page, offset, count, zeroing);
624 if (err)
625 return err;
626
627 nbytes -= count;
628 count = min(nbytes, (unsigned) PAGE_SIZE);
629 offset = 0;
630 }
631 return 0;
632 }
633
634 /* Copy a single argument in the request to/from userspace buffer */
635 static int fuse_copy_one(struct fuse_copy_state *cs, void *val, unsigned size)
636 {
637 while (size) {
638 if (!cs->len) {
639 int err = fuse_copy_fill(cs);
640 if (err)
641 return err;
642 }
643 fuse_copy_do(cs, &val, &size);
644 }
645 return 0;
646 }
647
648 /* Copy request arguments to/from userspace buffer */
649 static int fuse_copy_args(struct fuse_copy_state *cs, unsigned numargs,
650 unsigned argpages, struct fuse_arg *args,
651 int zeroing)
652 {
653 int err = 0;
654 unsigned i;
655
656 for (i = 0; !err && i < numargs; i++) {
657 struct fuse_arg *arg = &args[i];
658 if (i == numargs - 1 && argpages)
659 err = fuse_copy_pages(cs, arg->size, zeroing);
660 else
661 err = fuse_copy_one(cs, arg->value, arg->size);
662 }
663 return err;
664 }
665
666 static int request_pending(struct fuse_conn *fc)
667 {
668 return !list_empty(&fc->pending) || !list_empty(&fc->interrupts);
669 }
670
671 /* Wait until a request is available on the pending list */
672 static void request_wait(struct fuse_conn *fc)
673 __releases(&fc->lock)
674 __acquires(&fc->lock)
675 {
676 DECLARE_WAITQUEUE(wait, current);
677
678 add_wait_queue_exclusive(&fc->waitq, &wait);
679 while (fc->connected && !request_pending(fc)) {
680 set_current_state(TASK_INTERRUPTIBLE);
681 if (signal_pending(current))
682 break;
683
684 spin_unlock(&fc->lock);
685 schedule();
686 spin_lock(&fc->lock);
687 }
688 set_current_state(TASK_RUNNING);
689 remove_wait_queue(&fc->waitq, &wait);
690 }
691
692 /*
693 * Transfer an interrupt request to userspace
694 *
695 * Unlike other requests this is assembled on demand, without a need
696 * to allocate a separate fuse_req structure.
697 *
698 * Called with fc->lock held, releases it
699 */
700 static int fuse_read_interrupt(struct fuse_conn *fc, struct fuse_req *req,
701 const struct iovec *iov, unsigned long nr_segs)
702 __releases(&fc->lock)
703 {
704 struct fuse_copy_state cs;
705 struct fuse_in_header ih;
706 struct fuse_interrupt_in arg;
707 unsigned reqsize = sizeof(ih) + sizeof(arg);
708 int err;
709
710 list_del_init(&req->intr_entry);
711 req->intr_unique = fuse_get_unique(fc);
712 memset(&ih, 0, sizeof(ih));
713 memset(&arg, 0, sizeof(arg));
714 ih.len = reqsize;
715 ih.opcode = FUSE_INTERRUPT;
716 ih.unique = req->intr_unique;
717 arg.unique = req->in.h.unique;
718
719 spin_unlock(&fc->lock);
720 if (iov_length(iov, nr_segs) < reqsize)
721 return -EINVAL;
722
723 fuse_copy_init(&cs, fc, 1, NULL, iov, nr_segs);
724 err = fuse_copy_one(&cs, &ih, sizeof(ih));
725 if (!err)
726 err = fuse_copy_one(&cs, &arg, sizeof(arg));
727 fuse_copy_finish(&cs);
728
729 return err ? err : reqsize;
730 }
731
732 /*
733 * Read a single request into the userspace filesystem's buffer. This
734 * function waits until a request is available, then removes it from
735 * the pending list and copies request data to userspace buffer. If
736 * no reply is needed (FORGET) or request has been aborted or there
737 * was an error during the copying then it's finished by calling
738 * request_end(). Otherwise add it to the processing list, and set
739 * the 'sent' flag.
740 */
741 static ssize_t fuse_dev_read(struct kiocb *iocb, const struct iovec *iov,
742 unsigned long nr_segs, loff_t pos)
743 {
744 int err;
745 struct fuse_req *req;
746 struct fuse_in *in;
747 struct fuse_copy_state cs;
748 unsigned reqsize;
749 struct file *file = iocb->ki_filp;
750 struct fuse_conn *fc = fuse_get_conn(file);
751 if (!fc)
752 return -EPERM;
753
754 restart:
755 spin_lock(&fc->lock);
756 err = -EAGAIN;
757 if ((file->f_flags & O_NONBLOCK) && fc->connected &&
758 !request_pending(fc))
759 goto err_unlock;
760
761 request_wait(fc);
762 err = -ENODEV;
763 if (!fc->connected)
764 goto err_unlock;
765 err = -ERESTARTSYS;
766 if (!request_pending(fc))
767 goto err_unlock;
768
769 if (!list_empty(&fc->interrupts)) {
770 req = list_entry(fc->interrupts.next, struct fuse_req,
771 intr_entry);
772 return fuse_read_interrupt(fc, req, iov, nr_segs);
773 }
774
775 req = list_entry(fc->pending.next, struct fuse_req, list);
776 req->state = FUSE_REQ_READING;
777 list_move(&req->list, &fc->io);
778
779 in = &req->in;
780 reqsize = in->h.len;
781 /* If request is too large, reply with an error and restart the read */
782 if (iov_length(iov, nr_segs) < reqsize) {
783 req->out.h.error = -EIO;
784 /* SETXATTR is special, since it may contain too large data */
785 if (in->h.opcode == FUSE_SETXATTR)
786 req->out.h.error = -E2BIG;
787 request_end(fc, req);
788 goto restart;
789 }
790 spin_unlock(&fc->lock);
791 fuse_copy_init(&cs, fc, 1, req, iov, nr_segs);
792 err = fuse_copy_one(&cs, &in->h, sizeof(in->h));
793 if (!err)
794 err = fuse_copy_args(&cs, in->numargs, in->argpages,
795 (struct fuse_arg *) in->args, 0);
796 fuse_copy_finish(&cs);
797 spin_lock(&fc->lock);
798 req->locked = 0;
799 if (req->aborted) {
800 request_end(fc, req);
801 return -ENODEV;
802 }
803 if (err) {
804 req->out.h.error = -EIO;
805 request_end(fc, req);
806 return err;
807 }
808 if (!req->isreply)
809 request_end(fc, req);
810 else {
811 req->state = FUSE_REQ_SENT;
812 list_move_tail(&req->list, &fc->processing);
813 if (req->interrupted)
814 queue_interrupt(fc, req);
815 spin_unlock(&fc->lock);
816 }
817 return reqsize;
818
819 err_unlock:
820 spin_unlock(&fc->lock);
821 return err;
822 }
823
824 static int fuse_notify_poll(struct fuse_conn *fc, unsigned int size,
825 struct fuse_copy_state *cs)
826 {
827 struct fuse_notify_poll_wakeup_out outarg;
828 int err;
829
830 if (size != sizeof(outarg))
831 return -EINVAL;
832
833 err = fuse_copy_one(cs, &outarg, sizeof(outarg));
834 if (err)
835 return err;
836
837 return fuse_notify_poll_wakeup(fc, &outarg);
838 }
839
840 static int fuse_notify(struct fuse_conn *fc, enum fuse_notify_code code,
841 unsigned int size, struct fuse_copy_state *cs)
842 {
843 switch (code) {
844 case FUSE_NOTIFY_POLL:
845 return fuse_notify_poll(fc, size, cs);
846
847 default:
848 return -EINVAL;
849 }
850 }
851
852 /* Look up request on processing list by unique ID */
853 static struct fuse_req *request_find(struct fuse_conn *fc, u64 unique)
854 {
855 struct list_head *entry;
856
857 list_for_each(entry, &fc->processing) {
858 struct fuse_req *req;
859 req = list_entry(entry, struct fuse_req, list);
860 if (req->in.h.unique == unique || req->intr_unique == unique)
861 return req;
862 }
863 return NULL;
864 }
865
866 static int copy_out_args(struct fuse_copy_state *cs, struct fuse_out *out,
867 unsigned nbytes)
868 {
869 unsigned reqsize = sizeof(struct fuse_out_header);
870
871 if (out->h.error)
872 return nbytes != reqsize ? -EINVAL : 0;
873
874 reqsize += len_args(out->numargs, out->args);
875
876 if (reqsize < nbytes || (reqsize > nbytes && !out->argvar))
877 return -EINVAL;
878 else if (reqsize > nbytes) {
879 struct fuse_arg *lastarg = &out->args[out->numargs-1];
880 unsigned diffsize = reqsize - nbytes;
881 if (diffsize > lastarg->size)
882 return -EINVAL;
883 lastarg->size -= diffsize;
884 }
885 return fuse_copy_args(cs, out->numargs, out->argpages, out->args,
886 out->page_zeroing);
887 }
888
889 /*
890 * Write a single reply to a request. First the header is copied from
891 * the write buffer. The request is then searched on the processing
892 * list by the unique ID found in the header. If found, then remove
893 * it from the list and copy the rest of the buffer to the request.
894 * The request is finished by calling request_end()
895 */
896 static ssize_t fuse_dev_write(struct kiocb *iocb, const struct iovec *iov,
897 unsigned long nr_segs, loff_t pos)
898 {
899 int err;
900 unsigned nbytes = iov_length(iov, nr_segs);
901 struct fuse_req *req;
902 struct fuse_out_header oh;
903 struct fuse_copy_state cs;
904 struct fuse_conn *fc = fuse_get_conn(iocb->ki_filp);
905 if (!fc)
906 return -EPERM;
907
908 fuse_copy_init(&cs, fc, 0, NULL, iov, nr_segs);
909 if (nbytes < sizeof(struct fuse_out_header))
910 return -EINVAL;
911
912 err = fuse_copy_one(&cs, &oh, sizeof(oh));
913 if (err)
914 goto err_finish;
915
916 err = -EINVAL;
917 if (oh.len != nbytes)
918 goto err_finish;
919
920 /*
921 * Zero oh.unique indicates unsolicited notification message
922 * and error contains notification code.
923 */
924 if (!oh.unique) {
925 err = fuse_notify(fc, oh.error, nbytes - sizeof(oh), &cs);
926 fuse_copy_finish(&cs);
927 return err ? err : nbytes;
928 }
929
930 err = -EINVAL;
931 if (oh.error <= -1000 || oh.error > 0)
932 goto err_finish;
933
934 spin_lock(&fc->lock);
935 err = -ENOENT;
936 if (!fc->connected)
937 goto err_unlock;
938
939 req = request_find(fc, oh.unique);
940 if (!req)
941 goto err_unlock;
942
943 if (req->aborted) {
944 spin_unlock(&fc->lock);
945 fuse_copy_finish(&cs);
946 spin_lock(&fc->lock);
947 request_end(fc, req);
948 return -ENOENT;
949 }
950 /* Is it an interrupt reply? */
951 if (req->intr_unique == oh.unique) {
952 err = -EINVAL;
953 if (nbytes != sizeof(struct fuse_out_header))
954 goto err_unlock;
955
956 if (oh.error == -ENOSYS)
957 fc->no_interrupt = 1;
958 else if (oh.error == -EAGAIN)
959 queue_interrupt(fc, req);
960
961 spin_unlock(&fc->lock);
962 fuse_copy_finish(&cs);
963 return nbytes;
964 }
965
966 req->state = FUSE_REQ_WRITING;
967 list_move(&req->list, &fc->io);
968 req->out.h = oh;
969 req->locked = 1;
970 cs.req = req;
971 spin_unlock(&fc->lock);
972
973 err = copy_out_args(&cs, &req->out, nbytes);
974 fuse_copy_finish(&cs);
975
976 spin_lock(&fc->lock);
977 req->locked = 0;
978 if (!err) {
979 if (req->aborted)
980 err = -ENOENT;
981 } else if (!req->aborted)
982 req->out.h.error = -EIO;
983 request_end(fc, req);
984
985 return err ? err : nbytes;
986
987 err_unlock:
988 spin_unlock(&fc->lock);
989 err_finish:
990 fuse_copy_finish(&cs);
991 return err;
992 }
993
994 static unsigned fuse_dev_poll(struct file *file, poll_table *wait)
995 {
996 unsigned mask = POLLOUT | POLLWRNORM;
997 struct fuse_conn *fc = fuse_get_conn(file);
998 if (!fc)
999 return POLLERR;
1000
1001 poll_wait(file, &fc->waitq, wait);
1002
1003 spin_lock(&fc->lock);
1004 if (!fc->connected)
1005 mask = POLLERR;
1006 else if (request_pending(fc))
1007 mask |= POLLIN | POLLRDNORM;
1008 spin_unlock(&fc->lock);
1009
1010 return mask;
1011 }
1012
1013 /*
1014 * Abort all requests on the given list (pending or processing)
1015 *
1016 * This function releases and reacquires fc->lock
1017 */
1018 static void end_requests(struct fuse_conn *fc, struct list_head *head)
1019 __releases(&fc->lock)
1020 __acquires(&fc->lock)
1021 {
1022 while (!list_empty(head)) {
1023 struct fuse_req *req;
1024 req = list_entry(head->next, struct fuse_req, list);
1025 req->out.h.error = -ECONNABORTED;
1026 request_end(fc, req);
1027 spin_lock(&fc->lock);
1028 }
1029 }
1030
1031 /*
1032 * Abort requests under I/O
1033 *
1034 * The requests are set to aborted and finished, and the request
1035 * waiter is woken up. This will make request_wait_answer() wait
1036 * until the request is unlocked and then return.
1037 *
1038 * If the request is asynchronous, then the end function needs to be
1039 * called after waiting for the request to be unlocked (if it was
1040 * locked).
1041 */
1042 static void end_io_requests(struct fuse_conn *fc)
1043 __releases(&fc->lock)
1044 __acquires(&fc->lock)
1045 {
1046 while (!list_empty(&fc->io)) {
1047 struct fuse_req *req =
1048 list_entry(fc->io.next, struct fuse_req, list);
1049 void (*end) (struct fuse_conn *, struct fuse_req *) = req->end;
1050
1051 req->aborted = 1;
1052 req->out.h.error = -ECONNABORTED;
1053 req->state = FUSE_REQ_FINISHED;
1054 list_del_init(&req->list);
1055 wake_up(&req->waitq);
1056 if (end) {
1057 req->end = NULL;
1058 __fuse_get_request(req);
1059 spin_unlock(&fc->lock);
1060 wait_event(req->waitq, !req->locked);
1061 end(fc, req);
1062 fuse_put_request(fc, req);
1063 spin_lock(&fc->lock);
1064 }
1065 }
1066 }
1067
1068 /*
1069 * Abort all requests.
1070 *
1071 * Emergency exit in case of a malicious or accidental deadlock, or
1072 * just a hung filesystem.
1073 *
1074 * The same effect is usually achievable through killing the
1075 * filesystem daemon and all users of the filesystem. The exception
1076 * is the combination of an asynchronous request and the tricky
1077 * deadlock (see Documentation/filesystems/fuse.txt).
1078 *
1079 * During the aborting, progression of requests from the pending and
1080 * processing lists onto the io list, and progression of new requests
1081 * onto the pending list is prevented by req->connected being false.
1082 *
1083 * Progression of requests under I/O to the processing list is
1084 * prevented by the req->aborted flag being true for these requests.
1085 * For this reason requests on the io list must be aborted first.
1086 */
1087 void fuse_abort_conn(struct fuse_conn *fc)
1088 {
1089 spin_lock(&fc->lock);
1090 if (fc->connected) {
1091 fc->connected = 0;
1092 fc->blocked = 0;
1093 end_io_requests(fc);
1094 end_requests(fc, &fc->pending);
1095 end_requests(fc, &fc->processing);
1096 wake_up_all(&fc->waitq);
1097 wake_up_all(&fc->blocked_waitq);
1098 kill_fasync(&fc->fasync, SIGIO, POLL_IN);
1099 }
1100 spin_unlock(&fc->lock);
1101 }
1102
1103 static int fuse_dev_release(struct inode *inode, struct file *file)
1104 {
1105 struct fuse_conn *fc = fuse_get_conn(file);
1106 if (fc) {
1107 spin_lock(&fc->lock);
1108 fc->connected = 0;
1109 end_requests(fc, &fc->pending);
1110 end_requests(fc, &fc->processing);
1111 spin_unlock(&fc->lock);
1112 fuse_conn_put(fc);
1113 }
1114
1115 return 0;
1116 }
1117
1118 static int fuse_dev_fasync(int fd, struct file *file, int on)
1119 {
1120 struct fuse_conn *fc = fuse_get_conn(file);
1121 if (!fc)
1122 return -EPERM;
1123
1124 /* No locking - fasync_helper does its own locking */
1125 return fasync_helper(fd, file, on, &fc->fasync);
1126 }
1127
1128 const struct file_operations fuse_dev_operations = {
1129 .owner = THIS_MODULE,
1130 .llseek = no_llseek,
1131 .read = do_sync_read,
1132 .aio_read = fuse_dev_read,
1133 .write = do_sync_write,
1134 .aio_write = fuse_dev_write,
1135 .poll = fuse_dev_poll,
1136 .release = fuse_dev_release,
1137 .fasync = fuse_dev_fasync,
1138 };
1139
1140 static struct miscdevice fuse_miscdevice = {
1141 .minor = FUSE_MINOR,
1142 .name = "fuse",
1143 .fops = &fuse_dev_operations,
1144 };
1145
1146 int __init fuse_dev_init(void)
1147 {
1148 int err = -ENOMEM;
1149 fuse_req_cachep = kmem_cache_create("fuse_request",
1150 sizeof(struct fuse_req),
1151 0, 0, NULL);
1152 if (!fuse_req_cachep)
1153 goto out;
1154
1155 err = misc_register(&fuse_miscdevice);
1156 if (err)
1157 goto out_cache_clean;
1158
1159 return 0;
1160
1161 out_cache_clean:
1162 kmem_cache_destroy(fuse_req_cachep);
1163 out:
1164 return err;
1165 }
1166
1167 void fuse_dev_cleanup(void)
1168 {
1169 misc_deregister(&fuse_miscdevice);
1170 kmem_cache_destroy(fuse_req_cachep);
1171 }