]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/fuse/file.c
Merge tag 'stable/for-linus-3.15-rc1-tag' of git://git.kernel.org/pub/scm/linux/kerne...
[mirror_ubuntu-bionic-kernel.git] / fs / fuse / file.c
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
4
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
8
9 #include "fuse_i.h"
10
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/module.h>
16 #include <linux/compat.h>
17 #include <linux/swap.h>
18 #include <linux/aio.h>
19 #include <linux/falloc.h>
20
21 static const struct file_operations fuse_direct_io_file_operations;
22
23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
24 int opcode, struct fuse_open_out *outargp)
25 {
26 struct fuse_open_in inarg;
27 struct fuse_req *req;
28 int err;
29
30 req = fuse_get_req_nopages(fc);
31 if (IS_ERR(req))
32 return PTR_ERR(req);
33
34 memset(&inarg, 0, sizeof(inarg));
35 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
36 if (!fc->atomic_o_trunc)
37 inarg.flags &= ~O_TRUNC;
38 req->in.h.opcode = opcode;
39 req->in.h.nodeid = nodeid;
40 req->in.numargs = 1;
41 req->in.args[0].size = sizeof(inarg);
42 req->in.args[0].value = &inarg;
43 req->out.numargs = 1;
44 req->out.args[0].size = sizeof(*outargp);
45 req->out.args[0].value = outargp;
46 fuse_request_send(fc, req);
47 err = req->out.h.error;
48 fuse_put_request(fc, req);
49
50 return err;
51 }
52
53 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
54 {
55 struct fuse_file *ff;
56
57 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL);
58 if (unlikely(!ff))
59 return NULL;
60
61 ff->fc = fc;
62 ff->reserved_req = fuse_request_alloc(0);
63 if (unlikely(!ff->reserved_req)) {
64 kfree(ff);
65 return NULL;
66 }
67
68 INIT_LIST_HEAD(&ff->write_entry);
69 atomic_set(&ff->count, 0);
70 RB_CLEAR_NODE(&ff->polled_node);
71 init_waitqueue_head(&ff->poll_wait);
72
73 spin_lock(&fc->lock);
74 ff->kh = ++fc->khctr;
75 spin_unlock(&fc->lock);
76
77 return ff;
78 }
79
80 void fuse_file_free(struct fuse_file *ff)
81 {
82 fuse_request_free(ff->reserved_req);
83 kfree(ff);
84 }
85
86 struct fuse_file *fuse_file_get(struct fuse_file *ff)
87 {
88 atomic_inc(&ff->count);
89 return ff;
90 }
91
92 static void fuse_release_async(struct work_struct *work)
93 {
94 struct fuse_req *req;
95 struct fuse_conn *fc;
96 struct path path;
97
98 req = container_of(work, struct fuse_req, misc.release.work);
99 path = req->misc.release.path;
100 fc = get_fuse_conn(path.dentry->d_inode);
101
102 fuse_put_request(fc, req);
103 path_put(&path);
104 }
105
106 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
107 {
108 if (fc->destroy_req) {
109 /*
110 * If this is a fuseblk mount, then it's possible that
111 * releasing the path will result in releasing the
112 * super block and sending the DESTROY request. If
113 * the server is single threaded, this would hang.
114 * For this reason do the path_put() in a separate
115 * thread.
116 */
117 atomic_inc(&req->count);
118 INIT_WORK(&req->misc.release.work, fuse_release_async);
119 schedule_work(&req->misc.release.work);
120 } else {
121 path_put(&req->misc.release.path);
122 }
123 }
124
125 static void fuse_file_put(struct fuse_file *ff, bool sync)
126 {
127 if (atomic_dec_and_test(&ff->count)) {
128 struct fuse_req *req = ff->reserved_req;
129
130 if (ff->fc->no_open) {
131 /*
132 * Drop the release request when client does not
133 * implement 'open'
134 */
135 req->background = 0;
136 path_put(&req->misc.release.path);
137 fuse_put_request(ff->fc, req);
138 } else if (sync) {
139 req->background = 0;
140 fuse_request_send(ff->fc, req);
141 path_put(&req->misc.release.path);
142 fuse_put_request(ff->fc, req);
143 } else {
144 req->end = fuse_release_end;
145 req->background = 1;
146 fuse_request_send_background(ff->fc, req);
147 }
148 kfree(ff);
149 }
150 }
151
152 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
153 bool isdir)
154 {
155 struct fuse_file *ff;
156 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
157
158 ff = fuse_file_alloc(fc);
159 if (!ff)
160 return -ENOMEM;
161
162 ff->fh = 0;
163 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
164 if (!fc->no_open || isdir) {
165 struct fuse_open_out outarg;
166 int err;
167
168 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
169 if (!err) {
170 ff->fh = outarg.fh;
171 ff->open_flags = outarg.open_flags;
172
173 } else if (err != -ENOSYS || isdir) {
174 fuse_file_free(ff);
175 return err;
176 } else {
177 fc->no_open = 1;
178 }
179 }
180
181 if (isdir)
182 ff->open_flags &= ~FOPEN_DIRECT_IO;
183
184 ff->nodeid = nodeid;
185 file->private_data = fuse_file_get(ff);
186
187 return 0;
188 }
189 EXPORT_SYMBOL_GPL(fuse_do_open);
190
191 static void fuse_link_write_file(struct file *file)
192 {
193 struct inode *inode = file_inode(file);
194 struct fuse_conn *fc = get_fuse_conn(inode);
195 struct fuse_inode *fi = get_fuse_inode(inode);
196 struct fuse_file *ff = file->private_data;
197 /*
198 * file may be written through mmap, so chain it onto the
199 * inodes's write_file list
200 */
201 spin_lock(&fc->lock);
202 if (list_empty(&ff->write_entry))
203 list_add(&ff->write_entry, &fi->write_files);
204 spin_unlock(&fc->lock);
205 }
206
207 void fuse_finish_open(struct inode *inode, struct file *file)
208 {
209 struct fuse_file *ff = file->private_data;
210 struct fuse_conn *fc = get_fuse_conn(inode);
211
212 if (ff->open_flags & FOPEN_DIRECT_IO)
213 file->f_op = &fuse_direct_io_file_operations;
214 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
215 invalidate_inode_pages2(inode->i_mapping);
216 if (ff->open_flags & FOPEN_NONSEEKABLE)
217 nonseekable_open(inode, file);
218 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
219 struct fuse_inode *fi = get_fuse_inode(inode);
220
221 spin_lock(&fc->lock);
222 fi->attr_version = ++fc->attr_version;
223 i_size_write(inode, 0);
224 spin_unlock(&fc->lock);
225 fuse_invalidate_attr(inode);
226 }
227 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
228 fuse_link_write_file(file);
229 }
230
231 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
232 {
233 struct fuse_conn *fc = get_fuse_conn(inode);
234 int err;
235
236 err = generic_file_open(inode, file);
237 if (err)
238 return err;
239
240 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
241 if (err)
242 return err;
243
244 fuse_finish_open(inode, file);
245
246 return 0;
247 }
248
249 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
250 {
251 struct fuse_conn *fc = ff->fc;
252 struct fuse_req *req = ff->reserved_req;
253 struct fuse_release_in *inarg = &req->misc.release.in;
254
255 spin_lock(&fc->lock);
256 list_del(&ff->write_entry);
257 if (!RB_EMPTY_NODE(&ff->polled_node))
258 rb_erase(&ff->polled_node, &fc->polled_files);
259 spin_unlock(&fc->lock);
260
261 wake_up_interruptible_all(&ff->poll_wait);
262
263 inarg->fh = ff->fh;
264 inarg->flags = flags;
265 req->in.h.opcode = opcode;
266 req->in.h.nodeid = ff->nodeid;
267 req->in.numargs = 1;
268 req->in.args[0].size = sizeof(struct fuse_release_in);
269 req->in.args[0].value = inarg;
270 }
271
272 void fuse_release_common(struct file *file, int opcode)
273 {
274 struct fuse_file *ff;
275 struct fuse_req *req;
276
277 ff = file->private_data;
278 if (unlikely(!ff))
279 return;
280
281 req = ff->reserved_req;
282 fuse_prepare_release(ff, file->f_flags, opcode);
283
284 if (ff->flock) {
285 struct fuse_release_in *inarg = &req->misc.release.in;
286 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 inarg->lock_owner = fuse_lock_owner_id(ff->fc,
288 (fl_owner_t) file);
289 }
290 /* Hold vfsmount and dentry until release is finished */
291 path_get(&file->f_path);
292 req->misc.release.path = file->f_path;
293
294 /*
295 * Normally this will send the RELEASE request, however if
296 * some asynchronous READ or WRITE requests are outstanding,
297 * the sending will be delayed.
298 *
299 * Make the release synchronous if this is a fuseblk mount,
300 * synchronous RELEASE is allowed (and desirable) in this case
301 * because the server can be trusted not to screw up.
302 */
303 fuse_file_put(ff, ff->fc->destroy_req != NULL);
304 }
305
306 static int fuse_open(struct inode *inode, struct file *file)
307 {
308 return fuse_open_common(inode, file, false);
309 }
310
311 static int fuse_release(struct inode *inode, struct file *file)
312 {
313 struct fuse_conn *fc = get_fuse_conn(inode);
314
315 /* see fuse_vma_close() for !writeback_cache case */
316 if (fc->writeback_cache)
317 filemap_write_and_wait(file->f_mapping);
318
319 if (test_bit(FUSE_I_MTIME_DIRTY, &get_fuse_inode(inode)->state))
320 fuse_flush_mtime(file, true);
321
322 fuse_release_common(file, FUSE_RELEASE);
323
324 /* return value is ignored by VFS */
325 return 0;
326 }
327
328 void fuse_sync_release(struct fuse_file *ff, int flags)
329 {
330 WARN_ON(atomic_read(&ff->count) > 1);
331 fuse_prepare_release(ff, flags, FUSE_RELEASE);
332 ff->reserved_req->force = 1;
333 ff->reserved_req->background = 0;
334 fuse_request_send(ff->fc, ff->reserved_req);
335 fuse_put_request(ff->fc, ff->reserved_req);
336 kfree(ff);
337 }
338 EXPORT_SYMBOL_GPL(fuse_sync_release);
339
340 /*
341 * Scramble the ID space with XTEA, so that the value of the files_struct
342 * pointer is not exposed to userspace.
343 */
344 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
345 {
346 u32 *k = fc->scramble_key;
347 u64 v = (unsigned long) id;
348 u32 v0 = v;
349 u32 v1 = v >> 32;
350 u32 sum = 0;
351 int i;
352
353 for (i = 0; i < 32; i++) {
354 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
355 sum += 0x9E3779B9;
356 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
357 }
358
359 return (u64) v0 + ((u64) v1 << 32);
360 }
361
362 /*
363 * Check if any page in a range is under writeback
364 *
365 * This is currently done by walking the list of writepage requests
366 * for the inode, which can be pretty inefficient.
367 */
368 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
369 pgoff_t idx_to)
370 {
371 struct fuse_conn *fc = get_fuse_conn(inode);
372 struct fuse_inode *fi = get_fuse_inode(inode);
373 struct fuse_req *req;
374 bool found = false;
375
376 spin_lock(&fc->lock);
377 list_for_each_entry(req, &fi->writepages, writepages_entry) {
378 pgoff_t curr_index;
379
380 BUG_ON(req->inode != inode);
381 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
382 if (idx_from < curr_index + req->num_pages &&
383 curr_index <= idx_to) {
384 found = true;
385 break;
386 }
387 }
388 spin_unlock(&fc->lock);
389
390 return found;
391 }
392
393 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
394 {
395 return fuse_range_is_writeback(inode, index, index);
396 }
397
398 /*
399 * Wait for page writeback to be completed.
400 *
401 * Since fuse doesn't rely on the VM writeback tracking, this has to
402 * use some other means.
403 */
404 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
405 {
406 struct fuse_inode *fi = get_fuse_inode(inode);
407
408 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
409 return 0;
410 }
411
412 /*
413 * Wait for all pending writepages on the inode to finish.
414 *
415 * This is currently done by blocking further writes with FUSE_NOWRITE
416 * and waiting for all sent writes to complete.
417 *
418 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
419 * could conflict with truncation.
420 */
421 static void fuse_sync_writes(struct inode *inode)
422 {
423 fuse_set_nowrite(inode);
424 fuse_release_nowrite(inode);
425 }
426
427 static int fuse_flush(struct file *file, fl_owner_t id)
428 {
429 struct inode *inode = file_inode(file);
430 struct fuse_conn *fc = get_fuse_conn(inode);
431 struct fuse_file *ff = file->private_data;
432 struct fuse_req *req;
433 struct fuse_flush_in inarg;
434 int err;
435
436 if (is_bad_inode(inode))
437 return -EIO;
438
439 if (fc->no_flush)
440 return 0;
441
442 err = filemap_write_and_wait(file->f_mapping);
443 if (err)
444 return err;
445
446 mutex_lock(&inode->i_mutex);
447 fuse_sync_writes(inode);
448 mutex_unlock(&inode->i_mutex);
449
450 req = fuse_get_req_nofail_nopages(fc, file);
451 memset(&inarg, 0, sizeof(inarg));
452 inarg.fh = ff->fh;
453 inarg.lock_owner = fuse_lock_owner_id(fc, id);
454 req->in.h.opcode = FUSE_FLUSH;
455 req->in.h.nodeid = get_node_id(inode);
456 req->in.numargs = 1;
457 req->in.args[0].size = sizeof(inarg);
458 req->in.args[0].value = &inarg;
459 req->force = 1;
460 fuse_request_send(fc, req);
461 err = req->out.h.error;
462 fuse_put_request(fc, req);
463 if (err == -ENOSYS) {
464 fc->no_flush = 1;
465 err = 0;
466 }
467 return err;
468 }
469
470 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
471 int datasync, int isdir)
472 {
473 struct inode *inode = file->f_mapping->host;
474 struct fuse_conn *fc = get_fuse_conn(inode);
475 struct fuse_file *ff = file->private_data;
476 struct fuse_req *req;
477 struct fuse_fsync_in inarg;
478 int err;
479
480 if (is_bad_inode(inode))
481 return -EIO;
482
483 err = filemap_write_and_wait_range(inode->i_mapping, start, end);
484 if (err)
485 return err;
486
487 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
488 return 0;
489
490 mutex_lock(&inode->i_mutex);
491
492 /*
493 * Start writeback against all dirty pages of the inode, then
494 * wait for all outstanding writes, before sending the FSYNC
495 * request.
496 */
497 err = write_inode_now(inode, 0);
498 if (err)
499 goto out;
500
501 fuse_sync_writes(inode);
502
503 if (test_bit(FUSE_I_MTIME_DIRTY, &get_fuse_inode(inode)->state)) {
504 int err = fuse_flush_mtime(file, false);
505 if (err)
506 goto out;
507 }
508
509 req = fuse_get_req_nopages(fc);
510 if (IS_ERR(req)) {
511 err = PTR_ERR(req);
512 goto out;
513 }
514
515 memset(&inarg, 0, sizeof(inarg));
516 inarg.fh = ff->fh;
517 inarg.fsync_flags = datasync ? 1 : 0;
518 req->in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
519 req->in.h.nodeid = get_node_id(inode);
520 req->in.numargs = 1;
521 req->in.args[0].size = sizeof(inarg);
522 req->in.args[0].value = &inarg;
523 fuse_request_send(fc, req);
524 err = req->out.h.error;
525 fuse_put_request(fc, req);
526 if (err == -ENOSYS) {
527 if (isdir)
528 fc->no_fsyncdir = 1;
529 else
530 fc->no_fsync = 1;
531 err = 0;
532 }
533 out:
534 mutex_unlock(&inode->i_mutex);
535 return err;
536 }
537
538 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
539 int datasync)
540 {
541 return fuse_fsync_common(file, start, end, datasync, 0);
542 }
543
544 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
545 size_t count, int opcode)
546 {
547 struct fuse_read_in *inarg = &req->misc.read.in;
548 struct fuse_file *ff = file->private_data;
549
550 inarg->fh = ff->fh;
551 inarg->offset = pos;
552 inarg->size = count;
553 inarg->flags = file->f_flags;
554 req->in.h.opcode = opcode;
555 req->in.h.nodeid = ff->nodeid;
556 req->in.numargs = 1;
557 req->in.args[0].size = sizeof(struct fuse_read_in);
558 req->in.args[0].value = inarg;
559 req->out.argvar = 1;
560 req->out.numargs = 1;
561 req->out.args[0].size = count;
562 }
563
564 static void fuse_release_user_pages(struct fuse_req *req, int write)
565 {
566 unsigned i;
567
568 for (i = 0; i < req->num_pages; i++) {
569 struct page *page = req->pages[i];
570 if (write)
571 set_page_dirty_lock(page);
572 put_page(page);
573 }
574 }
575
576 /**
577 * In case of short read, the caller sets 'pos' to the position of
578 * actual end of fuse request in IO request. Otherwise, if bytes_requested
579 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
580 *
581 * An example:
582 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
583 * both submitted asynchronously. The first of them was ACKed by userspace as
584 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
585 * second request was ACKed as short, e.g. only 1K was read, resulting in
586 * pos == 33K.
587 *
588 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
589 * will be equal to the length of the longest contiguous fragment of
590 * transferred data starting from the beginning of IO request.
591 */
592 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
593 {
594 int left;
595
596 spin_lock(&io->lock);
597 if (err)
598 io->err = io->err ? : err;
599 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
600 io->bytes = pos;
601
602 left = --io->reqs;
603 spin_unlock(&io->lock);
604
605 if (!left) {
606 long res;
607
608 if (io->err)
609 res = io->err;
610 else if (io->bytes >= 0 && io->write)
611 res = -EIO;
612 else {
613 res = io->bytes < 0 ? io->size : io->bytes;
614
615 if (!is_sync_kiocb(io->iocb)) {
616 struct inode *inode = file_inode(io->iocb->ki_filp);
617 struct fuse_conn *fc = get_fuse_conn(inode);
618 struct fuse_inode *fi = get_fuse_inode(inode);
619
620 spin_lock(&fc->lock);
621 fi->attr_version = ++fc->attr_version;
622 spin_unlock(&fc->lock);
623 }
624 }
625
626 aio_complete(io->iocb, res, 0);
627 kfree(io);
628 }
629 }
630
631 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
632 {
633 struct fuse_io_priv *io = req->io;
634 ssize_t pos = -1;
635
636 fuse_release_user_pages(req, !io->write);
637
638 if (io->write) {
639 if (req->misc.write.in.size != req->misc.write.out.size)
640 pos = req->misc.write.in.offset - io->offset +
641 req->misc.write.out.size;
642 } else {
643 if (req->misc.read.in.size != req->out.args[0].size)
644 pos = req->misc.read.in.offset - io->offset +
645 req->out.args[0].size;
646 }
647
648 fuse_aio_complete(io, req->out.h.error, pos);
649 }
650
651 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
652 size_t num_bytes, struct fuse_io_priv *io)
653 {
654 spin_lock(&io->lock);
655 io->size += num_bytes;
656 io->reqs++;
657 spin_unlock(&io->lock);
658
659 req->io = io;
660 req->end = fuse_aio_complete_req;
661
662 __fuse_get_request(req);
663 fuse_request_send_background(fc, req);
664
665 return num_bytes;
666 }
667
668 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
669 loff_t pos, size_t count, fl_owner_t owner)
670 {
671 struct file *file = io->file;
672 struct fuse_file *ff = file->private_data;
673 struct fuse_conn *fc = ff->fc;
674
675 fuse_read_fill(req, file, pos, count, FUSE_READ);
676 if (owner != NULL) {
677 struct fuse_read_in *inarg = &req->misc.read.in;
678
679 inarg->read_flags |= FUSE_READ_LOCKOWNER;
680 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
681 }
682
683 if (io->async)
684 return fuse_async_req_send(fc, req, count, io);
685
686 fuse_request_send(fc, req);
687 return req->out.args[0].size;
688 }
689
690 static void fuse_read_update_size(struct inode *inode, loff_t size,
691 u64 attr_ver)
692 {
693 struct fuse_conn *fc = get_fuse_conn(inode);
694 struct fuse_inode *fi = get_fuse_inode(inode);
695
696 spin_lock(&fc->lock);
697 if (attr_ver == fi->attr_version && size < inode->i_size &&
698 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
699 fi->attr_version = ++fc->attr_version;
700 i_size_write(inode, size);
701 }
702 spin_unlock(&fc->lock);
703 }
704
705 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
706 u64 attr_ver)
707 {
708 size_t num_read = req->out.args[0].size;
709 struct fuse_conn *fc = get_fuse_conn(inode);
710
711 if (fc->writeback_cache) {
712 /*
713 * A hole in a file. Some data after the hole are in page cache,
714 * but have not reached the client fs yet. So, the hole is not
715 * present there.
716 */
717 int i;
718 int start_idx = num_read >> PAGE_CACHE_SHIFT;
719 size_t off = num_read & (PAGE_CACHE_SIZE - 1);
720
721 for (i = start_idx; i < req->num_pages; i++) {
722 zero_user_segment(req->pages[i], off, PAGE_CACHE_SIZE);
723 off = 0;
724 }
725 } else {
726 loff_t pos = page_offset(req->pages[0]) + num_read;
727 fuse_read_update_size(inode, pos, attr_ver);
728 }
729 }
730
731 static int fuse_do_readpage(struct file *file, struct page *page)
732 {
733 struct fuse_io_priv io = { .async = 0, .file = file };
734 struct inode *inode = page->mapping->host;
735 struct fuse_conn *fc = get_fuse_conn(inode);
736 struct fuse_req *req;
737 size_t num_read;
738 loff_t pos = page_offset(page);
739 size_t count = PAGE_CACHE_SIZE;
740 u64 attr_ver;
741 int err;
742
743 /*
744 * Page writeback can extend beyond the lifetime of the
745 * page-cache page, so make sure we read a properly synced
746 * page.
747 */
748 fuse_wait_on_page_writeback(inode, page->index);
749
750 req = fuse_get_req(fc, 1);
751 if (IS_ERR(req))
752 return PTR_ERR(req);
753
754 attr_ver = fuse_get_attr_version(fc);
755
756 req->out.page_zeroing = 1;
757 req->out.argpages = 1;
758 req->num_pages = 1;
759 req->pages[0] = page;
760 req->page_descs[0].length = count;
761 num_read = fuse_send_read(req, &io, pos, count, NULL);
762 err = req->out.h.error;
763
764 if (!err) {
765 /*
766 * Short read means EOF. If file size is larger, truncate it
767 */
768 if (num_read < count)
769 fuse_short_read(req, inode, attr_ver);
770
771 SetPageUptodate(page);
772 }
773
774 fuse_put_request(fc, req);
775
776 return err;
777 }
778
779 static int fuse_readpage(struct file *file, struct page *page)
780 {
781 struct inode *inode = page->mapping->host;
782 int err;
783
784 err = -EIO;
785 if (is_bad_inode(inode))
786 goto out;
787
788 err = fuse_do_readpage(file, page);
789 fuse_invalidate_atime(inode);
790 out:
791 unlock_page(page);
792 return err;
793 }
794
795 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
796 {
797 int i;
798 size_t count = req->misc.read.in.size;
799 size_t num_read = req->out.args[0].size;
800 struct address_space *mapping = NULL;
801
802 for (i = 0; mapping == NULL && i < req->num_pages; i++)
803 mapping = req->pages[i]->mapping;
804
805 if (mapping) {
806 struct inode *inode = mapping->host;
807
808 /*
809 * Short read means EOF. If file size is larger, truncate it
810 */
811 if (!req->out.h.error && num_read < count)
812 fuse_short_read(req, inode, req->misc.read.attr_ver);
813
814 fuse_invalidate_atime(inode);
815 }
816
817 for (i = 0; i < req->num_pages; i++) {
818 struct page *page = req->pages[i];
819 if (!req->out.h.error)
820 SetPageUptodate(page);
821 else
822 SetPageError(page);
823 unlock_page(page);
824 page_cache_release(page);
825 }
826 if (req->ff)
827 fuse_file_put(req->ff, false);
828 }
829
830 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
831 {
832 struct fuse_file *ff = file->private_data;
833 struct fuse_conn *fc = ff->fc;
834 loff_t pos = page_offset(req->pages[0]);
835 size_t count = req->num_pages << PAGE_CACHE_SHIFT;
836
837 req->out.argpages = 1;
838 req->out.page_zeroing = 1;
839 req->out.page_replace = 1;
840 fuse_read_fill(req, file, pos, count, FUSE_READ);
841 req->misc.read.attr_ver = fuse_get_attr_version(fc);
842 if (fc->async_read) {
843 req->ff = fuse_file_get(ff);
844 req->end = fuse_readpages_end;
845 fuse_request_send_background(fc, req);
846 } else {
847 fuse_request_send(fc, req);
848 fuse_readpages_end(fc, req);
849 fuse_put_request(fc, req);
850 }
851 }
852
853 struct fuse_fill_data {
854 struct fuse_req *req;
855 struct file *file;
856 struct inode *inode;
857 unsigned nr_pages;
858 };
859
860 static int fuse_readpages_fill(void *_data, struct page *page)
861 {
862 struct fuse_fill_data *data = _data;
863 struct fuse_req *req = data->req;
864 struct inode *inode = data->inode;
865 struct fuse_conn *fc = get_fuse_conn(inode);
866
867 fuse_wait_on_page_writeback(inode, page->index);
868
869 if (req->num_pages &&
870 (req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
871 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read ||
872 req->pages[req->num_pages - 1]->index + 1 != page->index)) {
873 int nr_alloc = min_t(unsigned, data->nr_pages,
874 FUSE_MAX_PAGES_PER_REQ);
875 fuse_send_readpages(req, data->file);
876 if (fc->async_read)
877 req = fuse_get_req_for_background(fc, nr_alloc);
878 else
879 req = fuse_get_req(fc, nr_alloc);
880
881 data->req = req;
882 if (IS_ERR(req)) {
883 unlock_page(page);
884 return PTR_ERR(req);
885 }
886 }
887
888 if (WARN_ON(req->num_pages >= req->max_pages)) {
889 fuse_put_request(fc, req);
890 return -EIO;
891 }
892
893 page_cache_get(page);
894 req->pages[req->num_pages] = page;
895 req->page_descs[req->num_pages].length = PAGE_SIZE;
896 req->num_pages++;
897 data->nr_pages--;
898 return 0;
899 }
900
901 static int fuse_readpages(struct file *file, struct address_space *mapping,
902 struct list_head *pages, unsigned nr_pages)
903 {
904 struct inode *inode = mapping->host;
905 struct fuse_conn *fc = get_fuse_conn(inode);
906 struct fuse_fill_data data;
907 int err;
908 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ);
909
910 err = -EIO;
911 if (is_bad_inode(inode))
912 goto out;
913
914 data.file = file;
915 data.inode = inode;
916 if (fc->async_read)
917 data.req = fuse_get_req_for_background(fc, nr_alloc);
918 else
919 data.req = fuse_get_req(fc, nr_alloc);
920 data.nr_pages = nr_pages;
921 err = PTR_ERR(data.req);
922 if (IS_ERR(data.req))
923 goto out;
924
925 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
926 if (!err) {
927 if (data.req->num_pages)
928 fuse_send_readpages(data.req, file);
929 else
930 fuse_put_request(fc, data.req);
931 }
932 out:
933 return err;
934 }
935
936 static ssize_t fuse_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
937 unsigned long nr_segs, loff_t pos)
938 {
939 struct inode *inode = iocb->ki_filp->f_mapping->host;
940 struct fuse_conn *fc = get_fuse_conn(inode);
941
942 /*
943 * In auto invalidate mode, always update attributes on read.
944 * Otherwise, only update if we attempt to read past EOF (to ensure
945 * i_size is up to date).
946 */
947 if (fc->auto_inval_data ||
948 (pos + iov_length(iov, nr_segs) > i_size_read(inode))) {
949 int err;
950 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL);
951 if (err)
952 return err;
953 }
954
955 return generic_file_aio_read(iocb, iov, nr_segs, pos);
956 }
957
958 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
959 loff_t pos, size_t count)
960 {
961 struct fuse_write_in *inarg = &req->misc.write.in;
962 struct fuse_write_out *outarg = &req->misc.write.out;
963
964 inarg->fh = ff->fh;
965 inarg->offset = pos;
966 inarg->size = count;
967 req->in.h.opcode = FUSE_WRITE;
968 req->in.h.nodeid = ff->nodeid;
969 req->in.numargs = 2;
970 if (ff->fc->minor < 9)
971 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
972 else
973 req->in.args[0].size = sizeof(struct fuse_write_in);
974 req->in.args[0].value = inarg;
975 req->in.args[1].size = count;
976 req->out.numargs = 1;
977 req->out.args[0].size = sizeof(struct fuse_write_out);
978 req->out.args[0].value = outarg;
979 }
980
981 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
982 loff_t pos, size_t count, fl_owner_t owner)
983 {
984 struct file *file = io->file;
985 struct fuse_file *ff = file->private_data;
986 struct fuse_conn *fc = ff->fc;
987 struct fuse_write_in *inarg = &req->misc.write.in;
988
989 fuse_write_fill(req, ff, pos, count);
990 inarg->flags = file->f_flags;
991 if (owner != NULL) {
992 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
993 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
994 }
995
996 if (io->async)
997 return fuse_async_req_send(fc, req, count, io);
998
999 fuse_request_send(fc, req);
1000 return req->misc.write.out.size;
1001 }
1002
1003 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1004 {
1005 struct fuse_conn *fc = get_fuse_conn(inode);
1006 struct fuse_inode *fi = get_fuse_inode(inode);
1007 bool ret = false;
1008
1009 spin_lock(&fc->lock);
1010 fi->attr_version = ++fc->attr_version;
1011 if (pos > inode->i_size) {
1012 i_size_write(inode, pos);
1013 ret = true;
1014 }
1015 spin_unlock(&fc->lock);
1016
1017 return ret;
1018 }
1019
1020 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file,
1021 struct inode *inode, loff_t pos,
1022 size_t count)
1023 {
1024 size_t res;
1025 unsigned offset;
1026 unsigned i;
1027 struct fuse_io_priv io = { .async = 0, .file = file };
1028
1029 for (i = 0; i < req->num_pages; i++)
1030 fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1031
1032 res = fuse_send_write(req, &io, pos, count, NULL);
1033
1034 offset = req->page_descs[0].offset;
1035 count = res;
1036 for (i = 0; i < req->num_pages; i++) {
1037 struct page *page = req->pages[i];
1038
1039 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE)
1040 SetPageUptodate(page);
1041
1042 if (count > PAGE_CACHE_SIZE - offset)
1043 count -= PAGE_CACHE_SIZE - offset;
1044 else
1045 count = 0;
1046 offset = 0;
1047
1048 unlock_page(page);
1049 page_cache_release(page);
1050 }
1051
1052 return res;
1053 }
1054
1055 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1056 struct address_space *mapping,
1057 struct iov_iter *ii, loff_t pos)
1058 {
1059 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1060 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1061 size_t count = 0;
1062 int err;
1063
1064 req->in.argpages = 1;
1065 req->page_descs[0].offset = offset;
1066
1067 do {
1068 size_t tmp;
1069 struct page *page;
1070 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1071 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset,
1072 iov_iter_count(ii));
1073
1074 bytes = min_t(size_t, bytes, fc->max_write - count);
1075
1076 again:
1077 err = -EFAULT;
1078 if (iov_iter_fault_in_readable(ii, bytes))
1079 break;
1080
1081 err = -ENOMEM;
1082 page = grab_cache_page_write_begin(mapping, index, 0);
1083 if (!page)
1084 break;
1085
1086 if (mapping_writably_mapped(mapping))
1087 flush_dcache_page(page);
1088
1089 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1090 flush_dcache_page(page);
1091
1092 mark_page_accessed(page);
1093
1094 if (!tmp) {
1095 unlock_page(page);
1096 page_cache_release(page);
1097 bytes = min(bytes, iov_iter_single_seg_count(ii));
1098 goto again;
1099 }
1100
1101 err = 0;
1102 req->pages[req->num_pages] = page;
1103 req->page_descs[req->num_pages].length = tmp;
1104 req->num_pages++;
1105
1106 iov_iter_advance(ii, tmp);
1107 count += tmp;
1108 pos += tmp;
1109 offset += tmp;
1110 if (offset == PAGE_CACHE_SIZE)
1111 offset = 0;
1112
1113 if (!fc->big_writes)
1114 break;
1115 } while (iov_iter_count(ii) && count < fc->max_write &&
1116 req->num_pages < req->max_pages && offset == 0);
1117
1118 return count > 0 ? count : err;
1119 }
1120
1121 static inline unsigned fuse_wr_pages(loff_t pos, size_t len)
1122 {
1123 return min_t(unsigned,
1124 ((pos + len - 1) >> PAGE_CACHE_SHIFT) -
1125 (pos >> PAGE_CACHE_SHIFT) + 1,
1126 FUSE_MAX_PAGES_PER_REQ);
1127 }
1128
1129 static ssize_t fuse_perform_write(struct file *file,
1130 struct address_space *mapping,
1131 struct iov_iter *ii, loff_t pos)
1132 {
1133 struct inode *inode = mapping->host;
1134 struct fuse_conn *fc = get_fuse_conn(inode);
1135 struct fuse_inode *fi = get_fuse_inode(inode);
1136 int err = 0;
1137 ssize_t res = 0;
1138
1139 if (is_bad_inode(inode))
1140 return -EIO;
1141
1142 if (inode->i_size < pos + iov_iter_count(ii))
1143 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1144
1145 do {
1146 struct fuse_req *req;
1147 ssize_t count;
1148 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii));
1149
1150 req = fuse_get_req(fc, nr_pages);
1151 if (IS_ERR(req)) {
1152 err = PTR_ERR(req);
1153 break;
1154 }
1155
1156 count = fuse_fill_write_pages(req, mapping, ii, pos);
1157 if (count <= 0) {
1158 err = count;
1159 } else {
1160 size_t num_written;
1161
1162 num_written = fuse_send_write_pages(req, file, inode,
1163 pos, count);
1164 err = req->out.h.error;
1165 if (!err) {
1166 res += num_written;
1167 pos += num_written;
1168
1169 /* break out of the loop on short write */
1170 if (num_written != count)
1171 err = -EIO;
1172 }
1173 }
1174 fuse_put_request(fc, req);
1175 } while (!err && iov_iter_count(ii));
1176
1177 if (res > 0)
1178 fuse_write_update_size(inode, pos);
1179
1180 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1181 fuse_invalidate_attr(inode);
1182
1183 return res > 0 ? res : err;
1184 }
1185
1186 static ssize_t fuse_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
1187 unsigned long nr_segs, loff_t pos)
1188 {
1189 struct file *file = iocb->ki_filp;
1190 struct address_space *mapping = file->f_mapping;
1191 size_t count = 0;
1192 size_t ocount = 0;
1193 ssize_t written = 0;
1194 ssize_t written_buffered = 0;
1195 struct inode *inode = mapping->host;
1196 ssize_t err;
1197 struct iov_iter i;
1198 loff_t endbyte = 0;
1199
1200 if (get_fuse_conn(inode)->writeback_cache) {
1201 /* Update size (EOF optimization) and mode (SUID clearing) */
1202 err = fuse_update_attributes(mapping->host, NULL, file, NULL);
1203 if (err)
1204 return err;
1205
1206 return generic_file_aio_write(iocb, iov, nr_segs, pos);
1207 }
1208
1209 WARN_ON(iocb->ki_pos != pos);
1210
1211 ocount = 0;
1212 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1213 if (err)
1214 return err;
1215
1216 count = ocount;
1217 mutex_lock(&inode->i_mutex);
1218
1219 /* We can write back this queue in page reclaim */
1220 current->backing_dev_info = mapping->backing_dev_info;
1221
1222 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1223 if (err)
1224 goto out;
1225
1226 if (count == 0)
1227 goto out;
1228
1229 err = file_remove_suid(file);
1230 if (err)
1231 goto out;
1232
1233 err = file_update_time(file);
1234 if (err)
1235 goto out;
1236
1237 if (file->f_flags & O_DIRECT) {
1238 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
1239 count, ocount);
1240 if (written < 0 || written == count)
1241 goto out;
1242
1243 pos += written;
1244 count -= written;
1245
1246 iov_iter_init(&i, iov, nr_segs, count, written);
1247 written_buffered = fuse_perform_write(file, mapping, &i, pos);
1248 if (written_buffered < 0) {
1249 err = written_buffered;
1250 goto out;
1251 }
1252 endbyte = pos + written_buffered - 1;
1253
1254 err = filemap_write_and_wait_range(file->f_mapping, pos,
1255 endbyte);
1256 if (err)
1257 goto out;
1258
1259 invalidate_mapping_pages(file->f_mapping,
1260 pos >> PAGE_CACHE_SHIFT,
1261 endbyte >> PAGE_CACHE_SHIFT);
1262
1263 written += written_buffered;
1264 iocb->ki_pos = pos + written_buffered;
1265 } else {
1266 iov_iter_init(&i, iov, nr_segs, count, 0);
1267 written = fuse_perform_write(file, mapping, &i, pos);
1268 if (written >= 0)
1269 iocb->ki_pos = pos + written;
1270 }
1271 out:
1272 current->backing_dev_info = NULL;
1273 mutex_unlock(&inode->i_mutex);
1274
1275 return written ? written : err;
1276 }
1277
1278 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1279 unsigned index, unsigned nr_pages)
1280 {
1281 int i;
1282
1283 for (i = index; i < index + nr_pages; i++)
1284 req->page_descs[i].length = PAGE_SIZE -
1285 req->page_descs[i].offset;
1286 }
1287
1288 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1289 {
1290 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1291 }
1292
1293 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1294 size_t max_size)
1295 {
1296 return min(iov_iter_single_seg_count(ii), max_size);
1297 }
1298
1299 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1300 size_t *nbytesp, int write)
1301 {
1302 size_t nbytes = 0; /* # bytes already packed in req */
1303
1304 /* Special case for kernel I/O: can copy directly into the buffer */
1305 if (segment_eq(get_fs(), KERNEL_DS)) {
1306 unsigned long user_addr = fuse_get_user_addr(ii);
1307 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1308
1309 if (write)
1310 req->in.args[1].value = (void *) user_addr;
1311 else
1312 req->out.args[0].value = (void *) user_addr;
1313
1314 iov_iter_advance(ii, frag_size);
1315 *nbytesp = frag_size;
1316 return 0;
1317 }
1318
1319 while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1320 unsigned npages;
1321 unsigned long user_addr = fuse_get_user_addr(ii);
1322 unsigned offset = user_addr & ~PAGE_MASK;
1323 size_t frag_size = fuse_get_frag_size(ii, *nbytesp - nbytes);
1324 int ret;
1325
1326 unsigned n = req->max_pages - req->num_pages;
1327 frag_size = min_t(size_t, frag_size, n << PAGE_SHIFT);
1328
1329 npages = (frag_size + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1330 npages = clamp(npages, 1U, n);
1331
1332 ret = get_user_pages_fast(user_addr, npages, !write,
1333 &req->pages[req->num_pages]);
1334 if (ret < 0)
1335 return ret;
1336
1337 npages = ret;
1338 frag_size = min_t(size_t, frag_size,
1339 (npages << PAGE_SHIFT) - offset);
1340 iov_iter_advance(ii, frag_size);
1341
1342 req->page_descs[req->num_pages].offset = offset;
1343 fuse_page_descs_length_init(req, req->num_pages, npages);
1344
1345 req->num_pages += npages;
1346 req->page_descs[req->num_pages - 1].length -=
1347 (npages << PAGE_SHIFT) - offset - frag_size;
1348
1349 nbytes += frag_size;
1350 }
1351
1352 if (write)
1353 req->in.argpages = 1;
1354 else
1355 req->out.argpages = 1;
1356
1357 *nbytesp = nbytes;
1358
1359 return 0;
1360 }
1361
1362 static inline int fuse_iter_npages(const struct iov_iter *ii_p)
1363 {
1364 struct iov_iter ii = *ii_p;
1365 int npages = 0;
1366
1367 while (iov_iter_count(&ii) && npages < FUSE_MAX_PAGES_PER_REQ) {
1368 unsigned long user_addr = fuse_get_user_addr(&ii);
1369 unsigned offset = user_addr & ~PAGE_MASK;
1370 size_t frag_size = iov_iter_single_seg_count(&ii);
1371
1372 npages += (frag_size + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
1373 iov_iter_advance(&ii, frag_size);
1374 }
1375
1376 return min(npages, FUSE_MAX_PAGES_PER_REQ);
1377 }
1378
1379 ssize_t fuse_direct_io(struct fuse_io_priv *io, const struct iovec *iov,
1380 unsigned long nr_segs, size_t count, loff_t *ppos,
1381 int flags)
1382 {
1383 int write = flags & FUSE_DIO_WRITE;
1384 int cuse = flags & FUSE_DIO_CUSE;
1385 struct file *file = io->file;
1386 struct inode *inode = file->f_mapping->host;
1387 struct fuse_file *ff = file->private_data;
1388 struct fuse_conn *fc = ff->fc;
1389 size_t nmax = write ? fc->max_write : fc->max_read;
1390 loff_t pos = *ppos;
1391 pgoff_t idx_from = pos >> PAGE_CACHE_SHIFT;
1392 pgoff_t idx_to = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1393 ssize_t res = 0;
1394 struct fuse_req *req;
1395 struct iov_iter ii;
1396
1397 iov_iter_init(&ii, iov, nr_segs, count, 0);
1398
1399 if (io->async)
1400 req = fuse_get_req_for_background(fc, fuse_iter_npages(&ii));
1401 else
1402 req = fuse_get_req(fc, fuse_iter_npages(&ii));
1403 if (IS_ERR(req))
1404 return PTR_ERR(req);
1405
1406 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1407 if (!write)
1408 mutex_lock(&inode->i_mutex);
1409 fuse_sync_writes(inode);
1410 if (!write)
1411 mutex_unlock(&inode->i_mutex);
1412 }
1413
1414 while (count) {
1415 size_t nres;
1416 fl_owner_t owner = current->files;
1417 size_t nbytes = min(count, nmax);
1418 int err = fuse_get_user_pages(req, &ii, &nbytes, write);
1419 if (err) {
1420 res = err;
1421 break;
1422 }
1423
1424 if (write)
1425 nres = fuse_send_write(req, io, pos, nbytes, owner);
1426 else
1427 nres = fuse_send_read(req, io, pos, nbytes, owner);
1428
1429 if (!io->async)
1430 fuse_release_user_pages(req, !write);
1431 if (req->out.h.error) {
1432 if (!res)
1433 res = req->out.h.error;
1434 break;
1435 } else if (nres > nbytes) {
1436 res = -EIO;
1437 break;
1438 }
1439 count -= nres;
1440 res += nres;
1441 pos += nres;
1442 if (nres != nbytes)
1443 break;
1444 if (count) {
1445 fuse_put_request(fc, req);
1446 if (io->async)
1447 req = fuse_get_req_for_background(fc,
1448 fuse_iter_npages(&ii));
1449 else
1450 req = fuse_get_req(fc, fuse_iter_npages(&ii));
1451 if (IS_ERR(req))
1452 break;
1453 }
1454 }
1455 if (!IS_ERR(req))
1456 fuse_put_request(fc, req);
1457 if (res > 0)
1458 *ppos = pos;
1459
1460 return res;
1461 }
1462 EXPORT_SYMBOL_GPL(fuse_direct_io);
1463
1464 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1465 const struct iovec *iov,
1466 unsigned long nr_segs, loff_t *ppos,
1467 size_t count)
1468 {
1469 ssize_t res;
1470 struct file *file = io->file;
1471 struct inode *inode = file_inode(file);
1472
1473 if (is_bad_inode(inode))
1474 return -EIO;
1475
1476 res = fuse_direct_io(io, iov, nr_segs, count, ppos, 0);
1477
1478 fuse_invalidate_attr(inode);
1479
1480 return res;
1481 }
1482
1483 static ssize_t fuse_direct_read(struct file *file, char __user *buf,
1484 size_t count, loff_t *ppos)
1485 {
1486 struct fuse_io_priv io = { .async = 0, .file = file };
1487 struct iovec iov = { .iov_base = buf, .iov_len = count };
1488 return __fuse_direct_read(&io, &iov, 1, ppos, count);
1489 }
1490
1491 static ssize_t __fuse_direct_write(struct fuse_io_priv *io,
1492 const struct iovec *iov,
1493 unsigned long nr_segs, loff_t *ppos)
1494 {
1495 struct file *file = io->file;
1496 struct inode *inode = file_inode(file);
1497 size_t count = iov_length(iov, nr_segs);
1498 ssize_t res;
1499
1500 res = generic_write_checks(file, ppos, &count, 0);
1501 if (!res)
1502 res = fuse_direct_io(io, iov, nr_segs, count, ppos,
1503 FUSE_DIO_WRITE);
1504
1505 fuse_invalidate_attr(inode);
1506
1507 return res;
1508 }
1509
1510 static ssize_t fuse_direct_write(struct file *file, const char __user *buf,
1511 size_t count, loff_t *ppos)
1512 {
1513 struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count };
1514 struct inode *inode = file_inode(file);
1515 ssize_t res;
1516 struct fuse_io_priv io = { .async = 0, .file = file };
1517
1518 if (is_bad_inode(inode))
1519 return -EIO;
1520
1521 /* Don't allow parallel writes to the same file */
1522 mutex_lock(&inode->i_mutex);
1523 res = __fuse_direct_write(&io, &iov, 1, ppos);
1524 if (res > 0)
1525 fuse_write_update_size(inode, *ppos);
1526 mutex_unlock(&inode->i_mutex);
1527
1528 return res;
1529 }
1530
1531 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1532 {
1533 int i;
1534
1535 for (i = 0; i < req->num_pages; i++)
1536 __free_page(req->pages[i]);
1537
1538 if (req->ff)
1539 fuse_file_put(req->ff, false);
1540 }
1541
1542 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1543 {
1544 struct inode *inode = req->inode;
1545 struct fuse_inode *fi = get_fuse_inode(inode);
1546 struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info;
1547 int i;
1548
1549 list_del(&req->writepages_entry);
1550 for (i = 0; i < req->num_pages; i++) {
1551 dec_bdi_stat(bdi, BDI_WRITEBACK);
1552 dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1553 bdi_writeout_inc(bdi);
1554 }
1555 wake_up(&fi->page_waitq);
1556 }
1557
1558 /* Called under fc->lock, may release and reacquire it */
1559 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1560 loff_t size)
1561 __releases(fc->lock)
1562 __acquires(fc->lock)
1563 {
1564 struct fuse_inode *fi = get_fuse_inode(req->inode);
1565 struct fuse_write_in *inarg = &req->misc.write.in;
1566 __u64 data_size = req->num_pages * PAGE_CACHE_SIZE;
1567
1568 if (!fc->connected)
1569 goto out_free;
1570
1571 if (inarg->offset + data_size <= size) {
1572 inarg->size = data_size;
1573 } else if (inarg->offset < size) {
1574 inarg->size = size - inarg->offset;
1575 } else {
1576 /* Got truncated off completely */
1577 goto out_free;
1578 }
1579
1580 req->in.args[1].size = inarg->size;
1581 fi->writectr++;
1582 fuse_request_send_background_locked(fc, req);
1583 return;
1584
1585 out_free:
1586 fuse_writepage_finish(fc, req);
1587 spin_unlock(&fc->lock);
1588 fuse_writepage_free(fc, req);
1589 fuse_put_request(fc, req);
1590 spin_lock(&fc->lock);
1591 }
1592
1593 /*
1594 * If fi->writectr is positive (no truncate or fsync going on) send
1595 * all queued writepage requests.
1596 *
1597 * Called with fc->lock
1598 */
1599 void fuse_flush_writepages(struct inode *inode)
1600 __releases(fc->lock)
1601 __acquires(fc->lock)
1602 {
1603 struct fuse_conn *fc = get_fuse_conn(inode);
1604 struct fuse_inode *fi = get_fuse_inode(inode);
1605 size_t crop = i_size_read(inode);
1606 struct fuse_req *req;
1607
1608 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1609 req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1610 list_del_init(&req->list);
1611 fuse_send_writepage(fc, req, crop);
1612 }
1613 }
1614
1615 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1616 {
1617 struct inode *inode = req->inode;
1618 struct fuse_inode *fi = get_fuse_inode(inode);
1619
1620 mapping_set_error(inode->i_mapping, req->out.h.error);
1621 spin_lock(&fc->lock);
1622 while (req->misc.write.next) {
1623 struct fuse_conn *fc = get_fuse_conn(inode);
1624 struct fuse_write_in *inarg = &req->misc.write.in;
1625 struct fuse_req *next = req->misc.write.next;
1626 req->misc.write.next = next->misc.write.next;
1627 next->misc.write.next = NULL;
1628 next->ff = fuse_file_get(req->ff);
1629 list_add(&next->writepages_entry, &fi->writepages);
1630
1631 /*
1632 * Skip fuse_flush_writepages() to make it easy to crop requests
1633 * based on primary request size.
1634 *
1635 * 1st case (trivial): there are no concurrent activities using
1636 * fuse_set/release_nowrite. Then we're on safe side because
1637 * fuse_flush_writepages() would call fuse_send_writepage()
1638 * anyway.
1639 *
1640 * 2nd case: someone called fuse_set_nowrite and it is waiting
1641 * now for completion of all in-flight requests. This happens
1642 * rarely and no more than once per page, so this should be
1643 * okay.
1644 *
1645 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1646 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1647 * that fuse_set_nowrite returned implies that all in-flight
1648 * requests were completed along with all of their secondary
1649 * requests. Further primary requests are blocked by negative
1650 * writectr. Hence there cannot be any in-flight requests and
1651 * no invocations of fuse_writepage_end() while we're in
1652 * fuse_set_nowrite..fuse_release_nowrite section.
1653 */
1654 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1655 }
1656 fi->writectr--;
1657 fuse_writepage_finish(fc, req);
1658 spin_unlock(&fc->lock);
1659 fuse_writepage_free(fc, req);
1660 }
1661
1662 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1663 struct fuse_inode *fi)
1664 {
1665 struct fuse_file *ff = NULL;
1666
1667 spin_lock(&fc->lock);
1668 if (!WARN_ON(list_empty(&fi->write_files))) {
1669 ff = list_entry(fi->write_files.next, struct fuse_file,
1670 write_entry);
1671 fuse_file_get(ff);
1672 }
1673 spin_unlock(&fc->lock);
1674
1675 return ff;
1676 }
1677
1678 static int fuse_writepage_locked(struct page *page)
1679 {
1680 struct address_space *mapping = page->mapping;
1681 struct inode *inode = mapping->host;
1682 struct fuse_conn *fc = get_fuse_conn(inode);
1683 struct fuse_inode *fi = get_fuse_inode(inode);
1684 struct fuse_req *req;
1685 struct page *tmp_page;
1686 int error = -ENOMEM;
1687
1688 set_page_writeback(page);
1689
1690 req = fuse_request_alloc_nofs(1);
1691 if (!req)
1692 goto err;
1693
1694 req->background = 1; /* writeback always goes to bg_queue */
1695 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1696 if (!tmp_page)
1697 goto err_free;
1698
1699 error = -EIO;
1700 req->ff = fuse_write_file_get(fc, fi);
1701 if (!req->ff)
1702 goto err_free;
1703
1704 fuse_write_fill(req, req->ff, page_offset(page), 0);
1705
1706 copy_highpage(tmp_page, page);
1707 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1708 req->misc.write.next = NULL;
1709 req->in.argpages = 1;
1710 req->num_pages = 1;
1711 req->pages[0] = tmp_page;
1712 req->page_descs[0].offset = 0;
1713 req->page_descs[0].length = PAGE_SIZE;
1714 req->end = fuse_writepage_end;
1715 req->inode = inode;
1716
1717 inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK);
1718 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1719
1720 spin_lock(&fc->lock);
1721 list_add(&req->writepages_entry, &fi->writepages);
1722 list_add_tail(&req->list, &fi->queued_writes);
1723 fuse_flush_writepages(inode);
1724 spin_unlock(&fc->lock);
1725
1726 end_page_writeback(page);
1727
1728 return 0;
1729
1730 err_free:
1731 fuse_request_free(req);
1732 err:
1733 end_page_writeback(page);
1734 return error;
1735 }
1736
1737 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1738 {
1739 int err;
1740
1741 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1742 /*
1743 * ->writepages() should be called for sync() and friends. We
1744 * should only get here on direct reclaim and then we are
1745 * allowed to skip a page which is already in flight
1746 */
1747 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1748
1749 redirty_page_for_writepage(wbc, page);
1750 return 0;
1751 }
1752
1753 err = fuse_writepage_locked(page);
1754 unlock_page(page);
1755
1756 return err;
1757 }
1758
1759 struct fuse_fill_wb_data {
1760 struct fuse_req *req;
1761 struct fuse_file *ff;
1762 struct inode *inode;
1763 struct page **orig_pages;
1764 };
1765
1766 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1767 {
1768 struct fuse_req *req = data->req;
1769 struct inode *inode = data->inode;
1770 struct fuse_conn *fc = get_fuse_conn(inode);
1771 struct fuse_inode *fi = get_fuse_inode(inode);
1772 int num_pages = req->num_pages;
1773 int i;
1774
1775 req->ff = fuse_file_get(data->ff);
1776 spin_lock(&fc->lock);
1777 list_add_tail(&req->list, &fi->queued_writes);
1778 fuse_flush_writepages(inode);
1779 spin_unlock(&fc->lock);
1780
1781 for (i = 0; i < num_pages; i++)
1782 end_page_writeback(data->orig_pages[i]);
1783 }
1784
1785 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1786 struct page *page)
1787 {
1788 struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1789 struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1790 struct fuse_req *tmp;
1791 struct fuse_req *old_req;
1792 bool found = false;
1793 pgoff_t curr_index;
1794
1795 BUG_ON(new_req->num_pages != 0);
1796
1797 spin_lock(&fc->lock);
1798 list_del(&new_req->writepages_entry);
1799 list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1800 BUG_ON(old_req->inode != new_req->inode);
1801 curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1802 if (curr_index <= page->index &&
1803 page->index < curr_index + old_req->num_pages) {
1804 found = true;
1805 break;
1806 }
1807 }
1808 if (!found) {
1809 list_add(&new_req->writepages_entry, &fi->writepages);
1810 goto out_unlock;
1811 }
1812
1813 new_req->num_pages = 1;
1814 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1815 BUG_ON(tmp->inode != new_req->inode);
1816 curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT;
1817 if (tmp->num_pages == 1 &&
1818 curr_index == page->index) {
1819 old_req = tmp;
1820 }
1821 }
1822
1823 if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT ||
1824 old_req->state == FUSE_REQ_PENDING)) {
1825 struct backing_dev_info *bdi = page->mapping->backing_dev_info;
1826
1827 copy_highpage(old_req->pages[0], page);
1828 spin_unlock(&fc->lock);
1829
1830 dec_bdi_stat(bdi, BDI_WRITEBACK);
1831 dec_zone_page_state(page, NR_WRITEBACK_TEMP);
1832 bdi_writeout_inc(bdi);
1833 fuse_writepage_free(fc, new_req);
1834 fuse_request_free(new_req);
1835 goto out;
1836 } else {
1837 new_req->misc.write.next = old_req->misc.write.next;
1838 old_req->misc.write.next = new_req;
1839 }
1840 out_unlock:
1841 spin_unlock(&fc->lock);
1842 out:
1843 return found;
1844 }
1845
1846 static int fuse_writepages_fill(struct page *page,
1847 struct writeback_control *wbc, void *_data)
1848 {
1849 struct fuse_fill_wb_data *data = _data;
1850 struct fuse_req *req = data->req;
1851 struct inode *inode = data->inode;
1852 struct fuse_conn *fc = get_fuse_conn(inode);
1853 struct page *tmp_page;
1854 bool is_writeback;
1855 int err;
1856
1857 if (!data->ff) {
1858 err = -EIO;
1859 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1860 if (!data->ff)
1861 goto out_unlock;
1862 }
1863
1864 /*
1865 * Being under writeback is unlikely but possible. For example direct
1866 * read to an mmaped fuse file will set the page dirty twice; once when
1867 * the pages are faulted with get_user_pages(), and then after the read
1868 * completed.
1869 */
1870 is_writeback = fuse_page_is_writeback(inode, page->index);
1871
1872 if (req && req->num_pages &&
1873 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ ||
1874 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write ||
1875 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1876 fuse_writepages_send(data);
1877 data->req = NULL;
1878 }
1879 err = -ENOMEM;
1880 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1881 if (!tmp_page)
1882 goto out_unlock;
1883
1884 /*
1885 * The page must not be redirtied until the writeout is completed
1886 * (i.e. userspace has sent a reply to the write request). Otherwise
1887 * there could be more than one temporary page instance for each real
1888 * page.
1889 *
1890 * This is ensured by holding the page lock in page_mkwrite() while
1891 * checking fuse_page_is_writeback(). We already hold the page lock
1892 * since clear_page_dirty_for_io() and keep it held until we add the
1893 * request to the fi->writepages list and increment req->num_pages.
1894 * After this fuse_page_is_writeback() will indicate that the page is
1895 * under writeback, so we can release the page lock.
1896 */
1897 if (data->req == NULL) {
1898 struct fuse_inode *fi = get_fuse_inode(inode);
1899
1900 err = -ENOMEM;
1901 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ);
1902 if (!req) {
1903 __free_page(tmp_page);
1904 goto out_unlock;
1905 }
1906
1907 fuse_write_fill(req, data->ff, page_offset(page), 0);
1908 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1909 req->misc.write.next = NULL;
1910 req->in.argpages = 1;
1911 req->background = 1;
1912 req->num_pages = 0;
1913 req->end = fuse_writepage_end;
1914 req->inode = inode;
1915
1916 spin_lock(&fc->lock);
1917 list_add(&req->writepages_entry, &fi->writepages);
1918 spin_unlock(&fc->lock);
1919
1920 data->req = req;
1921 }
1922 set_page_writeback(page);
1923
1924 copy_highpage(tmp_page, page);
1925 req->pages[req->num_pages] = tmp_page;
1926 req->page_descs[req->num_pages].offset = 0;
1927 req->page_descs[req->num_pages].length = PAGE_SIZE;
1928
1929 inc_bdi_stat(page->mapping->backing_dev_info, BDI_WRITEBACK);
1930 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP);
1931
1932 err = 0;
1933 if (is_writeback && fuse_writepage_in_flight(req, page)) {
1934 end_page_writeback(page);
1935 data->req = NULL;
1936 goto out_unlock;
1937 }
1938 data->orig_pages[req->num_pages] = page;
1939
1940 /*
1941 * Protected by fc->lock against concurrent access by
1942 * fuse_page_is_writeback().
1943 */
1944 spin_lock(&fc->lock);
1945 req->num_pages++;
1946 spin_unlock(&fc->lock);
1947
1948 out_unlock:
1949 unlock_page(page);
1950
1951 return err;
1952 }
1953
1954 static int fuse_writepages(struct address_space *mapping,
1955 struct writeback_control *wbc)
1956 {
1957 struct inode *inode = mapping->host;
1958 struct fuse_fill_wb_data data;
1959 int err;
1960
1961 err = -EIO;
1962 if (is_bad_inode(inode))
1963 goto out;
1964
1965 data.inode = inode;
1966 data.req = NULL;
1967 data.ff = NULL;
1968
1969 err = -ENOMEM;
1970 data.orig_pages = kzalloc(sizeof(struct page *) *
1971 FUSE_MAX_PAGES_PER_REQ,
1972 GFP_NOFS);
1973 if (!data.orig_pages)
1974 goto out;
1975
1976 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1977 if (data.req) {
1978 /* Ignore errors if we can write at least one page */
1979 BUG_ON(!data.req->num_pages);
1980 fuse_writepages_send(&data);
1981 err = 0;
1982 }
1983 if (data.ff)
1984 fuse_file_put(data.ff, false);
1985
1986 kfree(data.orig_pages);
1987 out:
1988 return err;
1989 }
1990
1991 /*
1992 * It's worthy to make sure that space is reserved on disk for the write,
1993 * but how to implement it without killing performance need more thinking.
1994 */
1995 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1996 loff_t pos, unsigned len, unsigned flags,
1997 struct page **pagep, void **fsdata)
1998 {
1999 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2000 struct fuse_conn *fc = get_fuse_conn(file->f_dentry->d_inode);
2001 struct page *page;
2002 loff_t fsize;
2003 int err = -ENOMEM;
2004
2005 WARN_ON(!fc->writeback_cache);
2006
2007 page = grab_cache_page_write_begin(mapping, index, flags);
2008 if (!page)
2009 goto error;
2010
2011 fuse_wait_on_page_writeback(mapping->host, page->index);
2012
2013 if (PageUptodate(page) || len == PAGE_CACHE_SIZE)
2014 goto success;
2015 /*
2016 * Check if the start this page comes after the end of file, in which
2017 * case the readpage can be optimized away.
2018 */
2019 fsize = i_size_read(mapping->host);
2020 if (fsize <= (pos & PAGE_CACHE_MASK)) {
2021 size_t off = pos & ~PAGE_CACHE_MASK;
2022 if (off)
2023 zero_user_segment(page, 0, off);
2024 goto success;
2025 }
2026 err = fuse_do_readpage(file, page);
2027 if (err)
2028 goto cleanup;
2029 success:
2030 *pagep = page;
2031 return 0;
2032
2033 cleanup:
2034 unlock_page(page);
2035 page_cache_release(page);
2036 error:
2037 return err;
2038 }
2039
2040 static int fuse_write_end(struct file *file, struct address_space *mapping,
2041 loff_t pos, unsigned len, unsigned copied,
2042 struct page *page, void *fsdata)
2043 {
2044 struct inode *inode = page->mapping->host;
2045
2046 if (!PageUptodate(page)) {
2047 /* Zero any unwritten bytes at the end of the page */
2048 size_t endoff = (pos + copied) & ~PAGE_CACHE_MASK;
2049 if (endoff)
2050 zero_user_segment(page, endoff, PAGE_CACHE_SIZE);
2051 SetPageUptodate(page);
2052 }
2053
2054 fuse_write_update_size(inode, pos + copied);
2055 set_page_dirty(page);
2056 unlock_page(page);
2057 page_cache_release(page);
2058
2059 return copied;
2060 }
2061
2062 static int fuse_launder_page(struct page *page)
2063 {
2064 int err = 0;
2065 if (clear_page_dirty_for_io(page)) {
2066 struct inode *inode = page->mapping->host;
2067 err = fuse_writepage_locked(page);
2068 if (!err)
2069 fuse_wait_on_page_writeback(inode, page->index);
2070 }
2071 return err;
2072 }
2073
2074 /*
2075 * Write back dirty pages now, because there may not be any suitable
2076 * open files later
2077 */
2078 static void fuse_vma_close(struct vm_area_struct *vma)
2079 {
2080 filemap_write_and_wait(vma->vm_file->f_mapping);
2081 }
2082
2083 /*
2084 * Wait for writeback against this page to complete before allowing it
2085 * to be marked dirty again, and hence written back again, possibly
2086 * before the previous writepage completed.
2087 *
2088 * Block here, instead of in ->writepage(), so that the userspace fs
2089 * can only block processes actually operating on the filesystem.
2090 *
2091 * Otherwise unprivileged userspace fs would be able to block
2092 * unrelated:
2093 *
2094 * - page migration
2095 * - sync(2)
2096 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2097 */
2098 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2099 {
2100 struct page *page = vmf->page;
2101 struct inode *inode = file_inode(vma->vm_file);
2102
2103 file_update_time(vma->vm_file);
2104 lock_page(page);
2105 if (page->mapping != inode->i_mapping) {
2106 unlock_page(page);
2107 return VM_FAULT_NOPAGE;
2108 }
2109
2110 fuse_wait_on_page_writeback(inode, page->index);
2111 return VM_FAULT_LOCKED;
2112 }
2113
2114 static const struct vm_operations_struct fuse_file_vm_ops = {
2115 .close = fuse_vma_close,
2116 .fault = filemap_fault,
2117 .map_pages = filemap_map_pages,
2118 .page_mkwrite = fuse_page_mkwrite,
2119 .remap_pages = generic_file_remap_pages,
2120 };
2121
2122 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2123 {
2124 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2125 fuse_link_write_file(file);
2126
2127 file_accessed(file);
2128 vma->vm_ops = &fuse_file_vm_ops;
2129 return 0;
2130 }
2131
2132 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2133 {
2134 /* Can't provide the coherency needed for MAP_SHARED */
2135 if (vma->vm_flags & VM_MAYSHARE)
2136 return -ENODEV;
2137
2138 invalidate_inode_pages2(file->f_mapping);
2139
2140 return generic_file_mmap(file, vma);
2141 }
2142
2143 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl,
2144 struct file_lock *fl)
2145 {
2146 switch (ffl->type) {
2147 case F_UNLCK:
2148 break;
2149
2150 case F_RDLCK:
2151 case F_WRLCK:
2152 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2153 ffl->end < ffl->start)
2154 return -EIO;
2155
2156 fl->fl_start = ffl->start;
2157 fl->fl_end = ffl->end;
2158 fl->fl_pid = ffl->pid;
2159 break;
2160
2161 default:
2162 return -EIO;
2163 }
2164 fl->fl_type = ffl->type;
2165 return 0;
2166 }
2167
2168 static void fuse_lk_fill(struct fuse_req *req, struct file *file,
2169 const struct file_lock *fl, int opcode, pid_t pid,
2170 int flock)
2171 {
2172 struct inode *inode = file_inode(file);
2173 struct fuse_conn *fc = get_fuse_conn(inode);
2174 struct fuse_file *ff = file->private_data;
2175 struct fuse_lk_in *arg = &req->misc.lk_in;
2176
2177 arg->fh = ff->fh;
2178 arg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2179 arg->lk.start = fl->fl_start;
2180 arg->lk.end = fl->fl_end;
2181 arg->lk.type = fl->fl_type;
2182 arg->lk.pid = pid;
2183 if (flock)
2184 arg->lk_flags |= FUSE_LK_FLOCK;
2185 req->in.h.opcode = opcode;
2186 req->in.h.nodeid = get_node_id(inode);
2187 req->in.numargs = 1;
2188 req->in.args[0].size = sizeof(*arg);
2189 req->in.args[0].value = arg;
2190 }
2191
2192 static int fuse_getlk(struct file *file, struct file_lock *fl)
2193 {
2194 struct inode *inode = file_inode(file);
2195 struct fuse_conn *fc = get_fuse_conn(inode);
2196 struct fuse_req *req;
2197 struct fuse_lk_out outarg;
2198 int err;
2199
2200 req = fuse_get_req_nopages(fc);
2201 if (IS_ERR(req))
2202 return PTR_ERR(req);
2203
2204 fuse_lk_fill(req, file, fl, FUSE_GETLK, 0, 0);
2205 req->out.numargs = 1;
2206 req->out.args[0].size = sizeof(outarg);
2207 req->out.args[0].value = &outarg;
2208 fuse_request_send(fc, req);
2209 err = req->out.h.error;
2210 fuse_put_request(fc, req);
2211 if (!err)
2212 err = convert_fuse_file_lock(&outarg.lk, fl);
2213
2214 return err;
2215 }
2216
2217 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2218 {
2219 struct inode *inode = file_inode(file);
2220 struct fuse_conn *fc = get_fuse_conn(inode);
2221 struct fuse_req *req;
2222 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2223 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0;
2224 int err;
2225
2226 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2227 /* NLM needs asynchronous locks, which we don't support yet */
2228 return -ENOLCK;
2229 }
2230
2231 /* Unlock on close is handled by the flush method */
2232 if (fl->fl_flags & FL_CLOSE)
2233 return 0;
2234
2235 req = fuse_get_req_nopages(fc);
2236 if (IS_ERR(req))
2237 return PTR_ERR(req);
2238
2239 fuse_lk_fill(req, file, fl, opcode, pid, flock);
2240 fuse_request_send(fc, req);
2241 err = req->out.h.error;
2242 /* locking is restartable */
2243 if (err == -EINTR)
2244 err = -ERESTARTSYS;
2245 fuse_put_request(fc, req);
2246 return err;
2247 }
2248
2249 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2250 {
2251 struct inode *inode = file_inode(file);
2252 struct fuse_conn *fc = get_fuse_conn(inode);
2253 int err;
2254
2255 if (cmd == F_CANCELLK) {
2256 err = 0;
2257 } else if (cmd == F_GETLK) {
2258 if (fc->no_lock) {
2259 posix_test_lock(file, fl);
2260 err = 0;
2261 } else
2262 err = fuse_getlk(file, fl);
2263 } else {
2264 if (fc->no_lock)
2265 err = posix_lock_file(file, fl, NULL);
2266 else
2267 err = fuse_setlk(file, fl, 0);
2268 }
2269 return err;
2270 }
2271
2272 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2273 {
2274 struct inode *inode = file_inode(file);
2275 struct fuse_conn *fc = get_fuse_conn(inode);
2276 int err;
2277
2278 if (fc->no_flock) {
2279 err = flock_lock_file_wait(file, fl);
2280 } else {
2281 struct fuse_file *ff = file->private_data;
2282
2283 /* emulate flock with POSIX locks */
2284 fl->fl_owner = (fl_owner_t) file;
2285 ff->flock = true;
2286 err = fuse_setlk(file, fl, 1);
2287 }
2288
2289 return err;
2290 }
2291
2292 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2293 {
2294 struct inode *inode = mapping->host;
2295 struct fuse_conn *fc = get_fuse_conn(inode);
2296 struct fuse_req *req;
2297 struct fuse_bmap_in inarg;
2298 struct fuse_bmap_out outarg;
2299 int err;
2300
2301 if (!inode->i_sb->s_bdev || fc->no_bmap)
2302 return 0;
2303
2304 req = fuse_get_req_nopages(fc);
2305 if (IS_ERR(req))
2306 return 0;
2307
2308 memset(&inarg, 0, sizeof(inarg));
2309 inarg.block = block;
2310 inarg.blocksize = inode->i_sb->s_blocksize;
2311 req->in.h.opcode = FUSE_BMAP;
2312 req->in.h.nodeid = get_node_id(inode);
2313 req->in.numargs = 1;
2314 req->in.args[0].size = sizeof(inarg);
2315 req->in.args[0].value = &inarg;
2316 req->out.numargs = 1;
2317 req->out.args[0].size = sizeof(outarg);
2318 req->out.args[0].value = &outarg;
2319 fuse_request_send(fc, req);
2320 err = req->out.h.error;
2321 fuse_put_request(fc, req);
2322 if (err == -ENOSYS)
2323 fc->no_bmap = 1;
2324
2325 return err ? 0 : outarg.block;
2326 }
2327
2328 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2329 {
2330 loff_t retval;
2331 struct inode *inode = file_inode(file);
2332
2333 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2334 if (whence == SEEK_CUR || whence == SEEK_SET)
2335 return generic_file_llseek(file, offset, whence);
2336
2337 mutex_lock(&inode->i_mutex);
2338 retval = fuse_update_attributes(inode, NULL, file, NULL);
2339 if (!retval)
2340 retval = generic_file_llseek(file, offset, whence);
2341 mutex_unlock(&inode->i_mutex);
2342
2343 return retval;
2344 }
2345
2346 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov,
2347 unsigned int nr_segs, size_t bytes, bool to_user)
2348 {
2349 struct iov_iter ii;
2350 int page_idx = 0;
2351
2352 if (!bytes)
2353 return 0;
2354
2355 iov_iter_init(&ii, iov, nr_segs, bytes, 0);
2356
2357 while (iov_iter_count(&ii)) {
2358 struct page *page = pages[page_idx++];
2359 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii));
2360 void *kaddr;
2361
2362 kaddr = kmap(page);
2363
2364 while (todo) {
2365 char __user *uaddr = ii.iov->iov_base + ii.iov_offset;
2366 size_t iov_len = ii.iov->iov_len - ii.iov_offset;
2367 size_t copy = min(todo, iov_len);
2368 size_t left;
2369
2370 if (!to_user)
2371 left = copy_from_user(kaddr, uaddr, copy);
2372 else
2373 left = copy_to_user(uaddr, kaddr, copy);
2374
2375 if (unlikely(left))
2376 return -EFAULT;
2377
2378 iov_iter_advance(&ii, copy);
2379 todo -= copy;
2380 kaddr += copy;
2381 }
2382
2383 kunmap(page);
2384 }
2385
2386 return 0;
2387 }
2388
2389 /*
2390 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2391 * ABI was defined to be 'struct iovec' which is different on 32bit
2392 * and 64bit. Fortunately we can determine which structure the server
2393 * used from the size of the reply.
2394 */
2395 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2396 size_t transferred, unsigned count,
2397 bool is_compat)
2398 {
2399 #ifdef CONFIG_COMPAT
2400 if (count * sizeof(struct compat_iovec) == transferred) {
2401 struct compat_iovec *ciov = src;
2402 unsigned i;
2403
2404 /*
2405 * With this interface a 32bit server cannot support
2406 * non-compat (i.e. ones coming from 64bit apps) ioctl
2407 * requests
2408 */
2409 if (!is_compat)
2410 return -EINVAL;
2411
2412 for (i = 0; i < count; i++) {
2413 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2414 dst[i].iov_len = ciov[i].iov_len;
2415 }
2416 return 0;
2417 }
2418 #endif
2419
2420 if (count * sizeof(struct iovec) != transferred)
2421 return -EIO;
2422
2423 memcpy(dst, src, transferred);
2424 return 0;
2425 }
2426
2427 /* Make sure iov_length() won't overflow */
2428 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count)
2429 {
2430 size_t n;
2431 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT;
2432
2433 for (n = 0; n < count; n++, iov++) {
2434 if (iov->iov_len > (size_t) max)
2435 return -ENOMEM;
2436 max -= iov->iov_len;
2437 }
2438 return 0;
2439 }
2440
2441 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2442 void *src, size_t transferred, unsigned count,
2443 bool is_compat)
2444 {
2445 unsigned i;
2446 struct fuse_ioctl_iovec *fiov = src;
2447
2448 if (fc->minor < 16) {
2449 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2450 count, is_compat);
2451 }
2452
2453 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2454 return -EIO;
2455
2456 for (i = 0; i < count; i++) {
2457 /* Did the server supply an inappropriate value? */
2458 if (fiov[i].base != (unsigned long) fiov[i].base ||
2459 fiov[i].len != (unsigned long) fiov[i].len)
2460 return -EIO;
2461
2462 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2463 dst[i].iov_len = (size_t) fiov[i].len;
2464
2465 #ifdef CONFIG_COMPAT
2466 if (is_compat &&
2467 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2468 (compat_size_t) dst[i].iov_len != fiov[i].len))
2469 return -EIO;
2470 #endif
2471 }
2472
2473 return 0;
2474 }
2475
2476
2477 /*
2478 * For ioctls, there is no generic way to determine how much memory
2479 * needs to be read and/or written. Furthermore, ioctls are allowed
2480 * to dereference the passed pointer, so the parameter requires deep
2481 * copying but FUSE has no idea whatsoever about what to copy in or
2482 * out.
2483 *
2484 * This is solved by allowing FUSE server to retry ioctl with
2485 * necessary in/out iovecs. Let's assume the ioctl implementation
2486 * needs to read in the following structure.
2487 *
2488 * struct a {
2489 * char *buf;
2490 * size_t buflen;
2491 * }
2492 *
2493 * On the first callout to FUSE server, inarg->in_size and
2494 * inarg->out_size will be NULL; then, the server completes the ioctl
2495 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2496 * the actual iov array to
2497 *
2498 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2499 *
2500 * which tells FUSE to copy in the requested area and retry the ioctl.
2501 * On the second round, the server has access to the structure and
2502 * from that it can tell what to look for next, so on the invocation,
2503 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2504 *
2505 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2506 * { .iov_base = a.buf, .iov_len = a.buflen } }
2507 *
2508 * FUSE will copy both struct a and the pointed buffer from the
2509 * process doing the ioctl and retry ioctl with both struct a and the
2510 * buffer.
2511 *
2512 * This time, FUSE server has everything it needs and completes ioctl
2513 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2514 *
2515 * Copying data out works the same way.
2516 *
2517 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2518 * automatically initializes in and out iovs by decoding @cmd with
2519 * _IOC_* macros and the server is not allowed to request RETRY. This
2520 * limits ioctl data transfers to well-formed ioctls and is the forced
2521 * behavior for all FUSE servers.
2522 */
2523 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2524 unsigned int flags)
2525 {
2526 struct fuse_file *ff = file->private_data;
2527 struct fuse_conn *fc = ff->fc;
2528 struct fuse_ioctl_in inarg = {
2529 .fh = ff->fh,
2530 .cmd = cmd,
2531 .arg = arg,
2532 .flags = flags
2533 };
2534 struct fuse_ioctl_out outarg;
2535 struct fuse_req *req = NULL;
2536 struct page **pages = NULL;
2537 struct iovec *iov_page = NULL;
2538 struct iovec *in_iov = NULL, *out_iov = NULL;
2539 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2540 size_t in_size, out_size, transferred;
2541 int err;
2542
2543 #if BITS_PER_LONG == 32
2544 inarg.flags |= FUSE_IOCTL_32BIT;
2545 #else
2546 if (flags & FUSE_IOCTL_COMPAT)
2547 inarg.flags |= FUSE_IOCTL_32BIT;
2548 #endif
2549
2550 /* assume all the iovs returned by client always fits in a page */
2551 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2552
2553 err = -ENOMEM;
2554 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL);
2555 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2556 if (!pages || !iov_page)
2557 goto out;
2558
2559 /*
2560 * If restricted, initialize IO parameters as encoded in @cmd.
2561 * RETRY from server is not allowed.
2562 */
2563 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2564 struct iovec *iov = iov_page;
2565
2566 iov->iov_base = (void __user *)arg;
2567 iov->iov_len = _IOC_SIZE(cmd);
2568
2569 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2570 in_iov = iov;
2571 in_iovs = 1;
2572 }
2573
2574 if (_IOC_DIR(cmd) & _IOC_READ) {
2575 out_iov = iov;
2576 out_iovs = 1;
2577 }
2578 }
2579
2580 retry:
2581 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2582 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2583
2584 /*
2585 * Out data can be used either for actual out data or iovs,
2586 * make sure there always is at least one page.
2587 */
2588 out_size = max_t(size_t, out_size, PAGE_SIZE);
2589 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2590
2591 /* make sure there are enough buffer pages and init request with them */
2592 err = -ENOMEM;
2593 if (max_pages > FUSE_MAX_PAGES_PER_REQ)
2594 goto out;
2595 while (num_pages < max_pages) {
2596 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2597 if (!pages[num_pages])
2598 goto out;
2599 num_pages++;
2600 }
2601
2602 req = fuse_get_req(fc, num_pages);
2603 if (IS_ERR(req)) {
2604 err = PTR_ERR(req);
2605 req = NULL;
2606 goto out;
2607 }
2608 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2609 req->num_pages = num_pages;
2610 fuse_page_descs_length_init(req, 0, req->num_pages);
2611
2612 /* okay, let's send it to the client */
2613 req->in.h.opcode = FUSE_IOCTL;
2614 req->in.h.nodeid = ff->nodeid;
2615 req->in.numargs = 1;
2616 req->in.args[0].size = sizeof(inarg);
2617 req->in.args[0].value = &inarg;
2618 if (in_size) {
2619 req->in.numargs++;
2620 req->in.args[1].size = in_size;
2621 req->in.argpages = 1;
2622
2623 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size,
2624 false);
2625 if (err)
2626 goto out;
2627 }
2628
2629 req->out.numargs = 2;
2630 req->out.args[0].size = sizeof(outarg);
2631 req->out.args[0].value = &outarg;
2632 req->out.args[1].size = out_size;
2633 req->out.argpages = 1;
2634 req->out.argvar = 1;
2635
2636 fuse_request_send(fc, req);
2637 err = req->out.h.error;
2638 transferred = req->out.args[1].size;
2639 fuse_put_request(fc, req);
2640 req = NULL;
2641 if (err)
2642 goto out;
2643
2644 /* did it ask for retry? */
2645 if (outarg.flags & FUSE_IOCTL_RETRY) {
2646 void *vaddr;
2647
2648 /* no retry if in restricted mode */
2649 err = -EIO;
2650 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2651 goto out;
2652
2653 in_iovs = outarg.in_iovs;
2654 out_iovs = outarg.out_iovs;
2655
2656 /*
2657 * Make sure things are in boundary, separate checks
2658 * are to protect against overflow.
2659 */
2660 err = -ENOMEM;
2661 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2662 out_iovs > FUSE_IOCTL_MAX_IOV ||
2663 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2664 goto out;
2665
2666 vaddr = kmap_atomic(pages[0]);
2667 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2668 transferred, in_iovs + out_iovs,
2669 (flags & FUSE_IOCTL_COMPAT) != 0);
2670 kunmap_atomic(vaddr);
2671 if (err)
2672 goto out;
2673
2674 in_iov = iov_page;
2675 out_iov = in_iov + in_iovs;
2676
2677 err = fuse_verify_ioctl_iov(in_iov, in_iovs);
2678 if (err)
2679 goto out;
2680
2681 err = fuse_verify_ioctl_iov(out_iov, out_iovs);
2682 if (err)
2683 goto out;
2684
2685 goto retry;
2686 }
2687
2688 err = -EIO;
2689 if (transferred > inarg.out_size)
2690 goto out;
2691
2692 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true);
2693 out:
2694 if (req)
2695 fuse_put_request(fc, req);
2696 free_page((unsigned long) iov_page);
2697 while (num_pages)
2698 __free_page(pages[--num_pages]);
2699 kfree(pages);
2700
2701 return err ? err : outarg.result;
2702 }
2703 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2704
2705 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2706 unsigned long arg, unsigned int flags)
2707 {
2708 struct inode *inode = file_inode(file);
2709 struct fuse_conn *fc = get_fuse_conn(inode);
2710
2711 if (!fuse_allow_current_process(fc))
2712 return -EACCES;
2713
2714 if (is_bad_inode(inode))
2715 return -EIO;
2716
2717 return fuse_do_ioctl(file, cmd, arg, flags);
2718 }
2719
2720 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2721 unsigned long arg)
2722 {
2723 return fuse_ioctl_common(file, cmd, arg, 0);
2724 }
2725
2726 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2727 unsigned long arg)
2728 {
2729 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2730 }
2731
2732 /*
2733 * All files which have been polled are linked to RB tree
2734 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2735 * find the matching one.
2736 */
2737 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2738 struct rb_node **parent_out)
2739 {
2740 struct rb_node **link = &fc->polled_files.rb_node;
2741 struct rb_node *last = NULL;
2742
2743 while (*link) {
2744 struct fuse_file *ff;
2745
2746 last = *link;
2747 ff = rb_entry(last, struct fuse_file, polled_node);
2748
2749 if (kh < ff->kh)
2750 link = &last->rb_left;
2751 else if (kh > ff->kh)
2752 link = &last->rb_right;
2753 else
2754 return link;
2755 }
2756
2757 if (parent_out)
2758 *parent_out = last;
2759 return link;
2760 }
2761
2762 /*
2763 * The file is about to be polled. Make sure it's on the polled_files
2764 * RB tree. Note that files once added to the polled_files tree are
2765 * not removed before the file is released. This is because a file
2766 * polled once is likely to be polled again.
2767 */
2768 static void fuse_register_polled_file(struct fuse_conn *fc,
2769 struct fuse_file *ff)
2770 {
2771 spin_lock(&fc->lock);
2772 if (RB_EMPTY_NODE(&ff->polled_node)) {
2773 struct rb_node **link, *uninitialized_var(parent);
2774
2775 link = fuse_find_polled_node(fc, ff->kh, &parent);
2776 BUG_ON(*link);
2777 rb_link_node(&ff->polled_node, parent, link);
2778 rb_insert_color(&ff->polled_node, &fc->polled_files);
2779 }
2780 spin_unlock(&fc->lock);
2781 }
2782
2783 unsigned fuse_file_poll(struct file *file, poll_table *wait)
2784 {
2785 struct fuse_file *ff = file->private_data;
2786 struct fuse_conn *fc = ff->fc;
2787 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2788 struct fuse_poll_out outarg;
2789 struct fuse_req *req;
2790 int err;
2791
2792 if (fc->no_poll)
2793 return DEFAULT_POLLMASK;
2794
2795 poll_wait(file, &ff->poll_wait, wait);
2796 inarg.events = (__u32)poll_requested_events(wait);
2797
2798 /*
2799 * Ask for notification iff there's someone waiting for it.
2800 * The client may ignore the flag and always notify.
2801 */
2802 if (waitqueue_active(&ff->poll_wait)) {
2803 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2804 fuse_register_polled_file(fc, ff);
2805 }
2806
2807 req = fuse_get_req_nopages(fc);
2808 if (IS_ERR(req))
2809 return POLLERR;
2810
2811 req->in.h.opcode = FUSE_POLL;
2812 req->in.h.nodeid = ff->nodeid;
2813 req->in.numargs = 1;
2814 req->in.args[0].size = sizeof(inarg);
2815 req->in.args[0].value = &inarg;
2816 req->out.numargs = 1;
2817 req->out.args[0].size = sizeof(outarg);
2818 req->out.args[0].value = &outarg;
2819 fuse_request_send(fc, req);
2820 err = req->out.h.error;
2821 fuse_put_request(fc, req);
2822
2823 if (!err)
2824 return outarg.revents;
2825 if (err == -ENOSYS) {
2826 fc->no_poll = 1;
2827 return DEFAULT_POLLMASK;
2828 }
2829 return POLLERR;
2830 }
2831 EXPORT_SYMBOL_GPL(fuse_file_poll);
2832
2833 /*
2834 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2835 * wakes up the poll waiters.
2836 */
2837 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2838 struct fuse_notify_poll_wakeup_out *outarg)
2839 {
2840 u64 kh = outarg->kh;
2841 struct rb_node **link;
2842
2843 spin_lock(&fc->lock);
2844
2845 link = fuse_find_polled_node(fc, kh, NULL);
2846 if (*link) {
2847 struct fuse_file *ff;
2848
2849 ff = rb_entry(*link, struct fuse_file, polled_node);
2850 wake_up_interruptible_sync(&ff->poll_wait);
2851 }
2852
2853 spin_unlock(&fc->lock);
2854 return 0;
2855 }
2856
2857 static void fuse_do_truncate(struct file *file)
2858 {
2859 struct inode *inode = file->f_mapping->host;
2860 struct iattr attr;
2861
2862 attr.ia_valid = ATTR_SIZE;
2863 attr.ia_size = i_size_read(inode);
2864
2865 attr.ia_file = file;
2866 attr.ia_valid |= ATTR_FILE;
2867
2868 fuse_do_setattr(inode, &attr, file);
2869 }
2870
2871 static inline loff_t fuse_round_up(loff_t off)
2872 {
2873 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT);
2874 }
2875
2876 static ssize_t
2877 fuse_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2878 loff_t offset, unsigned long nr_segs)
2879 {
2880 ssize_t ret = 0;
2881 struct file *file = iocb->ki_filp;
2882 struct fuse_file *ff = file->private_data;
2883 bool async_dio = ff->fc->async_dio;
2884 loff_t pos = 0;
2885 struct inode *inode;
2886 loff_t i_size;
2887 size_t count = iov_length(iov, nr_segs);
2888 struct fuse_io_priv *io;
2889
2890 pos = offset;
2891 inode = file->f_mapping->host;
2892 i_size = i_size_read(inode);
2893
2894 if ((rw == READ) && (offset > i_size))
2895 return 0;
2896
2897 /* optimization for short read */
2898 if (async_dio && rw != WRITE && offset + count > i_size) {
2899 if (offset >= i_size)
2900 return 0;
2901 count = min_t(loff_t, count, fuse_round_up(i_size - offset));
2902 }
2903
2904 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2905 if (!io)
2906 return -ENOMEM;
2907 spin_lock_init(&io->lock);
2908 io->reqs = 1;
2909 io->bytes = -1;
2910 io->size = 0;
2911 io->offset = offset;
2912 io->write = (rw == WRITE);
2913 io->err = 0;
2914 io->file = file;
2915 /*
2916 * By default, we want to optimize all I/Os with async request
2917 * submission to the client filesystem if supported.
2918 */
2919 io->async = async_dio;
2920 io->iocb = iocb;
2921
2922 /*
2923 * We cannot asynchronously extend the size of a file. We have no method
2924 * to wait on real async I/O requests, so we must submit this request
2925 * synchronously.
2926 */
2927 if (!is_sync_kiocb(iocb) && (offset + count > i_size) && rw == WRITE)
2928 io->async = false;
2929
2930 if (rw == WRITE)
2931 ret = __fuse_direct_write(io, iov, nr_segs, &pos);
2932 else
2933 ret = __fuse_direct_read(io, iov, nr_segs, &pos, count);
2934
2935 if (io->async) {
2936 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2937
2938 /* we have a non-extending, async request, so return */
2939 if (!is_sync_kiocb(iocb))
2940 return -EIOCBQUEUED;
2941
2942 ret = wait_on_sync_kiocb(iocb);
2943 } else {
2944 kfree(io);
2945 }
2946
2947 if (rw == WRITE) {
2948 if (ret > 0)
2949 fuse_write_update_size(inode, pos);
2950 else if (ret < 0 && offset + count > i_size)
2951 fuse_do_truncate(file);
2952 }
2953
2954 return ret;
2955 }
2956
2957 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2958 loff_t length)
2959 {
2960 struct fuse_file *ff = file->private_data;
2961 struct inode *inode = file->f_inode;
2962 struct fuse_inode *fi = get_fuse_inode(inode);
2963 struct fuse_conn *fc = ff->fc;
2964 struct fuse_req *req;
2965 struct fuse_fallocate_in inarg = {
2966 .fh = ff->fh,
2967 .offset = offset,
2968 .length = length,
2969 .mode = mode
2970 };
2971 int err;
2972 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2973 (mode & FALLOC_FL_PUNCH_HOLE);
2974
2975 if (fc->no_fallocate)
2976 return -EOPNOTSUPP;
2977
2978 if (lock_inode) {
2979 mutex_lock(&inode->i_mutex);
2980 if (mode & FALLOC_FL_PUNCH_HOLE) {
2981 loff_t endbyte = offset + length - 1;
2982 err = filemap_write_and_wait_range(inode->i_mapping,
2983 offset, endbyte);
2984 if (err)
2985 goto out;
2986
2987 fuse_sync_writes(inode);
2988 }
2989 }
2990
2991 if (!(mode & FALLOC_FL_KEEP_SIZE))
2992 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2993
2994 req = fuse_get_req_nopages(fc);
2995 if (IS_ERR(req)) {
2996 err = PTR_ERR(req);
2997 goto out;
2998 }
2999
3000 req->in.h.opcode = FUSE_FALLOCATE;
3001 req->in.h.nodeid = ff->nodeid;
3002 req->in.numargs = 1;
3003 req->in.args[0].size = sizeof(inarg);
3004 req->in.args[0].value = &inarg;
3005 fuse_request_send(fc, req);
3006 err = req->out.h.error;
3007 if (err == -ENOSYS) {
3008 fc->no_fallocate = 1;
3009 err = -EOPNOTSUPP;
3010 }
3011 fuse_put_request(fc, req);
3012
3013 if (err)
3014 goto out;
3015
3016 /* we could have extended the file */
3017 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3018 bool changed = fuse_write_update_size(inode, offset + length);
3019
3020 if (changed && fc->writeback_cache) {
3021 struct fuse_inode *fi = get_fuse_inode(inode);
3022
3023 inode->i_mtime = current_fs_time(inode->i_sb);
3024 set_bit(FUSE_I_MTIME_DIRTY, &fi->state);
3025 }
3026 }
3027
3028 if (mode & FALLOC_FL_PUNCH_HOLE)
3029 truncate_pagecache_range(inode, offset, offset + length - 1);
3030
3031 fuse_invalidate_attr(inode);
3032
3033 out:
3034 if (!(mode & FALLOC_FL_KEEP_SIZE))
3035 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3036
3037 if (lock_inode)
3038 mutex_unlock(&inode->i_mutex);
3039
3040 return err;
3041 }
3042
3043 static const struct file_operations fuse_file_operations = {
3044 .llseek = fuse_file_llseek,
3045 .read = do_sync_read,
3046 .aio_read = fuse_file_aio_read,
3047 .write = do_sync_write,
3048 .aio_write = fuse_file_aio_write,
3049 .mmap = fuse_file_mmap,
3050 .open = fuse_open,
3051 .flush = fuse_flush,
3052 .release = fuse_release,
3053 .fsync = fuse_fsync,
3054 .lock = fuse_file_lock,
3055 .flock = fuse_file_flock,
3056 .splice_read = generic_file_splice_read,
3057 .unlocked_ioctl = fuse_file_ioctl,
3058 .compat_ioctl = fuse_file_compat_ioctl,
3059 .poll = fuse_file_poll,
3060 .fallocate = fuse_file_fallocate,
3061 };
3062
3063 static const struct file_operations fuse_direct_io_file_operations = {
3064 .llseek = fuse_file_llseek,
3065 .read = fuse_direct_read,
3066 .write = fuse_direct_write,
3067 .mmap = fuse_direct_mmap,
3068 .open = fuse_open,
3069 .flush = fuse_flush,
3070 .release = fuse_release,
3071 .fsync = fuse_fsync,
3072 .lock = fuse_file_lock,
3073 .flock = fuse_file_flock,
3074 .unlocked_ioctl = fuse_file_ioctl,
3075 .compat_ioctl = fuse_file_compat_ioctl,
3076 .poll = fuse_file_poll,
3077 .fallocate = fuse_file_fallocate,
3078 /* no splice_read */
3079 };
3080
3081 static const struct address_space_operations fuse_file_aops = {
3082 .readpage = fuse_readpage,
3083 .writepage = fuse_writepage,
3084 .writepages = fuse_writepages,
3085 .launder_page = fuse_launder_page,
3086 .readpages = fuse_readpages,
3087 .set_page_dirty = __set_page_dirty_nobuffers,
3088 .bmap = fuse_bmap,
3089 .direct_IO = fuse_direct_IO,
3090 .write_begin = fuse_write_begin,
3091 .write_end = fuse_write_end,
3092 };
3093
3094 void fuse_init_file_inode(struct inode *inode)
3095 {
3096 inode->i_fop = &fuse_file_operations;
3097 inode->i_data.a_ops = &fuse_file_aops;
3098 }