]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - fs/gfs2/file.c
HID: logitech-dj: fix spelling in printk
[mirror_ubuntu-kernels.git] / fs / gfs2 / file.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/pagemap.h>
15 #include <linux/uio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mm.h>
18 #include <linux/mount.h>
19 #include <linux/fs.h>
20 #include <linux/gfs2_ondisk.h>
21 #include <linux/falloc.h>
22 #include <linux/swap.h>
23 #include <linux/crc32.h>
24 #include <linux/writeback.h>
25 #include <linux/uaccess.h>
26 #include <linux/dlm.h>
27 #include <linux/dlm_plock.h>
28 #include <linux/delay.h>
29 #include <linux/backing-dev.h>
30
31 #include "gfs2.h"
32 #include "incore.h"
33 #include "bmap.h"
34 #include "aops.h"
35 #include "dir.h"
36 #include "glock.h"
37 #include "glops.h"
38 #include "inode.h"
39 #include "log.h"
40 #include "meta_io.h"
41 #include "quota.h"
42 #include "rgrp.h"
43 #include "trans.h"
44 #include "util.h"
45
46 /**
47 * gfs2_llseek - seek to a location in a file
48 * @file: the file
49 * @offset: the offset
50 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
51 *
52 * SEEK_END requires the glock for the file because it references the
53 * file's size.
54 *
55 * Returns: The new offset, or errno
56 */
57
58 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
59 {
60 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
61 struct gfs2_holder i_gh;
62 loff_t error;
63
64 switch (whence) {
65 case SEEK_END:
66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 &i_gh);
68 if (!error) {
69 error = generic_file_llseek(file, offset, whence);
70 gfs2_glock_dq_uninit(&i_gh);
71 }
72 break;
73
74 case SEEK_DATA:
75 error = gfs2_seek_data(file, offset);
76 break;
77
78 case SEEK_HOLE:
79 error = gfs2_seek_hole(file, offset);
80 break;
81
82 case SEEK_CUR:
83 case SEEK_SET:
84 /*
85 * These don't reference inode->i_size and don't depend on the
86 * block mapping, so we don't need the glock.
87 */
88 error = generic_file_llseek(file, offset, whence);
89 break;
90 default:
91 error = -EINVAL;
92 }
93
94 return error;
95 }
96
97 /**
98 * gfs2_readdir - Iterator for a directory
99 * @file: The directory to read from
100 * @ctx: What to feed directory entries to
101 *
102 * Returns: errno
103 */
104
105 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
106 {
107 struct inode *dir = file->f_mapping->host;
108 struct gfs2_inode *dip = GFS2_I(dir);
109 struct gfs2_holder d_gh;
110 int error;
111
112 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
113 if (error)
114 return error;
115
116 error = gfs2_dir_read(dir, ctx, &file->f_ra);
117
118 gfs2_glock_dq_uninit(&d_gh);
119
120 return error;
121 }
122
123 /**
124 * fsflag_gfs2flag
125 *
126 * The FS_JOURNAL_DATA_FL flag maps to GFS2_DIF_INHERIT_JDATA for directories,
127 * and to GFS2_DIF_JDATA for non-directories.
128 */
129 static struct {
130 u32 fsflag;
131 u32 gfsflag;
132 } fsflag_gfs2flag[] = {
133 {FS_SYNC_FL, GFS2_DIF_SYNC},
134 {FS_IMMUTABLE_FL, GFS2_DIF_IMMUTABLE},
135 {FS_APPEND_FL, GFS2_DIF_APPENDONLY},
136 {FS_NOATIME_FL, GFS2_DIF_NOATIME},
137 {FS_INDEX_FL, GFS2_DIF_EXHASH},
138 {FS_TOPDIR_FL, GFS2_DIF_TOPDIR},
139 {FS_JOURNAL_DATA_FL, GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA},
140 };
141
142 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
143 {
144 struct inode *inode = file_inode(filp);
145 struct gfs2_inode *ip = GFS2_I(inode);
146 struct gfs2_holder gh;
147 int i, error;
148 u32 gfsflags, fsflags = 0;
149
150 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
151 error = gfs2_glock_nq(&gh);
152 if (error)
153 goto out_uninit;
154
155 gfsflags = ip->i_diskflags;
156 if (S_ISDIR(inode->i_mode))
157 gfsflags &= ~GFS2_DIF_JDATA;
158 else
159 gfsflags &= ~GFS2_DIF_INHERIT_JDATA;
160 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++)
161 if (gfsflags & fsflag_gfs2flag[i].gfsflag)
162 fsflags |= fsflag_gfs2flag[i].fsflag;
163
164 if (put_user(fsflags, ptr))
165 error = -EFAULT;
166
167 gfs2_glock_dq(&gh);
168 out_uninit:
169 gfs2_holder_uninit(&gh);
170 return error;
171 }
172
173 void gfs2_set_inode_flags(struct inode *inode)
174 {
175 struct gfs2_inode *ip = GFS2_I(inode);
176 unsigned int flags = inode->i_flags;
177
178 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
179 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
180 flags |= S_NOSEC;
181 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
182 flags |= S_IMMUTABLE;
183 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
184 flags |= S_APPEND;
185 if (ip->i_diskflags & GFS2_DIF_NOATIME)
186 flags |= S_NOATIME;
187 if (ip->i_diskflags & GFS2_DIF_SYNC)
188 flags |= S_SYNC;
189 inode->i_flags = flags;
190 }
191
192 /* Flags that can be set by user space */
193 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
194 GFS2_DIF_IMMUTABLE| \
195 GFS2_DIF_APPENDONLY| \
196 GFS2_DIF_NOATIME| \
197 GFS2_DIF_SYNC| \
198 GFS2_DIF_TOPDIR| \
199 GFS2_DIF_INHERIT_JDATA)
200
201 /**
202 * do_gfs2_set_flags - set flags on an inode
203 * @filp: file pointer
204 * @reqflags: The flags to set
205 * @mask: Indicates which flags are valid
206 *
207 */
208 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
209 {
210 struct inode *inode = file_inode(filp);
211 struct gfs2_inode *ip = GFS2_I(inode);
212 struct gfs2_sbd *sdp = GFS2_SB(inode);
213 struct buffer_head *bh;
214 struct gfs2_holder gh;
215 int error;
216 u32 new_flags, flags;
217
218 error = mnt_want_write_file(filp);
219 if (error)
220 return error;
221
222 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
223 if (error)
224 goto out_drop_write;
225
226 error = -EACCES;
227 if (!inode_owner_or_capable(inode))
228 goto out;
229
230 error = 0;
231 flags = ip->i_diskflags;
232 new_flags = (flags & ~mask) | (reqflags & mask);
233 if ((new_flags ^ flags) == 0)
234 goto out;
235
236 error = -EPERM;
237 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
238 goto out;
239 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
240 goto out;
241 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
242 !capable(CAP_LINUX_IMMUTABLE))
243 goto out;
244 if (!IS_IMMUTABLE(inode)) {
245 error = gfs2_permission(inode, MAY_WRITE);
246 if (error)
247 goto out;
248 }
249 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
250 if (new_flags & GFS2_DIF_JDATA)
251 gfs2_log_flush(sdp, ip->i_gl,
252 GFS2_LOG_HEAD_FLUSH_NORMAL |
253 GFS2_LFC_SET_FLAGS);
254 error = filemap_fdatawrite(inode->i_mapping);
255 if (error)
256 goto out;
257 error = filemap_fdatawait(inode->i_mapping);
258 if (error)
259 goto out;
260 if (new_flags & GFS2_DIF_JDATA)
261 gfs2_ordered_del_inode(ip);
262 }
263 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
264 if (error)
265 goto out;
266 error = gfs2_meta_inode_buffer(ip, &bh);
267 if (error)
268 goto out_trans_end;
269 inode->i_ctime = current_time(inode);
270 gfs2_trans_add_meta(ip->i_gl, bh);
271 ip->i_diskflags = new_flags;
272 gfs2_dinode_out(ip, bh->b_data);
273 brelse(bh);
274 gfs2_set_inode_flags(inode);
275 gfs2_set_aops(inode);
276 out_trans_end:
277 gfs2_trans_end(sdp);
278 out:
279 gfs2_glock_dq_uninit(&gh);
280 out_drop_write:
281 mnt_drop_write_file(filp);
282 return error;
283 }
284
285 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
286 {
287 struct inode *inode = file_inode(filp);
288 u32 fsflags, gfsflags = 0;
289 u32 mask;
290 int i;
291
292 if (get_user(fsflags, ptr))
293 return -EFAULT;
294
295 for (i = 0; i < ARRAY_SIZE(fsflag_gfs2flag); i++) {
296 if (fsflags & fsflag_gfs2flag[i].fsflag) {
297 fsflags &= ~fsflag_gfs2flag[i].fsflag;
298 gfsflags |= fsflag_gfs2flag[i].gfsflag;
299 }
300 }
301 if (fsflags || gfsflags & ~GFS2_FLAGS_USER_SET)
302 return -EINVAL;
303
304 mask = GFS2_FLAGS_USER_SET;
305 if (S_ISDIR(inode->i_mode)) {
306 mask &= ~GFS2_DIF_JDATA;
307 } else {
308 /* The GFS2_DIF_TOPDIR flag is only valid for directories. */
309 if (gfsflags & GFS2_DIF_TOPDIR)
310 return -EINVAL;
311 mask &= ~(GFS2_DIF_TOPDIR | GFS2_DIF_INHERIT_JDATA);
312 }
313
314 return do_gfs2_set_flags(filp, gfsflags, mask);
315 }
316
317 static int gfs2_getlabel(struct file *filp, char __user *label)
318 {
319 struct inode *inode = file_inode(filp);
320 struct gfs2_sbd *sdp = GFS2_SB(inode);
321
322 if (copy_to_user(label, sdp->sd_sb.sb_locktable, GFS2_LOCKNAME_LEN))
323 return -EFAULT;
324
325 return 0;
326 }
327
328 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
329 {
330 switch(cmd) {
331 case FS_IOC_GETFLAGS:
332 return gfs2_get_flags(filp, (u32 __user *)arg);
333 case FS_IOC_SETFLAGS:
334 return gfs2_set_flags(filp, (u32 __user *)arg);
335 case FITRIM:
336 return gfs2_fitrim(filp, (void __user *)arg);
337 case FS_IOC_GETFSLABEL:
338 return gfs2_getlabel(filp, (char __user *)arg);
339 }
340
341 return -ENOTTY;
342 }
343
344 /**
345 * gfs2_size_hint - Give a hint to the size of a write request
346 * @filep: The struct file
347 * @offset: The file offset of the write
348 * @size: The length of the write
349 *
350 * When we are about to do a write, this function records the total
351 * write size in order to provide a suitable hint to the lower layers
352 * about how many blocks will be required.
353 *
354 */
355
356 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
357 {
358 struct inode *inode = file_inode(filep);
359 struct gfs2_sbd *sdp = GFS2_SB(inode);
360 struct gfs2_inode *ip = GFS2_I(inode);
361 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
362 int hint = min_t(size_t, INT_MAX, blks);
363
364 if (hint > atomic_read(&ip->i_sizehint))
365 atomic_set(&ip->i_sizehint, hint);
366 }
367
368 /**
369 * gfs2_allocate_page_backing - Use bmap to allocate blocks
370 * @page: The (locked) page to allocate backing for
371 *
372 * We try to allocate all the blocks required for the page in
373 * one go. This might fail for various reasons, so we keep
374 * trying until all the blocks to back this page are allocated.
375 * If some of the blocks are already allocated, thats ok too.
376 */
377
378 static int gfs2_allocate_page_backing(struct page *page)
379 {
380 struct inode *inode = page->mapping->host;
381 struct buffer_head bh;
382 unsigned long size = PAGE_SIZE;
383 u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
384
385 do {
386 bh.b_state = 0;
387 bh.b_size = size;
388 gfs2_block_map(inode, lblock, &bh, 1);
389 if (!buffer_mapped(&bh))
390 return -EIO;
391 size -= bh.b_size;
392 lblock += (bh.b_size >> inode->i_blkbits);
393 } while(size > 0);
394 return 0;
395 }
396
397 /**
398 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
399 * @vma: The virtual memory area
400 * @vmf: The virtual memory fault containing the page to become writable
401 *
402 * When the page becomes writable, we need to ensure that we have
403 * blocks allocated on disk to back that page.
404 */
405
406 static vm_fault_t gfs2_page_mkwrite(struct vm_fault *vmf)
407 {
408 struct page *page = vmf->page;
409 struct inode *inode = file_inode(vmf->vma->vm_file);
410 struct gfs2_inode *ip = GFS2_I(inode);
411 struct gfs2_sbd *sdp = GFS2_SB(inode);
412 struct gfs2_alloc_parms ap = { .aflags = 0, };
413 unsigned long last_index;
414 u64 pos = page->index << PAGE_SHIFT;
415 unsigned int data_blocks, ind_blocks, rblocks;
416 struct gfs2_holder gh;
417 loff_t size;
418 int ret;
419
420 sb_start_pagefault(inode->i_sb);
421
422 ret = gfs2_rsqa_alloc(ip);
423 if (ret)
424 goto out;
425
426 gfs2_size_hint(vmf->vma->vm_file, pos, PAGE_SIZE);
427
428 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
429 ret = gfs2_glock_nq(&gh);
430 if (ret)
431 goto out_uninit;
432
433 /* Update file times before taking page lock */
434 file_update_time(vmf->vma->vm_file);
435
436 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
437 set_bit(GIF_SW_PAGED, &ip->i_flags);
438
439 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
440 lock_page(page);
441 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
442 ret = -EAGAIN;
443 unlock_page(page);
444 }
445 goto out_unlock;
446 }
447
448 ret = gfs2_rindex_update(sdp);
449 if (ret)
450 goto out_unlock;
451
452 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
453 ap.target = data_blocks + ind_blocks;
454 ret = gfs2_quota_lock_check(ip, &ap);
455 if (ret)
456 goto out_unlock;
457 ret = gfs2_inplace_reserve(ip, &ap);
458 if (ret)
459 goto out_quota_unlock;
460
461 rblocks = RES_DINODE + ind_blocks;
462 if (gfs2_is_jdata(ip))
463 rblocks += data_blocks ? data_blocks : 1;
464 if (ind_blocks || data_blocks) {
465 rblocks += RES_STATFS + RES_QUOTA;
466 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
467 }
468 ret = gfs2_trans_begin(sdp, rblocks, 0);
469 if (ret)
470 goto out_trans_fail;
471
472 lock_page(page);
473 ret = -EINVAL;
474 size = i_size_read(inode);
475 last_index = (size - 1) >> PAGE_SHIFT;
476 /* Check page index against inode size */
477 if (size == 0 || (page->index > last_index))
478 goto out_trans_end;
479
480 ret = -EAGAIN;
481 /* If truncated, we must retry the operation, we may have raced
482 * with the glock demotion code.
483 */
484 if (!PageUptodate(page) || page->mapping != inode->i_mapping)
485 goto out_trans_end;
486
487 /* Unstuff, if required, and allocate backing blocks for page */
488 ret = 0;
489 if (gfs2_is_stuffed(ip))
490 ret = gfs2_unstuff_dinode(ip, page);
491 if (ret == 0)
492 ret = gfs2_allocate_page_backing(page);
493
494 out_trans_end:
495 if (ret)
496 unlock_page(page);
497 gfs2_trans_end(sdp);
498 out_trans_fail:
499 gfs2_inplace_release(ip);
500 out_quota_unlock:
501 gfs2_quota_unlock(ip);
502 out_unlock:
503 gfs2_glock_dq(&gh);
504 out_uninit:
505 gfs2_holder_uninit(&gh);
506 if (ret == 0) {
507 set_page_dirty(page);
508 wait_for_stable_page(page);
509 }
510 out:
511 sb_end_pagefault(inode->i_sb);
512 return block_page_mkwrite_return(ret);
513 }
514
515 static const struct vm_operations_struct gfs2_vm_ops = {
516 .fault = filemap_fault,
517 .map_pages = filemap_map_pages,
518 .page_mkwrite = gfs2_page_mkwrite,
519 };
520
521 /**
522 * gfs2_mmap -
523 * @file: The file to map
524 * @vma: The VMA which described the mapping
525 *
526 * There is no need to get a lock here unless we should be updating
527 * atime. We ignore any locking errors since the only consequence is
528 * a missed atime update (which will just be deferred until later).
529 *
530 * Returns: 0
531 */
532
533 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
534 {
535 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
536
537 if (!(file->f_flags & O_NOATIME) &&
538 !IS_NOATIME(&ip->i_inode)) {
539 struct gfs2_holder i_gh;
540 int error;
541
542 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
543 &i_gh);
544 if (error)
545 return error;
546 /* grab lock to update inode */
547 gfs2_glock_dq_uninit(&i_gh);
548 file_accessed(file);
549 }
550 vma->vm_ops = &gfs2_vm_ops;
551
552 return 0;
553 }
554
555 /**
556 * gfs2_open_common - This is common to open and atomic_open
557 * @inode: The inode being opened
558 * @file: The file being opened
559 *
560 * This maybe called under a glock or not depending upon how it has
561 * been called. We must always be called under a glock for regular
562 * files, however. For other file types, it does not matter whether
563 * we hold the glock or not.
564 *
565 * Returns: Error code or 0 for success
566 */
567
568 int gfs2_open_common(struct inode *inode, struct file *file)
569 {
570 struct gfs2_file *fp;
571 int ret;
572
573 if (S_ISREG(inode->i_mode)) {
574 ret = generic_file_open(inode, file);
575 if (ret)
576 return ret;
577 }
578
579 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
580 if (!fp)
581 return -ENOMEM;
582
583 mutex_init(&fp->f_fl_mutex);
584
585 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
586 file->private_data = fp;
587 return 0;
588 }
589
590 /**
591 * gfs2_open - open a file
592 * @inode: the inode to open
593 * @file: the struct file for this opening
594 *
595 * After atomic_open, this function is only used for opening files
596 * which are already cached. We must still get the glock for regular
597 * files to ensure that we have the file size uptodate for the large
598 * file check which is in the common code. That is only an issue for
599 * regular files though.
600 *
601 * Returns: errno
602 */
603
604 static int gfs2_open(struct inode *inode, struct file *file)
605 {
606 struct gfs2_inode *ip = GFS2_I(inode);
607 struct gfs2_holder i_gh;
608 int error;
609 bool need_unlock = false;
610
611 if (S_ISREG(ip->i_inode.i_mode)) {
612 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
613 &i_gh);
614 if (error)
615 return error;
616 need_unlock = true;
617 }
618
619 error = gfs2_open_common(inode, file);
620
621 if (need_unlock)
622 gfs2_glock_dq_uninit(&i_gh);
623
624 return error;
625 }
626
627 /**
628 * gfs2_release - called to close a struct file
629 * @inode: the inode the struct file belongs to
630 * @file: the struct file being closed
631 *
632 * Returns: errno
633 */
634
635 static int gfs2_release(struct inode *inode, struct file *file)
636 {
637 struct gfs2_inode *ip = GFS2_I(inode);
638
639 kfree(file->private_data);
640 file->private_data = NULL;
641
642 if (!(file->f_mode & FMODE_WRITE))
643 return 0;
644
645 gfs2_rsqa_delete(ip, &inode->i_writecount);
646 return 0;
647 }
648
649 /**
650 * gfs2_fsync - sync the dirty data for a file (across the cluster)
651 * @file: the file that points to the dentry
652 * @start: the start position in the file to sync
653 * @end: the end position in the file to sync
654 * @datasync: set if we can ignore timestamp changes
655 *
656 * We split the data flushing here so that we don't wait for the data
657 * until after we've also sent the metadata to disk. Note that for
658 * data=ordered, we will write & wait for the data at the log flush
659 * stage anyway, so this is unlikely to make much of a difference
660 * except in the data=writeback case.
661 *
662 * If the fdatawrite fails due to any reason except -EIO, we will
663 * continue the remainder of the fsync, although we'll still report
664 * the error at the end. This is to match filemap_write_and_wait_range()
665 * behaviour.
666 *
667 * Returns: errno
668 */
669
670 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
671 int datasync)
672 {
673 struct address_space *mapping = file->f_mapping;
674 struct inode *inode = mapping->host;
675 int sync_state = inode->i_state & I_DIRTY_ALL;
676 struct gfs2_inode *ip = GFS2_I(inode);
677 int ret = 0, ret1 = 0;
678
679 if (mapping->nrpages) {
680 ret1 = filemap_fdatawrite_range(mapping, start, end);
681 if (ret1 == -EIO)
682 return ret1;
683 }
684
685 if (!gfs2_is_jdata(ip))
686 sync_state &= ~I_DIRTY_PAGES;
687 if (datasync)
688 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
689
690 if (sync_state) {
691 ret = sync_inode_metadata(inode, 1);
692 if (ret)
693 return ret;
694 if (gfs2_is_jdata(ip))
695 ret = file_write_and_wait(file);
696 if (ret)
697 return ret;
698 gfs2_ail_flush(ip->i_gl, 1);
699 }
700
701 if (mapping->nrpages)
702 ret = file_fdatawait_range(file, start, end);
703
704 return ret ? ret : ret1;
705 }
706
707 static ssize_t gfs2_file_direct_read(struct kiocb *iocb, struct iov_iter *to)
708 {
709 struct file *file = iocb->ki_filp;
710 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
711 size_t count = iov_iter_count(to);
712 struct gfs2_holder gh;
713 ssize_t ret;
714
715 if (!count)
716 return 0; /* skip atime */
717
718 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
719 ret = gfs2_glock_nq(&gh);
720 if (ret)
721 goto out_uninit;
722
723 ret = iomap_dio_rw(iocb, to, &gfs2_iomap_ops, NULL);
724
725 gfs2_glock_dq(&gh);
726 out_uninit:
727 gfs2_holder_uninit(&gh);
728 return ret;
729 }
730
731 static ssize_t gfs2_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
732 {
733 struct file *file = iocb->ki_filp;
734 struct inode *inode = file->f_mapping->host;
735 struct gfs2_inode *ip = GFS2_I(inode);
736 size_t len = iov_iter_count(from);
737 loff_t offset = iocb->ki_pos;
738 struct gfs2_holder gh;
739 ssize_t ret;
740
741 /*
742 * Deferred lock, even if its a write, since we do no allocation on
743 * this path. All we need to change is the atime, and this lock mode
744 * ensures that other nodes have flushed their buffered read caches
745 * (i.e. their page cache entries for this inode). We do not,
746 * unfortunately, have the option of only flushing a range like the
747 * VFS does.
748 */
749 gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
750 ret = gfs2_glock_nq(&gh);
751 if (ret)
752 goto out_uninit;
753
754 /* Silently fall back to buffered I/O when writing beyond EOF */
755 if (offset + len > i_size_read(&ip->i_inode))
756 goto out;
757
758 ret = iomap_dio_rw(iocb, from, &gfs2_iomap_ops, NULL);
759
760 out:
761 gfs2_glock_dq(&gh);
762 out_uninit:
763 gfs2_holder_uninit(&gh);
764 return ret;
765 }
766
767 static ssize_t gfs2_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
768 {
769 ssize_t ret;
770
771 if (iocb->ki_flags & IOCB_DIRECT) {
772 ret = gfs2_file_direct_read(iocb, to);
773 if (likely(ret != -ENOTBLK))
774 return ret;
775 iocb->ki_flags &= ~IOCB_DIRECT;
776 }
777 return generic_file_read_iter(iocb, to);
778 }
779
780 /**
781 * gfs2_file_write_iter - Perform a write to a file
782 * @iocb: The io context
783 * @from: The data to write
784 *
785 * We have to do a lock/unlock here to refresh the inode size for
786 * O_APPEND writes, otherwise we can land up writing at the wrong
787 * offset. There is still a race, but provided the app is using its
788 * own file locking, this will make O_APPEND work as expected.
789 *
790 */
791
792 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
793 {
794 struct file *file = iocb->ki_filp;
795 struct inode *inode = file_inode(file);
796 struct gfs2_inode *ip = GFS2_I(inode);
797 ssize_t written = 0, ret;
798
799 ret = gfs2_rsqa_alloc(ip);
800 if (ret)
801 return ret;
802
803 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
804
805 if (iocb->ki_flags & IOCB_APPEND) {
806 struct gfs2_holder gh;
807
808 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
809 if (ret)
810 return ret;
811 gfs2_glock_dq_uninit(&gh);
812 }
813
814 inode_lock(inode);
815 ret = generic_write_checks(iocb, from);
816 if (ret <= 0)
817 goto out;
818
819 /* We can write back this queue in page reclaim */
820 current->backing_dev_info = inode_to_bdi(inode);
821
822 ret = file_remove_privs(file);
823 if (ret)
824 goto out2;
825
826 ret = file_update_time(file);
827 if (ret)
828 goto out2;
829
830 if (iocb->ki_flags & IOCB_DIRECT) {
831 struct address_space *mapping = file->f_mapping;
832 loff_t pos, endbyte;
833 ssize_t buffered;
834
835 written = gfs2_file_direct_write(iocb, from);
836 if (written < 0 || !iov_iter_count(from))
837 goto out2;
838
839 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
840 if (unlikely(ret < 0))
841 goto out2;
842 buffered = ret;
843
844 /*
845 * We need to ensure that the page cache pages are written to
846 * disk and invalidated to preserve the expected O_DIRECT
847 * semantics.
848 */
849 pos = iocb->ki_pos;
850 endbyte = pos + buffered - 1;
851 ret = filemap_write_and_wait_range(mapping, pos, endbyte);
852 if (!ret) {
853 iocb->ki_pos += buffered;
854 written += buffered;
855 invalidate_mapping_pages(mapping,
856 pos >> PAGE_SHIFT,
857 endbyte >> PAGE_SHIFT);
858 } else {
859 /*
860 * We don't know how much we wrote, so just return
861 * the number of bytes which were direct-written
862 */
863 }
864 } else {
865 ret = iomap_file_buffered_write(iocb, from, &gfs2_iomap_ops);
866 if (likely(ret > 0))
867 iocb->ki_pos += ret;
868 }
869
870 out2:
871 current->backing_dev_info = NULL;
872 out:
873 inode_unlock(inode);
874 if (likely(ret > 0)) {
875 /* Handle various SYNC-type writes */
876 ret = generic_write_sync(iocb, ret);
877 }
878 return written ? written : ret;
879 }
880
881 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
882 int mode)
883 {
884 struct super_block *sb = inode->i_sb;
885 struct gfs2_inode *ip = GFS2_I(inode);
886 loff_t end = offset + len;
887 struct buffer_head *dibh;
888 int error;
889
890 error = gfs2_meta_inode_buffer(ip, &dibh);
891 if (unlikely(error))
892 return error;
893
894 gfs2_trans_add_meta(ip->i_gl, dibh);
895
896 if (gfs2_is_stuffed(ip)) {
897 error = gfs2_unstuff_dinode(ip, NULL);
898 if (unlikely(error))
899 goto out;
900 }
901
902 while (offset < end) {
903 struct iomap iomap = { };
904
905 error = gfs2_iomap_get_alloc(inode, offset, end - offset,
906 &iomap);
907 if (error)
908 goto out;
909 offset = iomap.offset + iomap.length;
910 if (!(iomap.flags & IOMAP_F_NEW))
911 continue;
912 error = sb_issue_zeroout(sb, iomap.addr >> inode->i_blkbits,
913 iomap.length >> inode->i_blkbits,
914 GFP_NOFS);
915 if (error) {
916 fs_err(GFS2_SB(inode), "Failed to zero data buffers\n");
917 goto out;
918 }
919 }
920 out:
921 brelse(dibh);
922 return error;
923 }
924 /**
925 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
926 * blocks, determine how many bytes can be written.
927 * @ip: The inode in question.
928 * @len: Max cap of bytes. What we return in *len must be <= this.
929 * @data_blocks: Compute and return the number of data blocks needed
930 * @ind_blocks: Compute and return the number of indirect blocks needed
931 * @max_blocks: The total blocks available to work with.
932 *
933 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
934 */
935 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
936 unsigned int *data_blocks, unsigned int *ind_blocks,
937 unsigned int max_blocks)
938 {
939 loff_t max = *len;
940 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
941 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
942
943 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
944 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
945 max_data -= tmp;
946 }
947
948 *data_blocks = max_data;
949 *ind_blocks = max_blocks - max_data;
950 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
951 if (*len > max) {
952 *len = max;
953 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
954 }
955 }
956
957 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
958 {
959 struct inode *inode = file_inode(file);
960 struct gfs2_sbd *sdp = GFS2_SB(inode);
961 struct gfs2_inode *ip = GFS2_I(inode);
962 struct gfs2_alloc_parms ap = { .aflags = 0, };
963 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
964 loff_t bytes, max_bytes, max_blks;
965 int error;
966 const loff_t pos = offset;
967 const loff_t count = len;
968 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
969 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
970 loff_t max_chunk_size = UINT_MAX & bsize_mask;
971
972 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
973
974 offset &= bsize_mask;
975
976 len = next - offset;
977 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
978 if (!bytes)
979 bytes = UINT_MAX;
980 bytes &= bsize_mask;
981 if (bytes == 0)
982 bytes = sdp->sd_sb.sb_bsize;
983
984 gfs2_size_hint(file, offset, len);
985
986 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
987 ap.min_target = data_blocks + ind_blocks;
988
989 while (len > 0) {
990 if (len < bytes)
991 bytes = len;
992 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
993 len -= bytes;
994 offset += bytes;
995 continue;
996 }
997
998 /* We need to determine how many bytes we can actually
999 * fallocate without exceeding quota or going over the
1000 * end of the fs. We start off optimistically by assuming
1001 * we can write max_bytes */
1002 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
1003
1004 /* Since max_bytes is most likely a theoretical max, we
1005 * calculate a more realistic 'bytes' to serve as a good
1006 * starting point for the number of bytes we may be able
1007 * to write */
1008 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
1009 ap.target = data_blocks + ind_blocks;
1010
1011 error = gfs2_quota_lock_check(ip, &ap);
1012 if (error)
1013 return error;
1014 /* ap.allowed tells us how many blocks quota will allow
1015 * us to write. Check if this reduces max_blks */
1016 max_blks = UINT_MAX;
1017 if (ap.allowed)
1018 max_blks = ap.allowed;
1019
1020 error = gfs2_inplace_reserve(ip, &ap);
1021 if (error)
1022 goto out_qunlock;
1023
1024 /* check if the selected rgrp limits our max_blks further */
1025 if (ap.allowed && ap.allowed < max_blks)
1026 max_blks = ap.allowed;
1027
1028 /* Almost done. Calculate bytes that can be written using
1029 * max_blks. We also recompute max_bytes, data_blocks and
1030 * ind_blocks */
1031 calc_max_reserv(ip, &max_bytes, &data_blocks,
1032 &ind_blocks, max_blks);
1033
1034 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
1035 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
1036 if (gfs2_is_jdata(ip))
1037 rblocks += data_blocks ? data_blocks : 1;
1038
1039 error = gfs2_trans_begin(sdp, rblocks,
1040 PAGE_SIZE/sdp->sd_sb.sb_bsize);
1041 if (error)
1042 goto out_trans_fail;
1043
1044 error = fallocate_chunk(inode, offset, max_bytes, mode);
1045 gfs2_trans_end(sdp);
1046
1047 if (error)
1048 goto out_trans_fail;
1049
1050 len -= max_bytes;
1051 offset += max_bytes;
1052 gfs2_inplace_release(ip);
1053 gfs2_quota_unlock(ip);
1054 }
1055
1056 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
1057 i_size_write(inode, pos + count);
1058 file_update_time(file);
1059 mark_inode_dirty(inode);
1060 }
1061
1062 if ((file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host))
1063 return vfs_fsync_range(file, pos, pos + count - 1,
1064 (file->f_flags & __O_SYNC) ? 0 : 1);
1065 return 0;
1066
1067 out_trans_fail:
1068 gfs2_inplace_release(ip);
1069 out_qunlock:
1070 gfs2_quota_unlock(ip);
1071 return error;
1072 }
1073
1074 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
1075 {
1076 struct inode *inode = file_inode(file);
1077 struct gfs2_sbd *sdp = GFS2_SB(inode);
1078 struct gfs2_inode *ip = GFS2_I(inode);
1079 struct gfs2_holder gh;
1080 int ret;
1081
1082 if (mode & ~(FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE))
1083 return -EOPNOTSUPP;
1084 /* fallocate is needed by gfs2_grow to reserve space in the rindex */
1085 if (gfs2_is_jdata(ip) && inode != sdp->sd_rindex)
1086 return -EOPNOTSUPP;
1087
1088 inode_lock(inode);
1089
1090 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
1091 ret = gfs2_glock_nq(&gh);
1092 if (ret)
1093 goto out_uninit;
1094
1095 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
1096 (offset + len) > inode->i_size) {
1097 ret = inode_newsize_ok(inode, offset + len);
1098 if (ret)
1099 goto out_unlock;
1100 }
1101
1102 ret = get_write_access(inode);
1103 if (ret)
1104 goto out_unlock;
1105
1106 if (mode & FALLOC_FL_PUNCH_HOLE) {
1107 ret = __gfs2_punch_hole(file, offset, len);
1108 } else {
1109 ret = gfs2_rsqa_alloc(ip);
1110 if (ret)
1111 goto out_putw;
1112
1113 ret = __gfs2_fallocate(file, mode, offset, len);
1114
1115 if (ret)
1116 gfs2_rs_deltree(&ip->i_res);
1117 }
1118
1119 out_putw:
1120 put_write_access(inode);
1121 out_unlock:
1122 gfs2_glock_dq(&gh);
1123 out_uninit:
1124 gfs2_holder_uninit(&gh);
1125 inode_unlock(inode);
1126 return ret;
1127 }
1128
1129 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
1130 struct file *out, loff_t *ppos,
1131 size_t len, unsigned int flags)
1132 {
1133 int error;
1134 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
1135
1136 error = gfs2_rsqa_alloc(ip);
1137 if (error)
1138 return (ssize_t)error;
1139
1140 gfs2_size_hint(out, *ppos, len);
1141
1142 return iter_file_splice_write(pipe, out, ppos, len, flags);
1143 }
1144
1145 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
1146
1147 /**
1148 * gfs2_lock - acquire/release a posix lock on a file
1149 * @file: the file pointer
1150 * @cmd: either modify or retrieve lock state, possibly wait
1151 * @fl: type and range of lock
1152 *
1153 * Returns: errno
1154 */
1155
1156 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
1157 {
1158 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
1159 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
1160 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1161
1162 if (!(fl->fl_flags & FL_POSIX))
1163 return -ENOLCK;
1164 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
1165 return -ENOLCK;
1166
1167 if (cmd == F_CANCELLK) {
1168 /* Hack: */
1169 cmd = F_SETLK;
1170 fl->fl_type = F_UNLCK;
1171 }
1172 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
1173 if (fl->fl_type == F_UNLCK)
1174 locks_lock_file_wait(file, fl);
1175 return -EIO;
1176 }
1177 if (IS_GETLK(cmd))
1178 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1179 else if (fl->fl_type == F_UNLCK)
1180 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1181 else
1182 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1183 }
1184
1185 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1186 {
1187 struct gfs2_file *fp = file->private_data;
1188 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1189 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1190 struct gfs2_glock *gl;
1191 unsigned int state;
1192 u16 flags;
1193 int error = 0;
1194 int sleeptime;
1195
1196 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1197 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1198
1199 mutex_lock(&fp->f_fl_mutex);
1200
1201 if (gfs2_holder_initialized(fl_gh)) {
1202 struct file_lock request;
1203 if (fl_gh->gh_state == state)
1204 goto out;
1205 locks_init_lock(&request);
1206 request.fl_type = F_UNLCK;
1207 request.fl_flags = FL_FLOCK;
1208 locks_lock_file_wait(file, &request);
1209 gfs2_glock_dq(fl_gh);
1210 gfs2_holder_reinit(state, flags, fl_gh);
1211 } else {
1212 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1213 &gfs2_flock_glops, CREATE, &gl);
1214 if (error)
1215 goto out;
1216 gfs2_holder_init(gl, state, flags, fl_gh);
1217 gfs2_glock_put(gl);
1218 }
1219 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1220 error = gfs2_glock_nq(fl_gh);
1221 if (error != GLR_TRYFAILED)
1222 break;
1223 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1224 fl_gh->gh_error = 0;
1225 msleep(sleeptime);
1226 }
1227 if (error) {
1228 gfs2_holder_uninit(fl_gh);
1229 if (error == GLR_TRYFAILED)
1230 error = -EAGAIN;
1231 } else {
1232 error = locks_lock_file_wait(file, fl);
1233 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1234 }
1235
1236 out:
1237 mutex_unlock(&fp->f_fl_mutex);
1238 return error;
1239 }
1240
1241 static void do_unflock(struct file *file, struct file_lock *fl)
1242 {
1243 struct gfs2_file *fp = file->private_data;
1244 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1245
1246 mutex_lock(&fp->f_fl_mutex);
1247 locks_lock_file_wait(file, fl);
1248 if (gfs2_holder_initialized(fl_gh)) {
1249 gfs2_glock_dq(fl_gh);
1250 gfs2_holder_uninit(fl_gh);
1251 }
1252 mutex_unlock(&fp->f_fl_mutex);
1253 }
1254
1255 /**
1256 * gfs2_flock - acquire/release a flock lock on a file
1257 * @file: the file pointer
1258 * @cmd: either modify or retrieve lock state, possibly wait
1259 * @fl: type and range of lock
1260 *
1261 * Returns: errno
1262 */
1263
1264 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1265 {
1266 if (!(fl->fl_flags & FL_FLOCK))
1267 return -ENOLCK;
1268 if (fl->fl_type & LOCK_MAND)
1269 return -EOPNOTSUPP;
1270
1271 if (fl->fl_type == F_UNLCK) {
1272 do_unflock(file, fl);
1273 return 0;
1274 } else {
1275 return do_flock(file, cmd, fl);
1276 }
1277 }
1278
1279 const struct file_operations gfs2_file_fops = {
1280 .llseek = gfs2_llseek,
1281 .read_iter = gfs2_file_read_iter,
1282 .write_iter = gfs2_file_write_iter,
1283 .unlocked_ioctl = gfs2_ioctl,
1284 .mmap = gfs2_mmap,
1285 .open = gfs2_open,
1286 .release = gfs2_release,
1287 .fsync = gfs2_fsync,
1288 .lock = gfs2_lock,
1289 .flock = gfs2_flock,
1290 .splice_read = generic_file_splice_read,
1291 .splice_write = gfs2_file_splice_write,
1292 .setlease = simple_nosetlease,
1293 .fallocate = gfs2_fallocate,
1294 };
1295
1296 const struct file_operations gfs2_dir_fops = {
1297 .iterate_shared = gfs2_readdir,
1298 .unlocked_ioctl = gfs2_ioctl,
1299 .open = gfs2_open,
1300 .release = gfs2_release,
1301 .fsync = gfs2_fsync,
1302 .lock = gfs2_lock,
1303 .flock = gfs2_flock,
1304 .llseek = default_llseek,
1305 };
1306
1307 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1308
1309 const struct file_operations gfs2_file_fops_nolock = {
1310 .llseek = gfs2_llseek,
1311 .read_iter = gfs2_file_read_iter,
1312 .write_iter = gfs2_file_write_iter,
1313 .unlocked_ioctl = gfs2_ioctl,
1314 .mmap = gfs2_mmap,
1315 .open = gfs2_open,
1316 .release = gfs2_release,
1317 .fsync = gfs2_fsync,
1318 .splice_read = generic_file_splice_read,
1319 .splice_write = gfs2_file_splice_write,
1320 .setlease = generic_setlease,
1321 .fallocate = gfs2_fallocate,
1322 };
1323
1324 const struct file_operations gfs2_dir_fops_nolock = {
1325 .iterate_shared = gfs2_readdir,
1326 .unlocked_ioctl = gfs2_ioctl,
1327 .open = gfs2_open,
1328 .release = gfs2_release,
1329 .fsync = gfs2_fsync,
1330 .llseek = default_llseek,
1331 };
1332