]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/gfs2/file.c
Merge tag 'kvm-arm-for-4.6-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / gfs2 / file.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/pagemap.h>
15 #include <linux/uio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mm.h>
18 #include <linux/mount.h>
19 #include <linux/fs.h>
20 #include <linux/gfs2_ondisk.h>
21 #include <linux/falloc.h>
22 #include <linux/swap.h>
23 #include <linux/crc32.h>
24 #include <linux/writeback.h>
25 #include <asm/uaccess.h>
26 #include <linux/dlm.h>
27 #include <linux/dlm_plock.h>
28 #include <linux/delay.h>
29
30 #include "gfs2.h"
31 #include "incore.h"
32 #include "bmap.h"
33 #include "dir.h"
34 #include "glock.h"
35 #include "glops.h"
36 #include "inode.h"
37 #include "log.h"
38 #include "meta_io.h"
39 #include "quota.h"
40 #include "rgrp.h"
41 #include "trans.h"
42 #include "util.h"
43
44 /**
45 * gfs2_llseek - seek to a location in a file
46 * @file: the file
47 * @offset: the offset
48 * @whence: Where to seek from (SEEK_SET, SEEK_CUR, or SEEK_END)
49 *
50 * SEEK_END requires the glock for the file because it references the
51 * file's size.
52 *
53 * Returns: The new offset, or errno
54 */
55
56 static loff_t gfs2_llseek(struct file *file, loff_t offset, int whence)
57 {
58 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
59 struct gfs2_holder i_gh;
60 loff_t error;
61
62 switch (whence) {
63 case SEEK_END: /* These reference inode->i_size */
64 case SEEK_DATA:
65 case SEEK_HOLE:
66 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
67 &i_gh);
68 if (!error) {
69 error = generic_file_llseek(file, offset, whence);
70 gfs2_glock_dq_uninit(&i_gh);
71 }
72 break;
73 case SEEK_CUR:
74 case SEEK_SET:
75 error = generic_file_llseek(file, offset, whence);
76 break;
77 default:
78 error = -EINVAL;
79 }
80
81 return error;
82 }
83
84 /**
85 * gfs2_readdir - Iterator for a directory
86 * @file: The directory to read from
87 * @ctx: What to feed directory entries to
88 *
89 * Returns: errno
90 */
91
92 static int gfs2_readdir(struct file *file, struct dir_context *ctx)
93 {
94 struct inode *dir = file->f_mapping->host;
95 struct gfs2_inode *dip = GFS2_I(dir);
96 struct gfs2_holder d_gh;
97 int error;
98
99 error = gfs2_glock_nq_init(dip->i_gl, LM_ST_SHARED, 0, &d_gh);
100 if (error)
101 return error;
102
103 error = gfs2_dir_read(dir, ctx, &file->f_ra);
104
105 gfs2_glock_dq_uninit(&d_gh);
106
107 return error;
108 }
109
110 /**
111 * fsflags_cvt
112 * @table: A table of 32 u32 flags
113 * @val: a 32 bit value to convert
114 *
115 * This function can be used to convert between fsflags values and
116 * GFS2's own flags values.
117 *
118 * Returns: the converted flags
119 */
120 static u32 fsflags_cvt(const u32 *table, u32 val)
121 {
122 u32 res = 0;
123 while(val) {
124 if (val & 1)
125 res |= *table;
126 table++;
127 val >>= 1;
128 }
129 return res;
130 }
131
132 static const u32 fsflags_to_gfs2[32] = {
133 [3] = GFS2_DIF_SYNC,
134 [4] = GFS2_DIF_IMMUTABLE,
135 [5] = GFS2_DIF_APPENDONLY,
136 [7] = GFS2_DIF_NOATIME,
137 [12] = GFS2_DIF_EXHASH,
138 [14] = GFS2_DIF_INHERIT_JDATA,
139 [17] = GFS2_DIF_TOPDIR,
140 };
141
142 static const u32 gfs2_to_fsflags[32] = {
143 [gfs2fl_Sync] = FS_SYNC_FL,
144 [gfs2fl_Immutable] = FS_IMMUTABLE_FL,
145 [gfs2fl_AppendOnly] = FS_APPEND_FL,
146 [gfs2fl_NoAtime] = FS_NOATIME_FL,
147 [gfs2fl_ExHash] = FS_INDEX_FL,
148 [gfs2fl_TopLevel] = FS_TOPDIR_FL,
149 [gfs2fl_InheritJdata] = FS_JOURNAL_DATA_FL,
150 };
151
152 static int gfs2_get_flags(struct file *filp, u32 __user *ptr)
153 {
154 struct inode *inode = file_inode(filp);
155 struct gfs2_inode *ip = GFS2_I(inode);
156 struct gfs2_holder gh;
157 int error;
158 u32 fsflags;
159
160 gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
161 error = gfs2_glock_nq(&gh);
162 if (error)
163 return error;
164
165 fsflags = fsflags_cvt(gfs2_to_fsflags, ip->i_diskflags);
166 if (!S_ISDIR(inode->i_mode) && ip->i_diskflags & GFS2_DIF_JDATA)
167 fsflags |= FS_JOURNAL_DATA_FL;
168 if (put_user(fsflags, ptr))
169 error = -EFAULT;
170
171 gfs2_glock_dq(&gh);
172 gfs2_holder_uninit(&gh);
173 return error;
174 }
175
176 void gfs2_set_inode_flags(struct inode *inode)
177 {
178 struct gfs2_inode *ip = GFS2_I(inode);
179 unsigned int flags = inode->i_flags;
180
181 flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_NOSEC);
182 if ((ip->i_eattr == 0) && !is_sxid(inode->i_mode))
183 flags |= S_NOSEC;
184 if (ip->i_diskflags & GFS2_DIF_IMMUTABLE)
185 flags |= S_IMMUTABLE;
186 if (ip->i_diskflags & GFS2_DIF_APPENDONLY)
187 flags |= S_APPEND;
188 if (ip->i_diskflags & GFS2_DIF_NOATIME)
189 flags |= S_NOATIME;
190 if (ip->i_diskflags & GFS2_DIF_SYNC)
191 flags |= S_SYNC;
192 inode->i_flags = flags;
193 }
194
195 /* Flags that can be set by user space */
196 #define GFS2_FLAGS_USER_SET (GFS2_DIF_JDATA| \
197 GFS2_DIF_IMMUTABLE| \
198 GFS2_DIF_APPENDONLY| \
199 GFS2_DIF_NOATIME| \
200 GFS2_DIF_SYNC| \
201 GFS2_DIF_SYSTEM| \
202 GFS2_DIF_TOPDIR| \
203 GFS2_DIF_INHERIT_JDATA)
204
205 /**
206 * do_gfs2_set_flags - set flags on an inode
207 * @filp: file pointer
208 * @reqflags: The flags to set
209 * @mask: Indicates which flags are valid
210 *
211 */
212 static int do_gfs2_set_flags(struct file *filp, u32 reqflags, u32 mask)
213 {
214 struct inode *inode = file_inode(filp);
215 struct gfs2_inode *ip = GFS2_I(inode);
216 struct gfs2_sbd *sdp = GFS2_SB(inode);
217 struct buffer_head *bh;
218 struct gfs2_holder gh;
219 int error;
220 u32 new_flags, flags;
221
222 error = mnt_want_write_file(filp);
223 if (error)
224 return error;
225
226 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
227 if (error)
228 goto out_drop_write;
229
230 error = -EACCES;
231 if (!inode_owner_or_capable(inode))
232 goto out;
233
234 error = 0;
235 flags = ip->i_diskflags;
236 new_flags = (flags & ~mask) | (reqflags & mask);
237 if ((new_flags ^ flags) == 0)
238 goto out;
239
240 error = -EINVAL;
241 if ((new_flags ^ flags) & ~GFS2_FLAGS_USER_SET)
242 goto out;
243
244 error = -EPERM;
245 if (IS_IMMUTABLE(inode) && (new_flags & GFS2_DIF_IMMUTABLE))
246 goto out;
247 if (IS_APPEND(inode) && (new_flags & GFS2_DIF_APPENDONLY))
248 goto out;
249 if (((new_flags ^ flags) & GFS2_DIF_IMMUTABLE) &&
250 !capable(CAP_LINUX_IMMUTABLE))
251 goto out;
252 if (!IS_IMMUTABLE(inode)) {
253 error = gfs2_permission(inode, MAY_WRITE);
254 if (error)
255 goto out;
256 }
257 if ((flags ^ new_flags) & GFS2_DIF_JDATA) {
258 if (flags & GFS2_DIF_JDATA)
259 gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
260 error = filemap_fdatawrite(inode->i_mapping);
261 if (error)
262 goto out;
263 error = filemap_fdatawait(inode->i_mapping);
264 if (error)
265 goto out;
266 }
267 error = gfs2_trans_begin(sdp, RES_DINODE, 0);
268 if (error)
269 goto out;
270 error = gfs2_meta_inode_buffer(ip, &bh);
271 if (error)
272 goto out_trans_end;
273 gfs2_trans_add_meta(ip->i_gl, bh);
274 ip->i_diskflags = new_flags;
275 gfs2_dinode_out(ip, bh->b_data);
276 brelse(bh);
277 gfs2_set_inode_flags(inode);
278 gfs2_set_aops(inode);
279 out_trans_end:
280 gfs2_trans_end(sdp);
281 out:
282 gfs2_glock_dq_uninit(&gh);
283 out_drop_write:
284 mnt_drop_write_file(filp);
285 return error;
286 }
287
288 static int gfs2_set_flags(struct file *filp, u32 __user *ptr)
289 {
290 struct inode *inode = file_inode(filp);
291 u32 fsflags, gfsflags;
292
293 if (get_user(fsflags, ptr))
294 return -EFAULT;
295
296 gfsflags = fsflags_cvt(fsflags_to_gfs2, fsflags);
297 if (!S_ISDIR(inode->i_mode)) {
298 gfsflags &= ~GFS2_DIF_TOPDIR;
299 if (gfsflags & GFS2_DIF_INHERIT_JDATA)
300 gfsflags ^= (GFS2_DIF_JDATA | GFS2_DIF_INHERIT_JDATA);
301 return do_gfs2_set_flags(filp, gfsflags, ~GFS2_DIF_SYSTEM);
302 }
303 return do_gfs2_set_flags(filp, gfsflags, ~(GFS2_DIF_SYSTEM | GFS2_DIF_JDATA));
304 }
305
306 static long gfs2_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
307 {
308 switch(cmd) {
309 case FS_IOC_GETFLAGS:
310 return gfs2_get_flags(filp, (u32 __user *)arg);
311 case FS_IOC_SETFLAGS:
312 return gfs2_set_flags(filp, (u32 __user *)arg);
313 case FITRIM:
314 return gfs2_fitrim(filp, (void __user *)arg);
315 }
316 return -ENOTTY;
317 }
318
319 /**
320 * gfs2_size_hint - Give a hint to the size of a write request
321 * @filep: The struct file
322 * @offset: The file offset of the write
323 * @size: The length of the write
324 *
325 * When we are about to do a write, this function records the total
326 * write size in order to provide a suitable hint to the lower layers
327 * about how many blocks will be required.
328 *
329 */
330
331 static void gfs2_size_hint(struct file *filep, loff_t offset, size_t size)
332 {
333 struct inode *inode = file_inode(filep);
334 struct gfs2_sbd *sdp = GFS2_SB(inode);
335 struct gfs2_inode *ip = GFS2_I(inode);
336 size_t blks = (size + sdp->sd_sb.sb_bsize - 1) >> sdp->sd_sb.sb_bsize_shift;
337 int hint = min_t(size_t, INT_MAX, blks);
338
339 if (hint > atomic_read(&ip->i_res.rs_sizehint))
340 atomic_set(&ip->i_res.rs_sizehint, hint);
341 }
342
343 /**
344 * gfs2_allocate_page_backing - Use bmap to allocate blocks
345 * @page: The (locked) page to allocate backing for
346 *
347 * We try to allocate all the blocks required for the page in
348 * one go. This might fail for various reasons, so we keep
349 * trying until all the blocks to back this page are allocated.
350 * If some of the blocks are already allocated, thats ok too.
351 */
352
353 static int gfs2_allocate_page_backing(struct page *page)
354 {
355 struct inode *inode = page->mapping->host;
356 struct buffer_head bh;
357 unsigned long size = PAGE_SIZE;
358 u64 lblock = page->index << (PAGE_SHIFT - inode->i_blkbits);
359
360 do {
361 bh.b_state = 0;
362 bh.b_size = size;
363 gfs2_block_map(inode, lblock, &bh, 1);
364 if (!buffer_mapped(&bh))
365 return -EIO;
366 size -= bh.b_size;
367 lblock += (bh.b_size >> inode->i_blkbits);
368 } while(size > 0);
369 return 0;
370 }
371
372 /**
373 * gfs2_page_mkwrite - Make a shared, mmap()ed, page writable
374 * @vma: The virtual memory area
375 * @vmf: The virtual memory fault containing the page to become writable
376 *
377 * When the page becomes writable, we need to ensure that we have
378 * blocks allocated on disk to back that page.
379 */
380
381 static int gfs2_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
382 {
383 struct page *page = vmf->page;
384 struct inode *inode = file_inode(vma->vm_file);
385 struct gfs2_inode *ip = GFS2_I(inode);
386 struct gfs2_sbd *sdp = GFS2_SB(inode);
387 struct gfs2_alloc_parms ap = { .aflags = 0, };
388 unsigned long last_index;
389 u64 pos = page->index << PAGE_SHIFT;
390 unsigned int data_blocks, ind_blocks, rblocks;
391 struct gfs2_holder gh;
392 loff_t size;
393 int ret;
394
395 sb_start_pagefault(inode->i_sb);
396
397 /* Update file times before taking page lock */
398 file_update_time(vma->vm_file);
399
400 ret = gfs2_rsqa_alloc(ip);
401 if (ret)
402 goto out;
403
404 gfs2_size_hint(vma->vm_file, pos, PAGE_SIZE);
405
406 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
407 ret = gfs2_glock_nq(&gh);
408 if (ret)
409 goto out_uninit;
410
411 set_bit(GLF_DIRTY, &ip->i_gl->gl_flags);
412 set_bit(GIF_SW_PAGED, &ip->i_flags);
413
414 if (!gfs2_write_alloc_required(ip, pos, PAGE_SIZE)) {
415 lock_page(page);
416 if (!PageUptodate(page) || page->mapping != inode->i_mapping) {
417 ret = -EAGAIN;
418 unlock_page(page);
419 }
420 goto out_unlock;
421 }
422
423 ret = gfs2_rindex_update(sdp);
424 if (ret)
425 goto out_unlock;
426
427 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
428 ap.target = data_blocks + ind_blocks;
429 ret = gfs2_quota_lock_check(ip, &ap);
430 if (ret)
431 goto out_unlock;
432 ret = gfs2_inplace_reserve(ip, &ap);
433 if (ret)
434 goto out_quota_unlock;
435
436 rblocks = RES_DINODE + ind_blocks;
437 if (gfs2_is_jdata(ip))
438 rblocks += data_blocks ? data_blocks : 1;
439 if (ind_blocks || data_blocks) {
440 rblocks += RES_STATFS + RES_QUOTA;
441 rblocks += gfs2_rg_blocks(ip, data_blocks + ind_blocks);
442 }
443 ret = gfs2_trans_begin(sdp, rblocks, 0);
444 if (ret)
445 goto out_trans_fail;
446
447 lock_page(page);
448 ret = -EINVAL;
449 size = i_size_read(inode);
450 last_index = (size - 1) >> PAGE_SHIFT;
451 /* Check page index against inode size */
452 if (size == 0 || (page->index > last_index))
453 goto out_trans_end;
454
455 ret = -EAGAIN;
456 /* If truncated, we must retry the operation, we may have raced
457 * with the glock demotion code.
458 */
459 if (!PageUptodate(page) || page->mapping != inode->i_mapping)
460 goto out_trans_end;
461
462 /* Unstuff, if required, and allocate backing blocks for page */
463 ret = 0;
464 if (gfs2_is_stuffed(ip))
465 ret = gfs2_unstuff_dinode(ip, page);
466 if (ret == 0)
467 ret = gfs2_allocate_page_backing(page);
468
469 out_trans_end:
470 if (ret)
471 unlock_page(page);
472 gfs2_trans_end(sdp);
473 out_trans_fail:
474 gfs2_inplace_release(ip);
475 out_quota_unlock:
476 gfs2_quota_unlock(ip);
477 out_unlock:
478 gfs2_glock_dq(&gh);
479 out_uninit:
480 gfs2_holder_uninit(&gh);
481 if (ret == 0) {
482 set_page_dirty(page);
483 wait_for_stable_page(page);
484 }
485 out:
486 sb_end_pagefault(inode->i_sb);
487 return block_page_mkwrite_return(ret);
488 }
489
490 static const struct vm_operations_struct gfs2_vm_ops = {
491 .fault = filemap_fault,
492 .map_pages = filemap_map_pages,
493 .page_mkwrite = gfs2_page_mkwrite,
494 };
495
496 /**
497 * gfs2_mmap -
498 * @file: The file to map
499 * @vma: The VMA which described the mapping
500 *
501 * There is no need to get a lock here unless we should be updating
502 * atime. We ignore any locking errors since the only consequence is
503 * a missed atime update (which will just be deferred until later).
504 *
505 * Returns: 0
506 */
507
508 static int gfs2_mmap(struct file *file, struct vm_area_struct *vma)
509 {
510 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
511
512 if (!(file->f_flags & O_NOATIME) &&
513 !IS_NOATIME(&ip->i_inode)) {
514 struct gfs2_holder i_gh;
515 int error;
516
517 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
518 &i_gh);
519 if (error)
520 return error;
521 /* grab lock to update inode */
522 gfs2_glock_dq_uninit(&i_gh);
523 file_accessed(file);
524 }
525 vma->vm_ops = &gfs2_vm_ops;
526
527 return 0;
528 }
529
530 /**
531 * gfs2_open_common - This is common to open and atomic_open
532 * @inode: The inode being opened
533 * @file: The file being opened
534 *
535 * This maybe called under a glock or not depending upon how it has
536 * been called. We must always be called under a glock for regular
537 * files, however. For other file types, it does not matter whether
538 * we hold the glock or not.
539 *
540 * Returns: Error code or 0 for success
541 */
542
543 int gfs2_open_common(struct inode *inode, struct file *file)
544 {
545 struct gfs2_file *fp;
546 int ret;
547
548 if (S_ISREG(inode->i_mode)) {
549 ret = generic_file_open(inode, file);
550 if (ret)
551 return ret;
552 }
553
554 fp = kzalloc(sizeof(struct gfs2_file), GFP_NOFS);
555 if (!fp)
556 return -ENOMEM;
557
558 mutex_init(&fp->f_fl_mutex);
559
560 gfs2_assert_warn(GFS2_SB(inode), !file->private_data);
561 file->private_data = fp;
562 return 0;
563 }
564
565 /**
566 * gfs2_open - open a file
567 * @inode: the inode to open
568 * @file: the struct file for this opening
569 *
570 * After atomic_open, this function is only used for opening files
571 * which are already cached. We must still get the glock for regular
572 * files to ensure that we have the file size uptodate for the large
573 * file check which is in the common code. That is only an issue for
574 * regular files though.
575 *
576 * Returns: errno
577 */
578
579 static int gfs2_open(struct inode *inode, struct file *file)
580 {
581 struct gfs2_inode *ip = GFS2_I(inode);
582 struct gfs2_holder i_gh;
583 int error;
584 bool need_unlock = false;
585
586 if (S_ISREG(ip->i_inode.i_mode)) {
587 error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY,
588 &i_gh);
589 if (error)
590 return error;
591 need_unlock = true;
592 }
593
594 error = gfs2_open_common(inode, file);
595
596 if (need_unlock)
597 gfs2_glock_dq_uninit(&i_gh);
598
599 return error;
600 }
601
602 /**
603 * gfs2_release - called to close a struct file
604 * @inode: the inode the struct file belongs to
605 * @file: the struct file being closed
606 *
607 * Returns: errno
608 */
609
610 static int gfs2_release(struct inode *inode, struct file *file)
611 {
612 struct gfs2_inode *ip = GFS2_I(inode);
613
614 kfree(file->private_data);
615 file->private_data = NULL;
616
617 if (!(file->f_mode & FMODE_WRITE))
618 return 0;
619
620 gfs2_rsqa_delete(ip, &inode->i_writecount);
621 return 0;
622 }
623
624 /**
625 * gfs2_fsync - sync the dirty data for a file (across the cluster)
626 * @file: the file that points to the dentry
627 * @start: the start position in the file to sync
628 * @end: the end position in the file to sync
629 * @datasync: set if we can ignore timestamp changes
630 *
631 * We split the data flushing here so that we don't wait for the data
632 * until after we've also sent the metadata to disk. Note that for
633 * data=ordered, we will write & wait for the data at the log flush
634 * stage anyway, so this is unlikely to make much of a difference
635 * except in the data=writeback case.
636 *
637 * If the fdatawrite fails due to any reason except -EIO, we will
638 * continue the remainder of the fsync, although we'll still report
639 * the error at the end. This is to match filemap_write_and_wait_range()
640 * behaviour.
641 *
642 * Returns: errno
643 */
644
645 static int gfs2_fsync(struct file *file, loff_t start, loff_t end,
646 int datasync)
647 {
648 struct address_space *mapping = file->f_mapping;
649 struct inode *inode = mapping->host;
650 int sync_state = inode->i_state & I_DIRTY_ALL;
651 struct gfs2_inode *ip = GFS2_I(inode);
652 int ret = 0, ret1 = 0;
653
654 if (mapping->nrpages) {
655 ret1 = filemap_fdatawrite_range(mapping, start, end);
656 if (ret1 == -EIO)
657 return ret1;
658 }
659
660 if (!gfs2_is_jdata(ip))
661 sync_state &= ~I_DIRTY_PAGES;
662 if (datasync)
663 sync_state &= ~(I_DIRTY_SYNC | I_DIRTY_TIME);
664
665 if (sync_state) {
666 ret = sync_inode_metadata(inode, 1);
667 if (ret)
668 return ret;
669 if (gfs2_is_jdata(ip))
670 filemap_write_and_wait(mapping);
671 gfs2_ail_flush(ip->i_gl, 1);
672 }
673
674 if (mapping->nrpages)
675 ret = filemap_fdatawait_range(mapping, start, end);
676
677 return ret ? ret : ret1;
678 }
679
680 /**
681 * gfs2_file_write_iter - Perform a write to a file
682 * @iocb: The io context
683 * @iov: The data to write
684 * @nr_segs: Number of @iov segments
685 * @pos: The file position
686 *
687 * We have to do a lock/unlock here to refresh the inode size for
688 * O_APPEND writes, otherwise we can land up writing at the wrong
689 * offset. There is still a race, but provided the app is using its
690 * own file locking, this will make O_APPEND work as expected.
691 *
692 */
693
694 static ssize_t gfs2_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
695 {
696 struct file *file = iocb->ki_filp;
697 struct gfs2_inode *ip = GFS2_I(file_inode(file));
698 int ret;
699
700 ret = gfs2_rsqa_alloc(ip);
701 if (ret)
702 return ret;
703
704 gfs2_size_hint(file, iocb->ki_pos, iov_iter_count(from));
705
706 if (iocb->ki_flags & IOCB_APPEND) {
707 struct gfs2_holder gh;
708
709 ret = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
710 if (ret)
711 return ret;
712 gfs2_glock_dq_uninit(&gh);
713 }
714
715 return generic_file_write_iter(iocb, from);
716 }
717
718 static int fallocate_chunk(struct inode *inode, loff_t offset, loff_t len,
719 int mode)
720 {
721 struct gfs2_inode *ip = GFS2_I(inode);
722 struct buffer_head *dibh;
723 int error;
724 unsigned int nr_blks;
725 sector_t lblock = offset >> inode->i_blkbits;
726
727 error = gfs2_meta_inode_buffer(ip, &dibh);
728 if (unlikely(error))
729 return error;
730
731 gfs2_trans_add_meta(ip->i_gl, dibh);
732
733 if (gfs2_is_stuffed(ip)) {
734 error = gfs2_unstuff_dinode(ip, NULL);
735 if (unlikely(error))
736 goto out;
737 }
738
739 while (len) {
740 struct buffer_head bh_map = { .b_state = 0, .b_blocknr = 0 };
741 bh_map.b_size = len;
742 set_buffer_zeronew(&bh_map);
743
744 error = gfs2_block_map(inode, lblock, &bh_map, 1);
745 if (unlikely(error))
746 goto out;
747 len -= bh_map.b_size;
748 nr_blks = bh_map.b_size >> inode->i_blkbits;
749 lblock += nr_blks;
750 if (!buffer_new(&bh_map))
751 continue;
752 if (unlikely(!buffer_zeronew(&bh_map))) {
753 error = -EIO;
754 goto out;
755 }
756 }
757 out:
758 brelse(dibh);
759 return error;
760 }
761 /**
762 * calc_max_reserv() - Reverse of write_calc_reserv. Given a number of
763 * blocks, determine how many bytes can be written.
764 * @ip: The inode in question.
765 * @len: Max cap of bytes. What we return in *len must be <= this.
766 * @data_blocks: Compute and return the number of data blocks needed
767 * @ind_blocks: Compute and return the number of indirect blocks needed
768 * @max_blocks: The total blocks available to work with.
769 *
770 * Returns: void, but @len, @data_blocks and @ind_blocks are filled in.
771 */
772 static void calc_max_reserv(struct gfs2_inode *ip, loff_t *len,
773 unsigned int *data_blocks, unsigned int *ind_blocks,
774 unsigned int max_blocks)
775 {
776 loff_t max = *len;
777 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
778 unsigned int tmp, max_data = max_blocks - 3 * (sdp->sd_max_height - 1);
779
780 for (tmp = max_data; tmp > sdp->sd_diptrs;) {
781 tmp = DIV_ROUND_UP(tmp, sdp->sd_inptrs);
782 max_data -= tmp;
783 }
784
785 *data_blocks = max_data;
786 *ind_blocks = max_blocks - max_data;
787 *len = ((loff_t)max_data - 3) << sdp->sd_sb.sb_bsize_shift;
788 if (*len > max) {
789 *len = max;
790 gfs2_write_calc_reserv(ip, max, data_blocks, ind_blocks);
791 }
792 }
793
794 static long __gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
795 {
796 struct inode *inode = file_inode(file);
797 struct gfs2_sbd *sdp = GFS2_SB(inode);
798 struct gfs2_inode *ip = GFS2_I(inode);
799 struct gfs2_alloc_parms ap = { .aflags = 0, };
800 unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
801 loff_t bytes, max_bytes, max_blks = UINT_MAX;
802 int error;
803 const loff_t pos = offset;
804 const loff_t count = len;
805 loff_t bsize_mask = ~((loff_t)sdp->sd_sb.sb_bsize - 1);
806 loff_t next = (offset + len - 1) >> sdp->sd_sb.sb_bsize_shift;
807 loff_t max_chunk_size = UINT_MAX & bsize_mask;
808
809 next = (next + 1) << sdp->sd_sb.sb_bsize_shift;
810
811 offset &= bsize_mask;
812
813 len = next - offset;
814 bytes = sdp->sd_max_rg_data * sdp->sd_sb.sb_bsize / 2;
815 if (!bytes)
816 bytes = UINT_MAX;
817 bytes &= bsize_mask;
818 if (bytes == 0)
819 bytes = sdp->sd_sb.sb_bsize;
820
821 gfs2_size_hint(file, offset, len);
822
823 gfs2_write_calc_reserv(ip, PAGE_SIZE, &data_blocks, &ind_blocks);
824 ap.min_target = data_blocks + ind_blocks;
825
826 while (len > 0) {
827 if (len < bytes)
828 bytes = len;
829 if (!gfs2_write_alloc_required(ip, offset, bytes)) {
830 len -= bytes;
831 offset += bytes;
832 continue;
833 }
834
835 /* We need to determine how many bytes we can actually
836 * fallocate without exceeding quota or going over the
837 * end of the fs. We start off optimistically by assuming
838 * we can write max_bytes */
839 max_bytes = (len > max_chunk_size) ? max_chunk_size : len;
840
841 /* Since max_bytes is most likely a theoretical max, we
842 * calculate a more realistic 'bytes' to serve as a good
843 * starting point for the number of bytes we may be able
844 * to write */
845 gfs2_write_calc_reserv(ip, bytes, &data_blocks, &ind_blocks);
846 ap.target = data_blocks + ind_blocks;
847
848 error = gfs2_quota_lock_check(ip, &ap);
849 if (error)
850 return error;
851 /* ap.allowed tells us how many blocks quota will allow
852 * us to write. Check if this reduces max_blks */
853 if (ap.allowed && ap.allowed < max_blks)
854 max_blks = ap.allowed;
855
856 error = gfs2_inplace_reserve(ip, &ap);
857 if (error)
858 goto out_qunlock;
859
860 /* check if the selected rgrp limits our max_blks further */
861 if (ap.allowed && ap.allowed < max_blks)
862 max_blks = ap.allowed;
863
864 /* Almost done. Calculate bytes that can be written using
865 * max_blks. We also recompute max_bytes, data_blocks and
866 * ind_blocks */
867 calc_max_reserv(ip, &max_bytes, &data_blocks,
868 &ind_blocks, max_blks);
869
870 rblocks = RES_DINODE + ind_blocks + RES_STATFS + RES_QUOTA +
871 RES_RG_HDR + gfs2_rg_blocks(ip, data_blocks + ind_blocks);
872 if (gfs2_is_jdata(ip))
873 rblocks += data_blocks ? data_blocks : 1;
874
875 error = gfs2_trans_begin(sdp, rblocks,
876 PAGE_SIZE/sdp->sd_sb.sb_bsize);
877 if (error)
878 goto out_trans_fail;
879
880 error = fallocate_chunk(inode, offset, max_bytes, mode);
881 gfs2_trans_end(sdp);
882
883 if (error)
884 goto out_trans_fail;
885
886 len -= max_bytes;
887 offset += max_bytes;
888 gfs2_inplace_release(ip);
889 gfs2_quota_unlock(ip);
890 }
891
892 if (!(mode & FALLOC_FL_KEEP_SIZE) && (pos + count) > inode->i_size) {
893 i_size_write(inode, pos + count);
894 file_update_time(file);
895 mark_inode_dirty(inode);
896 }
897
898 return generic_write_sync(file, pos, count);
899
900 out_trans_fail:
901 gfs2_inplace_release(ip);
902 out_qunlock:
903 gfs2_quota_unlock(ip);
904 return error;
905 }
906
907 static long gfs2_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
908 {
909 struct inode *inode = file_inode(file);
910 struct gfs2_inode *ip = GFS2_I(inode);
911 struct gfs2_holder gh;
912 int ret;
913
914 if ((mode & ~FALLOC_FL_KEEP_SIZE) || gfs2_is_jdata(ip))
915 return -EOPNOTSUPP;
916
917 inode_lock(inode);
918
919 gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &gh);
920 ret = gfs2_glock_nq(&gh);
921 if (ret)
922 goto out_uninit;
923
924 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
925 (offset + len) > inode->i_size) {
926 ret = inode_newsize_ok(inode, offset + len);
927 if (ret)
928 goto out_unlock;
929 }
930
931 ret = get_write_access(inode);
932 if (ret)
933 goto out_unlock;
934
935 ret = gfs2_rsqa_alloc(ip);
936 if (ret)
937 goto out_putw;
938
939 ret = __gfs2_fallocate(file, mode, offset, len);
940 if (ret)
941 gfs2_rs_deltree(&ip->i_res);
942
943 out_putw:
944 put_write_access(inode);
945 out_unlock:
946 gfs2_glock_dq(&gh);
947 out_uninit:
948 gfs2_holder_uninit(&gh);
949 inode_unlock(inode);
950 return ret;
951 }
952
953 static ssize_t gfs2_file_splice_write(struct pipe_inode_info *pipe,
954 struct file *out, loff_t *ppos,
955 size_t len, unsigned int flags)
956 {
957 int error;
958 struct gfs2_inode *ip = GFS2_I(out->f_mapping->host);
959
960 error = gfs2_rsqa_alloc(ip);
961 if (error)
962 return (ssize_t)error;
963
964 gfs2_size_hint(out, *ppos, len);
965
966 return iter_file_splice_write(pipe, out, ppos, len, flags);
967 }
968
969 #ifdef CONFIG_GFS2_FS_LOCKING_DLM
970
971 /**
972 * gfs2_lock - acquire/release a posix lock on a file
973 * @file: the file pointer
974 * @cmd: either modify or retrieve lock state, possibly wait
975 * @fl: type and range of lock
976 *
977 * Returns: errno
978 */
979
980 static int gfs2_lock(struct file *file, int cmd, struct file_lock *fl)
981 {
982 struct gfs2_inode *ip = GFS2_I(file->f_mapping->host);
983 struct gfs2_sbd *sdp = GFS2_SB(file->f_mapping->host);
984 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
985
986 if (!(fl->fl_flags & FL_POSIX))
987 return -ENOLCK;
988 if (__mandatory_lock(&ip->i_inode) && fl->fl_type != F_UNLCK)
989 return -ENOLCK;
990
991 if (cmd == F_CANCELLK) {
992 /* Hack: */
993 cmd = F_SETLK;
994 fl->fl_type = F_UNLCK;
995 }
996 if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags))) {
997 if (fl->fl_type == F_UNLCK)
998 locks_lock_file_wait(file, fl);
999 return -EIO;
1000 }
1001 if (IS_GETLK(cmd))
1002 return dlm_posix_get(ls->ls_dlm, ip->i_no_addr, file, fl);
1003 else if (fl->fl_type == F_UNLCK)
1004 return dlm_posix_unlock(ls->ls_dlm, ip->i_no_addr, file, fl);
1005 else
1006 return dlm_posix_lock(ls->ls_dlm, ip->i_no_addr, file, cmd, fl);
1007 }
1008
1009 static int do_flock(struct file *file, int cmd, struct file_lock *fl)
1010 {
1011 struct gfs2_file *fp = file->private_data;
1012 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1013 struct gfs2_inode *ip = GFS2_I(file_inode(file));
1014 struct gfs2_glock *gl;
1015 unsigned int state;
1016 u16 flags;
1017 int error = 0;
1018 int sleeptime;
1019
1020 state = (fl->fl_type == F_WRLCK) ? LM_ST_EXCLUSIVE : LM_ST_SHARED;
1021 flags = (IS_SETLKW(cmd) ? 0 : LM_FLAG_TRY_1CB) | GL_EXACT;
1022
1023 mutex_lock(&fp->f_fl_mutex);
1024
1025 gl = fl_gh->gh_gl;
1026 if (gl) {
1027 if (fl_gh->gh_state == state)
1028 goto out;
1029 locks_lock_file_wait(file,
1030 &(struct file_lock) {
1031 .fl_type = F_UNLCK,
1032 .fl_flags = FL_FLOCK
1033 });
1034 gfs2_glock_dq(fl_gh);
1035 gfs2_holder_reinit(state, flags, fl_gh);
1036 } else {
1037 error = gfs2_glock_get(GFS2_SB(&ip->i_inode), ip->i_no_addr,
1038 &gfs2_flock_glops, CREATE, &gl);
1039 if (error)
1040 goto out;
1041 gfs2_holder_init(gl, state, flags, fl_gh);
1042 gfs2_glock_put(gl);
1043 }
1044 for (sleeptime = 1; sleeptime <= 4; sleeptime <<= 1) {
1045 error = gfs2_glock_nq(fl_gh);
1046 if (error != GLR_TRYFAILED)
1047 break;
1048 fl_gh->gh_flags = LM_FLAG_TRY | GL_EXACT;
1049 fl_gh->gh_error = 0;
1050 msleep(sleeptime);
1051 }
1052 if (error) {
1053 gfs2_holder_uninit(fl_gh);
1054 if (error == GLR_TRYFAILED)
1055 error = -EAGAIN;
1056 } else {
1057 error = locks_lock_file_wait(file, fl);
1058 gfs2_assert_warn(GFS2_SB(&ip->i_inode), !error);
1059 }
1060
1061 out:
1062 mutex_unlock(&fp->f_fl_mutex);
1063 return error;
1064 }
1065
1066 static void do_unflock(struct file *file, struct file_lock *fl)
1067 {
1068 struct gfs2_file *fp = file->private_data;
1069 struct gfs2_holder *fl_gh = &fp->f_fl_gh;
1070
1071 mutex_lock(&fp->f_fl_mutex);
1072 locks_lock_file_wait(file, fl);
1073 if (fl_gh->gh_gl) {
1074 gfs2_glock_dq(fl_gh);
1075 gfs2_holder_uninit(fl_gh);
1076 }
1077 mutex_unlock(&fp->f_fl_mutex);
1078 }
1079
1080 /**
1081 * gfs2_flock - acquire/release a flock lock on a file
1082 * @file: the file pointer
1083 * @cmd: either modify or retrieve lock state, possibly wait
1084 * @fl: type and range of lock
1085 *
1086 * Returns: errno
1087 */
1088
1089 static int gfs2_flock(struct file *file, int cmd, struct file_lock *fl)
1090 {
1091 if (!(fl->fl_flags & FL_FLOCK))
1092 return -ENOLCK;
1093 if (fl->fl_type & LOCK_MAND)
1094 return -EOPNOTSUPP;
1095
1096 if (fl->fl_type == F_UNLCK) {
1097 do_unflock(file, fl);
1098 return 0;
1099 } else {
1100 return do_flock(file, cmd, fl);
1101 }
1102 }
1103
1104 const struct file_operations gfs2_file_fops = {
1105 .llseek = gfs2_llseek,
1106 .read_iter = generic_file_read_iter,
1107 .write_iter = gfs2_file_write_iter,
1108 .unlocked_ioctl = gfs2_ioctl,
1109 .mmap = gfs2_mmap,
1110 .open = gfs2_open,
1111 .release = gfs2_release,
1112 .fsync = gfs2_fsync,
1113 .lock = gfs2_lock,
1114 .flock = gfs2_flock,
1115 .splice_read = generic_file_splice_read,
1116 .splice_write = gfs2_file_splice_write,
1117 .setlease = simple_nosetlease,
1118 .fallocate = gfs2_fallocate,
1119 };
1120
1121 const struct file_operations gfs2_dir_fops = {
1122 .iterate = gfs2_readdir,
1123 .unlocked_ioctl = gfs2_ioctl,
1124 .open = gfs2_open,
1125 .release = gfs2_release,
1126 .fsync = gfs2_fsync,
1127 .lock = gfs2_lock,
1128 .flock = gfs2_flock,
1129 .llseek = default_llseek,
1130 };
1131
1132 #endif /* CONFIG_GFS2_FS_LOCKING_DLM */
1133
1134 const struct file_operations gfs2_file_fops_nolock = {
1135 .llseek = gfs2_llseek,
1136 .read_iter = generic_file_read_iter,
1137 .write_iter = gfs2_file_write_iter,
1138 .unlocked_ioctl = gfs2_ioctl,
1139 .mmap = gfs2_mmap,
1140 .open = gfs2_open,
1141 .release = gfs2_release,
1142 .fsync = gfs2_fsync,
1143 .splice_read = generic_file_splice_read,
1144 .splice_write = gfs2_file_splice_write,
1145 .setlease = generic_setlease,
1146 .fallocate = gfs2_fallocate,
1147 };
1148
1149 const struct file_operations gfs2_dir_fops_nolock = {
1150 .iterate = gfs2_readdir,
1151 .unlocked_ioctl = gfs2_ioctl,
1152 .open = gfs2_open,
1153 .release = gfs2_release,
1154 .fsync = gfs2_fsync,
1155 .llseek = default_llseek,
1156 };
1157