]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/gfs2/lock_dlm.c
Merge tag 'gfs2-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[mirror_ubuntu-jammy-kernel.git] / fs / gfs2 / lock_dlm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
24
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The variance estimate is a bit
33 * more complicated. We subtract the current variance estimate from
34 * the abs value of the @delta and add 1/4 of that to the running
35 * total. That's equivalent to 3/4 of the current variance
36 * estimate plus 1/4 of the abs of @delta.
37 *
38 * Note that the index points at the array entry containing the smoothed
39 * mean value, and the variance is always in the following entry
40 *
41 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
42 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
43 * they are not scaled fixed point.
44 */
45
46 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
47 s64 sample)
48 {
49 s64 delta = sample - s->stats[index];
50 s->stats[index] += (delta >> 3);
51 index++;
52 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
53 }
54
55 /**
56 * gfs2_update_reply_times - Update locking statistics
57 * @gl: The glock to update
58 *
59 * This assumes that gl->gl_dstamp has been set earlier.
60 *
61 * The rtt (lock round trip time) is an estimate of the time
62 * taken to perform a dlm lock request. We update it on each
63 * reply from the dlm.
64 *
65 * The blocking flag is set on the glock for all dlm requests
66 * which may potentially block due to lock requests from other nodes.
67 * DLM requests where the current lock state is exclusive, the
68 * requested state is null (or unlocked) or where the TRY or
69 * TRY_1CB flags are set are classified as non-blocking. All
70 * other DLM requests are counted as (potentially) blocking.
71 */
72 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
73 {
74 struct gfs2_pcpu_lkstats *lks;
75 const unsigned gltype = gl->gl_name.ln_type;
76 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
78 s64 rtt;
79
80 preempt_disable();
81 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
82 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
83 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
84 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
85 preempt_enable();
86
87 trace_gfs2_glock_lock_time(gl, rtt);
88 }
89
90 /**
91 * gfs2_update_request_times - Update locking statistics
92 * @gl: The glock to update
93 *
94 * The irt (lock inter-request times) measures the average time
95 * between requests to the dlm. It is updated immediately before
96 * each dlm call.
97 */
98
99 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
100 {
101 struct gfs2_pcpu_lkstats *lks;
102 const unsigned gltype = gl->gl_name.ln_type;
103 ktime_t dstamp;
104 s64 irt;
105
106 preempt_disable();
107 dstamp = gl->gl_dstamp;
108 gl->gl_dstamp = ktime_get_real();
109 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
110 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
111 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
112 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
113 preempt_enable();
114 }
115
116 static void gdlm_ast(void *arg)
117 {
118 struct gfs2_glock *gl = arg;
119 unsigned ret = gl->gl_state;
120
121 gfs2_update_reply_times(gl);
122 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
123
124 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
125 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
126
127 switch (gl->gl_lksb.sb_status) {
128 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
129 if (gl->gl_ops->go_free)
130 gl->gl_ops->go_free(gl);
131 gfs2_glock_free(gl);
132 return;
133 case -DLM_ECANCEL: /* Cancel while getting lock */
134 ret |= LM_OUT_CANCELED;
135 goto out;
136 case -EAGAIN: /* Try lock fails */
137 case -EDEADLK: /* Deadlock detected */
138 goto out;
139 case -ETIMEDOUT: /* Canceled due to timeout */
140 ret |= LM_OUT_ERROR;
141 goto out;
142 case 0: /* Success */
143 break;
144 default: /* Something unexpected */
145 BUG();
146 }
147
148 ret = gl->gl_req;
149 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
150 if (gl->gl_req == LM_ST_SHARED)
151 ret = LM_ST_DEFERRED;
152 else if (gl->gl_req == LM_ST_DEFERRED)
153 ret = LM_ST_SHARED;
154 else
155 BUG();
156 }
157
158 set_bit(GLF_INITIAL, &gl->gl_flags);
159 gfs2_glock_complete(gl, ret);
160 return;
161 out:
162 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
163 gl->gl_lksb.sb_lkid = 0;
164 gfs2_glock_complete(gl, ret);
165 }
166
167 static void gdlm_bast(void *arg, int mode)
168 {
169 struct gfs2_glock *gl = arg;
170
171 switch (mode) {
172 case DLM_LOCK_EX:
173 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
174 break;
175 case DLM_LOCK_CW:
176 gfs2_glock_cb(gl, LM_ST_DEFERRED);
177 break;
178 case DLM_LOCK_PR:
179 gfs2_glock_cb(gl, LM_ST_SHARED);
180 break;
181 default:
182 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
183 BUG();
184 }
185 }
186
187 /* convert gfs lock-state to dlm lock-mode */
188
189 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
190 {
191 switch (lmstate) {
192 case LM_ST_UNLOCKED:
193 return DLM_LOCK_NL;
194 case LM_ST_EXCLUSIVE:
195 return DLM_LOCK_EX;
196 case LM_ST_DEFERRED:
197 return DLM_LOCK_CW;
198 case LM_ST_SHARED:
199 return DLM_LOCK_PR;
200 }
201 fs_err(sdp, "unknown LM state %d\n", lmstate);
202 BUG();
203 return -1;
204 }
205
206 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
207 const int req)
208 {
209 u32 lkf = 0;
210
211 if (gl->gl_lksb.sb_lvbptr)
212 lkf |= DLM_LKF_VALBLK;
213
214 if (gfs_flags & LM_FLAG_TRY)
215 lkf |= DLM_LKF_NOQUEUE;
216
217 if (gfs_flags & LM_FLAG_TRY_1CB) {
218 lkf |= DLM_LKF_NOQUEUE;
219 lkf |= DLM_LKF_NOQUEUEBAST;
220 }
221
222 if (gfs_flags & LM_FLAG_PRIORITY) {
223 lkf |= DLM_LKF_NOORDER;
224 lkf |= DLM_LKF_HEADQUE;
225 }
226
227 if (gfs_flags & LM_FLAG_ANY) {
228 if (req == DLM_LOCK_PR)
229 lkf |= DLM_LKF_ALTCW;
230 else if (req == DLM_LOCK_CW)
231 lkf |= DLM_LKF_ALTPR;
232 else
233 BUG();
234 }
235
236 if (gl->gl_lksb.sb_lkid != 0) {
237 lkf |= DLM_LKF_CONVERT;
238 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
239 lkf |= DLM_LKF_QUECVT;
240 }
241
242 return lkf;
243 }
244
245 static void gfs2_reverse_hex(char *c, u64 value)
246 {
247 *c = '0';
248 while (value) {
249 *c-- = hex_asc[value & 0x0f];
250 value >>= 4;
251 }
252 }
253
254 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
255 unsigned int flags)
256 {
257 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
258 int req;
259 u32 lkf;
260 char strname[GDLM_STRNAME_BYTES] = "";
261
262 req = make_mode(gl->gl_name.ln_sbd, req_state);
263 lkf = make_flags(gl, flags, req);
264 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
265 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
266 if (gl->gl_lksb.sb_lkid) {
267 gfs2_update_request_times(gl);
268 } else {
269 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
270 strname[GDLM_STRNAME_BYTES - 1] = '\0';
271 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
272 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
273 gl->gl_dstamp = ktime_get_real();
274 }
275 /*
276 * Submit the actual lock request.
277 */
278
279 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
280 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
281 }
282
283 static void gdlm_put_lock(struct gfs2_glock *gl)
284 {
285 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
286 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
287 int lvb_needs_unlock = 0;
288 int error;
289
290 if (gl->gl_lksb.sb_lkid == 0) {
291 gfs2_glock_free(gl);
292 return;
293 }
294
295 clear_bit(GLF_BLOCKING, &gl->gl_flags);
296 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
297 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
298 gfs2_update_request_times(gl);
299
300 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
301
302 if (gl->gl_lksb.sb_lvbptr && (gl->gl_state == LM_ST_EXCLUSIVE))
303 lvb_needs_unlock = 1;
304
305 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
306 !lvb_needs_unlock) {
307 gfs2_glock_free(gl);
308 return;
309 }
310
311 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
312 NULL, gl);
313 if (error) {
314 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
315 gl->gl_name.ln_type,
316 (unsigned long long)gl->gl_name.ln_number, error);
317 return;
318 }
319 }
320
321 static void gdlm_cancel(struct gfs2_glock *gl)
322 {
323 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
324 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
325 }
326
327 /*
328 * dlm/gfs2 recovery coordination using dlm_recover callbacks
329 *
330 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
331 * 1. dlm_controld sees lockspace members change
332 * 2. dlm_controld blocks dlm-kernel locking activity
333 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
334 * 4. dlm_controld starts and finishes its own user level recovery
335 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
336 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
337 * 7. dlm_recoverd does its own lock recovery
338 * 8. dlm_recoverd unblocks dlm-kernel locking activity
339 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
340 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
341 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
342 * 12. gfs2_recover dequeues and recovers journals of failed nodes
343 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
344 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
345 * 15. gfs2_control unblocks normal locking when all journals are recovered
346 *
347 * - failures during recovery
348 *
349 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
350 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
351 * recovering for a prior failure. gfs2_control needs a way to detect
352 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
353 * the recover_block and recover_start values.
354 *
355 * recover_done() provides a new lockspace generation number each time it
356 * is called (step 9). This generation number is saved as recover_start.
357 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
358 * recover_block = recover_start. So, while recover_block is equal to
359 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
360 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
361 *
362 * - more specific gfs2 steps in sequence above
363 *
364 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
365 * 6. recover_slot records any failed jids (maybe none)
366 * 9. recover_done sets recover_start = new generation number
367 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
368 * 12. gfs2_recover does journal recoveries for failed jids identified above
369 * 14. gfs2_control clears control_lock lvb bits for recovered jids
370 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
371 * again) then do nothing, otherwise if recover_start > recover_block
372 * then clear BLOCK_LOCKS.
373 *
374 * - parallel recovery steps across all nodes
375 *
376 * All nodes attempt to update the control_lock lvb with the new generation
377 * number and jid bits, but only the first to get the control_lock EX will
378 * do so; others will see that it's already done (lvb already contains new
379 * generation number.)
380 *
381 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
382 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
383 * . One node gets control_lock first and writes the lvb, others see it's done
384 * . All nodes attempt to recover jids for which they see control_lock bits set
385 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
386 * . All nodes will eventually see all lvb bits clear and unblock locks
387 *
388 * - is there a problem with clearing an lvb bit that should be set
389 * and missing a journal recovery?
390 *
391 * 1. jid fails
392 * 2. lvb bit set for step 1
393 * 3. jid recovered for step 1
394 * 4. jid taken again (new mount)
395 * 5. jid fails (for step 4)
396 * 6. lvb bit set for step 5 (will already be set)
397 * 7. lvb bit cleared for step 3
398 *
399 * This is not a problem because the failure in step 5 does not
400 * require recovery, because the mount in step 4 could not have
401 * progressed far enough to unblock locks and access the fs. The
402 * control_mount() function waits for all recoveries to be complete
403 * for the latest lockspace generation before ever unblocking locks
404 * and returning. The mount in step 4 waits until the recovery in
405 * step 1 is done.
406 *
407 * - special case of first mounter: first node to mount the fs
408 *
409 * The first node to mount a gfs2 fs needs to check all the journals
410 * and recover any that need recovery before other nodes are allowed
411 * to mount the fs. (Others may begin mounting, but they must wait
412 * for the first mounter to be done before taking locks on the fs
413 * or accessing the fs.) This has two parts:
414 *
415 * 1. The mounted_lock tells a node it's the first to mount the fs.
416 * Each node holds the mounted_lock in PR while it's mounted.
417 * Each node tries to acquire the mounted_lock in EX when it mounts.
418 * If a node is granted the mounted_lock EX it means there are no
419 * other mounted nodes (no PR locks exist), and it is the first mounter.
420 * The mounted_lock is demoted to PR when first recovery is done, so
421 * others will fail to get an EX lock, but will get a PR lock.
422 *
423 * 2. The control_lock blocks others in control_mount() while the first
424 * mounter is doing first mount recovery of all journals.
425 * A mounting node needs to acquire control_lock in EX mode before
426 * it can proceed. The first mounter holds control_lock in EX while doing
427 * the first mount recovery, blocking mounts from other nodes, then demotes
428 * control_lock to NL when it's done (others_may_mount/first_done),
429 * allowing other nodes to continue mounting.
430 *
431 * first mounter:
432 * control_lock EX/NOQUEUE success
433 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
434 * set first=1
435 * do first mounter recovery
436 * mounted_lock EX->PR
437 * control_lock EX->NL, write lvb generation
438 *
439 * other mounter:
440 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
441 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
442 * mounted_lock PR/NOQUEUE success
443 * read lvb generation
444 * control_lock EX->NL
445 * set first=0
446 *
447 * - mount during recovery
448 *
449 * If a node mounts while others are doing recovery (not first mounter),
450 * the mounting node will get its initial recover_done() callback without
451 * having seen any previous failures/callbacks.
452 *
453 * It must wait for all recoveries preceding its mount to be finished
454 * before it unblocks locks. It does this by repeating the "other mounter"
455 * steps above until the lvb generation number is >= its mount generation
456 * number (from initial recover_done) and all lvb bits are clear.
457 *
458 * - control_lock lvb format
459 *
460 * 4 bytes generation number: the latest dlm lockspace generation number
461 * from recover_done callback. Indicates the jid bitmap has been updated
462 * to reflect all slot failures through that generation.
463 * 4 bytes unused.
464 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
465 * that jid N needs recovery.
466 */
467
468 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
469
470 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
471 char *lvb_bits)
472 {
473 __le32 gen;
474 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
475 memcpy(&gen, lvb_bits, sizeof(__le32));
476 *lvb_gen = le32_to_cpu(gen);
477 }
478
479 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
480 char *lvb_bits)
481 {
482 __le32 gen;
483 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
484 gen = cpu_to_le32(lvb_gen);
485 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
486 }
487
488 static int all_jid_bits_clear(char *lvb)
489 {
490 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
491 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
492 }
493
494 static void sync_wait_cb(void *arg)
495 {
496 struct lm_lockstruct *ls = arg;
497 complete(&ls->ls_sync_wait);
498 }
499
500 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
501 {
502 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
503 int error;
504
505 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
506 if (error) {
507 fs_err(sdp, "%s lkid %x error %d\n",
508 name, lksb->sb_lkid, error);
509 return error;
510 }
511
512 wait_for_completion(&ls->ls_sync_wait);
513
514 if (lksb->sb_status != -DLM_EUNLOCK) {
515 fs_err(sdp, "%s lkid %x status %d\n",
516 name, lksb->sb_lkid, lksb->sb_status);
517 return -1;
518 }
519 return 0;
520 }
521
522 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
523 unsigned int num, struct dlm_lksb *lksb, char *name)
524 {
525 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
526 char strname[GDLM_STRNAME_BYTES];
527 int error, status;
528
529 memset(strname, 0, GDLM_STRNAME_BYTES);
530 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
531
532 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
533 strname, GDLM_STRNAME_BYTES - 1,
534 0, sync_wait_cb, ls, NULL);
535 if (error) {
536 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
537 name, lksb->sb_lkid, flags, mode, error);
538 return error;
539 }
540
541 wait_for_completion(&ls->ls_sync_wait);
542
543 status = lksb->sb_status;
544
545 if (status && status != -EAGAIN) {
546 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
547 name, lksb->sb_lkid, flags, mode, status);
548 }
549
550 return status;
551 }
552
553 static int mounted_unlock(struct gfs2_sbd *sdp)
554 {
555 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
556 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
557 }
558
559 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
560 {
561 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
562 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
563 &ls->ls_mounted_lksb, "mounted_lock");
564 }
565
566 static int control_unlock(struct gfs2_sbd *sdp)
567 {
568 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
569 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
570 }
571
572 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
573 {
574 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
575 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
576 &ls->ls_control_lksb, "control_lock");
577 }
578
579 /**
580 * remote_withdraw - react to a node withdrawing from the file system
581 * @sdp: The superblock
582 */
583 static void remote_withdraw(struct gfs2_sbd *sdp)
584 {
585 struct gfs2_jdesc *jd;
586 int ret = 0, count = 0;
587
588 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
589 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
590 continue;
591 ret = gfs2_recover_journal(jd, true);
592 if (ret)
593 break;
594 count++;
595 }
596
597 /* Now drop the additional reference we acquired */
598 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
599 }
600
601 static void gfs2_control_func(struct work_struct *work)
602 {
603 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
604 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
605 uint32_t block_gen, start_gen, lvb_gen, flags;
606 int recover_set = 0;
607 int write_lvb = 0;
608 int recover_size;
609 int i, error;
610
611 /* First check for other nodes that may have done a withdraw. */
612 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
613 remote_withdraw(sdp);
614 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
615 return;
616 }
617
618 spin_lock(&ls->ls_recover_spin);
619 /*
620 * No MOUNT_DONE means we're still mounting; control_mount()
621 * will set this flag, after which this thread will take over
622 * all further clearing of BLOCK_LOCKS.
623 *
624 * FIRST_MOUNT means this node is doing first mounter recovery,
625 * for which recovery control is handled by
626 * control_mount()/control_first_done(), not this thread.
627 */
628 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
629 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
630 spin_unlock(&ls->ls_recover_spin);
631 return;
632 }
633 block_gen = ls->ls_recover_block;
634 start_gen = ls->ls_recover_start;
635 spin_unlock(&ls->ls_recover_spin);
636
637 /*
638 * Equal block_gen and start_gen implies we are between
639 * recover_prep and recover_done callbacks, which means
640 * dlm recovery is in progress and dlm locking is blocked.
641 * There's no point trying to do any work until recover_done.
642 */
643
644 if (block_gen == start_gen)
645 return;
646
647 /*
648 * Propagate recover_submit[] and recover_result[] to lvb:
649 * dlm_recoverd adds to recover_submit[] jids needing recovery
650 * gfs2_recover adds to recover_result[] journal recovery results
651 *
652 * set lvb bit for jids in recover_submit[] if the lvb has not
653 * yet been updated for the generation of the failure
654 *
655 * clear lvb bit for jids in recover_result[] if the result of
656 * the journal recovery is SUCCESS
657 */
658
659 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
660 if (error) {
661 fs_err(sdp, "control lock EX error %d\n", error);
662 return;
663 }
664
665 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
666
667 spin_lock(&ls->ls_recover_spin);
668 if (block_gen != ls->ls_recover_block ||
669 start_gen != ls->ls_recover_start) {
670 fs_info(sdp, "recover generation %u block1 %u %u\n",
671 start_gen, block_gen, ls->ls_recover_block);
672 spin_unlock(&ls->ls_recover_spin);
673 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
674 return;
675 }
676
677 recover_size = ls->ls_recover_size;
678
679 if (lvb_gen <= start_gen) {
680 /*
681 * Clear lvb bits for jids we've successfully recovered.
682 * Because all nodes attempt to recover failed journals,
683 * a journal can be recovered multiple times successfully
684 * in succession. Only the first will really do recovery,
685 * the others find it clean, but still report a successful
686 * recovery. So, another node may have already recovered
687 * the jid and cleared the lvb bit for it.
688 */
689 for (i = 0; i < recover_size; i++) {
690 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
691 continue;
692
693 ls->ls_recover_result[i] = 0;
694
695 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
696 continue;
697
698 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
699 write_lvb = 1;
700 }
701 }
702
703 if (lvb_gen == start_gen) {
704 /*
705 * Failed slots before start_gen are already set in lvb.
706 */
707 for (i = 0; i < recover_size; i++) {
708 if (!ls->ls_recover_submit[i])
709 continue;
710 if (ls->ls_recover_submit[i] < lvb_gen)
711 ls->ls_recover_submit[i] = 0;
712 }
713 } else if (lvb_gen < start_gen) {
714 /*
715 * Failed slots before start_gen are not yet set in lvb.
716 */
717 for (i = 0; i < recover_size; i++) {
718 if (!ls->ls_recover_submit[i])
719 continue;
720 if (ls->ls_recover_submit[i] < start_gen) {
721 ls->ls_recover_submit[i] = 0;
722 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
723 }
724 }
725 /* even if there are no bits to set, we need to write the
726 latest generation to the lvb */
727 write_lvb = 1;
728 } else {
729 /*
730 * we should be getting a recover_done() for lvb_gen soon
731 */
732 }
733 spin_unlock(&ls->ls_recover_spin);
734
735 if (write_lvb) {
736 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
737 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
738 } else {
739 flags = DLM_LKF_CONVERT;
740 }
741
742 error = control_lock(sdp, DLM_LOCK_NL, flags);
743 if (error) {
744 fs_err(sdp, "control lock NL error %d\n", error);
745 return;
746 }
747
748 /*
749 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
750 * and clear a jid bit in the lvb if the recovery is a success.
751 * Eventually all journals will be recovered, all jid bits will
752 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
753 */
754
755 for (i = 0; i < recover_size; i++) {
756 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
757 fs_info(sdp, "recover generation %u jid %d\n",
758 start_gen, i);
759 gfs2_recover_set(sdp, i);
760 recover_set++;
761 }
762 }
763 if (recover_set)
764 return;
765
766 /*
767 * No more jid bits set in lvb, all recovery is done, unblock locks
768 * (unless a new recover_prep callback has occured blocking locks
769 * again while working above)
770 */
771
772 spin_lock(&ls->ls_recover_spin);
773 if (ls->ls_recover_block == block_gen &&
774 ls->ls_recover_start == start_gen) {
775 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
776 spin_unlock(&ls->ls_recover_spin);
777 fs_info(sdp, "recover generation %u done\n", start_gen);
778 gfs2_glock_thaw(sdp);
779 } else {
780 fs_info(sdp, "recover generation %u block2 %u %u\n",
781 start_gen, block_gen, ls->ls_recover_block);
782 spin_unlock(&ls->ls_recover_spin);
783 }
784 }
785
786 static int control_mount(struct gfs2_sbd *sdp)
787 {
788 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
789 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
790 int mounted_mode;
791 int retries = 0;
792 int error;
793
794 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
795 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
796 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
797 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
798 init_completion(&ls->ls_sync_wait);
799
800 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
801
802 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
803 if (error) {
804 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
805 return error;
806 }
807
808 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
809 if (error) {
810 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
811 control_unlock(sdp);
812 return error;
813 }
814 mounted_mode = DLM_LOCK_NL;
815
816 restart:
817 if (retries++ && signal_pending(current)) {
818 error = -EINTR;
819 goto fail;
820 }
821
822 /*
823 * We always start with both locks in NL. control_lock is
824 * demoted to NL below so we don't need to do it here.
825 */
826
827 if (mounted_mode != DLM_LOCK_NL) {
828 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
829 if (error)
830 goto fail;
831 mounted_mode = DLM_LOCK_NL;
832 }
833
834 /*
835 * Other nodes need to do some work in dlm recovery and gfs2_control
836 * before the recover_done and control_lock will be ready for us below.
837 * A delay here is not required but often avoids having to retry.
838 */
839
840 msleep_interruptible(500);
841
842 /*
843 * Acquire control_lock in EX and mounted_lock in either EX or PR.
844 * control_lock lvb keeps track of any pending journal recoveries.
845 * mounted_lock indicates if any other nodes have the fs mounted.
846 */
847
848 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
849 if (error == -EAGAIN) {
850 goto restart;
851 } else if (error) {
852 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
853 goto fail;
854 }
855
856 /**
857 * If we're a spectator, we don't want to take the lock in EX because
858 * we cannot do the first-mount responsibility it implies: recovery.
859 */
860 if (sdp->sd_args.ar_spectator)
861 goto locks_done;
862
863 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
864 if (!error) {
865 mounted_mode = DLM_LOCK_EX;
866 goto locks_done;
867 } else if (error != -EAGAIN) {
868 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
869 goto fail;
870 }
871
872 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
873 if (!error) {
874 mounted_mode = DLM_LOCK_PR;
875 goto locks_done;
876 } else {
877 /* not even -EAGAIN should happen here */
878 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
879 goto fail;
880 }
881
882 locks_done:
883 /*
884 * If we got both locks above in EX, then we're the first mounter.
885 * If not, then we need to wait for the control_lock lvb to be
886 * updated by other mounted nodes to reflect our mount generation.
887 *
888 * In simple first mounter cases, first mounter will see zero lvb_gen,
889 * but in cases where all existing nodes leave/fail before mounting
890 * nodes finish control_mount, then all nodes will be mounting and
891 * lvb_gen will be non-zero.
892 */
893
894 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
895
896 if (lvb_gen == 0xFFFFFFFF) {
897 /* special value to force mount attempts to fail */
898 fs_err(sdp, "control_mount control_lock disabled\n");
899 error = -EINVAL;
900 goto fail;
901 }
902
903 if (mounted_mode == DLM_LOCK_EX) {
904 /* first mounter, keep both EX while doing first recovery */
905 spin_lock(&ls->ls_recover_spin);
906 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
907 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
908 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
909 spin_unlock(&ls->ls_recover_spin);
910 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
911 return 0;
912 }
913
914 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
915 if (error)
916 goto fail;
917
918 /*
919 * We are not first mounter, now we need to wait for the control_lock
920 * lvb generation to be >= the generation from our first recover_done
921 * and all lvb bits to be clear (no pending journal recoveries.)
922 */
923
924 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
925 /* journals need recovery, wait until all are clear */
926 fs_info(sdp, "control_mount wait for journal recovery\n");
927 goto restart;
928 }
929
930 spin_lock(&ls->ls_recover_spin);
931 block_gen = ls->ls_recover_block;
932 start_gen = ls->ls_recover_start;
933 mount_gen = ls->ls_recover_mount;
934
935 if (lvb_gen < mount_gen) {
936 /* wait for mounted nodes to update control_lock lvb to our
937 generation, which might include new recovery bits set */
938 if (sdp->sd_args.ar_spectator) {
939 fs_info(sdp, "Recovery is required. Waiting for a "
940 "non-spectator to mount.\n");
941 msleep_interruptible(1000);
942 } else {
943 fs_info(sdp, "control_mount wait1 block %u start %u "
944 "mount %u lvb %u flags %lx\n", block_gen,
945 start_gen, mount_gen, lvb_gen,
946 ls->ls_recover_flags);
947 }
948 spin_unlock(&ls->ls_recover_spin);
949 goto restart;
950 }
951
952 if (lvb_gen != start_gen) {
953 /* wait for mounted nodes to update control_lock lvb to the
954 latest recovery generation */
955 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
956 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
957 lvb_gen, ls->ls_recover_flags);
958 spin_unlock(&ls->ls_recover_spin);
959 goto restart;
960 }
961
962 if (block_gen == start_gen) {
963 /* dlm recovery in progress, wait for it to finish */
964 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
965 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
966 lvb_gen, ls->ls_recover_flags);
967 spin_unlock(&ls->ls_recover_spin);
968 goto restart;
969 }
970
971 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
972 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
973 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
974 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
975 spin_unlock(&ls->ls_recover_spin);
976 return 0;
977
978 fail:
979 mounted_unlock(sdp);
980 control_unlock(sdp);
981 return error;
982 }
983
984 static int control_first_done(struct gfs2_sbd *sdp)
985 {
986 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
987 uint32_t start_gen, block_gen;
988 int error;
989
990 restart:
991 spin_lock(&ls->ls_recover_spin);
992 start_gen = ls->ls_recover_start;
993 block_gen = ls->ls_recover_block;
994
995 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
996 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
997 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
998 /* sanity check, should not happen */
999 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1000 start_gen, block_gen, ls->ls_recover_flags);
1001 spin_unlock(&ls->ls_recover_spin);
1002 control_unlock(sdp);
1003 return -1;
1004 }
1005
1006 if (start_gen == block_gen) {
1007 /*
1008 * Wait for the end of a dlm recovery cycle to switch from
1009 * first mounter recovery. We can ignore any recover_slot
1010 * callbacks between the recover_prep and next recover_done
1011 * because we are still the first mounter and any failed nodes
1012 * have not fully mounted, so they don't need recovery.
1013 */
1014 spin_unlock(&ls->ls_recover_spin);
1015 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1016
1017 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1018 TASK_UNINTERRUPTIBLE);
1019 goto restart;
1020 }
1021
1022 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1023 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1024 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1025 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1026 spin_unlock(&ls->ls_recover_spin);
1027
1028 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1029 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1030
1031 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1032 if (error)
1033 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1034
1035 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1036 if (error)
1037 fs_err(sdp, "control_first_done control NL error %d\n", error);
1038
1039 return error;
1040 }
1041
1042 /*
1043 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1044 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1045 * gfs2 jids start at 0, so jid = slot - 1)
1046 */
1047
1048 #define RECOVER_SIZE_INC 16
1049
1050 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1051 int num_slots)
1052 {
1053 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1054 uint32_t *submit = NULL;
1055 uint32_t *result = NULL;
1056 uint32_t old_size, new_size;
1057 int i, max_jid;
1058
1059 if (!ls->ls_lvb_bits) {
1060 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1061 if (!ls->ls_lvb_bits)
1062 return -ENOMEM;
1063 }
1064
1065 max_jid = 0;
1066 for (i = 0; i < num_slots; i++) {
1067 if (max_jid < slots[i].slot - 1)
1068 max_jid = slots[i].slot - 1;
1069 }
1070
1071 old_size = ls->ls_recover_size;
1072 new_size = old_size;
1073 while (new_size < max_jid + 1)
1074 new_size += RECOVER_SIZE_INC;
1075 if (new_size == old_size)
1076 return 0;
1077
1078 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1079 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1080 if (!submit || !result) {
1081 kfree(submit);
1082 kfree(result);
1083 return -ENOMEM;
1084 }
1085
1086 spin_lock(&ls->ls_recover_spin);
1087 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1088 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1089 kfree(ls->ls_recover_submit);
1090 kfree(ls->ls_recover_result);
1091 ls->ls_recover_submit = submit;
1092 ls->ls_recover_result = result;
1093 ls->ls_recover_size = new_size;
1094 spin_unlock(&ls->ls_recover_spin);
1095 return 0;
1096 }
1097
1098 static void free_recover_size(struct lm_lockstruct *ls)
1099 {
1100 kfree(ls->ls_lvb_bits);
1101 kfree(ls->ls_recover_submit);
1102 kfree(ls->ls_recover_result);
1103 ls->ls_recover_submit = NULL;
1104 ls->ls_recover_result = NULL;
1105 ls->ls_recover_size = 0;
1106 ls->ls_lvb_bits = NULL;
1107 }
1108
1109 /* dlm calls before it does lock recovery */
1110
1111 static void gdlm_recover_prep(void *arg)
1112 {
1113 struct gfs2_sbd *sdp = arg;
1114 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1115
1116 if (gfs2_withdrawn(sdp)) {
1117 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1118 return;
1119 }
1120 spin_lock(&ls->ls_recover_spin);
1121 ls->ls_recover_block = ls->ls_recover_start;
1122 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1123
1124 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1125 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1126 spin_unlock(&ls->ls_recover_spin);
1127 return;
1128 }
1129 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1130 spin_unlock(&ls->ls_recover_spin);
1131 }
1132
1133 /* dlm calls after recover_prep has been completed on all lockspace members;
1134 identifies slot/jid of failed member */
1135
1136 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1137 {
1138 struct gfs2_sbd *sdp = arg;
1139 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1140 int jid = slot->slot - 1;
1141
1142 if (gfs2_withdrawn(sdp)) {
1143 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1144 jid);
1145 return;
1146 }
1147 spin_lock(&ls->ls_recover_spin);
1148 if (ls->ls_recover_size < jid + 1) {
1149 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1150 jid, ls->ls_recover_block, ls->ls_recover_size);
1151 spin_unlock(&ls->ls_recover_spin);
1152 return;
1153 }
1154
1155 if (ls->ls_recover_submit[jid]) {
1156 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1157 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1158 }
1159 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1160 spin_unlock(&ls->ls_recover_spin);
1161 }
1162
1163 /* dlm calls after recover_slot and after it completes lock recovery */
1164
1165 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1166 int our_slot, uint32_t generation)
1167 {
1168 struct gfs2_sbd *sdp = arg;
1169 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1170
1171 if (gfs2_withdrawn(sdp)) {
1172 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1173 return;
1174 }
1175 /* ensure the ls jid arrays are large enough */
1176 set_recover_size(sdp, slots, num_slots);
1177
1178 spin_lock(&ls->ls_recover_spin);
1179 ls->ls_recover_start = generation;
1180
1181 if (!ls->ls_recover_mount) {
1182 ls->ls_recover_mount = generation;
1183 ls->ls_jid = our_slot - 1;
1184 }
1185
1186 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1187 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1188
1189 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1190 smp_mb__after_atomic();
1191 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1192 spin_unlock(&ls->ls_recover_spin);
1193 }
1194
1195 /* gfs2_recover thread has a journal recovery result */
1196
1197 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1198 unsigned int result)
1199 {
1200 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1201
1202 if (gfs2_withdrawn(sdp)) {
1203 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1204 jid);
1205 return;
1206 }
1207 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1208 return;
1209
1210 /* don't care about the recovery of own journal during mount */
1211 if (jid == ls->ls_jid)
1212 return;
1213
1214 spin_lock(&ls->ls_recover_spin);
1215 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1216 spin_unlock(&ls->ls_recover_spin);
1217 return;
1218 }
1219 if (ls->ls_recover_size < jid + 1) {
1220 fs_err(sdp, "recovery_result jid %d short size %d\n",
1221 jid, ls->ls_recover_size);
1222 spin_unlock(&ls->ls_recover_spin);
1223 return;
1224 }
1225
1226 fs_info(sdp, "recover jid %d result %s\n", jid,
1227 result == LM_RD_GAVEUP ? "busy" : "success");
1228
1229 ls->ls_recover_result[jid] = result;
1230
1231 /* GAVEUP means another node is recovering the journal; delay our
1232 next attempt to recover it, to give the other node a chance to
1233 finish before trying again */
1234
1235 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1236 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1237 result == LM_RD_GAVEUP ? HZ : 0);
1238 spin_unlock(&ls->ls_recover_spin);
1239 }
1240
1241 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1242 .recover_prep = gdlm_recover_prep,
1243 .recover_slot = gdlm_recover_slot,
1244 .recover_done = gdlm_recover_done,
1245 };
1246
1247 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1248 {
1249 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1250 char cluster[GFS2_LOCKNAME_LEN];
1251 const char *fsname;
1252 uint32_t flags;
1253 int error, ops_result;
1254
1255 /*
1256 * initialize everything
1257 */
1258
1259 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1260 spin_lock_init(&ls->ls_recover_spin);
1261 ls->ls_recover_flags = 0;
1262 ls->ls_recover_mount = 0;
1263 ls->ls_recover_start = 0;
1264 ls->ls_recover_block = 0;
1265 ls->ls_recover_size = 0;
1266 ls->ls_recover_submit = NULL;
1267 ls->ls_recover_result = NULL;
1268 ls->ls_lvb_bits = NULL;
1269
1270 error = set_recover_size(sdp, NULL, 0);
1271 if (error)
1272 goto fail;
1273
1274 /*
1275 * prepare dlm_new_lockspace args
1276 */
1277
1278 fsname = strchr(table, ':');
1279 if (!fsname) {
1280 fs_info(sdp, "no fsname found\n");
1281 error = -EINVAL;
1282 goto fail_free;
1283 }
1284 memset(cluster, 0, sizeof(cluster));
1285 memcpy(cluster, table, strlen(table) - strlen(fsname));
1286 fsname++;
1287
1288 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1289
1290 /*
1291 * create/join lockspace
1292 */
1293
1294 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1295 &gdlm_lockspace_ops, sdp, &ops_result,
1296 &ls->ls_dlm);
1297 if (error) {
1298 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1299 goto fail_free;
1300 }
1301
1302 if (ops_result < 0) {
1303 /*
1304 * dlm does not support ops callbacks,
1305 * old dlm_controld/gfs_controld are used, try without ops.
1306 */
1307 fs_info(sdp, "dlm lockspace ops not used\n");
1308 free_recover_size(ls);
1309 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1310 return 0;
1311 }
1312
1313 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1314 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1315 error = -EINVAL;
1316 goto fail_release;
1317 }
1318
1319 /*
1320 * control_mount() uses control_lock to determine first mounter,
1321 * and for later mounts, waits for any recoveries to be cleared.
1322 */
1323
1324 error = control_mount(sdp);
1325 if (error) {
1326 fs_err(sdp, "mount control error %d\n", error);
1327 goto fail_release;
1328 }
1329
1330 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1331 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1332 smp_mb__after_atomic();
1333 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1334 return 0;
1335
1336 fail_release:
1337 dlm_release_lockspace(ls->ls_dlm, 2);
1338 fail_free:
1339 free_recover_size(ls);
1340 fail:
1341 return error;
1342 }
1343
1344 static void gdlm_first_done(struct gfs2_sbd *sdp)
1345 {
1346 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1347 int error;
1348
1349 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1350 return;
1351
1352 error = control_first_done(sdp);
1353 if (error)
1354 fs_err(sdp, "mount first_done error %d\n", error);
1355 }
1356
1357 static void gdlm_unmount(struct gfs2_sbd *sdp)
1358 {
1359 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1360
1361 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1362 goto release;
1363
1364 /* wait for gfs2_control_wq to be done with this mount */
1365
1366 spin_lock(&ls->ls_recover_spin);
1367 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1368 spin_unlock(&ls->ls_recover_spin);
1369 flush_delayed_work(&sdp->sd_control_work);
1370
1371 /* mounted_lock and control_lock will be purged in dlm recovery */
1372 release:
1373 if (ls->ls_dlm) {
1374 dlm_release_lockspace(ls->ls_dlm, 2);
1375 ls->ls_dlm = NULL;
1376 }
1377
1378 free_recover_size(ls);
1379 }
1380
1381 static const match_table_t dlm_tokens = {
1382 { Opt_jid, "jid=%d"},
1383 { Opt_id, "id=%d"},
1384 { Opt_first, "first=%d"},
1385 { Opt_nodir, "nodir=%d"},
1386 { Opt_err, NULL },
1387 };
1388
1389 const struct lm_lockops gfs2_dlm_ops = {
1390 .lm_proto_name = "lock_dlm",
1391 .lm_mount = gdlm_mount,
1392 .lm_first_done = gdlm_first_done,
1393 .lm_recovery_result = gdlm_recovery_result,
1394 .lm_unmount = gdlm_unmount,
1395 .lm_put_lock = gdlm_put_lock,
1396 .lm_lock = gdlm_lock,
1397 .lm_cancel = gdlm_cancel,
1398 .lm_tokens = &dlm_tokens,
1399 };
1400