]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/gfs2/lock_dlm.c
Merge branch 'kbuild' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[mirror_ubuntu-artful-kernel.git] / fs / gfs2 / lock_dlm.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21
22 extern struct workqueue_struct *gfs2_control_wq;
23
24 static void gdlm_ast(void *arg)
25 {
26 struct gfs2_glock *gl = arg;
27 unsigned ret = gl->gl_state;
28
29 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
30
31 if (gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID)
32 memset(gl->gl_lvb, 0, GDLM_LVB_SIZE);
33
34 switch (gl->gl_lksb.sb_status) {
35 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
36 gfs2_glock_free(gl);
37 return;
38 case -DLM_ECANCEL: /* Cancel while getting lock */
39 ret |= LM_OUT_CANCELED;
40 goto out;
41 case -EAGAIN: /* Try lock fails */
42 case -EDEADLK: /* Deadlock detected */
43 goto out;
44 case -ETIMEDOUT: /* Canceled due to timeout */
45 ret |= LM_OUT_ERROR;
46 goto out;
47 case 0: /* Success */
48 break;
49 default: /* Something unexpected */
50 BUG();
51 }
52
53 ret = gl->gl_req;
54 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
55 if (gl->gl_req == LM_ST_SHARED)
56 ret = LM_ST_DEFERRED;
57 else if (gl->gl_req == LM_ST_DEFERRED)
58 ret = LM_ST_SHARED;
59 else
60 BUG();
61 }
62
63 set_bit(GLF_INITIAL, &gl->gl_flags);
64 gfs2_glock_complete(gl, ret);
65 return;
66 out:
67 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
68 gl->gl_lksb.sb_lkid = 0;
69 gfs2_glock_complete(gl, ret);
70 }
71
72 static void gdlm_bast(void *arg, int mode)
73 {
74 struct gfs2_glock *gl = arg;
75
76 switch (mode) {
77 case DLM_LOCK_EX:
78 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
79 break;
80 case DLM_LOCK_CW:
81 gfs2_glock_cb(gl, LM_ST_DEFERRED);
82 break;
83 case DLM_LOCK_PR:
84 gfs2_glock_cb(gl, LM_ST_SHARED);
85 break;
86 default:
87 printk(KERN_ERR "unknown bast mode %d", mode);
88 BUG();
89 }
90 }
91
92 /* convert gfs lock-state to dlm lock-mode */
93
94 static int make_mode(const unsigned int lmstate)
95 {
96 switch (lmstate) {
97 case LM_ST_UNLOCKED:
98 return DLM_LOCK_NL;
99 case LM_ST_EXCLUSIVE:
100 return DLM_LOCK_EX;
101 case LM_ST_DEFERRED:
102 return DLM_LOCK_CW;
103 case LM_ST_SHARED:
104 return DLM_LOCK_PR;
105 }
106 printk(KERN_ERR "unknown LM state %d", lmstate);
107 BUG();
108 return -1;
109 }
110
111 static u32 make_flags(const u32 lkid, const unsigned int gfs_flags,
112 const int req)
113 {
114 u32 lkf = 0;
115
116 if (gfs_flags & LM_FLAG_TRY)
117 lkf |= DLM_LKF_NOQUEUE;
118
119 if (gfs_flags & LM_FLAG_TRY_1CB) {
120 lkf |= DLM_LKF_NOQUEUE;
121 lkf |= DLM_LKF_NOQUEUEBAST;
122 }
123
124 if (gfs_flags & LM_FLAG_PRIORITY) {
125 lkf |= DLM_LKF_NOORDER;
126 lkf |= DLM_LKF_HEADQUE;
127 }
128
129 if (gfs_flags & LM_FLAG_ANY) {
130 if (req == DLM_LOCK_PR)
131 lkf |= DLM_LKF_ALTCW;
132 else if (req == DLM_LOCK_CW)
133 lkf |= DLM_LKF_ALTPR;
134 else
135 BUG();
136 }
137
138 if (lkid != 0)
139 lkf |= DLM_LKF_CONVERT;
140
141 lkf |= DLM_LKF_VALBLK;
142
143 return lkf;
144 }
145
146 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
147 unsigned int flags)
148 {
149 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
150 int req;
151 u32 lkf;
152
153 req = make_mode(req_state);
154 lkf = make_flags(gl->gl_lksb.sb_lkid, flags, req);
155
156 /*
157 * Submit the actual lock request.
158 */
159
160 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, gl->gl_strname,
161 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
162 }
163
164 static void gdlm_put_lock(struct gfs2_glock *gl)
165 {
166 struct gfs2_sbd *sdp = gl->gl_sbd;
167 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
168 int error;
169
170 if (gl->gl_lksb.sb_lkid == 0) {
171 gfs2_glock_free(gl);
172 return;
173 }
174
175 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
176 NULL, gl);
177 if (error) {
178 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
179 gl->gl_name.ln_type,
180 (unsigned long long)gl->gl_name.ln_number, error);
181 return;
182 }
183 }
184
185 static void gdlm_cancel(struct gfs2_glock *gl)
186 {
187 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
188 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
189 }
190
191 /*
192 * dlm/gfs2 recovery coordination using dlm_recover callbacks
193 *
194 * 1. dlm_controld sees lockspace members change
195 * 2. dlm_controld blocks dlm-kernel locking activity
196 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
197 * 4. dlm_controld starts and finishes its own user level recovery
198 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
199 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
200 * 7. dlm_recoverd does its own lock recovery
201 * 8. dlm_recoverd unblocks dlm-kernel locking activity
202 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
203 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
204 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
205 * 12. gfs2_recover dequeues and recovers journals of failed nodes
206 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
207 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
208 * 15. gfs2_control unblocks normal locking when all journals are recovered
209 *
210 * - failures during recovery
211 *
212 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
213 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
214 * recovering for a prior failure. gfs2_control needs a way to detect
215 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
216 * the recover_block and recover_start values.
217 *
218 * recover_done() provides a new lockspace generation number each time it
219 * is called (step 9). This generation number is saved as recover_start.
220 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
221 * recover_block = recover_start. So, while recover_block is equal to
222 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
223 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
224 *
225 * - more specific gfs2 steps in sequence above
226 *
227 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
228 * 6. recover_slot records any failed jids (maybe none)
229 * 9. recover_done sets recover_start = new generation number
230 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
231 * 12. gfs2_recover does journal recoveries for failed jids identified above
232 * 14. gfs2_control clears control_lock lvb bits for recovered jids
233 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
234 * again) then do nothing, otherwise if recover_start > recover_block
235 * then clear BLOCK_LOCKS.
236 *
237 * - parallel recovery steps across all nodes
238 *
239 * All nodes attempt to update the control_lock lvb with the new generation
240 * number and jid bits, but only the first to get the control_lock EX will
241 * do so; others will see that it's already done (lvb already contains new
242 * generation number.)
243 *
244 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
245 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
246 * . One node gets control_lock first and writes the lvb, others see it's done
247 * . All nodes attempt to recover jids for which they see control_lock bits set
248 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
249 * . All nodes will eventually see all lvb bits clear and unblock locks
250 *
251 * - is there a problem with clearing an lvb bit that should be set
252 * and missing a journal recovery?
253 *
254 * 1. jid fails
255 * 2. lvb bit set for step 1
256 * 3. jid recovered for step 1
257 * 4. jid taken again (new mount)
258 * 5. jid fails (for step 4)
259 * 6. lvb bit set for step 5 (will already be set)
260 * 7. lvb bit cleared for step 3
261 *
262 * This is not a problem because the failure in step 5 does not
263 * require recovery, because the mount in step 4 could not have
264 * progressed far enough to unblock locks and access the fs. The
265 * control_mount() function waits for all recoveries to be complete
266 * for the latest lockspace generation before ever unblocking locks
267 * and returning. The mount in step 4 waits until the recovery in
268 * step 1 is done.
269 *
270 * - special case of first mounter: first node to mount the fs
271 *
272 * The first node to mount a gfs2 fs needs to check all the journals
273 * and recover any that need recovery before other nodes are allowed
274 * to mount the fs. (Others may begin mounting, but they must wait
275 * for the first mounter to be done before taking locks on the fs
276 * or accessing the fs.) This has two parts:
277 *
278 * 1. The mounted_lock tells a node it's the first to mount the fs.
279 * Each node holds the mounted_lock in PR while it's mounted.
280 * Each node tries to acquire the mounted_lock in EX when it mounts.
281 * If a node is granted the mounted_lock EX it means there are no
282 * other mounted nodes (no PR locks exist), and it is the first mounter.
283 * The mounted_lock is demoted to PR when first recovery is done, so
284 * others will fail to get an EX lock, but will get a PR lock.
285 *
286 * 2. The control_lock blocks others in control_mount() while the first
287 * mounter is doing first mount recovery of all journals.
288 * A mounting node needs to acquire control_lock in EX mode before
289 * it can proceed. The first mounter holds control_lock in EX while doing
290 * the first mount recovery, blocking mounts from other nodes, then demotes
291 * control_lock to NL when it's done (others_may_mount/first_done),
292 * allowing other nodes to continue mounting.
293 *
294 * first mounter:
295 * control_lock EX/NOQUEUE success
296 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
297 * set first=1
298 * do first mounter recovery
299 * mounted_lock EX->PR
300 * control_lock EX->NL, write lvb generation
301 *
302 * other mounter:
303 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
304 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
305 * mounted_lock PR/NOQUEUE success
306 * read lvb generation
307 * control_lock EX->NL
308 * set first=0
309 *
310 * - mount during recovery
311 *
312 * If a node mounts while others are doing recovery (not first mounter),
313 * the mounting node will get its initial recover_done() callback without
314 * having seen any previous failures/callbacks.
315 *
316 * It must wait for all recoveries preceding its mount to be finished
317 * before it unblocks locks. It does this by repeating the "other mounter"
318 * steps above until the lvb generation number is >= its mount generation
319 * number (from initial recover_done) and all lvb bits are clear.
320 *
321 * - control_lock lvb format
322 *
323 * 4 bytes generation number: the latest dlm lockspace generation number
324 * from recover_done callback. Indicates the jid bitmap has been updated
325 * to reflect all slot failures through that generation.
326 * 4 bytes unused.
327 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
328 * that jid N needs recovery.
329 */
330
331 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
332
333 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
334 char *lvb_bits)
335 {
336 uint32_t gen;
337 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
338 memcpy(&gen, lvb_bits, sizeof(uint32_t));
339 *lvb_gen = le32_to_cpu(gen);
340 }
341
342 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
343 char *lvb_bits)
344 {
345 uint32_t gen;
346 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
347 gen = cpu_to_le32(lvb_gen);
348 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
349 }
350
351 static int all_jid_bits_clear(char *lvb)
352 {
353 int i;
354 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
355 if (lvb[i])
356 return 0;
357 }
358 return 1;
359 }
360
361 static void sync_wait_cb(void *arg)
362 {
363 struct lm_lockstruct *ls = arg;
364 complete(&ls->ls_sync_wait);
365 }
366
367 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
368 {
369 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
370 int error;
371
372 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
373 if (error) {
374 fs_err(sdp, "%s lkid %x error %d\n",
375 name, lksb->sb_lkid, error);
376 return error;
377 }
378
379 wait_for_completion(&ls->ls_sync_wait);
380
381 if (lksb->sb_status != -DLM_EUNLOCK) {
382 fs_err(sdp, "%s lkid %x status %d\n",
383 name, lksb->sb_lkid, lksb->sb_status);
384 return -1;
385 }
386 return 0;
387 }
388
389 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
390 unsigned int num, struct dlm_lksb *lksb, char *name)
391 {
392 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
393 char strname[GDLM_STRNAME_BYTES];
394 int error, status;
395
396 memset(strname, 0, GDLM_STRNAME_BYTES);
397 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
398
399 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
400 strname, GDLM_STRNAME_BYTES - 1,
401 0, sync_wait_cb, ls, NULL);
402 if (error) {
403 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
404 name, lksb->sb_lkid, flags, mode, error);
405 return error;
406 }
407
408 wait_for_completion(&ls->ls_sync_wait);
409
410 status = lksb->sb_status;
411
412 if (status && status != -EAGAIN) {
413 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
414 name, lksb->sb_lkid, flags, mode, status);
415 }
416
417 return status;
418 }
419
420 static int mounted_unlock(struct gfs2_sbd *sdp)
421 {
422 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
423 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
424 }
425
426 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
427 {
428 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
429 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
430 &ls->ls_mounted_lksb, "mounted_lock");
431 }
432
433 static int control_unlock(struct gfs2_sbd *sdp)
434 {
435 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
436 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
437 }
438
439 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
440 {
441 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
442 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
443 &ls->ls_control_lksb, "control_lock");
444 }
445
446 static void gfs2_control_func(struct work_struct *work)
447 {
448 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
449 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
450 char lvb_bits[GDLM_LVB_SIZE];
451 uint32_t block_gen, start_gen, lvb_gen, flags;
452 int recover_set = 0;
453 int write_lvb = 0;
454 int recover_size;
455 int i, error;
456
457 spin_lock(&ls->ls_recover_spin);
458 /*
459 * No MOUNT_DONE means we're still mounting; control_mount()
460 * will set this flag, after which this thread will take over
461 * all further clearing of BLOCK_LOCKS.
462 *
463 * FIRST_MOUNT means this node is doing first mounter recovery,
464 * for which recovery control is handled by
465 * control_mount()/control_first_done(), not this thread.
466 */
467 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
468 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
469 spin_unlock(&ls->ls_recover_spin);
470 return;
471 }
472 block_gen = ls->ls_recover_block;
473 start_gen = ls->ls_recover_start;
474 spin_unlock(&ls->ls_recover_spin);
475
476 /*
477 * Equal block_gen and start_gen implies we are between
478 * recover_prep and recover_done callbacks, which means
479 * dlm recovery is in progress and dlm locking is blocked.
480 * There's no point trying to do any work until recover_done.
481 */
482
483 if (block_gen == start_gen)
484 return;
485
486 /*
487 * Propagate recover_submit[] and recover_result[] to lvb:
488 * dlm_recoverd adds to recover_submit[] jids needing recovery
489 * gfs2_recover adds to recover_result[] journal recovery results
490 *
491 * set lvb bit for jids in recover_submit[] if the lvb has not
492 * yet been updated for the generation of the failure
493 *
494 * clear lvb bit for jids in recover_result[] if the result of
495 * the journal recovery is SUCCESS
496 */
497
498 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
499 if (error) {
500 fs_err(sdp, "control lock EX error %d\n", error);
501 return;
502 }
503
504 control_lvb_read(ls, &lvb_gen, lvb_bits);
505
506 spin_lock(&ls->ls_recover_spin);
507 if (block_gen != ls->ls_recover_block ||
508 start_gen != ls->ls_recover_start) {
509 fs_info(sdp, "recover generation %u block1 %u %u\n",
510 start_gen, block_gen, ls->ls_recover_block);
511 spin_unlock(&ls->ls_recover_spin);
512 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
513 return;
514 }
515
516 recover_size = ls->ls_recover_size;
517
518 if (lvb_gen <= start_gen) {
519 /*
520 * Clear lvb bits for jids we've successfully recovered.
521 * Because all nodes attempt to recover failed journals,
522 * a journal can be recovered multiple times successfully
523 * in succession. Only the first will really do recovery,
524 * the others find it clean, but still report a successful
525 * recovery. So, another node may have already recovered
526 * the jid and cleared the lvb bit for it.
527 */
528 for (i = 0; i < recover_size; i++) {
529 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
530 continue;
531
532 ls->ls_recover_result[i] = 0;
533
534 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
535 continue;
536
537 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
538 write_lvb = 1;
539 }
540 }
541
542 if (lvb_gen == start_gen) {
543 /*
544 * Failed slots before start_gen are already set in lvb.
545 */
546 for (i = 0; i < recover_size; i++) {
547 if (!ls->ls_recover_submit[i])
548 continue;
549 if (ls->ls_recover_submit[i] < lvb_gen)
550 ls->ls_recover_submit[i] = 0;
551 }
552 } else if (lvb_gen < start_gen) {
553 /*
554 * Failed slots before start_gen are not yet set in lvb.
555 */
556 for (i = 0; i < recover_size; i++) {
557 if (!ls->ls_recover_submit[i])
558 continue;
559 if (ls->ls_recover_submit[i] < start_gen) {
560 ls->ls_recover_submit[i] = 0;
561 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
562 }
563 }
564 /* even if there are no bits to set, we need to write the
565 latest generation to the lvb */
566 write_lvb = 1;
567 } else {
568 /*
569 * we should be getting a recover_done() for lvb_gen soon
570 */
571 }
572 spin_unlock(&ls->ls_recover_spin);
573
574 if (write_lvb) {
575 control_lvb_write(ls, start_gen, lvb_bits);
576 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
577 } else {
578 flags = DLM_LKF_CONVERT;
579 }
580
581 error = control_lock(sdp, DLM_LOCK_NL, flags);
582 if (error) {
583 fs_err(sdp, "control lock NL error %d\n", error);
584 return;
585 }
586
587 /*
588 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
589 * and clear a jid bit in the lvb if the recovery is a success.
590 * Eventually all journals will be recovered, all jid bits will
591 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
592 */
593
594 for (i = 0; i < recover_size; i++) {
595 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
596 fs_info(sdp, "recover generation %u jid %d\n",
597 start_gen, i);
598 gfs2_recover_set(sdp, i);
599 recover_set++;
600 }
601 }
602 if (recover_set)
603 return;
604
605 /*
606 * No more jid bits set in lvb, all recovery is done, unblock locks
607 * (unless a new recover_prep callback has occured blocking locks
608 * again while working above)
609 */
610
611 spin_lock(&ls->ls_recover_spin);
612 if (ls->ls_recover_block == block_gen &&
613 ls->ls_recover_start == start_gen) {
614 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
615 spin_unlock(&ls->ls_recover_spin);
616 fs_info(sdp, "recover generation %u done\n", start_gen);
617 gfs2_glock_thaw(sdp);
618 } else {
619 fs_info(sdp, "recover generation %u block2 %u %u\n",
620 start_gen, block_gen, ls->ls_recover_block);
621 spin_unlock(&ls->ls_recover_spin);
622 }
623 }
624
625 static int control_mount(struct gfs2_sbd *sdp)
626 {
627 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
628 char lvb_bits[GDLM_LVB_SIZE];
629 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
630 int mounted_mode;
631 int retries = 0;
632 int error;
633
634 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
635 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
636 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
637 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
638 init_completion(&ls->ls_sync_wait);
639
640 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
641
642 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
643 if (error) {
644 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
645 return error;
646 }
647
648 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
649 if (error) {
650 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
651 control_unlock(sdp);
652 return error;
653 }
654 mounted_mode = DLM_LOCK_NL;
655
656 restart:
657 if (retries++ && signal_pending(current)) {
658 error = -EINTR;
659 goto fail;
660 }
661
662 /*
663 * We always start with both locks in NL. control_lock is
664 * demoted to NL below so we don't need to do it here.
665 */
666
667 if (mounted_mode != DLM_LOCK_NL) {
668 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
669 if (error)
670 goto fail;
671 mounted_mode = DLM_LOCK_NL;
672 }
673
674 /*
675 * Other nodes need to do some work in dlm recovery and gfs2_control
676 * before the recover_done and control_lock will be ready for us below.
677 * A delay here is not required but often avoids having to retry.
678 */
679
680 msleep_interruptible(500);
681
682 /*
683 * Acquire control_lock in EX and mounted_lock in either EX or PR.
684 * control_lock lvb keeps track of any pending journal recoveries.
685 * mounted_lock indicates if any other nodes have the fs mounted.
686 */
687
688 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
689 if (error == -EAGAIN) {
690 goto restart;
691 } else if (error) {
692 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
693 goto fail;
694 }
695
696 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
697 if (!error) {
698 mounted_mode = DLM_LOCK_EX;
699 goto locks_done;
700 } else if (error != -EAGAIN) {
701 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
702 goto fail;
703 }
704
705 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
706 if (!error) {
707 mounted_mode = DLM_LOCK_PR;
708 goto locks_done;
709 } else {
710 /* not even -EAGAIN should happen here */
711 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
712 goto fail;
713 }
714
715 locks_done:
716 /*
717 * If we got both locks above in EX, then we're the first mounter.
718 * If not, then we need to wait for the control_lock lvb to be
719 * updated by other mounted nodes to reflect our mount generation.
720 *
721 * In simple first mounter cases, first mounter will see zero lvb_gen,
722 * but in cases where all existing nodes leave/fail before mounting
723 * nodes finish control_mount, then all nodes will be mounting and
724 * lvb_gen will be non-zero.
725 */
726
727 control_lvb_read(ls, &lvb_gen, lvb_bits);
728
729 if (lvb_gen == 0xFFFFFFFF) {
730 /* special value to force mount attempts to fail */
731 fs_err(sdp, "control_mount control_lock disabled\n");
732 error = -EINVAL;
733 goto fail;
734 }
735
736 if (mounted_mode == DLM_LOCK_EX) {
737 /* first mounter, keep both EX while doing first recovery */
738 spin_lock(&ls->ls_recover_spin);
739 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
740 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
741 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
742 spin_unlock(&ls->ls_recover_spin);
743 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
744 return 0;
745 }
746
747 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
748 if (error)
749 goto fail;
750
751 /*
752 * We are not first mounter, now we need to wait for the control_lock
753 * lvb generation to be >= the generation from our first recover_done
754 * and all lvb bits to be clear (no pending journal recoveries.)
755 */
756
757 if (!all_jid_bits_clear(lvb_bits)) {
758 /* journals need recovery, wait until all are clear */
759 fs_info(sdp, "control_mount wait for journal recovery\n");
760 goto restart;
761 }
762
763 spin_lock(&ls->ls_recover_spin);
764 block_gen = ls->ls_recover_block;
765 start_gen = ls->ls_recover_start;
766 mount_gen = ls->ls_recover_mount;
767
768 if (lvb_gen < mount_gen) {
769 /* wait for mounted nodes to update control_lock lvb to our
770 generation, which might include new recovery bits set */
771 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
772 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
773 lvb_gen, ls->ls_recover_flags);
774 spin_unlock(&ls->ls_recover_spin);
775 goto restart;
776 }
777
778 if (lvb_gen != start_gen) {
779 /* wait for mounted nodes to update control_lock lvb to the
780 latest recovery generation */
781 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
782 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
783 lvb_gen, ls->ls_recover_flags);
784 spin_unlock(&ls->ls_recover_spin);
785 goto restart;
786 }
787
788 if (block_gen == start_gen) {
789 /* dlm recovery in progress, wait for it to finish */
790 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
791 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
792 lvb_gen, ls->ls_recover_flags);
793 spin_unlock(&ls->ls_recover_spin);
794 goto restart;
795 }
796
797 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
798 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
799 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
800 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
801 spin_unlock(&ls->ls_recover_spin);
802 return 0;
803
804 fail:
805 mounted_unlock(sdp);
806 control_unlock(sdp);
807 return error;
808 }
809
810 static int dlm_recovery_wait(void *word)
811 {
812 schedule();
813 return 0;
814 }
815
816 static int control_first_done(struct gfs2_sbd *sdp)
817 {
818 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
819 char lvb_bits[GDLM_LVB_SIZE];
820 uint32_t start_gen, block_gen;
821 int error;
822
823 restart:
824 spin_lock(&ls->ls_recover_spin);
825 start_gen = ls->ls_recover_start;
826 block_gen = ls->ls_recover_block;
827
828 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
829 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
830 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
831 /* sanity check, should not happen */
832 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
833 start_gen, block_gen, ls->ls_recover_flags);
834 spin_unlock(&ls->ls_recover_spin);
835 control_unlock(sdp);
836 return -1;
837 }
838
839 if (start_gen == block_gen) {
840 /*
841 * Wait for the end of a dlm recovery cycle to switch from
842 * first mounter recovery. We can ignore any recover_slot
843 * callbacks between the recover_prep and next recover_done
844 * because we are still the first mounter and any failed nodes
845 * have not fully mounted, so they don't need recovery.
846 */
847 spin_unlock(&ls->ls_recover_spin);
848 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
849
850 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
851 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
852 goto restart;
853 }
854
855 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
856 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
857 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
858 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
859 spin_unlock(&ls->ls_recover_spin);
860
861 memset(lvb_bits, 0, sizeof(lvb_bits));
862 control_lvb_write(ls, start_gen, lvb_bits);
863
864 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
865 if (error)
866 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
867
868 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
869 if (error)
870 fs_err(sdp, "control_first_done control NL error %d\n", error);
871
872 return error;
873 }
874
875 /*
876 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
877 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
878 * gfs2 jids start at 0, so jid = slot - 1)
879 */
880
881 #define RECOVER_SIZE_INC 16
882
883 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
884 int num_slots)
885 {
886 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
887 uint32_t *submit = NULL;
888 uint32_t *result = NULL;
889 uint32_t old_size, new_size;
890 int i, max_jid;
891
892 max_jid = 0;
893 for (i = 0; i < num_slots; i++) {
894 if (max_jid < slots[i].slot - 1)
895 max_jid = slots[i].slot - 1;
896 }
897
898 old_size = ls->ls_recover_size;
899
900 if (old_size >= max_jid + 1)
901 return 0;
902
903 new_size = old_size + RECOVER_SIZE_INC;
904
905 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
906 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
907 if (!submit || !result) {
908 kfree(submit);
909 kfree(result);
910 return -ENOMEM;
911 }
912
913 spin_lock(&ls->ls_recover_spin);
914 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
915 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
916 kfree(ls->ls_recover_submit);
917 kfree(ls->ls_recover_result);
918 ls->ls_recover_submit = submit;
919 ls->ls_recover_result = result;
920 ls->ls_recover_size = new_size;
921 spin_unlock(&ls->ls_recover_spin);
922 return 0;
923 }
924
925 static void free_recover_size(struct lm_lockstruct *ls)
926 {
927 kfree(ls->ls_recover_submit);
928 kfree(ls->ls_recover_result);
929 ls->ls_recover_submit = NULL;
930 ls->ls_recover_result = NULL;
931 ls->ls_recover_size = 0;
932 }
933
934 /* dlm calls before it does lock recovery */
935
936 static void gdlm_recover_prep(void *arg)
937 {
938 struct gfs2_sbd *sdp = arg;
939 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
940
941 spin_lock(&ls->ls_recover_spin);
942 ls->ls_recover_block = ls->ls_recover_start;
943 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
944
945 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
946 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
947 spin_unlock(&ls->ls_recover_spin);
948 return;
949 }
950 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
951 spin_unlock(&ls->ls_recover_spin);
952 }
953
954 /* dlm calls after recover_prep has been completed on all lockspace members;
955 identifies slot/jid of failed member */
956
957 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
958 {
959 struct gfs2_sbd *sdp = arg;
960 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
961 int jid = slot->slot - 1;
962
963 spin_lock(&ls->ls_recover_spin);
964 if (ls->ls_recover_size < jid + 1) {
965 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
966 jid, ls->ls_recover_block, ls->ls_recover_size);
967 spin_unlock(&ls->ls_recover_spin);
968 return;
969 }
970
971 if (ls->ls_recover_submit[jid]) {
972 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
973 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
974 }
975 ls->ls_recover_submit[jid] = ls->ls_recover_block;
976 spin_unlock(&ls->ls_recover_spin);
977 }
978
979 /* dlm calls after recover_slot and after it completes lock recovery */
980
981 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
982 int our_slot, uint32_t generation)
983 {
984 struct gfs2_sbd *sdp = arg;
985 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
986
987 /* ensure the ls jid arrays are large enough */
988 set_recover_size(sdp, slots, num_slots);
989
990 spin_lock(&ls->ls_recover_spin);
991 ls->ls_recover_start = generation;
992
993 if (!ls->ls_recover_mount) {
994 ls->ls_recover_mount = generation;
995 ls->ls_jid = our_slot - 1;
996 }
997
998 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
999 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1000
1001 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1002 smp_mb__after_clear_bit();
1003 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1004 spin_unlock(&ls->ls_recover_spin);
1005 }
1006
1007 /* gfs2_recover thread has a journal recovery result */
1008
1009 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1010 unsigned int result)
1011 {
1012 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1013
1014 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1015 return;
1016
1017 /* don't care about the recovery of own journal during mount */
1018 if (jid == ls->ls_jid)
1019 return;
1020
1021 spin_lock(&ls->ls_recover_spin);
1022 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1023 spin_unlock(&ls->ls_recover_spin);
1024 return;
1025 }
1026 if (ls->ls_recover_size < jid + 1) {
1027 fs_err(sdp, "recovery_result jid %d short size %d",
1028 jid, ls->ls_recover_size);
1029 spin_unlock(&ls->ls_recover_spin);
1030 return;
1031 }
1032
1033 fs_info(sdp, "recover jid %d result %s\n", jid,
1034 result == LM_RD_GAVEUP ? "busy" : "success");
1035
1036 ls->ls_recover_result[jid] = result;
1037
1038 /* GAVEUP means another node is recovering the journal; delay our
1039 next attempt to recover it, to give the other node a chance to
1040 finish before trying again */
1041
1042 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1043 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1044 result == LM_RD_GAVEUP ? HZ : 0);
1045 spin_unlock(&ls->ls_recover_spin);
1046 }
1047
1048 const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1049 .recover_prep = gdlm_recover_prep,
1050 .recover_slot = gdlm_recover_slot,
1051 .recover_done = gdlm_recover_done,
1052 };
1053
1054 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1055 {
1056 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1057 char cluster[GFS2_LOCKNAME_LEN];
1058 const char *fsname;
1059 uint32_t flags;
1060 int error, ops_result;
1061
1062 /*
1063 * initialize everything
1064 */
1065
1066 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1067 spin_lock_init(&ls->ls_recover_spin);
1068 ls->ls_recover_flags = 0;
1069 ls->ls_recover_mount = 0;
1070 ls->ls_recover_start = 0;
1071 ls->ls_recover_block = 0;
1072 ls->ls_recover_size = 0;
1073 ls->ls_recover_submit = NULL;
1074 ls->ls_recover_result = NULL;
1075
1076 error = set_recover_size(sdp, NULL, 0);
1077 if (error)
1078 goto fail;
1079
1080 /*
1081 * prepare dlm_new_lockspace args
1082 */
1083
1084 fsname = strchr(table, ':');
1085 if (!fsname) {
1086 fs_info(sdp, "no fsname found\n");
1087 error = -EINVAL;
1088 goto fail_free;
1089 }
1090 memset(cluster, 0, sizeof(cluster));
1091 memcpy(cluster, table, strlen(table) - strlen(fsname));
1092 fsname++;
1093
1094 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1095 if (ls->ls_nodir)
1096 flags |= DLM_LSFL_NODIR;
1097
1098 /*
1099 * create/join lockspace
1100 */
1101
1102 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1103 &gdlm_lockspace_ops, sdp, &ops_result,
1104 &ls->ls_dlm);
1105 if (error) {
1106 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1107 goto fail_free;
1108 }
1109
1110 if (ops_result < 0) {
1111 /*
1112 * dlm does not support ops callbacks,
1113 * old dlm_controld/gfs_controld are used, try without ops.
1114 */
1115 fs_info(sdp, "dlm lockspace ops not used\n");
1116 free_recover_size(ls);
1117 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1118 return 0;
1119 }
1120
1121 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1122 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1123 error = -EINVAL;
1124 goto fail_release;
1125 }
1126
1127 /*
1128 * control_mount() uses control_lock to determine first mounter,
1129 * and for later mounts, waits for any recoveries to be cleared.
1130 */
1131
1132 error = control_mount(sdp);
1133 if (error) {
1134 fs_err(sdp, "mount control error %d\n", error);
1135 goto fail_release;
1136 }
1137
1138 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1139 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1140 smp_mb__after_clear_bit();
1141 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1142 return 0;
1143
1144 fail_release:
1145 dlm_release_lockspace(ls->ls_dlm, 2);
1146 fail_free:
1147 free_recover_size(ls);
1148 fail:
1149 return error;
1150 }
1151
1152 static void gdlm_first_done(struct gfs2_sbd *sdp)
1153 {
1154 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1155 int error;
1156
1157 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1158 return;
1159
1160 error = control_first_done(sdp);
1161 if (error)
1162 fs_err(sdp, "mount first_done error %d\n", error);
1163 }
1164
1165 static void gdlm_unmount(struct gfs2_sbd *sdp)
1166 {
1167 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1168
1169 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1170 goto release;
1171
1172 /* wait for gfs2_control_wq to be done with this mount */
1173
1174 spin_lock(&ls->ls_recover_spin);
1175 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1176 spin_unlock(&ls->ls_recover_spin);
1177 flush_delayed_work_sync(&sdp->sd_control_work);
1178
1179 /* mounted_lock and control_lock will be purged in dlm recovery */
1180 release:
1181 if (ls->ls_dlm) {
1182 dlm_release_lockspace(ls->ls_dlm, 2);
1183 ls->ls_dlm = NULL;
1184 }
1185
1186 free_recover_size(ls);
1187 }
1188
1189 static const match_table_t dlm_tokens = {
1190 { Opt_jid, "jid=%d"},
1191 { Opt_id, "id=%d"},
1192 { Opt_first, "first=%d"},
1193 { Opt_nodir, "nodir=%d"},
1194 { Opt_err, NULL },
1195 };
1196
1197 const struct lm_lockops gfs2_dlm_ops = {
1198 .lm_proto_name = "lock_dlm",
1199 .lm_mount = gdlm_mount,
1200 .lm_first_done = gdlm_first_done,
1201 .lm_recovery_result = gdlm_recovery_result,
1202 .lm_unmount = gdlm_unmount,
1203 .lm_put_lock = gdlm_put_lock,
1204 .lm_lock = gdlm_lock,
1205 .lm_cancel = gdlm_cancel,
1206 .lm_tokens = &dlm_tokens,
1207 };
1208