]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/gfs2/rgrp.c
btrfs: document some invariants of seed code
[mirror_ubuntu-hirsute-kernel.git] / fs / gfs2 / rgrp.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
13 #include <linux/fs.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
19
20 #include "gfs2.h"
21 #include "incore.h"
22 #include "glock.h"
23 #include "glops.h"
24 #include "lops.h"
25 #include "meta_io.h"
26 #include "quota.h"
27 #include "rgrp.h"
28 #include "super.h"
29 #include "trans.h"
30 #include "util.h"
31 #include "log.h"
32 #include "inode.h"
33 #include "trace_gfs2.h"
34 #include "dir.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 /*
40 * These routines are used by the resource group routines (rgrp.c)
41 * to keep track of block allocation. Each block is represented by two
42 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
43 *
44 * 0 = Free
45 * 1 = Used (not metadata)
46 * 2 = Unlinked (still in use) inode
47 * 3 = Used (metadata)
48 */
49
50 struct gfs2_extent {
51 struct gfs2_rbm rbm;
52 u32 len;
53 };
54
55 static const char valid_change[16] = {
56 /* current */
57 /* n */ 0, 1, 1, 1,
58 /* e */ 1, 0, 0, 0,
59 /* w */ 0, 0, 0, 1,
60 1, 0, 0, 0
61 };
62
63 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
64 const struct gfs2_inode *ip, bool nowrap);
65
66
67 /**
68 * gfs2_setbit - Set a bit in the bitmaps
69 * @rbm: The position of the bit to set
70 * @do_clone: Also set the clone bitmap, if it exists
71 * @new_state: the new state of the block
72 *
73 */
74
75 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
76 unsigned char new_state)
77 {
78 unsigned char *byte1, *byte2, *end, cur_state;
79 struct gfs2_bitmap *bi = rbm_bi(rbm);
80 unsigned int buflen = bi->bi_bytes;
81 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
82
83 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
84 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
85
86 BUG_ON(byte1 >= end);
87
88 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
89
90 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
91 struct gfs2_sbd *sdp = rbm->rgd->rd_sbd;
92
93 fs_warn(sdp, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
94 rbm->offset, cur_state, new_state);
95 fs_warn(sdp, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
96 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start,
97 (unsigned long long)bi->bi_bh->b_blocknr);
98 fs_warn(sdp, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
99 bi->bi_offset, bi->bi_bytes,
100 (unsigned long long)gfs2_rbm_to_block(rbm));
101 dump_stack();
102 gfs2_consist_rgrpd(rbm->rgd);
103 return;
104 }
105 *byte1 ^= (cur_state ^ new_state) << bit;
106
107 if (do_clone && bi->bi_clone) {
108 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
109 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
110 *byte2 ^= (cur_state ^ new_state) << bit;
111 }
112 }
113
114 /**
115 * gfs2_testbit - test a bit in the bitmaps
116 * @rbm: The bit to test
117 * @use_clone: If true, test the clone bitmap, not the official bitmap.
118 *
119 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
120 * not the "real" bitmaps, to avoid allocating recently freed blocks.
121 *
122 * Returns: The two bit block state of the requested bit
123 */
124
125 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm, bool use_clone)
126 {
127 struct gfs2_bitmap *bi = rbm_bi(rbm);
128 const u8 *buffer;
129 const u8 *byte;
130 unsigned int bit;
131
132 if (use_clone && bi->bi_clone)
133 buffer = bi->bi_clone;
134 else
135 buffer = bi->bi_bh->b_data;
136 buffer += bi->bi_offset;
137 byte = buffer + (rbm->offset / GFS2_NBBY);
138 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
139
140 return (*byte >> bit) & GFS2_BIT_MASK;
141 }
142
143 /**
144 * gfs2_bit_search
145 * @ptr: Pointer to bitmap data
146 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
147 * @state: The state we are searching for
148 *
149 * We xor the bitmap data with a patter which is the bitwise opposite
150 * of what we are looking for, this gives rise to a pattern of ones
151 * wherever there is a match. Since we have two bits per entry, we
152 * take this pattern, shift it down by one place and then and it with
153 * the original. All the even bit positions (0,2,4, etc) then represent
154 * successful matches, so we mask with 0x55555..... to remove the unwanted
155 * odd bit positions.
156 *
157 * This allows searching of a whole u64 at once (32 blocks) with a
158 * single test (on 64 bit arches).
159 */
160
161 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
162 {
163 u64 tmp;
164 static const u64 search[] = {
165 [0] = 0xffffffffffffffffULL,
166 [1] = 0xaaaaaaaaaaaaaaaaULL,
167 [2] = 0x5555555555555555ULL,
168 [3] = 0x0000000000000000ULL,
169 };
170 tmp = le64_to_cpu(*ptr) ^ search[state];
171 tmp &= (tmp >> 1);
172 tmp &= mask;
173 return tmp;
174 }
175
176 /**
177 * rs_cmp - multi-block reservation range compare
178 * @blk: absolute file system block number of the new reservation
179 * @len: number of blocks in the new reservation
180 * @rs: existing reservation to compare against
181 *
182 * returns: 1 if the block range is beyond the reach of the reservation
183 * -1 if the block range is before the start of the reservation
184 * 0 if the block range overlaps with the reservation
185 */
186 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
187 {
188 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
189
190 if (blk >= startblk + rs->rs_free)
191 return 1;
192 if (blk + len - 1 < startblk)
193 return -1;
194 return 0;
195 }
196
197 /**
198 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
199 * a block in a given allocation state.
200 * @buf: the buffer that holds the bitmaps
201 * @len: the length (in bytes) of the buffer
202 * @goal: start search at this block's bit-pair (within @buffer)
203 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
204 *
205 * Scope of @goal and returned block number is only within this bitmap buffer,
206 * not entire rgrp or filesystem. @buffer will be offset from the actual
207 * beginning of a bitmap block buffer, skipping any header structures, but
208 * headers are always a multiple of 64 bits long so that the buffer is
209 * always aligned to a 64 bit boundary.
210 *
211 * The size of the buffer is in bytes, but is it assumed that it is
212 * always ok to read a complete multiple of 64 bits at the end
213 * of the block in case the end is no aligned to a natural boundary.
214 *
215 * Return: the block number (bitmap buffer scope) that was found
216 */
217
218 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
219 u32 goal, u8 state)
220 {
221 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
222 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
223 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
224 u64 tmp;
225 u64 mask = 0x5555555555555555ULL;
226 u32 bit;
227
228 /* Mask off bits we don't care about at the start of the search */
229 mask <<= spoint;
230 tmp = gfs2_bit_search(ptr, mask, state);
231 ptr++;
232 while(tmp == 0 && ptr < end) {
233 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
234 ptr++;
235 }
236 /* Mask off any bits which are more than len bytes from the start */
237 if (ptr == end && (len & (sizeof(u64) - 1)))
238 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
239 /* Didn't find anything, so return */
240 if (tmp == 0)
241 return BFITNOENT;
242 ptr--;
243 bit = __ffs64(tmp);
244 bit /= 2; /* two bits per entry in the bitmap */
245 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
246 }
247
248 /**
249 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
250 * @rbm: The rbm with rgd already set correctly
251 * @block: The block number (filesystem relative)
252 *
253 * This sets the bi and offset members of an rbm based on a
254 * resource group and a filesystem relative block number. The
255 * resource group must be set in the rbm on entry, the bi and
256 * offset members will be set by this function.
257 *
258 * Returns: 0 on success, or an error code
259 */
260
261 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
262 {
263 if (!rgrp_contains_block(rbm->rgd, block))
264 return -E2BIG;
265 rbm->bii = 0;
266 rbm->offset = block - rbm->rgd->rd_data0;
267 /* Check if the block is within the first block */
268 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
269 return 0;
270
271 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
272 rbm->offset += (sizeof(struct gfs2_rgrp) -
273 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
274 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
275 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
276 return 0;
277 }
278
279 /**
280 * gfs2_rbm_incr - increment an rbm structure
281 * @rbm: The rbm with rgd already set correctly
282 *
283 * This function takes an existing rbm structure and increments it to the next
284 * viable block offset.
285 *
286 * Returns: If incrementing the offset would cause the rbm to go past the
287 * end of the rgrp, true is returned, otherwise false.
288 *
289 */
290
291 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
292 {
293 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
294 rbm->offset++;
295 return false;
296 }
297 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
298 return true;
299
300 rbm->offset = 0;
301 rbm->bii++;
302 return false;
303 }
304
305 /**
306 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
307 * @rbm: Position to search (value/result)
308 * @n_unaligned: Number of unaligned blocks to check
309 * @len: Decremented for each block found (terminate on zero)
310 *
311 * Returns: true if a non-free block is encountered
312 */
313
314 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
315 {
316 u32 n;
317 u8 res;
318
319 for (n = 0; n < n_unaligned; n++) {
320 res = gfs2_testbit(rbm, true);
321 if (res != GFS2_BLKST_FREE)
322 return true;
323 (*len)--;
324 if (*len == 0)
325 return true;
326 if (gfs2_rbm_incr(rbm))
327 return true;
328 }
329
330 return false;
331 }
332
333 /**
334 * gfs2_free_extlen - Return extent length of free blocks
335 * @rrbm: Starting position
336 * @len: Max length to check
337 *
338 * Starting at the block specified by the rbm, see how many free blocks
339 * there are, not reading more than len blocks ahead. This can be done
340 * using memchr_inv when the blocks are byte aligned, but has to be done
341 * on a block by block basis in case of unaligned blocks. Also this
342 * function can cope with bitmap boundaries (although it must stop on
343 * a resource group boundary)
344 *
345 * Returns: Number of free blocks in the extent
346 */
347
348 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
349 {
350 struct gfs2_rbm rbm = *rrbm;
351 u32 n_unaligned = rbm.offset & 3;
352 u32 size = len;
353 u32 bytes;
354 u32 chunk_size;
355 u8 *ptr, *start, *end;
356 u64 block;
357 struct gfs2_bitmap *bi;
358
359 if (n_unaligned &&
360 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
361 goto out;
362
363 n_unaligned = len & 3;
364 /* Start is now byte aligned */
365 while (len > 3) {
366 bi = rbm_bi(&rbm);
367 start = bi->bi_bh->b_data;
368 if (bi->bi_clone)
369 start = bi->bi_clone;
370 start += bi->bi_offset;
371 end = start + bi->bi_bytes;
372 BUG_ON(rbm.offset & 3);
373 start += (rbm.offset / GFS2_NBBY);
374 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
375 ptr = memchr_inv(start, 0, bytes);
376 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
377 chunk_size *= GFS2_NBBY;
378 BUG_ON(len < chunk_size);
379 len -= chunk_size;
380 block = gfs2_rbm_to_block(&rbm);
381 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
382 n_unaligned = 0;
383 break;
384 }
385 if (ptr) {
386 n_unaligned = 3;
387 break;
388 }
389 n_unaligned = len & 3;
390 }
391
392 /* Deal with any bits left over at the end */
393 if (n_unaligned)
394 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
395 out:
396 return size - len;
397 }
398
399 /**
400 * gfs2_bitcount - count the number of bits in a certain state
401 * @rgd: the resource group descriptor
402 * @buffer: the buffer that holds the bitmaps
403 * @buflen: the length (in bytes) of the buffer
404 * @state: the state of the block we're looking for
405 *
406 * Returns: The number of bits
407 */
408
409 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
410 unsigned int buflen, u8 state)
411 {
412 const u8 *byte = buffer;
413 const u8 *end = buffer + buflen;
414 const u8 state1 = state << 2;
415 const u8 state2 = state << 4;
416 const u8 state3 = state << 6;
417 u32 count = 0;
418
419 for (; byte < end; byte++) {
420 if (((*byte) & 0x03) == state)
421 count++;
422 if (((*byte) & 0x0C) == state1)
423 count++;
424 if (((*byte) & 0x30) == state2)
425 count++;
426 if (((*byte) & 0xC0) == state3)
427 count++;
428 }
429
430 return count;
431 }
432
433 /**
434 * gfs2_rgrp_verify - Verify that a resource group is consistent
435 * @rgd: the rgrp
436 *
437 */
438
439 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
440 {
441 struct gfs2_sbd *sdp = rgd->rd_sbd;
442 struct gfs2_bitmap *bi = NULL;
443 u32 length = rgd->rd_length;
444 u32 count[4], tmp;
445 int buf, x;
446
447 memset(count, 0, 4 * sizeof(u32));
448
449 /* Count # blocks in each of 4 possible allocation states */
450 for (buf = 0; buf < length; buf++) {
451 bi = rgd->rd_bits + buf;
452 for (x = 0; x < 4; x++)
453 count[x] += gfs2_bitcount(rgd,
454 bi->bi_bh->b_data +
455 bi->bi_offset,
456 bi->bi_bytes, x);
457 }
458
459 if (count[0] != rgd->rd_free) {
460 gfs2_lm(sdp, "free data mismatch: %u != %u\n",
461 count[0], rgd->rd_free);
462 gfs2_consist_rgrpd(rgd);
463 return;
464 }
465
466 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
467 if (count[1] != tmp) {
468 gfs2_lm(sdp, "used data mismatch: %u != %u\n",
469 count[1], tmp);
470 gfs2_consist_rgrpd(rgd);
471 return;
472 }
473
474 if (count[2] + count[3] != rgd->rd_dinodes) {
475 gfs2_lm(sdp, "used metadata mismatch: %u != %u\n",
476 count[2] + count[3], rgd->rd_dinodes);
477 gfs2_consist_rgrpd(rgd);
478 return;
479 }
480 }
481
482 /**
483 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
484 * @sdp: The GFS2 superblock
485 * @blk: The data block number
486 * @exact: True if this needs to be an exact match
487 *
488 * The @exact argument should be set to true by most callers. The exception
489 * is when we need to match blocks which are not represented by the rgrp
490 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
491 * there for alignment purposes. Another way of looking at it is that @exact
492 * matches only valid data/metadata blocks, but with @exact false, it will
493 * match any block within the extent of the rgrp.
494 *
495 * Returns: The resource group, or NULL if not found
496 */
497
498 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
499 {
500 struct rb_node *n, *next;
501 struct gfs2_rgrpd *cur;
502
503 spin_lock(&sdp->sd_rindex_spin);
504 n = sdp->sd_rindex_tree.rb_node;
505 while (n) {
506 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
507 next = NULL;
508 if (blk < cur->rd_addr)
509 next = n->rb_left;
510 else if (blk >= cur->rd_data0 + cur->rd_data)
511 next = n->rb_right;
512 if (next == NULL) {
513 spin_unlock(&sdp->sd_rindex_spin);
514 if (exact) {
515 if (blk < cur->rd_addr)
516 return NULL;
517 if (blk >= cur->rd_data0 + cur->rd_data)
518 return NULL;
519 }
520 return cur;
521 }
522 n = next;
523 }
524 spin_unlock(&sdp->sd_rindex_spin);
525
526 return NULL;
527 }
528
529 /**
530 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
531 * @sdp: The GFS2 superblock
532 *
533 * Returns: The first rgrp in the filesystem
534 */
535
536 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
537 {
538 const struct rb_node *n;
539 struct gfs2_rgrpd *rgd;
540
541 spin_lock(&sdp->sd_rindex_spin);
542 n = rb_first(&sdp->sd_rindex_tree);
543 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
544 spin_unlock(&sdp->sd_rindex_spin);
545
546 return rgd;
547 }
548
549 /**
550 * gfs2_rgrpd_get_next - get the next RG
551 * @rgd: the resource group descriptor
552 *
553 * Returns: The next rgrp
554 */
555
556 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
557 {
558 struct gfs2_sbd *sdp = rgd->rd_sbd;
559 const struct rb_node *n;
560
561 spin_lock(&sdp->sd_rindex_spin);
562 n = rb_next(&rgd->rd_node);
563 if (n == NULL)
564 n = rb_first(&sdp->sd_rindex_tree);
565
566 if (unlikely(&rgd->rd_node == n)) {
567 spin_unlock(&sdp->sd_rindex_spin);
568 return NULL;
569 }
570 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
571 spin_unlock(&sdp->sd_rindex_spin);
572 return rgd;
573 }
574
575 void check_and_update_goal(struct gfs2_inode *ip)
576 {
577 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
578 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
579 ip->i_goal = ip->i_no_addr;
580 }
581
582 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
583 {
584 int x;
585
586 for (x = 0; x < rgd->rd_length; x++) {
587 struct gfs2_bitmap *bi = rgd->rd_bits + x;
588 kfree(bi->bi_clone);
589 bi->bi_clone = NULL;
590 }
591 }
592
593 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs,
594 const char *fs_id_buf)
595 {
596 struct gfs2_inode *ip = container_of(rs, struct gfs2_inode, i_res);
597
598 gfs2_print_dbg(seq, "%s B: n:%llu s:%llu b:%u f:%u\n", fs_id_buf,
599 (unsigned long long)ip->i_no_addr,
600 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
601 rs->rs_rbm.offset, rs->rs_free);
602 }
603
604 /**
605 * __rs_deltree - remove a multi-block reservation from the rgd tree
606 * @rs: The reservation to remove
607 *
608 */
609 static void __rs_deltree(struct gfs2_blkreserv *rs)
610 {
611 struct gfs2_rgrpd *rgd;
612
613 if (!gfs2_rs_active(rs))
614 return;
615
616 rgd = rs->rs_rbm.rgd;
617 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
618 rb_erase(&rs->rs_node, &rgd->rd_rstree);
619 RB_CLEAR_NODE(&rs->rs_node);
620
621 if (rs->rs_free) {
622 u64 last_block = gfs2_rbm_to_block(&rs->rs_rbm) +
623 rs->rs_free - 1;
624 struct gfs2_rbm last_rbm = { .rgd = rs->rs_rbm.rgd, };
625 struct gfs2_bitmap *start, *last;
626
627 /* return reserved blocks to the rgrp */
628 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
629 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
630 /* The rgrp extent failure point is likely not to increase;
631 it will only do so if the freed blocks are somehow
632 contiguous with a span of free blocks that follows. Still,
633 it will force the number to be recalculated later. */
634 rgd->rd_extfail_pt += rs->rs_free;
635 rs->rs_free = 0;
636 if (gfs2_rbm_from_block(&last_rbm, last_block))
637 return;
638 start = rbm_bi(&rs->rs_rbm);
639 last = rbm_bi(&last_rbm);
640 do
641 clear_bit(GBF_FULL, &start->bi_flags);
642 while (start++ != last);
643 }
644 }
645
646 /**
647 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
648 * @rs: The reservation to remove
649 *
650 */
651 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
652 {
653 struct gfs2_rgrpd *rgd;
654
655 rgd = rs->rs_rbm.rgd;
656 if (rgd) {
657 spin_lock(&rgd->rd_rsspin);
658 __rs_deltree(rs);
659 BUG_ON(rs->rs_free);
660 spin_unlock(&rgd->rd_rsspin);
661 }
662 }
663
664 /**
665 * gfs2_rs_delete - delete a multi-block reservation
666 * @ip: The inode for this reservation
667 * @wcount: The inode's write count, or NULL
668 *
669 */
670 void gfs2_rs_delete(struct gfs2_inode *ip, atomic_t *wcount)
671 {
672 down_write(&ip->i_rw_mutex);
673 if ((wcount == NULL) || (atomic_read(wcount) <= 1))
674 gfs2_rs_deltree(&ip->i_res);
675 up_write(&ip->i_rw_mutex);
676 }
677
678 /**
679 * return_all_reservations - return all reserved blocks back to the rgrp.
680 * @rgd: the rgrp that needs its space back
681 *
682 * We previously reserved a bunch of blocks for allocation. Now we need to
683 * give them back. This leave the reservation structures in tact, but removes
684 * all of their corresponding "no-fly zones".
685 */
686 static void return_all_reservations(struct gfs2_rgrpd *rgd)
687 {
688 struct rb_node *n;
689 struct gfs2_blkreserv *rs;
690
691 spin_lock(&rgd->rd_rsspin);
692 while ((n = rb_first(&rgd->rd_rstree))) {
693 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
694 __rs_deltree(rs);
695 }
696 spin_unlock(&rgd->rd_rsspin);
697 }
698
699 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
700 {
701 struct rb_node *n;
702 struct gfs2_rgrpd *rgd;
703 struct gfs2_glock *gl;
704
705 while ((n = rb_first(&sdp->sd_rindex_tree))) {
706 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
707 gl = rgd->rd_gl;
708
709 rb_erase(n, &sdp->sd_rindex_tree);
710
711 if (gl) {
712 if (gl->gl_state != LM_ST_UNLOCKED) {
713 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
714 flush_delayed_work(&gl->gl_work);
715 }
716 gfs2_rgrp_brelse(rgd);
717 glock_clear_object(gl, rgd);
718 gfs2_glock_put(gl);
719 }
720
721 gfs2_free_clones(rgd);
722 kfree(rgd->rd_bits);
723 rgd->rd_bits = NULL;
724 return_all_reservations(rgd);
725 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
726 }
727 }
728
729 /**
730 * gfs2_compute_bitstructs - Compute the bitmap sizes
731 * @rgd: The resource group descriptor
732 *
733 * Calculates bitmap descriptors, one for each block that contains bitmap data
734 *
735 * Returns: errno
736 */
737
738 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
739 {
740 struct gfs2_sbd *sdp = rgd->rd_sbd;
741 struct gfs2_bitmap *bi;
742 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
743 u32 bytes_left, bytes;
744 int x;
745
746 if (!length)
747 return -EINVAL;
748
749 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
750 if (!rgd->rd_bits)
751 return -ENOMEM;
752
753 bytes_left = rgd->rd_bitbytes;
754
755 for (x = 0; x < length; x++) {
756 bi = rgd->rd_bits + x;
757
758 bi->bi_flags = 0;
759 /* small rgrp; bitmap stored completely in header block */
760 if (length == 1) {
761 bytes = bytes_left;
762 bi->bi_offset = sizeof(struct gfs2_rgrp);
763 bi->bi_start = 0;
764 bi->bi_bytes = bytes;
765 bi->bi_blocks = bytes * GFS2_NBBY;
766 /* header block */
767 } else if (x == 0) {
768 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
769 bi->bi_offset = sizeof(struct gfs2_rgrp);
770 bi->bi_start = 0;
771 bi->bi_bytes = bytes;
772 bi->bi_blocks = bytes * GFS2_NBBY;
773 /* last block */
774 } else if (x + 1 == length) {
775 bytes = bytes_left;
776 bi->bi_offset = sizeof(struct gfs2_meta_header);
777 bi->bi_start = rgd->rd_bitbytes - bytes_left;
778 bi->bi_bytes = bytes;
779 bi->bi_blocks = bytes * GFS2_NBBY;
780 /* other blocks */
781 } else {
782 bytes = sdp->sd_sb.sb_bsize -
783 sizeof(struct gfs2_meta_header);
784 bi->bi_offset = sizeof(struct gfs2_meta_header);
785 bi->bi_start = rgd->rd_bitbytes - bytes_left;
786 bi->bi_bytes = bytes;
787 bi->bi_blocks = bytes * GFS2_NBBY;
788 }
789
790 bytes_left -= bytes;
791 }
792
793 if (bytes_left) {
794 gfs2_consist_rgrpd(rgd);
795 return -EIO;
796 }
797 bi = rgd->rd_bits + (length - 1);
798 if ((bi->bi_start + bi->bi_bytes) * GFS2_NBBY != rgd->rd_data) {
799 gfs2_lm(sdp,
800 "ri_addr = %llu\n"
801 "ri_length = %u\n"
802 "ri_data0 = %llu\n"
803 "ri_data = %u\n"
804 "ri_bitbytes = %u\n"
805 "start=%u len=%u offset=%u\n",
806 (unsigned long long)rgd->rd_addr,
807 rgd->rd_length,
808 (unsigned long long)rgd->rd_data0,
809 rgd->rd_data,
810 rgd->rd_bitbytes,
811 bi->bi_start, bi->bi_bytes, bi->bi_offset);
812 gfs2_consist_rgrpd(rgd);
813 return -EIO;
814 }
815
816 return 0;
817 }
818
819 /**
820 * gfs2_ri_total - Total up the file system space, according to the rindex.
821 * @sdp: the filesystem
822 *
823 */
824 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
825 {
826 u64 total_data = 0;
827 struct inode *inode = sdp->sd_rindex;
828 struct gfs2_inode *ip = GFS2_I(inode);
829 char buf[sizeof(struct gfs2_rindex)];
830 int error, rgrps;
831
832 for (rgrps = 0;; rgrps++) {
833 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
834
835 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
836 break;
837 error = gfs2_internal_read(ip, buf, &pos,
838 sizeof(struct gfs2_rindex));
839 if (error != sizeof(struct gfs2_rindex))
840 break;
841 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
842 }
843 return total_data;
844 }
845
846 static int rgd_insert(struct gfs2_rgrpd *rgd)
847 {
848 struct gfs2_sbd *sdp = rgd->rd_sbd;
849 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
850
851 /* Figure out where to put new node */
852 while (*newn) {
853 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
854 rd_node);
855
856 parent = *newn;
857 if (rgd->rd_addr < cur->rd_addr)
858 newn = &((*newn)->rb_left);
859 else if (rgd->rd_addr > cur->rd_addr)
860 newn = &((*newn)->rb_right);
861 else
862 return -EEXIST;
863 }
864
865 rb_link_node(&rgd->rd_node, parent, newn);
866 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
867 sdp->sd_rgrps++;
868 return 0;
869 }
870
871 /**
872 * read_rindex_entry - Pull in a new resource index entry from the disk
873 * @ip: Pointer to the rindex inode
874 *
875 * Returns: 0 on success, > 0 on EOF, error code otherwise
876 */
877
878 static int read_rindex_entry(struct gfs2_inode *ip)
879 {
880 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
881 const unsigned bsize = sdp->sd_sb.sb_bsize;
882 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
883 struct gfs2_rindex buf;
884 int error;
885 struct gfs2_rgrpd *rgd;
886
887 if (pos >= i_size_read(&ip->i_inode))
888 return 1;
889
890 error = gfs2_internal_read(ip, (char *)&buf, &pos,
891 sizeof(struct gfs2_rindex));
892
893 if (error != sizeof(struct gfs2_rindex))
894 return (error == 0) ? 1 : error;
895
896 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
897 error = -ENOMEM;
898 if (!rgd)
899 return error;
900
901 rgd->rd_sbd = sdp;
902 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
903 rgd->rd_length = be32_to_cpu(buf.ri_length);
904 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
905 rgd->rd_data = be32_to_cpu(buf.ri_data);
906 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
907 spin_lock_init(&rgd->rd_rsspin);
908
909 error = compute_bitstructs(rgd);
910 if (error)
911 goto fail;
912
913 error = gfs2_glock_get(sdp, rgd->rd_addr,
914 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
915 if (error)
916 goto fail;
917
918 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
919 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
920 if (rgd->rd_data > sdp->sd_max_rg_data)
921 sdp->sd_max_rg_data = rgd->rd_data;
922 spin_lock(&sdp->sd_rindex_spin);
923 error = rgd_insert(rgd);
924 spin_unlock(&sdp->sd_rindex_spin);
925 if (!error) {
926 glock_set_object(rgd->rd_gl, rgd);
927 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
928 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
929 rgd->rd_length) * bsize) - 1;
930 return 0;
931 }
932
933 error = 0; /* someone else read in the rgrp; free it and ignore it */
934 gfs2_glock_put(rgd->rd_gl);
935
936 fail:
937 kfree(rgd->rd_bits);
938 rgd->rd_bits = NULL;
939 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
940 return error;
941 }
942
943 /**
944 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
945 * @sdp: the GFS2 superblock
946 *
947 * The purpose of this function is to select a subset of the resource groups
948 * and mark them as PREFERRED. We do it in such a way that each node prefers
949 * to use a unique set of rgrps to minimize glock contention.
950 */
951 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
952 {
953 struct gfs2_rgrpd *rgd, *first;
954 int i;
955
956 /* Skip an initial number of rgrps, based on this node's journal ID.
957 That should start each node out on its own set. */
958 rgd = gfs2_rgrpd_get_first(sdp);
959 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
960 rgd = gfs2_rgrpd_get_next(rgd);
961 first = rgd;
962
963 do {
964 rgd->rd_flags |= GFS2_RDF_PREFERRED;
965 for (i = 0; i < sdp->sd_journals; i++) {
966 rgd = gfs2_rgrpd_get_next(rgd);
967 if (!rgd || rgd == first)
968 break;
969 }
970 } while (rgd && rgd != first);
971 }
972
973 /**
974 * gfs2_ri_update - Pull in a new resource index from the disk
975 * @ip: pointer to the rindex inode
976 *
977 * Returns: 0 on successful update, error code otherwise
978 */
979
980 static int gfs2_ri_update(struct gfs2_inode *ip)
981 {
982 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
983 int error;
984
985 do {
986 error = read_rindex_entry(ip);
987 } while (error == 0);
988
989 if (error < 0)
990 return error;
991
992 set_rgrp_preferences(sdp);
993
994 sdp->sd_rindex_uptodate = 1;
995 return 0;
996 }
997
998 /**
999 * gfs2_rindex_update - Update the rindex if required
1000 * @sdp: The GFS2 superblock
1001 *
1002 * We grab a lock on the rindex inode to make sure that it doesn't
1003 * change whilst we are performing an operation. We keep this lock
1004 * for quite long periods of time compared to other locks. This
1005 * doesn't matter, since it is shared and it is very, very rarely
1006 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1007 *
1008 * This makes sure that we're using the latest copy of the resource index
1009 * special file, which might have been updated if someone expanded the
1010 * filesystem (via gfs2_grow utility), which adds new resource groups.
1011 *
1012 * Returns: 0 on succeess, error code otherwise
1013 */
1014
1015 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1016 {
1017 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1018 struct gfs2_glock *gl = ip->i_gl;
1019 struct gfs2_holder ri_gh;
1020 int error = 0;
1021 int unlock_required = 0;
1022
1023 /* Read new copy from disk if we don't have the latest */
1024 if (!sdp->sd_rindex_uptodate) {
1025 if (!gfs2_glock_is_locked_by_me(gl)) {
1026 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1027 if (error)
1028 return error;
1029 unlock_required = 1;
1030 }
1031 if (!sdp->sd_rindex_uptodate)
1032 error = gfs2_ri_update(ip);
1033 if (unlock_required)
1034 gfs2_glock_dq_uninit(&ri_gh);
1035 }
1036
1037 return error;
1038 }
1039
1040 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1041 {
1042 const struct gfs2_rgrp *str = buf;
1043 u32 rg_flags;
1044
1045 rg_flags = be32_to_cpu(str->rg_flags);
1046 rg_flags &= ~GFS2_RDF_MASK;
1047 rgd->rd_flags &= GFS2_RDF_MASK;
1048 rgd->rd_flags |= rg_flags;
1049 rgd->rd_free = be32_to_cpu(str->rg_free);
1050 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1051 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1052 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1053 }
1054
1055 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1056 {
1057 const struct gfs2_rgrp *str = buf;
1058
1059 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1060 rgl->rl_flags = str->rg_flags;
1061 rgl->rl_free = str->rg_free;
1062 rgl->rl_dinodes = str->rg_dinodes;
1063 rgl->rl_igeneration = str->rg_igeneration;
1064 rgl->__pad = 0UL;
1065 }
1066
1067 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1068 {
1069 struct gfs2_rgrpd *next = gfs2_rgrpd_get_next(rgd);
1070 struct gfs2_rgrp *str = buf;
1071 u32 crc;
1072
1073 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1074 str->rg_free = cpu_to_be32(rgd->rd_free);
1075 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1076 if (next == NULL)
1077 str->rg_skip = 0;
1078 else if (next->rd_addr > rgd->rd_addr)
1079 str->rg_skip = cpu_to_be32(next->rd_addr - rgd->rd_addr);
1080 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1081 str->rg_data0 = cpu_to_be64(rgd->rd_data0);
1082 str->rg_data = cpu_to_be32(rgd->rd_data);
1083 str->rg_bitbytes = cpu_to_be32(rgd->rd_bitbytes);
1084 str->rg_crc = 0;
1085 crc = gfs2_disk_hash(buf, sizeof(struct gfs2_rgrp));
1086 str->rg_crc = cpu_to_be32(crc);
1087
1088 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1089 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, buf);
1090 }
1091
1092 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1093 {
1094 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1095 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1096 struct gfs2_sbd *sdp = rgd->rd_sbd;
1097 int valid = 1;
1098
1099 if (rgl->rl_flags != str->rg_flags) {
1100 fs_warn(sdp, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1101 (unsigned long long)rgd->rd_addr,
1102 be32_to_cpu(rgl->rl_flags), be32_to_cpu(str->rg_flags));
1103 valid = 0;
1104 }
1105 if (rgl->rl_free != str->rg_free) {
1106 fs_warn(sdp, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1107 (unsigned long long)rgd->rd_addr,
1108 be32_to_cpu(rgl->rl_free), be32_to_cpu(str->rg_free));
1109 valid = 0;
1110 }
1111 if (rgl->rl_dinodes != str->rg_dinodes) {
1112 fs_warn(sdp, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1113 (unsigned long long)rgd->rd_addr,
1114 be32_to_cpu(rgl->rl_dinodes),
1115 be32_to_cpu(str->rg_dinodes));
1116 valid = 0;
1117 }
1118 if (rgl->rl_igeneration != str->rg_igeneration) {
1119 fs_warn(sdp, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1120 (unsigned long long)rgd->rd_addr,
1121 (unsigned long long)be64_to_cpu(rgl->rl_igeneration),
1122 (unsigned long long)be64_to_cpu(str->rg_igeneration));
1123 valid = 0;
1124 }
1125 return valid;
1126 }
1127
1128 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1129 {
1130 struct gfs2_bitmap *bi;
1131 const u32 length = rgd->rd_length;
1132 const u8 *buffer = NULL;
1133 u32 i, goal, count = 0;
1134
1135 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1136 goal = 0;
1137 buffer = bi->bi_bh->b_data + bi->bi_offset;
1138 WARN_ON(!buffer_uptodate(bi->bi_bh));
1139 while (goal < bi->bi_blocks) {
1140 goal = gfs2_bitfit(buffer, bi->bi_bytes, goal,
1141 GFS2_BLKST_UNLINKED);
1142 if (goal == BFITNOENT)
1143 break;
1144 count++;
1145 goal++;
1146 }
1147 }
1148
1149 return count;
1150 }
1151
1152
1153 /**
1154 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1155 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1156 *
1157 * Read in all of a Resource Group's header and bitmap blocks.
1158 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1159 *
1160 * Returns: errno
1161 */
1162
1163 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1164 {
1165 struct gfs2_sbd *sdp = rgd->rd_sbd;
1166 struct gfs2_glock *gl = rgd->rd_gl;
1167 unsigned int length = rgd->rd_length;
1168 struct gfs2_bitmap *bi;
1169 unsigned int x, y;
1170 int error;
1171
1172 if (rgd->rd_bits[0].bi_bh != NULL)
1173 return 0;
1174
1175 for (x = 0; x < length; x++) {
1176 bi = rgd->rd_bits + x;
1177 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1178 if (error)
1179 goto fail;
1180 }
1181
1182 for (y = length; y--;) {
1183 bi = rgd->rd_bits + y;
1184 error = gfs2_meta_wait(sdp, bi->bi_bh);
1185 if (error)
1186 goto fail;
1187 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1188 GFS2_METATYPE_RG)) {
1189 error = -EIO;
1190 goto fail;
1191 }
1192 }
1193
1194 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1195 for (x = 0; x < length; x++)
1196 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1197 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1198 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1199 rgd->rd_free_clone = rgd->rd_free;
1200 /* max out the rgrp allocation failure point */
1201 rgd->rd_extfail_pt = rgd->rd_free;
1202 }
1203 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1204 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1205 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1206 rgd->rd_bits[0].bi_bh->b_data);
1207 }
1208 else if (sdp->sd_args.ar_rgrplvb) {
1209 if (!gfs2_rgrp_lvb_valid(rgd)){
1210 gfs2_consist_rgrpd(rgd);
1211 error = -EIO;
1212 goto fail;
1213 }
1214 if (rgd->rd_rgl->rl_unlinked == 0)
1215 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1216 }
1217 return 0;
1218
1219 fail:
1220 while (x--) {
1221 bi = rgd->rd_bits + x;
1222 brelse(bi->bi_bh);
1223 bi->bi_bh = NULL;
1224 gfs2_assert_warn(sdp, !bi->bi_clone);
1225 }
1226
1227 return error;
1228 }
1229
1230 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1231 {
1232 u32 rl_flags;
1233
1234 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1235 return 0;
1236
1237 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1238 return gfs2_rgrp_bh_get(rgd);
1239
1240 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1241 rl_flags &= ~GFS2_RDF_MASK;
1242 rgd->rd_flags &= GFS2_RDF_MASK;
1243 rgd->rd_flags |= (rl_flags | GFS2_RDF_CHECK);
1244 if (rgd->rd_rgl->rl_unlinked == 0)
1245 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1246 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1247 rgd->rd_free_clone = rgd->rd_free;
1248 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1249 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1250 return 0;
1251 }
1252
1253 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1254 {
1255 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1256 struct gfs2_sbd *sdp = rgd->rd_sbd;
1257
1258 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1259 return 0;
1260 return gfs2_rgrp_bh_get(rgd);
1261 }
1262
1263 /**
1264 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1265 * @rgd: The resource group
1266 *
1267 */
1268
1269 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1270 {
1271 int x, length = rgd->rd_length;
1272
1273 for (x = 0; x < length; x++) {
1274 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1275 if (bi->bi_bh) {
1276 brelse(bi->bi_bh);
1277 bi->bi_bh = NULL;
1278 }
1279 }
1280 }
1281
1282 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1283 struct buffer_head *bh,
1284 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1285 {
1286 struct super_block *sb = sdp->sd_vfs;
1287 u64 blk;
1288 sector_t start = 0;
1289 sector_t nr_blks = 0;
1290 int rv;
1291 unsigned int x;
1292 u32 trimmed = 0;
1293 u8 diff;
1294
1295 for (x = 0; x < bi->bi_bytes; x++) {
1296 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1297 clone += bi->bi_offset;
1298 clone += x;
1299 if (bh) {
1300 const u8 *orig = bh->b_data + bi->bi_offset + x;
1301 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1302 } else {
1303 diff = ~(*clone | (*clone >> 1));
1304 }
1305 diff &= 0x55;
1306 if (diff == 0)
1307 continue;
1308 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1309 while(diff) {
1310 if (diff & 1) {
1311 if (nr_blks == 0)
1312 goto start_new_extent;
1313 if ((start + nr_blks) != blk) {
1314 if (nr_blks >= minlen) {
1315 rv = sb_issue_discard(sb,
1316 start, nr_blks,
1317 GFP_NOFS, 0);
1318 if (rv)
1319 goto fail;
1320 trimmed += nr_blks;
1321 }
1322 nr_blks = 0;
1323 start_new_extent:
1324 start = blk;
1325 }
1326 nr_blks++;
1327 }
1328 diff >>= 2;
1329 blk++;
1330 }
1331 }
1332 if (nr_blks >= minlen) {
1333 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1334 if (rv)
1335 goto fail;
1336 trimmed += nr_blks;
1337 }
1338 if (ptrimmed)
1339 *ptrimmed = trimmed;
1340 return 0;
1341
1342 fail:
1343 if (sdp->sd_args.ar_discard)
1344 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem\n", rv);
1345 sdp->sd_args.ar_discard = 0;
1346 return -EIO;
1347 }
1348
1349 /**
1350 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1351 * @filp: Any file on the filesystem
1352 * @argp: Pointer to the arguments (also used to pass result)
1353 *
1354 * Returns: 0 on success, otherwise error code
1355 */
1356
1357 int gfs2_fitrim(struct file *filp, void __user *argp)
1358 {
1359 struct inode *inode = file_inode(filp);
1360 struct gfs2_sbd *sdp = GFS2_SB(inode);
1361 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1362 struct buffer_head *bh;
1363 struct gfs2_rgrpd *rgd;
1364 struct gfs2_rgrpd *rgd_end;
1365 struct gfs2_holder gh;
1366 struct fstrim_range r;
1367 int ret = 0;
1368 u64 amt;
1369 u64 trimmed = 0;
1370 u64 start, end, minlen;
1371 unsigned int x;
1372 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1373
1374 if (!capable(CAP_SYS_ADMIN))
1375 return -EPERM;
1376
1377 if (!blk_queue_discard(q))
1378 return -EOPNOTSUPP;
1379
1380 if (copy_from_user(&r, argp, sizeof(r)))
1381 return -EFAULT;
1382
1383 ret = gfs2_rindex_update(sdp);
1384 if (ret)
1385 return ret;
1386
1387 start = r.start >> bs_shift;
1388 end = start + (r.len >> bs_shift);
1389 minlen = max_t(u64, r.minlen,
1390 q->limits.discard_granularity) >> bs_shift;
1391
1392 if (end <= start || minlen > sdp->sd_max_rg_data)
1393 return -EINVAL;
1394
1395 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1396 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1397
1398 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1399 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1400 return -EINVAL; /* start is beyond the end of the fs */
1401
1402 while (1) {
1403
1404 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1405 if (ret)
1406 goto out;
1407
1408 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1409 /* Trim each bitmap in the rgrp */
1410 for (x = 0; x < rgd->rd_length; x++) {
1411 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1412 ret = gfs2_rgrp_send_discards(sdp,
1413 rgd->rd_data0, NULL, bi, minlen,
1414 &amt);
1415 if (ret) {
1416 gfs2_glock_dq_uninit(&gh);
1417 goto out;
1418 }
1419 trimmed += amt;
1420 }
1421
1422 /* Mark rgrp as having been trimmed */
1423 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1424 if (ret == 0) {
1425 bh = rgd->rd_bits[0].bi_bh;
1426 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1427 gfs2_trans_add_meta(rgd->rd_gl, bh);
1428 gfs2_rgrp_out(rgd, bh->b_data);
1429 gfs2_trans_end(sdp);
1430 }
1431 }
1432 gfs2_glock_dq_uninit(&gh);
1433
1434 if (rgd == rgd_end)
1435 break;
1436
1437 rgd = gfs2_rgrpd_get_next(rgd);
1438 }
1439
1440 out:
1441 r.len = trimmed << bs_shift;
1442 if (copy_to_user(argp, &r, sizeof(r)))
1443 return -EFAULT;
1444
1445 return ret;
1446 }
1447
1448 /**
1449 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1450 * @ip: the inode structure
1451 *
1452 */
1453 static void rs_insert(struct gfs2_inode *ip)
1454 {
1455 struct rb_node **newn, *parent = NULL;
1456 int rc;
1457 struct gfs2_blkreserv *rs = &ip->i_res;
1458 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1459 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1460
1461 BUG_ON(gfs2_rs_active(rs));
1462
1463 spin_lock(&rgd->rd_rsspin);
1464 newn = &rgd->rd_rstree.rb_node;
1465 while (*newn) {
1466 struct gfs2_blkreserv *cur =
1467 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1468
1469 parent = *newn;
1470 rc = rs_cmp(fsblock, rs->rs_free, cur);
1471 if (rc > 0)
1472 newn = &((*newn)->rb_right);
1473 else if (rc < 0)
1474 newn = &((*newn)->rb_left);
1475 else {
1476 spin_unlock(&rgd->rd_rsspin);
1477 WARN_ON(1);
1478 return;
1479 }
1480 }
1481
1482 rb_link_node(&rs->rs_node, parent, newn);
1483 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1484
1485 /* Do our rgrp accounting for the reservation */
1486 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1487 spin_unlock(&rgd->rd_rsspin);
1488 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1489 }
1490
1491 /**
1492 * rgd_free - return the number of free blocks we can allocate.
1493 * @rgd: the resource group
1494 *
1495 * This function returns the number of free blocks for an rgrp.
1496 * That's the clone-free blocks (blocks that are free, not including those
1497 * still being used for unlinked files that haven't been deleted.)
1498 *
1499 * It also subtracts any blocks reserved by someone else, but does not
1500 * include free blocks that are still part of our current reservation,
1501 * because obviously we can (and will) allocate them.
1502 */
1503 static inline u32 rgd_free(struct gfs2_rgrpd *rgd, struct gfs2_blkreserv *rs)
1504 {
1505 u32 tot_reserved, tot_free;
1506
1507 if (WARN_ON_ONCE(rgd->rd_reserved < rs->rs_free))
1508 return 0;
1509 tot_reserved = rgd->rd_reserved - rs->rs_free;
1510
1511 if (rgd->rd_free_clone < tot_reserved)
1512 tot_reserved = 0;
1513
1514 tot_free = rgd->rd_free_clone - tot_reserved;
1515
1516 return tot_free;
1517 }
1518
1519 /**
1520 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1521 * @rgd: the resource group descriptor
1522 * @ip: pointer to the inode for which we're reserving blocks
1523 * @ap: the allocation parameters
1524 *
1525 */
1526
1527 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1528 const struct gfs2_alloc_parms *ap)
1529 {
1530 struct gfs2_rbm rbm = { .rgd = rgd, };
1531 u64 goal;
1532 struct gfs2_blkreserv *rs = &ip->i_res;
1533 u32 extlen;
1534 u32 free_blocks = rgd_free(rgd, rs);
1535 int ret;
1536 struct inode *inode = &ip->i_inode;
1537
1538 if (S_ISDIR(inode->i_mode))
1539 extlen = 1;
1540 else {
1541 extlen = max_t(u32, atomic_read(&ip->i_sizehint), ap->target);
1542 extlen = clamp(extlen, (u32)RGRP_RSRV_MINBLKS, free_blocks);
1543 }
1544 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1545 return;
1546
1547 /* Find bitmap block that contains bits for goal block */
1548 if (rgrp_contains_block(rgd, ip->i_goal))
1549 goal = ip->i_goal;
1550 else
1551 goal = rgd->rd_last_alloc + rgd->rd_data0;
1552
1553 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1554 return;
1555
1556 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1557 if (ret == 0) {
1558 rs->rs_rbm = rbm;
1559 rs->rs_free = extlen;
1560 rs_insert(ip);
1561 } else {
1562 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1563 rgd->rd_last_alloc = 0;
1564 }
1565 }
1566
1567 /**
1568 * gfs2_next_unreserved_block - Return next block that is not reserved
1569 * @rgd: The resource group
1570 * @block: The starting block
1571 * @length: The required length
1572 * @ip: Ignore any reservations for this inode
1573 *
1574 * If the block does not appear in any reservation, then return the
1575 * block number unchanged. If it does appear in the reservation, then
1576 * keep looking through the tree of reservations in order to find the
1577 * first block number which is not reserved.
1578 */
1579
1580 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1581 u32 length,
1582 const struct gfs2_inode *ip)
1583 {
1584 struct gfs2_blkreserv *rs;
1585 struct rb_node *n;
1586 int rc;
1587
1588 spin_lock(&rgd->rd_rsspin);
1589 n = rgd->rd_rstree.rb_node;
1590 while (n) {
1591 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1592 rc = rs_cmp(block, length, rs);
1593 if (rc < 0)
1594 n = n->rb_left;
1595 else if (rc > 0)
1596 n = n->rb_right;
1597 else
1598 break;
1599 }
1600
1601 if (n) {
1602 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1603 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1604 n = n->rb_right;
1605 if (n == NULL)
1606 break;
1607 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1608 }
1609 }
1610
1611 spin_unlock(&rgd->rd_rsspin);
1612 return block;
1613 }
1614
1615 /**
1616 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1617 * @rbm: The current position in the resource group
1618 * @ip: The inode for which we are searching for blocks
1619 * @minext: The minimum extent length
1620 * @maxext: A pointer to the maximum extent structure
1621 *
1622 * This checks the current position in the rgrp to see whether there is
1623 * a reservation covering this block. If not then this function is a
1624 * no-op. If there is, then the position is moved to the end of the
1625 * contiguous reservation(s) so that we are pointing at the first
1626 * non-reserved block.
1627 *
1628 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1629 */
1630
1631 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1632 const struct gfs2_inode *ip,
1633 u32 minext,
1634 struct gfs2_extent *maxext)
1635 {
1636 u64 block = gfs2_rbm_to_block(rbm);
1637 u32 extlen = 1;
1638 u64 nblock;
1639 int ret;
1640
1641 /*
1642 * If we have a minimum extent length, then skip over any extent
1643 * which is less than the min extent length in size.
1644 */
1645 if (minext) {
1646 extlen = gfs2_free_extlen(rbm, minext);
1647 if (extlen <= maxext->len)
1648 goto fail;
1649 }
1650
1651 /*
1652 * Check the extent which has been found against the reservations
1653 * and skip if parts of it are already reserved
1654 */
1655 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1656 if (nblock == block) {
1657 if (!minext || extlen >= minext)
1658 return 0;
1659
1660 if (extlen > maxext->len) {
1661 maxext->len = extlen;
1662 maxext->rbm = *rbm;
1663 }
1664 fail:
1665 nblock = block + extlen;
1666 }
1667 ret = gfs2_rbm_from_block(rbm, nblock);
1668 if (ret < 0)
1669 return ret;
1670 return 1;
1671 }
1672
1673 /**
1674 * gfs2_rbm_find - Look for blocks of a particular state
1675 * @rbm: Value/result starting position and final position
1676 * @state: The state which we want to find
1677 * @minext: Pointer to the requested extent length (NULL for a single block)
1678 * This is updated to be the actual reservation size.
1679 * @ip: If set, check for reservations
1680 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1681 * around until we've reached the starting point.
1682 *
1683 * Side effects:
1684 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1685 * has no free blocks in it.
1686 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1687 * has come up short on a free block search.
1688 *
1689 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1690 */
1691
1692 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1693 const struct gfs2_inode *ip, bool nowrap)
1694 {
1695 bool scan_from_start = rbm->bii == 0 && rbm->offset == 0;
1696 struct buffer_head *bh;
1697 int last_bii;
1698 u32 offset;
1699 u8 *buffer;
1700 bool wrapped = false;
1701 int ret;
1702 struct gfs2_bitmap *bi;
1703 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1704
1705 /*
1706 * Determine the last bitmap to search. If we're not starting at the
1707 * beginning of a bitmap, we need to search that bitmap twice to scan
1708 * the entire resource group.
1709 */
1710 last_bii = rbm->bii - (rbm->offset == 0);
1711
1712 while(1) {
1713 bi = rbm_bi(rbm);
1714 if ((ip == NULL || !gfs2_rs_active(&ip->i_res)) &&
1715 test_bit(GBF_FULL, &bi->bi_flags) &&
1716 (state == GFS2_BLKST_FREE))
1717 goto next_bitmap;
1718
1719 bh = bi->bi_bh;
1720 buffer = bh->b_data + bi->bi_offset;
1721 WARN_ON(!buffer_uptodate(bh));
1722 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1723 buffer = bi->bi_clone + bi->bi_offset;
1724 offset = gfs2_bitfit(buffer, bi->bi_bytes, rbm->offset, state);
1725 if (offset == BFITNOENT) {
1726 if (state == GFS2_BLKST_FREE && rbm->offset == 0)
1727 set_bit(GBF_FULL, &bi->bi_flags);
1728 goto next_bitmap;
1729 }
1730 rbm->offset = offset;
1731 if (ip == NULL)
1732 return 0;
1733
1734 ret = gfs2_reservation_check_and_update(rbm, ip,
1735 minext ? *minext : 0,
1736 &maxext);
1737 if (ret == 0)
1738 return 0;
1739 if (ret > 0)
1740 goto next_iter;
1741 if (ret == -E2BIG) {
1742 rbm->bii = 0;
1743 rbm->offset = 0;
1744 goto res_covered_end_of_rgrp;
1745 }
1746 return ret;
1747
1748 next_bitmap: /* Find next bitmap in the rgrp */
1749 rbm->offset = 0;
1750 rbm->bii++;
1751 if (rbm->bii == rbm->rgd->rd_length)
1752 rbm->bii = 0;
1753 res_covered_end_of_rgrp:
1754 if (rbm->bii == 0) {
1755 if (wrapped)
1756 break;
1757 wrapped = true;
1758 if (nowrap)
1759 break;
1760 }
1761 next_iter:
1762 /* Have we scanned the entire resource group? */
1763 if (wrapped && rbm->bii > last_bii)
1764 break;
1765 }
1766
1767 if (minext == NULL || state != GFS2_BLKST_FREE)
1768 return -ENOSPC;
1769
1770 /* If the extent was too small, and it's smaller than the smallest
1771 to have failed before, remember for future reference that it's
1772 useless to search this rgrp again for this amount or more. */
1773 if (wrapped && (scan_from_start || rbm->bii > last_bii) &&
1774 *minext < rbm->rgd->rd_extfail_pt)
1775 rbm->rgd->rd_extfail_pt = *minext;
1776
1777 /* If the maximum extent we found is big enough to fulfill the
1778 minimum requirements, use it anyway. */
1779 if (maxext.len) {
1780 *rbm = maxext.rbm;
1781 *minext = maxext.len;
1782 return 0;
1783 }
1784
1785 return -ENOSPC;
1786 }
1787
1788 /**
1789 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1790 * @rgd: The rgrp
1791 * @last_unlinked: block address of the last dinode we unlinked
1792 * @skip: block address we should explicitly not unlink
1793 *
1794 * Returns: 0 if no error
1795 * The inode, if one has been found, in inode.
1796 */
1797
1798 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1799 {
1800 u64 block;
1801 struct gfs2_sbd *sdp = rgd->rd_sbd;
1802 struct gfs2_glock *gl;
1803 struct gfs2_inode *ip;
1804 int error;
1805 int found = 0;
1806 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1807
1808 while (1) {
1809 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1810 true);
1811 if (error == -ENOSPC)
1812 break;
1813 if (WARN_ON_ONCE(error))
1814 break;
1815
1816 block = gfs2_rbm_to_block(&rbm);
1817 if (gfs2_rbm_from_block(&rbm, block + 1))
1818 break;
1819 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1820 continue;
1821 if (block == skip)
1822 continue;
1823 *last_unlinked = block;
1824
1825 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1826 if (error)
1827 continue;
1828
1829 /* If the inode is already in cache, we can ignore it here
1830 * because the existing inode disposal code will deal with
1831 * it when all refs have gone away. Accessing gl_object like
1832 * this is not safe in general. Here it is ok because we do
1833 * not dereference the pointer, and we only need an approx
1834 * answer to whether it is NULL or not.
1835 */
1836 ip = gl->gl_object;
1837
1838 if (ip || !gfs2_queue_delete_work(gl, 0))
1839 gfs2_glock_put(gl);
1840 else
1841 found++;
1842
1843 /* Limit reclaim to sensible number of tasks */
1844 if (found > NR_CPUS)
1845 return;
1846 }
1847
1848 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1849 return;
1850 }
1851
1852 /**
1853 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1854 * @rgd: The rgrp in question
1855 * @loops: An indication of how picky we can be (0=very, 1=less so)
1856 *
1857 * This function uses the recently added glock statistics in order to
1858 * figure out whether a parciular resource group is suffering from
1859 * contention from multiple nodes. This is done purely on the basis
1860 * of timings, since this is the only data we have to work with and
1861 * our aim here is to reject a resource group which is highly contended
1862 * but (very important) not to do this too often in order to ensure that
1863 * we do not land up introducing fragmentation by changing resource
1864 * groups when not actually required.
1865 *
1866 * The calculation is fairly simple, we want to know whether the SRTTB
1867 * (i.e. smoothed round trip time for blocking operations) to acquire
1868 * the lock for this rgrp's glock is significantly greater than the
1869 * time taken for resource groups on average. We introduce a margin in
1870 * the form of the variable @var which is computed as the sum of the two
1871 * respective variences, and multiplied by a factor depending on @loops
1872 * and whether we have a lot of data to base the decision on. This is
1873 * then tested against the square difference of the means in order to
1874 * decide whether the result is statistically significant or not.
1875 *
1876 * Returns: A boolean verdict on the congestion status
1877 */
1878
1879 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1880 {
1881 const struct gfs2_glock *gl = rgd->rd_gl;
1882 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1883 struct gfs2_lkstats *st;
1884 u64 r_dcount, l_dcount;
1885 u64 l_srttb, a_srttb = 0;
1886 s64 srttb_diff;
1887 u64 sqr_diff;
1888 u64 var;
1889 int cpu, nonzero = 0;
1890
1891 preempt_disable();
1892 for_each_present_cpu(cpu) {
1893 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1894 if (st->stats[GFS2_LKS_SRTTB]) {
1895 a_srttb += st->stats[GFS2_LKS_SRTTB];
1896 nonzero++;
1897 }
1898 }
1899 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1900 if (nonzero)
1901 do_div(a_srttb, nonzero);
1902 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1903 var = st->stats[GFS2_LKS_SRTTVARB] +
1904 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1905 preempt_enable();
1906
1907 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1908 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1909
1910 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1911 return false;
1912
1913 srttb_diff = a_srttb - l_srttb;
1914 sqr_diff = srttb_diff * srttb_diff;
1915
1916 var *= 2;
1917 if (l_dcount < 8 || r_dcount < 8)
1918 var *= 2;
1919 if (loops == 1)
1920 var *= 2;
1921
1922 return ((srttb_diff < 0) && (sqr_diff > var));
1923 }
1924
1925 /**
1926 * gfs2_rgrp_used_recently
1927 * @rs: The block reservation with the rgrp to test
1928 * @msecs: The time limit in milliseconds
1929 *
1930 * Returns: True if the rgrp glock has been used within the time limit
1931 */
1932 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1933 u64 msecs)
1934 {
1935 u64 tdiff;
1936
1937 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1938 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1939
1940 return tdiff > (msecs * 1000 * 1000);
1941 }
1942
1943 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1944 {
1945 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1946 u32 skip;
1947
1948 get_random_bytes(&skip, sizeof(skip));
1949 return skip % sdp->sd_rgrps;
1950 }
1951
1952 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1953 {
1954 struct gfs2_rgrpd *rgd = *pos;
1955 struct gfs2_sbd *sdp = rgd->rd_sbd;
1956
1957 rgd = gfs2_rgrpd_get_next(rgd);
1958 if (rgd == NULL)
1959 rgd = gfs2_rgrpd_get_first(sdp);
1960 *pos = rgd;
1961 if (rgd != begin) /* If we didn't wrap */
1962 return true;
1963 return false;
1964 }
1965
1966 /**
1967 * fast_to_acquire - determine if a resource group will be fast to acquire
1968 *
1969 * If this is one of our preferred rgrps, it should be quicker to acquire,
1970 * because we tried to set ourselves up as dlm lock master.
1971 */
1972 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1973 {
1974 struct gfs2_glock *gl = rgd->rd_gl;
1975
1976 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1977 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1978 !test_bit(GLF_DEMOTE, &gl->gl_flags))
1979 return 1;
1980 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1981 return 1;
1982 return 0;
1983 }
1984
1985 /**
1986 * gfs2_inplace_reserve - Reserve space in the filesystem
1987 * @ip: the inode to reserve space for
1988 * @ap: the allocation parameters
1989 *
1990 * We try our best to find an rgrp that has at least ap->target blocks
1991 * available. After a couple of passes (loops == 2), the prospects of finding
1992 * such an rgrp diminish. At this stage, we return the first rgrp that has
1993 * at least ap->min_target blocks available. Either way, we set ap->allowed to
1994 * the number of blocks available in the chosen rgrp.
1995 *
1996 * Returns: 0 on success,
1997 * -ENOMEM if a suitable rgrp can't be found
1998 * errno otherwise
1999 */
2000
2001 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
2002 {
2003 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2004 struct gfs2_rgrpd *begin = NULL;
2005 struct gfs2_blkreserv *rs = &ip->i_res;
2006 int error = 0, rg_locked, flags = 0;
2007 u64 last_unlinked = NO_BLOCK;
2008 int loops = 0;
2009 u32 free_blocks, skip = 0;
2010
2011 if (sdp->sd_args.ar_rgrplvb)
2012 flags |= GL_SKIP;
2013 if (gfs2_assert_warn(sdp, ap->target))
2014 return -EINVAL;
2015 if (gfs2_rs_active(rs)) {
2016 begin = rs->rs_rbm.rgd;
2017 } else if (rs->rs_rbm.rgd &&
2018 rgrp_contains_block(rs->rs_rbm.rgd, ip->i_goal)) {
2019 begin = rs->rs_rbm.rgd;
2020 } else {
2021 check_and_update_goal(ip);
2022 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
2023 }
2024 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
2025 skip = gfs2_orlov_skip(ip);
2026 if (rs->rs_rbm.rgd == NULL)
2027 return -EBADSLT;
2028
2029 while (loops < 3) {
2030 rg_locked = 1;
2031
2032 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
2033 rg_locked = 0;
2034 if (skip && skip--)
2035 goto next_rgrp;
2036 if (!gfs2_rs_active(rs)) {
2037 if (loops == 0 &&
2038 !fast_to_acquire(rs->rs_rbm.rgd))
2039 goto next_rgrp;
2040 if ((loops < 2) &&
2041 gfs2_rgrp_used_recently(rs, 1000) &&
2042 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2043 goto next_rgrp;
2044 }
2045 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2046 LM_ST_EXCLUSIVE, flags,
2047 &ip->i_rgd_gh);
2048 if (unlikely(error))
2049 return error;
2050 if (!gfs2_rs_active(rs) && (loops < 2) &&
2051 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2052 goto skip_rgrp;
2053 if (sdp->sd_args.ar_rgrplvb) {
2054 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2055 if (unlikely(error)) {
2056 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2057 return error;
2058 }
2059 }
2060 }
2061
2062 /* Skip unusable resource groups */
2063 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2064 GFS2_RDF_ERROR)) ||
2065 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2066 goto skip_rgrp;
2067
2068 if (sdp->sd_args.ar_rgrplvb)
2069 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2070
2071 /* Get a reservation if we don't already have one */
2072 if (!gfs2_rs_active(rs))
2073 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2074
2075 /* Skip rgrps when we can't get a reservation on first pass */
2076 if (!gfs2_rs_active(rs) && (loops < 1))
2077 goto check_rgrp;
2078
2079 /* If rgrp has enough free space, use it */
2080 free_blocks = rgd_free(rs->rs_rbm.rgd, rs);
2081 if (free_blocks >= ap->target ||
2082 (loops == 2 && ap->min_target &&
2083 free_blocks >= ap->min_target)) {
2084 ap->allowed = free_blocks;
2085 return 0;
2086 }
2087 check_rgrp:
2088 /* Check for unlinked inodes which can be reclaimed */
2089 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2090 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2091 ip->i_no_addr);
2092 skip_rgrp:
2093 /* Drop reservation, if we couldn't use reserved rgrp */
2094 if (gfs2_rs_active(rs))
2095 gfs2_rs_deltree(rs);
2096
2097 /* Unlock rgrp if required */
2098 if (!rg_locked)
2099 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2100 next_rgrp:
2101 /* Find the next rgrp, and continue looking */
2102 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2103 continue;
2104 if (skip)
2105 continue;
2106
2107 /* If we've scanned all the rgrps, but found no free blocks
2108 * then this checks for some less likely conditions before
2109 * trying again.
2110 */
2111 loops++;
2112 /* Check that fs hasn't grown if writing to rindex */
2113 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2114 error = gfs2_ri_update(ip);
2115 if (error)
2116 return error;
2117 }
2118 /* Flushing the log may release space */
2119 if (loops == 2)
2120 gfs2_log_flush(sdp, NULL, GFS2_LOG_HEAD_FLUSH_NORMAL |
2121 GFS2_LFC_INPLACE_RESERVE);
2122 }
2123
2124 return -ENOSPC;
2125 }
2126
2127 /**
2128 * gfs2_inplace_release - release an inplace reservation
2129 * @ip: the inode the reservation was taken out on
2130 *
2131 * Release a reservation made by gfs2_inplace_reserve().
2132 */
2133
2134 void gfs2_inplace_release(struct gfs2_inode *ip)
2135 {
2136 if (gfs2_holder_initialized(&ip->i_rgd_gh))
2137 gfs2_glock_dq_uninit(&ip->i_rgd_gh);
2138 }
2139
2140 /**
2141 * gfs2_alloc_extent - allocate an extent from a given bitmap
2142 * @rbm: the resource group information
2143 * @dinode: TRUE if the first block we allocate is for a dinode
2144 * @n: The extent length (value/result)
2145 *
2146 * Add the bitmap buffer to the transaction.
2147 * Set the found bits to @new_state to change block's allocation state.
2148 */
2149 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2150 unsigned int *n)
2151 {
2152 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2153 const unsigned int elen = *n;
2154 u64 block;
2155 int ret;
2156
2157 *n = 1;
2158 block = gfs2_rbm_to_block(rbm);
2159 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2160 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2161 block++;
2162 while (*n < elen) {
2163 ret = gfs2_rbm_from_block(&pos, block);
2164 if (ret || gfs2_testbit(&pos, true) != GFS2_BLKST_FREE)
2165 break;
2166 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2167 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2168 (*n)++;
2169 block++;
2170 }
2171 }
2172
2173 /**
2174 * rgblk_free - Change alloc state of given block(s)
2175 * @sdp: the filesystem
2176 * @rgd: the resource group the blocks are in
2177 * @bstart: the start of a run of blocks to free
2178 * @blen: the length of the block run (all must lie within ONE RG!)
2179 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2180 */
2181
2182 static void rgblk_free(struct gfs2_sbd *sdp, struct gfs2_rgrpd *rgd,
2183 u64 bstart, u32 blen, unsigned char new_state)
2184 {
2185 struct gfs2_rbm rbm;
2186 struct gfs2_bitmap *bi, *bi_prev = NULL;
2187
2188 rbm.rgd = rgd;
2189 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm, bstart)))
2190 return;
2191 while (blen--) {
2192 bi = rbm_bi(&rbm);
2193 if (bi != bi_prev) {
2194 if (!bi->bi_clone) {
2195 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2196 GFP_NOFS | __GFP_NOFAIL);
2197 memcpy(bi->bi_clone + bi->bi_offset,
2198 bi->bi_bh->b_data + bi->bi_offset,
2199 bi->bi_bytes);
2200 }
2201 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2202 bi_prev = bi;
2203 }
2204 gfs2_setbit(&rbm, false, new_state);
2205 gfs2_rbm_incr(&rbm);
2206 }
2207 }
2208
2209 /**
2210 * gfs2_rgrp_dump - print out an rgrp
2211 * @seq: The iterator
2212 * @gl: The glock in question
2213 * @fs_id_buf: pointer to file system id (if requested)
2214 *
2215 */
2216
2217 void gfs2_rgrp_dump(struct seq_file *seq, struct gfs2_glock *gl,
2218 const char *fs_id_buf)
2219 {
2220 struct gfs2_rgrpd *rgd = gl->gl_object;
2221 struct gfs2_blkreserv *trs;
2222 const struct rb_node *n;
2223
2224 if (rgd == NULL)
2225 return;
2226 gfs2_print_dbg(seq, "%s R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2227 fs_id_buf,
2228 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2229 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2230 rgd->rd_reserved, rgd->rd_extfail_pt);
2231 if (rgd->rd_sbd->sd_args.ar_rgrplvb) {
2232 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
2233
2234 gfs2_print_dbg(seq, "%s L: f:%02x b:%u i:%u\n", fs_id_buf,
2235 be32_to_cpu(rgl->rl_flags),
2236 be32_to_cpu(rgl->rl_free),
2237 be32_to_cpu(rgl->rl_dinodes));
2238 }
2239 spin_lock(&rgd->rd_rsspin);
2240 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2241 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2242 dump_rs(seq, trs, fs_id_buf);
2243 }
2244 spin_unlock(&rgd->rd_rsspin);
2245 }
2246
2247 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2248 {
2249 struct gfs2_sbd *sdp = rgd->rd_sbd;
2250 char fs_id_buf[sizeof(sdp->sd_fsname) + 7];
2251
2252 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2253 (unsigned long long)rgd->rd_addr);
2254 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2255 sprintf(fs_id_buf, "fsid=%s: ", sdp->sd_fsname);
2256 gfs2_rgrp_dump(NULL, rgd->rd_gl, fs_id_buf);
2257 rgd->rd_flags |= GFS2_RDF_ERROR;
2258 }
2259
2260 /**
2261 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2262 * @ip: The inode we have just allocated blocks for
2263 * @rbm: The start of the allocated blocks
2264 * @len: The extent length
2265 *
2266 * Adjusts a reservation after an allocation has taken place. If the
2267 * reservation does not match the allocation, or if it is now empty
2268 * then it is removed.
2269 */
2270
2271 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2272 const struct gfs2_rbm *rbm, unsigned len)
2273 {
2274 struct gfs2_blkreserv *rs = &ip->i_res;
2275 struct gfs2_rgrpd *rgd = rbm->rgd;
2276 unsigned rlen;
2277 u64 block;
2278 int ret;
2279
2280 spin_lock(&rgd->rd_rsspin);
2281 if (gfs2_rs_active(rs)) {
2282 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2283 block = gfs2_rbm_to_block(rbm);
2284 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2285 rlen = min(rs->rs_free, len);
2286 rs->rs_free -= rlen;
2287 rgd->rd_reserved -= rlen;
2288 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2289 if (rs->rs_free && !ret)
2290 goto out;
2291 /* We used up our block reservation, so we should
2292 reserve more blocks next time. */
2293 atomic_add(RGRP_RSRV_ADDBLKS, &ip->i_sizehint);
2294 }
2295 __rs_deltree(rs);
2296 }
2297 out:
2298 spin_unlock(&rgd->rd_rsspin);
2299 }
2300
2301 /**
2302 * gfs2_set_alloc_start - Set starting point for block allocation
2303 * @rbm: The rbm which will be set to the required location
2304 * @ip: The gfs2 inode
2305 * @dinode: Flag to say if allocation includes a new inode
2306 *
2307 * This sets the starting point from the reservation if one is active
2308 * otherwise it falls back to guessing a start point based on the
2309 * inode's goal block or the last allocation point in the rgrp.
2310 */
2311
2312 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2313 const struct gfs2_inode *ip, bool dinode)
2314 {
2315 u64 goal;
2316
2317 if (gfs2_rs_active(&ip->i_res)) {
2318 *rbm = ip->i_res.rs_rbm;
2319 return;
2320 }
2321
2322 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2323 goal = ip->i_goal;
2324 else
2325 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2326
2327 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm, goal))) {
2328 rbm->bii = 0;
2329 rbm->offset = 0;
2330 }
2331 }
2332
2333 /**
2334 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2335 * @ip: the inode to allocate the block for
2336 * @bn: Used to return the starting block number
2337 * @nblocks: requested number of blocks/extent length (value/result)
2338 * @dinode: 1 if we're allocating a dinode block, else 0
2339 * @generation: the generation number of the inode
2340 *
2341 * Returns: 0 or error
2342 */
2343
2344 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2345 bool dinode, u64 *generation)
2346 {
2347 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2348 struct buffer_head *dibh;
2349 struct gfs2_rbm rbm = { .rgd = ip->i_res.rs_rbm.rgd, };
2350 unsigned int ndata;
2351 u64 block; /* block, within the file system scope */
2352 int error;
2353
2354 gfs2_set_alloc_start(&rbm, ip, dinode);
2355 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2356
2357 if (error == -ENOSPC) {
2358 gfs2_set_alloc_start(&rbm, ip, dinode);
2359 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2360 }
2361
2362 /* Since all blocks are reserved in advance, this shouldn't happen */
2363 if (error) {
2364 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2365 (unsigned long long)ip->i_no_addr, error, *nblocks,
2366 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2367 rbm.rgd->rd_extfail_pt);
2368 goto rgrp_error;
2369 }
2370
2371 gfs2_alloc_extent(&rbm, dinode, nblocks);
2372 block = gfs2_rbm_to_block(&rbm);
2373 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2374 if (gfs2_rs_active(&ip->i_res))
2375 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2376 ndata = *nblocks;
2377 if (dinode)
2378 ndata--;
2379
2380 if (!dinode) {
2381 ip->i_goal = block + ndata - 1;
2382 error = gfs2_meta_inode_buffer(ip, &dibh);
2383 if (error == 0) {
2384 struct gfs2_dinode *di =
2385 (struct gfs2_dinode *)dibh->b_data;
2386 gfs2_trans_add_meta(ip->i_gl, dibh);
2387 di->di_goal_meta = di->di_goal_data =
2388 cpu_to_be64(ip->i_goal);
2389 brelse(dibh);
2390 }
2391 }
2392 if (rbm.rgd->rd_free < *nblocks) {
2393 fs_warn(sdp, "nblocks=%u\n", *nblocks);
2394 goto rgrp_error;
2395 }
2396
2397 rbm.rgd->rd_free -= *nblocks;
2398 if (dinode) {
2399 rbm.rgd->rd_dinodes++;
2400 *generation = rbm.rgd->rd_igeneration++;
2401 if (*generation == 0)
2402 *generation = rbm.rgd->rd_igeneration++;
2403 }
2404
2405 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2406 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2407
2408 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2409 if (dinode)
2410 gfs2_trans_remove_revoke(sdp, block, *nblocks);
2411
2412 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2413
2414 rbm.rgd->rd_free_clone -= *nblocks;
2415 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2416 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2417 *bn = block;
2418 return 0;
2419
2420 rgrp_error:
2421 gfs2_rgrp_error(rbm.rgd);
2422 return -EIO;
2423 }
2424
2425 /**
2426 * __gfs2_free_blocks - free a contiguous run of block(s)
2427 * @ip: the inode these blocks are being freed from
2428 * @rgd: the resource group the blocks are in
2429 * @bstart: first block of a run of contiguous blocks
2430 * @blen: the length of the block run
2431 * @meta: 1 if the blocks represent metadata
2432 *
2433 */
2434
2435 void __gfs2_free_blocks(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2436 u64 bstart, u32 blen, int meta)
2437 {
2438 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2439
2440 rgblk_free(sdp, rgd, bstart, blen, GFS2_BLKST_FREE);
2441 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2442 rgd->rd_free += blen;
2443 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2444 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2445 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2446
2447 /* Directories keep their data in the metadata address space */
2448 if (meta || ip->i_depth)
2449 gfs2_meta_wipe(ip, bstart, blen);
2450 }
2451
2452 /**
2453 * gfs2_free_meta - free a contiguous run of data block(s)
2454 * @ip: the inode these blocks are being freed from
2455 * @rgd: the resource group the blocks are in
2456 * @bstart: first block of a run of contiguous blocks
2457 * @blen: the length of the block run
2458 *
2459 */
2460
2461 void gfs2_free_meta(struct gfs2_inode *ip, struct gfs2_rgrpd *rgd,
2462 u64 bstart, u32 blen)
2463 {
2464 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2465
2466 __gfs2_free_blocks(ip, rgd, bstart, blen, 1);
2467 gfs2_statfs_change(sdp, 0, +blen, 0);
2468 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2469 }
2470
2471 void gfs2_unlink_di(struct inode *inode)
2472 {
2473 struct gfs2_inode *ip = GFS2_I(inode);
2474 struct gfs2_sbd *sdp = GFS2_SB(inode);
2475 struct gfs2_rgrpd *rgd;
2476 u64 blkno = ip->i_no_addr;
2477
2478 rgd = gfs2_blk2rgrpd(sdp, blkno, true);
2479 if (!rgd)
2480 return;
2481 rgblk_free(sdp, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2482 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2483 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2484 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2485 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, 1);
2486 }
2487
2488 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2489 {
2490 struct gfs2_sbd *sdp = rgd->rd_sbd;
2491
2492 rgblk_free(sdp, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2493 if (!rgd->rd_dinodes)
2494 gfs2_consist_rgrpd(rgd);
2495 rgd->rd_dinodes--;
2496 rgd->rd_free++;
2497
2498 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2499 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2500 be32_add_cpu(&rgd->rd_rgl->rl_unlinked, -1);
2501
2502 gfs2_statfs_change(sdp, 0, +1, -1);
2503 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2504 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2505 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2506 }
2507
2508 /**
2509 * gfs2_check_blk_type - Check the type of a block
2510 * @sdp: The superblock
2511 * @no_addr: The block number to check
2512 * @type: The block type we are looking for
2513 *
2514 * Returns: 0 if the block type matches the expected type
2515 * -ESTALE if it doesn't match
2516 * or -ve errno if something went wrong while checking
2517 */
2518
2519 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2520 {
2521 struct gfs2_rgrpd *rgd;
2522 struct gfs2_holder rgd_gh;
2523 struct gfs2_rbm rbm;
2524 int error = -EINVAL;
2525
2526 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2527 if (!rgd)
2528 goto fail;
2529
2530 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2531 if (error)
2532 goto fail;
2533
2534 rbm.rgd = rgd;
2535 error = gfs2_rbm_from_block(&rbm, no_addr);
2536 if (WARN_ON_ONCE(error))
2537 goto fail;
2538
2539 if (gfs2_testbit(&rbm, false) != type)
2540 error = -ESTALE;
2541
2542 gfs2_glock_dq_uninit(&rgd_gh);
2543 fail:
2544 return error;
2545 }
2546
2547 /**
2548 * gfs2_rlist_add - add a RG to a list of RGs
2549 * @ip: the inode
2550 * @rlist: the list of resource groups
2551 * @block: the block
2552 *
2553 * Figure out what RG a block belongs to and add that RG to the list
2554 *
2555 * FIXME: Don't use NOFAIL
2556 *
2557 */
2558
2559 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2560 u64 block)
2561 {
2562 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2563 struct gfs2_rgrpd *rgd;
2564 struct gfs2_rgrpd **tmp;
2565 unsigned int new_space;
2566 unsigned int x;
2567
2568 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2569 return;
2570
2571 /*
2572 * The resource group last accessed is kept in the last position.
2573 */
2574
2575 if (rlist->rl_rgrps) {
2576 rgd = rlist->rl_rgd[rlist->rl_rgrps - 1];
2577 if (rgrp_contains_block(rgd, block))
2578 return;
2579 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2580 } else {
2581 rgd = ip->i_res.rs_rbm.rgd;
2582 if (!rgd || !rgrp_contains_block(rgd, block))
2583 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2584 }
2585
2586 if (!rgd) {
2587 fs_err(sdp, "rlist_add: no rgrp for block %llu\n",
2588 (unsigned long long)block);
2589 return;
2590 }
2591
2592 for (x = 0; x < rlist->rl_rgrps; x++) {
2593 if (rlist->rl_rgd[x] == rgd) {
2594 swap(rlist->rl_rgd[x],
2595 rlist->rl_rgd[rlist->rl_rgrps - 1]);
2596 return;
2597 }
2598 }
2599
2600 if (rlist->rl_rgrps == rlist->rl_space) {
2601 new_space = rlist->rl_space + 10;
2602
2603 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2604 GFP_NOFS | __GFP_NOFAIL);
2605
2606 if (rlist->rl_rgd) {
2607 memcpy(tmp, rlist->rl_rgd,
2608 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2609 kfree(rlist->rl_rgd);
2610 }
2611
2612 rlist->rl_space = new_space;
2613 rlist->rl_rgd = tmp;
2614 }
2615
2616 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2617 }
2618
2619 /**
2620 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2621 * and initialize an array of glock holders for them
2622 * @rlist: the list of resource groups
2623 *
2624 * FIXME: Don't use NOFAIL
2625 *
2626 */
2627
2628 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist)
2629 {
2630 unsigned int x;
2631
2632 rlist->rl_ghs = kmalloc_array(rlist->rl_rgrps,
2633 sizeof(struct gfs2_holder),
2634 GFP_NOFS | __GFP_NOFAIL);
2635 for (x = 0; x < rlist->rl_rgrps; x++)
2636 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2637 LM_ST_EXCLUSIVE, 0,
2638 &rlist->rl_ghs[x]);
2639 }
2640
2641 /**
2642 * gfs2_rlist_free - free a resource group list
2643 * @rlist: the list of resource groups
2644 *
2645 */
2646
2647 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2648 {
2649 unsigned int x;
2650
2651 kfree(rlist->rl_rgd);
2652
2653 if (rlist->rl_ghs) {
2654 for (x = 0; x < rlist->rl_rgrps; x++)
2655 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2656 kfree(rlist->rl_ghs);
2657 rlist->rl_ghs = NULL;
2658 }
2659 }
2660