]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/gfs2/rgrp.c
37ee061d899e81a8eb45f5bc64382634e573c108
[mirror_ubuntu-bionic-kernel.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #include <linux/slab.h>
11 #include <linux/spinlock.h>
12 #include <linux/completion.h>
13 #include <linux/buffer_head.h>
14 #include <linux/fs.h>
15 #include <linux/gfs2_ondisk.h>
16 #include <linux/prefetch.h>
17 #include <linux/blkdev.h>
18 #include <linux/rbtree.h>
19 #include <linux/random.h>
20
21 #include "gfs2.h"
22 #include "incore.h"
23 #include "glock.h"
24 #include "glops.h"
25 #include "lops.h"
26 #include "meta_io.h"
27 #include "quota.h"
28 #include "rgrp.h"
29 #include "super.h"
30 #include "trans.h"
31 #include "util.h"
32 #include "log.h"
33 #include "inode.h"
34 #include "trace_gfs2.h"
35
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
38
39 #if BITS_PER_LONG == 32
40 #define LBITMASK (0x55555555UL)
41 #define LBITSKIP55 (0x55555555UL)
42 #define LBITSKIP00 (0x00000000UL)
43 #else
44 #define LBITMASK (0x5555555555555555UL)
45 #define LBITSKIP55 (0x5555555555555555UL)
46 #define LBITSKIP00 (0x0000000000000000UL)
47 #endif
48
49 /*
50 * These routines are used by the resource group routines (rgrp.c)
51 * to keep track of block allocation. Each block is represented by two
52 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
53 *
54 * 0 = Free
55 * 1 = Used (not metadata)
56 * 2 = Unlinked (still in use) inode
57 * 3 = Used (metadata)
58 */
59
60 static const char valid_change[16] = {
61 /* current */
62 /* n */ 0, 1, 1, 1,
63 /* e */ 1, 0, 0, 0,
64 /* w */ 0, 0, 0, 1,
65 1, 0, 0, 0
66 };
67
68 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
69 const struct gfs2_inode *ip, bool nowrap);
70
71
72 /**
73 * gfs2_setbit - Set a bit in the bitmaps
74 * @rbm: The position of the bit to set
75 * @do_clone: Also set the clone bitmap, if it exists
76 * @new_state: the new state of the block
77 *
78 */
79
80 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
81 unsigned char new_state)
82 {
83 unsigned char *byte1, *byte2, *end, cur_state;
84 unsigned int buflen = rbm->bi->bi_len;
85 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
86
87 byte1 = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
88 end = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset + buflen;
89
90 BUG_ON(byte1 >= end);
91
92 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
93
94 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
95 printk(KERN_WARNING "GFS2: buf_blk = 0x%x old_state=%d, "
96 "new_state=%d\n", rbm->offset, cur_state, new_state);
97 printk(KERN_WARNING "GFS2: rgrp=0x%llx bi_start=0x%x\n",
98 (unsigned long long)rbm->rgd->rd_addr,
99 rbm->bi->bi_start);
100 printk(KERN_WARNING "GFS2: bi_offset=0x%x bi_len=0x%x\n",
101 rbm->bi->bi_offset, rbm->bi->bi_len);
102 dump_stack();
103 gfs2_consist_rgrpd(rbm->rgd);
104 return;
105 }
106 *byte1 ^= (cur_state ^ new_state) << bit;
107
108 if (do_clone && rbm->bi->bi_clone) {
109 byte2 = rbm->bi->bi_clone + rbm->bi->bi_offset + (rbm->offset / GFS2_NBBY);
110 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
111 *byte2 ^= (cur_state ^ new_state) << bit;
112 }
113 }
114
115 /**
116 * gfs2_testbit - test a bit in the bitmaps
117 * @rbm: The bit to test
118 *
119 * Returns: The two bit block state of the requested bit
120 */
121
122 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
123 {
124 const u8 *buffer = rbm->bi->bi_bh->b_data + rbm->bi->bi_offset;
125 const u8 *byte;
126 unsigned int bit;
127
128 byte = buffer + (rbm->offset / GFS2_NBBY);
129 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
130
131 return (*byte >> bit) & GFS2_BIT_MASK;
132 }
133
134 /**
135 * gfs2_bit_search
136 * @ptr: Pointer to bitmap data
137 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
138 * @state: The state we are searching for
139 *
140 * We xor the bitmap data with a patter which is the bitwise opposite
141 * of what we are looking for, this gives rise to a pattern of ones
142 * wherever there is a match. Since we have two bits per entry, we
143 * take this pattern, shift it down by one place and then and it with
144 * the original. All the even bit positions (0,2,4, etc) then represent
145 * successful matches, so we mask with 0x55555..... to remove the unwanted
146 * odd bit positions.
147 *
148 * This allows searching of a whole u64 at once (32 blocks) with a
149 * single test (on 64 bit arches).
150 */
151
152 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
153 {
154 u64 tmp;
155 static const u64 search[] = {
156 [0] = 0xffffffffffffffffULL,
157 [1] = 0xaaaaaaaaaaaaaaaaULL,
158 [2] = 0x5555555555555555ULL,
159 [3] = 0x0000000000000000ULL,
160 };
161 tmp = le64_to_cpu(*ptr) ^ search[state];
162 tmp &= (tmp >> 1);
163 tmp &= mask;
164 return tmp;
165 }
166
167 /**
168 * rs_cmp - multi-block reservation range compare
169 * @blk: absolute file system block number of the new reservation
170 * @len: number of blocks in the new reservation
171 * @rs: existing reservation to compare against
172 *
173 * returns: 1 if the block range is beyond the reach of the reservation
174 * -1 if the block range is before the start of the reservation
175 * 0 if the block range overlaps with the reservation
176 */
177 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
178 {
179 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
180
181 if (blk >= startblk + rs->rs_free)
182 return 1;
183 if (blk + len - 1 < startblk)
184 return -1;
185 return 0;
186 }
187
188 /**
189 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
190 * a block in a given allocation state.
191 * @buf: the buffer that holds the bitmaps
192 * @len: the length (in bytes) of the buffer
193 * @goal: start search at this block's bit-pair (within @buffer)
194 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
195 *
196 * Scope of @goal and returned block number is only within this bitmap buffer,
197 * not entire rgrp or filesystem. @buffer will be offset from the actual
198 * beginning of a bitmap block buffer, skipping any header structures, but
199 * headers are always a multiple of 64 bits long so that the buffer is
200 * always aligned to a 64 bit boundary.
201 *
202 * The size of the buffer is in bytes, but is it assumed that it is
203 * always ok to read a complete multiple of 64 bits at the end
204 * of the block in case the end is no aligned to a natural boundary.
205 *
206 * Return: the block number (bitmap buffer scope) that was found
207 */
208
209 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
210 u32 goal, u8 state)
211 {
212 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
213 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
214 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
215 u64 tmp;
216 u64 mask = 0x5555555555555555ULL;
217 u32 bit;
218
219 /* Mask off bits we don't care about at the start of the search */
220 mask <<= spoint;
221 tmp = gfs2_bit_search(ptr, mask, state);
222 ptr++;
223 while(tmp == 0 && ptr < end) {
224 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
225 ptr++;
226 }
227 /* Mask off any bits which are more than len bytes from the start */
228 if (ptr == end && (len & (sizeof(u64) - 1)))
229 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
230 /* Didn't find anything, so return */
231 if (tmp == 0)
232 return BFITNOENT;
233 ptr--;
234 bit = __ffs64(tmp);
235 bit /= 2; /* two bits per entry in the bitmap */
236 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
237 }
238
239 /**
240 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
241 * @rbm: The rbm with rgd already set correctly
242 * @block: The block number (filesystem relative)
243 *
244 * This sets the bi and offset members of an rbm based on a
245 * resource group and a filesystem relative block number. The
246 * resource group must be set in the rbm on entry, the bi and
247 * offset members will be set by this function.
248 *
249 * Returns: 0 on success, or an error code
250 */
251
252 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
253 {
254 u64 rblock = block - rbm->rgd->rd_data0;
255 u32 x;
256
257 if (WARN_ON_ONCE(rblock > UINT_MAX))
258 return -EINVAL;
259 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
260 return -E2BIG;
261
262 rbm->bi = rbm->rgd->rd_bits;
263 rbm->offset = (u32)(rblock);
264 /* Check if the block is within the first block */
265 if (rbm->offset < (rbm->bi->bi_start + rbm->bi->bi_len) * GFS2_NBBY)
266 return 0;
267
268 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
269 rbm->offset += (sizeof(struct gfs2_rgrp) -
270 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
271 x = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
272 rbm->offset -= x * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
273 rbm->bi += x;
274 return 0;
275 }
276
277 /**
278 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
279 * @rbm: Position to search (value/result)
280 * @n_unaligned: Number of unaligned blocks to check
281 * @len: Decremented for each block found (terminate on zero)
282 *
283 * Returns: true if a non-free block is encountered
284 */
285
286 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
287 {
288 u64 block;
289 u32 n;
290 u8 res;
291
292 for (n = 0; n < n_unaligned; n++) {
293 res = gfs2_testbit(rbm);
294 if (res != GFS2_BLKST_FREE)
295 return true;
296 (*len)--;
297 if (*len == 0)
298 return true;
299 block = gfs2_rbm_to_block(rbm);
300 if (gfs2_rbm_from_block(rbm, block + 1))
301 return true;
302 }
303
304 return false;
305 }
306
307 /**
308 * gfs2_free_extlen - Return extent length of free blocks
309 * @rbm: Starting position
310 * @len: Max length to check
311 *
312 * Starting at the block specified by the rbm, see how many free blocks
313 * there are, not reading more than len blocks ahead. This can be done
314 * using memchr_inv when the blocks are byte aligned, but has to be done
315 * on a block by block basis in case of unaligned blocks. Also this
316 * function can cope with bitmap boundaries (although it must stop on
317 * a resource group boundary)
318 *
319 * Returns: Number of free blocks in the extent
320 */
321
322 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
323 {
324 struct gfs2_rbm rbm = *rrbm;
325 u32 n_unaligned = rbm.offset & 3;
326 u32 size = len;
327 u32 bytes;
328 u32 chunk_size;
329 u8 *ptr, *start, *end;
330 u64 block;
331
332 if (n_unaligned &&
333 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
334 goto out;
335
336 n_unaligned = len & 3;
337 /* Start is now byte aligned */
338 while (len > 3) {
339 start = rbm.bi->bi_bh->b_data;
340 if (rbm.bi->bi_clone)
341 start = rbm.bi->bi_clone;
342 end = start + rbm.bi->bi_bh->b_size;
343 start += rbm.bi->bi_offset;
344 BUG_ON(rbm.offset & 3);
345 start += (rbm.offset / GFS2_NBBY);
346 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
347 ptr = memchr_inv(start, 0, bytes);
348 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
349 chunk_size *= GFS2_NBBY;
350 BUG_ON(len < chunk_size);
351 len -= chunk_size;
352 block = gfs2_rbm_to_block(&rbm);
353 gfs2_rbm_from_block(&rbm, block + chunk_size);
354 n_unaligned = 3;
355 if (ptr)
356 break;
357 n_unaligned = len & 3;
358 }
359
360 /* Deal with any bits left over at the end */
361 if (n_unaligned)
362 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
363 out:
364 return size - len;
365 }
366
367 /**
368 * gfs2_bitcount - count the number of bits in a certain state
369 * @rgd: the resource group descriptor
370 * @buffer: the buffer that holds the bitmaps
371 * @buflen: the length (in bytes) of the buffer
372 * @state: the state of the block we're looking for
373 *
374 * Returns: The number of bits
375 */
376
377 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
378 unsigned int buflen, u8 state)
379 {
380 const u8 *byte = buffer;
381 const u8 *end = buffer + buflen;
382 const u8 state1 = state << 2;
383 const u8 state2 = state << 4;
384 const u8 state3 = state << 6;
385 u32 count = 0;
386
387 for (; byte < end; byte++) {
388 if (((*byte) & 0x03) == state)
389 count++;
390 if (((*byte) & 0x0C) == state1)
391 count++;
392 if (((*byte) & 0x30) == state2)
393 count++;
394 if (((*byte) & 0xC0) == state3)
395 count++;
396 }
397
398 return count;
399 }
400
401 /**
402 * gfs2_rgrp_verify - Verify that a resource group is consistent
403 * @rgd: the rgrp
404 *
405 */
406
407 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
408 {
409 struct gfs2_sbd *sdp = rgd->rd_sbd;
410 struct gfs2_bitmap *bi = NULL;
411 u32 length = rgd->rd_length;
412 u32 count[4], tmp;
413 int buf, x;
414
415 memset(count, 0, 4 * sizeof(u32));
416
417 /* Count # blocks in each of 4 possible allocation states */
418 for (buf = 0; buf < length; buf++) {
419 bi = rgd->rd_bits + buf;
420 for (x = 0; x < 4; x++)
421 count[x] += gfs2_bitcount(rgd,
422 bi->bi_bh->b_data +
423 bi->bi_offset,
424 bi->bi_len, x);
425 }
426
427 if (count[0] != rgd->rd_free) {
428 if (gfs2_consist_rgrpd(rgd))
429 fs_err(sdp, "free data mismatch: %u != %u\n",
430 count[0], rgd->rd_free);
431 return;
432 }
433
434 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
435 if (count[1] != tmp) {
436 if (gfs2_consist_rgrpd(rgd))
437 fs_err(sdp, "used data mismatch: %u != %u\n",
438 count[1], tmp);
439 return;
440 }
441
442 if (count[2] + count[3] != rgd->rd_dinodes) {
443 if (gfs2_consist_rgrpd(rgd))
444 fs_err(sdp, "used metadata mismatch: %u != %u\n",
445 count[2] + count[3], rgd->rd_dinodes);
446 return;
447 }
448 }
449
450 static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
451 {
452 u64 first = rgd->rd_data0;
453 u64 last = first + rgd->rd_data;
454 return first <= block && block < last;
455 }
456
457 /**
458 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
459 * @sdp: The GFS2 superblock
460 * @blk: The data block number
461 * @exact: True if this needs to be an exact match
462 *
463 * Returns: The resource group, or NULL if not found
464 */
465
466 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
467 {
468 struct rb_node *n, *next;
469 struct gfs2_rgrpd *cur;
470
471 spin_lock(&sdp->sd_rindex_spin);
472 n = sdp->sd_rindex_tree.rb_node;
473 while (n) {
474 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
475 next = NULL;
476 if (blk < cur->rd_addr)
477 next = n->rb_left;
478 else if (blk >= cur->rd_data0 + cur->rd_data)
479 next = n->rb_right;
480 if (next == NULL) {
481 spin_unlock(&sdp->sd_rindex_spin);
482 if (exact) {
483 if (blk < cur->rd_addr)
484 return NULL;
485 if (blk >= cur->rd_data0 + cur->rd_data)
486 return NULL;
487 }
488 return cur;
489 }
490 n = next;
491 }
492 spin_unlock(&sdp->sd_rindex_spin);
493
494 return NULL;
495 }
496
497 /**
498 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
499 * @sdp: The GFS2 superblock
500 *
501 * Returns: The first rgrp in the filesystem
502 */
503
504 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
505 {
506 const struct rb_node *n;
507 struct gfs2_rgrpd *rgd;
508
509 spin_lock(&sdp->sd_rindex_spin);
510 n = rb_first(&sdp->sd_rindex_tree);
511 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
512 spin_unlock(&sdp->sd_rindex_spin);
513
514 return rgd;
515 }
516
517 /**
518 * gfs2_rgrpd_get_next - get the next RG
519 * @rgd: the resource group descriptor
520 *
521 * Returns: The next rgrp
522 */
523
524 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
525 {
526 struct gfs2_sbd *sdp = rgd->rd_sbd;
527 const struct rb_node *n;
528
529 spin_lock(&sdp->sd_rindex_spin);
530 n = rb_next(&rgd->rd_node);
531 if (n == NULL)
532 n = rb_first(&sdp->sd_rindex_tree);
533
534 if (unlikely(&rgd->rd_node == n)) {
535 spin_unlock(&sdp->sd_rindex_spin);
536 return NULL;
537 }
538 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
539 spin_unlock(&sdp->sd_rindex_spin);
540 return rgd;
541 }
542
543 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
544 {
545 int x;
546
547 for (x = 0; x < rgd->rd_length; x++) {
548 struct gfs2_bitmap *bi = rgd->rd_bits + x;
549 kfree(bi->bi_clone);
550 bi->bi_clone = NULL;
551 }
552 }
553
554 /**
555 * gfs2_rs_alloc - make sure we have a reservation assigned to the inode
556 * @ip: the inode for this reservation
557 */
558 int gfs2_rs_alloc(struct gfs2_inode *ip)
559 {
560 struct gfs2_blkreserv *res;
561
562 if (ip->i_res)
563 return 0;
564
565 res = kmem_cache_zalloc(gfs2_rsrv_cachep, GFP_NOFS);
566 if (!res)
567 return -ENOMEM;
568
569 RB_CLEAR_NODE(&res->rs_node);
570
571 down_write(&ip->i_rw_mutex);
572 if (ip->i_res)
573 kmem_cache_free(gfs2_rsrv_cachep, res);
574 else
575 ip->i_res = res;
576 up_write(&ip->i_rw_mutex);
577 return 0;
578 }
579
580 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
581 {
582 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
583 (unsigned long long)rs->rs_inum,
584 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
585 rs->rs_rbm.offset, rs->rs_free);
586 }
587
588 /**
589 * __rs_deltree - remove a multi-block reservation from the rgd tree
590 * @rs: The reservation to remove
591 *
592 */
593 static void __rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
594 {
595 struct gfs2_rgrpd *rgd;
596
597 if (!gfs2_rs_active(rs))
598 return;
599
600 rgd = rs->rs_rbm.rgd;
601 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
602 rb_erase(&rs->rs_node, &rgd->rd_rstree);
603 RB_CLEAR_NODE(&rs->rs_node);
604
605 if (rs->rs_free) {
606 /* return reserved blocks to the rgrp and the ip */
607 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
608 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
609 rs->rs_free = 0;
610 clear_bit(GBF_FULL, &rs->rs_rbm.bi->bi_flags);
611 smp_mb__after_clear_bit();
612 }
613 }
614
615 /**
616 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
617 * @rs: The reservation to remove
618 *
619 */
620 void gfs2_rs_deltree(struct gfs2_inode *ip, struct gfs2_blkreserv *rs)
621 {
622 struct gfs2_rgrpd *rgd;
623
624 rgd = rs->rs_rbm.rgd;
625 if (rgd) {
626 spin_lock(&rgd->rd_rsspin);
627 __rs_deltree(ip, rs);
628 spin_unlock(&rgd->rd_rsspin);
629 }
630 }
631
632 /**
633 * gfs2_rs_delete - delete a multi-block reservation
634 * @ip: The inode for this reservation
635 *
636 */
637 void gfs2_rs_delete(struct gfs2_inode *ip)
638 {
639 down_write(&ip->i_rw_mutex);
640 if (ip->i_res) {
641 gfs2_rs_deltree(ip, ip->i_res);
642 BUG_ON(ip->i_res->rs_free);
643 kmem_cache_free(gfs2_rsrv_cachep, ip->i_res);
644 ip->i_res = NULL;
645 }
646 up_write(&ip->i_rw_mutex);
647 }
648
649 /**
650 * return_all_reservations - return all reserved blocks back to the rgrp.
651 * @rgd: the rgrp that needs its space back
652 *
653 * We previously reserved a bunch of blocks for allocation. Now we need to
654 * give them back. This leave the reservation structures in tact, but removes
655 * all of their corresponding "no-fly zones".
656 */
657 static void return_all_reservations(struct gfs2_rgrpd *rgd)
658 {
659 struct rb_node *n;
660 struct gfs2_blkreserv *rs;
661
662 spin_lock(&rgd->rd_rsspin);
663 while ((n = rb_first(&rgd->rd_rstree))) {
664 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
665 __rs_deltree(NULL, rs);
666 }
667 spin_unlock(&rgd->rd_rsspin);
668 }
669
670 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
671 {
672 struct rb_node *n;
673 struct gfs2_rgrpd *rgd;
674 struct gfs2_glock *gl;
675
676 while ((n = rb_first(&sdp->sd_rindex_tree))) {
677 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
678 gl = rgd->rd_gl;
679
680 rb_erase(n, &sdp->sd_rindex_tree);
681
682 if (gl) {
683 spin_lock(&gl->gl_spin);
684 gl->gl_object = NULL;
685 spin_unlock(&gl->gl_spin);
686 gfs2_glock_add_to_lru(gl);
687 gfs2_glock_put(gl);
688 }
689
690 gfs2_free_clones(rgd);
691 kfree(rgd->rd_bits);
692 return_all_reservations(rgd);
693 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
694 }
695 }
696
697 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
698 {
699 printk(KERN_INFO " ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
700 printk(KERN_INFO " ri_length = %u\n", rgd->rd_length);
701 printk(KERN_INFO " ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
702 printk(KERN_INFO " ri_data = %u\n", rgd->rd_data);
703 printk(KERN_INFO " ri_bitbytes = %u\n", rgd->rd_bitbytes);
704 }
705
706 /**
707 * gfs2_compute_bitstructs - Compute the bitmap sizes
708 * @rgd: The resource group descriptor
709 *
710 * Calculates bitmap descriptors, one for each block that contains bitmap data
711 *
712 * Returns: errno
713 */
714
715 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
716 {
717 struct gfs2_sbd *sdp = rgd->rd_sbd;
718 struct gfs2_bitmap *bi;
719 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
720 u32 bytes_left, bytes;
721 int x;
722
723 if (!length)
724 return -EINVAL;
725
726 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
727 if (!rgd->rd_bits)
728 return -ENOMEM;
729
730 bytes_left = rgd->rd_bitbytes;
731
732 for (x = 0; x < length; x++) {
733 bi = rgd->rd_bits + x;
734
735 bi->bi_flags = 0;
736 /* small rgrp; bitmap stored completely in header block */
737 if (length == 1) {
738 bytes = bytes_left;
739 bi->bi_offset = sizeof(struct gfs2_rgrp);
740 bi->bi_start = 0;
741 bi->bi_len = bytes;
742 /* header block */
743 } else if (x == 0) {
744 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
745 bi->bi_offset = sizeof(struct gfs2_rgrp);
746 bi->bi_start = 0;
747 bi->bi_len = bytes;
748 /* last block */
749 } else if (x + 1 == length) {
750 bytes = bytes_left;
751 bi->bi_offset = sizeof(struct gfs2_meta_header);
752 bi->bi_start = rgd->rd_bitbytes - bytes_left;
753 bi->bi_len = bytes;
754 /* other blocks */
755 } else {
756 bytes = sdp->sd_sb.sb_bsize -
757 sizeof(struct gfs2_meta_header);
758 bi->bi_offset = sizeof(struct gfs2_meta_header);
759 bi->bi_start = rgd->rd_bitbytes - bytes_left;
760 bi->bi_len = bytes;
761 }
762
763 bytes_left -= bytes;
764 }
765
766 if (bytes_left) {
767 gfs2_consist_rgrpd(rgd);
768 return -EIO;
769 }
770 bi = rgd->rd_bits + (length - 1);
771 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
772 if (gfs2_consist_rgrpd(rgd)) {
773 gfs2_rindex_print(rgd);
774 fs_err(sdp, "start=%u len=%u offset=%u\n",
775 bi->bi_start, bi->bi_len, bi->bi_offset);
776 }
777 return -EIO;
778 }
779
780 return 0;
781 }
782
783 /**
784 * gfs2_ri_total - Total up the file system space, according to the rindex.
785 * @sdp: the filesystem
786 *
787 */
788 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
789 {
790 u64 total_data = 0;
791 struct inode *inode = sdp->sd_rindex;
792 struct gfs2_inode *ip = GFS2_I(inode);
793 char buf[sizeof(struct gfs2_rindex)];
794 int error, rgrps;
795
796 for (rgrps = 0;; rgrps++) {
797 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
798
799 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
800 break;
801 error = gfs2_internal_read(ip, buf, &pos,
802 sizeof(struct gfs2_rindex));
803 if (error != sizeof(struct gfs2_rindex))
804 break;
805 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
806 }
807 return total_data;
808 }
809
810 static int rgd_insert(struct gfs2_rgrpd *rgd)
811 {
812 struct gfs2_sbd *sdp = rgd->rd_sbd;
813 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
814
815 /* Figure out where to put new node */
816 while (*newn) {
817 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
818 rd_node);
819
820 parent = *newn;
821 if (rgd->rd_addr < cur->rd_addr)
822 newn = &((*newn)->rb_left);
823 else if (rgd->rd_addr > cur->rd_addr)
824 newn = &((*newn)->rb_right);
825 else
826 return -EEXIST;
827 }
828
829 rb_link_node(&rgd->rd_node, parent, newn);
830 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
831 sdp->sd_rgrps++;
832 return 0;
833 }
834
835 /**
836 * read_rindex_entry - Pull in a new resource index entry from the disk
837 * @ip: Pointer to the rindex inode
838 *
839 * Returns: 0 on success, > 0 on EOF, error code otherwise
840 */
841
842 static int read_rindex_entry(struct gfs2_inode *ip)
843 {
844 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
845 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
846 struct gfs2_rindex buf;
847 int error;
848 struct gfs2_rgrpd *rgd;
849
850 if (pos >= i_size_read(&ip->i_inode))
851 return 1;
852
853 error = gfs2_internal_read(ip, (char *)&buf, &pos,
854 sizeof(struct gfs2_rindex));
855
856 if (error != sizeof(struct gfs2_rindex))
857 return (error == 0) ? 1 : error;
858
859 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
860 error = -ENOMEM;
861 if (!rgd)
862 return error;
863
864 rgd->rd_sbd = sdp;
865 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
866 rgd->rd_length = be32_to_cpu(buf.ri_length);
867 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
868 rgd->rd_data = be32_to_cpu(buf.ri_data);
869 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
870 spin_lock_init(&rgd->rd_rsspin);
871
872 error = compute_bitstructs(rgd);
873 if (error)
874 goto fail;
875
876 error = gfs2_glock_get(sdp, rgd->rd_addr,
877 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
878 if (error)
879 goto fail;
880
881 rgd->rd_gl->gl_object = rgd;
882 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
883 rgd->rd_flags &= ~GFS2_RDF_UPTODATE;
884 if (rgd->rd_data > sdp->sd_max_rg_data)
885 sdp->sd_max_rg_data = rgd->rd_data;
886 spin_lock(&sdp->sd_rindex_spin);
887 error = rgd_insert(rgd);
888 spin_unlock(&sdp->sd_rindex_spin);
889 if (!error)
890 return 0;
891
892 error = 0; /* someone else read in the rgrp; free it and ignore it */
893 gfs2_glock_put(rgd->rd_gl);
894
895 fail:
896 kfree(rgd->rd_bits);
897 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
898 return error;
899 }
900
901 /**
902 * gfs2_ri_update - Pull in a new resource index from the disk
903 * @ip: pointer to the rindex inode
904 *
905 * Returns: 0 on successful update, error code otherwise
906 */
907
908 static int gfs2_ri_update(struct gfs2_inode *ip)
909 {
910 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
911 int error;
912
913 do {
914 error = read_rindex_entry(ip);
915 } while (error == 0);
916
917 if (error < 0)
918 return error;
919
920 sdp->sd_rindex_uptodate = 1;
921 return 0;
922 }
923
924 /**
925 * gfs2_rindex_update - Update the rindex if required
926 * @sdp: The GFS2 superblock
927 *
928 * We grab a lock on the rindex inode to make sure that it doesn't
929 * change whilst we are performing an operation. We keep this lock
930 * for quite long periods of time compared to other locks. This
931 * doesn't matter, since it is shared and it is very, very rarely
932 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
933 *
934 * This makes sure that we're using the latest copy of the resource index
935 * special file, which might have been updated if someone expanded the
936 * filesystem (via gfs2_grow utility), which adds new resource groups.
937 *
938 * Returns: 0 on succeess, error code otherwise
939 */
940
941 int gfs2_rindex_update(struct gfs2_sbd *sdp)
942 {
943 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
944 struct gfs2_glock *gl = ip->i_gl;
945 struct gfs2_holder ri_gh;
946 int error = 0;
947 int unlock_required = 0;
948
949 /* Read new copy from disk if we don't have the latest */
950 if (!sdp->sd_rindex_uptodate) {
951 if (!gfs2_glock_is_locked_by_me(gl)) {
952 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
953 if (error)
954 return error;
955 unlock_required = 1;
956 }
957 if (!sdp->sd_rindex_uptodate)
958 error = gfs2_ri_update(ip);
959 if (unlock_required)
960 gfs2_glock_dq_uninit(&ri_gh);
961 }
962
963 return error;
964 }
965
966 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
967 {
968 const struct gfs2_rgrp *str = buf;
969 u32 rg_flags;
970
971 rg_flags = be32_to_cpu(str->rg_flags);
972 rg_flags &= ~GFS2_RDF_MASK;
973 rgd->rd_flags &= GFS2_RDF_MASK;
974 rgd->rd_flags |= rg_flags;
975 rgd->rd_free = be32_to_cpu(str->rg_free);
976 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
977 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
978 }
979
980 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
981 {
982 struct gfs2_rgrp *str = buf;
983
984 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
985 str->rg_free = cpu_to_be32(rgd->rd_free);
986 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
987 str->__pad = cpu_to_be32(0);
988 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
989 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
990 }
991
992 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
993 {
994 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
995 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
996
997 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
998 rgl->rl_dinodes != str->rg_dinodes ||
999 rgl->rl_igeneration != str->rg_igeneration)
1000 return 0;
1001 return 1;
1002 }
1003
1004 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1005 {
1006 const struct gfs2_rgrp *str = buf;
1007
1008 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1009 rgl->rl_flags = str->rg_flags;
1010 rgl->rl_free = str->rg_free;
1011 rgl->rl_dinodes = str->rg_dinodes;
1012 rgl->rl_igeneration = str->rg_igeneration;
1013 rgl->__pad = 0UL;
1014 }
1015
1016 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1017 {
1018 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1019 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1020 rgl->rl_unlinked = cpu_to_be32(unlinked);
1021 }
1022
1023 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1024 {
1025 struct gfs2_bitmap *bi;
1026 const u32 length = rgd->rd_length;
1027 const u8 *buffer = NULL;
1028 u32 i, goal, count = 0;
1029
1030 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1031 goal = 0;
1032 buffer = bi->bi_bh->b_data + bi->bi_offset;
1033 WARN_ON(!buffer_uptodate(bi->bi_bh));
1034 while (goal < bi->bi_len * GFS2_NBBY) {
1035 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1036 GFS2_BLKST_UNLINKED);
1037 if (goal == BFITNOENT)
1038 break;
1039 count++;
1040 goal++;
1041 }
1042 }
1043
1044 return count;
1045 }
1046
1047
1048 /**
1049 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1050 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1051 *
1052 * Read in all of a Resource Group's header and bitmap blocks.
1053 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1054 *
1055 * Returns: errno
1056 */
1057
1058 int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1059 {
1060 struct gfs2_sbd *sdp = rgd->rd_sbd;
1061 struct gfs2_glock *gl = rgd->rd_gl;
1062 unsigned int length = rgd->rd_length;
1063 struct gfs2_bitmap *bi;
1064 unsigned int x, y;
1065 int error;
1066
1067 if (rgd->rd_bits[0].bi_bh != NULL)
1068 return 0;
1069
1070 for (x = 0; x < length; x++) {
1071 bi = rgd->rd_bits + x;
1072 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, &bi->bi_bh);
1073 if (error)
1074 goto fail;
1075 }
1076
1077 for (y = length; y--;) {
1078 bi = rgd->rd_bits + y;
1079 error = gfs2_meta_wait(sdp, bi->bi_bh);
1080 if (error)
1081 goto fail;
1082 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1083 GFS2_METATYPE_RG)) {
1084 error = -EIO;
1085 goto fail;
1086 }
1087 }
1088
1089 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1090 for (x = 0; x < length; x++)
1091 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1092 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1093 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1094 rgd->rd_free_clone = rgd->rd_free;
1095 }
1096 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1097 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1098 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1099 rgd->rd_bits[0].bi_bh->b_data);
1100 }
1101 else if (sdp->sd_args.ar_rgrplvb) {
1102 if (!gfs2_rgrp_lvb_valid(rgd)){
1103 gfs2_consist_rgrpd(rgd);
1104 error = -EIO;
1105 goto fail;
1106 }
1107 if (rgd->rd_rgl->rl_unlinked == 0)
1108 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1109 }
1110 return 0;
1111
1112 fail:
1113 while (x--) {
1114 bi = rgd->rd_bits + x;
1115 brelse(bi->bi_bh);
1116 bi->bi_bh = NULL;
1117 gfs2_assert_warn(sdp, !bi->bi_clone);
1118 }
1119
1120 return error;
1121 }
1122
1123 int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1124 {
1125 u32 rl_flags;
1126
1127 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1128 return 0;
1129
1130 if (be32_to_cpu(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1131 return gfs2_rgrp_bh_get(rgd);
1132
1133 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1134 rl_flags &= ~GFS2_RDF_MASK;
1135 rgd->rd_flags &= GFS2_RDF_MASK;
1136 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1137 if (rgd->rd_rgl->rl_unlinked == 0)
1138 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1139 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1140 rgd->rd_free_clone = rgd->rd_free;
1141 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1142 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1143 return 0;
1144 }
1145
1146 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1147 {
1148 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1149 struct gfs2_sbd *sdp = rgd->rd_sbd;
1150
1151 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1152 return 0;
1153 return gfs2_rgrp_bh_get((struct gfs2_rgrpd *)gh->gh_gl->gl_object);
1154 }
1155
1156 /**
1157 * gfs2_rgrp_go_unlock - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1158 * @gh: The glock holder for the resource group
1159 *
1160 */
1161
1162 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1163 {
1164 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1165 int x, length = rgd->rd_length;
1166
1167 for (x = 0; x < length; x++) {
1168 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1169 if (bi->bi_bh) {
1170 brelse(bi->bi_bh);
1171 bi->bi_bh = NULL;
1172 }
1173 }
1174
1175 }
1176
1177 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1178 struct buffer_head *bh,
1179 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1180 {
1181 struct super_block *sb = sdp->sd_vfs;
1182 struct block_device *bdev = sb->s_bdev;
1183 const unsigned int sects_per_blk = sdp->sd_sb.sb_bsize /
1184 bdev_logical_block_size(sb->s_bdev);
1185 u64 blk;
1186 sector_t start = 0;
1187 sector_t nr_sects = 0;
1188 int rv;
1189 unsigned int x;
1190 u32 trimmed = 0;
1191 u8 diff;
1192
1193 for (x = 0; x < bi->bi_len; x++) {
1194 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1195 clone += bi->bi_offset;
1196 clone += x;
1197 if (bh) {
1198 const u8 *orig = bh->b_data + bi->bi_offset + x;
1199 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1200 } else {
1201 diff = ~(*clone | (*clone >> 1));
1202 }
1203 diff &= 0x55;
1204 if (diff == 0)
1205 continue;
1206 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1207 blk *= sects_per_blk; /* convert to sectors */
1208 while(diff) {
1209 if (diff & 1) {
1210 if (nr_sects == 0)
1211 goto start_new_extent;
1212 if ((start + nr_sects) != blk) {
1213 if (nr_sects >= minlen) {
1214 rv = blkdev_issue_discard(bdev,
1215 start, nr_sects,
1216 GFP_NOFS, 0);
1217 if (rv)
1218 goto fail;
1219 trimmed += nr_sects;
1220 }
1221 nr_sects = 0;
1222 start_new_extent:
1223 start = blk;
1224 }
1225 nr_sects += sects_per_blk;
1226 }
1227 diff >>= 2;
1228 blk += sects_per_blk;
1229 }
1230 }
1231 if (nr_sects >= minlen) {
1232 rv = blkdev_issue_discard(bdev, start, nr_sects, GFP_NOFS, 0);
1233 if (rv)
1234 goto fail;
1235 trimmed += nr_sects;
1236 }
1237 if (ptrimmed)
1238 *ptrimmed = trimmed;
1239 return 0;
1240
1241 fail:
1242 if (sdp->sd_args.ar_discard)
1243 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1244 sdp->sd_args.ar_discard = 0;
1245 return -EIO;
1246 }
1247
1248 /**
1249 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1250 * @filp: Any file on the filesystem
1251 * @argp: Pointer to the arguments (also used to pass result)
1252 *
1253 * Returns: 0 on success, otherwise error code
1254 */
1255
1256 int gfs2_fitrim(struct file *filp, void __user *argp)
1257 {
1258 struct inode *inode = filp->f_dentry->d_inode;
1259 struct gfs2_sbd *sdp = GFS2_SB(inode);
1260 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1261 struct buffer_head *bh;
1262 struct gfs2_rgrpd *rgd;
1263 struct gfs2_rgrpd *rgd_end;
1264 struct gfs2_holder gh;
1265 struct fstrim_range r;
1266 int ret = 0;
1267 u64 amt;
1268 u64 trimmed = 0;
1269 u64 start, end, minlen;
1270 unsigned int x;
1271 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1272
1273 if (!capable(CAP_SYS_ADMIN))
1274 return -EPERM;
1275
1276 if (!blk_queue_discard(q))
1277 return -EOPNOTSUPP;
1278
1279 if (copy_from_user(&r, argp, sizeof(r)))
1280 return -EFAULT;
1281
1282 ret = gfs2_rindex_update(sdp);
1283 if (ret)
1284 return ret;
1285
1286 start = r.start >> bs_shift;
1287 end = start + (r.len >> bs_shift);
1288 minlen = max_t(u64, r.minlen,
1289 q->limits.discard_granularity) >> bs_shift;
1290
1291 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1292 rgd_end = gfs2_blk2rgrpd(sdp, end - 1, 0);
1293
1294 if (end <= start ||
1295 minlen > sdp->sd_max_rg_data ||
1296 start > rgd_end->rd_data0 + rgd_end->rd_data)
1297 return -EINVAL;
1298
1299 while (1) {
1300
1301 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1302 if (ret)
1303 goto out;
1304
1305 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1306 /* Trim each bitmap in the rgrp */
1307 for (x = 0; x < rgd->rd_length; x++) {
1308 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1309 ret = gfs2_rgrp_send_discards(sdp,
1310 rgd->rd_data0, NULL, bi, minlen,
1311 &amt);
1312 if (ret) {
1313 gfs2_glock_dq_uninit(&gh);
1314 goto out;
1315 }
1316 trimmed += amt;
1317 }
1318
1319 /* Mark rgrp as having been trimmed */
1320 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1321 if (ret == 0) {
1322 bh = rgd->rd_bits[0].bi_bh;
1323 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1324 gfs2_trans_add_bh(rgd->rd_gl, bh, 1);
1325 gfs2_rgrp_out(rgd, bh->b_data);
1326 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1327 gfs2_trans_end(sdp);
1328 }
1329 }
1330 gfs2_glock_dq_uninit(&gh);
1331
1332 if (rgd == rgd_end)
1333 break;
1334
1335 rgd = gfs2_rgrpd_get_next(rgd);
1336 }
1337
1338 out:
1339 r.len = trimmed << 9;
1340 if (copy_to_user(argp, &r, sizeof(r)))
1341 return -EFAULT;
1342
1343 return ret;
1344 }
1345
1346 /**
1347 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1348 * @ip: the inode structure
1349 *
1350 */
1351 static void rs_insert(struct gfs2_inode *ip)
1352 {
1353 struct rb_node **newn, *parent = NULL;
1354 int rc;
1355 struct gfs2_blkreserv *rs = ip->i_res;
1356 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1357 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1358
1359 BUG_ON(gfs2_rs_active(rs));
1360
1361 spin_lock(&rgd->rd_rsspin);
1362 newn = &rgd->rd_rstree.rb_node;
1363 while (*newn) {
1364 struct gfs2_blkreserv *cur =
1365 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1366
1367 parent = *newn;
1368 rc = rs_cmp(fsblock, rs->rs_free, cur);
1369 if (rc > 0)
1370 newn = &((*newn)->rb_right);
1371 else if (rc < 0)
1372 newn = &((*newn)->rb_left);
1373 else {
1374 spin_unlock(&rgd->rd_rsspin);
1375 WARN_ON(1);
1376 return;
1377 }
1378 }
1379
1380 rb_link_node(&rs->rs_node, parent, newn);
1381 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1382
1383 /* Do our rgrp accounting for the reservation */
1384 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1385 spin_unlock(&rgd->rd_rsspin);
1386 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1387 }
1388
1389 /**
1390 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1391 * @rgd: the resource group descriptor
1392 * @ip: pointer to the inode for which we're reserving blocks
1393 * @requested: number of blocks required for this allocation
1394 *
1395 */
1396
1397 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1398 unsigned requested)
1399 {
1400 struct gfs2_rbm rbm = { .rgd = rgd, };
1401 u64 goal;
1402 struct gfs2_blkreserv *rs = ip->i_res;
1403 u32 extlen;
1404 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1405 int ret;
1406
1407 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), requested);
1408 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1409 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1410 return;
1411
1412 /* Find bitmap block that contains bits for goal block */
1413 if (rgrp_contains_block(rgd, ip->i_goal))
1414 goal = ip->i_goal;
1415 else
1416 goal = rgd->rd_last_alloc + rgd->rd_data0;
1417
1418 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1419 return;
1420
1421 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, extlen, ip, true);
1422 if (ret == 0) {
1423 rs->rs_rbm = rbm;
1424 rs->rs_free = extlen;
1425 rs->rs_inum = ip->i_no_addr;
1426 rs_insert(ip);
1427 }
1428 }
1429
1430 /**
1431 * gfs2_next_unreserved_block - Return next block that is not reserved
1432 * @rgd: The resource group
1433 * @block: The starting block
1434 * @length: The required length
1435 * @ip: Ignore any reservations for this inode
1436 *
1437 * If the block does not appear in any reservation, then return the
1438 * block number unchanged. If it does appear in the reservation, then
1439 * keep looking through the tree of reservations in order to find the
1440 * first block number which is not reserved.
1441 */
1442
1443 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1444 u32 length,
1445 const struct gfs2_inode *ip)
1446 {
1447 struct gfs2_blkreserv *rs;
1448 struct rb_node *n;
1449 int rc;
1450
1451 spin_lock(&rgd->rd_rsspin);
1452 n = rgd->rd_rstree.rb_node;
1453 while (n) {
1454 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1455 rc = rs_cmp(block, length, rs);
1456 if (rc < 0)
1457 n = n->rb_left;
1458 else if (rc > 0)
1459 n = n->rb_right;
1460 else
1461 break;
1462 }
1463
1464 if (n) {
1465 while ((rs_cmp(block, length, rs) == 0) && (ip->i_res != rs)) {
1466 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1467 n = n->rb_right;
1468 if (n == NULL)
1469 break;
1470 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1471 }
1472 }
1473
1474 spin_unlock(&rgd->rd_rsspin);
1475 return block;
1476 }
1477
1478 /**
1479 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1480 * @rbm: The current position in the resource group
1481 * @ip: The inode for which we are searching for blocks
1482 * @minext: The minimum extent length
1483 *
1484 * This checks the current position in the rgrp to see whether there is
1485 * a reservation covering this block. If not then this function is a
1486 * no-op. If there is, then the position is moved to the end of the
1487 * contiguous reservation(s) so that we are pointing at the first
1488 * non-reserved block.
1489 *
1490 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1491 */
1492
1493 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1494 const struct gfs2_inode *ip,
1495 u32 minext)
1496 {
1497 u64 block = gfs2_rbm_to_block(rbm);
1498 u32 extlen = 1;
1499 u64 nblock;
1500 int ret;
1501
1502 /*
1503 * If we have a minimum extent length, then skip over any extent
1504 * which is less than the min extent length in size.
1505 */
1506 if (minext) {
1507 extlen = gfs2_free_extlen(rbm, minext);
1508 nblock = block + extlen;
1509 if (extlen < minext)
1510 goto fail;
1511 }
1512
1513 /*
1514 * Check the extent which has been found against the reservations
1515 * and skip if parts of it are already reserved
1516 */
1517 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1518 if (nblock == block)
1519 return 0;
1520 fail:
1521 ret = gfs2_rbm_from_block(rbm, nblock);
1522 if (ret < 0)
1523 return ret;
1524 return 1;
1525 }
1526
1527 /**
1528 * gfs2_rbm_find - Look for blocks of a particular state
1529 * @rbm: Value/result starting position and final position
1530 * @state: The state which we want to find
1531 * @minext: The requested extent length (0 for a single block)
1532 * @ip: If set, check for reservations
1533 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1534 * around until we've reached the starting point.
1535 *
1536 * Side effects:
1537 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1538 * has no free blocks in it.
1539 *
1540 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1541 */
1542
1543 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 minext,
1544 const struct gfs2_inode *ip, bool nowrap)
1545 {
1546 struct buffer_head *bh;
1547 struct gfs2_bitmap *initial_bi;
1548 u32 initial_offset;
1549 u32 offset;
1550 u8 *buffer;
1551 int index;
1552 int n = 0;
1553 int iters = rbm->rgd->rd_length;
1554 int ret;
1555
1556 /* If we are not starting at the beginning of a bitmap, then we
1557 * need to add one to the bitmap count to ensure that we search
1558 * the starting bitmap twice.
1559 */
1560 if (rbm->offset != 0)
1561 iters++;
1562
1563 while(1) {
1564 if (test_bit(GBF_FULL, &rbm->bi->bi_flags) &&
1565 (state == GFS2_BLKST_FREE))
1566 goto next_bitmap;
1567
1568 bh = rbm->bi->bi_bh;
1569 buffer = bh->b_data + rbm->bi->bi_offset;
1570 WARN_ON(!buffer_uptodate(bh));
1571 if (state != GFS2_BLKST_UNLINKED && rbm->bi->bi_clone)
1572 buffer = rbm->bi->bi_clone + rbm->bi->bi_offset;
1573 initial_offset = rbm->offset;
1574 offset = gfs2_bitfit(buffer, rbm->bi->bi_len, rbm->offset, state);
1575 if (offset == BFITNOENT)
1576 goto bitmap_full;
1577 rbm->offset = offset;
1578 if (ip == NULL)
1579 return 0;
1580
1581 initial_bi = rbm->bi;
1582 ret = gfs2_reservation_check_and_update(rbm, ip, minext);
1583 if (ret == 0)
1584 return 0;
1585 if (ret > 0) {
1586 n += (rbm->bi - initial_bi);
1587 goto next_iter;
1588 }
1589 if (ret == -E2BIG) {
1590 index = 0;
1591 rbm->offset = 0;
1592 n += (rbm->bi - initial_bi);
1593 goto res_covered_end_of_rgrp;
1594 }
1595 return ret;
1596
1597 bitmap_full: /* Mark bitmap as full and fall through */
1598 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1599 set_bit(GBF_FULL, &rbm->bi->bi_flags);
1600
1601 next_bitmap: /* Find next bitmap in the rgrp */
1602 rbm->offset = 0;
1603 index = rbm->bi - rbm->rgd->rd_bits;
1604 index++;
1605 if (index == rbm->rgd->rd_length)
1606 index = 0;
1607 res_covered_end_of_rgrp:
1608 rbm->bi = &rbm->rgd->rd_bits[index];
1609 if ((index == 0) && nowrap)
1610 break;
1611 n++;
1612 next_iter:
1613 if (n >= iters)
1614 break;
1615 }
1616
1617 return -ENOSPC;
1618 }
1619
1620 /**
1621 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1622 * @rgd: The rgrp
1623 * @last_unlinked: block address of the last dinode we unlinked
1624 * @skip: block address we should explicitly not unlink
1625 *
1626 * Returns: 0 if no error
1627 * The inode, if one has been found, in inode.
1628 */
1629
1630 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1631 {
1632 u64 block;
1633 struct gfs2_sbd *sdp = rgd->rd_sbd;
1634 struct gfs2_glock *gl;
1635 struct gfs2_inode *ip;
1636 int error;
1637 int found = 0;
1638 struct gfs2_rbm rbm = { .rgd = rgd, .bi = rgd->rd_bits, .offset = 0 };
1639
1640 while (1) {
1641 down_write(&sdp->sd_log_flush_lock);
1642 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, 0, NULL, true);
1643 up_write(&sdp->sd_log_flush_lock);
1644 if (error == -ENOSPC)
1645 break;
1646 if (WARN_ON_ONCE(error))
1647 break;
1648
1649 block = gfs2_rbm_to_block(&rbm);
1650 if (gfs2_rbm_from_block(&rbm, block + 1))
1651 break;
1652 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1653 continue;
1654 if (block == skip)
1655 continue;
1656 *last_unlinked = block;
1657
1658 error = gfs2_glock_get(sdp, block, &gfs2_inode_glops, CREATE, &gl);
1659 if (error)
1660 continue;
1661
1662 /* If the inode is already in cache, we can ignore it here
1663 * because the existing inode disposal code will deal with
1664 * it when all refs have gone away. Accessing gl_object like
1665 * this is not safe in general. Here it is ok because we do
1666 * not dereference the pointer, and we only need an approx
1667 * answer to whether it is NULL or not.
1668 */
1669 ip = gl->gl_object;
1670
1671 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1672 gfs2_glock_put(gl);
1673 else
1674 found++;
1675
1676 /* Limit reclaim to sensible number of tasks */
1677 if (found > NR_CPUS)
1678 return;
1679 }
1680
1681 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1682 return;
1683 }
1684
1685 /**
1686 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1687 * @rgd: The rgrp in question
1688 * @loops: An indication of how picky we can be (0=very, 1=less so)
1689 *
1690 * This function uses the recently added glock statistics in order to
1691 * figure out whether a parciular resource group is suffering from
1692 * contention from multiple nodes. This is done purely on the basis
1693 * of timings, since this is the only data we have to work with and
1694 * our aim here is to reject a resource group which is highly contended
1695 * but (very important) not to do this too often in order to ensure that
1696 * we do not land up introducing fragmentation by changing resource
1697 * groups when not actually required.
1698 *
1699 * The calculation is fairly simple, we want to know whether the SRTTB
1700 * (i.e. smoothed round trip time for blocking operations) to acquire
1701 * the lock for this rgrp's glock is significantly greater than the
1702 * time taken for resource groups on average. We introduce a margin in
1703 * the form of the variable @var which is computed as the sum of the two
1704 * respective variences, and multiplied by a factor depending on @loops
1705 * and whether we have a lot of data to base the decision on. This is
1706 * then tested against the square difference of the means in order to
1707 * decide whether the result is statistically significant or not.
1708 *
1709 * Returns: A boolean verdict on the congestion status
1710 */
1711
1712 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1713 {
1714 const struct gfs2_glock *gl = rgd->rd_gl;
1715 const struct gfs2_sbd *sdp = gl->gl_sbd;
1716 struct gfs2_lkstats *st;
1717 s64 r_dcount, l_dcount;
1718 s64 r_srttb, l_srttb;
1719 s64 srttb_diff;
1720 s64 sqr_diff;
1721 s64 var;
1722
1723 preempt_disable();
1724 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1725 r_srttb = st->stats[GFS2_LKS_SRTTB];
1726 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1727 var = st->stats[GFS2_LKS_SRTTVARB] +
1728 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1729 preempt_enable();
1730
1731 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1732 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1733
1734 if ((l_dcount < 1) || (r_dcount < 1) || (r_srttb == 0))
1735 return false;
1736
1737 srttb_diff = r_srttb - l_srttb;
1738 sqr_diff = srttb_diff * srttb_diff;
1739
1740 var *= 2;
1741 if (l_dcount < 8 || r_dcount < 8)
1742 var *= 2;
1743 if (loops == 1)
1744 var *= 2;
1745
1746 return ((srttb_diff < 0) && (sqr_diff > var));
1747 }
1748
1749 /**
1750 * gfs2_rgrp_used_recently
1751 * @rs: The block reservation with the rgrp to test
1752 * @msecs: The time limit in milliseconds
1753 *
1754 * Returns: True if the rgrp glock has been used within the time limit
1755 */
1756 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1757 u64 msecs)
1758 {
1759 u64 tdiff;
1760
1761 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1762 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1763
1764 return tdiff > (msecs * 1000 * 1000);
1765 }
1766
1767 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1768 {
1769 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1770 u32 skip;
1771
1772 get_random_bytes(&skip, sizeof(skip));
1773 return skip % sdp->sd_rgrps;
1774 }
1775
1776 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1777 {
1778 struct gfs2_rgrpd *rgd = *pos;
1779 struct gfs2_sbd *sdp = rgd->rd_sbd;
1780
1781 rgd = gfs2_rgrpd_get_next(rgd);
1782 if (rgd == NULL)
1783 rgd = gfs2_rgrpd_get_first(sdp);
1784 *pos = rgd;
1785 if (rgd != begin) /* If we didn't wrap */
1786 return true;
1787 return false;
1788 }
1789
1790 /**
1791 * gfs2_inplace_reserve - Reserve space in the filesystem
1792 * @ip: the inode to reserve space for
1793 * @requested: the number of blocks to be reserved
1794 *
1795 * Returns: errno
1796 */
1797
1798 int gfs2_inplace_reserve(struct gfs2_inode *ip, u32 requested, u32 aflags)
1799 {
1800 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1801 struct gfs2_rgrpd *begin = NULL;
1802 struct gfs2_blkreserv *rs = ip->i_res;
1803 int error = 0, rg_locked, flags = 0;
1804 u64 last_unlinked = NO_BLOCK;
1805 int loops = 0;
1806 u32 skip = 0;
1807
1808 if (sdp->sd_args.ar_rgrplvb)
1809 flags |= GL_SKIP;
1810 if (gfs2_assert_warn(sdp, requested))
1811 return -EINVAL;
1812 if (gfs2_rs_active(rs)) {
1813 begin = rs->rs_rbm.rgd;
1814 flags = 0; /* Yoda: Do or do not. There is no try */
1815 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1816 rs->rs_rbm.rgd = begin = ip->i_rgd;
1817 } else {
1818 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1819 }
1820 if (S_ISDIR(ip->i_inode.i_mode) && (aflags & GFS2_AF_ORLOV))
1821 skip = gfs2_orlov_skip(ip);
1822 if (rs->rs_rbm.rgd == NULL)
1823 return -EBADSLT;
1824
1825 while (loops < 3) {
1826 rg_locked = 1;
1827
1828 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1829 rg_locked = 0;
1830 if (skip && skip--)
1831 goto next_rgrp;
1832 if (!gfs2_rs_active(rs) && (loops < 2) &&
1833 gfs2_rgrp_used_recently(rs, 1000) &&
1834 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1835 goto next_rgrp;
1836 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
1837 LM_ST_EXCLUSIVE, flags,
1838 &rs->rs_rgd_gh);
1839 if (unlikely(error))
1840 return error;
1841 if (!gfs2_rs_active(rs) && (loops < 2) &&
1842 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1843 goto skip_rgrp;
1844 if (sdp->sd_args.ar_rgrplvb) {
1845 error = update_rgrp_lvb(rs->rs_rbm.rgd);
1846 if (unlikely(error)) {
1847 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1848 return error;
1849 }
1850 }
1851 }
1852
1853 /* Skip unuseable resource groups */
1854 if (rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC | GFS2_RDF_ERROR))
1855 goto skip_rgrp;
1856
1857 if (sdp->sd_args.ar_rgrplvb)
1858 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
1859
1860 /* Get a reservation if we don't already have one */
1861 if (!gfs2_rs_active(rs))
1862 rg_mblk_search(rs->rs_rbm.rgd, ip, requested);
1863
1864 /* Skip rgrps when we can't get a reservation on first pass */
1865 if (!gfs2_rs_active(rs) && (loops < 1))
1866 goto check_rgrp;
1867
1868 /* If rgrp has enough free space, use it */
1869 if (rs->rs_rbm.rgd->rd_free_clone >= requested) {
1870 ip->i_rgd = rs->rs_rbm.rgd;
1871 return 0;
1872 }
1873
1874 /* Drop reservation, if we couldn't use reserved rgrp */
1875 if (gfs2_rs_active(rs))
1876 gfs2_rs_deltree(ip, rs);
1877 check_rgrp:
1878 /* Check for unlinked inodes which can be reclaimed */
1879 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
1880 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
1881 ip->i_no_addr);
1882 skip_rgrp:
1883 /* Unlock rgrp if required */
1884 if (!rg_locked)
1885 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1886 next_rgrp:
1887 /* Find the next rgrp, and continue looking */
1888 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
1889 continue;
1890 if (skip)
1891 continue;
1892
1893 /* If we've scanned all the rgrps, but found no free blocks
1894 * then this checks for some less likely conditions before
1895 * trying again.
1896 */
1897 loops++;
1898 /* Check that fs hasn't grown if writing to rindex */
1899 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
1900 error = gfs2_ri_update(ip);
1901 if (error)
1902 return error;
1903 }
1904 /* Flushing the log may release space */
1905 if (loops == 2)
1906 gfs2_log_flush(sdp, NULL);
1907 }
1908
1909 return -ENOSPC;
1910 }
1911
1912 /**
1913 * gfs2_inplace_release - release an inplace reservation
1914 * @ip: the inode the reservation was taken out on
1915 *
1916 * Release a reservation made by gfs2_inplace_reserve().
1917 */
1918
1919 void gfs2_inplace_release(struct gfs2_inode *ip)
1920 {
1921 struct gfs2_blkreserv *rs = ip->i_res;
1922
1923 if (rs->rs_rgd_gh.gh_gl)
1924 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
1925 }
1926
1927 /**
1928 * gfs2_get_block_type - Check a block in a RG is of given type
1929 * @rgd: the resource group holding the block
1930 * @block: the block number
1931 *
1932 * Returns: The block type (GFS2_BLKST_*)
1933 */
1934
1935 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
1936 {
1937 struct gfs2_rbm rbm = { .rgd = rgd, };
1938 int ret;
1939
1940 ret = gfs2_rbm_from_block(&rbm, block);
1941 WARN_ON_ONCE(ret != 0);
1942
1943 return gfs2_testbit(&rbm);
1944 }
1945
1946
1947 /**
1948 * gfs2_alloc_extent - allocate an extent from a given bitmap
1949 * @rbm: the resource group information
1950 * @dinode: TRUE if the first block we allocate is for a dinode
1951 * @n: The extent length (value/result)
1952 *
1953 * Add the bitmap buffer to the transaction.
1954 * Set the found bits to @new_state to change block's allocation state.
1955 */
1956 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
1957 unsigned int *n)
1958 {
1959 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
1960 const unsigned int elen = *n;
1961 u64 block;
1962 int ret;
1963
1964 *n = 1;
1965 block = gfs2_rbm_to_block(rbm);
1966 gfs2_trans_add_bh(rbm->rgd->rd_gl, rbm->bi->bi_bh, 1);
1967 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
1968 block++;
1969 while (*n < elen) {
1970 ret = gfs2_rbm_from_block(&pos, block);
1971 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
1972 break;
1973 gfs2_trans_add_bh(pos.rgd->rd_gl, pos.bi->bi_bh, 1);
1974 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
1975 (*n)++;
1976 block++;
1977 }
1978 }
1979
1980 /**
1981 * rgblk_free - Change alloc state of given block(s)
1982 * @sdp: the filesystem
1983 * @bstart: the start of a run of blocks to free
1984 * @blen: the length of the block run (all must lie within ONE RG!)
1985 * @new_state: GFS2_BLKST_XXX the after-allocation block state
1986 *
1987 * Returns: Resource group containing the block(s)
1988 */
1989
1990 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
1991 u32 blen, unsigned char new_state)
1992 {
1993 struct gfs2_rbm rbm;
1994
1995 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
1996 if (!rbm.rgd) {
1997 if (gfs2_consist(sdp))
1998 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
1999 return NULL;
2000 }
2001
2002 while (blen--) {
2003 gfs2_rbm_from_block(&rbm, bstart);
2004 bstart++;
2005 if (!rbm.bi->bi_clone) {
2006 rbm.bi->bi_clone = kmalloc(rbm.bi->bi_bh->b_size,
2007 GFP_NOFS | __GFP_NOFAIL);
2008 memcpy(rbm.bi->bi_clone + rbm.bi->bi_offset,
2009 rbm.bi->bi_bh->b_data + rbm.bi->bi_offset,
2010 rbm.bi->bi_len);
2011 }
2012 gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.bi->bi_bh, 1);
2013 gfs2_setbit(&rbm, false, new_state);
2014 }
2015
2016 return rbm.rgd;
2017 }
2018
2019 /**
2020 * gfs2_rgrp_dump - print out an rgrp
2021 * @seq: The iterator
2022 * @gl: The glock in question
2023 *
2024 */
2025
2026 int gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2027 {
2028 struct gfs2_rgrpd *rgd = gl->gl_object;
2029 struct gfs2_blkreserv *trs;
2030 const struct rb_node *n;
2031
2032 if (rgd == NULL)
2033 return 0;
2034 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u\n",
2035 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2036 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2037 rgd->rd_reserved);
2038 spin_lock(&rgd->rd_rsspin);
2039 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2040 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2041 dump_rs(seq, trs);
2042 }
2043 spin_unlock(&rgd->rd_rsspin);
2044 return 0;
2045 }
2046
2047 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2048 {
2049 struct gfs2_sbd *sdp = rgd->rd_sbd;
2050 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2051 (unsigned long long)rgd->rd_addr);
2052 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2053 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2054 rgd->rd_flags |= GFS2_RDF_ERROR;
2055 }
2056
2057 /**
2058 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2059 * @ip: The inode we have just allocated blocks for
2060 * @rbm: The start of the allocated blocks
2061 * @len: The extent length
2062 *
2063 * Adjusts a reservation after an allocation has taken place. If the
2064 * reservation does not match the allocation, or if it is now empty
2065 * then it is removed.
2066 */
2067
2068 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2069 const struct gfs2_rbm *rbm, unsigned len)
2070 {
2071 struct gfs2_blkreserv *rs = ip->i_res;
2072 struct gfs2_rgrpd *rgd = rbm->rgd;
2073 unsigned rlen;
2074 u64 block;
2075 int ret;
2076
2077 spin_lock(&rgd->rd_rsspin);
2078 if (gfs2_rs_active(rs)) {
2079 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2080 block = gfs2_rbm_to_block(rbm);
2081 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2082 rlen = min(rs->rs_free, len);
2083 rs->rs_free -= rlen;
2084 rgd->rd_reserved -= rlen;
2085 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2086 if (rs->rs_free && !ret)
2087 goto out;
2088 }
2089 __rs_deltree(ip, rs);
2090 }
2091 out:
2092 spin_unlock(&rgd->rd_rsspin);
2093 }
2094
2095 /**
2096 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2097 * @ip: the inode to allocate the block for
2098 * @bn: Used to return the starting block number
2099 * @nblocks: requested number of blocks/extent length (value/result)
2100 * @dinode: 1 if we're allocating a dinode block, else 0
2101 * @generation: the generation number of the inode
2102 *
2103 * Returns: 0 or error
2104 */
2105
2106 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2107 bool dinode, u64 *generation)
2108 {
2109 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2110 struct buffer_head *dibh;
2111 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2112 unsigned int ndata;
2113 u64 goal;
2114 u64 block; /* block, within the file system scope */
2115 int error;
2116
2117 if (gfs2_rs_active(ip->i_res))
2118 goal = gfs2_rbm_to_block(&ip->i_res->rs_rbm);
2119 else if (!dinode && rgrp_contains_block(rbm.rgd, ip->i_goal))
2120 goal = ip->i_goal;
2121 else
2122 goal = rbm.rgd->rd_last_alloc + rbm.rgd->rd_data0;
2123
2124 gfs2_rbm_from_block(&rbm, goal);
2125 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, ip, false);
2126
2127 if (error == -ENOSPC) {
2128 gfs2_rbm_from_block(&rbm, goal);
2129 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, 0, NULL, false);
2130 }
2131
2132 /* Since all blocks are reserved in advance, this shouldn't happen */
2133 if (error) {
2134 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d\n",
2135 (unsigned long long)ip->i_no_addr, error, *nblocks,
2136 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags));
2137 goto rgrp_error;
2138 }
2139
2140 gfs2_alloc_extent(&rbm, dinode, nblocks);
2141 block = gfs2_rbm_to_block(&rbm);
2142 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2143 if (gfs2_rs_active(ip->i_res))
2144 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2145 ndata = *nblocks;
2146 if (dinode)
2147 ndata--;
2148
2149 if (!dinode) {
2150 ip->i_goal = block + ndata - 1;
2151 error = gfs2_meta_inode_buffer(ip, &dibh);
2152 if (error == 0) {
2153 struct gfs2_dinode *di =
2154 (struct gfs2_dinode *)dibh->b_data;
2155 gfs2_trans_add_bh(ip->i_gl, dibh, 1);
2156 di->di_goal_meta = di->di_goal_data =
2157 cpu_to_be64(ip->i_goal);
2158 brelse(dibh);
2159 }
2160 }
2161 if (rbm.rgd->rd_free < *nblocks) {
2162 printk(KERN_WARNING "nblocks=%u\n", *nblocks);
2163 goto rgrp_error;
2164 }
2165
2166 rbm.rgd->rd_free -= *nblocks;
2167 if (dinode) {
2168 rbm.rgd->rd_dinodes++;
2169 *generation = rbm.rgd->rd_igeneration++;
2170 if (*generation == 0)
2171 *generation = rbm.rgd->rd_igeneration++;
2172 }
2173
2174 gfs2_trans_add_bh(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh, 1);
2175 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2176 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2177
2178 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2179 if (dinode)
2180 gfs2_trans_add_unrevoke(sdp, block, 1);
2181
2182 /*
2183 * This needs reviewing to see why we cannot do the quota change
2184 * at this point in the dinode case.
2185 */
2186 if (ndata)
2187 gfs2_quota_change(ip, ndata, ip->i_inode.i_uid,
2188 ip->i_inode.i_gid);
2189
2190 rbm.rgd->rd_free_clone -= *nblocks;
2191 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2192 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2193 *bn = block;
2194 return 0;
2195
2196 rgrp_error:
2197 gfs2_rgrp_error(rbm.rgd);
2198 return -EIO;
2199 }
2200
2201 /**
2202 * __gfs2_free_blocks - free a contiguous run of block(s)
2203 * @ip: the inode these blocks are being freed from
2204 * @bstart: first block of a run of contiguous blocks
2205 * @blen: the length of the block run
2206 * @meta: 1 if the blocks represent metadata
2207 *
2208 */
2209
2210 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2211 {
2212 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2213 struct gfs2_rgrpd *rgd;
2214
2215 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2216 if (!rgd)
2217 return;
2218 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2219 rgd->rd_free += blen;
2220 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2221 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2222 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2223 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2224
2225 /* Directories keep their data in the metadata address space */
2226 if (meta || ip->i_depth)
2227 gfs2_meta_wipe(ip, bstart, blen);
2228 }
2229
2230 /**
2231 * gfs2_free_meta - free a contiguous run of data block(s)
2232 * @ip: the inode these blocks are being freed from
2233 * @bstart: first block of a run of contiguous blocks
2234 * @blen: the length of the block run
2235 *
2236 */
2237
2238 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2239 {
2240 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2241
2242 __gfs2_free_blocks(ip, bstart, blen, 1);
2243 gfs2_statfs_change(sdp, 0, +blen, 0);
2244 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2245 }
2246
2247 void gfs2_unlink_di(struct inode *inode)
2248 {
2249 struct gfs2_inode *ip = GFS2_I(inode);
2250 struct gfs2_sbd *sdp = GFS2_SB(inode);
2251 struct gfs2_rgrpd *rgd;
2252 u64 blkno = ip->i_no_addr;
2253
2254 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2255 if (!rgd)
2256 return;
2257 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2258 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2259 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2260 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2261 update_rgrp_lvb_unlinked(rgd, 1);
2262 }
2263
2264 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2265 {
2266 struct gfs2_sbd *sdp = rgd->rd_sbd;
2267 struct gfs2_rgrpd *tmp_rgd;
2268
2269 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2270 if (!tmp_rgd)
2271 return;
2272 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2273
2274 if (!rgd->rd_dinodes)
2275 gfs2_consist_rgrpd(rgd);
2276 rgd->rd_dinodes--;
2277 rgd->rd_free++;
2278
2279 gfs2_trans_add_bh(rgd->rd_gl, rgd->rd_bits[0].bi_bh, 1);
2280 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2281 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2282 update_rgrp_lvb_unlinked(rgd, -1);
2283
2284 gfs2_statfs_change(sdp, 0, +1, -1);
2285 }
2286
2287
2288 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2289 {
2290 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2291 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2292 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2293 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2294 }
2295
2296 /**
2297 * gfs2_check_blk_type - Check the type of a block
2298 * @sdp: The superblock
2299 * @no_addr: The block number to check
2300 * @type: The block type we are looking for
2301 *
2302 * Returns: 0 if the block type matches the expected type
2303 * -ESTALE if it doesn't match
2304 * or -ve errno if something went wrong while checking
2305 */
2306
2307 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2308 {
2309 struct gfs2_rgrpd *rgd;
2310 struct gfs2_holder rgd_gh;
2311 int error = -EINVAL;
2312
2313 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2314 if (!rgd)
2315 goto fail;
2316
2317 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2318 if (error)
2319 goto fail;
2320
2321 if (gfs2_get_block_type(rgd, no_addr) != type)
2322 error = -ESTALE;
2323
2324 gfs2_glock_dq_uninit(&rgd_gh);
2325 fail:
2326 return error;
2327 }
2328
2329 /**
2330 * gfs2_rlist_add - add a RG to a list of RGs
2331 * @ip: the inode
2332 * @rlist: the list of resource groups
2333 * @block: the block
2334 *
2335 * Figure out what RG a block belongs to and add that RG to the list
2336 *
2337 * FIXME: Don't use NOFAIL
2338 *
2339 */
2340
2341 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2342 u64 block)
2343 {
2344 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2345 struct gfs2_rgrpd *rgd;
2346 struct gfs2_rgrpd **tmp;
2347 unsigned int new_space;
2348 unsigned int x;
2349
2350 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2351 return;
2352
2353 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2354 rgd = ip->i_rgd;
2355 else
2356 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2357 if (!rgd) {
2358 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2359 return;
2360 }
2361 ip->i_rgd = rgd;
2362
2363 for (x = 0; x < rlist->rl_rgrps; x++)
2364 if (rlist->rl_rgd[x] == rgd)
2365 return;
2366
2367 if (rlist->rl_rgrps == rlist->rl_space) {
2368 new_space = rlist->rl_space + 10;
2369
2370 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2371 GFP_NOFS | __GFP_NOFAIL);
2372
2373 if (rlist->rl_rgd) {
2374 memcpy(tmp, rlist->rl_rgd,
2375 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2376 kfree(rlist->rl_rgd);
2377 }
2378
2379 rlist->rl_space = new_space;
2380 rlist->rl_rgd = tmp;
2381 }
2382
2383 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2384 }
2385
2386 /**
2387 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2388 * and initialize an array of glock holders for them
2389 * @rlist: the list of resource groups
2390 * @state: the lock state to acquire the RG lock in
2391 *
2392 * FIXME: Don't use NOFAIL
2393 *
2394 */
2395
2396 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2397 {
2398 unsigned int x;
2399
2400 rlist->rl_ghs = kcalloc(rlist->rl_rgrps, sizeof(struct gfs2_holder),
2401 GFP_NOFS | __GFP_NOFAIL);
2402 for (x = 0; x < rlist->rl_rgrps; x++)
2403 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2404 state, 0,
2405 &rlist->rl_ghs[x]);
2406 }
2407
2408 /**
2409 * gfs2_rlist_free - free a resource group list
2410 * @list: the list of resource groups
2411 *
2412 */
2413
2414 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2415 {
2416 unsigned int x;
2417
2418 kfree(rlist->rl_rgd);
2419
2420 if (rlist->rl_ghs) {
2421 for (x = 0; x < rlist->rl_rgrps; x++)
2422 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2423 kfree(rlist->rl_ghs);
2424 rlist->rl_ghs = NULL;
2425 }
2426 }
2427