]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/gfs2/rgrp.c
fs/hugetlbfs/inode.c: change put_page/unlock_page order in hugetlbfs_fallocate()
[mirror_ubuntu-bionic-kernel.git] / fs / gfs2 / rgrp.c
1 /*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/slab.h>
13 #include <linux/spinlock.h>
14 #include <linux/completion.h>
15 #include <linux/buffer_head.h>
16 #include <linux/fs.h>
17 #include <linux/gfs2_ondisk.h>
18 #include <linux/prefetch.h>
19 #include <linux/blkdev.h>
20 #include <linux/rbtree.h>
21 #include <linux/random.h>
22
23 #include "gfs2.h"
24 #include "incore.h"
25 #include "glock.h"
26 #include "glops.h"
27 #include "lops.h"
28 #include "meta_io.h"
29 #include "quota.h"
30 #include "rgrp.h"
31 #include "super.h"
32 #include "trans.h"
33 #include "util.h"
34 #include "log.h"
35 #include "inode.h"
36 #include "trace_gfs2.h"
37
38 #define BFITNOENT ((u32)~0)
39 #define NO_BLOCK ((u64)~0)
40
41 #if BITS_PER_LONG == 32
42 #define LBITMASK (0x55555555UL)
43 #define LBITSKIP55 (0x55555555UL)
44 #define LBITSKIP00 (0x00000000UL)
45 #else
46 #define LBITMASK (0x5555555555555555UL)
47 #define LBITSKIP55 (0x5555555555555555UL)
48 #define LBITSKIP00 (0x0000000000000000UL)
49 #endif
50
51 /*
52 * These routines are used by the resource group routines (rgrp.c)
53 * to keep track of block allocation. Each block is represented by two
54 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
55 *
56 * 0 = Free
57 * 1 = Used (not metadata)
58 * 2 = Unlinked (still in use) inode
59 * 3 = Used (metadata)
60 */
61
62 struct gfs2_extent {
63 struct gfs2_rbm rbm;
64 u32 len;
65 };
66
67 static const char valid_change[16] = {
68 /* current */
69 /* n */ 0, 1, 1, 1,
70 /* e */ 1, 0, 0, 0,
71 /* w */ 0, 0, 0, 1,
72 1, 0, 0, 0
73 };
74
75 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
76 const struct gfs2_inode *ip, bool nowrap);
77
78
79 /**
80 * gfs2_setbit - Set a bit in the bitmaps
81 * @rbm: The position of the bit to set
82 * @do_clone: Also set the clone bitmap, if it exists
83 * @new_state: the new state of the block
84 *
85 */
86
87 static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
88 unsigned char new_state)
89 {
90 unsigned char *byte1, *byte2, *end, cur_state;
91 struct gfs2_bitmap *bi = rbm_bi(rbm);
92 unsigned int buflen = bi->bi_len;
93 const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
94
95 byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
96 end = bi->bi_bh->b_data + bi->bi_offset + buflen;
97
98 BUG_ON(byte1 >= end);
99
100 cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
101
102 if (unlikely(!valid_change[new_state * 4 + cur_state])) {
103 pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
104 rbm->offset, cur_state, new_state);
105 pr_warn("rgrp=0x%llx bi_start=0x%x\n",
106 (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
107 pr_warn("bi_offset=0x%x bi_len=0x%x\n",
108 bi->bi_offset, bi->bi_len);
109 dump_stack();
110 gfs2_consist_rgrpd(rbm->rgd);
111 return;
112 }
113 *byte1 ^= (cur_state ^ new_state) << bit;
114
115 if (do_clone && bi->bi_clone) {
116 byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
117 cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
118 *byte2 ^= (cur_state ^ new_state) << bit;
119 }
120 }
121
122 /**
123 * gfs2_testbit - test a bit in the bitmaps
124 * @rbm: The bit to test
125 *
126 * Returns: The two bit block state of the requested bit
127 */
128
129 static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
130 {
131 struct gfs2_bitmap *bi = rbm_bi(rbm);
132 const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
133 const u8 *byte;
134 unsigned int bit;
135
136 byte = buffer + (rbm->offset / GFS2_NBBY);
137 bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
138
139 return (*byte >> bit) & GFS2_BIT_MASK;
140 }
141
142 /**
143 * gfs2_bit_search
144 * @ptr: Pointer to bitmap data
145 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
146 * @state: The state we are searching for
147 *
148 * We xor the bitmap data with a patter which is the bitwise opposite
149 * of what we are looking for, this gives rise to a pattern of ones
150 * wherever there is a match. Since we have two bits per entry, we
151 * take this pattern, shift it down by one place and then and it with
152 * the original. All the even bit positions (0,2,4, etc) then represent
153 * successful matches, so we mask with 0x55555..... to remove the unwanted
154 * odd bit positions.
155 *
156 * This allows searching of a whole u64 at once (32 blocks) with a
157 * single test (on 64 bit arches).
158 */
159
160 static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
161 {
162 u64 tmp;
163 static const u64 search[] = {
164 [0] = 0xffffffffffffffffULL,
165 [1] = 0xaaaaaaaaaaaaaaaaULL,
166 [2] = 0x5555555555555555ULL,
167 [3] = 0x0000000000000000ULL,
168 };
169 tmp = le64_to_cpu(*ptr) ^ search[state];
170 tmp &= (tmp >> 1);
171 tmp &= mask;
172 return tmp;
173 }
174
175 /**
176 * rs_cmp - multi-block reservation range compare
177 * @blk: absolute file system block number of the new reservation
178 * @len: number of blocks in the new reservation
179 * @rs: existing reservation to compare against
180 *
181 * returns: 1 if the block range is beyond the reach of the reservation
182 * -1 if the block range is before the start of the reservation
183 * 0 if the block range overlaps with the reservation
184 */
185 static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
186 {
187 u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
188
189 if (blk >= startblk + rs->rs_free)
190 return 1;
191 if (blk + len - 1 < startblk)
192 return -1;
193 return 0;
194 }
195
196 /**
197 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
198 * a block in a given allocation state.
199 * @buf: the buffer that holds the bitmaps
200 * @len: the length (in bytes) of the buffer
201 * @goal: start search at this block's bit-pair (within @buffer)
202 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
203 *
204 * Scope of @goal and returned block number is only within this bitmap buffer,
205 * not entire rgrp or filesystem. @buffer will be offset from the actual
206 * beginning of a bitmap block buffer, skipping any header structures, but
207 * headers are always a multiple of 64 bits long so that the buffer is
208 * always aligned to a 64 bit boundary.
209 *
210 * The size of the buffer is in bytes, but is it assumed that it is
211 * always ok to read a complete multiple of 64 bits at the end
212 * of the block in case the end is no aligned to a natural boundary.
213 *
214 * Return: the block number (bitmap buffer scope) that was found
215 */
216
217 static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
218 u32 goal, u8 state)
219 {
220 u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
221 const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
222 const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
223 u64 tmp;
224 u64 mask = 0x5555555555555555ULL;
225 u32 bit;
226
227 /* Mask off bits we don't care about at the start of the search */
228 mask <<= spoint;
229 tmp = gfs2_bit_search(ptr, mask, state);
230 ptr++;
231 while(tmp == 0 && ptr < end) {
232 tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
233 ptr++;
234 }
235 /* Mask off any bits which are more than len bytes from the start */
236 if (ptr == end && (len & (sizeof(u64) - 1)))
237 tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
238 /* Didn't find anything, so return */
239 if (tmp == 0)
240 return BFITNOENT;
241 ptr--;
242 bit = __ffs64(tmp);
243 bit /= 2; /* two bits per entry in the bitmap */
244 return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
245 }
246
247 /**
248 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
249 * @rbm: The rbm with rgd already set correctly
250 * @block: The block number (filesystem relative)
251 *
252 * This sets the bi and offset members of an rbm based on a
253 * resource group and a filesystem relative block number. The
254 * resource group must be set in the rbm on entry, the bi and
255 * offset members will be set by this function.
256 *
257 * Returns: 0 on success, or an error code
258 */
259
260 static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
261 {
262 u64 rblock = block - rbm->rgd->rd_data0;
263
264 if (WARN_ON_ONCE(rblock > UINT_MAX))
265 return -EINVAL;
266 if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
267 return -E2BIG;
268
269 rbm->bii = 0;
270 rbm->offset = (u32)(rblock);
271 /* Check if the block is within the first block */
272 if (rbm->offset < rbm_bi(rbm)->bi_blocks)
273 return 0;
274
275 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
276 rbm->offset += (sizeof(struct gfs2_rgrp) -
277 sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
278 rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
279 rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
280 return 0;
281 }
282
283 /**
284 * gfs2_rbm_incr - increment an rbm structure
285 * @rbm: The rbm with rgd already set correctly
286 *
287 * This function takes an existing rbm structure and increments it to the next
288 * viable block offset.
289 *
290 * Returns: If incrementing the offset would cause the rbm to go past the
291 * end of the rgrp, true is returned, otherwise false.
292 *
293 */
294
295 static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
296 {
297 if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
298 rbm->offset++;
299 return false;
300 }
301 if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
302 return true;
303
304 rbm->offset = 0;
305 rbm->bii++;
306 return false;
307 }
308
309 /**
310 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
311 * @rbm: Position to search (value/result)
312 * @n_unaligned: Number of unaligned blocks to check
313 * @len: Decremented for each block found (terminate on zero)
314 *
315 * Returns: true if a non-free block is encountered
316 */
317
318 static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
319 {
320 u32 n;
321 u8 res;
322
323 for (n = 0; n < n_unaligned; n++) {
324 res = gfs2_testbit(rbm);
325 if (res != GFS2_BLKST_FREE)
326 return true;
327 (*len)--;
328 if (*len == 0)
329 return true;
330 if (gfs2_rbm_incr(rbm))
331 return true;
332 }
333
334 return false;
335 }
336
337 /**
338 * gfs2_free_extlen - Return extent length of free blocks
339 * @rrbm: Starting position
340 * @len: Max length to check
341 *
342 * Starting at the block specified by the rbm, see how many free blocks
343 * there are, not reading more than len blocks ahead. This can be done
344 * using memchr_inv when the blocks are byte aligned, but has to be done
345 * on a block by block basis in case of unaligned blocks. Also this
346 * function can cope with bitmap boundaries (although it must stop on
347 * a resource group boundary)
348 *
349 * Returns: Number of free blocks in the extent
350 */
351
352 static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
353 {
354 struct gfs2_rbm rbm = *rrbm;
355 u32 n_unaligned = rbm.offset & 3;
356 u32 size = len;
357 u32 bytes;
358 u32 chunk_size;
359 u8 *ptr, *start, *end;
360 u64 block;
361 struct gfs2_bitmap *bi;
362
363 if (n_unaligned &&
364 gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
365 goto out;
366
367 n_unaligned = len & 3;
368 /* Start is now byte aligned */
369 while (len > 3) {
370 bi = rbm_bi(&rbm);
371 start = bi->bi_bh->b_data;
372 if (bi->bi_clone)
373 start = bi->bi_clone;
374 end = start + bi->bi_bh->b_size;
375 start += bi->bi_offset;
376 BUG_ON(rbm.offset & 3);
377 start += (rbm.offset / GFS2_NBBY);
378 bytes = min_t(u32, len / GFS2_NBBY, (end - start));
379 ptr = memchr_inv(start, 0, bytes);
380 chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
381 chunk_size *= GFS2_NBBY;
382 BUG_ON(len < chunk_size);
383 len -= chunk_size;
384 block = gfs2_rbm_to_block(&rbm);
385 if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
386 n_unaligned = 0;
387 break;
388 }
389 if (ptr) {
390 n_unaligned = 3;
391 break;
392 }
393 n_unaligned = len & 3;
394 }
395
396 /* Deal with any bits left over at the end */
397 if (n_unaligned)
398 gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
399 out:
400 return size - len;
401 }
402
403 /**
404 * gfs2_bitcount - count the number of bits in a certain state
405 * @rgd: the resource group descriptor
406 * @buffer: the buffer that holds the bitmaps
407 * @buflen: the length (in bytes) of the buffer
408 * @state: the state of the block we're looking for
409 *
410 * Returns: The number of bits
411 */
412
413 static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
414 unsigned int buflen, u8 state)
415 {
416 const u8 *byte = buffer;
417 const u8 *end = buffer + buflen;
418 const u8 state1 = state << 2;
419 const u8 state2 = state << 4;
420 const u8 state3 = state << 6;
421 u32 count = 0;
422
423 for (; byte < end; byte++) {
424 if (((*byte) & 0x03) == state)
425 count++;
426 if (((*byte) & 0x0C) == state1)
427 count++;
428 if (((*byte) & 0x30) == state2)
429 count++;
430 if (((*byte) & 0xC0) == state3)
431 count++;
432 }
433
434 return count;
435 }
436
437 /**
438 * gfs2_rgrp_verify - Verify that a resource group is consistent
439 * @rgd: the rgrp
440 *
441 */
442
443 void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
444 {
445 struct gfs2_sbd *sdp = rgd->rd_sbd;
446 struct gfs2_bitmap *bi = NULL;
447 u32 length = rgd->rd_length;
448 u32 count[4], tmp;
449 int buf, x;
450
451 memset(count, 0, 4 * sizeof(u32));
452
453 /* Count # blocks in each of 4 possible allocation states */
454 for (buf = 0; buf < length; buf++) {
455 bi = rgd->rd_bits + buf;
456 for (x = 0; x < 4; x++)
457 count[x] += gfs2_bitcount(rgd,
458 bi->bi_bh->b_data +
459 bi->bi_offset,
460 bi->bi_len, x);
461 }
462
463 if (count[0] != rgd->rd_free) {
464 if (gfs2_consist_rgrpd(rgd))
465 fs_err(sdp, "free data mismatch: %u != %u\n",
466 count[0], rgd->rd_free);
467 return;
468 }
469
470 tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
471 if (count[1] != tmp) {
472 if (gfs2_consist_rgrpd(rgd))
473 fs_err(sdp, "used data mismatch: %u != %u\n",
474 count[1], tmp);
475 return;
476 }
477
478 if (count[2] + count[3] != rgd->rd_dinodes) {
479 if (gfs2_consist_rgrpd(rgd))
480 fs_err(sdp, "used metadata mismatch: %u != %u\n",
481 count[2] + count[3], rgd->rd_dinodes);
482 return;
483 }
484 }
485
486 /**
487 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
488 * @sdp: The GFS2 superblock
489 * @blk: The data block number
490 * @exact: True if this needs to be an exact match
491 *
492 * Returns: The resource group, or NULL if not found
493 */
494
495 struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
496 {
497 struct rb_node *n, *next;
498 struct gfs2_rgrpd *cur;
499
500 spin_lock(&sdp->sd_rindex_spin);
501 n = sdp->sd_rindex_tree.rb_node;
502 while (n) {
503 cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
504 next = NULL;
505 if (blk < cur->rd_addr)
506 next = n->rb_left;
507 else if (blk >= cur->rd_data0 + cur->rd_data)
508 next = n->rb_right;
509 if (next == NULL) {
510 spin_unlock(&sdp->sd_rindex_spin);
511 if (exact) {
512 if (blk < cur->rd_addr)
513 return NULL;
514 if (blk >= cur->rd_data0 + cur->rd_data)
515 return NULL;
516 }
517 return cur;
518 }
519 n = next;
520 }
521 spin_unlock(&sdp->sd_rindex_spin);
522
523 return NULL;
524 }
525
526 /**
527 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
528 * @sdp: The GFS2 superblock
529 *
530 * Returns: The first rgrp in the filesystem
531 */
532
533 struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
534 {
535 const struct rb_node *n;
536 struct gfs2_rgrpd *rgd;
537
538 spin_lock(&sdp->sd_rindex_spin);
539 n = rb_first(&sdp->sd_rindex_tree);
540 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
541 spin_unlock(&sdp->sd_rindex_spin);
542
543 return rgd;
544 }
545
546 /**
547 * gfs2_rgrpd_get_next - get the next RG
548 * @rgd: the resource group descriptor
549 *
550 * Returns: The next rgrp
551 */
552
553 struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
554 {
555 struct gfs2_sbd *sdp = rgd->rd_sbd;
556 const struct rb_node *n;
557
558 spin_lock(&sdp->sd_rindex_spin);
559 n = rb_next(&rgd->rd_node);
560 if (n == NULL)
561 n = rb_first(&sdp->sd_rindex_tree);
562
563 if (unlikely(&rgd->rd_node == n)) {
564 spin_unlock(&sdp->sd_rindex_spin);
565 return NULL;
566 }
567 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
568 spin_unlock(&sdp->sd_rindex_spin);
569 return rgd;
570 }
571
572 void check_and_update_goal(struct gfs2_inode *ip)
573 {
574 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
575 if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
576 ip->i_goal = ip->i_no_addr;
577 }
578
579 void gfs2_free_clones(struct gfs2_rgrpd *rgd)
580 {
581 int x;
582
583 for (x = 0; x < rgd->rd_length; x++) {
584 struct gfs2_bitmap *bi = rgd->rd_bits + x;
585 kfree(bi->bi_clone);
586 bi->bi_clone = NULL;
587 }
588 }
589
590 /**
591 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
592 * plus a quota allocations data structure, if necessary
593 * @ip: the inode for this reservation
594 */
595 int gfs2_rsqa_alloc(struct gfs2_inode *ip)
596 {
597 return gfs2_qa_alloc(ip);
598 }
599
600 static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
601 {
602 gfs2_print_dbg(seq, " B: n:%llu s:%llu b:%u f:%u\n",
603 (unsigned long long)rs->rs_inum,
604 (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
605 rs->rs_rbm.offset, rs->rs_free);
606 }
607
608 /**
609 * __rs_deltree - remove a multi-block reservation from the rgd tree
610 * @rs: The reservation to remove
611 *
612 */
613 static void __rs_deltree(struct gfs2_blkreserv *rs)
614 {
615 struct gfs2_rgrpd *rgd;
616
617 if (!gfs2_rs_active(rs))
618 return;
619
620 rgd = rs->rs_rbm.rgd;
621 trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
622 rb_erase(&rs->rs_node, &rgd->rd_rstree);
623 RB_CLEAR_NODE(&rs->rs_node);
624
625 if (rs->rs_free) {
626 struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
627
628 /* return reserved blocks to the rgrp */
629 BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
630 rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
631 /* The rgrp extent failure point is likely not to increase;
632 it will only do so if the freed blocks are somehow
633 contiguous with a span of free blocks that follows. Still,
634 it will force the number to be recalculated later. */
635 rgd->rd_extfail_pt += rs->rs_free;
636 rs->rs_free = 0;
637 clear_bit(GBF_FULL, &bi->bi_flags);
638 }
639 }
640
641 /**
642 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
643 * @rs: The reservation to remove
644 *
645 */
646 void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
647 {
648 struct gfs2_rgrpd *rgd;
649
650 rgd = rs->rs_rbm.rgd;
651 if (rgd) {
652 spin_lock(&rgd->rd_rsspin);
653 __rs_deltree(rs);
654 BUG_ON(rs->rs_free);
655 spin_unlock(&rgd->rd_rsspin);
656 }
657 }
658
659 /**
660 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
661 * @ip: The inode for this reservation
662 * @wcount: The inode's write count, or NULL
663 *
664 */
665 void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
666 {
667 down_write(&ip->i_rw_mutex);
668 if ((wcount == NULL) || (atomic_read(wcount) <= 1))
669 gfs2_rs_deltree(&ip->i_res);
670 up_write(&ip->i_rw_mutex);
671 gfs2_qa_delete(ip, wcount);
672 }
673
674 /**
675 * return_all_reservations - return all reserved blocks back to the rgrp.
676 * @rgd: the rgrp that needs its space back
677 *
678 * We previously reserved a bunch of blocks for allocation. Now we need to
679 * give them back. This leave the reservation structures in tact, but removes
680 * all of their corresponding "no-fly zones".
681 */
682 static void return_all_reservations(struct gfs2_rgrpd *rgd)
683 {
684 struct rb_node *n;
685 struct gfs2_blkreserv *rs;
686
687 spin_lock(&rgd->rd_rsspin);
688 while ((n = rb_first(&rgd->rd_rstree))) {
689 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
690 __rs_deltree(rs);
691 }
692 spin_unlock(&rgd->rd_rsspin);
693 }
694
695 void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
696 {
697 struct rb_node *n;
698 struct gfs2_rgrpd *rgd;
699 struct gfs2_glock *gl;
700
701 while ((n = rb_first(&sdp->sd_rindex_tree))) {
702 rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
703 gl = rgd->rd_gl;
704
705 rb_erase(n, &sdp->sd_rindex_tree);
706
707 if (gl) {
708 glock_clear_object(gl, rgd);
709 gfs2_glock_put(gl);
710 }
711
712 gfs2_free_clones(rgd);
713 kfree(rgd->rd_bits);
714 rgd->rd_bits = NULL;
715 return_all_reservations(rgd);
716 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
717 }
718 }
719
720 static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
721 {
722 pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
723 pr_info("ri_length = %u\n", rgd->rd_length);
724 pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
725 pr_info("ri_data = %u\n", rgd->rd_data);
726 pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
727 }
728
729 /**
730 * gfs2_compute_bitstructs - Compute the bitmap sizes
731 * @rgd: The resource group descriptor
732 *
733 * Calculates bitmap descriptors, one for each block that contains bitmap data
734 *
735 * Returns: errno
736 */
737
738 static int compute_bitstructs(struct gfs2_rgrpd *rgd)
739 {
740 struct gfs2_sbd *sdp = rgd->rd_sbd;
741 struct gfs2_bitmap *bi;
742 u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
743 u32 bytes_left, bytes;
744 int x;
745
746 if (!length)
747 return -EINVAL;
748
749 rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
750 if (!rgd->rd_bits)
751 return -ENOMEM;
752
753 bytes_left = rgd->rd_bitbytes;
754
755 for (x = 0; x < length; x++) {
756 bi = rgd->rd_bits + x;
757
758 bi->bi_flags = 0;
759 /* small rgrp; bitmap stored completely in header block */
760 if (length == 1) {
761 bytes = bytes_left;
762 bi->bi_offset = sizeof(struct gfs2_rgrp);
763 bi->bi_start = 0;
764 bi->bi_len = bytes;
765 bi->bi_blocks = bytes * GFS2_NBBY;
766 /* header block */
767 } else if (x == 0) {
768 bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
769 bi->bi_offset = sizeof(struct gfs2_rgrp);
770 bi->bi_start = 0;
771 bi->bi_len = bytes;
772 bi->bi_blocks = bytes * GFS2_NBBY;
773 /* last block */
774 } else if (x + 1 == length) {
775 bytes = bytes_left;
776 bi->bi_offset = sizeof(struct gfs2_meta_header);
777 bi->bi_start = rgd->rd_bitbytes - bytes_left;
778 bi->bi_len = bytes;
779 bi->bi_blocks = bytes * GFS2_NBBY;
780 /* other blocks */
781 } else {
782 bytes = sdp->sd_sb.sb_bsize -
783 sizeof(struct gfs2_meta_header);
784 bi->bi_offset = sizeof(struct gfs2_meta_header);
785 bi->bi_start = rgd->rd_bitbytes - bytes_left;
786 bi->bi_len = bytes;
787 bi->bi_blocks = bytes * GFS2_NBBY;
788 }
789
790 bytes_left -= bytes;
791 }
792
793 if (bytes_left) {
794 gfs2_consist_rgrpd(rgd);
795 return -EIO;
796 }
797 bi = rgd->rd_bits + (length - 1);
798 if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
799 if (gfs2_consist_rgrpd(rgd)) {
800 gfs2_rindex_print(rgd);
801 fs_err(sdp, "start=%u len=%u offset=%u\n",
802 bi->bi_start, bi->bi_len, bi->bi_offset);
803 }
804 return -EIO;
805 }
806
807 return 0;
808 }
809
810 /**
811 * gfs2_ri_total - Total up the file system space, according to the rindex.
812 * @sdp: the filesystem
813 *
814 */
815 u64 gfs2_ri_total(struct gfs2_sbd *sdp)
816 {
817 u64 total_data = 0;
818 struct inode *inode = sdp->sd_rindex;
819 struct gfs2_inode *ip = GFS2_I(inode);
820 char buf[sizeof(struct gfs2_rindex)];
821 int error, rgrps;
822
823 for (rgrps = 0;; rgrps++) {
824 loff_t pos = rgrps * sizeof(struct gfs2_rindex);
825
826 if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
827 break;
828 error = gfs2_internal_read(ip, buf, &pos,
829 sizeof(struct gfs2_rindex));
830 if (error != sizeof(struct gfs2_rindex))
831 break;
832 total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
833 }
834 return total_data;
835 }
836
837 static int rgd_insert(struct gfs2_rgrpd *rgd)
838 {
839 struct gfs2_sbd *sdp = rgd->rd_sbd;
840 struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
841
842 /* Figure out where to put new node */
843 while (*newn) {
844 struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
845 rd_node);
846
847 parent = *newn;
848 if (rgd->rd_addr < cur->rd_addr)
849 newn = &((*newn)->rb_left);
850 else if (rgd->rd_addr > cur->rd_addr)
851 newn = &((*newn)->rb_right);
852 else
853 return -EEXIST;
854 }
855
856 rb_link_node(&rgd->rd_node, parent, newn);
857 rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
858 sdp->sd_rgrps++;
859 return 0;
860 }
861
862 /**
863 * read_rindex_entry - Pull in a new resource index entry from the disk
864 * @ip: Pointer to the rindex inode
865 *
866 * Returns: 0 on success, > 0 on EOF, error code otherwise
867 */
868
869 static int read_rindex_entry(struct gfs2_inode *ip)
870 {
871 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
872 const unsigned bsize = sdp->sd_sb.sb_bsize;
873 loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
874 struct gfs2_rindex buf;
875 int error;
876 struct gfs2_rgrpd *rgd;
877
878 if (pos >= i_size_read(&ip->i_inode))
879 return 1;
880
881 error = gfs2_internal_read(ip, (char *)&buf, &pos,
882 sizeof(struct gfs2_rindex));
883
884 if (error != sizeof(struct gfs2_rindex))
885 return (error == 0) ? 1 : error;
886
887 rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
888 error = -ENOMEM;
889 if (!rgd)
890 return error;
891
892 rgd->rd_sbd = sdp;
893 rgd->rd_addr = be64_to_cpu(buf.ri_addr);
894 rgd->rd_length = be32_to_cpu(buf.ri_length);
895 rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
896 rgd->rd_data = be32_to_cpu(buf.ri_data);
897 rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
898 spin_lock_init(&rgd->rd_rsspin);
899
900 error = compute_bitstructs(rgd);
901 if (error)
902 goto fail;
903
904 error = gfs2_glock_get(sdp, rgd->rd_addr,
905 &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
906 if (error)
907 goto fail;
908
909 rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
910 rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
911 if (rgd->rd_data > sdp->sd_max_rg_data)
912 sdp->sd_max_rg_data = rgd->rd_data;
913 spin_lock(&sdp->sd_rindex_spin);
914 error = rgd_insert(rgd);
915 spin_unlock(&sdp->sd_rindex_spin);
916 if (!error) {
917 glock_set_object(rgd->rd_gl, rgd);
918 rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
919 rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
920 rgd->rd_length) * bsize) - 1;
921 return 0;
922 }
923
924 error = 0; /* someone else read in the rgrp; free it and ignore it */
925 gfs2_glock_put(rgd->rd_gl);
926
927 fail:
928 kfree(rgd->rd_bits);
929 rgd->rd_bits = NULL;
930 kmem_cache_free(gfs2_rgrpd_cachep, rgd);
931 return error;
932 }
933
934 /**
935 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
936 * @sdp: the GFS2 superblock
937 *
938 * The purpose of this function is to select a subset of the resource groups
939 * and mark them as PREFERRED. We do it in such a way that each node prefers
940 * to use a unique set of rgrps to minimize glock contention.
941 */
942 static void set_rgrp_preferences(struct gfs2_sbd *sdp)
943 {
944 struct gfs2_rgrpd *rgd, *first;
945 int i;
946
947 /* Skip an initial number of rgrps, based on this node's journal ID.
948 That should start each node out on its own set. */
949 rgd = gfs2_rgrpd_get_first(sdp);
950 for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
951 rgd = gfs2_rgrpd_get_next(rgd);
952 first = rgd;
953
954 do {
955 rgd->rd_flags |= GFS2_RDF_PREFERRED;
956 for (i = 0; i < sdp->sd_journals; i++) {
957 rgd = gfs2_rgrpd_get_next(rgd);
958 if (!rgd || rgd == first)
959 break;
960 }
961 } while (rgd && rgd != first);
962 }
963
964 /**
965 * gfs2_ri_update - Pull in a new resource index from the disk
966 * @ip: pointer to the rindex inode
967 *
968 * Returns: 0 on successful update, error code otherwise
969 */
970
971 static int gfs2_ri_update(struct gfs2_inode *ip)
972 {
973 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
974 int error;
975
976 do {
977 error = read_rindex_entry(ip);
978 } while (error == 0);
979
980 if (error < 0)
981 return error;
982
983 set_rgrp_preferences(sdp);
984
985 sdp->sd_rindex_uptodate = 1;
986 return 0;
987 }
988
989 /**
990 * gfs2_rindex_update - Update the rindex if required
991 * @sdp: The GFS2 superblock
992 *
993 * We grab a lock on the rindex inode to make sure that it doesn't
994 * change whilst we are performing an operation. We keep this lock
995 * for quite long periods of time compared to other locks. This
996 * doesn't matter, since it is shared and it is very, very rarely
997 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
998 *
999 * This makes sure that we're using the latest copy of the resource index
1000 * special file, which might have been updated if someone expanded the
1001 * filesystem (via gfs2_grow utility), which adds new resource groups.
1002 *
1003 * Returns: 0 on succeess, error code otherwise
1004 */
1005
1006 int gfs2_rindex_update(struct gfs2_sbd *sdp)
1007 {
1008 struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1009 struct gfs2_glock *gl = ip->i_gl;
1010 struct gfs2_holder ri_gh;
1011 int error = 0;
1012 int unlock_required = 0;
1013
1014 /* Read new copy from disk if we don't have the latest */
1015 if (!sdp->sd_rindex_uptodate) {
1016 if (!gfs2_glock_is_locked_by_me(gl)) {
1017 error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1018 if (error)
1019 return error;
1020 unlock_required = 1;
1021 }
1022 if (!sdp->sd_rindex_uptodate)
1023 error = gfs2_ri_update(ip);
1024 if (unlock_required)
1025 gfs2_glock_dq_uninit(&ri_gh);
1026 }
1027
1028 return error;
1029 }
1030
1031 static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1032 {
1033 const struct gfs2_rgrp *str = buf;
1034 u32 rg_flags;
1035
1036 rg_flags = be32_to_cpu(str->rg_flags);
1037 rg_flags &= ~GFS2_RDF_MASK;
1038 rgd->rd_flags &= GFS2_RDF_MASK;
1039 rgd->rd_flags |= rg_flags;
1040 rgd->rd_free = be32_to_cpu(str->rg_free);
1041 rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1042 rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1043 }
1044
1045 static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1046 {
1047 struct gfs2_rgrp *str = buf;
1048
1049 str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1050 str->rg_free = cpu_to_be32(rgd->rd_free);
1051 str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1052 str->__pad = cpu_to_be32(0);
1053 str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1054 memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1055 }
1056
1057 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1058 {
1059 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1060 struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1061
1062 if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1063 rgl->rl_dinodes != str->rg_dinodes ||
1064 rgl->rl_igeneration != str->rg_igeneration)
1065 return 0;
1066 return 1;
1067 }
1068
1069 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1070 {
1071 const struct gfs2_rgrp *str = buf;
1072
1073 rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1074 rgl->rl_flags = str->rg_flags;
1075 rgl->rl_free = str->rg_free;
1076 rgl->rl_dinodes = str->rg_dinodes;
1077 rgl->rl_igeneration = str->rg_igeneration;
1078 rgl->__pad = 0UL;
1079 }
1080
1081 static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1082 {
1083 struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1084 u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1085 rgl->rl_unlinked = cpu_to_be32(unlinked);
1086 }
1087
1088 static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1089 {
1090 struct gfs2_bitmap *bi;
1091 const u32 length = rgd->rd_length;
1092 const u8 *buffer = NULL;
1093 u32 i, goal, count = 0;
1094
1095 for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1096 goal = 0;
1097 buffer = bi->bi_bh->b_data + bi->bi_offset;
1098 WARN_ON(!buffer_uptodate(bi->bi_bh));
1099 while (goal < bi->bi_len * GFS2_NBBY) {
1100 goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1101 GFS2_BLKST_UNLINKED);
1102 if (goal == BFITNOENT)
1103 break;
1104 count++;
1105 goal++;
1106 }
1107 }
1108
1109 return count;
1110 }
1111
1112
1113 /**
1114 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1115 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1116 *
1117 * Read in all of a Resource Group's header and bitmap blocks.
1118 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1119 *
1120 * Returns: errno
1121 */
1122
1123 static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1124 {
1125 struct gfs2_sbd *sdp = rgd->rd_sbd;
1126 struct gfs2_glock *gl = rgd->rd_gl;
1127 unsigned int length = rgd->rd_length;
1128 struct gfs2_bitmap *bi;
1129 unsigned int x, y;
1130 int error;
1131
1132 if (rgd->rd_bits[0].bi_bh != NULL)
1133 return 0;
1134
1135 for (x = 0; x < length; x++) {
1136 bi = rgd->rd_bits + x;
1137 error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1138 if (error)
1139 goto fail;
1140 }
1141
1142 for (y = length; y--;) {
1143 bi = rgd->rd_bits + y;
1144 error = gfs2_meta_wait(sdp, bi->bi_bh);
1145 if (error)
1146 goto fail;
1147 if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1148 GFS2_METATYPE_RG)) {
1149 error = -EIO;
1150 goto fail;
1151 }
1152 }
1153
1154 if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1155 for (x = 0; x < length; x++)
1156 clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1157 gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1158 rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1159 rgd->rd_free_clone = rgd->rd_free;
1160 /* max out the rgrp allocation failure point */
1161 rgd->rd_extfail_pt = rgd->rd_free;
1162 }
1163 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1164 rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1165 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1166 rgd->rd_bits[0].bi_bh->b_data);
1167 }
1168 else if (sdp->sd_args.ar_rgrplvb) {
1169 if (!gfs2_rgrp_lvb_valid(rgd)){
1170 gfs2_consist_rgrpd(rgd);
1171 error = -EIO;
1172 goto fail;
1173 }
1174 if (rgd->rd_rgl->rl_unlinked == 0)
1175 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1176 }
1177 return 0;
1178
1179 fail:
1180 while (x--) {
1181 bi = rgd->rd_bits + x;
1182 brelse(bi->bi_bh);
1183 bi->bi_bh = NULL;
1184 gfs2_assert_warn(sdp, !bi->bi_clone);
1185 }
1186
1187 return error;
1188 }
1189
1190 static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1191 {
1192 u32 rl_flags;
1193
1194 if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1195 return 0;
1196
1197 if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1198 return gfs2_rgrp_bh_get(rgd);
1199
1200 rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1201 rl_flags &= ~GFS2_RDF_MASK;
1202 rgd->rd_flags &= GFS2_RDF_MASK;
1203 rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1204 if (rgd->rd_rgl->rl_unlinked == 0)
1205 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1206 rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1207 rgd->rd_free_clone = rgd->rd_free;
1208 rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1209 rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1210 return 0;
1211 }
1212
1213 int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1214 {
1215 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1216 struct gfs2_sbd *sdp = rgd->rd_sbd;
1217
1218 if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1219 return 0;
1220 return gfs2_rgrp_bh_get(rgd);
1221 }
1222
1223 /**
1224 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1225 * @rgd: The resource group
1226 *
1227 */
1228
1229 void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1230 {
1231 int x, length = rgd->rd_length;
1232
1233 for (x = 0; x < length; x++) {
1234 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1235 if (bi->bi_bh) {
1236 brelse(bi->bi_bh);
1237 bi->bi_bh = NULL;
1238 }
1239 }
1240
1241 }
1242
1243 /**
1244 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1245 * @gh: The glock holder for the resource group
1246 *
1247 */
1248
1249 void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1250 {
1251 struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1252 int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1253 test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1254
1255 if (rgd && demote_requested)
1256 gfs2_rgrp_brelse(rgd);
1257 }
1258
1259 int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1260 struct buffer_head *bh,
1261 const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1262 {
1263 struct super_block *sb = sdp->sd_vfs;
1264 u64 blk;
1265 sector_t start = 0;
1266 sector_t nr_blks = 0;
1267 int rv;
1268 unsigned int x;
1269 u32 trimmed = 0;
1270 u8 diff;
1271
1272 for (x = 0; x < bi->bi_len; x++) {
1273 const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1274 clone += bi->bi_offset;
1275 clone += x;
1276 if (bh) {
1277 const u8 *orig = bh->b_data + bi->bi_offset + x;
1278 diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1279 } else {
1280 diff = ~(*clone | (*clone >> 1));
1281 }
1282 diff &= 0x55;
1283 if (diff == 0)
1284 continue;
1285 blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1286 while(diff) {
1287 if (diff & 1) {
1288 if (nr_blks == 0)
1289 goto start_new_extent;
1290 if ((start + nr_blks) != blk) {
1291 if (nr_blks >= minlen) {
1292 rv = sb_issue_discard(sb,
1293 start, nr_blks,
1294 GFP_NOFS, 0);
1295 if (rv)
1296 goto fail;
1297 trimmed += nr_blks;
1298 }
1299 nr_blks = 0;
1300 start_new_extent:
1301 start = blk;
1302 }
1303 nr_blks++;
1304 }
1305 diff >>= 2;
1306 blk++;
1307 }
1308 }
1309 if (nr_blks >= minlen) {
1310 rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1311 if (rv)
1312 goto fail;
1313 trimmed += nr_blks;
1314 }
1315 if (ptrimmed)
1316 *ptrimmed = trimmed;
1317 return 0;
1318
1319 fail:
1320 if (sdp->sd_args.ar_discard)
1321 fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1322 sdp->sd_args.ar_discard = 0;
1323 return -EIO;
1324 }
1325
1326 /**
1327 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1328 * @filp: Any file on the filesystem
1329 * @argp: Pointer to the arguments (also used to pass result)
1330 *
1331 * Returns: 0 on success, otherwise error code
1332 */
1333
1334 int gfs2_fitrim(struct file *filp, void __user *argp)
1335 {
1336 struct inode *inode = file_inode(filp);
1337 struct gfs2_sbd *sdp = GFS2_SB(inode);
1338 struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1339 struct buffer_head *bh;
1340 struct gfs2_rgrpd *rgd;
1341 struct gfs2_rgrpd *rgd_end;
1342 struct gfs2_holder gh;
1343 struct fstrim_range r;
1344 int ret = 0;
1345 u64 amt;
1346 u64 trimmed = 0;
1347 u64 start, end, minlen;
1348 unsigned int x;
1349 unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1350
1351 if (!capable(CAP_SYS_ADMIN))
1352 return -EPERM;
1353
1354 if (!blk_queue_discard(q))
1355 return -EOPNOTSUPP;
1356
1357 if (copy_from_user(&r, argp, sizeof(r)))
1358 return -EFAULT;
1359
1360 ret = gfs2_rindex_update(sdp);
1361 if (ret)
1362 return ret;
1363
1364 start = r.start >> bs_shift;
1365 end = start + (r.len >> bs_shift);
1366 minlen = max_t(u64, r.minlen,
1367 q->limits.discard_granularity) >> bs_shift;
1368
1369 if (end <= start || minlen > sdp->sd_max_rg_data)
1370 return -EINVAL;
1371
1372 rgd = gfs2_blk2rgrpd(sdp, start, 0);
1373 rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1374
1375 if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1376 && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1377 return -EINVAL; /* start is beyond the end of the fs */
1378
1379 while (1) {
1380
1381 ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1382 if (ret)
1383 goto out;
1384
1385 if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1386 /* Trim each bitmap in the rgrp */
1387 for (x = 0; x < rgd->rd_length; x++) {
1388 struct gfs2_bitmap *bi = rgd->rd_bits + x;
1389 ret = gfs2_rgrp_send_discards(sdp,
1390 rgd->rd_data0, NULL, bi, minlen,
1391 &amt);
1392 if (ret) {
1393 gfs2_glock_dq_uninit(&gh);
1394 goto out;
1395 }
1396 trimmed += amt;
1397 }
1398
1399 /* Mark rgrp as having been trimmed */
1400 ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1401 if (ret == 0) {
1402 bh = rgd->rd_bits[0].bi_bh;
1403 rgd->rd_flags |= GFS2_RGF_TRIMMED;
1404 gfs2_trans_add_meta(rgd->rd_gl, bh);
1405 gfs2_rgrp_out(rgd, bh->b_data);
1406 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1407 gfs2_trans_end(sdp);
1408 }
1409 }
1410 gfs2_glock_dq_uninit(&gh);
1411
1412 if (rgd == rgd_end)
1413 break;
1414
1415 rgd = gfs2_rgrpd_get_next(rgd);
1416 }
1417
1418 out:
1419 r.len = trimmed << bs_shift;
1420 if (copy_to_user(argp, &r, sizeof(r)))
1421 return -EFAULT;
1422
1423 return ret;
1424 }
1425
1426 /**
1427 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1428 * @ip: the inode structure
1429 *
1430 */
1431 static void rs_insert(struct gfs2_inode *ip)
1432 {
1433 struct rb_node **newn, *parent = NULL;
1434 int rc;
1435 struct gfs2_blkreserv *rs = &ip->i_res;
1436 struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1437 u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1438
1439 BUG_ON(gfs2_rs_active(rs));
1440
1441 spin_lock(&rgd->rd_rsspin);
1442 newn = &rgd->rd_rstree.rb_node;
1443 while (*newn) {
1444 struct gfs2_blkreserv *cur =
1445 rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1446
1447 parent = *newn;
1448 rc = rs_cmp(fsblock, rs->rs_free, cur);
1449 if (rc > 0)
1450 newn = &((*newn)->rb_right);
1451 else if (rc < 0)
1452 newn = &((*newn)->rb_left);
1453 else {
1454 spin_unlock(&rgd->rd_rsspin);
1455 WARN_ON(1);
1456 return;
1457 }
1458 }
1459
1460 rb_link_node(&rs->rs_node, parent, newn);
1461 rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1462
1463 /* Do our rgrp accounting for the reservation */
1464 rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1465 spin_unlock(&rgd->rd_rsspin);
1466 trace_gfs2_rs(rs, TRACE_RS_INSERT);
1467 }
1468
1469 /**
1470 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1471 * @rgd: the resource group descriptor
1472 * @ip: pointer to the inode for which we're reserving blocks
1473 * @ap: the allocation parameters
1474 *
1475 */
1476
1477 static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1478 const struct gfs2_alloc_parms *ap)
1479 {
1480 struct gfs2_rbm rbm = { .rgd = rgd, };
1481 u64 goal;
1482 struct gfs2_blkreserv *rs = &ip->i_res;
1483 u32 extlen;
1484 u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1485 int ret;
1486 struct inode *inode = &ip->i_inode;
1487
1488 if (S_ISDIR(inode->i_mode))
1489 extlen = 1;
1490 else {
1491 extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1492 extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1493 }
1494 if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1495 return;
1496
1497 /* Find bitmap block that contains bits for goal block */
1498 if (rgrp_contains_block(rgd, ip->i_goal))
1499 goal = ip->i_goal;
1500 else
1501 goal = rgd->rd_last_alloc + rgd->rd_data0;
1502
1503 if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1504 return;
1505
1506 ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1507 if (ret == 0) {
1508 rs->rs_rbm = rbm;
1509 rs->rs_free = extlen;
1510 rs->rs_inum = ip->i_no_addr;
1511 rs_insert(ip);
1512 } else {
1513 if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1514 rgd->rd_last_alloc = 0;
1515 }
1516 }
1517
1518 /**
1519 * gfs2_next_unreserved_block - Return next block that is not reserved
1520 * @rgd: The resource group
1521 * @block: The starting block
1522 * @length: The required length
1523 * @ip: Ignore any reservations for this inode
1524 *
1525 * If the block does not appear in any reservation, then return the
1526 * block number unchanged. If it does appear in the reservation, then
1527 * keep looking through the tree of reservations in order to find the
1528 * first block number which is not reserved.
1529 */
1530
1531 static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1532 u32 length,
1533 const struct gfs2_inode *ip)
1534 {
1535 struct gfs2_blkreserv *rs;
1536 struct rb_node *n;
1537 int rc;
1538
1539 spin_lock(&rgd->rd_rsspin);
1540 n = rgd->rd_rstree.rb_node;
1541 while (n) {
1542 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1543 rc = rs_cmp(block, length, rs);
1544 if (rc < 0)
1545 n = n->rb_left;
1546 else if (rc > 0)
1547 n = n->rb_right;
1548 else
1549 break;
1550 }
1551
1552 if (n) {
1553 while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1554 block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1555 n = n->rb_right;
1556 if (n == NULL)
1557 break;
1558 rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1559 }
1560 }
1561
1562 spin_unlock(&rgd->rd_rsspin);
1563 return block;
1564 }
1565
1566 /**
1567 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1568 * @rbm: The current position in the resource group
1569 * @ip: The inode for which we are searching for blocks
1570 * @minext: The minimum extent length
1571 * @maxext: A pointer to the maximum extent structure
1572 *
1573 * This checks the current position in the rgrp to see whether there is
1574 * a reservation covering this block. If not then this function is a
1575 * no-op. If there is, then the position is moved to the end of the
1576 * contiguous reservation(s) so that we are pointing at the first
1577 * non-reserved block.
1578 *
1579 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1580 */
1581
1582 static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1583 const struct gfs2_inode *ip,
1584 u32 minext,
1585 struct gfs2_extent *maxext)
1586 {
1587 u64 block = gfs2_rbm_to_block(rbm);
1588 u32 extlen = 1;
1589 u64 nblock;
1590 int ret;
1591
1592 /*
1593 * If we have a minimum extent length, then skip over any extent
1594 * which is less than the min extent length in size.
1595 */
1596 if (minext) {
1597 extlen = gfs2_free_extlen(rbm, minext);
1598 if (extlen <= maxext->len)
1599 goto fail;
1600 }
1601
1602 /*
1603 * Check the extent which has been found against the reservations
1604 * and skip if parts of it are already reserved
1605 */
1606 nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1607 if (nblock == block) {
1608 if (!minext || extlen >= minext)
1609 return 0;
1610
1611 if (extlen > maxext->len) {
1612 maxext->len = extlen;
1613 maxext->rbm = *rbm;
1614 }
1615 fail:
1616 nblock = block + extlen;
1617 }
1618 ret = gfs2_rbm_from_block(rbm, nblock);
1619 if (ret < 0)
1620 return ret;
1621 return 1;
1622 }
1623
1624 /**
1625 * gfs2_rbm_find - Look for blocks of a particular state
1626 * @rbm: Value/result starting position and final position
1627 * @state: The state which we want to find
1628 * @minext: Pointer to the requested extent length (NULL for a single block)
1629 * This is updated to be the actual reservation size.
1630 * @ip: If set, check for reservations
1631 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1632 * around until we've reached the starting point.
1633 *
1634 * Side effects:
1635 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1636 * has no free blocks in it.
1637 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1638 * has come up short on a free block search.
1639 *
1640 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1641 */
1642
1643 static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1644 const struct gfs2_inode *ip, bool nowrap)
1645 {
1646 struct buffer_head *bh;
1647 int initial_bii;
1648 u32 initial_offset;
1649 int first_bii = rbm->bii;
1650 u32 first_offset = rbm->offset;
1651 u32 offset;
1652 u8 *buffer;
1653 int n = 0;
1654 int iters = rbm->rgd->rd_length;
1655 int ret;
1656 struct gfs2_bitmap *bi;
1657 struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1658
1659 /* If we are not starting at the beginning of a bitmap, then we
1660 * need to add one to the bitmap count to ensure that we search
1661 * the starting bitmap twice.
1662 */
1663 if (rbm->offset != 0)
1664 iters++;
1665
1666 while(1) {
1667 bi = rbm_bi(rbm);
1668 if (test_bit(GBF_FULL, &bi->bi_flags) &&
1669 (state == GFS2_BLKST_FREE))
1670 goto next_bitmap;
1671
1672 bh = bi->bi_bh;
1673 buffer = bh->b_data + bi->bi_offset;
1674 WARN_ON(!buffer_uptodate(bh));
1675 if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1676 buffer = bi->bi_clone + bi->bi_offset;
1677 initial_offset = rbm->offset;
1678 offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1679 if (offset == BFITNOENT)
1680 goto bitmap_full;
1681 rbm->offset = offset;
1682 if (ip == NULL)
1683 return 0;
1684
1685 initial_bii = rbm->bii;
1686 ret = gfs2_reservation_check_and_update(rbm, ip,
1687 minext ? *minext : 0,
1688 &maxext);
1689 if (ret == 0)
1690 return 0;
1691 if (ret > 0) {
1692 n += (rbm->bii - initial_bii);
1693 goto next_iter;
1694 }
1695 if (ret == -E2BIG) {
1696 rbm->bii = 0;
1697 rbm->offset = 0;
1698 n += (rbm->bii - initial_bii);
1699 goto res_covered_end_of_rgrp;
1700 }
1701 return ret;
1702
1703 bitmap_full: /* Mark bitmap as full and fall through */
1704 if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1705 set_bit(GBF_FULL, &bi->bi_flags);
1706
1707 next_bitmap: /* Find next bitmap in the rgrp */
1708 rbm->offset = 0;
1709 rbm->bii++;
1710 if (rbm->bii == rbm->rgd->rd_length)
1711 rbm->bii = 0;
1712 res_covered_end_of_rgrp:
1713 if ((rbm->bii == 0) && nowrap)
1714 break;
1715 n++;
1716 next_iter:
1717 if (n >= iters)
1718 break;
1719 }
1720
1721 if (minext == NULL || state != GFS2_BLKST_FREE)
1722 return -ENOSPC;
1723
1724 /* If the extent was too small, and it's smaller than the smallest
1725 to have failed before, remember for future reference that it's
1726 useless to search this rgrp again for this amount or more. */
1727 if ((first_offset == 0) && (first_bii == 0) &&
1728 (*minext < rbm->rgd->rd_extfail_pt))
1729 rbm->rgd->rd_extfail_pt = *minext;
1730
1731 /* If the maximum extent we found is big enough to fulfill the
1732 minimum requirements, use it anyway. */
1733 if (maxext.len) {
1734 *rbm = maxext.rbm;
1735 *minext = maxext.len;
1736 return 0;
1737 }
1738
1739 return -ENOSPC;
1740 }
1741
1742 /**
1743 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1744 * @rgd: The rgrp
1745 * @last_unlinked: block address of the last dinode we unlinked
1746 * @skip: block address we should explicitly not unlink
1747 *
1748 * Returns: 0 if no error
1749 * The inode, if one has been found, in inode.
1750 */
1751
1752 static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1753 {
1754 u64 block;
1755 struct gfs2_sbd *sdp = rgd->rd_sbd;
1756 struct gfs2_glock *gl;
1757 struct gfs2_inode *ip;
1758 int error;
1759 int found = 0;
1760 struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1761
1762 while (1) {
1763 down_write(&sdp->sd_log_flush_lock);
1764 error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1765 true);
1766 up_write(&sdp->sd_log_flush_lock);
1767 if (error == -ENOSPC)
1768 break;
1769 if (WARN_ON_ONCE(error))
1770 break;
1771
1772 block = gfs2_rbm_to_block(&rbm);
1773 if (gfs2_rbm_from_block(&rbm, block + 1))
1774 break;
1775 if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1776 continue;
1777 if (block == skip)
1778 continue;
1779 *last_unlinked = block;
1780
1781 error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1782 if (error)
1783 continue;
1784
1785 /* If the inode is already in cache, we can ignore it here
1786 * because the existing inode disposal code will deal with
1787 * it when all refs have gone away. Accessing gl_object like
1788 * this is not safe in general. Here it is ok because we do
1789 * not dereference the pointer, and we only need an approx
1790 * answer to whether it is NULL or not.
1791 */
1792 ip = gl->gl_object;
1793
1794 if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1795 gfs2_glock_put(gl);
1796 else
1797 found++;
1798
1799 /* Limit reclaim to sensible number of tasks */
1800 if (found > NR_CPUS)
1801 return;
1802 }
1803
1804 rgd->rd_flags &= ~GFS2_RDF_CHECK;
1805 return;
1806 }
1807
1808 /**
1809 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1810 * @rgd: The rgrp in question
1811 * @loops: An indication of how picky we can be (0=very, 1=less so)
1812 *
1813 * This function uses the recently added glock statistics in order to
1814 * figure out whether a parciular resource group is suffering from
1815 * contention from multiple nodes. This is done purely on the basis
1816 * of timings, since this is the only data we have to work with and
1817 * our aim here is to reject a resource group which is highly contended
1818 * but (very important) not to do this too often in order to ensure that
1819 * we do not land up introducing fragmentation by changing resource
1820 * groups when not actually required.
1821 *
1822 * The calculation is fairly simple, we want to know whether the SRTTB
1823 * (i.e. smoothed round trip time for blocking operations) to acquire
1824 * the lock for this rgrp's glock is significantly greater than the
1825 * time taken for resource groups on average. We introduce a margin in
1826 * the form of the variable @var which is computed as the sum of the two
1827 * respective variences, and multiplied by a factor depending on @loops
1828 * and whether we have a lot of data to base the decision on. This is
1829 * then tested against the square difference of the means in order to
1830 * decide whether the result is statistically significant or not.
1831 *
1832 * Returns: A boolean verdict on the congestion status
1833 */
1834
1835 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1836 {
1837 const struct gfs2_glock *gl = rgd->rd_gl;
1838 const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1839 struct gfs2_lkstats *st;
1840 u64 r_dcount, l_dcount;
1841 u64 l_srttb, a_srttb = 0;
1842 s64 srttb_diff;
1843 u64 sqr_diff;
1844 u64 var;
1845 int cpu, nonzero = 0;
1846
1847 preempt_disable();
1848 for_each_present_cpu(cpu) {
1849 st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1850 if (st->stats[GFS2_LKS_SRTTB]) {
1851 a_srttb += st->stats[GFS2_LKS_SRTTB];
1852 nonzero++;
1853 }
1854 }
1855 st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1856 if (nonzero)
1857 do_div(a_srttb, nonzero);
1858 r_dcount = st->stats[GFS2_LKS_DCOUNT];
1859 var = st->stats[GFS2_LKS_SRTTVARB] +
1860 gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1861 preempt_enable();
1862
1863 l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1864 l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1865
1866 if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1867 return false;
1868
1869 srttb_diff = a_srttb - l_srttb;
1870 sqr_diff = srttb_diff * srttb_diff;
1871
1872 var *= 2;
1873 if (l_dcount < 8 || r_dcount < 8)
1874 var *= 2;
1875 if (loops == 1)
1876 var *= 2;
1877
1878 return ((srttb_diff < 0) && (sqr_diff > var));
1879 }
1880
1881 /**
1882 * gfs2_rgrp_used_recently
1883 * @rs: The block reservation with the rgrp to test
1884 * @msecs: The time limit in milliseconds
1885 *
1886 * Returns: True if the rgrp glock has been used within the time limit
1887 */
1888 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1889 u64 msecs)
1890 {
1891 u64 tdiff;
1892
1893 tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1894 rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1895
1896 return tdiff > (msecs * 1000 * 1000);
1897 }
1898
1899 static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1900 {
1901 const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1902 u32 skip;
1903
1904 get_random_bytes(&skip, sizeof(skip));
1905 return skip % sdp->sd_rgrps;
1906 }
1907
1908 static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1909 {
1910 struct gfs2_rgrpd *rgd = *pos;
1911 struct gfs2_sbd *sdp = rgd->rd_sbd;
1912
1913 rgd = gfs2_rgrpd_get_next(rgd);
1914 if (rgd == NULL)
1915 rgd = gfs2_rgrpd_get_first(sdp);
1916 *pos = rgd;
1917 if (rgd != begin) /* If we didn't wrap */
1918 return true;
1919 return false;
1920 }
1921
1922 /**
1923 * fast_to_acquire - determine if a resource group will be fast to acquire
1924 *
1925 * If this is one of our preferred rgrps, it should be quicker to acquire,
1926 * because we tried to set ourselves up as dlm lock master.
1927 */
1928 static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1929 {
1930 struct gfs2_glock *gl = rgd->rd_gl;
1931
1932 if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1933 !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1934 !test_bit(GLF_DEMOTE, &gl->gl_flags))
1935 return 1;
1936 if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1937 return 1;
1938 return 0;
1939 }
1940
1941 /**
1942 * gfs2_inplace_reserve - Reserve space in the filesystem
1943 * @ip: the inode to reserve space for
1944 * @ap: the allocation parameters
1945 *
1946 * We try our best to find an rgrp that has at least ap->target blocks
1947 * available. After a couple of passes (loops == 2), the prospects of finding
1948 * such an rgrp diminish. At this stage, we return the first rgrp that has
1949 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1950 * the number of blocks available in the chosen rgrp.
1951 *
1952 * Returns: 0 on success,
1953 * -ENOMEM if a suitable rgrp can't be found
1954 * errno otherwise
1955 */
1956
1957 int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1958 {
1959 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1960 struct gfs2_rgrpd *begin = NULL;
1961 struct gfs2_blkreserv *rs = &ip->i_res;
1962 int error = 0, rg_locked, flags = 0;
1963 u64 last_unlinked = NO_BLOCK;
1964 int loops = 0;
1965 u32 skip = 0;
1966
1967 if (sdp->sd_args.ar_rgrplvb)
1968 flags |= GL_SKIP;
1969 if (gfs2_assert_warn(sdp, ap->target))
1970 return -EINVAL;
1971 if (gfs2_rs_active(rs)) {
1972 begin = rs->rs_rbm.rgd;
1973 } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1974 rs->rs_rbm.rgd = begin = ip->i_rgd;
1975 } else {
1976 check_and_update_goal(ip);
1977 rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1978 }
1979 if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1980 skip = gfs2_orlov_skip(ip);
1981 if (rs->rs_rbm.rgd == NULL)
1982 return -EBADSLT;
1983
1984 while (loops < 3) {
1985 rg_locked = 1;
1986
1987 if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1988 rg_locked = 0;
1989 if (skip && skip--)
1990 goto next_rgrp;
1991 if (!gfs2_rs_active(rs)) {
1992 if (loops == 0 &&
1993 !fast_to_acquire(rs->rs_rbm.rgd))
1994 goto next_rgrp;
1995 if ((loops < 2) &&
1996 gfs2_rgrp_used_recently(rs, 1000) &&
1997 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
1998 goto next_rgrp;
1999 }
2000 error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2001 LM_ST_EXCLUSIVE, flags,
2002 &rs->rs_rgd_gh);
2003 if (unlikely(error))
2004 return error;
2005 if (!gfs2_rs_active(rs) && (loops < 2) &&
2006 gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2007 goto skip_rgrp;
2008 if (sdp->sd_args.ar_rgrplvb) {
2009 error = update_rgrp_lvb(rs->rs_rbm.rgd);
2010 if (unlikely(error)) {
2011 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2012 return error;
2013 }
2014 }
2015 }
2016
2017 /* Skip unuseable resource groups */
2018 if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2019 GFS2_RDF_ERROR)) ||
2020 (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2021 goto skip_rgrp;
2022
2023 if (sdp->sd_args.ar_rgrplvb)
2024 gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2025
2026 /* Get a reservation if we don't already have one */
2027 if (!gfs2_rs_active(rs))
2028 rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2029
2030 /* Skip rgrps when we can't get a reservation on first pass */
2031 if (!gfs2_rs_active(rs) && (loops < 1))
2032 goto check_rgrp;
2033
2034 /* If rgrp has enough free space, use it */
2035 if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2036 (loops == 2 && ap->min_target &&
2037 rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2038 ip->i_rgd = rs->rs_rbm.rgd;
2039 ap->allowed = ip->i_rgd->rd_free_clone;
2040 return 0;
2041 }
2042 check_rgrp:
2043 /* Check for unlinked inodes which can be reclaimed */
2044 if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2045 try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2046 ip->i_no_addr);
2047 skip_rgrp:
2048 /* Drop reservation, if we couldn't use reserved rgrp */
2049 if (gfs2_rs_active(rs))
2050 gfs2_rs_deltree(rs);
2051
2052 /* Unlock rgrp if required */
2053 if (!rg_locked)
2054 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2055 next_rgrp:
2056 /* Find the next rgrp, and continue looking */
2057 if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2058 continue;
2059 if (skip)
2060 continue;
2061
2062 /* If we've scanned all the rgrps, but found no free blocks
2063 * then this checks for some less likely conditions before
2064 * trying again.
2065 */
2066 loops++;
2067 /* Check that fs hasn't grown if writing to rindex */
2068 if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2069 error = gfs2_ri_update(ip);
2070 if (error)
2071 return error;
2072 }
2073 /* Flushing the log may release space */
2074 if (loops == 2)
2075 gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2076 }
2077
2078 return -ENOSPC;
2079 }
2080
2081 /**
2082 * gfs2_inplace_release - release an inplace reservation
2083 * @ip: the inode the reservation was taken out on
2084 *
2085 * Release a reservation made by gfs2_inplace_reserve().
2086 */
2087
2088 void gfs2_inplace_release(struct gfs2_inode *ip)
2089 {
2090 struct gfs2_blkreserv *rs = &ip->i_res;
2091
2092 if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2093 gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2094 }
2095
2096 /**
2097 * gfs2_get_block_type - Check a block in a RG is of given type
2098 * @rgd: the resource group holding the block
2099 * @block: the block number
2100 *
2101 * Returns: The block type (GFS2_BLKST_*)
2102 */
2103
2104 static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2105 {
2106 struct gfs2_rbm rbm = { .rgd = rgd, };
2107 int ret;
2108
2109 ret = gfs2_rbm_from_block(&rbm, block);
2110 WARN_ON_ONCE(ret != 0);
2111
2112 return gfs2_testbit(&rbm);
2113 }
2114
2115
2116 /**
2117 * gfs2_alloc_extent - allocate an extent from a given bitmap
2118 * @rbm: the resource group information
2119 * @dinode: TRUE if the first block we allocate is for a dinode
2120 * @n: The extent length (value/result)
2121 *
2122 * Add the bitmap buffer to the transaction.
2123 * Set the found bits to @new_state to change block's allocation state.
2124 */
2125 static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2126 unsigned int *n)
2127 {
2128 struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2129 const unsigned int elen = *n;
2130 u64 block;
2131 int ret;
2132
2133 *n = 1;
2134 block = gfs2_rbm_to_block(rbm);
2135 gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2136 gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2137 block++;
2138 while (*n < elen) {
2139 ret = gfs2_rbm_from_block(&pos, block);
2140 if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2141 break;
2142 gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2143 gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2144 (*n)++;
2145 block++;
2146 }
2147 }
2148
2149 /**
2150 * rgblk_free - Change alloc state of given block(s)
2151 * @sdp: the filesystem
2152 * @bstart: the start of a run of blocks to free
2153 * @blen: the length of the block run (all must lie within ONE RG!)
2154 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2155 *
2156 * Returns: Resource group containing the block(s)
2157 */
2158
2159 static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2160 u32 blen, unsigned char new_state)
2161 {
2162 struct gfs2_rbm rbm;
2163 struct gfs2_bitmap *bi, *bi_prev = NULL;
2164
2165 rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2166 if (!rbm.rgd) {
2167 if (gfs2_consist(sdp))
2168 fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2169 return NULL;
2170 }
2171
2172 gfs2_rbm_from_block(&rbm, bstart);
2173 while (blen--) {
2174 bi = rbm_bi(&rbm);
2175 if (bi != bi_prev) {
2176 if (!bi->bi_clone) {
2177 bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2178 GFP_NOFS | __GFP_NOFAIL);
2179 memcpy(bi->bi_clone + bi->bi_offset,
2180 bi->bi_bh->b_data + bi->bi_offset,
2181 bi->bi_len);
2182 }
2183 gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2184 bi_prev = bi;
2185 }
2186 gfs2_setbit(&rbm, false, new_state);
2187 gfs2_rbm_incr(&rbm);
2188 }
2189
2190 return rbm.rgd;
2191 }
2192
2193 /**
2194 * gfs2_rgrp_dump - print out an rgrp
2195 * @seq: The iterator
2196 * @gl: The glock in question
2197 *
2198 */
2199
2200 void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2201 {
2202 struct gfs2_rgrpd *rgd = gl->gl_object;
2203 struct gfs2_blkreserv *trs;
2204 const struct rb_node *n;
2205
2206 if (rgd == NULL)
2207 return;
2208 gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2209 (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2210 rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2211 rgd->rd_reserved, rgd->rd_extfail_pt);
2212 spin_lock(&rgd->rd_rsspin);
2213 for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2214 trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2215 dump_rs(seq, trs);
2216 }
2217 spin_unlock(&rgd->rd_rsspin);
2218 }
2219
2220 static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2221 {
2222 struct gfs2_sbd *sdp = rgd->rd_sbd;
2223 fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2224 (unsigned long long)rgd->rd_addr);
2225 fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2226 gfs2_rgrp_dump(NULL, rgd->rd_gl);
2227 rgd->rd_flags |= GFS2_RDF_ERROR;
2228 }
2229
2230 /**
2231 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2232 * @ip: The inode we have just allocated blocks for
2233 * @rbm: The start of the allocated blocks
2234 * @len: The extent length
2235 *
2236 * Adjusts a reservation after an allocation has taken place. If the
2237 * reservation does not match the allocation, or if it is now empty
2238 * then it is removed.
2239 */
2240
2241 static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2242 const struct gfs2_rbm *rbm, unsigned len)
2243 {
2244 struct gfs2_blkreserv *rs = &ip->i_res;
2245 struct gfs2_rgrpd *rgd = rbm->rgd;
2246 unsigned rlen;
2247 u64 block;
2248 int ret;
2249
2250 spin_lock(&rgd->rd_rsspin);
2251 if (gfs2_rs_active(rs)) {
2252 if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2253 block = gfs2_rbm_to_block(rbm);
2254 ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2255 rlen = min(rs->rs_free, len);
2256 rs->rs_free -= rlen;
2257 rgd->rd_reserved -= rlen;
2258 trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2259 if (rs->rs_free && !ret)
2260 goto out;
2261 /* We used up our block reservation, so we should
2262 reserve more blocks next time. */
2263 atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2264 }
2265 __rs_deltree(rs);
2266 }
2267 out:
2268 spin_unlock(&rgd->rd_rsspin);
2269 }
2270
2271 /**
2272 * gfs2_set_alloc_start - Set starting point for block allocation
2273 * @rbm: The rbm which will be set to the required location
2274 * @ip: The gfs2 inode
2275 * @dinode: Flag to say if allocation includes a new inode
2276 *
2277 * This sets the starting point from the reservation if one is active
2278 * otherwise it falls back to guessing a start point based on the
2279 * inode's goal block or the last allocation point in the rgrp.
2280 */
2281
2282 static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2283 const struct gfs2_inode *ip, bool dinode)
2284 {
2285 u64 goal;
2286
2287 if (gfs2_rs_active(&ip->i_res)) {
2288 *rbm = ip->i_res.rs_rbm;
2289 return;
2290 }
2291
2292 if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2293 goal = ip->i_goal;
2294 else
2295 goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2296
2297 gfs2_rbm_from_block(rbm, goal);
2298 }
2299
2300 /**
2301 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2302 * @ip: the inode to allocate the block for
2303 * @bn: Used to return the starting block number
2304 * @nblocks: requested number of blocks/extent length (value/result)
2305 * @dinode: 1 if we're allocating a dinode block, else 0
2306 * @generation: the generation number of the inode
2307 *
2308 * Returns: 0 or error
2309 */
2310
2311 int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2312 bool dinode, u64 *generation)
2313 {
2314 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2315 struct buffer_head *dibh;
2316 struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2317 unsigned int ndata;
2318 u64 block; /* block, within the file system scope */
2319 int error;
2320
2321 gfs2_set_alloc_start(&rbm, ip, dinode);
2322 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2323
2324 if (error == -ENOSPC) {
2325 gfs2_set_alloc_start(&rbm, ip, dinode);
2326 error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2327 }
2328
2329 /* Since all blocks are reserved in advance, this shouldn't happen */
2330 if (error) {
2331 fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2332 (unsigned long long)ip->i_no_addr, error, *nblocks,
2333 test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2334 rbm.rgd->rd_extfail_pt);
2335 goto rgrp_error;
2336 }
2337
2338 gfs2_alloc_extent(&rbm, dinode, nblocks);
2339 block = gfs2_rbm_to_block(&rbm);
2340 rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2341 if (gfs2_rs_active(&ip->i_res))
2342 gfs2_adjust_reservation(ip, &rbm, *nblocks);
2343 ndata = *nblocks;
2344 if (dinode)
2345 ndata--;
2346
2347 if (!dinode) {
2348 ip->i_goal = block + ndata - 1;
2349 error = gfs2_meta_inode_buffer(ip, &dibh);
2350 if (error == 0) {
2351 struct gfs2_dinode *di =
2352 (struct gfs2_dinode *)dibh->b_data;
2353 gfs2_trans_add_meta(ip->i_gl, dibh);
2354 di->di_goal_meta = di->di_goal_data =
2355 cpu_to_be64(ip->i_goal);
2356 brelse(dibh);
2357 }
2358 }
2359 if (rbm.rgd->rd_free < *nblocks) {
2360 pr_warn("nblocks=%u\n", *nblocks);
2361 goto rgrp_error;
2362 }
2363
2364 rbm.rgd->rd_free -= *nblocks;
2365 if (dinode) {
2366 rbm.rgd->rd_dinodes++;
2367 *generation = rbm.rgd->rd_igeneration++;
2368 if (*generation == 0)
2369 *generation = rbm.rgd->rd_igeneration++;
2370 }
2371
2372 gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2373 gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2374 gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2375
2376 gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2377 if (dinode)
2378 gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2379
2380 gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2381
2382 rbm.rgd->rd_free_clone -= *nblocks;
2383 trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2384 dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2385 *bn = block;
2386 return 0;
2387
2388 rgrp_error:
2389 gfs2_rgrp_error(rbm.rgd);
2390 return -EIO;
2391 }
2392
2393 /**
2394 * __gfs2_free_blocks - free a contiguous run of block(s)
2395 * @ip: the inode these blocks are being freed from
2396 * @bstart: first block of a run of contiguous blocks
2397 * @blen: the length of the block run
2398 * @meta: 1 if the blocks represent metadata
2399 *
2400 */
2401
2402 void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2403 {
2404 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2405 struct gfs2_rgrpd *rgd;
2406
2407 rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2408 if (!rgd)
2409 return;
2410 trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2411 rgd->rd_free += blen;
2412 rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2413 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2414 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2415 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2416
2417 /* Directories keep their data in the metadata address space */
2418 if (meta || ip->i_depth)
2419 gfs2_meta_wipe(ip, bstart, blen);
2420 }
2421
2422 /**
2423 * gfs2_free_meta - free a contiguous run of data block(s)
2424 * @ip: the inode these blocks are being freed from
2425 * @bstart: first block of a run of contiguous blocks
2426 * @blen: the length of the block run
2427 *
2428 */
2429
2430 void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2431 {
2432 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2433
2434 __gfs2_free_blocks(ip, bstart, blen, 1);
2435 gfs2_statfs_change(sdp, 0, +blen, 0);
2436 gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2437 }
2438
2439 void gfs2_unlink_di(struct inode *inode)
2440 {
2441 struct gfs2_inode *ip = GFS2_I(inode);
2442 struct gfs2_sbd *sdp = GFS2_SB(inode);
2443 struct gfs2_rgrpd *rgd;
2444 u64 blkno = ip->i_no_addr;
2445
2446 rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2447 if (!rgd)
2448 return;
2449 trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2450 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2451 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2452 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2453 update_rgrp_lvb_unlinked(rgd, 1);
2454 }
2455
2456 static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2457 {
2458 struct gfs2_sbd *sdp = rgd->rd_sbd;
2459 struct gfs2_rgrpd *tmp_rgd;
2460
2461 tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2462 if (!tmp_rgd)
2463 return;
2464 gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2465
2466 if (!rgd->rd_dinodes)
2467 gfs2_consist_rgrpd(rgd);
2468 rgd->rd_dinodes--;
2469 rgd->rd_free++;
2470
2471 gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2472 gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2473 gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2474 update_rgrp_lvb_unlinked(rgd, -1);
2475
2476 gfs2_statfs_change(sdp, 0, +1, -1);
2477 }
2478
2479
2480 void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2481 {
2482 gfs2_free_uninit_di(rgd, ip->i_no_addr);
2483 trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2484 gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2485 gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2486 }
2487
2488 /**
2489 * gfs2_check_blk_type - Check the type of a block
2490 * @sdp: The superblock
2491 * @no_addr: The block number to check
2492 * @type: The block type we are looking for
2493 *
2494 * Returns: 0 if the block type matches the expected type
2495 * -ESTALE if it doesn't match
2496 * or -ve errno if something went wrong while checking
2497 */
2498
2499 int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2500 {
2501 struct gfs2_rgrpd *rgd;
2502 struct gfs2_holder rgd_gh;
2503 int error = -EINVAL;
2504
2505 rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2506 if (!rgd)
2507 goto fail;
2508
2509 error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2510 if (error)
2511 goto fail;
2512
2513 if (gfs2_get_block_type(rgd, no_addr) != type)
2514 error = -ESTALE;
2515
2516 gfs2_glock_dq_uninit(&rgd_gh);
2517 fail:
2518 return error;
2519 }
2520
2521 /**
2522 * gfs2_rlist_add - add a RG to a list of RGs
2523 * @ip: the inode
2524 * @rlist: the list of resource groups
2525 * @block: the block
2526 *
2527 * Figure out what RG a block belongs to and add that RG to the list
2528 *
2529 * FIXME: Don't use NOFAIL
2530 *
2531 */
2532
2533 void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2534 u64 block)
2535 {
2536 struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2537 struct gfs2_rgrpd *rgd;
2538 struct gfs2_rgrpd **tmp;
2539 unsigned int new_space;
2540 unsigned int x;
2541
2542 if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2543 return;
2544
2545 if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2546 rgd = ip->i_rgd;
2547 else
2548 rgd = gfs2_blk2rgrpd(sdp, block, 1);
2549 if (!rgd) {
2550 fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2551 return;
2552 }
2553 ip->i_rgd = rgd;
2554
2555 for (x = 0; x < rlist->rl_rgrps; x++)
2556 if (rlist->rl_rgd[x] == rgd)
2557 return;
2558
2559 if (rlist->rl_rgrps == rlist->rl_space) {
2560 new_space = rlist->rl_space + 10;
2561
2562 tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2563 GFP_NOFS | __GFP_NOFAIL);
2564
2565 if (rlist->rl_rgd) {
2566 memcpy(tmp, rlist->rl_rgd,
2567 rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2568 kfree(rlist->rl_rgd);
2569 }
2570
2571 rlist->rl_space = new_space;
2572 rlist->rl_rgd = tmp;
2573 }
2574
2575 rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2576 }
2577
2578 /**
2579 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2580 * and initialize an array of glock holders for them
2581 * @rlist: the list of resource groups
2582 * @state: the lock state to acquire the RG lock in
2583 *
2584 * FIXME: Don't use NOFAIL
2585 *
2586 */
2587
2588 void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2589 {
2590 unsigned int x;
2591
2592 rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2593 GFP_NOFS | __GFP_NOFAIL);
2594 for (x = 0; x < rlist->rl_rgrps; x++)
2595 gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2596 state, 0,
2597 &rlist->rl_ghs[x]);
2598 }
2599
2600 /**
2601 * gfs2_rlist_free - free a resource group list
2602 * @rlist: the list of resource groups
2603 *
2604 */
2605
2606 void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2607 {
2608 unsigned int x;
2609
2610 kfree(rlist->rl_rgd);
2611
2612 if (rlist->rl_ghs) {
2613 for (x = 0; x < rlist->rl_rgrps; x++)
2614 gfs2_holder_uninit(&rlist->rl_ghs[x]);
2615 kfree(rlist->rl_ghs);
2616 rlist->rl_ghs = NULL;
2617 }
2618 }
2619