]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/hugetlbfs/inode.c
Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[mirror_ubuntu-artful-kernel.git] / fs / hugetlbfs / inode.c
1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49 struct hstate *hstate;
50 long max_hpages;
51 long nr_inodes;
52 long min_hpages;
53 kuid_t uid;
54 kgid_t gid;
55 umode_t mode;
56 };
57
58 struct hugetlbfs_inode_info {
59 struct shared_policy policy;
60 struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71 Opt_size, Opt_nr_inodes,
72 Opt_mode, Opt_uid, Opt_gid,
73 Opt_pagesize, Opt_min_size,
74 Opt_err,
75 };
76
77 static const match_table_t tokens = {
78 {Opt_size, "size=%s"},
79 {Opt_nr_inodes, "nr_inodes=%s"},
80 {Opt_mode, "mode=%o"},
81 {Opt_uid, "uid=%u"},
82 {Opt_gid, "gid=%u"},
83 {Opt_pagesize, "pagesize=%s"},
84 {Opt_min_size, "min_size=%s"},
85 {Opt_err, NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 struct inode *inode = file_inode(file);
124 loff_t len, vma_len;
125 int ret;
126 struct hstate *h = hstate_file(file);
127
128 /*
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 * and ia64).
135 */
136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 vma->vm_ops = &hugetlb_vm_ops;
138
139 /*
140 * Offset passed to mmap (before page shift) could have been
141 * negative when represented as a (l)off_t.
142 */
143 if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0)
144 return -EINVAL;
145
146 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
147 return -EINVAL;
148
149 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
150 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
151 /* check for overflow */
152 if (len < vma_len)
153 return -EINVAL;
154
155 inode_lock(inode);
156 file_accessed(file);
157
158 ret = -ENOMEM;
159 if (hugetlb_reserve_pages(inode,
160 vma->vm_pgoff >> huge_page_order(h),
161 len >> huge_page_shift(h), vma,
162 vma->vm_flags))
163 goto out;
164
165 ret = 0;
166 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
167 i_size_write(inode, len);
168 out:
169 inode_unlock(inode);
170
171 return ret;
172 }
173
174 /*
175 * Called under down_write(mmap_sem).
176 */
177
178 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
179 static unsigned long
180 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
181 unsigned long len, unsigned long pgoff, unsigned long flags)
182 {
183 struct mm_struct *mm = current->mm;
184 struct vm_area_struct *vma;
185 struct hstate *h = hstate_file(file);
186 struct vm_unmapped_area_info info;
187
188 if (len & ~huge_page_mask(h))
189 return -EINVAL;
190 if (len > TASK_SIZE)
191 return -ENOMEM;
192
193 if (flags & MAP_FIXED) {
194 if (prepare_hugepage_range(file, addr, len))
195 return -EINVAL;
196 return addr;
197 }
198
199 if (addr) {
200 addr = ALIGN(addr, huge_page_size(h));
201 vma = find_vma(mm, addr);
202 if (TASK_SIZE - len >= addr &&
203 (!vma || addr + len <= vm_start_gap(vma)))
204 return addr;
205 }
206
207 info.flags = 0;
208 info.length = len;
209 info.low_limit = TASK_UNMAPPED_BASE;
210 info.high_limit = TASK_SIZE;
211 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
212 info.align_offset = 0;
213 return vm_unmapped_area(&info);
214 }
215 #endif
216
217 static size_t
218 hugetlbfs_read_actor(struct page *page, unsigned long offset,
219 struct iov_iter *to, unsigned long size)
220 {
221 size_t copied = 0;
222 int i, chunksize;
223
224 /* Find which 4k chunk and offset with in that chunk */
225 i = offset >> PAGE_SHIFT;
226 offset = offset & ~PAGE_MASK;
227
228 while (size) {
229 size_t n;
230 chunksize = PAGE_SIZE;
231 if (offset)
232 chunksize -= offset;
233 if (chunksize > size)
234 chunksize = size;
235 n = copy_page_to_iter(&page[i], offset, chunksize, to);
236 copied += n;
237 if (n != chunksize)
238 return copied;
239 offset = 0;
240 size -= chunksize;
241 i++;
242 }
243 return copied;
244 }
245
246 /*
247 * Support for read() - Find the page attached to f_mapping and copy out the
248 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
249 * since it has PAGE_SIZE assumptions.
250 */
251 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
252 {
253 struct file *file = iocb->ki_filp;
254 struct hstate *h = hstate_file(file);
255 struct address_space *mapping = file->f_mapping;
256 struct inode *inode = mapping->host;
257 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
258 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
259 unsigned long end_index;
260 loff_t isize;
261 ssize_t retval = 0;
262
263 while (iov_iter_count(to)) {
264 struct page *page;
265 size_t nr, copied;
266
267 /* nr is the maximum number of bytes to copy from this page */
268 nr = huge_page_size(h);
269 isize = i_size_read(inode);
270 if (!isize)
271 break;
272 end_index = (isize - 1) >> huge_page_shift(h);
273 if (index > end_index)
274 break;
275 if (index == end_index) {
276 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
277 if (nr <= offset)
278 break;
279 }
280 nr = nr - offset;
281
282 /* Find the page */
283 page = find_lock_page(mapping, index);
284 if (unlikely(page == NULL)) {
285 /*
286 * We have a HOLE, zero out the user-buffer for the
287 * length of the hole or request.
288 */
289 copied = iov_iter_zero(nr, to);
290 } else {
291 unlock_page(page);
292
293 /*
294 * We have the page, copy it to user space buffer.
295 */
296 copied = hugetlbfs_read_actor(page, offset, to, nr);
297 put_page(page);
298 }
299 offset += copied;
300 retval += copied;
301 if (copied != nr && iov_iter_count(to)) {
302 if (!retval)
303 retval = -EFAULT;
304 break;
305 }
306 index += offset >> huge_page_shift(h);
307 offset &= ~huge_page_mask(h);
308 }
309 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
310 return retval;
311 }
312
313 static int hugetlbfs_write_begin(struct file *file,
314 struct address_space *mapping,
315 loff_t pos, unsigned len, unsigned flags,
316 struct page **pagep, void **fsdata)
317 {
318 return -EINVAL;
319 }
320
321 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
322 loff_t pos, unsigned len, unsigned copied,
323 struct page *page, void *fsdata)
324 {
325 BUG();
326 return -EINVAL;
327 }
328
329 static void remove_huge_page(struct page *page)
330 {
331 ClearPageDirty(page);
332 ClearPageUptodate(page);
333 delete_from_page_cache(page);
334 }
335
336 static void
337 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
338 {
339 struct vm_area_struct *vma;
340
341 /*
342 * end == 0 indicates that the entire range after
343 * start should be unmapped.
344 */
345 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
346 unsigned long v_offset;
347 unsigned long v_end;
348
349 /*
350 * Can the expression below overflow on 32-bit arches?
351 * No, because the interval tree returns us only those vmas
352 * which overlap the truncated area starting at pgoff,
353 * and no vma on a 32-bit arch can span beyond the 4GB.
354 */
355 if (vma->vm_pgoff < start)
356 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
357 else
358 v_offset = 0;
359
360 if (!end)
361 v_end = vma->vm_end;
362 else {
363 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
364 + vma->vm_start;
365 if (v_end > vma->vm_end)
366 v_end = vma->vm_end;
367 }
368
369 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
370 NULL);
371 }
372 }
373
374 /*
375 * remove_inode_hugepages handles two distinct cases: truncation and hole
376 * punch. There are subtle differences in operation for each case.
377 *
378 * truncation is indicated by end of range being LLONG_MAX
379 * In this case, we first scan the range and release found pages.
380 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
381 * maps and global counts. Page faults can not race with truncation
382 * in this routine. hugetlb_no_page() prevents page faults in the
383 * truncated range. It checks i_size before allocation, and again after
384 * with the page table lock for the page held. The same lock must be
385 * acquired to unmap a page.
386 * hole punch is indicated if end is not LLONG_MAX
387 * In the hole punch case we scan the range and release found pages.
388 * Only when releasing a page is the associated region/reserv map
389 * deleted. The region/reserv map for ranges without associated
390 * pages are not modified. Page faults can race with hole punch.
391 * This is indicated if we find a mapped page.
392 * Note: If the passed end of range value is beyond the end of file, but
393 * not LLONG_MAX this routine still performs a hole punch operation.
394 */
395 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
396 loff_t lend)
397 {
398 struct hstate *h = hstate_inode(inode);
399 struct address_space *mapping = &inode->i_data;
400 const pgoff_t start = lstart >> huge_page_shift(h);
401 const pgoff_t end = lend >> huge_page_shift(h);
402 struct vm_area_struct pseudo_vma;
403 struct pagevec pvec;
404 pgoff_t next;
405 int i, freed = 0;
406 long lookup_nr = PAGEVEC_SIZE;
407 bool truncate_op = (lend == LLONG_MAX);
408
409 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
410 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
411 pagevec_init(&pvec, 0);
412 next = start;
413 while (next < end) {
414 /*
415 * Don't grab more pages than the number left in the range.
416 */
417 if (end - next < lookup_nr)
418 lookup_nr = end - next;
419
420 /*
421 * When no more pages are found, we are done.
422 */
423 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
424 break;
425
426 for (i = 0; i < pagevec_count(&pvec); ++i) {
427 struct page *page = pvec.pages[i];
428 u32 hash;
429
430 /*
431 * The page (index) could be beyond end. This is
432 * only possible in the punch hole case as end is
433 * max page offset in the truncate case.
434 */
435 next = page->index;
436 if (next >= end)
437 break;
438
439 hash = hugetlb_fault_mutex_hash(h, current->mm,
440 &pseudo_vma,
441 mapping, next, 0);
442 mutex_lock(&hugetlb_fault_mutex_table[hash]);
443
444 /*
445 * If page is mapped, it was faulted in after being
446 * unmapped in caller. Unmap (again) now after taking
447 * the fault mutex. The mutex will prevent faults
448 * until we finish removing the page.
449 *
450 * This race can only happen in the hole punch case.
451 * Getting here in a truncate operation is a bug.
452 */
453 if (unlikely(page_mapped(page))) {
454 BUG_ON(truncate_op);
455
456 i_mmap_lock_write(mapping);
457 hugetlb_vmdelete_list(&mapping->i_mmap,
458 next * pages_per_huge_page(h),
459 (next + 1) * pages_per_huge_page(h));
460 i_mmap_unlock_write(mapping);
461 }
462
463 lock_page(page);
464 /*
465 * We must free the huge page and remove from page
466 * cache (remove_huge_page) BEFORE removing the
467 * region/reserve map (hugetlb_unreserve_pages). In
468 * rare out of memory conditions, removal of the
469 * region/reserve map could fail. Correspondingly,
470 * the subpool and global reserve usage count can need
471 * to be adjusted.
472 */
473 VM_BUG_ON(PagePrivate(page));
474 remove_huge_page(page);
475 freed++;
476 if (!truncate_op) {
477 if (unlikely(hugetlb_unreserve_pages(inode,
478 next, next + 1, 1)))
479 hugetlb_fix_reserve_counts(inode);
480 }
481
482 unlock_page(page);
483 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
484 }
485 ++next;
486 huge_pagevec_release(&pvec);
487 cond_resched();
488 }
489
490 if (truncate_op)
491 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
492 }
493
494 static void hugetlbfs_evict_inode(struct inode *inode)
495 {
496 struct resv_map *resv_map;
497
498 remove_inode_hugepages(inode, 0, LLONG_MAX);
499 resv_map = (struct resv_map *)inode->i_mapping->private_data;
500 /* root inode doesn't have the resv_map, so we should check it */
501 if (resv_map)
502 resv_map_release(&resv_map->refs);
503 clear_inode(inode);
504 }
505
506 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
507 {
508 pgoff_t pgoff;
509 struct address_space *mapping = inode->i_mapping;
510 struct hstate *h = hstate_inode(inode);
511
512 BUG_ON(offset & ~huge_page_mask(h));
513 pgoff = offset >> PAGE_SHIFT;
514
515 i_size_write(inode, offset);
516 i_mmap_lock_write(mapping);
517 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
518 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
519 i_mmap_unlock_write(mapping);
520 remove_inode_hugepages(inode, offset, LLONG_MAX);
521 return 0;
522 }
523
524 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
525 {
526 struct hstate *h = hstate_inode(inode);
527 loff_t hpage_size = huge_page_size(h);
528 loff_t hole_start, hole_end;
529
530 /*
531 * For hole punch round up the beginning offset of the hole and
532 * round down the end.
533 */
534 hole_start = round_up(offset, hpage_size);
535 hole_end = round_down(offset + len, hpage_size);
536
537 if (hole_end > hole_start) {
538 struct address_space *mapping = inode->i_mapping;
539
540 inode_lock(inode);
541 i_mmap_lock_write(mapping);
542 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
543 hugetlb_vmdelete_list(&mapping->i_mmap,
544 hole_start >> PAGE_SHIFT,
545 hole_end >> PAGE_SHIFT);
546 i_mmap_unlock_write(mapping);
547 remove_inode_hugepages(inode, hole_start, hole_end);
548 inode_unlock(inode);
549 }
550
551 return 0;
552 }
553
554 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
555 loff_t len)
556 {
557 struct inode *inode = file_inode(file);
558 struct address_space *mapping = inode->i_mapping;
559 struct hstate *h = hstate_inode(inode);
560 struct vm_area_struct pseudo_vma;
561 struct mm_struct *mm = current->mm;
562 loff_t hpage_size = huge_page_size(h);
563 unsigned long hpage_shift = huge_page_shift(h);
564 pgoff_t start, index, end;
565 int error;
566 u32 hash;
567
568 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
569 return -EOPNOTSUPP;
570
571 if (mode & FALLOC_FL_PUNCH_HOLE)
572 return hugetlbfs_punch_hole(inode, offset, len);
573
574 /*
575 * Default preallocate case.
576 * For this range, start is rounded down and end is rounded up
577 * as well as being converted to page offsets.
578 */
579 start = offset >> hpage_shift;
580 end = (offset + len + hpage_size - 1) >> hpage_shift;
581
582 inode_lock(inode);
583
584 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
585 error = inode_newsize_ok(inode, offset + len);
586 if (error)
587 goto out;
588
589 /*
590 * Initialize a pseudo vma as this is required by the huge page
591 * allocation routines. If NUMA is configured, use page index
592 * as input to create an allocation policy.
593 */
594 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
595 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
596 pseudo_vma.vm_file = file;
597
598 for (index = start; index < end; index++) {
599 /*
600 * This is supposed to be the vaddr where the page is being
601 * faulted in, but we have no vaddr here.
602 */
603 struct page *page;
604 unsigned long addr;
605 int avoid_reserve = 0;
606
607 cond_resched();
608
609 /*
610 * fallocate(2) manpage permits EINTR; we may have been
611 * interrupted because we are using up too much memory.
612 */
613 if (signal_pending(current)) {
614 error = -EINTR;
615 break;
616 }
617
618 /* Set numa allocation policy based on index */
619 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
620
621 /* addr is the offset within the file (zero based) */
622 addr = index * hpage_size;
623
624 /* mutex taken here, fault path and hole punch */
625 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
626 index, addr);
627 mutex_lock(&hugetlb_fault_mutex_table[hash]);
628
629 /* See if already present in mapping to avoid alloc/free */
630 page = find_get_page(mapping, index);
631 if (page) {
632 put_page(page);
633 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634 hugetlb_drop_vma_policy(&pseudo_vma);
635 continue;
636 }
637
638 /* Allocate page and add to page cache */
639 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
640 hugetlb_drop_vma_policy(&pseudo_vma);
641 if (IS_ERR(page)) {
642 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643 error = PTR_ERR(page);
644 goto out;
645 }
646 clear_huge_page(page, addr, pages_per_huge_page(h));
647 __SetPageUptodate(page);
648 error = huge_add_to_page_cache(page, mapping, index);
649 if (unlikely(error)) {
650 put_page(page);
651 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
652 goto out;
653 }
654
655 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
656
657 /*
658 * page_put due to reference from alloc_huge_page()
659 * unlock_page because locked by add_to_page_cache()
660 */
661 put_page(page);
662 unlock_page(page);
663 }
664
665 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
666 i_size_write(inode, offset + len);
667 inode->i_ctime = current_time(inode);
668 out:
669 inode_unlock(inode);
670 return error;
671 }
672
673 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
674 {
675 struct inode *inode = d_inode(dentry);
676 struct hstate *h = hstate_inode(inode);
677 int error;
678 unsigned int ia_valid = attr->ia_valid;
679
680 BUG_ON(!inode);
681
682 error = setattr_prepare(dentry, attr);
683 if (error)
684 return error;
685
686 if (ia_valid & ATTR_SIZE) {
687 error = -EINVAL;
688 if (attr->ia_size & ~huge_page_mask(h))
689 return -EINVAL;
690 error = hugetlb_vmtruncate(inode, attr->ia_size);
691 if (error)
692 return error;
693 }
694
695 setattr_copy(inode, attr);
696 mark_inode_dirty(inode);
697 return 0;
698 }
699
700 static struct inode *hugetlbfs_get_root(struct super_block *sb,
701 struct hugetlbfs_config *config)
702 {
703 struct inode *inode;
704
705 inode = new_inode(sb);
706 if (inode) {
707 inode->i_ino = get_next_ino();
708 inode->i_mode = S_IFDIR | config->mode;
709 inode->i_uid = config->uid;
710 inode->i_gid = config->gid;
711 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
712 inode->i_op = &hugetlbfs_dir_inode_operations;
713 inode->i_fop = &simple_dir_operations;
714 /* directory inodes start off with i_nlink == 2 (for "." entry) */
715 inc_nlink(inode);
716 lockdep_annotate_inode_mutex_key(inode);
717 }
718 return inode;
719 }
720
721 /*
722 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
723 * be taken from reclaim -- unlike regular filesystems. This needs an
724 * annotation because huge_pmd_share() does an allocation under hugetlb's
725 * i_mmap_rwsem.
726 */
727 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
728
729 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
730 struct inode *dir,
731 umode_t mode, dev_t dev)
732 {
733 struct inode *inode;
734 struct resv_map *resv_map;
735
736 resv_map = resv_map_alloc();
737 if (!resv_map)
738 return NULL;
739
740 inode = new_inode(sb);
741 if (inode) {
742 inode->i_ino = get_next_ino();
743 inode_init_owner(inode, dir, mode);
744 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
745 &hugetlbfs_i_mmap_rwsem_key);
746 inode->i_mapping->a_ops = &hugetlbfs_aops;
747 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
748 inode->i_mapping->private_data = resv_map;
749 switch (mode & S_IFMT) {
750 default:
751 init_special_inode(inode, mode, dev);
752 break;
753 case S_IFREG:
754 inode->i_op = &hugetlbfs_inode_operations;
755 inode->i_fop = &hugetlbfs_file_operations;
756 break;
757 case S_IFDIR:
758 inode->i_op = &hugetlbfs_dir_inode_operations;
759 inode->i_fop = &simple_dir_operations;
760
761 /* directory inodes start off with i_nlink == 2 (for "." entry) */
762 inc_nlink(inode);
763 break;
764 case S_IFLNK:
765 inode->i_op = &page_symlink_inode_operations;
766 inode_nohighmem(inode);
767 break;
768 }
769 lockdep_annotate_inode_mutex_key(inode);
770 } else
771 kref_put(&resv_map->refs, resv_map_release);
772
773 return inode;
774 }
775
776 /*
777 * File creation. Allocate an inode, and we're done..
778 */
779 static int hugetlbfs_mknod(struct inode *dir,
780 struct dentry *dentry, umode_t mode, dev_t dev)
781 {
782 struct inode *inode;
783 int error = -ENOSPC;
784
785 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
786 if (inode) {
787 dir->i_ctime = dir->i_mtime = current_time(dir);
788 d_instantiate(dentry, inode);
789 dget(dentry); /* Extra count - pin the dentry in core */
790 error = 0;
791 }
792 return error;
793 }
794
795 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
796 {
797 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
798 if (!retval)
799 inc_nlink(dir);
800 return retval;
801 }
802
803 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
804 {
805 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
806 }
807
808 static int hugetlbfs_symlink(struct inode *dir,
809 struct dentry *dentry, const char *symname)
810 {
811 struct inode *inode;
812 int error = -ENOSPC;
813
814 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
815 if (inode) {
816 int l = strlen(symname)+1;
817 error = page_symlink(inode, symname, l);
818 if (!error) {
819 d_instantiate(dentry, inode);
820 dget(dentry);
821 } else
822 iput(inode);
823 }
824 dir->i_ctime = dir->i_mtime = current_time(dir);
825
826 return error;
827 }
828
829 /*
830 * mark the head page dirty
831 */
832 static int hugetlbfs_set_page_dirty(struct page *page)
833 {
834 struct page *head = compound_head(page);
835
836 SetPageDirty(head);
837 return 0;
838 }
839
840 static int hugetlbfs_migrate_page(struct address_space *mapping,
841 struct page *newpage, struct page *page,
842 enum migrate_mode mode)
843 {
844 int rc;
845
846 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
847 if (rc != MIGRATEPAGE_SUCCESS)
848 return rc;
849 migrate_page_copy(newpage, page);
850
851 return MIGRATEPAGE_SUCCESS;
852 }
853
854 static int hugetlbfs_error_remove_page(struct address_space *mapping,
855 struct page *page)
856 {
857 struct inode *inode = mapping->host;
858
859 remove_huge_page(page);
860 hugetlb_fix_reserve_counts(inode);
861 return 0;
862 }
863
864 /*
865 * Display the mount options in /proc/mounts.
866 */
867 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
868 {
869 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
870 struct hugepage_subpool *spool = sbinfo->spool;
871 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
872 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
873 char mod;
874
875 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
876 seq_printf(m, ",uid=%u",
877 from_kuid_munged(&init_user_ns, sbinfo->uid));
878 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
879 seq_printf(m, ",gid=%u",
880 from_kgid_munged(&init_user_ns, sbinfo->gid));
881 if (sbinfo->mode != 0755)
882 seq_printf(m, ",mode=%o", sbinfo->mode);
883 if (sbinfo->max_inodes != -1)
884 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
885
886 hpage_size /= 1024;
887 mod = 'K';
888 if (hpage_size >= 1024) {
889 hpage_size /= 1024;
890 mod = 'M';
891 }
892 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
893 if (spool) {
894 if (spool->max_hpages != -1)
895 seq_printf(m, ",size=%llu",
896 (unsigned long long)spool->max_hpages << hpage_shift);
897 if (spool->min_hpages != -1)
898 seq_printf(m, ",min_size=%llu",
899 (unsigned long long)spool->min_hpages << hpage_shift);
900 }
901 return 0;
902 }
903
904 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
905 {
906 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
907 struct hstate *h = hstate_inode(d_inode(dentry));
908
909 buf->f_type = HUGETLBFS_MAGIC;
910 buf->f_bsize = huge_page_size(h);
911 if (sbinfo) {
912 spin_lock(&sbinfo->stat_lock);
913 /* If no limits set, just report 0 for max/free/used
914 * blocks, like simple_statfs() */
915 if (sbinfo->spool) {
916 long free_pages;
917
918 spin_lock(&sbinfo->spool->lock);
919 buf->f_blocks = sbinfo->spool->max_hpages;
920 free_pages = sbinfo->spool->max_hpages
921 - sbinfo->spool->used_hpages;
922 buf->f_bavail = buf->f_bfree = free_pages;
923 spin_unlock(&sbinfo->spool->lock);
924 buf->f_files = sbinfo->max_inodes;
925 buf->f_ffree = sbinfo->free_inodes;
926 }
927 spin_unlock(&sbinfo->stat_lock);
928 }
929 buf->f_namelen = NAME_MAX;
930 return 0;
931 }
932
933 static void hugetlbfs_put_super(struct super_block *sb)
934 {
935 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
936
937 if (sbi) {
938 sb->s_fs_info = NULL;
939
940 if (sbi->spool)
941 hugepage_put_subpool(sbi->spool);
942
943 kfree(sbi);
944 }
945 }
946
947 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
948 {
949 if (sbinfo->free_inodes >= 0) {
950 spin_lock(&sbinfo->stat_lock);
951 if (unlikely(!sbinfo->free_inodes)) {
952 spin_unlock(&sbinfo->stat_lock);
953 return 0;
954 }
955 sbinfo->free_inodes--;
956 spin_unlock(&sbinfo->stat_lock);
957 }
958
959 return 1;
960 }
961
962 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
963 {
964 if (sbinfo->free_inodes >= 0) {
965 spin_lock(&sbinfo->stat_lock);
966 sbinfo->free_inodes++;
967 spin_unlock(&sbinfo->stat_lock);
968 }
969 }
970
971
972 static struct kmem_cache *hugetlbfs_inode_cachep;
973
974 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
975 {
976 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
977 struct hugetlbfs_inode_info *p;
978
979 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
980 return NULL;
981 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
982 if (unlikely(!p)) {
983 hugetlbfs_inc_free_inodes(sbinfo);
984 return NULL;
985 }
986
987 /*
988 * Any time after allocation, hugetlbfs_destroy_inode can be called
989 * for the inode. mpol_free_shared_policy is unconditionally called
990 * as part of hugetlbfs_destroy_inode. So, initialize policy here
991 * in case of a quick call to destroy.
992 *
993 * Note that the policy is initialized even if we are creating a
994 * private inode. This simplifies hugetlbfs_destroy_inode.
995 */
996 mpol_shared_policy_init(&p->policy, NULL);
997
998 return &p->vfs_inode;
999 }
1000
1001 static void hugetlbfs_i_callback(struct rcu_head *head)
1002 {
1003 struct inode *inode = container_of(head, struct inode, i_rcu);
1004 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1005 }
1006
1007 static void hugetlbfs_destroy_inode(struct inode *inode)
1008 {
1009 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1010 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1011 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1012 }
1013
1014 static const struct address_space_operations hugetlbfs_aops = {
1015 .write_begin = hugetlbfs_write_begin,
1016 .write_end = hugetlbfs_write_end,
1017 .set_page_dirty = hugetlbfs_set_page_dirty,
1018 .migratepage = hugetlbfs_migrate_page,
1019 .error_remove_page = hugetlbfs_error_remove_page,
1020 };
1021
1022
1023 static void init_once(void *foo)
1024 {
1025 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1026
1027 inode_init_once(&ei->vfs_inode);
1028 }
1029
1030 const struct file_operations hugetlbfs_file_operations = {
1031 .read_iter = hugetlbfs_read_iter,
1032 .mmap = hugetlbfs_file_mmap,
1033 .fsync = noop_fsync,
1034 .get_unmapped_area = hugetlb_get_unmapped_area,
1035 .llseek = default_llseek,
1036 .fallocate = hugetlbfs_fallocate,
1037 };
1038
1039 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1040 .create = hugetlbfs_create,
1041 .lookup = simple_lookup,
1042 .link = simple_link,
1043 .unlink = simple_unlink,
1044 .symlink = hugetlbfs_symlink,
1045 .mkdir = hugetlbfs_mkdir,
1046 .rmdir = simple_rmdir,
1047 .mknod = hugetlbfs_mknod,
1048 .rename = simple_rename,
1049 .setattr = hugetlbfs_setattr,
1050 };
1051
1052 static const struct inode_operations hugetlbfs_inode_operations = {
1053 .setattr = hugetlbfs_setattr,
1054 };
1055
1056 static const struct super_operations hugetlbfs_ops = {
1057 .alloc_inode = hugetlbfs_alloc_inode,
1058 .destroy_inode = hugetlbfs_destroy_inode,
1059 .evict_inode = hugetlbfs_evict_inode,
1060 .statfs = hugetlbfs_statfs,
1061 .put_super = hugetlbfs_put_super,
1062 .show_options = hugetlbfs_show_options,
1063 };
1064
1065 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1066
1067 /*
1068 * Convert size option passed from command line to number of huge pages
1069 * in the pool specified by hstate. Size option could be in bytes
1070 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1071 */
1072 static long
1073 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1074 enum hugetlbfs_size_type val_type)
1075 {
1076 if (val_type == NO_SIZE)
1077 return -1;
1078
1079 if (val_type == SIZE_PERCENT) {
1080 size_opt <<= huge_page_shift(h);
1081 size_opt *= h->max_huge_pages;
1082 do_div(size_opt, 100);
1083 }
1084
1085 size_opt >>= huge_page_shift(h);
1086 return size_opt;
1087 }
1088
1089 static int
1090 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1091 {
1092 char *p, *rest;
1093 substring_t args[MAX_OPT_ARGS];
1094 int option;
1095 unsigned long long max_size_opt = 0, min_size_opt = 0;
1096 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1097
1098 if (!options)
1099 return 0;
1100
1101 while ((p = strsep(&options, ",")) != NULL) {
1102 int token;
1103 if (!*p)
1104 continue;
1105
1106 token = match_token(p, tokens, args);
1107 switch (token) {
1108 case Opt_uid:
1109 if (match_int(&args[0], &option))
1110 goto bad_val;
1111 pconfig->uid = make_kuid(current_user_ns(), option);
1112 if (!uid_valid(pconfig->uid))
1113 goto bad_val;
1114 break;
1115
1116 case Opt_gid:
1117 if (match_int(&args[0], &option))
1118 goto bad_val;
1119 pconfig->gid = make_kgid(current_user_ns(), option);
1120 if (!gid_valid(pconfig->gid))
1121 goto bad_val;
1122 break;
1123
1124 case Opt_mode:
1125 if (match_octal(&args[0], &option))
1126 goto bad_val;
1127 pconfig->mode = option & 01777U;
1128 break;
1129
1130 case Opt_size: {
1131 /* memparse() will accept a K/M/G without a digit */
1132 if (!isdigit(*args[0].from))
1133 goto bad_val;
1134 max_size_opt = memparse(args[0].from, &rest);
1135 max_val_type = SIZE_STD;
1136 if (*rest == '%')
1137 max_val_type = SIZE_PERCENT;
1138 break;
1139 }
1140
1141 case Opt_nr_inodes:
1142 /* memparse() will accept a K/M/G without a digit */
1143 if (!isdigit(*args[0].from))
1144 goto bad_val;
1145 pconfig->nr_inodes = memparse(args[0].from, &rest);
1146 break;
1147
1148 case Opt_pagesize: {
1149 unsigned long ps;
1150 ps = memparse(args[0].from, &rest);
1151 pconfig->hstate = size_to_hstate(ps);
1152 if (!pconfig->hstate) {
1153 pr_err("Unsupported page size %lu MB\n",
1154 ps >> 20);
1155 return -EINVAL;
1156 }
1157 break;
1158 }
1159
1160 case Opt_min_size: {
1161 /* memparse() will accept a K/M/G without a digit */
1162 if (!isdigit(*args[0].from))
1163 goto bad_val;
1164 min_size_opt = memparse(args[0].from, &rest);
1165 min_val_type = SIZE_STD;
1166 if (*rest == '%')
1167 min_val_type = SIZE_PERCENT;
1168 break;
1169 }
1170
1171 default:
1172 pr_err("Bad mount option: \"%s\"\n", p);
1173 return -EINVAL;
1174 break;
1175 }
1176 }
1177
1178 /*
1179 * Use huge page pool size (in hstate) to convert the size
1180 * options to number of huge pages. If NO_SIZE, -1 is returned.
1181 */
1182 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1183 max_size_opt, max_val_type);
1184 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1185 min_size_opt, min_val_type);
1186
1187 /*
1188 * If max_size was specified, then min_size must be smaller
1189 */
1190 if (max_val_type > NO_SIZE &&
1191 pconfig->min_hpages > pconfig->max_hpages) {
1192 pr_err("minimum size can not be greater than maximum size\n");
1193 return -EINVAL;
1194 }
1195
1196 return 0;
1197
1198 bad_val:
1199 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1200 return -EINVAL;
1201 }
1202
1203 static int
1204 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1205 {
1206 int ret;
1207 struct hugetlbfs_config config;
1208 struct hugetlbfs_sb_info *sbinfo;
1209
1210 config.max_hpages = -1; /* No limit on size by default */
1211 config.nr_inodes = -1; /* No limit on number of inodes by default */
1212 config.uid = current_fsuid();
1213 config.gid = current_fsgid();
1214 config.mode = 0755;
1215 config.hstate = &default_hstate;
1216 config.min_hpages = -1; /* No default minimum size */
1217 ret = hugetlbfs_parse_options(data, &config);
1218 if (ret)
1219 return ret;
1220
1221 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1222 if (!sbinfo)
1223 return -ENOMEM;
1224 sb->s_fs_info = sbinfo;
1225 sbinfo->hstate = config.hstate;
1226 spin_lock_init(&sbinfo->stat_lock);
1227 sbinfo->max_inodes = config.nr_inodes;
1228 sbinfo->free_inodes = config.nr_inodes;
1229 sbinfo->spool = NULL;
1230 sbinfo->uid = config.uid;
1231 sbinfo->gid = config.gid;
1232 sbinfo->mode = config.mode;
1233
1234 /*
1235 * Allocate and initialize subpool if maximum or minimum size is
1236 * specified. Any needed reservations (for minimim size) are taken
1237 * taken when the subpool is created.
1238 */
1239 if (config.max_hpages != -1 || config.min_hpages != -1) {
1240 sbinfo->spool = hugepage_new_subpool(config.hstate,
1241 config.max_hpages,
1242 config.min_hpages);
1243 if (!sbinfo->spool)
1244 goto out_free;
1245 }
1246 sb->s_maxbytes = MAX_LFS_FILESIZE;
1247 sb->s_blocksize = huge_page_size(config.hstate);
1248 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1249 sb->s_magic = HUGETLBFS_MAGIC;
1250 sb->s_op = &hugetlbfs_ops;
1251 sb->s_time_gran = 1;
1252 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1253 if (!sb->s_root)
1254 goto out_free;
1255 return 0;
1256 out_free:
1257 kfree(sbinfo->spool);
1258 kfree(sbinfo);
1259 return -ENOMEM;
1260 }
1261
1262 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1263 int flags, const char *dev_name, void *data)
1264 {
1265 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1266 }
1267
1268 static struct file_system_type hugetlbfs_fs_type = {
1269 .name = "hugetlbfs",
1270 .mount = hugetlbfs_mount,
1271 .kill_sb = kill_litter_super,
1272 };
1273
1274 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1275
1276 static int can_do_hugetlb_shm(void)
1277 {
1278 kgid_t shm_group;
1279 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1280 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1281 }
1282
1283 static int get_hstate_idx(int page_size_log)
1284 {
1285 struct hstate *h = hstate_sizelog(page_size_log);
1286
1287 if (!h)
1288 return -1;
1289 return h - hstates;
1290 }
1291
1292 static const struct dentry_operations anon_ops = {
1293 .d_dname = simple_dname
1294 };
1295
1296 /*
1297 * Note that size should be aligned to proper hugepage size in caller side,
1298 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1299 */
1300 struct file *hugetlb_file_setup(const char *name, size_t size,
1301 vm_flags_t acctflag, struct user_struct **user,
1302 int creat_flags, int page_size_log)
1303 {
1304 struct file *file = ERR_PTR(-ENOMEM);
1305 struct inode *inode;
1306 struct path path;
1307 struct super_block *sb;
1308 struct qstr quick_string;
1309 int hstate_idx;
1310
1311 hstate_idx = get_hstate_idx(page_size_log);
1312 if (hstate_idx < 0)
1313 return ERR_PTR(-ENODEV);
1314
1315 *user = NULL;
1316 if (!hugetlbfs_vfsmount[hstate_idx])
1317 return ERR_PTR(-ENOENT);
1318
1319 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1320 *user = current_user();
1321 if (user_shm_lock(size, *user)) {
1322 task_lock(current);
1323 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1324 current->comm, current->pid);
1325 task_unlock(current);
1326 } else {
1327 *user = NULL;
1328 return ERR_PTR(-EPERM);
1329 }
1330 }
1331
1332 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1333 quick_string.name = name;
1334 quick_string.len = strlen(quick_string.name);
1335 quick_string.hash = 0;
1336 path.dentry = d_alloc_pseudo(sb, &quick_string);
1337 if (!path.dentry)
1338 goto out_shm_unlock;
1339
1340 d_set_d_op(path.dentry, &anon_ops);
1341 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1342 file = ERR_PTR(-ENOSPC);
1343 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1344 if (!inode)
1345 goto out_dentry;
1346 if (creat_flags == HUGETLB_SHMFS_INODE)
1347 inode->i_flags |= S_PRIVATE;
1348
1349 file = ERR_PTR(-ENOMEM);
1350 if (hugetlb_reserve_pages(inode, 0,
1351 size >> huge_page_shift(hstate_inode(inode)), NULL,
1352 acctflag))
1353 goto out_inode;
1354
1355 d_instantiate(path.dentry, inode);
1356 inode->i_size = size;
1357 clear_nlink(inode);
1358
1359 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1360 &hugetlbfs_file_operations);
1361 if (IS_ERR(file))
1362 goto out_dentry; /* inode is already attached */
1363
1364 return file;
1365
1366 out_inode:
1367 iput(inode);
1368 out_dentry:
1369 path_put(&path);
1370 out_shm_unlock:
1371 if (*user) {
1372 user_shm_unlock(size, *user);
1373 *user = NULL;
1374 }
1375 return file;
1376 }
1377
1378 static int __init init_hugetlbfs_fs(void)
1379 {
1380 struct hstate *h;
1381 int error;
1382 int i;
1383
1384 if (!hugepages_supported()) {
1385 pr_info("disabling because there are no supported hugepage sizes\n");
1386 return -ENOTSUPP;
1387 }
1388
1389 error = -ENOMEM;
1390 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1391 sizeof(struct hugetlbfs_inode_info),
1392 0, SLAB_ACCOUNT, init_once);
1393 if (hugetlbfs_inode_cachep == NULL)
1394 goto out2;
1395
1396 error = register_filesystem(&hugetlbfs_fs_type);
1397 if (error)
1398 goto out;
1399
1400 i = 0;
1401 for_each_hstate(h) {
1402 char buf[50];
1403 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1404
1405 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1406 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1407 buf);
1408
1409 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1410 pr_err("Cannot mount internal hugetlbfs for "
1411 "page size %uK", ps_kb);
1412 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1413 hugetlbfs_vfsmount[i] = NULL;
1414 }
1415 i++;
1416 }
1417 /* Non default hstates are optional */
1418 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1419 return 0;
1420
1421 out:
1422 kmem_cache_destroy(hugetlbfs_inode_cachep);
1423 out2:
1424 return error;
1425 }
1426 fs_initcall(init_hugetlbfs_fs)