]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - fs/hugetlbfs/inode.c
Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-eoan-kernel.git] / fs / hugetlbfs / inode.c
1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49 struct hstate *hstate;
50 long max_hpages;
51 long nr_inodes;
52 long min_hpages;
53 kuid_t uid;
54 kgid_t gid;
55 umode_t mode;
56 };
57
58 int sysctl_hugetlb_shm_group;
59
60 enum {
61 Opt_size, Opt_nr_inodes,
62 Opt_mode, Opt_uid, Opt_gid,
63 Opt_pagesize, Opt_min_size,
64 Opt_err,
65 };
66
67 static const match_table_t tokens = {
68 {Opt_size, "size=%s"},
69 {Opt_nr_inodes, "nr_inodes=%s"},
70 {Opt_mode, "mode=%o"},
71 {Opt_uid, "uid=%u"},
72 {Opt_gid, "gid=%u"},
73 {Opt_pagesize, "pagesize=%s"},
74 {Opt_min_size, "min_size=%s"},
75 {Opt_err, NULL},
76 };
77
78 #ifdef CONFIG_NUMA
79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
80 struct inode *inode, pgoff_t index)
81 {
82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
83 index);
84 }
85
86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
87 {
88 mpol_cond_put(vma->vm_policy);
89 }
90 #else
91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
92 struct inode *inode, pgoff_t index)
93 {
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 }
99 #endif
100
101 static void huge_pagevec_release(struct pagevec *pvec)
102 {
103 int i;
104
105 for (i = 0; i < pagevec_count(pvec); ++i)
106 put_page(pvec->pages[i]);
107
108 pagevec_reinit(pvec);
109 }
110
111 /*
112 * Mask used when checking the page offset value passed in via system
113 * calls. This value will be converted to a loff_t which is signed.
114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115 * value. The extra bit (- 1 in the shift value) is to take the sign
116 * bit into account.
117 */
118 #define PGOFF_LOFFT_MAX \
119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 struct inode *inode = file_inode(file);
124 loff_t len, vma_len;
125 int ret;
126 struct hstate *h = hstate_file(file);
127
128 /*
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 * and ia64).
135 */
136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 vma->vm_ops = &hugetlb_vm_ops;
138
139 /*
140 * page based offset in vm_pgoff could be sufficiently large to
141 * overflow a loff_t when converted to byte offset. This can
142 * only happen on architectures where sizeof(loff_t) ==
143 * sizeof(unsigned long). So, only check in those instances.
144 */
145 if (sizeof(unsigned long) == sizeof(loff_t)) {
146 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
147 return -EINVAL;
148 }
149
150 /* must be huge page aligned */
151 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
152 return -EINVAL;
153
154 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
155 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
156 /* check for overflow */
157 if (len < vma_len)
158 return -EINVAL;
159
160 inode_lock(inode);
161 file_accessed(file);
162
163 ret = -ENOMEM;
164 if (hugetlb_reserve_pages(inode,
165 vma->vm_pgoff >> huge_page_order(h),
166 len >> huge_page_shift(h), vma,
167 vma->vm_flags))
168 goto out;
169
170 ret = 0;
171 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
172 i_size_write(inode, len);
173 out:
174 inode_unlock(inode);
175
176 return ret;
177 }
178
179 /*
180 * Called under down_write(mmap_sem).
181 */
182
183 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
184 static unsigned long
185 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
186 unsigned long len, unsigned long pgoff, unsigned long flags)
187 {
188 struct mm_struct *mm = current->mm;
189 struct vm_area_struct *vma;
190 struct hstate *h = hstate_file(file);
191 struct vm_unmapped_area_info info;
192
193 if (len & ~huge_page_mask(h))
194 return -EINVAL;
195 if (len > TASK_SIZE)
196 return -ENOMEM;
197
198 if (flags & MAP_FIXED) {
199 if (prepare_hugepage_range(file, addr, len))
200 return -EINVAL;
201 return addr;
202 }
203
204 if (addr) {
205 addr = ALIGN(addr, huge_page_size(h));
206 vma = find_vma(mm, addr);
207 if (TASK_SIZE - len >= addr &&
208 (!vma || addr + len <= vm_start_gap(vma)))
209 return addr;
210 }
211
212 info.flags = 0;
213 info.length = len;
214 info.low_limit = TASK_UNMAPPED_BASE;
215 info.high_limit = TASK_SIZE;
216 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
217 info.align_offset = 0;
218 return vm_unmapped_area(&info);
219 }
220 #endif
221
222 static size_t
223 hugetlbfs_read_actor(struct page *page, unsigned long offset,
224 struct iov_iter *to, unsigned long size)
225 {
226 size_t copied = 0;
227 int i, chunksize;
228
229 /* Find which 4k chunk and offset with in that chunk */
230 i = offset >> PAGE_SHIFT;
231 offset = offset & ~PAGE_MASK;
232
233 while (size) {
234 size_t n;
235 chunksize = PAGE_SIZE;
236 if (offset)
237 chunksize -= offset;
238 if (chunksize > size)
239 chunksize = size;
240 n = copy_page_to_iter(&page[i], offset, chunksize, to);
241 copied += n;
242 if (n != chunksize)
243 return copied;
244 offset = 0;
245 size -= chunksize;
246 i++;
247 }
248 return copied;
249 }
250
251 /*
252 * Support for read() - Find the page attached to f_mapping and copy out the
253 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
254 * since it has PAGE_SIZE assumptions.
255 */
256 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
257 {
258 struct file *file = iocb->ki_filp;
259 struct hstate *h = hstate_file(file);
260 struct address_space *mapping = file->f_mapping;
261 struct inode *inode = mapping->host;
262 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
263 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
264 unsigned long end_index;
265 loff_t isize;
266 ssize_t retval = 0;
267
268 while (iov_iter_count(to)) {
269 struct page *page;
270 size_t nr, copied;
271
272 /* nr is the maximum number of bytes to copy from this page */
273 nr = huge_page_size(h);
274 isize = i_size_read(inode);
275 if (!isize)
276 break;
277 end_index = (isize - 1) >> huge_page_shift(h);
278 if (index > end_index)
279 break;
280 if (index == end_index) {
281 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
282 if (nr <= offset)
283 break;
284 }
285 nr = nr - offset;
286
287 /* Find the page */
288 page = find_lock_page(mapping, index);
289 if (unlikely(page == NULL)) {
290 /*
291 * We have a HOLE, zero out the user-buffer for the
292 * length of the hole or request.
293 */
294 copied = iov_iter_zero(nr, to);
295 } else {
296 unlock_page(page);
297
298 /*
299 * We have the page, copy it to user space buffer.
300 */
301 copied = hugetlbfs_read_actor(page, offset, to, nr);
302 put_page(page);
303 }
304 offset += copied;
305 retval += copied;
306 if (copied != nr && iov_iter_count(to)) {
307 if (!retval)
308 retval = -EFAULT;
309 break;
310 }
311 index += offset >> huge_page_shift(h);
312 offset &= ~huge_page_mask(h);
313 }
314 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
315 return retval;
316 }
317
318 static int hugetlbfs_write_begin(struct file *file,
319 struct address_space *mapping,
320 loff_t pos, unsigned len, unsigned flags,
321 struct page **pagep, void **fsdata)
322 {
323 return -EINVAL;
324 }
325
326 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned copied,
328 struct page *page, void *fsdata)
329 {
330 BUG();
331 return -EINVAL;
332 }
333
334 static void remove_huge_page(struct page *page)
335 {
336 ClearPageDirty(page);
337 ClearPageUptodate(page);
338 delete_from_page_cache(page);
339 }
340
341 static void
342 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
343 {
344 struct vm_area_struct *vma;
345
346 /*
347 * end == 0 indicates that the entire range after
348 * start should be unmapped.
349 */
350 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
351 unsigned long v_offset;
352 unsigned long v_end;
353
354 /*
355 * Can the expression below overflow on 32-bit arches?
356 * No, because the interval tree returns us only those vmas
357 * which overlap the truncated area starting at pgoff,
358 * and no vma on a 32-bit arch can span beyond the 4GB.
359 */
360 if (vma->vm_pgoff < start)
361 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
362 else
363 v_offset = 0;
364
365 if (!end)
366 v_end = vma->vm_end;
367 else {
368 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
369 + vma->vm_start;
370 if (v_end > vma->vm_end)
371 v_end = vma->vm_end;
372 }
373
374 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
375 NULL);
376 }
377 }
378
379 /*
380 * remove_inode_hugepages handles two distinct cases: truncation and hole
381 * punch. There are subtle differences in operation for each case.
382 *
383 * truncation is indicated by end of range being LLONG_MAX
384 * In this case, we first scan the range and release found pages.
385 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
386 * maps and global counts. Page faults can not race with truncation
387 * in this routine. hugetlb_no_page() prevents page faults in the
388 * truncated range. It checks i_size before allocation, and again after
389 * with the page table lock for the page held. The same lock must be
390 * acquired to unmap a page.
391 * hole punch is indicated if end is not LLONG_MAX
392 * In the hole punch case we scan the range and release found pages.
393 * Only when releasing a page is the associated region/reserv map
394 * deleted. The region/reserv map for ranges without associated
395 * pages are not modified. Page faults can race with hole punch.
396 * This is indicated if we find a mapped page.
397 * Note: If the passed end of range value is beyond the end of file, but
398 * not LLONG_MAX this routine still performs a hole punch operation.
399 */
400 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
401 loff_t lend)
402 {
403 struct hstate *h = hstate_inode(inode);
404 struct address_space *mapping = &inode->i_data;
405 const pgoff_t start = lstart >> huge_page_shift(h);
406 const pgoff_t end = lend >> huge_page_shift(h);
407 struct vm_area_struct pseudo_vma;
408 struct pagevec pvec;
409 pgoff_t next, index;
410 int i, freed = 0;
411 bool truncate_op = (lend == LLONG_MAX);
412
413 vma_init(&pseudo_vma, current->mm);
414 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
415 pagevec_init(&pvec);
416 next = start;
417 while (next < end) {
418 /*
419 * When no more pages are found, we are done.
420 */
421 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
422 break;
423
424 for (i = 0; i < pagevec_count(&pvec); ++i) {
425 struct page *page = pvec.pages[i];
426 u32 hash;
427
428 index = page->index;
429 hash = hugetlb_fault_mutex_hash(h, current->mm,
430 &pseudo_vma,
431 mapping, index, 0);
432 mutex_lock(&hugetlb_fault_mutex_table[hash]);
433
434 /*
435 * If page is mapped, it was faulted in after being
436 * unmapped in caller. Unmap (again) now after taking
437 * the fault mutex. The mutex will prevent faults
438 * until we finish removing the page.
439 *
440 * This race can only happen in the hole punch case.
441 * Getting here in a truncate operation is a bug.
442 */
443 if (unlikely(page_mapped(page))) {
444 BUG_ON(truncate_op);
445
446 i_mmap_lock_write(mapping);
447 hugetlb_vmdelete_list(&mapping->i_mmap,
448 index * pages_per_huge_page(h),
449 (index + 1) * pages_per_huge_page(h));
450 i_mmap_unlock_write(mapping);
451 }
452
453 lock_page(page);
454 /*
455 * We must free the huge page and remove from page
456 * cache (remove_huge_page) BEFORE removing the
457 * region/reserve map (hugetlb_unreserve_pages). In
458 * rare out of memory conditions, removal of the
459 * region/reserve map could fail. Correspondingly,
460 * the subpool and global reserve usage count can need
461 * to be adjusted.
462 */
463 VM_BUG_ON(PagePrivate(page));
464 remove_huge_page(page);
465 freed++;
466 if (!truncate_op) {
467 if (unlikely(hugetlb_unreserve_pages(inode,
468 index, index + 1, 1)))
469 hugetlb_fix_reserve_counts(inode);
470 }
471
472 unlock_page(page);
473 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
474 }
475 huge_pagevec_release(&pvec);
476 cond_resched();
477 }
478
479 if (truncate_op)
480 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
481 }
482
483 static void hugetlbfs_evict_inode(struct inode *inode)
484 {
485 struct resv_map *resv_map;
486
487 remove_inode_hugepages(inode, 0, LLONG_MAX);
488 resv_map = (struct resv_map *)inode->i_mapping->private_data;
489 /* root inode doesn't have the resv_map, so we should check it */
490 if (resv_map)
491 resv_map_release(&resv_map->refs);
492 clear_inode(inode);
493 }
494
495 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
496 {
497 pgoff_t pgoff;
498 struct address_space *mapping = inode->i_mapping;
499 struct hstate *h = hstate_inode(inode);
500
501 BUG_ON(offset & ~huge_page_mask(h));
502 pgoff = offset >> PAGE_SHIFT;
503
504 i_size_write(inode, offset);
505 i_mmap_lock_write(mapping);
506 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
507 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
508 i_mmap_unlock_write(mapping);
509 remove_inode_hugepages(inode, offset, LLONG_MAX);
510 return 0;
511 }
512
513 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
514 {
515 struct hstate *h = hstate_inode(inode);
516 loff_t hpage_size = huge_page_size(h);
517 loff_t hole_start, hole_end;
518
519 /*
520 * For hole punch round up the beginning offset of the hole and
521 * round down the end.
522 */
523 hole_start = round_up(offset, hpage_size);
524 hole_end = round_down(offset + len, hpage_size);
525
526 if (hole_end > hole_start) {
527 struct address_space *mapping = inode->i_mapping;
528 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
529
530 inode_lock(inode);
531
532 /* protected by i_mutex */
533 if (info->seals & F_SEAL_WRITE) {
534 inode_unlock(inode);
535 return -EPERM;
536 }
537
538 i_mmap_lock_write(mapping);
539 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
540 hugetlb_vmdelete_list(&mapping->i_mmap,
541 hole_start >> PAGE_SHIFT,
542 hole_end >> PAGE_SHIFT);
543 i_mmap_unlock_write(mapping);
544 remove_inode_hugepages(inode, hole_start, hole_end);
545 inode_unlock(inode);
546 }
547
548 return 0;
549 }
550
551 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
552 loff_t len)
553 {
554 struct inode *inode = file_inode(file);
555 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
556 struct address_space *mapping = inode->i_mapping;
557 struct hstate *h = hstate_inode(inode);
558 struct vm_area_struct pseudo_vma;
559 struct mm_struct *mm = current->mm;
560 loff_t hpage_size = huge_page_size(h);
561 unsigned long hpage_shift = huge_page_shift(h);
562 pgoff_t start, index, end;
563 int error;
564 u32 hash;
565
566 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
567 return -EOPNOTSUPP;
568
569 if (mode & FALLOC_FL_PUNCH_HOLE)
570 return hugetlbfs_punch_hole(inode, offset, len);
571
572 /*
573 * Default preallocate case.
574 * For this range, start is rounded down and end is rounded up
575 * as well as being converted to page offsets.
576 */
577 start = offset >> hpage_shift;
578 end = (offset + len + hpage_size - 1) >> hpage_shift;
579
580 inode_lock(inode);
581
582 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
583 error = inode_newsize_ok(inode, offset + len);
584 if (error)
585 goto out;
586
587 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
588 error = -EPERM;
589 goto out;
590 }
591
592 /*
593 * Initialize a pseudo vma as this is required by the huge page
594 * allocation routines. If NUMA is configured, use page index
595 * as input to create an allocation policy.
596 */
597 vma_init(&pseudo_vma, mm);
598 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
599 pseudo_vma.vm_file = file;
600
601 for (index = start; index < end; index++) {
602 /*
603 * This is supposed to be the vaddr where the page is being
604 * faulted in, but we have no vaddr here.
605 */
606 struct page *page;
607 unsigned long addr;
608 int avoid_reserve = 0;
609
610 cond_resched();
611
612 /*
613 * fallocate(2) manpage permits EINTR; we may have been
614 * interrupted because we are using up too much memory.
615 */
616 if (signal_pending(current)) {
617 error = -EINTR;
618 break;
619 }
620
621 /* Set numa allocation policy based on index */
622 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
623
624 /* addr is the offset within the file (zero based) */
625 addr = index * hpage_size;
626
627 /* mutex taken here, fault path and hole punch */
628 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
629 index, addr);
630 mutex_lock(&hugetlb_fault_mutex_table[hash]);
631
632 /* See if already present in mapping to avoid alloc/free */
633 page = find_get_page(mapping, index);
634 if (page) {
635 put_page(page);
636 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
637 hugetlb_drop_vma_policy(&pseudo_vma);
638 continue;
639 }
640
641 /* Allocate page and add to page cache */
642 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
643 hugetlb_drop_vma_policy(&pseudo_vma);
644 if (IS_ERR(page)) {
645 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
646 error = PTR_ERR(page);
647 goto out;
648 }
649 clear_huge_page(page, addr, pages_per_huge_page(h));
650 __SetPageUptodate(page);
651 error = huge_add_to_page_cache(page, mapping, index);
652 if (unlikely(error)) {
653 put_page(page);
654 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
655 goto out;
656 }
657
658 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
659
660 /*
661 * unlock_page because locked by add_to_page_cache()
662 * page_put due to reference from alloc_huge_page()
663 */
664 unlock_page(page);
665 put_page(page);
666 }
667
668 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
669 i_size_write(inode, offset + len);
670 inode->i_ctime = current_time(inode);
671 out:
672 inode_unlock(inode);
673 return error;
674 }
675
676 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
677 {
678 struct inode *inode = d_inode(dentry);
679 struct hstate *h = hstate_inode(inode);
680 int error;
681 unsigned int ia_valid = attr->ia_valid;
682 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
683
684 BUG_ON(!inode);
685
686 error = setattr_prepare(dentry, attr);
687 if (error)
688 return error;
689
690 if (ia_valid & ATTR_SIZE) {
691 loff_t oldsize = inode->i_size;
692 loff_t newsize = attr->ia_size;
693
694 if (newsize & ~huge_page_mask(h))
695 return -EINVAL;
696 /* protected by i_mutex */
697 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
698 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
699 return -EPERM;
700 error = hugetlb_vmtruncate(inode, newsize);
701 if (error)
702 return error;
703 }
704
705 setattr_copy(inode, attr);
706 mark_inode_dirty(inode);
707 return 0;
708 }
709
710 static struct inode *hugetlbfs_get_root(struct super_block *sb,
711 struct hugetlbfs_config *config)
712 {
713 struct inode *inode;
714
715 inode = new_inode(sb);
716 if (inode) {
717 inode->i_ino = get_next_ino();
718 inode->i_mode = S_IFDIR | config->mode;
719 inode->i_uid = config->uid;
720 inode->i_gid = config->gid;
721 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
722 inode->i_op = &hugetlbfs_dir_inode_operations;
723 inode->i_fop = &simple_dir_operations;
724 /* directory inodes start off with i_nlink == 2 (for "." entry) */
725 inc_nlink(inode);
726 lockdep_annotate_inode_mutex_key(inode);
727 }
728 return inode;
729 }
730
731 /*
732 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
733 * be taken from reclaim -- unlike regular filesystems. This needs an
734 * annotation because huge_pmd_share() does an allocation under hugetlb's
735 * i_mmap_rwsem.
736 */
737 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
738
739 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
740 struct inode *dir,
741 umode_t mode, dev_t dev)
742 {
743 struct inode *inode;
744 struct resv_map *resv_map;
745
746 resv_map = resv_map_alloc();
747 if (!resv_map)
748 return NULL;
749
750 inode = new_inode(sb);
751 if (inode) {
752 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
753
754 inode->i_ino = get_next_ino();
755 inode_init_owner(inode, dir, mode);
756 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
757 &hugetlbfs_i_mmap_rwsem_key);
758 inode->i_mapping->a_ops = &hugetlbfs_aops;
759 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
760 inode->i_mapping->private_data = resv_map;
761 info->seals = F_SEAL_SEAL;
762 switch (mode & S_IFMT) {
763 default:
764 init_special_inode(inode, mode, dev);
765 break;
766 case S_IFREG:
767 inode->i_op = &hugetlbfs_inode_operations;
768 inode->i_fop = &hugetlbfs_file_operations;
769 break;
770 case S_IFDIR:
771 inode->i_op = &hugetlbfs_dir_inode_operations;
772 inode->i_fop = &simple_dir_operations;
773
774 /* directory inodes start off with i_nlink == 2 (for "." entry) */
775 inc_nlink(inode);
776 break;
777 case S_IFLNK:
778 inode->i_op = &page_symlink_inode_operations;
779 inode_nohighmem(inode);
780 break;
781 }
782 lockdep_annotate_inode_mutex_key(inode);
783 } else
784 kref_put(&resv_map->refs, resv_map_release);
785
786 return inode;
787 }
788
789 /*
790 * File creation. Allocate an inode, and we're done..
791 */
792 static int hugetlbfs_mknod(struct inode *dir,
793 struct dentry *dentry, umode_t mode, dev_t dev)
794 {
795 struct inode *inode;
796 int error = -ENOSPC;
797
798 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
799 if (inode) {
800 dir->i_ctime = dir->i_mtime = current_time(dir);
801 d_instantiate(dentry, inode);
802 dget(dentry); /* Extra count - pin the dentry in core */
803 error = 0;
804 }
805 return error;
806 }
807
808 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
809 {
810 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
811 if (!retval)
812 inc_nlink(dir);
813 return retval;
814 }
815
816 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
817 {
818 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
819 }
820
821 static int hugetlbfs_symlink(struct inode *dir,
822 struct dentry *dentry, const char *symname)
823 {
824 struct inode *inode;
825 int error = -ENOSPC;
826
827 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
828 if (inode) {
829 int l = strlen(symname)+1;
830 error = page_symlink(inode, symname, l);
831 if (!error) {
832 d_instantiate(dentry, inode);
833 dget(dentry);
834 } else
835 iput(inode);
836 }
837 dir->i_ctime = dir->i_mtime = current_time(dir);
838
839 return error;
840 }
841
842 /*
843 * mark the head page dirty
844 */
845 static int hugetlbfs_set_page_dirty(struct page *page)
846 {
847 struct page *head = compound_head(page);
848
849 SetPageDirty(head);
850 return 0;
851 }
852
853 static int hugetlbfs_migrate_page(struct address_space *mapping,
854 struct page *newpage, struct page *page,
855 enum migrate_mode mode)
856 {
857 int rc;
858
859 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
860 if (rc != MIGRATEPAGE_SUCCESS)
861 return rc;
862 if (mode != MIGRATE_SYNC_NO_COPY)
863 migrate_page_copy(newpage, page);
864 else
865 migrate_page_states(newpage, page);
866
867 return MIGRATEPAGE_SUCCESS;
868 }
869
870 static int hugetlbfs_error_remove_page(struct address_space *mapping,
871 struct page *page)
872 {
873 struct inode *inode = mapping->host;
874 pgoff_t index = page->index;
875
876 remove_huge_page(page);
877 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
878 hugetlb_fix_reserve_counts(inode);
879
880 return 0;
881 }
882
883 /*
884 * Display the mount options in /proc/mounts.
885 */
886 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
887 {
888 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
889 struct hugepage_subpool *spool = sbinfo->spool;
890 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
891 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
892 char mod;
893
894 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
895 seq_printf(m, ",uid=%u",
896 from_kuid_munged(&init_user_ns, sbinfo->uid));
897 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
898 seq_printf(m, ",gid=%u",
899 from_kgid_munged(&init_user_ns, sbinfo->gid));
900 if (sbinfo->mode != 0755)
901 seq_printf(m, ",mode=%o", sbinfo->mode);
902 if (sbinfo->max_inodes != -1)
903 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
904
905 hpage_size /= 1024;
906 mod = 'K';
907 if (hpage_size >= 1024) {
908 hpage_size /= 1024;
909 mod = 'M';
910 }
911 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
912 if (spool) {
913 if (spool->max_hpages != -1)
914 seq_printf(m, ",size=%llu",
915 (unsigned long long)spool->max_hpages << hpage_shift);
916 if (spool->min_hpages != -1)
917 seq_printf(m, ",min_size=%llu",
918 (unsigned long long)spool->min_hpages << hpage_shift);
919 }
920 return 0;
921 }
922
923 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
924 {
925 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
926 struct hstate *h = hstate_inode(d_inode(dentry));
927
928 buf->f_type = HUGETLBFS_MAGIC;
929 buf->f_bsize = huge_page_size(h);
930 if (sbinfo) {
931 spin_lock(&sbinfo->stat_lock);
932 /* If no limits set, just report 0 for max/free/used
933 * blocks, like simple_statfs() */
934 if (sbinfo->spool) {
935 long free_pages;
936
937 spin_lock(&sbinfo->spool->lock);
938 buf->f_blocks = sbinfo->spool->max_hpages;
939 free_pages = sbinfo->spool->max_hpages
940 - sbinfo->spool->used_hpages;
941 buf->f_bavail = buf->f_bfree = free_pages;
942 spin_unlock(&sbinfo->spool->lock);
943 buf->f_files = sbinfo->max_inodes;
944 buf->f_ffree = sbinfo->free_inodes;
945 }
946 spin_unlock(&sbinfo->stat_lock);
947 }
948 buf->f_namelen = NAME_MAX;
949 return 0;
950 }
951
952 static void hugetlbfs_put_super(struct super_block *sb)
953 {
954 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
955
956 if (sbi) {
957 sb->s_fs_info = NULL;
958
959 if (sbi->spool)
960 hugepage_put_subpool(sbi->spool);
961
962 kfree(sbi);
963 }
964 }
965
966 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
967 {
968 if (sbinfo->free_inodes >= 0) {
969 spin_lock(&sbinfo->stat_lock);
970 if (unlikely(!sbinfo->free_inodes)) {
971 spin_unlock(&sbinfo->stat_lock);
972 return 0;
973 }
974 sbinfo->free_inodes--;
975 spin_unlock(&sbinfo->stat_lock);
976 }
977
978 return 1;
979 }
980
981 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
982 {
983 if (sbinfo->free_inodes >= 0) {
984 spin_lock(&sbinfo->stat_lock);
985 sbinfo->free_inodes++;
986 spin_unlock(&sbinfo->stat_lock);
987 }
988 }
989
990
991 static struct kmem_cache *hugetlbfs_inode_cachep;
992
993 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
994 {
995 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
996 struct hugetlbfs_inode_info *p;
997
998 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
999 return NULL;
1000 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1001 if (unlikely(!p)) {
1002 hugetlbfs_inc_free_inodes(sbinfo);
1003 return NULL;
1004 }
1005
1006 /*
1007 * Any time after allocation, hugetlbfs_destroy_inode can be called
1008 * for the inode. mpol_free_shared_policy is unconditionally called
1009 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1010 * in case of a quick call to destroy.
1011 *
1012 * Note that the policy is initialized even if we are creating a
1013 * private inode. This simplifies hugetlbfs_destroy_inode.
1014 */
1015 mpol_shared_policy_init(&p->policy, NULL);
1016
1017 return &p->vfs_inode;
1018 }
1019
1020 static void hugetlbfs_i_callback(struct rcu_head *head)
1021 {
1022 struct inode *inode = container_of(head, struct inode, i_rcu);
1023 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1024 }
1025
1026 static void hugetlbfs_destroy_inode(struct inode *inode)
1027 {
1028 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1029 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1030 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1031 }
1032
1033 static const struct address_space_operations hugetlbfs_aops = {
1034 .write_begin = hugetlbfs_write_begin,
1035 .write_end = hugetlbfs_write_end,
1036 .set_page_dirty = hugetlbfs_set_page_dirty,
1037 .migratepage = hugetlbfs_migrate_page,
1038 .error_remove_page = hugetlbfs_error_remove_page,
1039 };
1040
1041
1042 static void init_once(void *foo)
1043 {
1044 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1045
1046 inode_init_once(&ei->vfs_inode);
1047 }
1048
1049 const struct file_operations hugetlbfs_file_operations = {
1050 .read_iter = hugetlbfs_read_iter,
1051 .mmap = hugetlbfs_file_mmap,
1052 .fsync = noop_fsync,
1053 .get_unmapped_area = hugetlb_get_unmapped_area,
1054 .llseek = default_llseek,
1055 .fallocate = hugetlbfs_fallocate,
1056 };
1057
1058 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1059 .create = hugetlbfs_create,
1060 .lookup = simple_lookup,
1061 .link = simple_link,
1062 .unlink = simple_unlink,
1063 .symlink = hugetlbfs_symlink,
1064 .mkdir = hugetlbfs_mkdir,
1065 .rmdir = simple_rmdir,
1066 .mknod = hugetlbfs_mknod,
1067 .rename = simple_rename,
1068 .setattr = hugetlbfs_setattr,
1069 };
1070
1071 static const struct inode_operations hugetlbfs_inode_operations = {
1072 .setattr = hugetlbfs_setattr,
1073 };
1074
1075 static const struct super_operations hugetlbfs_ops = {
1076 .alloc_inode = hugetlbfs_alloc_inode,
1077 .destroy_inode = hugetlbfs_destroy_inode,
1078 .evict_inode = hugetlbfs_evict_inode,
1079 .statfs = hugetlbfs_statfs,
1080 .put_super = hugetlbfs_put_super,
1081 .show_options = hugetlbfs_show_options,
1082 };
1083
1084 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1085
1086 /*
1087 * Convert size option passed from command line to number of huge pages
1088 * in the pool specified by hstate. Size option could be in bytes
1089 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1090 */
1091 static long
1092 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1093 enum hugetlbfs_size_type val_type)
1094 {
1095 if (val_type == NO_SIZE)
1096 return -1;
1097
1098 if (val_type == SIZE_PERCENT) {
1099 size_opt <<= huge_page_shift(h);
1100 size_opt *= h->max_huge_pages;
1101 do_div(size_opt, 100);
1102 }
1103
1104 size_opt >>= huge_page_shift(h);
1105 return size_opt;
1106 }
1107
1108 static int
1109 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1110 {
1111 char *p, *rest;
1112 substring_t args[MAX_OPT_ARGS];
1113 int option;
1114 unsigned long long max_size_opt = 0, min_size_opt = 0;
1115 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1116
1117 if (!options)
1118 return 0;
1119
1120 while ((p = strsep(&options, ",")) != NULL) {
1121 int token;
1122 if (!*p)
1123 continue;
1124
1125 token = match_token(p, tokens, args);
1126 switch (token) {
1127 case Opt_uid:
1128 if (match_int(&args[0], &option))
1129 goto bad_val;
1130 pconfig->uid = make_kuid(current_user_ns(), option);
1131 if (!uid_valid(pconfig->uid))
1132 goto bad_val;
1133 break;
1134
1135 case Opt_gid:
1136 if (match_int(&args[0], &option))
1137 goto bad_val;
1138 pconfig->gid = make_kgid(current_user_ns(), option);
1139 if (!gid_valid(pconfig->gid))
1140 goto bad_val;
1141 break;
1142
1143 case Opt_mode:
1144 if (match_octal(&args[0], &option))
1145 goto bad_val;
1146 pconfig->mode = option & 01777U;
1147 break;
1148
1149 case Opt_size: {
1150 /* memparse() will accept a K/M/G without a digit */
1151 if (!isdigit(*args[0].from))
1152 goto bad_val;
1153 max_size_opt = memparse(args[0].from, &rest);
1154 max_val_type = SIZE_STD;
1155 if (*rest == '%')
1156 max_val_type = SIZE_PERCENT;
1157 break;
1158 }
1159
1160 case Opt_nr_inodes:
1161 /* memparse() will accept a K/M/G without a digit */
1162 if (!isdigit(*args[0].from))
1163 goto bad_val;
1164 pconfig->nr_inodes = memparse(args[0].from, &rest);
1165 break;
1166
1167 case Opt_pagesize: {
1168 unsigned long ps;
1169 ps = memparse(args[0].from, &rest);
1170 pconfig->hstate = size_to_hstate(ps);
1171 if (!pconfig->hstate) {
1172 pr_err("Unsupported page size %lu MB\n",
1173 ps >> 20);
1174 return -EINVAL;
1175 }
1176 break;
1177 }
1178
1179 case Opt_min_size: {
1180 /* memparse() will accept a K/M/G without a digit */
1181 if (!isdigit(*args[0].from))
1182 goto bad_val;
1183 min_size_opt = memparse(args[0].from, &rest);
1184 min_val_type = SIZE_STD;
1185 if (*rest == '%')
1186 min_val_type = SIZE_PERCENT;
1187 break;
1188 }
1189
1190 default:
1191 pr_err("Bad mount option: \"%s\"\n", p);
1192 return -EINVAL;
1193 break;
1194 }
1195 }
1196
1197 /*
1198 * Use huge page pool size (in hstate) to convert the size
1199 * options to number of huge pages. If NO_SIZE, -1 is returned.
1200 */
1201 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1202 max_size_opt, max_val_type);
1203 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1204 min_size_opt, min_val_type);
1205
1206 /*
1207 * If max_size was specified, then min_size must be smaller
1208 */
1209 if (max_val_type > NO_SIZE &&
1210 pconfig->min_hpages > pconfig->max_hpages) {
1211 pr_err("minimum size can not be greater than maximum size\n");
1212 return -EINVAL;
1213 }
1214
1215 return 0;
1216
1217 bad_val:
1218 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1219 return -EINVAL;
1220 }
1221
1222 static int
1223 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1224 {
1225 int ret;
1226 struct hugetlbfs_config config;
1227 struct hugetlbfs_sb_info *sbinfo;
1228
1229 config.max_hpages = -1; /* No limit on size by default */
1230 config.nr_inodes = -1; /* No limit on number of inodes by default */
1231 config.uid = current_fsuid();
1232 config.gid = current_fsgid();
1233 config.mode = 0755;
1234 config.hstate = &default_hstate;
1235 config.min_hpages = -1; /* No default minimum size */
1236 ret = hugetlbfs_parse_options(data, &config);
1237 if (ret)
1238 return ret;
1239
1240 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1241 if (!sbinfo)
1242 return -ENOMEM;
1243 sb->s_fs_info = sbinfo;
1244 sbinfo->hstate = config.hstate;
1245 spin_lock_init(&sbinfo->stat_lock);
1246 sbinfo->max_inodes = config.nr_inodes;
1247 sbinfo->free_inodes = config.nr_inodes;
1248 sbinfo->spool = NULL;
1249 sbinfo->uid = config.uid;
1250 sbinfo->gid = config.gid;
1251 sbinfo->mode = config.mode;
1252
1253 /*
1254 * Allocate and initialize subpool if maximum or minimum size is
1255 * specified. Any needed reservations (for minimim size) are taken
1256 * taken when the subpool is created.
1257 */
1258 if (config.max_hpages != -1 || config.min_hpages != -1) {
1259 sbinfo->spool = hugepage_new_subpool(config.hstate,
1260 config.max_hpages,
1261 config.min_hpages);
1262 if (!sbinfo->spool)
1263 goto out_free;
1264 }
1265 sb->s_maxbytes = MAX_LFS_FILESIZE;
1266 sb->s_blocksize = huge_page_size(config.hstate);
1267 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1268 sb->s_magic = HUGETLBFS_MAGIC;
1269 sb->s_op = &hugetlbfs_ops;
1270 sb->s_time_gran = 1;
1271 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1272 if (!sb->s_root)
1273 goto out_free;
1274 return 0;
1275 out_free:
1276 kfree(sbinfo->spool);
1277 kfree(sbinfo);
1278 return -ENOMEM;
1279 }
1280
1281 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1282 int flags, const char *dev_name, void *data)
1283 {
1284 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1285 }
1286
1287 static struct file_system_type hugetlbfs_fs_type = {
1288 .name = "hugetlbfs",
1289 .mount = hugetlbfs_mount,
1290 .kill_sb = kill_litter_super,
1291 };
1292
1293 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1294
1295 static int can_do_hugetlb_shm(void)
1296 {
1297 kgid_t shm_group;
1298 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1299 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1300 }
1301
1302 static int get_hstate_idx(int page_size_log)
1303 {
1304 struct hstate *h = hstate_sizelog(page_size_log);
1305
1306 if (!h)
1307 return -1;
1308 return h - hstates;
1309 }
1310
1311 /*
1312 * Note that size should be aligned to proper hugepage size in caller side,
1313 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1314 */
1315 struct file *hugetlb_file_setup(const char *name, size_t size,
1316 vm_flags_t acctflag, struct user_struct **user,
1317 int creat_flags, int page_size_log)
1318 {
1319 struct inode *inode;
1320 struct vfsmount *mnt;
1321 int hstate_idx;
1322 struct file *file;
1323
1324 hstate_idx = get_hstate_idx(page_size_log);
1325 if (hstate_idx < 0)
1326 return ERR_PTR(-ENODEV);
1327
1328 *user = NULL;
1329 mnt = hugetlbfs_vfsmount[hstate_idx];
1330 if (!mnt)
1331 return ERR_PTR(-ENOENT);
1332
1333 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1334 *user = current_user();
1335 if (user_shm_lock(size, *user)) {
1336 task_lock(current);
1337 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1338 current->comm, current->pid);
1339 task_unlock(current);
1340 } else {
1341 *user = NULL;
1342 return ERR_PTR(-EPERM);
1343 }
1344 }
1345
1346 file = ERR_PTR(-ENOSPC);
1347 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1348 if (!inode)
1349 goto out;
1350 if (creat_flags == HUGETLB_SHMFS_INODE)
1351 inode->i_flags |= S_PRIVATE;
1352
1353 inode->i_size = size;
1354 clear_nlink(inode);
1355
1356 if (hugetlb_reserve_pages(inode, 0,
1357 size >> huge_page_shift(hstate_inode(inode)), NULL,
1358 acctflag))
1359 file = ERR_PTR(-ENOMEM);
1360 else
1361 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1362 &hugetlbfs_file_operations);
1363 if (!IS_ERR(file))
1364 return file;
1365
1366 iput(inode);
1367 out:
1368 if (*user) {
1369 user_shm_unlock(size, *user);
1370 *user = NULL;
1371 }
1372 return file;
1373 }
1374
1375 static int __init init_hugetlbfs_fs(void)
1376 {
1377 struct hstate *h;
1378 int error;
1379 int i;
1380
1381 if (!hugepages_supported()) {
1382 pr_info("disabling because there are no supported hugepage sizes\n");
1383 return -ENOTSUPP;
1384 }
1385
1386 error = -ENOMEM;
1387 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1388 sizeof(struct hugetlbfs_inode_info),
1389 0, SLAB_ACCOUNT, init_once);
1390 if (hugetlbfs_inode_cachep == NULL)
1391 goto out2;
1392
1393 error = register_filesystem(&hugetlbfs_fs_type);
1394 if (error)
1395 goto out;
1396
1397 i = 0;
1398 for_each_hstate(h) {
1399 char buf[50];
1400 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1401
1402 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1403 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1404 buf);
1405
1406 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1407 pr_err("Cannot mount internal hugetlbfs for "
1408 "page size %uK", ps_kb);
1409 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1410 hugetlbfs_vfsmount[i] = NULL;
1411 }
1412 i++;
1413 }
1414 /* Non default hstates are optional */
1415 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1416 return 0;
1417
1418 out:
1419 kmem_cache_destroy(hugetlbfs_inode_cachep);
1420 out2:
1421 return error;
1422 }
1423 fs_initcall(init_hugetlbfs_fs)