]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/hugetlbfs/inode.c
Merge tag 'kvm-s390-master-4.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-artful-kernel.git] / fs / hugetlbfs / inode.c
1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49 kuid_t uid;
50 kgid_t gid;
51 umode_t mode;
52 long max_hpages;
53 long nr_inodes;
54 struct hstate *hstate;
55 long min_hpages;
56 };
57
58 struct hugetlbfs_inode_info {
59 struct shared_policy policy;
60 struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71 Opt_size, Opt_nr_inodes,
72 Opt_mode, Opt_uid, Opt_gid,
73 Opt_pagesize, Opt_min_size,
74 Opt_err,
75 };
76
77 static const match_table_t tokens = {
78 {Opt_size, "size=%s"},
79 {Opt_nr_inodes, "nr_inodes=%s"},
80 {Opt_mode, "mode=%o"},
81 {Opt_uid, "uid=%u"},
82 {Opt_gid, "gid=%u"},
83 {Opt_pagesize, "pagesize=%s"},
84 {Opt_min_size, "min_size=%s"},
85 {Opt_err, NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 struct inode *inode = file_inode(file);
124 loff_t len, vma_len;
125 int ret;
126 struct hstate *h = hstate_file(file);
127
128 /*
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 * and ia64).
135 */
136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 vma->vm_ops = &hugetlb_vm_ops;
138
139 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
140 return -EINVAL;
141
142 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
143
144 inode_lock(inode);
145 file_accessed(file);
146
147 ret = -ENOMEM;
148 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
149
150 if (hugetlb_reserve_pages(inode,
151 vma->vm_pgoff >> huge_page_order(h),
152 len >> huge_page_shift(h), vma,
153 vma->vm_flags))
154 goto out;
155
156 ret = 0;
157 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
158 inode->i_size = len;
159 out:
160 inode_unlock(inode);
161
162 return ret;
163 }
164
165 /*
166 * Called under down_write(mmap_sem).
167 */
168
169 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
170 static unsigned long
171 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
172 unsigned long len, unsigned long pgoff, unsigned long flags)
173 {
174 struct mm_struct *mm = current->mm;
175 struct vm_area_struct *vma;
176 struct hstate *h = hstate_file(file);
177 struct vm_unmapped_area_info info;
178
179 if (len & ~huge_page_mask(h))
180 return -EINVAL;
181 if (len > TASK_SIZE)
182 return -ENOMEM;
183
184 if (flags & MAP_FIXED) {
185 if (prepare_hugepage_range(file, addr, len))
186 return -EINVAL;
187 return addr;
188 }
189
190 if (addr) {
191 addr = ALIGN(addr, huge_page_size(h));
192 vma = find_vma(mm, addr);
193 if (TASK_SIZE - len >= addr &&
194 (!vma || addr + len <= vma->vm_start))
195 return addr;
196 }
197
198 info.flags = 0;
199 info.length = len;
200 info.low_limit = TASK_UNMAPPED_BASE;
201 info.high_limit = TASK_SIZE;
202 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
203 info.align_offset = 0;
204 return vm_unmapped_area(&info);
205 }
206 #endif
207
208 static size_t
209 hugetlbfs_read_actor(struct page *page, unsigned long offset,
210 struct iov_iter *to, unsigned long size)
211 {
212 size_t copied = 0;
213 int i, chunksize;
214
215 /* Find which 4k chunk and offset with in that chunk */
216 i = offset >> PAGE_SHIFT;
217 offset = offset & ~PAGE_MASK;
218
219 while (size) {
220 size_t n;
221 chunksize = PAGE_SIZE;
222 if (offset)
223 chunksize -= offset;
224 if (chunksize > size)
225 chunksize = size;
226 n = copy_page_to_iter(&page[i], offset, chunksize, to);
227 copied += n;
228 if (n != chunksize)
229 return copied;
230 offset = 0;
231 size -= chunksize;
232 i++;
233 }
234 return copied;
235 }
236
237 /*
238 * Support for read() - Find the page attached to f_mapping and copy out the
239 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
240 * since it has PAGE_SIZE assumptions.
241 */
242 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
243 {
244 struct file *file = iocb->ki_filp;
245 struct hstate *h = hstate_file(file);
246 struct address_space *mapping = file->f_mapping;
247 struct inode *inode = mapping->host;
248 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
249 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
250 unsigned long end_index;
251 loff_t isize;
252 ssize_t retval = 0;
253
254 while (iov_iter_count(to)) {
255 struct page *page;
256 size_t nr, copied;
257
258 /* nr is the maximum number of bytes to copy from this page */
259 nr = huge_page_size(h);
260 isize = i_size_read(inode);
261 if (!isize)
262 break;
263 end_index = (isize - 1) >> huge_page_shift(h);
264 if (index > end_index)
265 break;
266 if (index == end_index) {
267 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
268 if (nr <= offset)
269 break;
270 }
271 nr = nr - offset;
272
273 /* Find the page */
274 page = find_lock_page(mapping, index);
275 if (unlikely(page == NULL)) {
276 /*
277 * We have a HOLE, zero out the user-buffer for the
278 * length of the hole or request.
279 */
280 copied = iov_iter_zero(nr, to);
281 } else {
282 unlock_page(page);
283
284 /*
285 * We have the page, copy it to user space buffer.
286 */
287 copied = hugetlbfs_read_actor(page, offset, to, nr);
288 put_page(page);
289 }
290 offset += copied;
291 retval += copied;
292 if (copied != nr && iov_iter_count(to)) {
293 if (!retval)
294 retval = -EFAULT;
295 break;
296 }
297 index += offset >> huge_page_shift(h);
298 offset &= ~huge_page_mask(h);
299 }
300 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
301 return retval;
302 }
303
304 static int hugetlbfs_write_begin(struct file *file,
305 struct address_space *mapping,
306 loff_t pos, unsigned len, unsigned flags,
307 struct page **pagep, void **fsdata)
308 {
309 return -EINVAL;
310 }
311
312 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
313 loff_t pos, unsigned len, unsigned copied,
314 struct page *page, void *fsdata)
315 {
316 BUG();
317 return -EINVAL;
318 }
319
320 static void remove_huge_page(struct page *page)
321 {
322 ClearPageDirty(page);
323 ClearPageUptodate(page);
324 delete_from_page_cache(page);
325 }
326
327 static void
328 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
329 {
330 struct vm_area_struct *vma;
331
332 /*
333 * end == 0 indicates that the entire range after
334 * start should be unmapped.
335 */
336 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
337 unsigned long v_offset;
338 unsigned long v_end;
339
340 /*
341 * Can the expression below overflow on 32-bit arches?
342 * No, because the interval tree returns us only those vmas
343 * which overlap the truncated area starting at pgoff,
344 * and no vma on a 32-bit arch can span beyond the 4GB.
345 */
346 if (vma->vm_pgoff < start)
347 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
348 else
349 v_offset = 0;
350
351 if (!end)
352 v_end = vma->vm_end;
353 else {
354 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
355 + vma->vm_start;
356 if (v_end > vma->vm_end)
357 v_end = vma->vm_end;
358 }
359
360 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
361 NULL);
362 }
363 }
364
365 /*
366 * remove_inode_hugepages handles two distinct cases: truncation and hole
367 * punch. There are subtle differences in operation for each case.
368 *
369 * truncation is indicated by end of range being LLONG_MAX
370 * In this case, we first scan the range and release found pages.
371 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
372 * maps and global counts. Page faults can not race with truncation
373 * in this routine. hugetlb_no_page() prevents page faults in the
374 * truncated range. It checks i_size before allocation, and again after
375 * with the page table lock for the page held. The same lock must be
376 * acquired to unmap a page.
377 * hole punch is indicated if end is not LLONG_MAX
378 * In the hole punch case we scan the range and release found pages.
379 * Only when releasing a page is the associated region/reserv map
380 * deleted. The region/reserv map for ranges without associated
381 * pages are not modified. Page faults can race with hole punch.
382 * This is indicated if we find a mapped page.
383 * Note: If the passed end of range value is beyond the end of file, but
384 * not LLONG_MAX this routine still performs a hole punch operation.
385 */
386 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
387 loff_t lend)
388 {
389 struct hstate *h = hstate_inode(inode);
390 struct address_space *mapping = &inode->i_data;
391 const pgoff_t start = lstart >> huge_page_shift(h);
392 const pgoff_t end = lend >> huge_page_shift(h);
393 struct vm_area_struct pseudo_vma;
394 struct pagevec pvec;
395 pgoff_t next;
396 int i, freed = 0;
397 long lookup_nr = PAGEVEC_SIZE;
398 bool truncate_op = (lend == LLONG_MAX);
399
400 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
401 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
402 pagevec_init(&pvec, 0);
403 next = start;
404 while (next < end) {
405 /*
406 * Don't grab more pages than the number left in the range.
407 */
408 if (end - next < lookup_nr)
409 lookup_nr = end - next;
410
411 /*
412 * When no more pages are found, we are done.
413 */
414 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
415 break;
416
417 for (i = 0; i < pagevec_count(&pvec); ++i) {
418 struct page *page = pvec.pages[i];
419 u32 hash;
420
421 /*
422 * The page (index) could be beyond end. This is
423 * only possible in the punch hole case as end is
424 * max page offset in the truncate case.
425 */
426 next = page->index;
427 if (next >= end)
428 break;
429
430 hash = hugetlb_fault_mutex_hash(h, current->mm,
431 &pseudo_vma,
432 mapping, next, 0);
433 mutex_lock(&hugetlb_fault_mutex_table[hash]);
434
435 /*
436 * If page is mapped, it was faulted in after being
437 * unmapped in caller. Unmap (again) now after taking
438 * the fault mutex. The mutex will prevent faults
439 * until we finish removing the page.
440 *
441 * This race can only happen in the hole punch case.
442 * Getting here in a truncate operation is a bug.
443 */
444 if (unlikely(page_mapped(page))) {
445 BUG_ON(truncate_op);
446
447 i_mmap_lock_write(mapping);
448 hugetlb_vmdelete_list(&mapping->i_mmap,
449 next * pages_per_huge_page(h),
450 (next + 1) * pages_per_huge_page(h));
451 i_mmap_unlock_write(mapping);
452 }
453
454 lock_page(page);
455 /*
456 * We must free the huge page and remove from page
457 * cache (remove_huge_page) BEFORE removing the
458 * region/reserve map (hugetlb_unreserve_pages). In
459 * rare out of memory conditions, removal of the
460 * region/reserve map could fail. Correspondingly,
461 * the subpool and global reserve usage count can need
462 * to be adjusted.
463 */
464 VM_BUG_ON(PagePrivate(page));
465 remove_huge_page(page);
466 freed++;
467 if (!truncate_op) {
468 if (unlikely(hugetlb_unreserve_pages(inode,
469 next, next + 1, 1)))
470 hugetlb_fix_reserve_counts(inode);
471 }
472
473 unlock_page(page);
474 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
475 }
476 ++next;
477 huge_pagevec_release(&pvec);
478 cond_resched();
479 }
480
481 if (truncate_op)
482 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
483 }
484
485 static void hugetlbfs_evict_inode(struct inode *inode)
486 {
487 struct resv_map *resv_map;
488
489 remove_inode_hugepages(inode, 0, LLONG_MAX);
490 resv_map = (struct resv_map *)inode->i_mapping->private_data;
491 /* root inode doesn't have the resv_map, so we should check it */
492 if (resv_map)
493 resv_map_release(&resv_map->refs);
494 clear_inode(inode);
495 }
496
497 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
498 {
499 pgoff_t pgoff;
500 struct address_space *mapping = inode->i_mapping;
501 struct hstate *h = hstate_inode(inode);
502
503 BUG_ON(offset & ~huge_page_mask(h));
504 pgoff = offset >> PAGE_SHIFT;
505
506 i_size_write(inode, offset);
507 i_mmap_lock_write(mapping);
508 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
509 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
510 i_mmap_unlock_write(mapping);
511 remove_inode_hugepages(inode, offset, LLONG_MAX);
512 return 0;
513 }
514
515 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
516 {
517 struct hstate *h = hstate_inode(inode);
518 loff_t hpage_size = huge_page_size(h);
519 loff_t hole_start, hole_end;
520
521 /*
522 * For hole punch round up the beginning offset of the hole and
523 * round down the end.
524 */
525 hole_start = round_up(offset, hpage_size);
526 hole_end = round_down(offset + len, hpage_size);
527
528 if (hole_end > hole_start) {
529 struct address_space *mapping = inode->i_mapping;
530
531 inode_lock(inode);
532 i_mmap_lock_write(mapping);
533 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
534 hugetlb_vmdelete_list(&mapping->i_mmap,
535 hole_start >> PAGE_SHIFT,
536 hole_end >> PAGE_SHIFT);
537 i_mmap_unlock_write(mapping);
538 remove_inode_hugepages(inode, hole_start, hole_end);
539 inode_unlock(inode);
540 }
541
542 return 0;
543 }
544
545 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
546 loff_t len)
547 {
548 struct inode *inode = file_inode(file);
549 struct address_space *mapping = inode->i_mapping;
550 struct hstate *h = hstate_inode(inode);
551 struct vm_area_struct pseudo_vma;
552 struct mm_struct *mm = current->mm;
553 loff_t hpage_size = huge_page_size(h);
554 unsigned long hpage_shift = huge_page_shift(h);
555 pgoff_t start, index, end;
556 int error;
557 u32 hash;
558
559 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
560 return -EOPNOTSUPP;
561
562 if (mode & FALLOC_FL_PUNCH_HOLE)
563 return hugetlbfs_punch_hole(inode, offset, len);
564
565 /*
566 * Default preallocate case.
567 * For this range, start is rounded down and end is rounded up
568 * as well as being converted to page offsets.
569 */
570 start = offset >> hpage_shift;
571 end = (offset + len + hpage_size - 1) >> hpage_shift;
572
573 inode_lock(inode);
574
575 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
576 error = inode_newsize_ok(inode, offset + len);
577 if (error)
578 goto out;
579
580 /*
581 * Initialize a pseudo vma as this is required by the huge page
582 * allocation routines. If NUMA is configured, use page index
583 * as input to create an allocation policy.
584 */
585 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
586 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
587 pseudo_vma.vm_file = file;
588
589 for (index = start; index < end; index++) {
590 /*
591 * This is supposed to be the vaddr where the page is being
592 * faulted in, but we have no vaddr here.
593 */
594 struct page *page;
595 unsigned long addr;
596 int avoid_reserve = 0;
597
598 cond_resched();
599
600 /*
601 * fallocate(2) manpage permits EINTR; we may have been
602 * interrupted because we are using up too much memory.
603 */
604 if (signal_pending(current)) {
605 error = -EINTR;
606 break;
607 }
608
609 /* Set numa allocation policy based on index */
610 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
611
612 /* addr is the offset within the file (zero based) */
613 addr = index * hpage_size;
614
615 /* mutex taken here, fault path and hole punch */
616 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
617 index, addr);
618 mutex_lock(&hugetlb_fault_mutex_table[hash]);
619
620 /* See if already present in mapping to avoid alloc/free */
621 page = find_get_page(mapping, index);
622 if (page) {
623 put_page(page);
624 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
625 hugetlb_drop_vma_policy(&pseudo_vma);
626 continue;
627 }
628
629 /* Allocate page and add to page cache */
630 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
631 hugetlb_drop_vma_policy(&pseudo_vma);
632 if (IS_ERR(page)) {
633 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634 error = PTR_ERR(page);
635 goto out;
636 }
637 clear_huge_page(page, addr, pages_per_huge_page(h));
638 __SetPageUptodate(page);
639 error = huge_add_to_page_cache(page, mapping, index);
640 if (unlikely(error)) {
641 put_page(page);
642 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643 goto out;
644 }
645
646 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
647
648 /*
649 * page_put due to reference from alloc_huge_page()
650 * unlock_page because locked by add_to_page_cache()
651 */
652 put_page(page);
653 unlock_page(page);
654 }
655
656 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
657 i_size_write(inode, offset + len);
658 inode->i_ctime = current_time(inode);
659 out:
660 inode_unlock(inode);
661 return error;
662 }
663
664 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
665 {
666 struct inode *inode = d_inode(dentry);
667 struct hstate *h = hstate_inode(inode);
668 int error;
669 unsigned int ia_valid = attr->ia_valid;
670
671 BUG_ON(!inode);
672
673 error = setattr_prepare(dentry, attr);
674 if (error)
675 return error;
676
677 if (ia_valid & ATTR_SIZE) {
678 error = -EINVAL;
679 if (attr->ia_size & ~huge_page_mask(h))
680 return -EINVAL;
681 error = hugetlb_vmtruncate(inode, attr->ia_size);
682 if (error)
683 return error;
684 }
685
686 setattr_copy(inode, attr);
687 mark_inode_dirty(inode);
688 return 0;
689 }
690
691 static struct inode *hugetlbfs_get_root(struct super_block *sb,
692 struct hugetlbfs_config *config)
693 {
694 struct inode *inode;
695
696 inode = new_inode(sb);
697 if (inode) {
698 inode->i_ino = get_next_ino();
699 inode->i_mode = S_IFDIR | config->mode;
700 inode->i_uid = config->uid;
701 inode->i_gid = config->gid;
702 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
703 inode->i_op = &hugetlbfs_dir_inode_operations;
704 inode->i_fop = &simple_dir_operations;
705 /* directory inodes start off with i_nlink == 2 (for "." entry) */
706 inc_nlink(inode);
707 lockdep_annotate_inode_mutex_key(inode);
708 }
709 return inode;
710 }
711
712 /*
713 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
714 * be taken from reclaim -- unlike regular filesystems. This needs an
715 * annotation because huge_pmd_share() does an allocation under hugetlb's
716 * i_mmap_rwsem.
717 */
718 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
719
720 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
721 struct inode *dir,
722 umode_t mode, dev_t dev)
723 {
724 struct inode *inode;
725 struct resv_map *resv_map;
726
727 resv_map = resv_map_alloc();
728 if (!resv_map)
729 return NULL;
730
731 inode = new_inode(sb);
732 if (inode) {
733 inode->i_ino = get_next_ino();
734 inode_init_owner(inode, dir, mode);
735 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
736 &hugetlbfs_i_mmap_rwsem_key);
737 inode->i_mapping->a_ops = &hugetlbfs_aops;
738 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
739 inode->i_mapping->private_data = resv_map;
740 switch (mode & S_IFMT) {
741 default:
742 init_special_inode(inode, mode, dev);
743 break;
744 case S_IFREG:
745 inode->i_op = &hugetlbfs_inode_operations;
746 inode->i_fop = &hugetlbfs_file_operations;
747 break;
748 case S_IFDIR:
749 inode->i_op = &hugetlbfs_dir_inode_operations;
750 inode->i_fop = &simple_dir_operations;
751
752 /* directory inodes start off with i_nlink == 2 (for "." entry) */
753 inc_nlink(inode);
754 break;
755 case S_IFLNK:
756 inode->i_op = &page_symlink_inode_operations;
757 inode_nohighmem(inode);
758 break;
759 }
760 lockdep_annotate_inode_mutex_key(inode);
761 } else
762 kref_put(&resv_map->refs, resv_map_release);
763
764 return inode;
765 }
766
767 /*
768 * File creation. Allocate an inode, and we're done..
769 */
770 static int hugetlbfs_mknod(struct inode *dir,
771 struct dentry *dentry, umode_t mode, dev_t dev)
772 {
773 struct inode *inode;
774 int error = -ENOSPC;
775
776 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
777 if (inode) {
778 dir->i_ctime = dir->i_mtime = current_time(dir);
779 d_instantiate(dentry, inode);
780 dget(dentry); /* Extra count - pin the dentry in core */
781 error = 0;
782 }
783 return error;
784 }
785
786 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
787 {
788 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
789 if (!retval)
790 inc_nlink(dir);
791 return retval;
792 }
793
794 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
795 {
796 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
797 }
798
799 static int hugetlbfs_symlink(struct inode *dir,
800 struct dentry *dentry, const char *symname)
801 {
802 struct inode *inode;
803 int error = -ENOSPC;
804
805 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
806 if (inode) {
807 int l = strlen(symname)+1;
808 error = page_symlink(inode, symname, l);
809 if (!error) {
810 d_instantiate(dentry, inode);
811 dget(dentry);
812 } else
813 iput(inode);
814 }
815 dir->i_ctime = dir->i_mtime = current_time(dir);
816
817 return error;
818 }
819
820 /*
821 * mark the head page dirty
822 */
823 static int hugetlbfs_set_page_dirty(struct page *page)
824 {
825 struct page *head = compound_head(page);
826
827 SetPageDirty(head);
828 return 0;
829 }
830
831 static int hugetlbfs_migrate_page(struct address_space *mapping,
832 struct page *newpage, struct page *page,
833 enum migrate_mode mode)
834 {
835 int rc;
836
837 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
838 if (rc != MIGRATEPAGE_SUCCESS)
839 return rc;
840 migrate_page_copy(newpage, page);
841
842 return MIGRATEPAGE_SUCCESS;
843 }
844
845 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
846 {
847 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
848 struct hstate *h = hstate_inode(d_inode(dentry));
849
850 buf->f_type = HUGETLBFS_MAGIC;
851 buf->f_bsize = huge_page_size(h);
852 if (sbinfo) {
853 spin_lock(&sbinfo->stat_lock);
854 /* If no limits set, just report 0 for max/free/used
855 * blocks, like simple_statfs() */
856 if (sbinfo->spool) {
857 long free_pages;
858
859 spin_lock(&sbinfo->spool->lock);
860 buf->f_blocks = sbinfo->spool->max_hpages;
861 free_pages = sbinfo->spool->max_hpages
862 - sbinfo->spool->used_hpages;
863 buf->f_bavail = buf->f_bfree = free_pages;
864 spin_unlock(&sbinfo->spool->lock);
865 buf->f_files = sbinfo->max_inodes;
866 buf->f_ffree = sbinfo->free_inodes;
867 }
868 spin_unlock(&sbinfo->stat_lock);
869 }
870 buf->f_namelen = NAME_MAX;
871 return 0;
872 }
873
874 static void hugetlbfs_put_super(struct super_block *sb)
875 {
876 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
877
878 if (sbi) {
879 sb->s_fs_info = NULL;
880
881 if (sbi->spool)
882 hugepage_put_subpool(sbi->spool);
883
884 kfree(sbi);
885 }
886 }
887
888 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
889 {
890 if (sbinfo->free_inodes >= 0) {
891 spin_lock(&sbinfo->stat_lock);
892 if (unlikely(!sbinfo->free_inodes)) {
893 spin_unlock(&sbinfo->stat_lock);
894 return 0;
895 }
896 sbinfo->free_inodes--;
897 spin_unlock(&sbinfo->stat_lock);
898 }
899
900 return 1;
901 }
902
903 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
904 {
905 if (sbinfo->free_inodes >= 0) {
906 spin_lock(&sbinfo->stat_lock);
907 sbinfo->free_inodes++;
908 spin_unlock(&sbinfo->stat_lock);
909 }
910 }
911
912
913 static struct kmem_cache *hugetlbfs_inode_cachep;
914
915 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
916 {
917 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
918 struct hugetlbfs_inode_info *p;
919
920 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
921 return NULL;
922 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
923 if (unlikely(!p)) {
924 hugetlbfs_inc_free_inodes(sbinfo);
925 return NULL;
926 }
927
928 /*
929 * Any time after allocation, hugetlbfs_destroy_inode can be called
930 * for the inode. mpol_free_shared_policy is unconditionally called
931 * as part of hugetlbfs_destroy_inode. So, initialize policy here
932 * in case of a quick call to destroy.
933 *
934 * Note that the policy is initialized even if we are creating a
935 * private inode. This simplifies hugetlbfs_destroy_inode.
936 */
937 mpol_shared_policy_init(&p->policy, NULL);
938
939 return &p->vfs_inode;
940 }
941
942 static void hugetlbfs_i_callback(struct rcu_head *head)
943 {
944 struct inode *inode = container_of(head, struct inode, i_rcu);
945 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
946 }
947
948 static void hugetlbfs_destroy_inode(struct inode *inode)
949 {
950 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
951 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
952 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
953 }
954
955 static const struct address_space_operations hugetlbfs_aops = {
956 .write_begin = hugetlbfs_write_begin,
957 .write_end = hugetlbfs_write_end,
958 .set_page_dirty = hugetlbfs_set_page_dirty,
959 .migratepage = hugetlbfs_migrate_page,
960 };
961
962
963 static void init_once(void *foo)
964 {
965 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
966
967 inode_init_once(&ei->vfs_inode);
968 }
969
970 const struct file_operations hugetlbfs_file_operations = {
971 .read_iter = hugetlbfs_read_iter,
972 .mmap = hugetlbfs_file_mmap,
973 .fsync = noop_fsync,
974 .get_unmapped_area = hugetlb_get_unmapped_area,
975 .llseek = default_llseek,
976 .fallocate = hugetlbfs_fallocate,
977 };
978
979 static const struct inode_operations hugetlbfs_dir_inode_operations = {
980 .create = hugetlbfs_create,
981 .lookup = simple_lookup,
982 .link = simple_link,
983 .unlink = simple_unlink,
984 .symlink = hugetlbfs_symlink,
985 .mkdir = hugetlbfs_mkdir,
986 .rmdir = simple_rmdir,
987 .mknod = hugetlbfs_mknod,
988 .rename = simple_rename,
989 .setattr = hugetlbfs_setattr,
990 };
991
992 static const struct inode_operations hugetlbfs_inode_operations = {
993 .setattr = hugetlbfs_setattr,
994 };
995
996 static const struct super_operations hugetlbfs_ops = {
997 .alloc_inode = hugetlbfs_alloc_inode,
998 .destroy_inode = hugetlbfs_destroy_inode,
999 .evict_inode = hugetlbfs_evict_inode,
1000 .statfs = hugetlbfs_statfs,
1001 .put_super = hugetlbfs_put_super,
1002 .show_options = generic_show_options,
1003 };
1004
1005 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1006
1007 /*
1008 * Convert size option passed from command line to number of huge pages
1009 * in the pool specified by hstate. Size option could be in bytes
1010 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1011 */
1012 static long long
1013 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1014 int val_type)
1015 {
1016 if (val_type == NO_SIZE)
1017 return -1;
1018
1019 if (val_type == SIZE_PERCENT) {
1020 size_opt <<= huge_page_shift(h);
1021 size_opt *= h->max_huge_pages;
1022 do_div(size_opt, 100);
1023 }
1024
1025 size_opt >>= huge_page_shift(h);
1026 return size_opt;
1027 }
1028
1029 static int
1030 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1031 {
1032 char *p, *rest;
1033 substring_t args[MAX_OPT_ARGS];
1034 int option;
1035 unsigned long long max_size_opt = 0, min_size_opt = 0;
1036 int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1037
1038 if (!options)
1039 return 0;
1040
1041 while ((p = strsep(&options, ",")) != NULL) {
1042 int token;
1043 if (!*p)
1044 continue;
1045
1046 token = match_token(p, tokens, args);
1047 switch (token) {
1048 case Opt_uid:
1049 if (match_int(&args[0], &option))
1050 goto bad_val;
1051 pconfig->uid = make_kuid(current_user_ns(), option);
1052 if (!uid_valid(pconfig->uid))
1053 goto bad_val;
1054 break;
1055
1056 case Opt_gid:
1057 if (match_int(&args[0], &option))
1058 goto bad_val;
1059 pconfig->gid = make_kgid(current_user_ns(), option);
1060 if (!gid_valid(pconfig->gid))
1061 goto bad_val;
1062 break;
1063
1064 case Opt_mode:
1065 if (match_octal(&args[0], &option))
1066 goto bad_val;
1067 pconfig->mode = option & 01777U;
1068 break;
1069
1070 case Opt_size: {
1071 /* memparse() will accept a K/M/G without a digit */
1072 if (!isdigit(*args[0].from))
1073 goto bad_val;
1074 max_size_opt = memparse(args[0].from, &rest);
1075 max_val_type = SIZE_STD;
1076 if (*rest == '%')
1077 max_val_type = SIZE_PERCENT;
1078 break;
1079 }
1080
1081 case Opt_nr_inodes:
1082 /* memparse() will accept a K/M/G without a digit */
1083 if (!isdigit(*args[0].from))
1084 goto bad_val;
1085 pconfig->nr_inodes = memparse(args[0].from, &rest);
1086 break;
1087
1088 case Opt_pagesize: {
1089 unsigned long ps;
1090 ps = memparse(args[0].from, &rest);
1091 pconfig->hstate = size_to_hstate(ps);
1092 if (!pconfig->hstate) {
1093 pr_err("Unsupported page size %lu MB\n",
1094 ps >> 20);
1095 return -EINVAL;
1096 }
1097 break;
1098 }
1099
1100 case Opt_min_size: {
1101 /* memparse() will accept a K/M/G without a digit */
1102 if (!isdigit(*args[0].from))
1103 goto bad_val;
1104 min_size_opt = memparse(args[0].from, &rest);
1105 min_val_type = SIZE_STD;
1106 if (*rest == '%')
1107 min_val_type = SIZE_PERCENT;
1108 break;
1109 }
1110
1111 default:
1112 pr_err("Bad mount option: \"%s\"\n", p);
1113 return -EINVAL;
1114 break;
1115 }
1116 }
1117
1118 /*
1119 * Use huge page pool size (in hstate) to convert the size
1120 * options to number of huge pages. If NO_SIZE, -1 is returned.
1121 */
1122 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1123 max_size_opt, max_val_type);
1124 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1125 min_size_opt, min_val_type);
1126
1127 /*
1128 * If max_size was specified, then min_size must be smaller
1129 */
1130 if (max_val_type > NO_SIZE &&
1131 pconfig->min_hpages > pconfig->max_hpages) {
1132 pr_err("minimum size can not be greater than maximum size\n");
1133 return -EINVAL;
1134 }
1135
1136 return 0;
1137
1138 bad_val:
1139 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1140 return -EINVAL;
1141 }
1142
1143 static int
1144 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1145 {
1146 int ret;
1147 struct hugetlbfs_config config;
1148 struct hugetlbfs_sb_info *sbinfo;
1149
1150 save_mount_options(sb, data);
1151
1152 config.max_hpages = -1; /* No limit on size by default */
1153 config.nr_inodes = -1; /* No limit on number of inodes by default */
1154 config.uid = current_fsuid();
1155 config.gid = current_fsgid();
1156 config.mode = 0755;
1157 config.hstate = &default_hstate;
1158 config.min_hpages = -1; /* No default minimum size */
1159 ret = hugetlbfs_parse_options(data, &config);
1160 if (ret)
1161 return ret;
1162
1163 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1164 if (!sbinfo)
1165 return -ENOMEM;
1166 sb->s_fs_info = sbinfo;
1167 sbinfo->hstate = config.hstate;
1168 spin_lock_init(&sbinfo->stat_lock);
1169 sbinfo->max_inodes = config.nr_inodes;
1170 sbinfo->free_inodes = config.nr_inodes;
1171 sbinfo->spool = NULL;
1172 /*
1173 * Allocate and initialize subpool if maximum or minimum size is
1174 * specified. Any needed reservations (for minimim size) are taken
1175 * taken when the subpool is created.
1176 */
1177 if (config.max_hpages != -1 || config.min_hpages != -1) {
1178 sbinfo->spool = hugepage_new_subpool(config.hstate,
1179 config.max_hpages,
1180 config.min_hpages);
1181 if (!sbinfo->spool)
1182 goto out_free;
1183 }
1184 sb->s_maxbytes = MAX_LFS_FILESIZE;
1185 sb->s_blocksize = huge_page_size(config.hstate);
1186 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1187 sb->s_magic = HUGETLBFS_MAGIC;
1188 sb->s_op = &hugetlbfs_ops;
1189 sb->s_time_gran = 1;
1190 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1191 if (!sb->s_root)
1192 goto out_free;
1193 return 0;
1194 out_free:
1195 kfree(sbinfo->spool);
1196 kfree(sbinfo);
1197 return -ENOMEM;
1198 }
1199
1200 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1201 int flags, const char *dev_name, void *data)
1202 {
1203 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1204 }
1205
1206 static struct file_system_type hugetlbfs_fs_type = {
1207 .name = "hugetlbfs",
1208 .mount = hugetlbfs_mount,
1209 .kill_sb = kill_litter_super,
1210 };
1211
1212 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1213
1214 static int can_do_hugetlb_shm(void)
1215 {
1216 kgid_t shm_group;
1217 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1218 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1219 }
1220
1221 static int get_hstate_idx(int page_size_log)
1222 {
1223 struct hstate *h = hstate_sizelog(page_size_log);
1224
1225 if (!h)
1226 return -1;
1227 return h - hstates;
1228 }
1229
1230 static const struct dentry_operations anon_ops = {
1231 .d_dname = simple_dname
1232 };
1233
1234 /*
1235 * Note that size should be aligned to proper hugepage size in caller side,
1236 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1237 */
1238 struct file *hugetlb_file_setup(const char *name, size_t size,
1239 vm_flags_t acctflag, struct user_struct **user,
1240 int creat_flags, int page_size_log)
1241 {
1242 struct file *file = ERR_PTR(-ENOMEM);
1243 struct inode *inode;
1244 struct path path;
1245 struct super_block *sb;
1246 struct qstr quick_string;
1247 int hstate_idx;
1248
1249 hstate_idx = get_hstate_idx(page_size_log);
1250 if (hstate_idx < 0)
1251 return ERR_PTR(-ENODEV);
1252
1253 *user = NULL;
1254 if (!hugetlbfs_vfsmount[hstate_idx])
1255 return ERR_PTR(-ENOENT);
1256
1257 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1258 *user = current_user();
1259 if (user_shm_lock(size, *user)) {
1260 task_lock(current);
1261 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1262 current->comm, current->pid);
1263 task_unlock(current);
1264 } else {
1265 *user = NULL;
1266 return ERR_PTR(-EPERM);
1267 }
1268 }
1269
1270 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1271 quick_string.name = name;
1272 quick_string.len = strlen(quick_string.name);
1273 quick_string.hash = 0;
1274 path.dentry = d_alloc_pseudo(sb, &quick_string);
1275 if (!path.dentry)
1276 goto out_shm_unlock;
1277
1278 d_set_d_op(path.dentry, &anon_ops);
1279 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1280 file = ERR_PTR(-ENOSPC);
1281 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1282 if (!inode)
1283 goto out_dentry;
1284 if (creat_flags == HUGETLB_SHMFS_INODE)
1285 inode->i_flags |= S_PRIVATE;
1286
1287 file = ERR_PTR(-ENOMEM);
1288 if (hugetlb_reserve_pages(inode, 0,
1289 size >> huge_page_shift(hstate_inode(inode)), NULL,
1290 acctflag))
1291 goto out_inode;
1292
1293 d_instantiate(path.dentry, inode);
1294 inode->i_size = size;
1295 clear_nlink(inode);
1296
1297 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1298 &hugetlbfs_file_operations);
1299 if (IS_ERR(file))
1300 goto out_dentry; /* inode is already attached */
1301
1302 return file;
1303
1304 out_inode:
1305 iput(inode);
1306 out_dentry:
1307 path_put(&path);
1308 out_shm_unlock:
1309 if (*user) {
1310 user_shm_unlock(size, *user);
1311 *user = NULL;
1312 }
1313 return file;
1314 }
1315
1316 static int __init init_hugetlbfs_fs(void)
1317 {
1318 struct hstate *h;
1319 int error;
1320 int i;
1321
1322 if (!hugepages_supported()) {
1323 pr_info("disabling because there are no supported hugepage sizes\n");
1324 return -ENOTSUPP;
1325 }
1326
1327 error = -ENOMEM;
1328 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1329 sizeof(struct hugetlbfs_inode_info),
1330 0, SLAB_ACCOUNT, init_once);
1331 if (hugetlbfs_inode_cachep == NULL)
1332 goto out2;
1333
1334 error = register_filesystem(&hugetlbfs_fs_type);
1335 if (error)
1336 goto out;
1337
1338 i = 0;
1339 for_each_hstate(h) {
1340 char buf[50];
1341 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1342
1343 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1344 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1345 buf);
1346
1347 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1348 pr_err("Cannot mount internal hugetlbfs for "
1349 "page size %uK", ps_kb);
1350 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1351 hugetlbfs_vfsmount[i] = NULL;
1352 }
1353 i++;
1354 }
1355 /* Non default hstates are optional */
1356 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1357 return 0;
1358
1359 out:
1360 kmem_cache_destroy(hugetlbfs_inode_cachep);
1361 out2:
1362 return error;
1363 }
1364 fs_initcall(init_hugetlbfs_fs)