]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/hugetlbfs/inode.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / fs / hugetlbfs / inode.c
1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49 kuid_t uid;
50 kgid_t gid;
51 umode_t mode;
52 long max_hpages;
53 long nr_inodes;
54 struct hstate *hstate;
55 long min_hpages;
56 };
57
58 struct hugetlbfs_inode_info {
59 struct shared_policy policy;
60 struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71 Opt_size, Opt_nr_inodes,
72 Opt_mode, Opt_uid, Opt_gid,
73 Opt_pagesize, Opt_min_size,
74 Opt_err,
75 };
76
77 static const match_table_t tokens = {
78 {Opt_size, "size=%s"},
79 {Opt_nr_inodes, "nr_inodes=%s"},
80 {Opt_mode, "mode=%o"},
81 {Opt_uid, "uid=%u"},
82 {Opt_gid, "gid=%u"},
83 {Opt_pagesize, "pagesize=%s"},
84 {Opt_min_size, "min_size=%s"},
85 {Opt_err, NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 struct inode *inode = file_inode(file);
124 loff_t len, vma_len;
125 int ret;
126 struct hstate *h = hstate_file(file);
127
128 /*
129 * vma address alignment (but not the pgoff alignment) has
130 * already been checked by prepare_hugepage_range. If you add
131 * any error returns here, do so after setting VM_HUGETLB, so
132 * is_vm_hugetlb_page tests below unmap_region go the right
133 * way when do_mmap_pgoff unwinds (may be important on powerpc
134 * and ia64).
135 */
136 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
137 vma->vm_ops = &hugetlb_vm_ops;
138
139 /*
140 * Offset passed to mmap (before page shift) could have been
141 * negative when represented as a (l)off_t.
142 */
143 if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0)
144 return -EINVAL;
145
146 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
147 return -EINVAL;
148
149 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
150 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
151 /* check for overflow */
152 if (len < vma_len)
153 return -EINVAL;
154
155 inode_lock(inode);
156 file_accessed(file);
157
158 ret = -ENOMEM;
159 if (hugetlb_reserve_pages(inode,
160 vma->vm_pgoff >> huge_page_order(h),
161 len >> huge_page_shift(h), vma,
162 vma->vm_flags))
163 goto out;
164
165 ret = 0;
166 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
167 i_size_write(inode, len);
168 out:
169 inode_unlock(inode);
170
171 return ret;
172 }
173
174 /*
175 * Called under down_write(mmap_sem).
176 */
177
178 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
179 static unsigned long
180 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
181 unsigned long len, unsigned long pgoff, unsigned long flags)
182 {
183 struct mm_struct *mm = current->mm;
184 struct vm_area_struct *vma;
185 struct hstate *h = hstate_file(file);
186 struct vm_unmapped_area_info info;
187
188 if (len & ~huge_page_mask(h))
189 return -EINVAL;
190 if (len > TASK_SIZE)
191 return -ENOMEM;
192
193 if (flags & MAP_FIXED) {
194 if (prepare_hugepage_range(file, addr, len))
195 return -EINVAL;
196 return addr;
197 }
198
199 if (addr) {
200 addr = ALIGN(addr, huge_page_size(h));
201 vma = find_vma(mm, addr);
202 if (TASK_SIZE - len >= addr &&
203 (!vma || addr + len <= vm_start_gap(vma)))
204 return addr;
205 }
206
207 info.flags = 0;
208 info.length = len;
209 info.low_limit = TASK_UNMAPPED_BASE;
210 info.high_limit = TASK_SIZE;
211 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
212 info.align_offset = 0;
213 return vm_unmapped_area(&info);
214 }
215 #endif
216
217 static size_t
218 hugetlbfs_read_actor(struct page *page, unsigned long offset,
219 struct iov_iter *to, unsigned long size)
220 {
221 size_t copied = 0;
222 int i, chunksize;
223
224 /* Find which 4k chunk and offset with in that chunk */
225 i = offset >> PAGE_SHIFT;
226 offset = offset & ~PAGE_MASK;
227
228 while (size) {
229 size_t n;
230 chunksize = PAGE_SIZE;
231 if (offset)
232 chunksize -= offset;
233 if (chunksize > size)
234 chunksize = size;
235 n = copy_page_to_iter(&page[i], offset, chunksize, to);
236 copied += n;
237 if (n != chunksize)
238 return copied;
239 offset = 0;
240 size -= chunksize;
241 i++;
242 }
243 return copied;
244 }
245
246 /*
247 * Support for read() - Find the page attached to f_mapping and copy out the
248 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
249 * since it has PAGE_SIZE assumptions.
250 */
251 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
252 {
253 struct file *file = iocb->ki_filp;
254 struct hstate *h = hstate_file(file);
255 struct address_space *mapping = file->f_mapping;
256 struct inode *inode = mapping->host;
257 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
258 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
259 unsigned long end_index;
260 loff_t isize;
261 ssize_t retval = 0;
262
263 while (iov_iter_count(to)) {
264 struct page *page;
265 size_t nr, copied;
266
267 /* nr is the maximum number of bytes to copy from this page */
268 nr = huge_page_size(h);
269 isize = i_size_read(inode);
270 if (!isize)
271 break;
272 end_index = (isize - 1) >> huge_page_shift(h);
273 if (index > end_index)
274 break;
275 if (index == end_index) {
276 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
277 if (nr <= offset)
278 break;
279 }
280 nr = nr - offset;
281
282 /* Find the page */
283 page = find_lock_page(mapping, index);
284 if (unlikely(page == NULL)) {
285 /*
286 * We have a HOLE, zero out the user-buffer for the
287 * length of the hole or request.
288 */
289 copied = iov_iter_zero(nr, to);
290 } else {
291 unlock_page(page);
292
293 /*
294 * We have the page, copy it to user space buffer.
295 */
296 copied = hugetlbfs_read_actor(page, offset, to, nr);
297 put_page(page);
298 }
299 offset += copied;
300 retval += copied;
301 if (copied != nr && iov_iter_count(to)) {
302 if (!retval)
303 retval = -EFAULT;
304 break;
305 }
306 index += offset >> huge_page_shift(h);
307 offset &= ~huge_page_mask(h);
308 }
309 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
310 return retval;
311 }
312
313 static int hugetlbfs_write_begin(struct file *file,
314 struct address_space *mapping,
315 loff_t pos, unsigned len, unsigned flags,
316 struct page **pagep, void **fsdata)
317 {
318 return -EINVAL;
319 }
320
321 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
322 loff_t pos, unsigned len, unsigned copied,
323 struct page *page, void *fsdata)
324 {
325 BUG();
326 return -EINVAL;
327 }
328
329 static void remove_huge_page(struct page *page)
330 {
331 ClearPageDirty(page);
332 ClearPageUptodate(page);
333 delete_from_page_cache(page);
334 }
335
336 static void
337 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
338 {
339 struct vm_area_struct *vma;
340
341 /*
342 * end == 0 indicates that the entire range after
343 * start should be unmapped.
344 */
345 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
346 unsigned long v_offset;
347 unsigned long v_end;
348
349 /*
350 * Can the expression below overflow on 32-bit arches?
351 * No, because the interval tree returns us only those vmas
352 * which overlap the truncated area starting at pgoff,
353 * and no vma on a 32-bit arch can span beyond the 4GB.
354 */
355 if (vma->vm_pgoff < start)
356 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
357 else
358 v_offset = 0;
359
360 if (!end)
361 v_end = vma->vm_end;
362 else {
363 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
364 + vma->vm_start;
365 if (v_end > vma->vm_end)
366 v_end = vma->vm_end;
367 }
368
369 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
370 NULL);
371 }
372 }
373
374 /*
375 * remove_inode_hugepages handles two distinct cases: truncation and hole
376 * punch. There are subtle differences in operation for each case.
377 *
378 * truncation is indicated by end of range being LLONG_MAX
379 * In this case, we first scan the range and release found pages.
380 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
381 * maps and global counts. Page faults can not race with truncation
382 * in this routine. hugetlb_no_page() prevents page faults in the
383 * truncated range. It checks i_size before allocation, and again after
384 * with the page table lock for the page held. The same lock must be
385 * acquired to unmap a page.
386 * hole punch is indicated if end is not LLONG_MAX
387 * In the hole punch case we scan the range and release found pages.
388 * Only when releasing a page is the associated region/reserv map
389 * deleted. The region/reserv map for ranges without associated
390 * pages are not modified. Page faults can race with hole punch.
391 * This is indicated if we find a mapped page.
392 * Note: If the passed end of range value is beyond the end of file, but
393 * not LLONG_MAX this routine still performs a hole punch operation.
394 */
395 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
396 loff_t lend)
397 {
398 struct hstate *h = hstate_inode(inode);
399 struct address_space *mapping = &inode->i_data;
400 const pgoff_t start = lstart >> huge_page_shift(h);
401 const pgoff_t end = lend >> huge_page_shift(h);
402 struct vm_area_struct pseudo_vma;
403 struct pagevec pvec;
404 pgoff_t next;
405 int i, freed = 0;
406 long lookup_nr = PAGEVEC_SIZE;
407 bool truncate_op = (lend == LLONG_MAX);
408
409 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
410 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
411 pagevec_init(&pvec, 0);
412 next = start;
413 while (next < end) {
414 /*
415 * Don't grab more pages than the number left in the range.
416 */
417 if (end - next < lookup_nr)
418 lookup_nr = end - next;
419
420 /*
421 * When no more pages are found, we are done.
422 */
423 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
424 break;
425
426 for (i = 0; i < pagevec_count(&pvec); ++i) {
427 struct page *page = pvec.pages[i];
428 u32 hash;
429
430 /*
431 * The page (index) could be beyond end. This is
432 * only possible in the punch hole case as end is
433 * max page offset in the truncate case.
434 */
435 next = page->index;
436 if (next >= end)
437 break;
438
439 hash = hugetlb_fault_mutex_hash(h, current->mm,
440 &pseudo_vma,
441 mapping, next, 0);
442 mutex_lock(&hugetlb_fault_mutex_table[hash]);
443
444 /*
445 * If page is mapped, it was faulted in after being
446 * unmapped in caller. Unmap (again) now after taking
447 * the fault mutex. The mutex will prevent faults
448 * until we finish removing the page.
449 *
450 * This race can only happen in the hole punch case.
451 * Getting here in a truncate operation is a bug.
452 */
453 if (unlikely(page_mapped(page))) {
454 BUG_ON(truncate_op);
455
456 i_mmap_lock_write(mapping);
457 hugetlb_vmdelete_list(&mapping->i_mmap,
458 next * pages_per_huge_page(h),
459 (next + 1) * pages_per_huge_page(h));
460 i_mmap_unlock_write(mapping);
461 }
462
463 lock_page(page);
464 /*
465 * We must free the huge page and remove from page
466 * cache (remove_huge_page) BEFORE removing the
467 * region/reserve map (hugetlb_unreserve_pages). In
468 * rare out of memory conditions, removal of the
469 * region/reserve map could fail. Correspondingly,
470 * the subpool and global reserve usage count can need
471 * to be adjusted.
472 */
473 VM_BUG_ON(PagePrivate(page));
474 remove_huge_page(page);
475 freed++;
476 if (!truncate_op) {
477 if (unlikely(hugetlb_unreserve_pages(inode,
478 next, next + 1, 1)))
479 hugetlb_fix_reserve_counts(inode);
480 }
481
482 unlock_page(page);
483 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
484 }
485 ++next;
486 huge_pagevec_release(&pvec);
487 cond_resched();
488 }
489
490 if (truncate_op)
491 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
492 }
493
494 static void hugetlbfs_evict_inode(struct inode *inode)
495 {
496 struct resv_map *resv_map;
497
498 remove_inode_hugepages(inode, 0, LLONG_MAX);
499 resv_map = (struct resv_map *)inode->i_mapping->private_data;
500 /* root inode doesn't have the resv_map, so we should check it */
501 if (resv_map)
502 resv_map_release(&resv_map->refs);
503 clear_inode(inode);
504 }
505
506 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
507 {
508 pgoff_t pgoff;
509 struct address_space *mapping = inode->i_mapping;
510 struct hstate *h = hstate_inode(inode);
511
512 BUG_ON(offset & ~huge_page_mask(h));
513 pgoff = offset >> PAGE_SHIFT;
514
515 i_size_write(inode, offset);
516 i_mmap_lock_write(mapping);
517 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
518 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
519 i_mmap_unlock_write(mapping);
520 remove_inode_hugepages(inode, offset, LLONG_MAX);
521 return 0;
522 }
523
524 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
525 {
526 struct hstate *h = hstate_inode(inode);
527 loff_t hpage_size = huge_page_size(h);
528 loff_t hole_start, hole_end;
529
530 /*
531 * For hole punch round up the beginning offset of the hole and
532 * round down the end.
533 */
534 hole_start = round_up(offset, hpage_size);
535 hole_end = round_down(offset + len, hpage_size);
536
537 if (hole_end > hole_start) {
538 struct address_space *mapping = inode->i_mapping;
539
540 inode_lock(inode);
541 i_mmap_lock_write(mapping);
542 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
543 hugetlb_vmdelete_list(&mapping->i_mmap,
544 hole_start >> PAGE_SHIFT,
545 hole_end >> PAGE_SHIFT);
546 i_mmap_unlock_write(mapping);
547 remove_inode_hugepages(inode, hole_start, hole_end);
548 inode_unlock(inode);
549 }
550
551 return 0;
552 }
553
554 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
555 loff_t len)
556 {
557 struct inode *inode = file_inode(file);
558 struct address_space *mapping = inode->i_mapping;
559 struct hstate *h = hstate_inode(inode);
560 struct vm_area_struct pseudo_vma;
561 struct mm_struct *mm = current->mm;
562 loff_t hpage_size = huge_page_size(h);
563 unsigned long hpage_shift = huge_page_shift(h);
564 pgoff_t start, index, end;
565 int error;
566 u32 hash;
567
568 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
569 return -EOPNOTSUPP;
570
571 if (mode & FALLOC_FL_PUNCH_HOLE)
572 return hugetlbfs_punch_hole(inode, offset, len);
573
574 /*
575 * Default preallocate case.
576 * For this range, start is rounded down and end is rounded up
577 * as well as being converted to page offsets.
578 */
579 start = offset >> hpage_shift;
580 end = (offset + len + hpage_size - 1) >> hpage_shift;
581
582 inode_lock(inode);
583
584 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
585 error = inode_newsize_ok(inode, offset + len);
586 if (error)
587 goto out;
588
589 /*
590 * Initialize a pseudo vma as this is required by the huge page
591 * allocation routines. If NUMA is configured, use page index
592 * as input to create an allocation policy.
593 */
594 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
595 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
596 pseudo_vma.vm_file = file;
597
598 for (index = start; index < end; index++) {
599 /*
600 * This is supposed to be the vaddr where the page is being
601 * faulted in, but we have no vaddr here.
602 */
603 struct page *page;
604 unsigned long addr;
605 int avoid_reserve = 0;
606
607 cond_resched();
608
609 /*
610 * fallocate(2) manpage permits EINTR; we may have been
611 * interrupted because we are using up too much memory.
612 */
613 if (signal_pending(current)) {
614 error = -EINTR;
615 break;
616 }
617
618 /* Set numa allocation policy based on index */
619 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
620
621 /* addr is the offset within the file (zero based) */
622 addr = index * hpage_size;
623
624 /* mutex taken here, fault path and hole punch */
625 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping,
626 index, addr);
627 mutex_lock(&hugetlb_fault_mutex_table[hash]);
628
629 /* See if already present in mapping to avoid alloc/free */
630 page = find_get_page(mapping, index);
631 if (page) {
632 put_page(page);
633 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
634 hugetlb_drop_vma_policy(&pseudo_vma);
635 continue;
636 }
637
638 /* Allocate page and add to page cache */
639 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
640 hugetlb_drop_vma_policy(&pseudo_vma);
641 if (IS_ERR(page)) {
642 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
643 error = PTR_ERR(page);
644 goto out;
645 }
646 clear_huge_page(page, addr, pages_per_huge_page(h));
647 __SetPageUptodate(page);
648 error = huge_add_to_page_cache(page, mapping, index);
649 if (unlikely(error)) {
650 put_page(page);
651 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
652 goto out;
653 }
654
655 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
656
657 /*
658 * page_put due to reference from alloc_huge_page()
659 * unlock_page because locked by add_to_page_cache()
660 */
661 put_page(page);
662 unlock_page(page);
663 }
664
665 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
666 i_size_write(inode, offset + len);
667 inode->i_ctime = current_time(inode);
668 out:
669 inode_unlock(inode);
670 return error;
671 }
672
673 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
674 {
675 struct inode *inode = d_inode(dentry);
676 struct hstate *h = hstate_inode(inode);
677 int error;
678 unsigned int ia_valid = attr->ia_valid;
679
680 BUG_ON(!inode);
681
682 error = setattr_prepare(dentry, attr);
683 if (error)
684 return error;
685
686 if (ia_valid & ATTR_SIZE) {
687 error = -EINVAL;
688 if (attr->ia_size & ~huge_page_mask(h))
689 return -EINVAL;
690 error = hugetlb_vmtruncate(inode, attr->ia_size);
691 if (error)
692 return error;
693 }
694
695 setattr_copy(inode, attr);
696 mark_inode_dirty(inode);
697 return 0;
698 }
699
700 static struct inode *hugetlbfs_get_root(struct super_block *sb,
701 struct hugetlbfs_config *config)
702 {
703 struct inode *inode;
704
705 inode = new_inode(sb);
706 if (inode) {
707 inode->i_ino = get_next_ino();
708 inode->i_mode = S_IFDIR | config->mode;
709 inode->i_uid = config->uid;
710 inode->i_gid = config->gid;
711 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
712 inode->i_op = &hugetlbfs_dir_inode_operations;
713 inode->i_fop = &simple_dir_operations;
714 /* directory inodes start off with i_nlink == 2 (for "." entry) */
715 inc_nlink(inode);
716 lockdep_annotate_inode_mutex_key(inode);
717 }
718 return inode;
719 }
720
721 /*
722 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
723 * be taken from reclaim -- unlike regular filesystems. This needs an
724 * annotation because huge_pmd_share() does an allocation under hugetlb's
725 * i_mmap_rwsem.
726 */
727 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
728
729 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
730 struct inode *dir,
731 umode_t mode, dev_t dev)
732 {
733 struct inode *inode;
734 struct resv_map *resv_map;
735
736 resv_map = resv_map_alloc();
737 if (!resv_map)
738 return NULL;
739
740 inode = new_inode(sb);
741 if (inode) {
742 inode->i_ino = get_next_ino();
743 inode_init_owner(inode, dir, mode);
744 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
745 &hugetlbfs_i_mmap_rwsem_key);
746 inode->i_mapping->a_ops = &hugetlbfs_aops;
747 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
748 inode->i_mapping->private_data = resv_map;
749 switch (mode & S_IFMT) {
750 default:
751 init_special_inode(inode, mode, dev);
752 break;
753 case S_IFREG:
754 inode->i_op = &hugetlbfs_inode_operations;
755 inode->i_fop = &hugetlbfs_file_operations;
756 break;
757 case S_IFDIR:
758 inode->i_op = &hugetlbfs_dir_inode_operations;
759 inode->i_fop = &simple_dir_operations;
760
761 /* directory inodes start off with i_nlink == 2 (for "." entry) */
762 inc_nlink(inode);
763 break;
764 case S_IFLNK:
765 inode->i_op = &page_symlink_inode_operations;
766 inode_nohighmem(inode);
767 break;
768 }
769 lockdep_annotate_inode_mutex_key(inode);
770 } else
771 kref_put(&resv_map->refs, resv_map_release);
772
773 return inode;
774 }
775
776 /*
777 * File creation. Allocate an inode, and we're done..
778 */
779 static int hugetlbfs_mknod(struct inode *dir,
780 struct dentry *dentry, umode_t mode, dev_t dev)
781 {
782 struct inode *inode;
783 int error = -ENOSPC;
784
785 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
786 if (inode) {
787 dir->i_ctime = dir->i_mtime = current_time(dir);
788 d_instantiate(dentry, inode);
789 dget(dentry); /* Extra count - pin the dentry in core */
790 error = 0;
791 }
792 return error;
793 }
794
795 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
796 {
797 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
798 if (!retval)
799 inc_nlink(dir);
800 return retval;
801 }
802
803 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
804 {
805 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
806 }
807
808 static int hugetlbfs_symlink(struct inode *dir,
809 struct dentry *dentry, const char *symname)
810 {
811 struct inode *inode;
812 int error = -ENOSPC;
813
814 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
815 if (inode) {
816 int l = strlen(symname)+1;
817 error = page_symlink(inode, symname, l);
818 if (!error) {
819 d_instantiate(dentry, inode);
820 dget(dentry);
821 } else
822 iput(inode);
823 }
824 dir->i_ctime = dir->i_mtime = current_time(dir);
825
826 return error;
827 }
828
829 /*
830 * mark the head page dirty
831 */
832 static int hugetlbfs_set_page_dirty(struct page *page)
833 {
834 struct page *head = compound_head(page);
835
836 SetPageDirty(head);
837 return 0;
838 }
839
840 static int hugetlbfs_migrate_page(struct address_space *mapping,
841 struct page *newpage, struct page *page,
842 enum migrate_mode mode)
843 {
844 int rc;
845
846 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
847 if (rc != MIGRATEPAGE_SUCCESS)
848 return rc;
849 migrate_page_copy(newpage, page);
850
851 return MIGRATEPAGE_SUCCESS;
852 }
853
854 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
855 {
856 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
857 struct hstate *h = hstate_inode(d_inode(dentry));
858
859 buf->f_type = HUGETLBFS_MAGIC;
860 buf->f_bsize = huge_page_size(h);
861 if (sbinfo) {
862 spin_lock(&sbinfo->stat_lock);
863 /* If no limits set, just report 0 for max/free/used
864 * blocks, like simple_statfs() */
865 if (sbinfo->spool) {
866 long free_pages;
867
868 spin_lock(&sbinfo->spool->lock);
869 buf->f_blocks = sbinfo->spool->max_hpages;
870 free_pages = sbinfo->spool->max_hpages
871 - sbinfo->spool->used_hpages;
872 buf->f_bavail = buf->f_bfree = free_pages;
873 spin_unlock(&sbinfo->spool->lock);
874 buf->f_files = sbinfo->max_inodes;
875 buf->f_ffree = sbinfo->free_inodes;
876 }
877 spin_unlock(&sbinfo->stat_lock);
878 }
879 buf->f_namelen = NAME_MAX;
880 return 0;
881 }
882
883 static void hugetlbfs_put_super(struct super_block *sb)
884 {
885 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
886
887 if (sbi) {
888 sb->s_fs_info = NULL;
889
890 if (sbi->spool)
891 hugepage_put_subpool(sbi->spool);
892
893 kfree(sbi);
894 }
895 }
896
897 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
898 {
899 if (sbinfo->free_inodes >= 0) {
900 spin_lock(&sbinfo->stat_lock);
901 if (unlikely(!sbinfo->free_inodes)) {
902 spin_unlock(&sbinfo->stat_lock);
903 return 0;
904 }
905 sbinfo->free_inodes--;
906 spin_unlock(&sbinfo->stat_lock);
907 }
908
909 return 1;
910 }
911
912 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
913 {
914 if (sbinfo->free_inodes >= 0) {
915 spin_lock(&sbinfo->stat_lock);
916 sbinfo->free_inodes++;
917 spin_unlock(&sbinfo->stat_lock);
918 }
919 }
920
921
922 static struct kmem_cache *hugetlbfs_inode_cachep;
923
924 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
925 {
926 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
927 struct hugetlbfs_inode_info *p;
928
929 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
930 return NULL;
931 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
932 if (unlikely(!p)) {
933 hugetlbfs_inc_free_inodes(sbinfo);
934 return NULL;
935 }
936
937 /*
938 * Any time after allocation, hugetlbfs_destroy_inode can be called
939 * for the inode. mpol_free_shared_policy is unconditionally called
940 * as part of hugetlbfs_destroy_inode. So, initialize policy here
941 * in case of a quick call to destroy.
942 *
943 * Note that the policy is initialized even if we are creating a
944 * private inode. This simplifies hugetlbfs_destroy_inode.
945 */
946 mpol_shared_policy_init(&p->policy, NULL);
947
948 return &p->vfs_inode;
949 }
950
951 static void hugetlbfs_i_callback(struct rcu_head *head)
952 {
953 struct inode *inode = container_of(head, struct inode, i_rcu);
954 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
955 }
956
957 static void hugetlbfs_destroy_inode(struct inode *inode)
958 {
959 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
960 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
961 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
962 }
963
964 static const struct address_space_operations hugetlbfs_aops = {
965 .write_begin = hugetlbfs_write_begin,
966 .write_end = hugetlbfs_write_end,
967 .set_page_dirty = hugetlbfs_set_page_dirty,
968 .migratepage = hugetlbfs_migrate_page,
969 };
970
971
972 static void init_once(void *foo)
973 {
974 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
975
976 inode_init_once(&ei->vfs_inode);
977 }
978
979 const struct file_operations hugetlbfs_file_operations = {
980 .read_iter = hugetlbfs_read_iter,
981 .mmap = hugetlbfs_file_mmap,
982 .fsync = noop_fsync,
983 .get_unmapped_area = hugetlb_get_unmapped_area,
984 .llseek = default_llseek,
985 .fallocate = hugetlbfs_fallocate,
986 };
987
988 static const struct inode_operations hugetlbfs_dir_inode_operations = {
989 .create = hugetlbfs_create,
990 .lookup = simple_lookup,
991 .link = simple_link,
992 .unlink = simple_unlink,
993 .symlink = hugetlbfs_symlink,
994 .mkdir = hugetlbfs_mkdir,
995 .rmdir = simple_rmdir,
996 .mknod = hugetlbfs_mknod,
997 .rename = simple_rename,
998 .setattr = hugetlbfs_setattr,
999 };
1000
1001 static const struct inode_operations hugetlbfs_inode_operations = {
1002 .setattr = hugetlbfs_setattr,
1003 };
1004
1005 static const struct super_operations hugetlbfs_ops = {
1006 .alloc_inode = hugetlbfs_alloc_inode,
1007 .destroy_inode = hugetlbfs_destroy_inode,
1008 .evict_inode = hugetlbfs_evict_inode,
1009 .statfs = hugetlbfs_statfs,
1010 .put_super = hugetlbfs_put_super,
1011 .show_options = generic_show_options,
1012 };
1013
1014 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1015
1016 /*
1017 * Convert size option passed from command line to number of huge pages
1018 * in the pool specified by hstate. Size option could be in bytes
1019 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1020 */
1021 static long long
1022 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1023 int val_type)
1024 {
1025 if (val_type == NO_SIZE)
1026 return -1;
1027
1028 if (val_type == SIZE_PERCENT) {
1029 size_opt <<= huge_page_shift(h);
1030 size_opt *= h->max_huge_pages;
1031 do_div(size_opt, 100);
1032 }
1033
1034 size_opt >>= huge_page_shift(h);
1035 return size_opt;
1036 }
1037
1038 static int
1039 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1040 {
1041 char *p, *rest;
1042 substring_t args[MAX_OPT_ARGS];
1043 int option;
1044 unsigned long long max_size_opt = 0, min_size_opt = 0;
1045 int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1046
1047 if (!options)
1048 return 0;
1049
1050 while ((p = strsep(&options, ",")) != NULL) {
1051 int token;
1052 if (!*p)
1053 continue;
1054
1055 token = match_token(p, tokens, args);
1056 switch (token) {
1057 case Opt_uid:
1058 if (match_int(&args[0], &option))
1059 goto bad_val;
1060 pconfig->uid = make_kuid(current_user_ns(), option);
1061 if (!uid_valid(pconfig->uid))
1062 goto bad_val;
1063 break;
1064
1065 case Opt_gid:
1066 if (match_int(&args[0], &option))
1067 goto bad_val;
1068 pconfig->gid = make_kgid(current_user_ns(), option);
1069 if (!gid_valid(pconfig->gid))
1070 goto bad_val;
1071 break;
1072
1073 case Opt_mode:
1074 if (match_octal(&args[0], &option))
1075 goto bad_val;
1076 pconfig->mode = option & 01777U;
1077 break;
1078
1079 case Opt_size: {
1080 /* memparse() will accept a K/M/G without a digit */
1081 if (!isdigit(*args[0].from))
1082 goto bad_val;
1083 max_size_opt = memparse(args[0].from, &rest);
1084 max_val_type = SIZE_STD;
1085 if (*rest == '%')
1086 max_val_type = SIZE_PERCENT;
1087 break;
1088 }
1089
1090 case Opt_nr_inodes:
1091 /* memparse() will accept a K/M/G without a digit */
1092 if (!isdigit(*args[0].from))
1093 goto bad_val;
1094 pconfig->nr_inodes = memparse(args[0].from, &rest);
1095 break;
1096
1097 case Opt_pagesize: {
1098 unsigned long ps;
1099 ps = memparse(args[0].from, &rest);
1100 pconfig->hstate = size_to_hstate(ps);
1101 if (!pconfig->hstate) {
1102 pr_err("Unsupported page size %lu MB\n",
1103 ps >> 20);
1104 return -EINVAL;
1105 }
1106 break;
1107 }
1108
1109 case Opt_min_size: {
1110 /* memparse() will accept a K/M/G without a digit */
1111 if (!isdigit(*args[0].from))
1112 goto bad_val;
1113 min_size_opt = memparse(args[0].from, &rest);
1114 min_val_type = SIZE_STD;
1115 if (*rest == '%')
1116 min_val_type = SIZE_PERCENT;
1117 break;
1118 }
1119
1120 default:
1121 pr_err("Bad mount option: \"%s\"\n", p);
1122 return -EINVAL;
1123 break;
1124 }
1125 }
1126
1127 /*
1128 * Use huge page pool size (in hstate) to convert the size
1129 * options to number of huge pages. If NO_SIZE, -1 is returned.
1130 */
1131 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1132 max_size_opt, max_val_type);
1133 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1134 min_size_opt, min_val_type);
1135
1136 /*
1137 * If max_size was specified, then min_size must be smaller
1138 */
1139 if (max_val_type > NO_SIZE &&
1140 pconfig->min_hpages > pconfig->max_hpages) {
1141 pr_err("minimum size can not be greater than maximum size\n");
1142 return -EINVAL;
1143 }
1144
1145 return 0;
1146
1147 bad_val:
1148 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1149 return -EINVAL;
1150 }
1151
1152 static int
1153 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1154 {
1155 int ret;
1156 struct hugetlbfs_config config;
1157 struct hugetlbfs_sb_info *sbinfo;
1158
1159 save_mount_options(sb, data);
1160
1161 config.max_hpages = -1; /* No limit on size by default */
1162 config.nr_inodes = -1; /* No limit on number of inodes by default */
1163 config.uid = current_fsuid();
1164 config.gid = current_fsgid();
1165 config.mode = 0755;
1166 config.hstate = &default_hstate;
1167 config.min_hpages = -1; /* No default minimum size */
1168 ret = hugetlbfs_parse_options(data, &config);
1169 if (ret)
1170 return ret;
1171
1172 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1173 if (!sbinfo)
1174 return -ENOMEM;
1175 sb->s_fs_info = sbinfo;
1176 sbinfo->hstate = config.hstate;
1177 spin_lock_init(&sbinfo->stat_lock);
1178 sbinfo->max_inodes = config.nr_inodes;
1179 sbinfo->free_inodes = config.nr_inodes;
1180 sbinfo->spool = NULL;
1181 /*
1182 * Allocate and initialize subpool if maximum or minimum size is
1183 * specified. Any needed reservations (for minimim size) are taken
1184 * taken when the subpool is created.
1185 */
1186 if (config.max_hpages != -1 || config.min_hpages != -1) {
1187 sbinfo->spool = hugepage_new_subpool(config.hstate,
1188 config.max_hpages,
1189 config.min_hpages);
1190 if (!sbinfo->spool)
1191 goto out_free;
1192 }
1193 sb->s_maxbytes = MAX_LFS_FILESIZE;
1194 sb->s_blocksize = huge_page_size(config.hstate);
1195 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1196 sb->s_magic = HUGETLBFS_MAGIC;
1197 sb->s_op = &hugetlbfs_ops;
1198 sb->s_time_gran = 1;
1199 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1200 if (!sb->s_root)
1201 goto out_free;
1202 return 0;
1203 out_free:
1204 kfree(sbinfo->spool);
1205 kfree(sbinfo);
1206 return -ENOMEM;
1207 }
1208
1209 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1210 int flags, const char *dev_name, void *data)
1211 {
1212 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1213 }
1214
1215 static struct file_system_type hugetlbfs_fs_type = {
1216 .name = "hugetlbfs",
1217 .mount = hugetlbfs_mount,
1218 .kill_sb = kill_litter_super,
1219 };
1220
1221 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1222
1223 static int can_do_hugetlb_shm(void)
1224 {
1225 kgid_t shm_group;
1226 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1227 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1228 }
1229
1230 static int get_hstate_idx(int page_size_log)
1231 {
1232 struct hstate *h = hstate_sizelog(page_size_log);
1233
1234 if (!h)
1235 return -1;
1236 return h - hstates;
1237 }
1238
1239 static const struct dentry_operations anon_ops = {
1240 .d_dname = simple_dname
1241 };
1242
1243 /*
1244 * Note that size should be aligned to proper hugepage size in caller side,
1245 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1246 */
1247 struct file *hugetlb_file_setup(const char *name, size_t size,
1248 vm_flags_t acctflag, struct user_struct **user,
1249 int creat_flags, int page_size_log)
1250 {
1251 struct file *file = ERR_PTR(-ENOMEM);
1252 struct inode *inode;
1253 struct path path;
1254 struct super_block *sb;
1255 struct qstr quick_string;
1256 int hstate_idx;
1257
1258 hstate_idx = get_hstate_idx(page_size_log);
1259 if (hstate_idx < 0)
1260 return ERR_PTR(-ENODEV);
1261
1262 *user = NULL;
1263 if (!hugetlbfs_vfsmount[hstate_idx])
1264 return ERR_PTR(-ENOENT);
1265
1266 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1267 *user = current_user();
1268 if (user_shm_lock(size, *user)) {
1269 task_lock(current);
1270 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1271 current->comm, current->pid);
1272 task_unlock(current);
1273 } else {
1274 *user = NULL;
1275 return ERR_PTR(-EPERM);
1276 }
1277 }
1278
1279 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1280 quick_string.name = name;
1281 quick_string.len = strlen(quick_string.name);
1282 quick_string.hash = 0;
1283 path.dentry = d_alloc_pseudo(sb, &quick_string);
1284 if (!path.dentry)
1285 goto out_shm_unlock;
1286
1287 d_set_d_op(path.dentry, &anon_ops);
1288 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1289 file = ERR_PTR(-ENOSPC);
1290 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1291 if (!inode)
1292 goto out_dentry;
1293 if (creat_flags == HUGETLB_SHMFS_INODE)
1294 inode->i_flags |= S_PRIVATE;
1295
1296 file = ERR_PTR(-ENOMEM);
1297 if (hugetlb_reserve_pages(inode, 0,
1298 size >> huge_page_shift(hstate_inode(inode)), NULL,
1299 acctflag))
1300 goto out_inode;
1301
1302 d_instantiate(path.dentry, inode);
1303 inode->i_size = size;
1304 clear_nlink(inode);
1305
1306 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1307 &hugetlbfs_file_operations);
1308 if (IS_ERR(file))
1309 goto out_dentry; /* inode is already attached */
1310
1311 return file;
1312
1313 out_inode:
1314 iput(inode);
1315 out_dentry:
1316 path_put(&path);
1317 out_shm_unlock:
1318 if (*user) {
1319 user_shm_unlock(size, *user);
1320 *user = NULL;
1321 }
1322 return file;
1323 }
1324
1325 static int __init init_hugetlbfs_fs(void)
1326 {
1327 struct hstate *h;
1328 int error;
1329 int i;
1330
1331 if (!hugepages_supported()) {
1332 pr_info("disabling because there are no supported hugepage sizes\n");
1333 return -ENOTSUPP;
1334 }
1335
1336 error = -ENOMEM;
1337 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1338 sizeof(struct hugetlbfs_inode_info),
1339 0, SLAB_ACCOUNT, init_once);
1340 if (hugetlbfs_inode_cachep == NULL)
1341 goto out2;
1342
1343 error = register_filesystem(&hugetlbfs_fs_type);
1344 if (error)
1345 goto out;
1346
1347 i = 0;
1348 for_each_hstate(h) {
1349 char buf[50];
1350 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1351
1352 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1353 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1354 buf);
1355
1356 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1357 pr_err("Cannot mount internal hugetlbfs for "
1358 "page size %uK", ps_kb);
1359 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1360 hugetlbfs_vfsmount[i] = NULL;
1361 }
1362 i++;
1363 }
1364 /* Non default hstates are optional */
1365 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1366 return 0;
1367
1368 out:
1369 kmem_cache_destroy(hugetlbfs_inode_cachep);
1370 out2:
1371 return error;
1372 }
1373 fs_initcall(init_hugetlbfs_fs)