]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
fs: Call security_ops->inode_killpriv on truncate
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode_sb_list_lock protects:
32 * sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode_sb_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode_sb_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure intialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_rdev = 0;
157 inode->dirtied_when = 0;
158
159 if (security_inode_alloc(inode))
160 goto out;
161 spin_lock_init(&inode->i_lock);
162 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163
164 mutex_init(&inode->i_mutex);
165 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166
167 atomic_set(&inode->i_dio_count, 0);
168
169 mapping->a_ops = &empty_aops;
170 mapping->host = inode;
171 mapping->flags = 0;
172 atomic_set(&mapping->i_mmap_writable, 0);
173 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 mapping->private_data = NULL;
175 mapping->writeback_index = 0;
176 inode->i_private = NULL;
177 inode->i_mapping = mapping;
178 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
179 #ifdef CONFIG_FS_POSIX_ACL
180 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
181 #endif
182
183 #ifdef CONFIG_FSNOTIFY
184 inode->i_fsnotify_mask = 0;
185 #endif
186 inode->i_flctx = NULL;
187 this_cpu_inc(nr_inodes);
188
189 return 0;
190 out:
191 return -ENOMEM;
192 }
193 EXPORT_SYMBOL(inode_init_always);
194
195 static struct inode *alloc_inode(struct super_block *sb)
196 {
197 struct inode *inode;
198
199 if (sb->s_op->alloc_inode)
200 inode = sb->s_op->alloc_inode(sb);
201 else
202 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
203
204 if (!inode)
205 return NULL;
206
207 if (unlikely(inode_init_always(sb, inode))) {
208 if (inode->i_sb->s_op->destroy_inode)
209 inode->i_sb->s_op->destroy_inode(inode);
210 else
211 kmem_cache_free(inode_cachep, inode);
212 return NULL;
213 }
214
215 return inode;
216 }
217
218 void free_inode_nonrcu(struct inode *inode)
219 {
220 kmem_cache_free(inode_cachep, inode);
221 }
222 EXPORT_SYMBOL(free_inode_nonrcu);
223
224 void __destroy_inode(struct inode *inode)
225 {
226 BUG_ON(inode_has_buffers(inode));
227 security_inode_free(inode);
228 fsnotify_inode_delete(inode);
229 locks_free_lock_context(inode->i_flctx);
230 if (!inode->i_nlink) {
231 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
232 atomic_long_dec(&inode->i_sb->s_remove_count);
233 }
234
235 #ifdef CONFIG_FS_POSIX_ACL
236 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
237 posix_acl_release(inode->i_acl);
238 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
239 posix_acl_release(inode->i_default_acl);
240 #endif
241 this_cpu_dec(nr_inodes);
242 }
243 EXPORT_SYMBOL(__destroy_inode);
244
245 static void i_callback(struct rcu_head *head)
246 {
247 struct inode *inode = container_of(head, struct inode, i_rcu);
248 kmem_cache_free(inode_cachep, inode);
249 }
250
251 static void destroy_inode(struct inode *inode)
252 {
253 BUG_ON(!list_empty(&inode->i_lru));
254 __destroy_inode(inode);
255 if (inode->i_sb->s_op->destroy_inode)
256 inode->i_sb->s_op->destroy_inode(inode);
257 else
258 call_rcu(&inode->i_rcu, i_callback);
259 }
260
261 /**
262 * drop_nlink - directly drop an inode's link count
263 * @inode: inode
264 *
265 * This is a low-level filesystem helper to replace any
266 * direct filesystem manipulation of i_nlink. In cases
267 * where we are attempting to track writes to the
268 * filesystem, a decrement to zero means an imminent
269 * write when the file is truncated and actually unlinked
270 * on the filesystem.
271 */
272 void drop_nlink(struct inode *inode)
273 {
274 WARN_ON(inode->i_nlink == 0);
275 inode->__i_nlink--;
276 if (!inode->i_nlink)
277 atomic_long_inc(&inode->i_sb->s_remove_count);
278 }
279 EXPORT_SYMBOL(drop_nlink);
280
281 /**
282 * clear_nlink - directly zero an inode's link count
283 * @inode: inode
284 *
285 * This is a low-level filesystem helper to replace any
286 * direct filesystem manipulation of i_nlink. See
287 * drop_nlink() for why we care about i_nlink hitting zero.
288 */
289 void clear_nlink(struct inode *inode)
290 {
291 if (inode->i_nlink) {
292 inode->__i_nlink = 0;
293 atomic_long_inc(&inode->i_sb->s_remove_count);
294 }
295 }
296 EXPORT_SYMBOL(clear_nlink);
297
298 /**
299 * set_nlink - directly set an inode's link count
300 * @inode: inode
301 * @nlink: new nlink (should be non-zero)
302 *
303 * This is a low-level filesystem helper to replace any
304 * direct filesystem manipulation of i_nlink.
305 */
306 void set_nlink(struct inode *inode, unsigned int nlink)
307 {
308 if (!nlink) {
309 clear_nlink(inode);
310 } else {
311 /* Yes, some filesystems do change nlink from zero to one */
312 if (inode->i_nlink == 0)
313 atomic_long_dec(&inode->i_sb->s_remove_count);
314
315 inode->__i_nlink = nlink;
316 }
317 }
318 EXPORT_SYMBOL(set_nlink);
319
320 /**
321 * inc_nlink - directly increment an inode's link count
322 * @inode: inode
323 *
324 * This is a low-level filesystem helper to replace any
325 * direct filesystem manipulation of i_nlink. Currently,
326 * it is only here for parity with dec_nlink().
327 */
328 void inc_nlink(struct inode *inode)
329 {
330 if (unlikely(inode->i_nlink == 0)) {
331 WARN_ON(!(inode->i_state & I_LINKABLE));
332 atomic_long_dec(&inode->i_sb->s_remove_count);
333 }
334
335 inode->__i_nlink++;
336 }
337 EXPORT_SYMBOL(inc_nlink);
338
339 void address_space_init_once(struct address_space *mapping)
340 {
341 memset(mapping, 0, sizeof(*mapping));
342 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
343 spin_lock_init(&mapping->tree_lock);
344 init_rwsem(&mapping->i_mmap_rwsem);
345 INIT_LIST_HEAD(&mapping->private_list);
346 spin_lock_init(&mapping->private_lock);
347 mapping->i_mmap = RB_ROOT;
348 }
349 EXPORT_SYMBOL(address_space_init_once);
350
351 /*
352 * These are initializations that only need to be done
353 * once, because the fields are idempotent across use
354 * of the inode, so let the slab aware of that.
355 */
356 void inode_init_once(struct inode *inode)
357 {
358 memset(inode, 0, sizeof(*inode));
359 INIT_HLIST_NODE(&inode->i_hash);
360 INIT_LIST_HEAD(&inode->i_devices);
361 INIT_LIST_HEAD(&inode->i_wb_list);
362 INIT_LIST_HEAD(&inode->i_lru);
363 address_space_init_once(&inode->i_data);
364 i_size_ordered_init(inode);
365 #ifdef CONFIG_FSNOTIFY
366 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
367 #endif
368 }
369 EXPORT_SYMBOL(inode_init_once);
370
371 static void init_once(void *foo)
372 {
373 struct inode *inode = (struct inode *) foo;
374
375 inode_init_once(inode);
376 }
377
378 /*
379 * inode->i_lock must be held
380 */
381 void __iget(struct inode *inode)
382 {
383 atomic_inc(&inode->i_count);
384 }
385
386 /*
387 * get additional reference to inode; caller must already hold one.
388 */
389 void ihold(struct inode *inode)
390 {
391 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
392 }
393 EXPORT_SYMBOL(ihold);
394
395 static void inode_lru_list_add(struct inode *inode)
396 {
397 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
398 this_cpu_inc(nr_unused);
399 }
400
401 /*
402 * Add inode to LRU if needed (inode is unused and clean).
403 *
404 * Needs inode->i_lock held.
405 */
406 void inode_add_lru(struct inode *inode)
407 {
408 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
409 I_FREEING | I_WILL_FREE)) &&
410 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
411 inode_lru_list_add(inode);
412 }
413
414
415 static void inode_lru_list_del(struct inode *inode)
416 {
417
418 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
419 this_cpu_dec(nr_unused);
420 }
421
422 /**
423 * inode_sb_list_add - add inode to the superblock list of inodes
424 * @inode: inode to add
425 */
426 void inode_sb_list_add(struct inode *inode)
427 {
428 spin_lock(&inode_sb_list_lock);
429 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
430 spin_unlock(&inode_sb_list_lock);
431 }
432 EXPORT_SYMBOL_GPL(inode_sb_list_add);
433
434 static inline void inode_sb_list_del(struct inode *inode)
435 {
436 if (!list_empty(&inode->i_sb_list)) {
437 spin_lock(&inode_sb_list_lock);
438 list_del_init(&inode->i_sb_list);
439 spin_unlock(&inode_sb_list_lock);
440 }
441 }
442
443 static unsigned long hash(struct super_block *sb, unsigned long hashval)
444 {
445 unsigned long tmp;
446
447 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
448 L1_CACHE_BYTES;
449 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
450 return tmp & i_hash_mask;
451 }
452
453 /**
454 * __insert_inode_hash - hash an inode
455 * @inode: unhashed inode
456 * @hashval: unsigned long value used to locate this object in the
457 * inode_hashtable.
458 *
459 * Add an inode to the inode hash for this superblock.
460 */
461 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
462 {
463 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
464
465 spin_lock(&inode_hash_lock);
466 spin_lock(&inode->i_lock);
467 hlist_add_head(&inode->i_hash, b);
468 spin_unlock(&inode->i_lock);
469 spin_unlock(&inode_hash_lock);
470 }
471 EXPORT_SYMBOL(__insert_inode_hash);
472
473 /**
474 * __remove_inode_hash - remove an inode from the hash
475 * @inode: inode to unhash
476 *
477 * Remove an inode from the superblock.
478 */
479 void __remove_inode_hash(struct inode *inode)
480 {
481 spin_lock(&inode_hash_lock);
482 spin_lock(&inode->i_lock);
483 hlist_del_init(&inode->i_hash);
484 spin_unlock(&inode->i_lock);
485 spin_unlock(&inode_hash_lock);
486 }
487 EXPORT_SYMBOL(__remove_inode_hash);
488
489 void clear_inode(struct inode *inode)
490 {
491 might_sleep();
492 /*
493 * We have to cycle tree_lock here because reclaim can be still in the
494 * process of removing the last page (in __delete_from_page_cache())
495 * and we must not free mapping under it.
496 */
497 spin_lock_irq(&inode->i_data.tree_lock);
498 BUG_ON(inode->i_data.nrpages);
499 BUG_ON(inode->i_data.nrshadows);
500 spin_unlock_irq(&inode->i_data.tree_lock);
501 BUG_ON(!list_empty(&inode->i_data.private_list));
502 BUG_ON(!(inode->i_state & I_FREEING));
503 BUG_ON(inode->i_state & I_CLEAR);
504 /* don't need i_lock here, no concurrent mods to i_state */
505 inode->i_state = I_FREEING | I_CLEAR;
506 }
507 EXPORT_SYMBOL(clear_inode);
508
509 /*
510 * Free the inode passed in, removing it from the lists it is still connected
511 * to. We remove any pages still attached to the inode and wait for any IO that
512 * is still in progress before finally destroying the inode.
513 *
514 * An inode must already be marked I_FREEING so that we avoid the inode being
515 * moved back onto lists if we race with other code that manipulates the lists
516 * (e.g. writeback_single_inode). The caller is responsible for setting this.
517 *
518 * An inode must already be removed from the LRU list before being evicted from
519 * the cache. This should occur atomically with setting the I_FREEING state
520 * flag, so no inodes here should ever be on the LRU when being evicted.
521 */
522 static void evict(struct inode *inode)
523 {
524 const struct super_operations *op = inode->i_sb->s_op;
525
526 BUG_ON(!(inode->i_state & I_FREEING));
527 BUG_ON(!list_empty(&inode->i_lru));
528
529 if (!list_empty(&inode->i_wb_list))
530 inode_wb_list_del(inode);
531
532 inode_sb_list_del(inode);
533
534 /*
535 * Wait for flusher thread to be done with the inode so that filesystem
536 * does not start destroying it while writeback is still running. Since
537 * the inode has I_FREEING set, flusher thread won't start new work on
538 * the inode. We just have to wait for running writeback to finish.
539 */
540 inode_wait_for_writeback(inode);
541
542 if (op->evict_inode) {
543 op->evict_inode(inode);
544 } else {
545 truncate_inode_pages_final(&inode->i_data);
546 clear_inode(inode);
547 }
548 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
549 bd_forget(inode);
550 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
551 cd_forget(inode);
552
553 remove_inode_hash(inode);
554
555 spin_lock(&inode->i_lock);
556 wake_up_bit(&inode->i_state, __I_NEW);
557 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
558 spin_unlock(&inode->i_lock);
559
560 destroy_inode(inode);
561 }
562
563 /*
564 * dispose_list - dispose of the contents of a local list
565 * @head: the head of the list to free
566 *
567 * Dispose-list gets a local list with local inodes in it, so it doesn't
568 * need to worry about list corruption and SMP locks.
569 */
570 static void dispose_list(struct list_head *head)
571 {
572 while (!list_empty(head)) {
573 struct inode *inode;
574
575 inode = list_first_entry(head, struct inode, i_lru);
576 list_del_init(&inode->i_lru);
577
578 evict(inode);
579 }
580 }
581
582 /**
583 * evict_inodes - evict all evictable inodes for a superblock
584 * @sb: superblock to operate on
585 *
586 * Make sure that no inodes with zero refcount are retained. This is
587 * called by superblock shutdown after having MS_ACTIVE flag removed,
588 * so any inode reaching zero refcount during or after that call will
589 * be immediately evicted.
590 */
591 void evict_inodes(struct super_block *sb)
592 {
593 struct inode *inode, *next;
594 LIST_HEAD(dispose);
595
596 spin_lock(&inode_sb_list_lock);
597 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
598 if (atomic_read(&inode->i_count))
599 continue;
600
601 spin_lock(&inode->i_lock);
602 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
603 spin_unlock(&inode->i_lock);
604 continue;
605 }
606
607 inode->i_state |= I_FREEING;
608 inode_lru_list_del(inode);
609 spin_unlock(&inode->i_lock);
610 list_add(&inode->i_lru, &dispose);
611 }
612 spin_unlock(&inode_sb_list_lock);
613
614 dispose_list(&dispose);
615 }
616
617 /**
618 * invalidate_inodes - attempt to free all inodes on a superblock
619 * @sb: superblock to operate on
620 * @kill_dirty: flag to guide handling of dirty inodes
621 *
622 * Attempts to free all inodes for a given superblock. If there were any
623 * busy inodes return a non-zero value, else zero.
624 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
625 * them as busy.
626 */
627 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
628 {
629 int busy = 0;
630 struct inode *inode, *next;
631 LIST_HEAD(dispose);
632
633 spin_lock(&inode_sb_list_lock);
634 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
638 continue;
639 }
640 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
641 spin_unlock(&inode->i_lock);
642 busy = 1;
643 continue;
644 }
645 if (atomic_read(&inode->i_count)) {
646 spin_unlock(&inode->i_lock);
647 busy = 1;
648 continue;
649 }
650
651 inode->i_state |= I_FREEING;
652 inode_lru_list_del(inode);
653 spin_unlock(&inode->i_lock);
654 list_add(&inode->i_lru, &dispose);
655 }
656 spin_unlock(&inode_sb_list_lock);
657
658 dispose_list(&dispose);
659
660 return busy;
661 }
662
663 /*
664 * Isolate the inode from the LRU in preparation for freeing it.
665 *
666 * Any inodes which are pinned purely because of attached pagecache have their
667 * pagecache removed. If the inode has metadata buffers attached to
668 * mapping->private_list then try to remove them.
669 *
670 * If the inode has the I_REFERENCED flag set, then it means that it has been
671 * used recently - the flag is set in iput_final(). When we encounter such an
672 * inode, clear the flag and move it to the back of the LRU so it gets another
673 * pass through the LRU before it gets reclaimed. This is necessary because of
674 * the fact we are doing lazy LRU updates to minimise lock contention so the
675 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
676 * with this flag set because they are the inodes that are out of order.
677 */
678 static enum lru_status inode_lru_isolate(struct list_head *item,
679 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
680 {
681 struct list_head *freeable = arg;
682 struct inode *inode = container_of(item, struct inode, i_lru);
683
684 /*
685 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
686 * If we fail to get the lock, just skip it.
687 */
688 if (!spin_trylock(&inode->i_lock))
689 return LRU_SKIP;
690
691 /*
692 * Referenced or dirty inodes are still in use. Give them another pass
693 * through the LRU as we canot reclaim them now.
694 */
695 if (atomic_read(&inode->i_count) ||
696 (inode->i_state & ~I_REFERENCED)) {
697 list_lru_isolate(lru, &inode->i_lru);
698 spin_unlock(&inode->i_lock);
699 this_cpu_dec(nr_unused);
700 return LRU_REMOVED;
701 }
702
703 /* recently referenced inodes get one more pass */
704 if (inode->i_state & I_REFERENCED) {
705 inode->i_state &= ~I_REFERENCED;
706 spin_unlock(&inode->i_lock);
707 return LRU_ROTATE;
708 }
709
710 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
711 __iget(inode);
712 spin_unlock(&inode->i_lock);
713 spin_unlock(lru_lock);
714 if (remove_inode_buffers(inode)) {
715 unsigned long reap;
716 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
717 if (current_is_kswapd())
718 __count_vm_events(KSWAPD_INODESTEAL, reap);
719 else
720 __count_vm_events(PGINODESTEAL, reap);
721 if (current->reclaim_state)
722 current->reclaim_state->reclaimed_slab += reap;
723 }
724 iput(inode);
725 spin_lock(lru_lock);
726 return LRU_RETRY;
727 }
728
729 WARN_ON(inode->i_state & I_NEW);
730 inode->i_state |= I_FREEING;
731 list_lru_isolate_move(lru, &inode->i_lru, freeable);
732 spin_unlock(&inode->i_lock);
733
734 this_cpu_dec(nr_unused);
735 return LRU_REMOVED;
736 }
737
738 /*
739 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
740 * This is called from the superblock shrinker function with a number of inodes
741 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
742 * then are freed outside inode_lock by dispose_list().
743 */
744 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
745 {
746 LIST_HEAD(freeable);
747 long freed;
748
749 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
750 inode_lru_isolate, &freeable);
751 dispose_list(&freeable);
752 return freed;
753 }
754
755 static void __wait_on_freeing_inode(struct inode *inode);
756 /*
757 * Called with the inode lock held.
758 */
759 static struct inode *find_inode(struct super_block *sb,
760 struct hlist_head *head,
761 int (*test)(struct inode *, void *),
762 void *data)
763 {
764 struct inode *inode = NULL;
765
766 repeat:
767 hlist_for_each_entry(inode, head, i_hash) {
768 if (inode->i_sb != sb)
769 continue;
770 if (!test(inode, data))
771 continue;
772 spin_lock(&inode->i_lock);
773 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
774 __wait_on_freeing_inode(inode);
775 goto repeat;
776 }
777 __iget(inode);
778 spin_unlock(&inode->i_lock);
779 return inode;
780 }
781 return NULL;
782 }
783
784 /*
785 * find_inode_fast is the fast path version of find_inode, see the comment at
786 * iget_locked for details.
787 */
788 static struct inode *find_inode_fast(struct super_block *sb,
789 struct hlist_head *head, unsigned long ino)
790 {
791 struct inode *inode = NULL;
792
793 repeat:
794 hlist_for_each_entry(inode, head, i_hash) {
795 if (inode->i_ino != ino)
796 continue;
797 if (inode->i_sb != sb)
798 continue;
799 spin_lock(&inode->i_lock);
800 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
801 __wait_on_freeing_inode(inode);
802 goto repeat;
803 }
804 __iget(inode);
805 spin_unlock(&inode->i_lock);
806 return inode;
807 }
808 return NULL;
809 }
810
811 /*
812 * Each cpu owns a range of LAST_INO_BATCH numbers.
813 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
814 * to renew the exhausted range.
815 *
816 * This does not significantly increase overflow rate because every CPU can
817 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
818 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
819 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
820 * overflow rate by 2x, which does not seem too significant.
821 *
822 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
823 * error if st_ino won't fit in target struct field. Use 32bit counter
824 * here to attempt to avoid that.
825 */
826 #define LAST_INO_BATCH 1024
827 static DEFINE_PER_CPU(unsigned int, last_ino);
828
829 unsigned int get_next_ino(void)
830 {
831 unsigned int *p = &get_cpu_var(last_ino);
832 unsigned int res = *p;
833
834 #ifdef CONFIG_SMP
835 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
836 static atomic_t shared_last_ino;
837 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
838
839 res = next - LAST_INO_BATCH;
840 }
841 #endif
842
843 *p = ++res;
844 put_cpu_var(last_ino);
845 return res;
846 }
847 EXPORT_SYMBOL(get_next_ino);
848
849 /**
850 * new_inode_pseudo - obtain an inode
851 * @sb: superblock
852 *
853 * Allocates a new inode for given superblock.
854 * Inode wont be chained in superblock s_inodes list
855 * This means :
856 * - fs can't be unmount
857 * - quotas, fsnotify, writeback can't work
858 */
859 struct inode *new_inode_pseudo(struct super_block *sb)
860 {
861 struct inode *inode = alloc_inode(sb);
862
863 if (inode) {
864 spin_lock(&inode->i_lock);
865 inode->i_state = 0;
866 spin_unlock(&inode->i_lock);
867 INIT_LIST_HEAD(&inode->i_sb_list);
868 }
869 return inode;
870 }
871
872 /**
873 * new_inode - obtain an inode
874 * @sb: superblock
875 *
876 * Allocates a new inode for given superblock. The default gfp_mask
877 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
878 * If HIGHMEM pages are unsuitable or it is known that pages allocated
879 * for the page cache are not reclaimable or migratable,
880 * mapping_set_gfp_mask() must be called with suitable flags on the
881 * newly created inode's mapping
882 *
883 */
884 struct inode *new_inode(struct super_block *sb)
885 {
886 struct inode *inode;
887
888 spin_lock_prefetch(&inode_sb_list_lock);
889
890 inode = new_inode_pseudo(sb);
891 if (inode)
892 inode_sb_list_add(inode);
893 return inode;
894 }
895 EXPORT_SYMBOL(new_inode);
896
897 #ifdef CONFIG_DEBUG_LOCK_ALLOC
898 void lockdep_annotate_inode_mutex_key(struct inode *inode)
899 {
900 if (S_ISDIR(inode->i_mode)) {
901 struct file_system_type *type = inode->i_sb->s_type;
902
903 /* Set new key only if filesystem hasn't already changed it */
904 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
905 /*
906 * ensure nobody is actually holding i_mutex
907 */
908 mutex_destroy(&inode->i_mutex);
909 mutex_init(&inode->i_mutex);
910 lockdep_set_class(&inode->i_mutex,
911 &type->i_mutex_dir_key);
912 }
913 }
914 }
915 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
916 #endif
917
918 /**
919 * unlock_new_inode - clear the I_NEW state and wake up any waiters
920 * @inode: new inode to unlock
921 *
922 * Called when the inode is fully initialised to clear the new state of the
923 * inode and wake up anyone waiting for the inode to finish initialisation.
924 */
925 void unlock_new_inode(struct inode *inode)
926 {
927 lockdep_annotate_inode_mutex_key(inode);
928 spin_lock(&inode->i_lock);
929 WARN_ON(!(inode->i_state & I_NEW));
930 inode->i_state &= ~I_NEW;
931 smp_mb();
932 wake_up_bit(&inode->i_state, __I_NEW);
933 spin_unlock(&inode->i_lock);
934 }
935 EXPORT_SYMBOL(unlock_new_inode);
936
937 /**
938 * lock_two_nondirectories - take two i_mutexes on non-directory objects
939 *
940 * Lock any non-NULL argument that is not a directory.
941 * Zero, one or two objects may be locked by this function.
942 *
943 * @inode1: first inode to lock
944 * @inode2: second inode to lock
945 */
946 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
947 {
948 if (inode1 > inode2)
949 swap(inode1, inode2);
950
951 if (inode1 && !S_ISDIR(inode1->i_mode))
952 mutex_lock(&inode1->i_mutex);
953 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
954 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
955 }
956 EXPORT_SYMBOL(lock_two_nondirectories);
957
958 /**
959 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
960 * @inode1: first inode to unlock
961 * @inode2: second inode to unlock
962 */
963 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
964 {
965 if (inode1 && !S_ISDIR(inode1->i_mode))
966 mutex_unlock(&inode1->i_mutex);
967 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
968 mutex_unlock(&inode2->i_mutex);
969 }
970 EXPORT_SYMBOL(unlock_two_nondirectories);
971
972 /**
973 * iget5_locked - obtain an inode from a mounted file system
974 * @sb: super block of file system
975 * @hashval: hash value (usually inode number) to get
976 * @test: callback used for comparisons between inodes
977 * @set: callback used to initialize a new struct inode
978 * @data: opaque data pointer to pass to @test and @set
979 *
980 * Search for the inode specified by @hashval and @data in the inode cache,
981 * and if present it is return it with an increased reference count. This is
982 * a generalized version of iget_locked() for file systems where the inode
983 * number is not sufficient for unique identification of an inode.
984 *
985 * If the inode is not in cache, allocate a new inode and return it locked,
986 * hashed, and with the I_NEW flag set. The file system gets to fill it in
987 * before unlocking it via unlock_new_inode().
988 *
989 * Note both @test and @set are called with the inode_hash_lock held, so can't
990 * sleep.
991 */
992 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
993 int (*test)(struct inode *, void *),
994 int (*set)(struct inode *, void *), void *data)
995 {
996 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
997 struct inode *inode;
998
999 spin_lock(&inode_hash_lock);
1000 inode = find_inode(sb, head, test, data);
1001 spin_unlock(&inode_hash_lock);
1002
1003 if (inode) {
1004 wait_on_inode(inode);
1005 return inode;
1006 }
1007
1008 inode = alloc_inode(sb);
1009 if (inode) {
1010 struct inode *old;
1011
1012 spin_lock(&inode_hash_lock);
1013 /* We released the lock, so.. */
1014 old = find_inode(sb, head, test, data);
1015 if (!old) {
1016 if (set(inode, data))
1017 goto set_failed;
1018
1019 spin_lock(&inode->i_lock);
1020 inode->i_state = I_NEW;
1021 hlist_add_head(&inode->i_hash, head);
1022 spin_unlock(&inode->i_lock);
1023 inode_sb_list_add(inode);
1024 spin_unlock(&inode_hash_lock);
1025
1026 /* Return the locked inode with I_NEW set, the
1027 * caller is responsible for filling in the contents
1028 */
1029 return inode;
1030 }
1031
1032 /*
1033 * Uhhuh, somebody else created the same inode under
1034 * us. Use the old inode instead of the one we just
1035 * allocated.
1036 */
1037 spin_unlock(&inode_hash_lock);
1038 destroy_inode(inode);
1039 inode = old;
1040 wait_on_inode(inode);
1041 }
1042 return inode;
1043
1044 set_failed:
1045 spin_unlock(&inode_hash_lock);
1046 destroy_inode(inode);
1047 return NULL;
1048 }
1049 EXPORT_SYMBOL(iget5_locked);
1050
1051 /**
1052 * iget_locked - obtain an inode from a mounted file system
1053 * @sb: super block of file system
1054 * @ino: inode number to get
1055 *
1056 * Search for the inode specified by @ino in the inode cache and if present
1057 * return it with an increased reference count. This is for file systems
1058 * where the inode number is sufficient for unique identification of an inode.
1059 *
1060 * If the inode is not in cache, allocate a new inode and return it locked,
1061 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1062 * before unlocking it via unlock_new_inode().
1063 */
1064 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1065 {
1066 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1067 struct inode *inode;
1068
1069 spin_lock(&inode_hash_lock);
1070 inode = find_inode_fast(sb, head, ino);
1071 spin_unlock(&inode_hash_lock);
1072 if (inode) {
1073 wait_on_inode(inode);
1074 return inode;
1075 }
1076
1077 inode = alloc_inode(sb);
1078 if (inode) {
1079 struct inode *old;
1080
1081 spin_lock(&inode_hash_lock);
1082 /* We released the lock, so.. */
1083 old = find_inode_fast(sb, head, ino);
1084 if (!old) {
1085 inode->i_ino = ino;
1086 spin_lock(&inode->i_lock);
1087 inode->i_state = I_NEW;
1088 hlist_add_head(&inode->i_hash, head);
1089 spin_unlock(&inode->i_lock);
1090 inode_sb_list_add(inode);
1091 spin_unlock(&inode_hash_lock);
1092
1093 /* Return the locked inode with I_NEW set, the
1094 * caller is responsible for filling in the contents
1095 */
1096 return inode;
1097 }
1098
1099 /*
1100 * Uhhuh, somebody else created the same inode under
1101 * us. Use the old inode instead of the one we just
1102 * allocated.
1103 */
1104 spin_unlock(&inode_hash_lock);
1105 destroy_inode(inode);
1106 inode = old;
1107 wait_on_inode(inode);
1108 }
1109 return inode;
1110 }
1111 EXPORT_SYMBOL(iget_locked);
1112
1113 /*
1114 * search the inode cache for a matching inode number.
1115 * If we find one, then the inode number we are trying to
1116 * allocate is not unique and so we should not use it.
1117 *
1118 * Returns 1 if the inode number is unique, 0 if it is not.
1119 */
1120 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1121 {
1122 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1123 struct inode *inode;
1124
1125 spin_lock(&inode_hash_lock);
1126 hlist_for_each_entry(inode, b, i_hash) {
1127 if (inode->i_ino == ino && inode->i_sb == sb) {
1128 spin_unlock(&inode_hash_lock);
1129 return 0;
1130 }
1131 }
1132 spin_unlock(&inode_hash_lock);
1133
1134 return 1;
1135 }
1136
1137 /**
1138 * iunique - get a unique inode number
1139 * @sb: superblock
1140 * @max_reserved: highest reserved inode number
1141 *
1142 * Obtain an inode number that is unique on the system for a given
1143 * superblock. This is used by file systems that have no natural
1144 * permanent inode numbering system. An inode number is returned that
1145 * is higher than the reserved limit but unique.
1146 *
1147 * BUGS:
1148 * With a large number of inodes live on the file system this function
1149 * currently becomes quite slow.
1150 */
1151 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1152 {
1153 /*
1154 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155 * error if st_ino won't fit in target struct field. Use 32bit counter
1156 * here to attempt to avoid that.
1157 */
1158 static DEFINE_SPINLOCK(iunique_lock);
1159 static unsigned int counter;
1160 ino_t res;
1161
1162 spin_lock(&iunique_lock);
1163 do {
1164 if (counter <= max_reserved)
1165 counter = max_reserved + 1;
1166 res = counter++;
1167 } while (!test_inode_iunique(sb, res));
1168 spin_unlock(&iunique_lock);
1169
1170 return res;
1171 }
1172 EXPORT_SYMBOL(iunique);
1173
1174 struct inode *igrab(struct inode *inode)
1175 {
1176 spin_lock(&inode->i_lock);
1177 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1178 __iget(inode);
1179 spin_unlock(&inode->i_lock);
1180 } else {
1181 spin_unlock(&inode->i_lock);
1182 /*
1183 * Handle the case where s_op->clear_inode is not been
1184 * called yet, and somebody is calling igrab
1185 * while the inode is getting freed.
1186 */
1187 inode = NULL;
1188 }
1189 return inode;
1190 }
1191 EXPORT_SYMBOL(igrab);
1192
1193 /**
1194 * ilookup5_nowait - search for an inode in the inode cache
1195 * @sb: super block of file system to search
1196 * @hashval: hash value (usually inode number) to search for
1197 * @test: callback used for comparisons between inodes
1198 * @data: opaque data pointer to pass to @test
1199 *
1200 * Search for the inode specified by @hashval and @data in the inode cache.
1201 * If the inode is in the cache, the inode is returned with an incremented
1202 * reference count.
1203 *
1204 * Note: I_NEW is not waited upon so you have to be very careful what you do
1205 * with the returned inode. You probably should be using ilookup5() instead.
1206 *
1207 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1208 */
1209 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1210 int (*test)(struct inode *, void *), void *data)
1211 {
1212 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213 struct inode *inode;
1214
1215 spin_lock(&inode_hash_lock);
1216 inode = find_inode(sb, head, test, data);
1217 spin_unlock(&inode_hash_lock);
1218
1219 return inode;
1220 }
1221 EXPORT_SYMBOL(ilookup5_nowait);
1222
1223 /**
1224 * ilookup5 - search for an inode in the inode cache
1225 * @sb: super block of file system to search
1226 * @hashval: hash value (usually inode number) to search for
1227 * @test: callback used for comparisons between inodes
1228 * @data: opaque data pointer to pass to @test
1229 *
1230 * Search for the inode specified by @hashval and @data in the inode cache,
1231 * and if the inode is in the cache, return the inode with an incremented
1232 * reference count. Waits on I_NEW before returning the inode.
1233 * returned with an incremented reference count.
1234 *
1235 * This is a generalized version of ilookup() for file systems where the
1236 * inode number is not sufficient for unique identification of an inode.
1237 *
1238 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1239 */
1240 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1241 int (*test)(struct inode *, void *), void *data)
1242 {
1243 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1244
1245 if (inode)
1246 wait_on_inode(inode);
1247 return inode;
1248 }
1249 EXPORT_SYMBOL(ilookup5);
1250
1251 /**
1252 * ilookup - search for an inode in the inode cache
1253 * @sb: super block of file system to search
1254 * @ino: inode number to search for
1255 *
1256 * Search for the inode @ino in the inode cache, and if the inode is in the
1257 * cache, the inode is returned with an incremented reference count.
1258 */
1259 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1260 {
1261 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262 struct inode *inode;
1263
1264 spin_lock(&inode_hash_lock);
1265 inode = find_inode_fast(sb, head, ino);
1266 spin_unlock(&inode_hash_lock);
1267
1268 if (inode)
1269 wait_on_inode(inode);
1270 return inode;
1271 }
1272 EXPORT_SYMBOL(ilookup);
1273
1274 /**
1275 * find_inode_nowait - find an inode in the inode cache
1276 * @sb: super block of file system to search
1277 * @hashval: hash value (usually inode number) to search for
1278 * @match: callback used for comparisons between inodes
1279 * @data: opaque data pointer to pass to @match
1280 *
1281 * Search for the inode specified by @hashval and @data in the inode
1282 * cache, where the helper function @match will return 0 if the inode
1283 * does not match, 1 if the inode does match, and -1 if the search
1284 * should be stopped. The @match function must be responsible for
1285 * taking the i_lock spin_lock and checking i_state for an inode being
1286 * freed or being initialized, and incrementing the reference count
1287 * before returning 1. It also must not sleep, since it is called with
1288 * the inode_hash_lock spinlock held.
1289 *
1290 * This is a even more generalized version of ilookup5() when the
1291 * function must never block --- find_inode() can block in
1292 * __wait_on_freeing_inode() --- or when the caller can not increment
1293 * the reference count because the resulting iput() might cause an
1294 * inode eviction. The tradeoff is that the @match funtion must be
1295 * very carefully implemented.
1296 */
1297 struct inode *find_inode_nowait(struct super_block *sb,
1298 unsigned long hashval,
1299 int (*match)(struct inode *, unsigned long,
1300 void *),
1301 void *data)
1302 {
1303 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1304 struct inode *inode, *ret_inode = NULL;
1305 int mval;
1306
1307 spin_lock(&inode_hash_lock);
1308 hlist_for_each_entry(inode, head, i_hash) {
1309 if (inode->i_sb != sb)
1310 continue;
1311 mval = match(inode, hashval, data);
1312 if (mval == 0)
1313 continue;
1314 if (mval == 1)
1315 ret_inode = inode;
1316 goto out;
1317 }
1318 out:
1319 spin_unlock(&inode_hash_lock);
1320 return ret_inode;
1321 }
1322 EXPORT_SYMBOL(find_inode_nowait);
1323
1324 int insert_inode_locked(struct inode *inode)
1325 {
1326 struct super_block *sb = inode->i_sb;
1327 ino_t ino = inode->i_ino;
1328 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1329
1330 while (1) {
1331 struct inode *old = NULL;
1332 spin_lock(&inode_hash_lock);
1333 hlist_for_each_entry(old, head, i_hash) {
1334 if (old->i_ino != ino)
1335 continue;
1336 if (old->i_sb != sb)
1337 continue;
1338 spin_lock(&old->i_lock);
1339 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1340 spin_unlock(&old->i_lock);
1341 continue;
1342 }
1343 break;
1344 }
1345 if (likely(!old)) {
1346 spin_lock(&inode->i_lock);
1347 inode->i_state |= I_NEW;
1348 hlist_add_head(&inode->i_hash, head);
1349 spin_unlock(&inode->i_lock);
1350 spin_unlock(&inode_hash_lock);
1351 return 0;
1352 }
1353 __iget(old);
1354 spin_unlock(&old->i_lock);
1355 spin_unlock(&inode_hash_lock);
1356 wait_on_inode(old);
1357 if (unlikely(!inode_unhashed(old))) {
1358 iput(old);
1359 return -EBUSY;
1360 }
1361 iput(old);
1362 }
1363 }
1364 EXPORT_SYMBOL(insert_inode_locked);
1365
1366 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1367 int (*test)(struct inode *, void *), void *data)
1368 {
1369 struct super_block *sb = inode->i_sb;
1370 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1371
1372 while (1) {
1373 struct inode *old = NULL;
1374
1375 spin_lock(&inode_hash_lock);
1376 hlist_for_each_entry(old, head, i_hash) {
1377 if (old->i_sb != sb)
1378 continue;
1379 if (!test(old, data))
1380 continue;
1381 spin_lock(&old->i_lock);
1382 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1383 spin_unlock(&old->i_lock);
1384 continue;
1385 }
1386 break;
1387 }
1388 if (likely(!old)) {
1389 spin_lock(&inode->i_lock);
1390 inode->i_state |= I_NEW;
1391 hlist_add_head(&inode->i_hash, head);
1392 spin_unlock(&inode->i_lock);
1393 spin_unlock(&inode_hash_lock);
1394 return 0;
1395 }
1396 __iget(old);
1397 spin_unlock(&old->i_lock);
1398 spin_unlock(&inode_hash_lock);
1399 wait_on_inode(old);
1400 if (unlikely(!inode_unhashed(old))) {
1401 iput(old);
1402 return -EBUSY;
1403 }
1404 iput(old);
1405 }
1406 }
1407 EXPORT_SYMBOL(insert_inode_locked4);
1408
1409
1410 int generic_delete_inode(struct inode *inode)
1411 {
1412 return 1;
1413 }
1414 EXPORT_SYMBOL(generic_delete_inode);
1415
1416 /*
1417 * Called when we're dropping the last reference
1418 * to an inode.
1419 *
1420 * Call the FS "drop_inode()" function, defaulting to
1421 * the legacy UNIX filesystem behaviour. If it tells
1422 * us to evict inode, do so. Otherwise, retain inode
1423 * in cache if fs is alive, sync and evict if fs is
1424 * shutting down.
1425 */
1426 static void iput_final(struct inode *inode)
1427 {
1428 struct super_block *sb = inode->i_sb;
1429 const struct super_operations *op = inode->i_sb->s_op;
1430 int drop;
1431
1432 WARN_ON(inode->i_state & I_NEW);
1433
1434 if (op->drop_inode)
1435 drop = op->drop_inode(inode);
1436 else
1437 drop = generic_drop_inode(inode);
1438
1439 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1440 inode->i_state |= I_REFERENCED;
1441 inode_add_lru(inode);
1442 spin_unlock(&inode->i_lock);
1443 return;
1444 }
1445
1446 if (!drop) {
1447 inode->i_state |= I_WILL_FREE;
1448 spin_unlock(&inode->i_lock);
1449 write_inode_now(inode, 1);
1450 spin_lock(&inode->i_lock);
1451 WARN_ON(inode->i_state & I_NEW);
1452 inode->i_state &= ~I_WILL_FREE;
1453 }
1454
1455 inode->i_state |= I_FREEING;
1456 if (!list_empty(&inode->i_lru))
1457 inode_lru_list_del(inode);
1458 spin_unlock(&inode->i_lock);
1459
1460 evict(inode);
1461 }
1462
1463 /**
1464 * iput - put an inode
1465 * @inode: inode to put
1466 *
1467 * Puts an inode, dropping its usage count. If the inode use count hits
1468 * zero, the inode is then freed and may also be destroyed.
1469 *
1470 * Consequently, iput() can sleep.
1471 */
1472 void iput(struct inode *inode)
1473 {
1474 if (!inode)
1475 return;
1476 BUG_ON(inode->i_state & I_CLEAR);
1477 retry:
1478 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1479 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1480 atomic_inc(&inode->i_count);
1481 inode->i_state &= ~I_DIRTY_TIME;
1482 spin_unlock(&inode->i_lock);
1483 trace_writeback_lazytime_iput(inode);
1484 mark_inode_dirty_sync(inode);
1485 goto retry;
1486 }
1487 iput_final(inode);
1488 }
1489 }
1490 EXPORT_SYMBOL(iput);
1491
1492 /**
1493 * bmap - find a block number in a file
1494 * @inode: inode of file
1495 * @block: block to find
1496 *
1497 * Returns the block number on the device holding the inode that
1498 * is the disk block number for the block of the file requested.
1499 * That is, asked for block 4 of inode 1 the function will return the
1500 * disk block relative to the disk start that holds that block of the
1501 * file.
1502 */
1503 sector_t bmap(struct inode *inode, sector_t block)
1504 {
1505 sector_t res = 0;
1506 if (inode->i_mapping->a_ops->bmap)
1507 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1508 return res;
1509 }
1510 EXPORT_SYMBOL(bmap);
1511
1512 /*
1513 * With relative atime, only update atime if the previous atime is
1514 * earlier than either the ctime or mtime or if at least a day has
1515 * passed since the last atime update.
1516 */
1517 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1518 struct timespec now)
1519 {
1520
1521 if (!(mnt->mnt_flags & MNT_RELATIME))
1522 return 1;
1523 /*
1524 * Is mtime younger than atime? If yes, update atime:
1525 */
1526 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1527 return 1;
1528 /*
1529 * Is ctime younger than atime? If yes, update atime:
1530 */
1531 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1532 return 1;
1533
1534 /*
1535 * Is the previous atime value older than a day? If yes,
1536 * update atime:
1537 */
1538 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1539 return 1;
1540 /*
1541 * Good, we can skip the atime update:
1542 */
1543 return 0;
1544 }
1545
1546 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1547 {
1548 int iflags = I_DIRTY_TIME;
1549
1550 if (flags & S_ATIME)
1551 inode->i_atime = *time;
1552 if (flags & S_VERSION)
1553 inode_inc_iversion(inode);
1554 if (flags & S_CTIME)
1555 inode->i_ctime = *time;
1556 if (flags & S_MTIME)
1557 inode->i_mtime = *time;
1558
1559 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1560 iflags |= I_DIRTY_SYNC;
1561 __mark_inode_dirty(inode, iflags);
1562 return 0;
1563 }
1564 EXPORT_SYMBOL(generic_update_time);
1565
1566 /*
1567 * This does the actual work of updating an inodes time or version. Must have
1568 * had called mnt_want_write() before calling this.
1569 */
1570 static int update_time(struct inode *inode, struct timespec *time, int flags)
1571 {
1572 int (*update_time)(struct inode *, struct timespec *, int);
1573
1574 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1575 generic_update_time;
1576
1577 return update_time(inode, time, flags);
1578 }
1579
1580 /**
1581 * touch_atime - update the access time
1582 * @path: the &struct path to update
1583 *
1584 * Update the accessed time on an inode and mark it for writeback.
1585 * This function automatically handles read only file systems and media,
1586 * as well as the "noatime" flag and inode specific "noatime" markers.
1587 */
1588 bool atime_needs_update(const struct path *path, struct inode *inode)
1589 {
1590 struct vfsmount *mnt = path->mnt;
1591 struct timespec now;
1592
1593 if (inode->i_flags & S_NOATIME)
1594 return false;
1595 if (IS_NOATIME(inode))
1596 return false;
1597 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1598 return false;
1599
1600 if (mnt->mnt_flags & MNT_NOATIME)
1601 return false;
1602 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1603 return false;
1604
1605 now = current_fs_time(inode->i_sb);
1606
1607 if (!relatime_need_update(mnt, inode, now))
1608 return false;
1609
1610 if (timespec_equal(&inode->i_atime, &now))
1611 return false;
1612
1613 return true;
1614 }
1615
1616 void touch_atime(const struct path *path)
1617 {
1618 struct vfsmount *mnt = path->mnt;
1619 struct inode *inode = d_inode(path->dentry);
1620 struct timespec now;
1621
1622 if (!atime_needs_update(path, inode))
1623 return;
1624
1625 if (!sb_start_write_trylock(inode->i_sb))
1626 return;
1627
1628 if (__mnt_want_write(mnt) != 0)
1629 goto skip_update;
1630 /*
1631 * File systems can error out when updating inodes if they need to
1632 * allocate new space to modify an inode (such is the case for
1633 * Btrfs), but since we touch atime while walking down the path we
1634 * really don't care if we failed to update the atime of the file,
1635 * so just ignore the return value.
1636 * We may also fail on filesystems that have the ability to make parts
1637 * of the fs read only, e.g. subvolumes in Btrfs.
1638 */
1639 now = current_fs_time(inode->i_sb);
1640 update_time(inode, &now, S_ATIME);
1641 __mnt_drop_write(mnt);
1642 skip_update:
1643 sb_end_write(inode->i_sb);
1644 }
1645 EXPORT_SYMBOL(touch_atime);
1646
1647 /*
1648 * The logic we want is
1649 *
1650 * if suid or (sgid and xgrp)
1651 * remove privs
1652 */
1653 int should_remove_suid(struct dentry *dentry)
1654 {
1655 umode_t mode = d_inode(dentry)->i_mode;
1656 int kill = 0;
1657
1658 /* suid always must be killed */
1659 if (unlikely(mode & S_ISUID))
1660 kill = ATTR_KILL_SUID;
1661
1662 /*
1663 * sgid without any exec bits is just a mandatory locking mark; leave
1664 * it alone. If some exec bits are set, it's a real sgid; kill it.
1665 */
1666 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1667 kill |= ATTR_KILL_SGID;
1668
1669 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1670 return kill;
1671
1672 return 0;
1673 }
1674 EXPORT_SYMBOL(should_remove_suid);
1675
1676 /*
1677 * Return mask of changes for notify_change() that need to be done as a
1678 * response to write or truncate. Return 0 if nothing has to be changed.
1679 * Negative value on error (change should be denied).
1680 */
1681 int dentry_needs_remove_privs(struct dentry *dentry)
1682 {
1683 struct inode *inode = d_inode(dentry);
1684 int mask = 0;
1685 int ret;
1686
1687 if (IS_NOSEC(inode))
1688 return 0;
1689
1690 mask = should_remove_suid(dentry);
1691 ret = security_inode_need_killpriv(dentry);
1692 if (ret < 0)
1693 return ret;
1694 if (ret)
1695 mask |= ATTR_KILL_PRIV;
1696 return mask;
1697 }
1698 EXPORT_SYMBOL(dentry_needs_remove_privs);
1699
1700 static int __remove_privs(struct dentry *dentry, int kill)
1701 {
1702 struct iattr newattrs;
1703
1704 newattrs.ia_valid = ATTR_FORCE | kill;
1705 /*
1706 * Note we call this on write, so notify_change will not
1707 * encounter any conflicting delegations:
1708 */
1709 return notify_change(dentry, &newattrs, NULL);
1710 }
1711
1712 /*
1713 * Remove special file priviledges (suid, capabilities) when file is written
1714 * to or truncated.
1715 */
1716 int file_remove_privs(struct file *file)
1717 {
1718 struct dentry *dentry = file->f_path.dentry;
1719 struct inode *inode = d_inode(dentry);
1720 int kill;
1721 int error = 0;
1722
1723 /* Fast path for nothing security related */
1724 if (IS_NOSEC(inode))
1725 return 0;
1726
1727 kill = file_needs_remove_privs(file);
1728 if (kill < 0)
1729 return kill;
1730 if (kill)
1731 error = __remove_privs(dentry, kill);
1732 if (!error)
1733 inode_has_no_xattr(inode);
1734
1735 return error;
1736 }
1737 EXPORT_SYMBOL(file_remove_privs);
1738
1739 /**
1740 * file_update_time - update mtime and ctime time
1741 * @file: file accessed
1742 *
1743 * Update the mtime and ctime members of an inode and mark the inode
1744 * for writeback. Note that this function is meant exclusively for
1745 * usage in the file write path of filesystems, and filesystems may
1746 * choose to explicitly ignore update via this function with the
1747 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1748 * timestamps are handled by the server. This can return an error for
1749 * file systems who need to allocate space in order to update an inode.
1750 */
1751
1752 int file_update_time(struct file *file)
1753 {
1754 struct inode *inode = file_inode(file);
1755 struct timespec now;
1756 int sync_it = 0;
1757 int ret;
1758
1759 /* First try to exhaust all avenues to not sync */
1760 if (IS_NOCMTIME(inode))
1761 return 0;
1762
1763 now = current_fs_time(inode->i_sb);
1764 if (!timespec_equal(&inode->i_mtime, &now))
1765 sync_it = S_MTIME;
1766
1767 if (!timespec_equal(&inode->i_ctime, &now))
1768 sync_it |= S_CTIME;
1769
1770 if (IS_I_VERSION(inode))
1771 sync_it |= S_VERSION;
1772
1773 if (!sync_it)
1774 return 0;
1775
1776 /* Finally allowed to write? Takes lock. */
1777 if (__mnt_want_write_file(file))
1778 return 0;
1779
1780 ret = update_time(inode, &now, sync_it);
1781 __mnt_drop_write_file(file);
1782
1783 return ret;
1784 }
1785 EXPORT_SYMBOL(file_update_time);
1786
1787 int inode_needs_sync(struct inode *inode)
1788 {
1789 if (IS_SYNC(inode))
1790 return 1;
1791 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1792 return 1;
1793 return 0;
1794 }
1795 EXPORT_SYMBOL(inode_needs_sync);
1796
1797 /*
1798 * If we try to find an inode in the inode hash while it is being
1799 * deleted, we have to wait until the filesystem completes its
1800 * deletion before reporting that it isn't found. This function waits
1801 * until the deletion _might_ have completed. Callers are responsible
1802 * to recheck inode state.
1803 *
1804 * It doesn't matter if I_NEW is not set initially, a call to
1805 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1806 * will DTRT.
1807 */
1808 static void __wait_on_freeing_inode(struct inode *inode)
1809 {
1810 wait_queue_head_t *wq;
1811 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1812 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1813 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1814 spin_unlock(&inode->i_lock);
1815 spin_unlock(&inode_hash_lock);
1816 schedule();
1817 finish_wait(wq, &wait.wait);
1818 spin_lock(&inode_hash_lock);
1819 }
1820
1821 static __initdata unsigned long ihash_entries;
1822 static int __init set_ihash_entries(char *str)
1823 {
1824 if (!str)
1825 return 0;
1826 ihash_entries = simple_strtoul(str, &str, 0);
1827 return 1;
1828 }
1829 __setup("ihash_entries=", set_ihash_entries);
1830
1831 /*
1832 * Initialize the waitqueues and inode hash table.
1833 */
1834 void __init inode_init_early(void)
1835 {
1836 unsigned int loop;
1837
1838 /* If hashes are distributed across NUMA nodes, defer
1839 * hash allocation until vmalloc space is available.
1840 */
1841 if (hashdist)
1842 return;
1843
1844 inode_hashtable =
1845 alloc_large_system_hash("Inode-cache",
1846 sizeof(struct hlist_head),
1847 ihash_entries,
1848 14,
1849 HASH_EARLY,
1850 &i_hash_shift,
1851 &i_hash_mask,
1852 0,
1853 0);
1854
1855 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1856 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1857 }
1858
1859 void __init inode_init(void)
1860 {
1861 unsigned int loop;
1862
1863 /* inode slab cache */
1864 inode_cachep = kmem_cache_create("inode_cache",
1865 sizeof(struct inode),
1866 0,
1867 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1868 SLAB_MEM_SPREAD),
1869 init_once);
1870
1871 /* Hash may have been set up in inode_init_early */
1872 if (!hashdist)
1873 return;
1874
1875 inode_hashtable =
1876 alloc_large_system_hash("Inode-cache",
1877 sizeof(struct hlist_head),
1878 ihash_entries,
1879 14,
1880 0,
1881 &i_hash_shift,
1882 &i_hash_mask,
1883 0,
1884 0);
1885
1886 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1887 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1888 }
1889
1890 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1891 {
1892 inode->i_mode = mode;
1893 if (S_ISCHR(mode)) {
1894 inode->i_fop = &def_chr_fops;
1895 inode->i_rdev = rdev;
1896 } else if (S_ISBLK(mode)) {
1897 inode->i_fop = &def_blk_fops;
1898 inode->i_rdev = rdev;
1899 } else if (S_ISFIFO(mode))
1900 inode->i_fop = &pipefifo_fops;
1901 else if (S_ISSOCK(mode))
1902 ; /* leave it no_open_fops */
1903 else
1904 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1905 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1906 inode->i_ino);
1907 }
1908 EXPORT_SYMBOL(init_special_inode);
1909
1910 /**
1911 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1912 * @inode: New inode
1913 * @dir: Directory inode
1914 * @mode: mode of the new inode
1915 */
1916 void inode_init_owner(struct inode *inode, const struct inode *dir,
1917 umode_t mode)
1918 {
1919 inode->i_uid = current_fsuid();
1920 if (dir && dir->i_mode & S_ISGID) {
1921 inode->i_gid = dir->i_gid;
1922 if (S_ISDIR(mode))
1923 mode |= S_ISGID;
1924 } else
1925 inode->i_gid = current_fsgid();
1926 inode->i_mode = mode;
1927 }
1928 EXPORT_SYMBOL(inode_init_owner);
1929
1930 /**
1931 * inode_owner_or_capable - check current task permissions to inode
1932 * @inode: inode being checked
1933 *
1934 * Return true if current either has CAP_FOWNER in a namespace with the
1935 * inode owner uid mapped, or owns the file.
1936 */
1937 bool inode_owner_or_capable(const struct inode *inode)
1938 {
1939 struct user_namespace *ns;
1940
1941 if (uid_eq(current_fsuid(), inode->i_uid))
1942 return true;
1943
1944 ns = current_user_ns();
1945 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1946 return true;
1947 return false;
1948 }
1949 EXPORT_SYMBOL(inode_owner_or_capable);
1950
1951 /*
1952 * Direct i/o helper functions
1953 */
1954 static void __inode_dio_wait(struct inode *inode)
1955 {
1956 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1957 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1958
1959 do {
1960 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1961 if (atomic_read(&inode->i_dio_count))
1962 schedule();
1963 } while (atomic_read(&inode->i_dio_count));
1964 finish_wait(wq, &q.wait);
1965 }
1966
1967 /**
1968 * inode_dio_wait - wait for outstanding DIO requests to finish
1969 * @inode: inode to wait for
1970 *
1971 * Waits for all pending direct I/O requests to finish so that we can
1972 * proceed with a truncate or equivalent operation.
1973 *
1974 * Must be called under a lock that serializes taking new references
1975 * to i_dio_count, usually by inode->i_mutex.
1976 */
1977 void inode_dio_wait(struct inode *inode)
1978 {
1979 if (atomic_read(&inode->i_dio_count))
1980 __inode_dio_wait(inode);
1981 }
1982 EXPORT_SYMBOL(inode_dio_wait);
1983
1984 /*
1985 * inode_set_flags - atomically set some inode flags
1986 *
1987 * Note: the caller should be holding i_mutex, or else be sure that
1988 * they have exclusive access to the inode structure (i.e., while the
1989 * inode is being instantiated). The reason for the cmpxchg() loop
1990 * --- which wouldn't be necessary if all code paths which modify
1991 * i_flags actually followed this rule, is that there is at least one
1992 * code path which doesn't today so we use cmpxchg() out of an abundance
1993 * of caution.
1994 *
1995 * In the long run, i_mutex is overkill, and we should probably look
1996 * at using the i_lock spinlock to protect i_flags, and then make sure
1997 * it is so documented in include/linux/fs.h and that all code follows
1998 * the locking convention!!
1999 */
2000 void inode_set_flags(struct inode *inode, unsigned int flags,
2001 unsigned int mask)
2002 {
2003 unsigned int old_flags, new_flags;
2004
2005 WARN_ON_ONCE(flags & ~mask);
2006 do {
2007 old_flags = ACCESS_ONCE(inode->i_flags);
2008 new_flags = (old_flags & ~mask) | flags;
2009 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2010 new_flags) != old_flags));
2011 }
2012 EXPORT_SYMBOL(inode_set_flags);