]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
09e2d7a5f1d2f0b22e21d7e9ef63f7a947d1b049
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27
28 /*
29 * This is needed for the following functions:
30 * - inode_has_buffers
31 * - invalidate_bdev
32 *
33 * FIXME: remove all knowledge of the buffer layer from this file
34 */
35 #include <linux/buffer_head.h>
36
37 /*
38 * New inode.c implementation.
39 *
40 * This implementation has the basic premise of trying
41 * to be extremely low-overhead and SMP-safe, yet be
42 * simple enough to be "obviously correct".
43 *
44 * Famous last words.
45 */
46
47 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
48
49 /* #define INODE_PARANOIA 1 */
50 /* #define INODE_DEBUG 1 */
51
52 /*
53 * Inode lookup is no longer as critical as it used to be:
54 * most of the lookups are going to be through the dcache.
55 */
56 #define I_HASHBITS i_hash_shift
57 #define I_HASHMASK i_hash_mask
58
59 static unsigned int i_hash_mask __read_mostly;
60 static unsigned int i_hash_shift __read_mostly;
61
62 /*
63 * Each inode can be on two separate lists. One is
64 * the hash list of the inode, used for lookups. The
65 * other linked list is the "type" list:
66 * "in_use" - valid inode, i_count > 0, i_nlink > 0
67 * "dirty" - as "in_use" but also dirty
68 * "unused" - valid inode, i_count = 0
69 *
70 * A "dirty" list is maintained for each super block,
71 * allowing for low-overhead inode sync() operations.
72 */
73
74 static LIST_HEAD(inode_lru);
75 static struct hlist_head *inode_hashtable __read_mostly;
76
77 /*
78 * A simple spinlock to protect the list manipulations.
79 *
80 * NOTE! You also have to own the lock if you change
81 * the i_state of an inode while it is in use..
82 */
83 DEFINE_SPINLOCK(inode_lock);
84
85 /*
86 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
87 * icache shrinking path, and the umount path. Without this exclusion,
88 * by the time prune_icache calls iput for the inode whose pages it has
89 * been invalidating, or by the time it calls clear_inode & destroy_inode
90 * from its final dispose_list, the struct super_block they refer to
91 * (for inode->i_sb->s_op) may already have been freed and reused.
92 *
93 * We make this an rwsem because the fastpath is icache shrinking. In
94 * some cases a filesystem may be doing a significant amount of work in
95 * its inode reclaim code, so this should improve parallelism.
96 */
97 static DECLARE_RWSEM(iprune_sem);
98
99 /*
100 * Statistics gathering..
101 */
102 struct inodes_stat_t inodes_stat;
103
104 static struct percpu_counter nr_inodes __cacheline_aligned_in_smp;
105 static struct percpu_counter nr_inodes_unused __cacheline_aligned_in_smp;
106
107 static struct kmem_cache *inode_cachep __read_mostly;
108
109 static inline int get_nr_inodes(void)
110 {
111 return percpu_counter_sum_positive(&nr_inodes);
112 }
113
114 static inline int get_nr_inodes_unused(void)
115 {
116 return percpu_counter_sum_positive(&nr_inodes_unused);
117 }
118
119 int get_nr_dirty_inodes(void)
120 {
121 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
122 return nr_dirty > 0 ? nr_dirty : 0;
123
124 }
125
126 /*
127 * Handle nr_inode sysctl
128 */
129 #ifdef CONFIG_SYSCTL
130 int proc_nr_inodes(ctl_table *table, int write,
131 void __user *buffer, size_t *lenp, loff_t *ppos)
132 {
133 inodes_stat.nr_inodes = get_nr_inodes();
134 inodes_stat.nr_unused = get_nr_inodes_unused();
135 return proc_dointvec(table, write, buffer, lenp, ppos);
136 }
137 #endif
138
139 static void wake_up_inode(struct inode *inode)
140 {
141 /*
142 * Prevent speculative execution through spin_unlock(&inode_lock);
143 */
144 smp_mb();
145 wake_up_bit(&inode->i_state, __I_NEW);
146 }
147
148 /**
149 * inode_init_always - perform inode structure intialisation
150 * @sb: superblock inode belongs to
151 * @inode: inode to initialise
152 *
153 * These are initializations that need to be done on every inode
154 * allocation as the fields are not initialised by slab allocation.
155 */
156 int inode_init_always(struct super_block *sb, struct inode *inode)
157 {
158 static const struct address_space_operations empty_aops;
159 static const struct inode_operations empty_iops;
160 static const struct file_operations empty_fops;
161 struct address_space *const mapping = &inode->i_data;
162
163 inode->i_sb = sb;
164 inode->i_blkbits = sb->s_blocksize_bits;
165 inode->i_flags = 0;
166 atomic_set(&inode->i_count, 1);
167 inode->i_op = &empty_iops;
168 inode->i_fop = &empty_fops;
169 inode->i_nlink = 1;
170 inode->i_uid = 0;
171 inode->i_gid = 0;
172 atomic_set(&inode->i_writecount, 0);
173 inode->i_size = 0;
174 inode->i_blocks = 0;
175 inode->i_bytes = 0;
176 inode->i_generation = 0;
177 #ifdef CONFIG_QUOTA
178 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
179 #endif
180 inode->i_pipe = NULL;
181 inode->i_bdev = NULL;
182 inode->i_cdev = NULL;
183 inode->i_rdev = 0;
184 inode->dirtied_when = 0;
185
186 if (security_inode_alloc(inode))
187 goto out;
188 spin_lock_init(&inode->i_lock);
189 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
190
191 mutex_init(&inode->i_mutex);
192 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
193
194 init_rwsem(&inode->i_alloc_sem);
195 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
196
197 mapping->a_ops = &empty_aops;
198 mapping->host = inode;
199 mapping->flags = 0;
200 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
201 mapping->assoc_mapping = NULL;
202 mapping->backing_dev_info = &default_backing_dev_info;
203 mapping->writeback_index = 0;
204
205 /*
206 * If the block_device provides a backing_dev_info for client
207 * inodes then use that. Otherwise the inode share the bdev's
208 * backing_dev_info.
209 */
210 if (sb->s_bdev) {
211 struct backing_dev_info *bdi;
212
213 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
214 mapping->backing_dev_info = bdi;
215 }
216 inode->i_private = NULL;
217 inode->i_mapping = mapping;
218 #ifdef CONFIG_FS_POSIX_ACL
219 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
220 #endif
221
222 #ifdef CONFIG_FSNOTIFY
223 inode->i_fsnotify_mask = 0;
224 #endif
225
226 percpu_counter_inc(&nr_inodes);
227
228 return 0;
229 out:
230 return -ENOMEM;
231 }
232 EXPORT_SYMBOL(inode_init_always);
233
234 static struct inode *alloc_inode(struct super_block *sb)
235 {
236 struct inode *inode;
237
238 if (sb->s_op->alloc_inode)
239 inode = sb->s_op->alloc_inode(sb);
240 else
241 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
242
243 if (!inode)
244 return NULL;
245
246 if (unlikely(inode_init_always(sb, inode))) {
247 if (inode->i_sb->s_op->destroy_inode)
248 inode->i_sb->s_op->destroy_inode(inode);
249 else
250 kmem_cache_free(inode_cachep, inode);
251 return NULL;
252 }
253
254 return inode;
255 }
256
257 void __destroy_inode(struct inode *inode)
258 {
259 BUG_ON(inode_has_buffers(inode));
260 security_inode_free(inode);
261 fsnotify_inode_delete(inode);
262 #ifdef CONFIG_FS_POSIX_ACL
263 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
264 posix_acl_release(inode->i_acl);
265 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
266 posix_acl_release(inode->i_default_acl);
267 #endif
268 percpu_counter_dec(&nr_inodes);
269 }
270 EXPORT_SYMBOL(__destroy_inode);
271
272 static void destroy_inode(struct inode *inode)
273 {
274 BUG_ON(!list_empty(&inode->i_lru));
275 __destroy_inode(inode);
276 if (inode->i_sb->s_op->destroy_inode)
277 inode->i_sb->s_op->destroy_inode(inode);
278 else
279 kmem_cache_free(inode_cachep, (inode));
280 }
281
282 /*
283 * These are initializations that only need to be done
284 * once, because the fields are idempotent across use
285 * of the inode, so let the slab aware of that.
286 */
287 void inode_init_once(struct inode *inode)
288 {
289 memset(inode, 0, sizeof(*inode));
290 INIT_HLIST_NODE(&inode->i_hash);
291 INIT_LIST_HEAD(&inode->i_dentry);
292 INIT_LIST_HEAD(&inode->i_devices);
293 INIT_LIST_HEAD(&inode->i_wb_list);
294 INIT_LIST_HEAD(&inode->i_lru);
295 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
296 spin_lock_init(&inode->i_data.tree_lock);
297 spin_lock_init(&inode->i_data.i_mmap_lock);
298 INIT_LIST_HEAD(&inode->i_data.private_list);
299 spin_lock_init(&inode->i_data.private_lock);
300 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
301 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
302 i_size_ordered_init(inode);
303 #ifdef CONFIG_FSNOTIFY
304 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
305 #endif
306 }
307 EXPORT_SYMBOL(inode_init_once);
308
309 static void init_once(void *foo)
310 {
311 struct inode *inode = (struct inode *) foo;
312
313 inode_init_once(inode);
314 }
315
316 /*
317 * inode_lock must be held
318 */
319 void __iget(struct inode *inode)
320 {
321 atomic_inc(&inode->i_count);
322 }
323
324 /*
325 * get additional reference to inode; caller must already hold one.
326 */
327 void ihold(struct inode *inode)
328 {
329 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
330 }
331 EXPORT_SYMBOL(ihold);
332
333 static void inode_lru_list_add(struct inode *inode)
334 {
335 if (list_empty(&inode->i_lru)) {
336 list_add(&inode->i_lru, &inode_lru);
337 percpu_counter_inc(&nr_inodes_unused);
338 }
339 }
340
341 static void inode_lru_list_del(struct inode *inode)
342 {
343 if (!list_empty(&inode->i_lru)) {
344 list_del_init(&inode->i_lru);
345 percpu_counter_dec(&nr_inodes_unused);
346 }
347 }
348
349 static inline void __inode_sb_list_add(struct inode *inode)
350 {
351 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
352 }
353
354 /**
355 * inode_sb_list_add - add inode to the superblock list of inodes
356 * @inode: inode to add
357 */
358 void inode_sb_list_add(struct inode *inode)
359 {
360 spin_lock(&inode_lock);
361 __inode_sb_list_add(inode);
362 spin_unlock(&inode_lock);
363 }
364 EXPORT_SYMBOL_GPL(inode_sb_list_add);
365
366 static inline void __inode_sb_list_del(struct inode *inode)
367 {
368 list_del_init(&inode->i_sb_list);
369 }
370
371 static unsigned long hash(struct super_block *sb, unsigned long hashval)
372 {
373 unsigned long tmp;
374
375 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
376 L1_CACHE_BYTES;
377 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
378 return tmp & I_HASHMASK;
379 }
380
381 /**
382 * __insert_inode_hash - hash an inode
383 * @inode: unhashed inode
384 * @hashval: unsigned long value used to locate this object in the
385 * inode_hashtable.
386 *
387 * Add an inode to the inode hash for this superblock.
388 */
389 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
390 {
391 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
392
393 spin_lock(&inode_lock);
394 hlist_add_head(&inode->i_hash, b);
395 spin_unlock(&inode_lock);
396 }
397 EXPORT_SYMBOL(__insert_inode_hash);
398
399 /**
400 * __remove_inode_hash - remove an inode from the hash
401 * @inode: inode to unhash
402 *
403 * Remove an inode from the superblock.
404 */
405 static void __remove_inode_hash(struct inode *inode)
406 {
407 hlist_del_init(&inode->i_hash);
408 }
409
410 /**
411 * remove_inode_hash - remove an inode from the hash
412 * @inode: inode to unhash
413 *
414 * Remove an inode from the superblock.
415 */
416 void remove_inode_hash(struct inode *inode)
417 {
418 spin_lock(&inode_lock);
419 hlist_del_init(&inode->i_hash);
420 spin_unlock(&inode_lock);
421 }
422 EXPORT_SYMBOL(remove_inode_hash);
423
424 void end_writeback(struct inode *inode)
425 {
426 might_sleep();
427 BUG_ON(inode->i_data.nrpages);
428 BUG_ON(!list_empty(&inode->i_data.private_list));
429 BUG_ON(!(inode->i_state & I_FREEING));
430 BUG_ON(inode->i_state & I_CLEAR);
431 inode_sync_wait(inode);
432 inode->i_state = I_FREEING | I_CLEAR;
433 }
434 EXPORT_SYMBOL(end_writeback);
435
436 static void evict(struct inode *inode)
437 {
438 const struct super_operations *op = inode->i_sb->s_op;
439
440 if (op->evict_inode) {
441 op->evict_inode(inode);
442 } else {
443 if (inode->i_data.nrpages)
444 truncate_inode_pages(&inode->i_data, 0);
445 end_writeback(inode);
446 }
447 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
448 bd_forget(inode);
449 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
450 cd_forget(inode);
451 }
452
453 /*
454 * dispose_list - dispose of the contents of a local list
455 * @head: the head of the list to free
456 *
457 * Dispose-list gets a local list with local inodes in it, so it doesn't
458 * need to worry about list corruption and SMP locks.
459 */
460 static void dispose_list(struct list_head *head)
461 {
462 while (!list_empty(head)) {
463 struct inode *inode;
464
465 inode = list_first_entry(head, struct inode, i_lru);
466 list_del_init(&inode->i_lru);
467
468 evict(inode);
469
470 spin_lock(&inode_lock);
471 __remove_inode_hash(inode);
472 __inode_sb_list_del(inode);
473 spin_unlock(&inode_lock);
474
475 wake_up_inode(inode);
476 destroy_inode(inode);
477 }
478 }
479
480 /*
481 * Invalidate all inodes for a device.
482 */
483 static int invalidate_list(struct list_head *head, struct list_head *dispose)
484 {
485 struct list_head *next;
486 int busy = 0;
487
488 next = head->next;
489 for (;;) {
490 struct list_head *tmp = next;
491 struct inode *inode;
492
493 /*
494 * We can reschedule here without worrying about the list's
495 * consistency because the per-sb list of inodes must not
496 * change during umount anymore, and because iprune_sem keeps
497 * shrink_icache_memory() away.
498 */
499 cond_resched_lock(&inode_lock);
500
501 next = next->next;
502 if (tmp == head)
503 break;
504 inode = list_entry(tmp, struct inode, i_sb_list);
505 if (inode->i_state & I_NEW)
506 continue;
507 if (atomic_read(&inode->i_count)) {
508 busy = 1;
509 continue;
510 }
511
512 inode->i_state |= I_FREEING;
513
514 /*
515 * Move the inode off the IO lists and LRU once I_FREEING is
516 * set so that it won't get moved back on there if it is dirty.
517 */
518 list_move(&inode->i_lru, dispose);
519 list_del_init(&inode->i_wb_list);
520 if (!(inode->i_state & (I_DIRTY | I_SYNC)))
521 percpu_counter_dec(&nr_inodes_unused);
522 }
523 return busy;
524 }
525
526 /**
527 * invalidate_inodes - discard the inodes on a device
528 * @sb: superblock
529 *
530 * Discard all of the inodes for a given superblock. If the discard
531 * fails because there are busy inodes then a non zero value is returned.
532 * If the discard is successful all the inodes have been discarded.
533 */
534 int invalidate_inodes(struct super_block *sb)
535 {
536 int busy;
537 LIST_HEAD(throw_away);
538
539 down_write(&iprune_sem);
540 spin_lock(&inode_lock);
541 fsnotify_unmount_inodes(&sb->s_inodes);
542 busy = invalidate_list(&sb->s_inodes, &throw_away);
543 spin_unlock(&inode_lock);
544
545 dispose_list(&throw_away);
546 up_write(&iprune_sem);
547
548 return busy;
549 }
550
551 static int can_unuse(struct inode *inode)
552 {
553 if (inode->i_state & ~I_REFERENCED)
554 return 0;
555 if (inode_has_buffers(inode))
556 return 0;
557 if (atomic_read(&inode->i_count))
558 return 0;
559 if (inode->i_data.nrpages)
560 return 0;
561 return 1;
562 }
563
564 /*
565 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
566 * temporary list and then are freed outside inode_lock by dispose_list().
567 *
568 * Any inodes which are pinned purely because of attached pagecache have their
569 * pagecache removed. If the inode has metadata buffers attached to
570 * mapping->private_list then try to remove them.
571 *
572 * If the inode has the I_REFERENCED flag set, then it means that it has been
573 * used recently - the flag is set in iput_final(). When we encounter such an
574 * inode, clear the flag and move it to the back of the LRU so it gets another
575 * pass through the LRU before it gets reclaimed. This is necessary because of
576 * the fact we are doing lazy LRU updates to minimise lock contention so the
577 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
578 * with this flag set because they are the inodes that are out of order.
579 */
580 static void prune_icache(int nr_to_scan)
581 {
582 LIST_HEAD(freeable);
583 int nr_scanned;
584 unsigned long reap = 0;
585
586 down_read(&iprune_sem);
587 spin_lock(&inode_lock);
588 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
589 struct inode *inode;
590
591 if (list_empty(&inode_lru))
592 break;
593
594 inode = list_entry(inode_lru.prev, struct inode, i_lru);
595
596 /*
597 * Referenced or dirty inodes are still in use. Give them
598 * another pass through the LRU as we canot reclaim them now.
599 */
600 if (atomic_read(&inode->i_count) ||
601 (inode->i_state & ~I_REFERENCED)) {
602 list_del_init(&inode->i_lru);
603 percpu_counter_dec(&nr_inodes_unused);
604 continue;
605 }
606
607 /* recently referenced inodes get one more pass */
608 if (inode->i_state & I_REFERENCED) {
609 list_move(&inode->i_lru, &inode_lru);
610 inode->i_state &= ~I_REFERENCED;
611 continue;
612 }
613 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
614 __iget(inode);
615 spin_unlock(&inode_lock);
616 if (remove_inode_buffers(inode))
617 reap += invalidate_mapping_pages(&inode->i_data,
618 0, -1);
619 iput(inode);
620 spin_lock(&inode_lock);
621
622 if (inode != list_entry(inode_lru.next,
623 struct inode, i_lru))
624 continue; /* wrong inode or list_empty */
625 if (!can_unuse(inode))
626 continue;
627 }
628 WARN_ON(inode->i_state & I_NEW);
629 inode->i_state |= I_FREEING;
630
631 /*
632 * Move the inode off the IO lists and LRU once I_FREEING is
633 * set so that it won't get moved back on there if it is dirty.
634 */
635 list_move(&inode->i_lru, &freeable);
636 list_del_init(&inode->i_wb_list);
637 percpu_counter_dec(&nr_inodes_unused);
638 }
639 if (current_is_kswapd())
640 __count_vm_events(KSWAPD_INODESTEAL, reap);
641 else
642 __count_vm_events(PGINODESTEAL, reap);
643 spin_unlock(&inode_lock);
644
645 dispose_list(&freeable);
646 up_read(&iprune_sem);
647 }
648
649 /*
650 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
651 * "unused" means that no dentries are referring to the inodes: the files are
652 * not open and the dcache references to those inodes have already been
653 * reclaimed.
654 *
655 * This function is passed the number of inodes to scan, and it returns the
656 * total number of remaining possibly-reclaimable inodes.
657 */
658 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
659 {
660 if (nr) {
661 /*
662 * Nasty deadlock avoidance. We may hold various FS locks,
663 * and we don't want to recurse into the FS that called us
664 * in clear_inode() and friends..
665 */
666 if (!(gfp_mask & __GFP_FS))
667 return -1;
668 prune_icache(nr);
669 }
670 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
671 }
672
673 static struct shrinker icache_shrinker = {
674 .shrink = shrink_icache_memory,
675 .seeks = DEFAULT_SEEKS,
676 };
677
678 static void __wait_on_freeing_inode(struct inode *inode);
679 /*
680 * Called with the inode lock held.
681 */
682 static struct inode *find_inode(struct super_block *sb,
683 struct hlist_head *head,
684 int (*test)(struct inode *, void *),
685 void *data)
686 {
687 struct hlist_node *node;
688 struct inode *inode = NULL;
689
690 repeat:
691 hlist_for_each_entry(inode, node, head, i_hash) {
692 if (inode->i_sb != sb)
693 continue;
694 if (!test(inode, data))
695 continue;
696 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
697 __wait_on_freeing_inode(inode);
698 goto repeat;
699 }
700 __iget(inode);
701 return inode;
702 }
703 return NULL;
704 }
705
706 /*
707 * find_inode_fast is the fast path version of find_inode, see the comment at
708 * iget_locked for details.
709 */
710 static struct inode *find_inode_fast(struct super_block *sb,
711 struct hlist_head *head, unsigned long ino)
712 {
713 struct hlist_node *node;
714 struct inode *inode = NULL;
715
716 repeat:
717 hlist_for_each_entry(inode, node, head, i_hash) {
718 if (inode->i_ino != ino)
719 continue;
720 if (inode->i_sb != sb)
721 continue;
722 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
723 __wait_on_freeing_inode(inode);
724 goto repeat;
725 }
726 __iget(inode);
727 return inode;
728 }
729 return NULL;
730 }
731
732 /*
733 * Each cpu owns a range of LAST_INO_BATCH numbers.
734 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
735 * to renew the exhausted range.
736 *
737 * This does not significantly increase overflow rate because every CPU can
738 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
739 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
740 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
741 * overflow rate by 2x, which does not seem too significant.
742 *
743 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
744 * error if st_ino won't fit in target struct field. Use 32bit counter
745 * here to attempt to avoid that.
746 */
747 #define LAST_INO_BATCH 1024
748 static DEFINE_PER_CPU(unsigned int, last_ino);
749
750 unsigned int get_next_ino(void)
751 {
752 unsigned int *p = &get_cpu_var(last_ino);
753 unsigned int res = *p;
754
755 #ifdef CONFIG_SMP
756 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
757 static atomic_t shared_last_ino;
758 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
759
760 res = next - LAST_INO_BATCH;
761 }
762 #endif
763
764 *p = ++res;
765 put_cpu_var(last_ino);
766 return res;
767 }
768 EXPORT_SYMBOL(get_next_ino);
769
770 /**
771 * new_inode - obtain an inode
772 * @sb: superblock
773 *
774 * Allocates a new inode for given superblock. The default gfp_mask
775 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
776 * If HIGHMEM pages are unsuitable or it is known that pages allocated
777 * for the page cache are not reclaimable or migratable,
778 * mapping_set_gfp_mask() must be called with suitable flags on the
779 * newly created inode's mapping
780 *
781 */
782 struct inode *new_inode(struct super_block *sb)
783 {
784 struct inode *inode;
785
786 spin_lock_prefetch(&inode_lock);
787
788 inode = alloc_inode(sb);
789 if (inode) {
790 spin_lock(&inode_lock);
791 __inode_sb_list_add(inode);
792 inode->i_state = 0;
793 spin_unlock(&inode_lock);
794 }
795 return inode;
796 }
797 EXPORT_SYMBOL(new_inode);
798
799 void unlock_new_inode(struct inode *inode)
800 {
801 #ifdef CONFIG_DEBUG_LOCK_ALLOC
802 if (S_ISDIR(inode->i_mode)) {
803 struct file_system_type *type = inode->i_sb->s_type;
804
805 /* Set new key only if filesystem hasn't already changed it */
806 if (!lockdep_match_class(&inode->i_mutex,
807 &type->i_mutex_key)) {
808 /*
809 * ensure nobody is actually holding i_mutex
810 */
811 mutex_destroy(&inode->i_mutex);
812 mutex_init(&inode->i_mutex);
813 lockdep_set_class(&inode->i_mutex,
814 &type->i_mutex_dir_key);
815 }
816 }
817 #endif
818 /*
819 * This is special! We do not need the spinlock when clearing I_NEW,
820 * because we're guaranteed that nobody else tries to do anything about
821 * the state of the inode when it is locked, as we just created it (so
822 * there can be no old holders that haven't tested I_NEW).
823 * However we must emit the memory barrier so that other CPUs reliably
824 * see the clearing of I_NEW after the other inode initialisation has
825 * completed.
826 */
827 smp_mb();
828 WARN_ON(!(inode->i_state & I_NEW));
829 inode->i_state &= ~I_NEW;
830 wake_up_inode(inode);
831 }
832 EXPORT_SYMBOL(unlock_new_inode);
833
834 /*
835 * This is called without the inode lock held.. Be careful.
836 *
837 * We no longer cache the sb_flags in i_flags - see fs.h
838 * -- rmk@arm.uk.linux.org
839 */
840 static struct inode *get_new_inode(struct super_block *sb,
841 struct hlist_head *head,
842 int (*test)(struct inode *, void *),
843 int (*set)(struct inode *, void *),
844 void *data)
845 {
846 struct inode *inode;
847
848 inode = alloc_inode(sb);
849 if (inode) {
850 struct inode *old;
851
852 spin_lock(&inode_lock);
853 /* We released the lock, so.. */
854 old = find_inode(sb, head, test, data);
855 if (!old) {
856 if (set(inode, data))
857 goto set_failed;
858
859 hlist_add_head(&inode->i_hash, head);
860 __inode_sb_list_add(inode);
861 inode->i_state = I_NEW;
862 spin_unlock(&inode_lock);
863
864 /* Return the locked inode with I_NEW set, the
865 * caller is responsible for filling in the contents
866 */
867 return inode;
868 }
869
870 /*
871 * Uhhuh, somebody else created the same inode under
872 * us. Use the old inode instead of the one we just
873 * allocated.
874 */
875 spin_unlock(&inode_lock);
876 destroy_inode(inode);
877 inode = old;
878 wait_on_inode(inode);
879 }
880 return inode;
881
882 set_failed:
883 spin_unlock(&inode_lock);
884 destroy_inode(inode);
885 return NULL;
886 }
887
888 /*
889 * get_new_inode_fast is the fast path version of get_new_inode, see the
890 * comment at iget_locked for details.
891 */
892 static struct inode *get_new_inode_fast(struct super_block *sb,
893 struct hlist_head *head, unsigned long ino)
894 {
895 struct inode *inode;
896
897 inode = alloc_inode(sb);
898 if (inode) {
899 struct inode *old;
900
901 spin_lock(&inode_lock);
902 /* We released the lock, so.. */
903 old = find_inode_fast(sb, head, ino);
904 if (!old) {
905 inode->i_ino = ino;
906 hlist_add_head(&inode->i_hash, head);
907 __inode_sb_list_add(inode);
908 inode->i_state = I_NEW;
909 spin_unlock(&inode_lock);
910
911 /* Return the locked inode with I_NEW set, the
912 * caller is responsible for filling in the contents
913 */
914 return inode;
915 }
916
917 /*
918 * Uhhuh, somebody else created the same inode under
919 * us. Use the old inode instead of the one we just
920 * allocated.
921 */
922 spin_unlock(&inode_lock);
923 destroy_inode(inode);
924 inode = old;
925 wait_on_inode(inode);
926 }
927 return inode;
928 }
929
930 /*
931 * search the inode cache for a matching inode number.
932 * If we find one, then the inode number we are trying to
933 * allocate is not unique and so we should not use it.
934 *
935 * Returns 1 if the inode number is unique, 0 if it is not.
936 */
937 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
938 {
939 struct hlist_head *b = inode_hashtable + hash(sb, ino);
940 struct hlist_node *node;
941 struct inode *inode;
942
943 hlist_for_each_entry(inode, node, b, i_hash) {
944 if (inode->i_ino == ino && inode->i_sb == sb)
945 return 0;
946 }
947
948 return 1;
949 }
950
951 /**
952 * iunique - get a unique inode number
953 * @sb: superblock
954 * @max_reserved: highest reserved inode number
955 *
956 * Obtain an inode number that is unique on the system for a given
957 * superblock. This is used by file systems that have no natural
958 * permanent inode numbering system. An inode number is returned that
959 * is higher than the reserved limit but unique.
960 *
961 * BUGS:
962 * With a large number of inodes live on the file system this function
963 * currently becomes quite slow.
964 */
965 ino_t iunique(struct super_block *sb, ino_t max_reserved)
966 {
967 /*
968 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
969 * error if st_ino won't fit in target struct field. Use 32bit counter
970 * here to attempt to avoid that.
971 */
972 static DEFINE_SPINLOCK(iunique_lock);
973 static unsigned int counter;
974 ino_t res;
975
976 spin_lock(&inode_lock);
977 spin_lock(&iunique_lock);
978 do {
979 if (counter <= max_reserved)
980 counter = max_reserved + 1;
981 res = counter++;
982 } while (!test_inode_iunique(sb, res));
983 spin_unlock(&iunique_lock);
984 spin_unlock(&inode_lock);
985
986 return res;
987 }
988 EXPORT_SYMBOL(iunique);
989
990 struct inode *igrab(struct inode *inode)
991 {
992 spin_lock(&inode_lock);
993 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
994 __iget(inode);
995 else
996 /*
997 * Handle the case where s_op->clear_inode is not been
998 * called yet, and somebody is calling igrab
999 * while the inode is getting freed.
1000 */
1001 inode = NULL;
1002 spin_unlock(&inode_lock);
1003 return inode;
1004 }
1005 EXPORT_SYMBOL(igrab);
1006
1007 /**
1008 * ifind - internal function, you want ilookup5() or iget5().
1009 * @sb: super block of file system to search
1010 * @head: the head of the list to search
1011 * @test: callback used for comparisons between inodes
1012 * @data: opaque data pointer to pass to @test
1013 * @wait: if true wait for the inode to be unlocked, if false do not
1014 *
1015 * ifind() searches for the inode specified by @data in the inode
1016 * cache. This is a generalized version of ifind_fast() for file systems where
1017 * the inode number is not sufficient for unique identification of an inode.
1018 *
1019 * If the inode is in the cache, the inode is returned with an incremented
1020 * reference count.
1021 *
1022 * Otherwise NULL is returned.
1023 *
1024 * Note, @test is called with the inode_lock held, so can't sleep.
1025 */
1026 static struct inode *ifind(struct super_block *sb,
1027 struct hlist_head *head, int (*test)(struct inode *, void *),
1028 void *data, const int wait)
1029 {
1030 struct inode *inode;
1031
1032 spin_lock(&inode_lock);
1033 inode = find_inode(sb, head, test, data);
1034 if (inode) {
1035 spin_unlock(&inode_lock);
1036 if (likely(wait))
1037 wait_on_inode(inode);
1038 return inode;
1039 }
1040 spin_unlock(&inode_lock);
1041 return NULL;
1042 }
1043
1044 /**
1045 * ifind_fast - internal function, you want ilookup() or iget().
1046 * @sb: super block of file system to search
1047 * @head: head of the list to search
1048 * @ino: inode number to search for
1049 *
1050 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1051 * file systems where the inode number is sufficient for unique identification
1052 * of an inode.
1053 *
1054 * If the inode is in the cache, the inode is returned with an incremented
1055 * reference count.
1056 *
1057 * Otherwise NULL is returned.
1058 */
1059 static struct inode *ifind_fast(struct super_block *sb,
1060 struct hlist_head *head, unsigned long ino)
1061 {
1062 struct inode *inode;
1063
1064 spin_lock(&inode_lock);
1065 inode = find_inode_fast(sb, head, ino);
1066 if (inode) {
1067 spin_unlock(&inode_lock);
1068 wait_on_inode(inode);
1069 return inode;
1070 }
1071 spin_unlock(&inode_lock);
1072 return NULL;
1073 }
1074
1075 /**
1076 * ilookup5_nowait - search for an inode in the inode cache
1077 * @sb: super block of file system to search
1078 * @hashval: hash value (usually inode number) to search for
1079 * @test: callback used for comparisons between inodes
1080 * @data: opaque data pointer to pass to @test
1081 *
1082 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1083 * @data in the inode cache. This is a generalized version of ilookup() for
1084 * file systems where the inode number is not sufficient for unique
1085 * identification of an inode.
1086 *
1087 * If the inode is in the cache, the inode is returned with an incremented
1088 * reference count. Note, the inode lock is not waited upon so you have to be
1089 * very careful what you do with the returned inode. You probably should be
1090 * using ilookup5() instead.
1091 *
1092 * Otherwise NULL is returned.
1093 *
1094 * Note, @test is called with the inode_lock held, so can't sleep.
1095 */
1096 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1097 int (*test)(struct inode *, void *), void *data)
1098 {
1099 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1100
1101 return ifind(sb, head, test, data, 0);
1102 }
1103 EXPORT_SYMBOL(ilookup5_nowait);
1104
1105 /**
1106 * ilookup5 - search for an inode in the inode cache
1107 * @sb: super block of file system to search
1108 * @hashval: hash value (usually inode number) to search for
1109 * @test: callback used for comparisons between inodes
1110 * @data: opaque data pointer to pass to @test
1111 *
1112 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1113 * @data in the inode cache. This is a generalized version of ilookup() for
1114 * file systems where the inode number is not sufficient for unique
1115 * identification of an inode.
1116 *
1117 * If the inode is in the cache, the inode lock is waited upon and the inode is
1118 * returned with an incremented reference count.
1119 *
1120 * Otherwise NULL is returned.
1121 *
1122 * Note, @test is called with the inode_lock held, so can't sleep.
1123 */
1124 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1125 int (*test)(struct inode *, void *), void *data)
1126 {
1127 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1128
1129 return ifind(sb, head, test, data, 1);
1130 }
1131 EXPORT_SYMBOL(ilookup5);
1132
1133 /**
1134 * ilookup - search for an inode in the inode cache
1135 * @sb: super block of file system to search
1136 * @ino: inode number to search for
1137 *
1138 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1139 * This is for file systems where the inode number is sufficient for unique
1140 * identification of an inode.
1141 *
1142 * If the inode is in the cache, the inode is returned with an incremented
1143 * reference count.
1144 *
1145 * Otherwise NULL is returned.
1146 */
1147 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1148 {
1149 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1150
1151 return ifind_fast(sb, head, ino);
1152 }
1153 EXPORT_SYMBOL(ilookup);
1154
1155 /**
1156 * iget5_locked - obtain an inode from a mounted file system
1157 * @sb: super block of file system
1158 * @hashval: hash value (usually inode number) to get
1159 * @test: callback used for comparisons between inodes
1160 * @set: callback used to initialize a new struct inode
1161 * @data: opaque data pointer to pass to @test and @set
1162 *
1163 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1164 * and @data in the inode cache and if present it is returned with an increased
1165 * reference count. This is a generalized version of iget_locked() for file
1166 * systems where the inode number is not sufficient for unique identification
1167 * of an inode.
1168 *
1169 * If the inode is not in cache, get_new_inode() is called to allocate a new
1170 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1171 * file system gets to fill it in before unlocking it via unlock_new_inode().
1172 *
1173 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1174 */
1175 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1176 int (*test)(struct inode *, void *),
1177 int (*set)(struct inode *, void *), void *data)
1178 {
1179 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1180 struct inode *inode;
1181
1182 inode = ifind(sb, head, test, data, 1);
1183 if (inode)
1184 return inode;
1185 /*
1186 * get_new_inode() will do the right thing, re-trying the search
1187 * in case it had to block at any point.
1188 */
1189 return get_new_inode(sb, head, test, set, data);
1190 }
1191 EXPORT_SYMBOL(iget5_locked);
1192
1193 /**
1194 * iget_locked - obtain an inode from a mounted file system
1195 * @sb: super block of file system
1196 * @ino: inode number to get
1197 *
1198 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1199 * the inode cache and if present it is returned with an increased reference
1200 * count. This is for file systems where the inode number is sufficient for
1201 * unique identification of an inode.
1202 *
1203 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1204 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1205 * The file system gets to fill it in before unlocking it via
1206 * unlock_new_inode().
1207 */
1208 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1209 {
1210 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1211 struct inode *inode;
1212
1213 inode = ifind_fast(sb, head, ino);
1214 if (inode)
1215 return inode;
1216 /*
1217 * get_new_inode_fast() will do the right thing, re-trying the search
1218 * in case it had to block at any point.
1219 */
1220 return get_new_inode_fast(sb, head, ino);
1221 }
1222 EXPORT_SYMBOL(iget_locked);
1223
1224 int insert_inode_locked(struct inode *inode)
1225 {
1226 struct super_block *sb = inode->i_sb;
1227 ino_t ino = inode->i_ino;
1228 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1229
1230 inode->i_state |= I_NEW;
1231 while (1) {
1232 struct hlist_node *node;
1233 struct inode *old = NULL;
1234 spin_lock(&inode_lock);
1235 hlist_for_each_entry(old, node, head, i_hash) {
1236 if (old->i_ino != ino)
1237 continue;
1238 if (old->i_sb != sb)
1239 continue;
1240 if (old->i_state & (I_FREEING|I_WILL_FREE))
1241 continue;
1242 break;
1243 }
1244 if (likely(!node)) {
1245 hlist_add_head(&inode->i_hash, head);
1246 spin_unlock(&inode_lock);
1247 return 0;
1248 }
1249 __iget(old);
1250 spin_unlock(&inode_lock);
1251 wait_on_inode(old);
1252 if (unlikely(!inode_unhashed(old))) {
1253 iput(old);
1254 return -EBUSY;
1255 }
1256 iput(old);
1257 }
1258 }
1259 EXPORT_SYMBOL(insert_inode_locked);
1260
1261 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1262 int (*test)(struct inode *, void *), void *data)
1263 {
1264 struct super_block *sb = inode->i_sb;
1265 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1266
1267 inode->i_state |= I_NEW;
1268
1269 while (1) {
1270 struct hlist_node *node;
1271 struct inode *old = NULL;
1272
1273 spin_lock(&inode_lock);
1274 hlist_for_each_entry(old, node, head, i_hash) {
1275 if (old->i_sb != sb)
1276 continue;
1277 if (!test(old, data))
1278 continue;
1279 if (old->i_state & (I_FREEING|I_WILL_FREE))
1280 continue;
1281 break;
1282 }
1283 if (likely(!node)) {
1284 hlist_add_head(&inode->i_hash, head);
1285 spin_unlock(&inode_lock);
1286 return 0;
1287 }
1288 __iget(old);
1289 spin_unlock(&inode_lock);
1290 wait_on_inode(old);
1291 if (unlikely(!inode_unhashed(old))) {
1292 iput(old);
1293 return -EBUSY;
1294 }
1295 iput(old);
1296 }
1297 }
1298 EXPORT_SYMBOL(insert_inode_locked4);
1299
1300
1301 int generic_delete_inode(struct inode *inode)
1302 {
1303 return 1;
1304 }
1305 EXPORT_SYMBOL(generic_delete_inode);
1306
1307 /*
1308 * Normal UNIX filesystem behaviour: delete the
1309 * inode when the usage count drops to zero, and
1310 * i_nlink is zero.
1311 */
1312 int generic_drop_inode(struct inode *inode)
1313 {
1314 return !inode->i_nlink || inode_unhashed(inode);
1315 }
1316 EXPORT_SYMBOL_GPL(generic_drop_inode);
1317
1318 /*
1319 * Called when we're dropping the last reference
1320 * to an inode.
1321 *
1322 * Call the FS "drop_inode()" function, defaulting to
1323 * the legacy UNIX filesystem behaviour. If it tells
1324 * us to evict inode, do so. Otherwise, retain inode
1325 * in cache if fs is alive, sync and evict if fs is
1326 * shutting down.
1327 */
1328 static void iput_final(struct inode *inode)
1329 {
1330 struct super_block *sb = inode->i_sb;
1331 const struct super_operations *op = inode->i_sb->s_op;
1332 int drop;
1333
1334 if (op && op->drop_inode)
1335 drop = op->drop_inode(inode);
1336 else
1337 drop = generic_drop_inode(inode);
1338
1339 if (!drop) {
1340 if (sb->s_flags & MS_ACTIVE) {
1341 inode->i_state |= I_REFERENCED;
1342 if (!(inode->i_state & (I_DIRTY|I_SYNC))) {
1343 inode_lru_list_add(inode);
1344 }
1345 spin_unlock(&inode_lock);
1346 return;
1347 }
1348 WARN_ON(inode->i_state & I_NEW);
1349 inode->i_state |= I_WILL_FREE;
1350 spin_unlock(&inode_lock);
1351 write_inode_now(inode, 1);
1352 spin_lock(&inode_lock);
1353 WARN_ON(inode->i_state & I_NEW);
1354 inode->i_state &= ~I_WILL_FREE;
1355 __remove_inode_hash(inode);
1356 }
1357
1358 WARN_ON(inode->i_state & I_NEW);
1359 inode->i_state |= I_FREEING;
1360
1361 /*
1362 * Move the inode off the IO lists and LRU once I_FREEING is
1363 * set so that it won't get moved back on there if it is dirty.
1364 */
1365 inode_lru_list_del(inode);
1366 list_del_init(&inode->i_wb_list);
1367
1368 __inode_sb_list_del(inode);
1369 spin_unlock(&inode_lock);
1370 evict(inode);
1371 remove_inode_hash(inode);
1372 wake_up_inode(inode);
1373 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1374 destroy_inode(inode);
1375 }
1376
1377 /**
1378 * iput - put an inode
1379 * @inode: inode to put
1380 *
1381 * Puts an inode, dropping its usage count. If the inode use count hits
1382 * zero, the inode is then freed and may also be destroyed.
1383 *
1384 * Consequently, iput() can sleep.
1385 */
1386 void iput(struct inode *inode)
1387 {
1388 if (inode) {
1389 BUG_ON(inode->i_state & I_CLEAR);
1390
1391 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1392 iput_final(inode);
1393 }
1394 }
1395 EXPORT_SYMBOL(iput);
1396
1397 /**
1398 * bmap - find a block number in a file
1399 * @inode: inode of file
1400 * @block: block to find
1401 *
1402 * Returns the block number on the device holding the inode that
1403 * is the disk block number for the block of the file requested.
1404 * That is, asked for block 4 of inode 1 the function will return the
1405 * disk block relative to the disk start that holds that block of the
1406 * file.
1407 */
1408 sector_t bmap(struct inode *inode, sector_t block)
1409 {
1410 sector_t res = 0;
1411 if (inode->i_mapping->a_ops->bmap)
1412 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1413 return res;
1414 }
1415 EXPORT_SYMBOL(bmap);
1416
1417 /*
1418 * With relative atime, only update atime if the previous atime is
1419 * earlier than either the ctime or mtime or if at least a day has
1420 * passed since the last atime update.
1421 */
1422 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1423 struct timespec now)
1424 {
1425
1426 if (!(mnt->mnt_flags & MNT_RELATIME))
1427 return 1;
1428 /*
1429 * Is mtime younger than atime? If yes, update atime:
1430 */
1431 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1432 return 1;
1433 /*
1434 * Is ctime younger than atime? If yes, update atime:
1435 */
1436 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1437 return 1;
1438
1439 /*
1440 * Is the previous atime value older than a day? If yes,
1441 * update atime:
1442 */
1443 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1444 return 1;
1445 /*
1446 * Good, we can skip the atime update:
1447 */
1448 return 0;
1449 }
1450
1451 /**
1452 * touch_atime - update the access time
1453 * @mnt: mount the inode is accessed on
1454 * @dentry: dentry accessed
1455 *
1456 * Update the accessed time on an inode and mark it for writeback.
1457 * This function automatically handles read only file systems and media,
1458 * as well as the "noatime" flag and inode specific "noatime" markers.
1459 */
1460 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1461 {
1462 struct inode *inode = dentry->d_inode;
1463 struct timespec now;
1464
1465 if (inode->i_flags & S_NOATIME)
1466 return;
1467 if (IS_NOATIME(inode))
1468 return;
1469 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1470 return;
1471
1472 if (mnt->mnt_flags & MNT_NOATIME)
1473 return;
1474 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1475 return;
1476
1477 now = current_fs_time(inode->i_sb);
1478
1479 if (!relatime_need_update(mnt, inode, now))
1480 return;
1481
1482 if (timespec_equal(&inode->i_atime, &now))
1483 return;
1484
1485 if (mnt_want_write(mnt))
1486 return;
1487
1488 inode->i_atime = now;
1489 mark_inode_dirty_sync(inode);
1490 mnt_drop_write(mnt);
1491 }
1492 EXPORT_SYMBOL(touch_atime);
1493
1494 /**
1495 * file_update_time - update mtime and ctime time
1496 * @file: file accessed
1497 *
1498 * Update the mtime and ctime members of an inode and mark the inode
1499 * for writeback. Note that this function is meant exclusively for
1500 * usage in the file write path of filesystems, and filesystems may
1501 * choose to explicitly ignore update via this function with the
1502 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1503 * timestamps are handled by the server.
1504 */
1505
1506 void file_update_time(struct file *file)
1507 {
1508 struct inode *inode = file->f_path.dentry->d_inode;
1509 struct timespec now;
1510 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1511
1512 /* First try to exhaust all avenues to not sync */
1513 if (IS_NOCMTIME(inode))
1514 return;
1515
1516 now = current_fs_time(inode->i_sb);
1517 if (!timespec_equal(&inode->i_mtime, &now))
1518 sync_it = S_MTIME;
1519
1520 if (!timespec_equal(&inode->i_ctime, &now))
1521 sync_it |= S_CTIME;
1522
1523 if (IS_I_VERSION(inode))
1524 sync_it |= S_VERSION;
1525
1526 if (!sync_it)
1527 return;
1528
1529 /* Finally allowed to write? Takes lock. */
1530 if (mnt_want_write_file(file))
1531 return;
1532
1533 /* Only change inode inside the lock region */
1534 if (sync_it & S_VERSION)
1535 inode_inc_iversion(inode);
1536 if (sync_it & S_CTIME)
1537 inode->i_ctime = now;
1538 if (sync_it & S_MTIME)
1539 inode->i_mtime = now;
1540 mark_inode_dirty_sync(inode);
1541 mnt_drop_write(file->f_path.mnt);
1542 }
1543 EXPORT_SYMBOL(file_update_time);
1544
1545 int inode_needs_sync(struct inode *inode)
1546 {
1547 if (IS_SYNC(inode))
1548 return 1;
1549 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1550 return 1;
1551 return 0;
1552 }
1553 EXPORT_SYMBOL(inode_needs_sync);
1554
1555 int inode_wait(void *word)
1556 {
1557 schedule();
1558 return 0;
1559 }
1560 EXPORT_SYMBOL(inode_wait);
1561
1562 /*
1563 * If we try to find an inode in the inode hash while it is being
1564 * deleted, we have to wait until the filesystem completes its
1565 * deletion before reporting that it isn't found. This function waits
1566 * until the deletion _might_ have completed. Callers are responsible
1567 * to recheck inode state.
1568 *
1569 * It doesn't matter if I_NEW is not set initially, a call to
1570 * wake_up_inode() after removing from the hash list will DTRT.
1571 *
1572 * This is called with inode_lock held.
1573 */
1574 static void __wait_on_freeing_inode(struct inode *inode)
1575 {
1576 wait_queue_head_t *wq;
1577 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1578 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1579 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1580 spin_unlock(&inode_lock);
1581 schedule();
1582 finish_wait(wq, &wait.wait);
1583 spin_lock(&inode_lock);
1584 }
1585
1586 static __initdata unsigned long ihash_entries;
1587 static int __init set_ihash_entries(char *str)
1588 {
1589 if (!str)
1590 return 0;
1591 ihash_entries = simple_strtoul(str, &str, 0);
1592 return 1;
1593 }
1594 __setup("ihash_entries=", set_ihash_entries);
1595
1596 /*
1597 * Initialize the waitqueues and inode hash table.
1598 */
1599 void __init inode_init_early(void)
1600 {
1601 int loop;
1602
1603 /* If hashes are distributed across NUMA nodes, defer
1604 * hash allocation until vmalloc space is available.
1605 */
1606 if (hashdist)
1607 return;
1608
1609 inode_hashtable =
1610 alloc_large_system_hash("Inode-cache",
1611 sizeof(struct hlist_head),
1612 ihash_entries,
1613 14,
1614 HASH_EARLY,
1615 &i_hash_shift,
1616 &i_hash_mask,
1617 0);
1618
1619 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1620 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1621 }
1622
1623 void __init inode_init(void)
1624 {
1625 int loop;
1626
1627 /* inode slab cache */
1628 inode_cachep = kmem_cache_create("inode_cache",
1629 sizeof(struct inode),
1630 0,
1631 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1632 SLAB_MEM_SPREAD),
1633 init_once);
1634 register_shrinker(&icache_shrinker);
1635 percpu_counter_init(&nr_inodes, 0);
1636 percpu_counter_init(&nr_inodes_unused, 0);
1637
1638 /* Hash may have been set up in inode_init_early */
1639 if (!hashdist)
1640 return;
1641
1642 inode_hashtable =
1643 alloc_large_system_hash("Inode-cache",
1644 sizeof(struct hlist_head),
1645 ihash_entries,
1646 14,
1647 0,
1648 &i_hash_shift,
1649 &i_hash_mask,
1650 0);
1651
1652 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1653 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1654 }
1655
1656 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1657 {
1658 inode->i_mode = mode;
1659 if (S_ISCHR(mode)) {
1660 inode->i_fop = &def_chr_fops;
1661 inode->i_rdev = rdev;
1662 } else if (S_ISBLK(mode)) {
1663 inode->i_fop = &def_blk_fops;
1664 inode->i_rdev = rdev;
1665 } else if (S_ISFIFO(mode))
1666 inode->i_fop = &def_fifo_fops;
1667 else if (S_ISSOCK(mode))
1668 inode->i_fop = &bad_sock_fops;
1669 else
1670 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1671 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1672 inode->i_ino);
1673 }
1674 EXPORT_SYMBOL(init_special_inode);
1675
1676 /**
1677 * Init uid,gid,mode for new inode according to posix standards
1678 * @inode: New inode
1679 * @dir: Directory inode
1680 * @mode: mode of the new inode
1681 */
1682 void inode_init_owner(struct inode *inode, const struct inode *dir,
1683 mode_t mode)
1684 {
1685 inode->i_uid = current_fsuid();
1686 if (dir && dir->i_mode & S_ISGID) {
1687 inode->i_gid = dir->i_gid;
1688 if (S_ISDIR(mode))
1689 mode |= S_ISGID;
1690 } else
1691 inode->i_gid = current_fsgid();
1692 inode->i_mode = mode;
1693 }
1694 EXPORT_SYMBOL(inode_init_owner);