]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/inode.c
CIFS: Fix credit calculation for encrypted reads with errors
[mirror_ubuntu-hirsute-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/memblock.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24
25 /*
26 * Inode locking rules:
27 *
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
38 *
39 * Lock ordering:
40 *
41 * inode->i_sb->s_inode_list_lock
42 * inode->i_lock
43 * Inode LRU list locks
44 *
45 * bdi->wb.list_lock
46 * inode->i_lock
47 *
48 * inode_hash_lock
49 * inode->i_sb->s_inode_list_lock
50 * inode->i_lock
51 *
52 * iunique_lock
53 * inode_hash_lock
54 */
55
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 return -ENXIO;
120 }
121
122 /**
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 if (sb->s_xattr)
145 inode->i_opflags |= IOP_XATTR;
146 i_uid_write(inode, 0);
147 i_gid_write(inode, 0);
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 inode->i_blocks = 0;
152 inode->i_bytes = 0;
153 inode->i_generation = 0;
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_link = NULL;
158 inode->i_dir_seq = 0;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
161
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode->i_wb_frn_winner = 0;
164 inode->i_wb_frn_avg_time = 0;
165 inode->i_wb_frn_history = 0;
166 #endif
167
168 if (security_inode_alloc(inode))
169 goto out;
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175
176 atomic_set(&inode->i_dio_count, 0);
177
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
180 mapping->flags = 0;
181 mapping->wb_err = 0;
182 atomic_set(&mapping->i_mmap_writable, 0);
183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 mapping->private_data = NULL;
185 mapping->writeback_index = 0;
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192
193 #ifdef CONFIG_FSNOTIFY
194 inode->i_fsnotify_mask = 0;
195 #endif
196 inode->i_flctx = NULL;
197 this_cpu_inc(nr_inodes);
198
199 return 0;
200 out:
201 return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 struct inode *inode;
208
209 if (sb->s_op->alloc_inode)
210 inode = sb->s_op->alloc_inode(sb);
211 else
212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213
214 if (!inode)
215 return NULL;
216
217 if (unlikely(inode_init_always(sb, inode))) {
218 if (inode->i_sb->s_op->destroy_inode)
219 inode->i_sb->s_op->destroy_inode(inode);
220 else
221 kmem_cache_free(inode_cachep, inode);
222 return NULL;
223 }
224
225 return inode;
226 }
227
228 void free_inode_nonrcu(struct inode *inode)
229 {
230 kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233
234 void __destroy_inode(struct inode *inode)
235 {
236 BUG_ON(inode_has_buffers(inode));
237 inode_detach_wb(inode);
238 security_inode_free(inode);
239 fsnotify_inode_delete(inode);
240 locks_free_lock_context(inode);
241 if (!inode->i_nlink) {
242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 atomic_long_dec(&inode->i_sb->s_remove_count);
244 }
245
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 posix_acl_release(inode->i_acl);
249 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 posix_acl_release(inode->i_default_acl);
251 #endif
252 this_cpu_dec(nr_inodes);
253 }
254 EXPORT_SYMBOL(__destroy_inode);
255
256 static void i_callback(struct rcu_head *head)
257 {
258 struct inode *inode = container_of(head, struct inode, i_rcu);
259 kmem_cache_free(inode_cachep, inode);
260 }
261
262 static void destroy_inode(struct inode *inode)
263 {
264 BUG_ON(!list_empty(&inode->i_lru));
265 __destroy_inode(inode);
266 if (inode->i_sb->s_op->destroy_inode)
267 inode->i_sb->s_op->destroy_inode(inode);
268 else
269 call_rcu(&inode->i_rcu, i_callback);
270 }
271
272 /**
273 * drop_nlink - directly drop an inode's link count
274 * @inode: inode
275 *
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
281 * on the filesystem.
282 */
283 void drop_nlink(struct inode *inode)
284 {
285 WARN_ON(inode->i_nlink == 0);
286 inode->__i_nlink--;
287 if (!inode->i_nlink)
288 atomic_long_inc(&inode->i_sb->s_remove_count);
289 }
290 EXPORT_SYMBOL(drop_nlink);
291
292 /**
293 * clear_nlink - directly zero an inode's link count
294 * @inode: inode
295 *
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
299 */
300 void clear_nlink(struct inode *inode)
301 {
302 if (inode->i_nlink) {
303 inode->__i_nlink = 0;
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306 }
307 EXPORT_SYMBOL(clear_nlink);
308
309 /**
310 * set_nlink - directly set an inode's link count
311 * @inode: inode
312 * @nlink: new nlink (should be non-zero)
313 *
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
316 */
317 void set_nlink(struct inode *inode, unsigned int nlink)
318 {
319 if (!nlink) {
320 clear_nlink(inode);
321 } else {
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode->i_nlink == 0)
324 atomic_long_dec(&inode->i_sb->s_remove_count);
325
326 inode->__i_nlink = nlink;
327 }
328 }
329 EXPORT_SYMBOL(set_nlink);
330
331 /**
332 * inc_nlink - directly increment an inode's link count
333 * @inode: inode
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
338 */
339 void inc_nlink(struct inode *inode)
340 {
341 if (unlikely(inode->i_nlink == 0)) {
342 WARN_ON(!(inode->i_state & I_LINKABLE));
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344 }
345
346 inode->__i_nlink++;
347 }
348 EXPORT_SYMBOL(inc_nlink);
349
350 static void __address_space_init_once(struct address_space *mapping)
351 {
352 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ);
353 init_rwsem(&mapping->i_mmap_rwsem);
354 INIT_LIST_HEAD(&mapping->private_list);
355 spin_lock_init(&mapping->private_lock);
356 mapping->i_mmap = RB_ROOT_CACHED;
357 }
358
359 void address_space_init_once(struct address_space *mapping)
360 {
361 memset(mapping, 0, sizeof(*mapping));
362 __address_space_init_once(mapping);
363 }
364 EXPORT_SYMBOL(address_space_init_once);
365
366 /*
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
370 */
371 void inode_init_once(struct inode *inode)
372 {
373 memset(inode, 0, sizeof(*inode));
374 INIT_HLIST_NODE(&inode->i_hash);
375 INIT_LIST_HEAD(&inode->i_devices);
376 INIT_LIST_HEAD(&inode->i_io_list);
377 INIT_LIST_HEAD(&inode->i_wb_list);
378 INIT_LIST_HEAD(&inode->i_lru);
379 __address_space_init_once(&inode->i_data);
380 i_size_ordered_init(inode);
381 }
382 EXPORT_SYMBOL(inode_init_once);
383
384 static void init_once(void *foo)
385 {
386 struct inode *inode = (struct inode *) foo;
387
388 inode_init_once(inode);
389 }
390
391 /*
392 * inode->i_lock must be held
393 */
394 void __iget(struct inode *inode)
395 {
396 atomic_inc(&inode->i_count);
397 }
398
399 /*
400 * get additional reference to inode; caller must already hold one.
401 */
402 void ihold(struct inode *inode)
403 {
404 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
405 }
406 EXPORT_SYMBOL(ihold);
407
408 static void inode_lru_list_add(struct inode *inode)
409 {
410 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
411 this_cpu_inc(nr_unused);
412 else
413 inode->i_state |= I_REFERENCED;
414 }
415
416 /*
417 * Add inode to LRU if needed (inode is unused and clean).
418 *
419 * Needs inode->i_lock held.
420 */
421 void inode_add_lru(struct inode *inode)
422 {
423 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
424 I_FREEING | I_WILL_FREE)) &&
425 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
426 inode_lru_list_add(inode);
427 }
428
429
430 static void inode_lru_list_del(struct inode *inode)
431 {
432
433 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 this_cpu_dec(nr_unused);
435 }
436
437 /**
438 * inode_sb_list_add - add inode to the superblock list of inodes
439 * @inode: inode to add
440 */
441 void inode_sb_list_add(struct inode *inode)
442 {
443 spin_lock(&inode->i_sb->s_inode_list_lock);
444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 spin_unlock(&inode->i_sb->s_inode_list_lock);
446 }
447 EXPORT_SYMBOL_GPL(inode_sb_list_add);
448
449 static inline void inode_sb_list_del(struct inode *inode)
450 {
451 if (!list_empty(&inode->i_sb_list)) {
452 spin_lock(&inode->i_sb->s_inode_list_lock);
453 list_del_init(&inode->i_sb_list);
454 spin_unlock(&inode->i_sb->s_inode_list_lock);
455 }
456 }
457
458 static unsigned long hash(struct super_block *sb, unsigned long hashval)
459 {
460 unsigned long tmp;
461
462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 L1_CACHE_BYTES;
464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 return tmp & i_hash_mask;
466 }
467
468 /**
469 * __insert_inode_hash - hash an inode
470 * @inode: unhashed inode
471 * @hashval: unsigned long value used to locate this object in the
472 * inode_hashtable.
473 *
474 * Add an inode to the inode hash for this superblock.
475 */
476 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
477 {
478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
479
480 spin_lock(&inode_hash_lock);
481 spin_lock(&inode->i_lock);
482 hlist_add_head(&inode->i_hash, b);
483 spin_unlock(&inode->i_lock);
484 spin_unlock(&inode_hash_lock);
485 }
486 EXPORT_SYMBOL(__insert_inode_hash);
487
488 /**
489 * __remove_inode_hash - remove an inode from the hash
490 * @inode: inode to unhash
491 *
492 * Remove an inode from the superblock.
493 */
494 void __remove_inode_hash(struct inode *inode)
495 {
496 spin_lock(&inode_hash_lock);
497 spin_lock(&inode->i_lock);
498 hlist_del_init(&inode->i_hash);
499 spin_unlock(&inode->i_lock);
500 spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__remove_inode_hash);
503
504 void clear_inode(struct inode *inode)
505 {
506 /*
507 * We have to cycle the i_pages lock here because reclaim can be in the
508 * process of removing the last page (in __delete_from_page_cache())
509 * and we must not free the mapping under it.
510 */
511 xa_lock_irq(&inode->i_data.i_pages);
512 BUG_ON(inode->i_data.nrpages);
513 BUG_ON(inode->i_data.nrexceptional);
514 xa_unlock_irq(&inode->i_data.i_pages);
515 BUG_ON(!list_empty(&inode->i_data.private_list));
516 BUG_ON(!(inode->i_state & I_FREEING));
517 BUG_ON(inode->i_state & I_CLEAR);
518 BUG_ON(!list_empty(&inode->i_wb_list));
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode->i_state = I_FREEING | I_CLEAR;
521 }
522 EXPORT_SYMBOL(clear_inode);
523
524 /*
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
528 *
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
532 *
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
536 */
537 static void evict(struct inode *inode)
538 {
539 const struct super_operations *op = inode->i_sb->s_op;
540
541 BUG_ON(!(inode->i_state & I_FREEING));
542 BUG_ON(!list_empty(&inode->i_lru));
543
544 if (!list_empty(&inode->i_io_list))
545 inode_io_list_del(inode);
546
547 inode_sb_list_del(inode);
548
549 /*
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
554 */
555 inode_wait_for_writeback(inode);
556
557 if (op->evict_inode) {
558 op->evict_inode(inode);
559 } else {
560 truncate_inode_pages_final(&inode->i_data);
561 clear_inode(inode);
562 }
563 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 bd_forget(inode);
565 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 cd_forget(inode);
567
568 remove_inode_hash(inode);
569
570 spin_lock(&inode->i_lock);
571 wake_up_bit(&inode->i_state, __I_NEW);
572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 spin_unlock(&inode->i_lock);
574
575 destroy_inode(inode);
576 }
577
578 /*
579 * dispose_list - dispose of the contents of a local list
580 * @head: the head of the list to free
581 *
582 * Dispose-list gets a local list with local inodes in it, so it doesn't
583 * need to worry about list corruption and SMP locks.
584 */
585 static void dispose_list(struct list_head *head)
586 {
587 while (!list_empty(head)) {
588 struct inode *inode;
589
590 inode = list_first_entry(head, struct inode, i_lru);
591 list_del_init(&inode->i_lru);
592
593 evict(inode);
594 cond_resched();
595 }
596 }
597
598 /**
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
601 *
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having SB_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
606 */
607 void evict_inodes(struct super_block *sb)
608 {
609 struct inode *inode, *next;
610 LIST_HEAD(dispose);
611
612 again:
613 spin_lock(&sb->s_inode_list_lock);
614 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
615 if (atomic_read(&inode->i_count))
616 continue;
617
618 spin_lock(&inode->i_lock);
619 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620 spin_unlock(&inode->i_lock);
621 continue;
622 }
623
624 inode->i_state |= I_FREEING;
625 inode_lru_list_del(inode);
626 spin_unlock(&inode->i_lock);
627 list_add(&inode->i_lru, &dispose);
628
629 /*
630 * We can have a ton of inodes to evict at unmount time given
631 * enough memory, check to see if we need to go to sleep for a
632 * bit so we don't livelock.
633 */
634 if (need_resched()) {
635 spin_unlock(&sb->s_inode_list_lock);
636 cond_resched();
637 dispose_list(&dispose);
638 goto again;
639 }
640 }
641 spin_unlock(&sb->s_inode_list_lock);
642
643 dispose_list(&dispose);
644 }
645 EXPORT_SYMBOL_GPL(evict_inodes);
646
647 /**
648 * invalidate_inodes - attempt to free all inodes on a superblock
649 * @sb: superblock to operate on
650 * @kill_dirty: flag to guide handling of dirty inodes
651 *
652 * Attempts to free all inodes for a given superblock. If there were any
653 * busy inodes return a non-zero value, else zero.
654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
655 * them as busy.
656 */
657 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
658 {
659 int busy = 0;
660 struct inode *inode, *next;
661 LIST_HEAD(dispose);
662
663 spin_lock(&sb->s_inode_list_lock);
664 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
665 spin_lock(&inode->i_lock);
666 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
667 spin_unlock(&inode->i_lock);
668 continue;
669 }
670 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
671 spin_unlock(&inode->i_lock);
672 busy = 1;
673 continue;
674 }
675 if (atomic_read(&inode->i_count)) {
676 spin_unlock(&inode->i_lock);
677 busy = 1;
678 continue;
679 }
680
681 inode->i_state |= I_FREEING;
682 inode_lru_list_del(inode);
683 spin_unlock(&inode->i_lock);
684 list_add(&inode->i_lru, &dispose);
685 }
686 spin_unlock(&sb->s_inode_list_lock);
687
688 dispose_list(&dispose);
689
690 return busy;
691 }
692
693 /*
694 * Isolate the inode from the LRU in preparation for freeing it.
695 *
696 * Any inodes which are pinned purely because of attached pagecache have their
697 * pagecache removed. If the inode has metadata buffers attached to
698 * mapping->private_list then try to remove them.
699 *
700 * If the inode has the I_REFERENCED flag set, then it means that it has been
701 * used recently - the flag is set in iput_final(). When we encounter such an
702 * inode, clear the flag and move it to the back of the LRU so it gets another
703 * pass through the LRU before it gets reclaimed. This is necessary because of
704 * the fact we are doing lazy LRU updates to minimise lock contention so the
705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706 * with this flag set because they are the inodes that are out of order.
707 */
708 static enum lru_status inode_lru_isolate(struct list_head *item,
709 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
710 {
711 struct list_head *freeable = arg;
712 struct inode *inode = container_of(item, struct inode, i_lru);
713
714 /*
715 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 * If we fail to get the lock, just skip it.
717 */
718 if (!spin_trylock(&inode->i_lock))
719 return LRU_SKIP;
720
721 /*
722 * Referenced or dirty inodes are still in use. Give them another pass
723 * through the LRU as we canot reclaim them now.
724 */
725 if (atomic_read(&inode->i_count) ||
726 (inode->i_state & ~I_REFERENCED)) {
727 list_lru_isolate(lru, &inode->i_lru);
728 spin_unlock(&inode->i_lock);
729 this_cpu_dec(nr_unused);
730 return LRU_REMOVED;
731 }
732
733 /*
734 * Recently referenced inodes and inodes with many attached pages
735 * get one more pass.
736 */
737 if (inode->i_state & I_REFERENCED || inode->i_data.nrpages > 1) {
738 inode->i_state &= ~I_REFERENCED;
739 spin_unlock(&inode->i_lock);
740 return LRU_ROTATE;
741 }
742
743 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
744 __iget(inode);
745 spin_unlock(&inode->i_lock);
746 spin_unlock(lru_lock);
747 if (remove_inode_buffers(inode)) {
748 unsigned long reap;
749 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
750 if (current_is_kswapd())
751 __count_vm_events(KSWAPD_INODESTEAL, reap);
752 else
753 __count_vm_events(PGINODESTEAL, reap);
754 if (current->reclaim_state)
755 current->reclaim_state->reclaimed_slab += reap;
756 }
757 iput(inode);
758 spin_lock(lru_lock);
759 return LRU_RETRY;
760 }
761
762 WARN_ON(inode->i_state & I_NEW);
763 inode->i_state |= I_FREEING;
764 list_lru_isolate_move(lru, &inode->i_lru, freeable);
765 spin_unlock(&inode->i_lock);
766
767 this_cpu_dec(nr_unused);
768 return LRU_REMOVED;
769 }
770
771 /*
772 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
773 * This is called from the superblock shrinker function with a number of inodes
774 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
775 * then are freed outside inode_lock by dispose_list().
776 */
777 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
778 {
779 LIST_HEAD(freeable);
780 long freed;
781
782 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
783 inode_lru_isolate, &freeable);
784 dispose_list(&freeable);
785 return freed;
786 }
787
788 static void __wait_on_freeing_inode(struct inode *inode);
789 /*
790 * Called with the inode lock held.
791 */
792 static struct inode *find_inode(struct super_block *sb,
793 struct hlist_head *head,
794 int (*test)(struct inode *, void *),
795 void *data)
796 {
797 struct inode *inode = NULL;
798
799 repeat:
800 hlist_for_each_entry(inode, head, i_hash) {
801 if (inode->i_sb != sb)
802 continue;
803 if (!test(inode, data))
804 continue;
805 spin_lock(&inode->i_lock);
806 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
807 __wait_on_freeing_inode(inode);
808 goto repeat;
809 }
810 if (unlikely(inode->i_state & I_CREATING)) {
811 spin_unlock(&inode->i_lock);
812 return ERR_PTR(-ESTALE);
813 }
814 __iget(inode);
815 spin_unlock(&inode->i_lock);
816 return inode;
817 }
818 return NULL;
819 }
820
821 /*
822 * find_inode_fast is the fast path version of find_inode, see the comment at
823 * iget_locked for details.
824 */
825 static struct inode *find_inode_fast(struct super_block *sb,
826 struct hlist_head *head, unsigned long ino)
827 {
828 struct inode *inode = NULL;
829
830 repeat:
831 hlist_for_each_entry(inode, head, i_hash) {
832 if (inode->i_ino != ino)
833 continue;
834 if (inode->i_sb != sb)
835 continue;
836 spin_lock(&inode->i_lock);
837 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
838 __wait_on_freeing_inode(inode);
839 goto repeat;
840 }
841 if (unlikely(inode->i_state & I_CREATING)) {
842 spin_unlock(&inode->i_lock);
843 return ERR_PTR(-ESTALE);
844 }
845 __iget(inode);
846 spin_unlock(&inode->i_lock);
847 return inode;
848 }
849 return NULL;
850 }
851
852 /*
853 * Each cpu owns a range of LAST_INO_BATCH numbers.
854 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
855 * to renew the exhausted range.
856 *
857 * This does not significantly increase overflow rate because every CPU can
858 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
859 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
860 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
861 * overflow rate by 2x, which does not seem too significant.
862 *
863 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
864 * error if st_ino won't fit in target struct field. Use 32bit counter
865 * here to attempt to avoid that.
866 */
867 #define LAST_INO_BATCH 1024
868 static DEFINE_PER_CPU(unsigned int, last_ino);
869
870 unsigned int get_next_ino(void)
871 {
872 unsigned int *p = &get_cpu_var(last_ino);
873 unsigned int res = *p;
874
875 #ifdef CONFIG_SMP
876 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
877 static atomic_t shared_last_ino;
878 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
879
880 res = next - LAST_INO_BATCH;
881 }
882 #endif
883
884 res++;
885 /* get_next_ino should not provide a 0 inode number */
886 if (unlikely(!res))
887 res++;
888 *p = res;
889 put_cpu_var(last_ino);
890 return res;
891 }
892 EXPORT_SYMBOL(get_next_ino);
893
894 /**
895 * new_inode_pseudo - obtain an inode
896 * @sb: superblock
897 *
898 * Allocates a new inode for given superblock.
899 * Inode wont be chained in superblock s_inodes list
900 * This means :
901 * - fs can't be unmount
902 * - quotas, fsnotify, writeback can't work
903 */
904 struct inode *new_inode_pseudo(struct super_block *sb)
905 {
906 struct inode *inode = alloc_inode(sb);
907
908 if (inode) {
909 spin_lock(&inode->i_lock);
910 inode->i_state = 0;
911 spin_unlock(&inode->i_lock);
912 INIT_LIST_HEAD(&inode->i_sb_list);
913 }
914 return inode;
915 }
916
917 /**
918 * new_inode - obtain an inode
919 * @sb: superblock
920 *
921 * Allocates a new inode for given superblock. The default gfp_mask
922 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
923 * If HIGHMEM pages are unsuitable or it is known that pages allocated
924 * for the page cache are not reclaimable or migratable,
925 * mapping_set_gfp_mask() must be called with suitable flags on the
926 * newly created inode's mapping
927 *
928 */
929 struct inode *new_inode(struct super_block *sb)
930 {
931 struct inode *inode;
932
933 spin_lock_prefetch(&sb->s_inode_list_lock);
934
935 inode = new_inode_pseudo(sb);
936 if (inode)
937 inode_sb_list_add(inode);
938 return inode;
939 }
940 EXPORT_SYMBOL(new_inode);
941
942 #ifdef CONFIG_DEBUG_LOCK_ALLOC
943 void lockdep_annotate_inode_mutex_key(struct inode *inode)
944 {
945 if (S_ISDIR(inode->i_mode)) {
946 struct file_system_type *type = inode->i_sb->s_type;
947
948 /* Set new key only if filesystem hasn't already changed it */
949 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
950 /*
951 * ensure nobody is actually holding i_mutex
952 */
953 // mutex_destroy(&inode->i_mutex);
954 init_rwsem(&inode->i_rwsem);
955 lockdep_set_class(&inode->i_rwsem,
956 &type->i_mutex_dir_key);
957 }
958 }
959 }
960 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
961 #endif
962
963 /**
964 * unlock_new_inode - clear the I_NEW state and wake up any waiters
965 * @inode: new inode to unlock
966 *
967 * Called when the inode is fully initialised to clear the new state of the
968 * inode and wake up anyone waiting for the inode to finish initialisation.
969 */
970 void unlock_new_inode(struct inode *inode)
971 {
972 lockdep_annotate_inode_mutex_key(inode);
973 spin_lock(&inode->i_lock);
974 WARN_ON(!(inode->i_state & I_NEW));
975 inode->i_state &= ~I_NEW & ~I_CREATING;
976 smp_mb();
977 wake_up_bit(&inode->i_state, __I_NEW);
978 spin_unlock(&inode->i_lock);
979 }
980 EXPORT_SYMBOL(unlock_new_inode);
981
982 void discard_new_inode(struct inode *inode)
983 {
984 lockdep_annotate_inode_mutex_key(inode);
985 spin_lock(&inode->i_lock);
986 WARN_ON(!(inode->i_state & I_NEW));
987 inode->i_state &= ~I_NEW;
988 smp_mb();
989 wake_up_bit(&inode->i_state, __I_NEW);
990 spin_unlock(&inode->i_lock);
991 iput(inode);
992 }
993 EXPORT_SYMBOL(discard_new_inode);
994
995 /**
996 * lock_two_nondirectories - take two i_mutexes on non-directory objects
997 *
998 * Lock any non-NULL argument that is not a directory.
999 * Zero, one or two objects may be locked by this function.
1000 *
1001 * @inode1: first inode to lock
1002 * @inode2: second inode to lock
1003 */
1004 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1005 {
1006 if (inode1 > inode2)
1007 swap(inode1, inode2);
1008
1009 if (inode1 && !S_ISDIR(inode1->i_mode))
1010 inode_lock(inode1);
1011 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1012 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1013 }
1014 EXPORT_SYMBOL(lock_two_nondirectories);
1015
1016 /**
1017 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1018 * @inode1: first inode to unlock
1019 * @inode2: second inode to unlock
1020 */
1021 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1022 {
1023 if (inode1 && !S_ISDIR(inode1->i_mode))
1024 inode_unlock(inode1);
1025 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1026 inode_unlock(inode2);
1027 }
1028 EXPORT_SYMBOL(unlock_two_nondirectories);
1029
1030 /**
1031 * inode_insert5 - obtain an inode from a mounted file system
1032 * @inode: pre-allocated inode to use for insert to cache
1033 * @hashval: hash value (usually inode number) to get
1034 * @test: callback used for comparisons between inodes
1035 * @set: callback used to initialize a new struct inode
1036 * @data: opaque data pointer to pass to @test and @set
1037 *
1038 * Search for the inode specified by @hashval and @data in the inode cache,
1039 * and if present it is return it with an increased reference count. This is
1040 * a variant of iget5_locked() for callers that don't want to fail on memory
1041 * allocation of inode.
1042 *
1043 * If the inode is not in cache, insert the pre-allocated inode to cache and
1044 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1045 * to fill it in before unlocking it via unlock_new_inode().
1046 *
1047 * Note both @test and @set are called with the inode_hash_lock held, so can't
1048 * sleep.
1049 */
1050 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1051 int (*test)(struct inode *, void *),
1052 int (*set)(struct inode *, void *), void *data)
1053 {
1054 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1055 struct inode *old;
1056 bool creating = inode->i_state & I_CREATING;
1057
1058 again:
1059 spin_lock(&inode_hash_lock);
1060 old = find_inode(inode->i_sb, head, test, data);
1061 if (unlikely(old)) {
1062 /*
1063 * Uhhuh, somebody else created the same inode under us.
1064 * Use the old inode instead of the preallocated one.
1065 */
1066 spin_unlock(&inode_hash_lock);
1067 if (IS_ERR(old))
1068 return NULL;
1069 wait_on_inode(old);
1070 if (unlikely(inode_unhashed(old))) {
1071 iput(old);
1072 goto again;
1073 }
1074 return old;
1075 }
1076
1077 if (set && unlikely(set(inode, data))) {
1078 inode = NULL;
1079 goto unlock;
1080 }
1081
1082 /*
1083 * Return the locked inode with I_NEW set, the
1084 * caller is responsible for filling in the contents
1085 */
1086 spin_lock(&inode->i_lock);
1087 inode->i_state |= I_NEW;
1088 hlist_add_head(&inode->i_hash, head);
1089 spin_unlock(&inode->i_lock);
1090 if (!creating)
1091 inode_sb_list_add(inode);
1092 unlock:
1093 spin_unlock(&inode_hash_lock);
1094
1095 return inode;
1096 }
1097 EXPORT_SYMBOL(inode_insert5);
1098
1099 /**
1100 * iget5_locked - obtain an inode from a mounted file system
1101 * @sb: super block of file system
1102 * @hashval: hash value (usually inode number) to get
1103 * @test: callback used for comparisons between inodes
1104 * @set: callback used to initialize a new struct inode
1105 * @data: opaque data pointer to pass to @test and @set
1106 *
1107 * Search for the inode specified by @hashval and @data in the inode cache,
1108 * and if present it is return it with an increased reference count. This is
1109 * a generalized version of iget_locked() for file systems where the inode
1110 * number is not sufficient for unique identification of an inode.
1111 *
1112 * If the inode is not in cache, allocate a new inode and return it locked,
1113 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1114 * before unlocking it via unlock_new_inode().
1115 *
1116 * Note both @test and @set are called with the inode_hash_lock held, so can't
1117 * sleep.
1118 */
1119 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1120 int (*test)(struct inode *, void *),
1121 int (*set)(struct inode *, void *), void *data)
1122 {
1123 struct inode *inode = ilookup5(sb, hashval, test, data);
1124
1125 if (!inode) {
1126 struct inode *new = alloc_inode(sb);
1127
1128 if (new) {
1129 new->i_state = 0;
1130 inode = inode_insert5(new, hashval, test, set, data);
1131 if (unlikely(inode != new))
1132 destroy_inode(new);
1133 }
1134 }
1135 return inode;
1136 }
1137 EXPORT_SYMBOL(iget5_locked);
1138
1139 /**
1140 * iget_locked - obtain an inode from a mounted file system
1141 * @sb: super block of file system
1142 * @ino: inode number to get
1143 *
1144 * Search for the inode specified by @ino in the inode cache and if present
1145 * return it with an increased reference count. This is for file systems
1146 * where the inode number is sufficient for unique identification of an inode.
1147 *
1148 * If the inode is not in cache, allocate a new inode and return it locked,
1149 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1150 * before unlocking it via unlock_new_inode().
1151 */
1152 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1153 {
1154 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1155 struct inode *inode;
1156 again:
1157 spin_lock(&inode_hash_lock);
1158 inode = find_inode_fast(sb, head, ino);
1159 spin_unlock(&inode_hash_lock);
1160 if (inode) {
1161 if (IS_ERR(inode))
1162 return NULL;
1163 wait_on_inode(inode);
1164 if (unlikely(inode_unhashed(inode))) {
1165 iput(inode);
1166 goto again;
1167 }
1168 return inode;
1169 }
1170
1171 inode = alloc_inode(sb);
1172 if (inode) {
1173 struct inode *old;
1174
1175 spin_lock(&inode_hash_lock);
1176 /* We released the lock, so.. */
1177 old = find_inode_fast(sb, head, ino);
1178 if (!old) {
1179 inode->i_ino = ino;
1180 spin_lock(&inode->i_lock);
1181 inode->i_state = I_NEW;
1182 hlist_add_head(&inode->i_hash, head);
1183 spin_unlock(&inode->i_lock);
1184 inode_sb_list_add(inode);
1185 spin_unlock(&inode_hash_lock);
1186
1187 /* Return the locked inode with I_NEW set, the
1188 * caller is responsible for filling in the contents
1189 */
1190 return inode;
1191 }
1192
1193 /*
1194 * Uhhuh, somebody else created the same inode under
1195 * us. Use the old inode instead of the one we just
1196 * allocated.
1197 */
1198 spin_unlock(&inode_hash_lock);
1199 destroy_inode(inode);
1200 if (IS_ERR(old))
1201 return NULL;
1202 inode = old;
1203 wait_on_inode(inode);
1204 if (unlikely(inode_unhashed(inode))) {
1205 iput(inode);
1206 goto again;
1207 }
1208 }
1209 return inode;
1210 }
1211 EXPORT_SYMBOL(iget_locked);
1212
1213 /*
1214 * search the inode cache for a matching inode number.
1215 * If we find one, then the inode number we are trying to
1216 * allocate is not unique and so we should not use it.
1217 *
1218 * Returns 1 if the inode number is unique, 0 if it is not.
1219 */
1220 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1221 {
1222 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1223 struct inode *inode;
1224
1225 spin_lock(&inode_hash_lock);
1226 hlist_for_each_entry(inode, b, i_hash) {
1227 if (inode->i_ino == ino && inode->i_sb == sb) {
1228 spin_unlock(&inode_hash_lock);
1229 return 0;
1230 }
1231 }
1232 spin_unlock(&inode_hash_lock);
1233
1234 return 1;
1235 }
1236
1237 /**
1238 * iunique - get a unique inode number
1239 * @sb: superblock
1240 * @max_reserved: highest reserved inode number
1241 *
1242 * Obtain an inode number that is unique on the system for a given
1243 * superblock. This is used by file systems that have no natural
1244 * permanent inode numbering system. An inode number is returned that
1245 * is higher than the reserved limit but unique.
1246 *
1247 * BUGS:
1248 * With a large number of inodes live on the file system this function
1249 * currently becomes quite slow.
1250 */
1251 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1252 {
1253 /*
1254 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1255 * error if st_ino won't fit in target struct field. Use 32bit counter
1256 * here to attempt to avoid that.
1257 */
1258 static DEFINE_SPINLOCK(iunique_lock);
1259 static unsigned int counter;
1260 ino_t res;
1261
1262 spin_lock(&iunique_lock);
1263 do {
1264 if (counter <= max_reserved)
1265 counter = max_reserved + 1;
1266 res = counter++;
1267 } while (!test_inode_iunique(sb, res));
1268 spin_unlock(&iunique_lock);
1269
1270 return res;
1271 }
1272 EXPORT_SYMBOL(iunique);
1273
1274 struct inode *igrab(struct inode *inode)
1275 {
1276 spin_lock(&inode->i_lock);
1277 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1278 __iget(inode);
1279 spin_unlock(&inode->i_lock);
1280 } else {
1281 spin_unlock(&inode->i_lock);
1282 /*
1283 * Handle the case where s_op->clear_inode is not been
1284 * called yet, and somebody is calling igrab
1285 * while the inode is getting freed.
1286 */
1287 inode = NULL;
1288 }
1289 return inode;
1290 }
1291 EXPORT_SYMBOL(igrab);
1292
1293 /**
1294 * ilookup5_nowait - search for an inode in the inode cache
1295 * @sb: super block of file system to search
1296 * @hashval: hash value (usually inode number) to search for
1297 * @test: callback used for comparisons between inodes
1298 * @data: opaque data pointer to pass to @test
1299 *
1300 * Search for the inode specified by @hashval and @data in the inode cache.
1301 * If the inode is in the cache, the inode is returned with an incremented
1302 * reference count.
1303 *
1304 * Note: I_NEW is not waited upon so you have to be very careful what you do
1305 * with the returned inode. You probably should be using ilookup5() instead.
1306 *
1307 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1308 */
1309 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1310 int (*test)(struct inode *, void *), void *data)
1311 {
1312 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1313 struct inode *inode;
1314
1315 spin_lock(&inode_hash_lock);
1316 inode = find_inode(sb, head, test, data);
1317 spin_unlock(&inode_hash_lock);
1318
1319 return IS_ERR(inode) ? NULL : inode;
1320 }
1321 EXPORT_SYMBOL(ilookup5_nowait);
1322
1323 /**
1324 * ilookup5 - search for an inode in the inode cache
1325 * @sb: super block of file system to search
1326 * @hashval: hash value (usually inode number) to search for
1327 * @test: callback used for comparisons between inodes
1328 * @data: opaque data pointer to pass to @test
1329 *
1330 * Search for the inode specified by @hashval and @data in the inode cache,
1331 * and if the inode is in the cache, return the inode with an incremented
1332 * reference count. Waits on I_NEW before returning the inode.
1333 * returned with an incremented reference count.
1334 *
1335 * This is a generalized version of ilookup() for file systems where the
1336 * inode number is not sufficient for unique identification of an inode.
1337 *
1338 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1339 */
1340 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1341 int (*test)(struct inode *, void *), void *data)
1342 {
1343 struct inode *inode;
1344 again:
1345 inode = ilookup5_nowait(sb, hashval, test, data);
1346 if (inode) {
1347 wait_on_inode(inode);
1348 if (unlikely(inode_unhashed(inode))) {
1349 iput(inode);
1350 goto again;
1351 }
1352 }
1353 return inode;
1354 }
1355 EXPORT_SYMBOL(ilookup5);
1356
1357 /**
1358 * ilookup - search for an inode in the inode cache
1359 * @sb: super block of file system to search
1360 * @ino: inode number to search for
1361 *
1362 * Search for the inode @ino in the inode cache, and if the inode is in the
1363 * cache, the inode is returned with an incremented reference count.
1364 */
1365 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1366 {
1367 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1368 struct inode *inode;
1369 again:
1370 spin_lock(&inode_hash_lock);
1371 inode = find_inode_fast(sb, head, ino);
1372 spin_unlock(&inode_hash_lock);
1373
1374 if (inode) {
1375 if (IS_ERR(inode))
1376 return NULL;
1377 wait_on_inode(inode);
1378 if (unlikely(inode_unhashed(inode))) {
1379 iput(inode);
1380 goto again;
1381 }
1382 }
1383 return inode;
1384 }
1385 EXPORT_SYMBOL(ilookup);
1386
1387 /**
1388 * find_inode_nowait - find an inode in the inode cache
1389 * @sb: super block of file system to search
1390 * @hashval: hash value (usually inode number) to search for
1391 * @match: callback used for comparisons between inodes
1392 * @data: opaque data pointer to pass to @match
1393 *
1394 * Search for the inode specified by @hashval and @data in the inode
1395 * cache, where the helper function @match will return 0 if the inode
1396 * does not match, 1 if the inode does match, and -1 if the search
1397 * should be stopped. The @match function must be responsible for
1398 * taking the i_lock spin_lock and checking i_state for an inode being
1399 * freed or being initialized, and incrementing the reference count
1400 * before returning 1. It also must not sleep, since it is called with
1401 * the inode_hash_lock spinlock held.
1402 *
1403 * This is a even more generalized version of ilookup5() when the
1404 * function must never block --- find_inode() can block in
1405 * __wait_on_freeing_inode() --- or when the caller can not increment
1406 * the reference count because the resulting iput() might cause an
1407 * inode eviction. The tradeoff is that the @match funtion must be
1408 * very carefully implemented.
1409 */
1410 struct inode *find_inode_nowait(struct super_block *sb,
1411 unsigned long hashval,
1412 int (*match)(struct inode *, unsigned long,
1413 void *),
1414 void *data)
1415 {
1416 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1417 struct inode *inode, *ret_inode = NULL;
1418 int mval;
1419
1420 spin_lock(&inode_hash_lock);
1421 hlist_for_each_entry(inode, head, i_hash) {
1422 if (inode->i_sb != sb)
1423 continue;
1424 mval = match(inode, hashval, data);
1425 if (mval == 0)
1426 continue;
1427 if (mval == 1)
1428 ret_inode = inode;
1429 goto out;
1430 }
1431 out:
1432 spin_unlock(&inode_hash_lock);
1433 return ret_inode;
1434 }
1435 EXPORT_SYMBOL(find_inode_nowait);
1436
1437 int insert_inode_locked(struct inode *inode)
1438 {
1439 struct super_block *sb = inode->i_sb;
1440 ino_t ino = inode->i_ino;
1441 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1442
1443 while (1) {
1444 struct inode *old = NULL;
1445 spin_lock(&inode_hash_lock);
1446 hlist_for_each_entry(old, head, i_hash) {
1447 if (old->i_ino != ino)
1448 continue;
1449 if (old->i_sb != sb)
1450 continue;
1451 spin_lock(&old->i_lock);
1452 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1453 spin_unlock(&old->i_lock);
1454 continue;
1455 }
1456 break;
1457 }
1458 if (likely(!old)) {
1459 spin_lock(&inode->i_lock);
1460 inode->i_state |= I_NEW | I_CREATING;
1461 hlist_add_head(&inode->i_hash, head);
1462 spin_unlock(&inode->i_lock);
1463 spin_unlock(&inode_hash_lock);
1464 return 0;
1465 }
1466 if (unlikely(old->i_state & I_CREATING)) {
1467 spin_unlock(&old->i_lock);
1468 spin_unlock(&inode_hash_lock);
1469 return -EBUSY;
1470 }
1471 __iget(old);
1472 spin_unlock(&old->i_lock);
1473 spin_unlock(&inode_hash_lock);
1474 wait_on_inode(old);
1475 if (unlikely(!inode_unhashed(old))) {
1476 iput(old);
1477 return -EBUSY;
1478 }
1479 iput(old);
1480 }
1481 }
1482 EXPORT_SYMBOL(insert_inode_locked);
1483
1484 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1485 int (*test)(struct inode *, void *), void *data)
1486 {
1487 struct inode *old;
1488
1489 inode->i_state |= I_CREATING;
1490 old = inode_insert5(inode, hashval, test, NULL, data);
1491
1492 if (old != inode) {
1493 iput(old);
1494 return -EBUSY;
1495 }
1496 return 0;
1497 }
1498 EXPORT_SYMBOL(insert_inode_locked4);
1499
1500
1501 int generic_delete_inode(struct inode *inode)
1502 {
1503 return 1;
1504 }
1505 EXPORT_SYMBOL(generic_delete_inode);
1506
1507 /*
1508 * Called when we're dropping the last reference
1509 * to an inode.
1510 *
1511 * Call the FS "drop_inode()" function, defaulting to
1512 * the legacy UNIX filesystem behaviour. If it tells
1513 * us to evict inode, do so. Otherwise, retain inode
1514 * in cache if fs is alive, sync and evict if fs is
1515 * shutting down.
1516 */
1517 static void iput_final(struct inode *inode)
1518 {
1519 struct super_block *sb = inode->i_sb;
1520 const struct super_operations *op = inode->i_sb->s_op;
1521 int drop;
1522
1523 WARN_ON(inode->i_state & I_NEW);
1524
1525 if (op->drop_inode)
1526 drop = op->drop_inode(inode);
1527 else
1528 drop = generic_drop_inode(inode);
1529
1530 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1531 inode_add_lru(inode);
1532 spin_unlock(&inode->i_lock);
1533 return;
1534 }
1535
1536 if (!drop) {
1537 inode->i_state |= I_WILL_FREE;
1538 spin_unlock(&inode->i_lock);
1539 write_inode_now(inode, 1);
1540 spin_lock(&inode->i_lock);
1541 WARN_ON(inode->i_state & I_NEW);
1542 inode->i_state &= ~I_WILL_FREE;
1543 }
1544
1545 inode->i_state |= I_FREEING;
1546 if (!list_empty(&inode->i_lru))
1547 inode_lru_list_del(inode);
1548 spin_unlock(&inode->i_lock);
1549
1550 evict(inode);
1551 }
1552
1553 /**
1554 * iput - put an inode
1555 * @inode: inode to put
1556 *
1557 * Puts an inode, dropping its usage count. If the inode use count hits
1558 * zero, the inode is then freed and may also be destroyed.
1559 *
1560 * Consequently, iput() can sleep.
1561 */
1562 void iput(struct inode *inode)
1563 {
1564 if (!inode)
1565 return;
1566 BUG_ON(inode->i_state & I_CLEAR);
1567 retry:
1568 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1569 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1570 atomic_inc(&inode->i_count);
1571 spin_unlock(&inode->i_lock);
1572 trace_writeback_lazytime_iput(inode);
1573 mark_inode_dirty_sync(inode);
1574 goto retry;
1575 }
1576 iput_final(inode);
1577 }
1578 }
1579 EXPORT_SYMBOL(iput);
1580
1581 /**
1582 * bmap - find a block number in a file
1583 * @inode: inode of file
1584 * @block: block to find
1585 *
1586 * Returns the block number on the device holding the inode that
1587 * is the disk block number for the block of the file requested.
1588 * That is, asked for block 4 of inode 1 the function will return the
1589 * disk block relative to the disk start that holds that block of the
1590 * file.
1591 */
1592 sector_t bmap(struct inode *inode, sector_t block)
1593 {
1594 sector_t res = 0;
1595 if (inode->i_mapping->a_ops->bmap)
1596 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1597 return res;
1598 }
1599 EXPORT_SYMBOL(bmap);
1600
1601 /*
1602 * With relative atime, only update atime if the previous atime is
1603 * earlier than either the ctime or mtime or if at least a day has
1604 * passed since the last atime update.
1605 */
1606 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1607 struct timespec now)
1608 {
1609
1610 if (!(mnt->mnt_flags & MNT_RELATIME))
1611 return 1;
1612 /*
1613 * Is mtime younger than atime? If yes, update atime:
1614 */
1615 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1616 return 1;
1617 /*
1618 * Is ctime younger than atime? If yes, update atime:
1619 */
1620 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1621 return 1;
1622
1623 /*
1624 * Is the previous atime value older than a day? If yes,
1625 * update atime:
1626 */
1627 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1628 return 1;
1629 /*
1630 * Good, we can skip the atime update:
1631 */
1632 return 0;
1633 }
1634
1635 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1636 {
1637 int iflags = I_DIRTY_TIME;
1638 bool dirty = false;
1639
1640 if (flags & S_ATIME)
1641 inode->i_atime = *time;
1642 if (flags & S_VERSION)
1643 dirty = inode_maybe_inc_iversion(inode, false);
1644 if (flags & S_CTIME)
1645 inode->i_ctime = *time;
1646 if (flags & S_MTIME)
1647 inode->i_mtime = *time;
1648 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1649 !(inode->i_sb->s_flags & SB_LAZYTIME))
1650 dirty = true;
1651
1652 if (dirty)
1653 iflags |= I_DIRTY_SYNC;
1654 __mark_inode_dirty(inode, iflags);
1655 return 0;
1656 }
1657 EXPORT_SYMBOL(generic_update_time);
1658
1659 /*
1660 * This does the actual work of updating an inodes time or version. Must have
1661 * had called mnt_want_write() before calling this.
1662 */
1663 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1664 {
1665 int (*update_time)(struct inode *, struct timespec64 *, int);
1666
1667 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1668 generic_update_time;
1669
1670 return update_time(inode, time, flags);
1671 }
1672
1673 /**
1674 * touch_atime - update the access time
1675 * @path: the &struct path to update
1676 * @inode: inode to update
1677 *
1678 * Update the accessed time on an inode and mark it for writeback.
1679 * This function automatically handles read only file systems and media,
1680 * as well as the "noatime" flag and inode specific "noatime" markers.
1681 */
1682 bool atime_needs_update(const struct path *path, struct inode *inode)
1683 {
1684 struct vfsmount *mnt = path->mnt;
1685 struct timespec64 now;
1686
1687 if (inode->i_flags & S_NOATIME)
1688 return false;
1689
1690 /* Atime updates will likely cause i_uid and i_gid to be written
1691 * back improprely if their true value is unknown to the vfs.
1692 */
1693 if (HAS_UNMAPPED_ID(inode))
1694 return false;
1695
1696 if (IS_NOATIME(inode))
1697 return false;
1698 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1699 return false;
1700
1701 if (mnt->mnt_flags & MNT_NOATIME)
1702 return false;
1703 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1704 return false;
1705
1706 now = current_time(inode);
1707
1708 if (!relatime_need_update(mnt, inode, timespec64_to_timespec(now)))
1709 return false;
1710
1711 if (timespec64_equal(&inode->i_atime, &now))
1712 return false;
1713
1714 return true;
1715 }
1716
1717 void touch_atime(const struct path *path)
1718 {
1719 struct vfsmount *mnt = path->mnt;
1720 struct inode *inode = d_inode(path->dentry);
1721 struct timespec64 now;
1722
1723 if (!atime_needs_update(path, inode))
1724 return;
1725
1726 if (!sb_start_write_trylock(inode->i_sb))
1727 return;
1728
1729 if (__mnt_want_write(mnt) != 0)
1730 goto skip_update;
1731 /*
1732 * File systems can error out when updating inodes if they need to
1733 * allocate new space to modify an inode (such is the case for
1734 * Btrfs), but since we touch atime while walking down the path we
1735 * really don't care if we failed to update the atime of the file,
1736 * so just ignore the return value.
1737 * We may also fail on filesystems that have the ability to make parts
1738 * of the fs read only, e.g. subvolumes in Btrfs.
1739 */
1740 now = current_time(inode);
1741 update_time(inode, &now, S_ATIME);
1742 __mnt_drop_write(mnt);
1743 skip_update:
1744 sb_end_write(inode->i_sb);
1745 }
1746 EXPORT_SYMBOL(touch_atime);
1747
1748 /*
1749 * The logic we want is
1750 *
1751 * if suid or (sgid and xgrp)
1752 * remove privs
1753 */
1754 int should_remove_suid(struct dentry *dentry)
1755 {
1756 umode_t mode = d_inode(dentry)->i_mode;
1757 int kill = 0;
1758
1759 /* suid always must be killed */
1760 if (unlikely(mode & S_ISUID))
1761 kill = ATTR_KILL_SUID;
1762
1763 /*
1764 * sgid without any exec bits is just a mandatory locking mark; leave
1765 * it alone. If some exec bits are set, it's a real sgid; kill it.
1766 */
1767 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1768 kill |= ATTR_KILL_SGID;
1769
1770 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1771 return kill;
1772
1773 return 0;
1774 }
1775 EXPORT_SYMBOL(should_remove_suid);
1776
1777 /*
1778 * Return mask of changes for notify_change() that need to be done as a
1779 * response to write or truncate. Return 0 if nothing has to be changed.
1780 * Negative value on error (change should be denied).
1781 */
1782 int dentry_needs_remove_privs(struct dentry *dentry)
1783 {
1784 struct inode *inode = d_inode(dentry);
1785 int mask = 0;
1786 int ret;
1787
1788 if (IS_NOSEC(inode))
1789 return 0;
1790
1791 mask = should_remove_suid(dentry);
1792 ret = security_inode_need_killpriv(dentry);
1793 if (ret < 0)
1794 return ret;
1795 if (ret)
1796 mask |= ATTR_KILL_PRIV;
1797 return mask;
1798 }
1799
1800 static int __remove_privs(struct dentry *dentry, int kill)
1801 {
1802 struct iattr newattrs;
1803
1804 newattrs.ia_valid = ATTR_FORCE | kill;
1805 /*
1806 * Note we call this on write, so notify_change will not
1807 * encounter any conflicting delegations:
1808 */
1809 return notify_change(dentry, &newattrs, NULL);
1810 }
1811
1812 /*
1813 * Remove special file priviledges (suid, capabilities) when file is written
1814 * to or truncated.
1815 */
1816 int file_remove_privs(struct file *file)
1817 {
1818 struct dentry *dentry = file_dentry(file);
1819 struct inode *inode = file_inode(file);
1820 int kill;
1821 int error = 0;
1822
1823 /* Fast path for nothing security related */
1824 if (IS_NOSEC(inode))
1825 return 0;
1826
1827 kill = dentry_needs_remove_privs(dentry);
1828 if (kill < 0)
1829 return kill;
1830 if (kill)
1831 error = __remove_privs(dentry, kill);
1832 if (!error)
1833 inode_has_no_xattr(inode);
1834
1835 return error;
1836 }
1837 EXPORT_SYMBOL(file_remove_privs);
1838
1839 /**
1840 * file_update_time - update mtime and ctime time
1841 * @file: file accessed
1842 *
1843 * Update the mtime and ctime members of an inode and mark the inode
1844 * for writeback. Note that this function is meant exclusively for
1845 * usage in the file write path of filesystems, and filesystems may
1846 * choose to explicitly ignore update via this function with the
1847 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1848 * timestamps are handled by the server. This can return an error for
1849 * file systems who need to allocate space in order to update an inode.
1850 */
1851
1852 int file_update_time(struct file *file)
1853 {
1854 struct inode *inode = file_inode(file);
1855 struct timespec64 now;
1856 int sync_it = 0;
1857 int ret;
1858
1859 /* First try to exhaust all avenues to not sync */
1860 if (IS_NOCMTIME(inode))
1861 return 0;
1862
1863 now = current_time(inode);
1864 if (!timespec64_equal(&inode->i_mtime, &now))
1865 sync_it = S_MTIME;
1866
1867 if (!timespec64_equal(&inode->i_ctime, &now))
1868 sync_it |= S_CTIME;
1869
1870 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1871 sync_it |= S_VERSION;
1872
1873 if (!sync_it)
1874 return 0;
1875
1876 /* Finally allowed to write? Takes lock. */
1877 if (__mnt_want_write_file(file))
1878 return 0;
1879
1880 ret = update_time(inode, &now, sync_it);
1881 __mnt_drop_write_file(file);
1882
1883 return ret;
1884 }
1885 EXPORT_SYMBOL(file_update_time);
1886
1887 int inode_needs_sync(struct inode *inode)
1888 {
1889 if (IS_SYNC(inode))
1890 return 1;
1891 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1892 return 1;
1893 return 0;
1894 }
1895 EXPORT_SYMBOL(inode_needs_sync);
1896
1897 /*
1898 * If we try to find an inode in the inode hash while it is being
1899 * deleted, we have to wait until the filesystem completes its
1900 * deletion before reporting that it isn't found. This function waits
1901 * until the deletion _might_ have completed. Callers are responsible
1902 * to recheck inode state.
1903 *
1904 * It doesn't matter if I_NEW is not set initially, a call to
1905 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1906 * will DTRT.
1907 */
1908 static void __wait_on_freeing_inode(struct inode *inode)
1909 {
1910 wait_queue_head_t *wq;
1911 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1912 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1913 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1914 spin_unlock(&inode->i_lock);
1915 spin_unlock(&inode_hash_lock);
1916 schedule();
1917 finish_wait(wq, &wait.wq_entry);
1918 spin_lock(&inode_hash_lock);
1919 }
1920
1921 static __initdata unsigned long ihash_entries;
1922 static int __init set_ihash_entries(char *str)
1923 {
1924 if (!str)
1925 return 0;
1926 ihash_entries = simple_strtoul(str, &str, 0);
1927 return 1;
1928 }
1929 __setup("ihash_entries=", set_ihash_entries);
1930
1931 /*
1932 * Initialize the waitqueues and inode hash table.
1933 */
1934 void __init inode_init_early(void)
1935 {
1936 /* If hashes are distributed across NUMA nodes, defer
1937 * hash allocation until vmalloc space is available.
1938 */
1939 if (hashdist)
1940 return;
1941
1942 inode_hashtable =
1943 alloc_large_system_hash("Inode-cache",
1944 sizeof(struct hlist_head),
1945 ihash_entries,
1946 14,
1947 HASH_EARLY | HASH_ZERO,
1948 &i_hash_shift,
1949 &i_hash_mask,
1950 0,
1951 0);
1952 }
1953
1954 void __init inode_init(void)
1955 {
1956 /* inode slab cache */
1957 inode_cachep = kmem_cache_create("inode_cache",
1958 sizeof(struct inode),
1959 0,
1960 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1961 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1962 init_once);
1963
1964 /* Hash may have been set up in inode_init_early */
1965 if (!hashdist)
1966 return;
1967
1968 inode_hashtable =
1969 alloc_large_system_hash("Inode-cache",
1970 sizeof(struct hlist_head),
1971 ihash_entries,
1972 14,
1973 HASH_ZERO,
1974 &i_hash_shift,
1975 &i_hash_mask,
1976 0,
1977 0);
1978 }
1979
1980 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1981 {
1982 inode->i_mode = mode;
1983 if (S_ISCHR(mode)) {
1984 inode->i_fop = &def_chr_fops;
1985 inode->i_rdev = rdev;
1986 } else if (S_ISBLK(mode)) {
1987 inode->i_fop = &def_blk_fops;
1988 inode->i_rdev = rdev;
1989 } else if (S_ISFIFO(mode))
1990 inode->i_fop = &pipefifo_fops;
1991 else if (S_ISSOCK(mode))
1992 ; /* leave it no_open_fops */
1993 else
1994 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1995 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1996 inode->i_ino);
1997 }
1998 EXPORT_SYMBOL(init_special_inode);
1999
2000 /**
2001 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2002 * @inode: New inode
2003 * @dir: Directory inode
2004 * @mode: mode of the new inode
2005 */
2006 void inode_init_owner(struct inode *inode, const struct inode *dir,
2007 umode_t mode)
2008 {
2009 inode->i_uid = current_fsuid();
2010 if (dir && dir->i_mode & S_ISGID) {
2011 inode->i_gid = dir->i_gid;
2012
2013 /* Directories are special, and always inherit S_ISGID */
2014 if (S_ISDIR(mode))
2015 mode |= S_ISGID;
2016 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2017 !in_group_p(inode->i_gid) &&
2018 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2019 mode &= ~S_ISGID;
2020 } else
2021 inode->i_gid = current_fsgid();
2022 inode->i_mode = mode;
2023 }
2024 EXPORT_SYMBOL(inode_init_owner);
2025
2026 /**
2027 * inode_owner_or_capable - check current task permissions to inode
2028 * @inode: inode being checked
2029 *
2030 * Return true if current either has CAP_FOWNER in a namespace with the
2031 * inode owner uid mapped, or owns the file.
2032 */
2033 bool inode_owner_or_capable(const struct inode *inode)
2034 {
2035 struct user_namespace *ns;
2036
2037 if (uid_eq(current_fsuid(), inode->i_uid))
2038 return true;
2039
2040 ns = current_user_ns();
2041 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2042 return true;
2043 return false;
2044 }
2045 EXPORT_SYMBOL(inode_owner_or_capable);
2046
2047 /*
2048 * Direct i/o helper functions
2049 */
2050 static void __inode_dio_wait(struct inode *inode)
2051 {
2052 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2053 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2054
2055 do {
2056 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2057 if (atomic_read(&inode->i_dio_count))
2058 schedule();
2059 } while (atomic_read(&inode->i_dio_count));
2060 finish_wait(wq, &q.wq_entry);
2061 }
2062
2063 /**
2064 * inode_dio_wait - wait for outstanding DIO requests to finish
2065 * @inode: inode to wait for
2066 *
2067 * Waits for all pending direct I/O requests to finish so that we can
2068 * proceed with a truncate or equivalent operation.
2069 *
2070 * Must be called under a lock that serializes taking new references
2071 * to i_dio_count, usually by inode->i_mutex.
2072 */
2073 void inode_dio_wait(struct inode *inode)
2074 {
2075 if (atomic_read(&inode->i_dio_count))
2076 __inode_dio_wait(inode);
2077 }
2078 EXPORT_SYMBOL(inode_dio_wait);
2079
2080 /*
2081 * inode_set_flags - atomically set some inode flags
2082 *
2083 * Note: the caller should be holding i_mutex, or else be sure that
2084 * they have exclusive access to the inode structure (i.e., while the
2085 * inode is being instantiated). The reason for the cmpxchg() loop
2086 * --- which wouldn't be necessary if all code paths which modify
2087 * i_flags actually followed this rule, is that there is at least one
2088 * code path which doesn't today so we use cmpxchg() out of an abundance
2089 * of caution.
2090 *
2091 * In the long run, i_mutex is overkill, and we should probably look
2092 * at using the i_lock spinlock to protect i_flags, and then make sure
2093 * it is so documented in include/linux/fs.h and that all code follows
2094 * the locking convention!!
2095 */
2096 void inode_set_flags(struct inode *inode, unsigned int flags,
2097 unsigned int mask)
2098 {
2099 unsigned int old_flags, new_flags;
2100
2101 WARN_ON_ONCE(flags & ~mask);
2102 do {
2103 old_flags = READ_ONCE(inode->i_flags);
2104 new_flags = (old_flags & ~mask) | flags;
2105 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2106 new_flags) != old_flags));
2107 }
2108 EXPORT_SYMBOL(inode_set_flags);
2109
2110 void inode_nohighmem(struct inode *inode)
2111 {
2112 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2113 }
2114 EXPORT_SYMBOL(inode_nohighmem);
2115
2116 /**
2117 * timespec64_trunc - Truncate timespec64 to a granularity
2118 * @t: Timespec64
2119 * @gran: Granularity in ns.
2120 *
2121 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2122 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2123 */
2124 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2125 {
2126 /* Avoid division in the common cases 1 ns and 1 s. */
2127 if (gran == 1) {
2128 /* nothing */
2129 } else if (gran == NSEC_PER_SEC) {
2130 t.tv_nsec = 0;
2131 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2132 t.tv_nsec -= t.tv_nsec % gran;
2133 } else {
2134 WARN(1, "illegal file time granularity: %u", gran);
2135 }
2136 return t;
2137 }
2138 EXPORT_SYMBOL(timespec64_trunc);
2139
2140 /**
2141 * current_time - Return FS time
2142 * @inode: inode.
2143 *
2144 * Return the current time truncated to the time granularity supported by
2145 * the fs.
2146 *
2147 * Note that inode and inode->sb cannot be NULL.
2148 * Otherwise, the function warns and returns time without truncation.
2149 */
2150 struct timespec64 current_time(struct inode *inode)
2151 {
2152 struct timespec64 now;
2153
2154 ktime_get_coarse_real_ts64(&now);
2155
2156 if (unlikely(!inode->i_sb)) {
2157 WARN(1, "current_time() called with uninitialized super_block in the inode");
2158 return now;
2159 }
2160
2161 return timespec64_trunc(now, inode->i_sb->s_time_gran);
2162 }
2163 EXPORT_SYMBOL(current_time);