]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/inode.c
vfs: factor out inode_insert5()
[mirror_ubuntu-jammy-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24
25 /*
26 * Inode locking rules:
27 *
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
38 *
39 * Lock ordering:
40 *
41 * inode->i_sb->s_inode_list_lock
42 * inode->i_lock
43 * Inode LRU list locks
44 *
45 * bdi->wb.list_lock
46 * inode->i_lock
47 *
48 * inode_hash_lock
49 * inode->i_sb->s_inode_list_lock
50 * inode->i_lock
51 *
52 * iunique_lock
53 * inode_hash_lock
54 */
55
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 return -ENXIO;
120 }
121
122 /**
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
126 *
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
129 */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 static const struct inode_operations empty_iops;
133 static const struct file_operations no_open_fops = {.open = no_open};
134 struct address_space *const mapping = &inode->i_data;
135
136 inode->i_sb = sb;
137 inode->i_blkbits = sb->s_blocksize_bits;
138 inode->i_flags = 0;
139 atomic_set(&inode->i_count, 1);
140 inode->i_op = &empty_iops;
141 inode->i_fop = &no_open_fops;
142 inode->__i_nlink = 1;
143 inode->i_opflags = 0;
144 if (sb->s_xattr)
145 inode->i_opflags |= IOP_XATTR;
146 i_uid_write(inode, 0);
147 i_gid_write(inode, 0);
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 inode->i_blocks = 0;
152 inode->i_bytes = 0;
153 inode->i_generation = 0;
154 inode->i_pipe = NULL;
155 inode->i_bdev = NULL;
156 inode->i_cdev = NULL;
157 inode->i_link = NULL;
158 inode->i_dir_seq = 0;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
161
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode->i_wb_frn_winner = 0;
164 inode->i_wb_frn_avg_time = 0;
165 inode->i_wb_frn_history = 0;
166 #endif
167
168 if (security_inode_alloc(inode))
169 goto out;
170 spin_lock_init(&inode->i_lock);
171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172
173 init_rwsem(&inode->i_rwsem);
174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175
176 atomic_set(&inode->i_dio_count, 0);
177
178 mapping->a_ops = &empty_aops;
179 mapping->host = inode;
180 mapping->flags = 0;
181 atomic_set(&mapping->i_mmap_writable, 0);
182 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
183 mapping->private_data = NULL;
184 mapping->writeback_index = 0;
185 inode->i_private = NULL;
186 inode->i_mapping = mapping;
187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
188 #ifdef CONFIG_FS_POSIX_ACL
189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191
192 #ifdef CONFIG_FSNOTIFY
193 inode->i_fsnotify_mask = 0;
194 #endif
195 inode->i_flctx = NULL;
196 this_cpu_inc(nr_inodes);
197
198 return 0;
199 out:
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(inode_init_always);
203
204 static struct inode *alloc_inode(struct super_block *sb)
205 {
206 struct inode *inode;
207
208 if (sb->s_op->alloc_inode)
209 inode = sb->s_op->alloc_inode(sb);
210 else
211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
212
213 if (!inode)
214 return NULL;
215
216 if (unlikely(inode_init_always(sb, inode))) {
217 if (inode->i_sb->s_op->destroy_inode)
218 inode->i_sb->s_op->destroy_inode(inode);
219 else
220 kmem_cache_free(inode_cachep, inode);
221 return NULL;
222 }
223
224 return inode;
225 }
226
227 void free_inode_nonrcu(struct inode *inode)
228 {
229 kmem_cache_free(inode_cachep, inode);
230 }
231 EXPORT_SYMBOL(free_inode_nonrcu);
232
233 void __destroy_inode(struct inode *inode)
234 {
235 BUG_ON(inode_has_buffers(inode));
236 inode_detach_wb(inode);
237 security_inode_free(inode);
238 fsnotify_inode_delete(inode);
239 locks_free_lock_context(inode);
240 if (!inode->i_nlink) {
241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
242 atomic_long_dec(&inode->i_sb->s_remove_count);
243 }
244
245 #ifdef CONFIG_FS_POSIX_ACL
246 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
247 posix_acl_release(inode->i_acl);
248 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
249 posix_acl_release(inode->i_default_acl);
250 #endif
251 this_cpu_dec(nr_inodes);
252 }
253 EXPORT_SYMBOL(__destroy_inode);
254
255 static void i_callback(struct rcu_head *head)
256 {
257 struct inode *inode = container_of(head, struct inode, i_rcu);
258 kmem_cache_free(inode_cachep, inode);
259 }
260
261 static void destroy_inode(struct inode *inode)
262 {
263 BUG_ON(!list_empty(&inode->i_lru));
264 __destroy_inode(inode);
265 if (inode->i_sb->s_op->destroy_inode)
266 inode->i_sb->s_op->destroy_inode(inode);
267 else
268 call_rcu(&inode->i_rcu, i_callback);
269 }
270
271 /**
272 * drop_nlink - directly drop an inode's link count
273 * @inode: inode
274 *
275 * This is a low-level filesystem helper to replace any
276 * direct filesystem manipulation of i_nlink. In cases
277 * where we are attempting to track writes to the
278 * filesystem, a decrement to zero means an imminent
279 * write when the file is truncated and actually unlinked
280 * on the filesystem.
281 */
282 void drop_nlink(struct inode *inode)
283 {
284 WARN_ON(inode->i_nlink == 0);
285 inode->__i_nlink--;
286 if (!inode->i_nlink)
287 atomic_long_inc(&inode->i_sb->s_remove_count);
288 }
289 EXPORT_SYMBOL(drop_nlink);
290
291 /**
292 * clear_nlink - directly zero an inode's link count
293 * @inode: inode
294 *
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. See
297 * drop_nlink() for why we care about i_nlink hitting zero.
298 */
299 void clear_nlink(struct inode *inode)
300 {
301 if (inode->i_nlink) {
302 inode->__i_nlink = 0;
303 atomic_long_inc(&inode->i_sb->s_remove_count);
304 }
305 }
306 EXPORT_SYMBOL(clear_nlink);
307
308 /**
309 * set_nlink - directly set an inode's link count
310 * @inode: inode
311 * @nlink: new nlink (should be non-zero)
312 *
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink.
315 */
316 void set_nlink(struct inode *inode, unsigned int nlink)
317 {
318 if (!nlink) {
319 clear_nlink(inode);
320 } else {
321 /* Yes, some filesystems do change nlink from zero to one */
322 if (inode->i_nlink == 0)
323 atomic_long_dec(&inode->i_sb->s_remove_count);
324
325 inode->__i_nlink = nlink;
326 }
327 }
328 EXPORT_SYMBOL(set_nlink);
329
330 /**
331 * inc_nlink - directly increment an inode's link count
332 * @inode: inode
333 *
334 * This is a low-level filesystem helper to replace any
335 * direct filesystem manipulation of i_nlink. Currently,
336 * it is only here for parity with dec_nlink().
337 */
338 void inc_nlink(struct inode *inode)
339 {
340 if (unlikely(inode->i_nlink == 0)) {
341 WARN_ON(!(inode->i_state & I_LINKABLE));
342 atomic_long_dec(&inode->i_sb->s_remove_count);
343 }
344
345 inode->__i_nlink++;
346 }
347 EXPORT_SYMBOL(inc_nlink);
348
349 static void __address_space_init_once(struct address_space *mapping)
350 {
351 INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
352 init_rwsem(&mapping->i_mmap_rwsem);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT_CACHED;
356 }
357
358 void address_space_init_once(struct address_space *mapping)
359 {
360 memset(mapping, 0, sizeof(*mapping));
361 __address_space_init_once(mapping);
362 }
363 EXPORT_SYMBOL(address_space_init_once);
364
365 /*
366 * These are initializations that only need to be done
367 * once, because the fields are idempotent across use
368 * of the inode, so let the slab aware of that.
369 */
370 void inode_init_once(struct inode *inode)
371 {
372 memset(inode, 0, sizeof(*inode));
373 INIT_HLIST_NODE(&inode->i_hash);
374 INIT_LIST_HEAD(&inode->i_devices);
375 INIT_LIST_HEAD(&inode->i_io_list);
376 INIT_LIST_HEAD(&inode->i_wb_list);
377 INIT_LIST_HEAD(&inode->i_lru);
378 __address_space_init_once(&inode->i_data);
379 i_size_ordered_init(inode);
380 }
381 EXPORT_SYMBOL(inode_init_once);
382
383 static void init_once(void *foo)
384 {
385 struct inode *inode = (struct inode *) foo;
386
387 inode_init_once(inode);
388 }
389
390 /*
391 * inode->i_lock must be held
392 */
393 void __iget(struct inode *inode)
394 {
395 atomic_inc(&inode->i_count);
396 }
397
398 /*
399 * get additional reference to inode; caller must already hold one.
400 */
401 void ihold(struct inode *inode)
402 {
403 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
404 }
405 EXPORT_SYMBOL(ihold);
406
407 static void inode_lru_list_add(struct inode *inode)
408 {
409 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
410 this_cpu_inc(nr_unused);
411 else
412 inode->i_state |= I_REFERENCED;
413 }
414
415 /*
416 * Add inode to LRU if needed (inode is unused and clean).
417 *
418 * Needs inode->i_lock held.
419 */
420 void inode_add_lru(struct inode *inode)
421 {
422 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
423 I_FREEING | I_WILL_FREE)) &&
424 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
425 inode_lru_list_add(inode);
426 }
427
428
429 static void inode_lru_list_del(struct inode *inode)
430 {
431
432 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
433 this_cpu_dec(nr_unused);
434 }
435
436 /**
437 * inode_sb_list_add - add inode to the superblock list of inodes
438 * @inode: inode to add
439 */
440 void inode_sb_list_add(struct inode *inode)
441 {
442 spin_lock(&inode->i_sb->s_inode_list_lock);
443 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
444 spin_unlock(&inode->i_sb->s_inode_list_lock);
445 }
446 EXPORT_SYMBOL_GPL(inode_sb_list_add);
447
448 static inline void inode_sb_list_del(struct inode *inode)
449 {
450 if (!list_empty(&inode->i_sb_list)) {
451 spin_lock(&inode->i_sb->s_inode_list_lock);
452 list_del_init(&inode->i_sb_list);
453 spin_unlock(&inode->i_sb->s_inode_list_lock);
454 }
455 }
456
457 static unsigned long hash(struct super_block *sb, unsigned long hashval)
458 {
459 unsigned long tmp;
460
461 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
462 L1_CACHE_BYTES;
463 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
464 return tmp & i_hash_mask;
465 }
466
467 /**
468 * __insert_inode_hash - hash an inode
469 * @inode: unhashed inode
470 * @hashval: unsigned long value used to locate this object in the
471 * inode_hashtable.
472 *
473 * Add an inode to the inode hash for this superblock.
474 */
475 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
476 {
477 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
478
479 spin_lock(&inode_hash_lock);
480 spin_lock(&inode->i_lock);
481 hlist_add_head(&inode->i_hash, b);
482 spin_unlock(&inode->i_lock);
483 spin_unlock(&inode_hash_lock);
484 }
485 EXPORT_SYMBOL(__insert_inode_hash);
486
487 /**
488 * __remove_inode_hash - remove an inode from the hash
489 * @inode: inode to unhash
490 *
491 * Remove an inode from the superblock.
492 */
493 void __remove_inode_hash(struct inode *inode)
494 {
495 spin_lock(&inode_hash_lock);
496 spin_lock(&inode->i_lock);
497 hlist_del_init(&inode->i_hash);
498 spin_unlock(&inode->i_lock);
499 spin_unlock(&inode_hash_lock);
500 }
501 EXPORT_SYMBOL(__remove_inode_hash);
502
503 void clear_inode(struct inode *inode)
504 {
505 /*
506 * We have to cycle the i_pages lock here because reclaim can be in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free the mapping under it.
509 */
510 xa_lock_irq(&inode->i_data.i_pages);
511 BUG_ON(inode->i_data.nrpages);
512 BUG_ON(inode->i_data.nrexceptional);
513 xa_unlock_irq(&inode->i_data.i_pages);
514 BUG_ON(!list_empty(&inode->i_data.private_list));
515 BUG_ON(!(inode->i_state & I_FREEING));
516 BUG_ON(inode->i_state & I_CLEAR);
517 BUG_ON(!list_empty(&inode->i_wb_list));
518 /* don't need i_lock here, no concurrent mods to i_state */
519 inode->i_state = I_FREEING | I_CLEAR;
520 }
521 EXPORT_SYMBOL(clear_inode);
522
523 /*
524 * Free the inode passed in, removing it from the lists it is still connected
525 * to. We remove any pages still attached to the inode and wait for any IO that
526 * is still in progress before finally destroying the inode.
527 *
528 * An inode must already be marked I_FREEING so that we avoid the inode being
529 * moved back onto lists if we race with other code that manipulates the lists
530 * (e.g. writeback_single_inode). The caller is responsible for setting this.
531 *
532 * An inode must already be removed from the LRU list before being evicted from
533 * the cache. This should occur atomically with setting the I_FREEING state
534 * flag, so no inodes here should ever be on the LRU when being evicted.
535 */
536 static void evict(struct inode *inode)
537 {
538 const struct super_operations *op = inode->i_sb->s_op;
539
540 BUG_ON(!(inode->i_state & I_FREEING));
541 BUG_ON(!list_empty(&inode->i_lru));
542
543 if (!list_empty(&inode->i_io_list))
544 inode_io_list_del(inode);
545
546 inode_sb_list_del(inode);
547
548 /*
549 * Wait for flusher thread to be done with the inode so that filesystem
550 * does not start destroying it while writeback is still running. Since
551 * the inode has I_FREEING set, flusher thread won't start new work on
552 * the inode. We just have to wait for running writeback to finish.
553 */
554 inode_wait_for_writeback(inode);
555
556 if (op->evict_inode) {
557 op->evict_inode(inode);
558 } else {
559 truncate_inode_pages_final(&inode->i_data);
560 clear_inode(inode);
561 }
562 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
563 bd_forget(inode);
564 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
565 cd_forget(inode);
566
567 remove_inode_hash(inode);
568
569 spin_lock(&inode->i_lock);
570 wake_up_bit(&inode->i_state, __I_NEW);
571 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
572 spin_unlock(&inode->i_lock);
573
574 destroy_inode(inode);
575 }
576
577 /*
578 * dispose_list - dispose of the contents of a local list
579 * @head: the head of the list to free
580 *
581 * Dispose-list gets a local list with local inodes in it, so it doesn't
582 * need to worry about list corruption and SMP locks.
583 */
584 static void dispose_list(struct list_head *head)
585 {
586 while (!list_empty(head)) {
587 struct inode *inode;
588
589 inode = list_first_entry(head, struct inode, i_lru);
590 list_del_init(&inode->i_lru);
591
592 evict(inode);
593 cond_resched();
594 }
595 }
596
597 /**
598 * evict_inodes - evict all evictable inodes for a superblock
599 * @sb: superblock to operate on
600 *
601 * Make sure that no inodes with zero refcount are retained. This is
602 * called by superblock shutdown after having SB_ACTIVE flag removed,
603 * so any inode reaching zero refcount during or after that call will
604 * be immediately evicted.
605 */
606 void evict_inodes(struct super_block *sb)
607 {
608 struct inode *inode, *next;
609 LIST_HEAD(dispose);
610
611 again:
612 spin_lock(&sb->s_inode_list_lock);
613 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
614 if (atomic_read(&inode->i_count))
615 continue;
616
617 spin_lock(&inode->i_lock);
618 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
619 spin_unlock(&inode->i_lock);
620 continue;
621 }
622
623 inode->i_state |= I_FREEING;
624 inode_lru_list_del(inode);
625 spin_unlock(&inode->i_lock);
626 list_add(&inode->i_lru, &dispose);
627
628 /*
629 * We can have a ton of inodes to evict at unmount time given
630 * enough memory, check to see if we need to go to sleep for a
631 * bit so we don't livelock.
632 */
633 if (need_resched()) {
634 spin_unlock(&sb->s_inode_list_lock);
635 cond_resched();
636 dispose_list(&dispose);
637 goto again;
638 }
639 }
640 spin_unlock(&sb->s_inode_list_lock);
641
642 dispose_list(&dispose);
643 }
644 EXPORT_SYMBOL_GPL(evict_inodes);
645
646 /**
647 * invalidate_inodes - attempt to free all inodes on a superblock
648 * @sb: superblock to operate on
649 * @kill_dirty: flag to guide handling of dirty inodes
650 *
651 * Attempts to free all inodes for a given superblock. If there were any
652 * busy inodes return a non-zero value, else zero.
653 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
654 * them as busy.
655 */
656 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
657 {
658 int busy = 0;
659 struct inode *inode, *next;
660 LIST_HEAD(dispose);
661
662 spin_lock(&sb->s_inode_list_lock);
663 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
664 spin_lock(&inode->i_lock);
665 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
666 spin_unlock(&inode->i_lock);
667 continue;
668 }
669 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
670 spin_unlock(&inode->i_lock);
671 busy = 1;
672 continue;
673 }
674 if (atomic_read(&inode->i_count)) {
675 spin_unlock(&inode->i_lock);
676 busy = 1;
677 continue;
678 }
679
680 inode->i_state |= I_FREEING;
681 inode_lru_list_del(inode);
682 spin_unlock(&inode->i_lock);
683 list_add(&inode->i_lru, &dispose);
684 }
685 spin_unlock(&sb->s_inode_list_lock);
686
687 dispose_list(&dispose);
688
689 return busy;
690 }
691
692 /*
693 * Isolate the inode from the LRU in preparation for freeing it.
694 *
695 * Any inodes which are pinned purely because of attached pagecache have their
696 * pagecache removed. If the inode has metadata buffers attached to
697 * mapping->private_list then try to remove them.
698 *
699 * If the inode has the I_REFERENCED flag set, then it means that it has been
700 * used recently - the flag is set in iput_final(). When we encounter such an
701 * inode, clear the flag and move it to the back of the LRU so it gets another
702 * pass through the LRU before it gets reclaimed. This is necessary because of
703 * the fact we are doing lazy LRU updates to minimise lock contention so the
704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705 * with this flag set because they are the inodes that are out of order.
706 */
707 static enum lru_status inode_lru_isolate(struct list_head *item,
708 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
709 {
710 struct list_head *freeable = arg;
711 struct inode *inode = container_of(item, struct inode, i_lru);
712
713 /*
714 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
715 * If we fail to get the lock, just skip it.
716 */
717 if (!spin_trylock(&inode->i_lock))
718 return LRU_SKIP;
719
720 /*
721 * Referenced or dirty inodes are still in use. Give them another pass
722 * through the LRU as we canot reclaim them now.
723 */
724 if (atomic_read(&inode->i_count) ||
725 (inode->i_state & ~I_REFERENCED)) {
726 list_lru_isolate(lru, &inode->i_lru);
727 spin_unlock(&inode->i_lock);
728 this_cpu_dec(nr_unused);
729 return LRU_REMOVED;
730 }
731
732 /* recently referenced inodes get one more pass */
733 if (inode->i_state & I_REFERENCED) {
734 inode->i_state &= ~I_REFERENCED;
735 spin_unlock(&inode->i_lock);
736 return LRU_ROTATE;
737 }
738
739 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
740 __iget(inode);
741 spin_unlock(&inode->i_lock);
742 spin_unlock(lru_lock);
743 if (remove_inode_buffers(inode)) {
744 unsigned long reap;
745 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
746 if (current_is_kswapd())
747 __count_vm_events(KSWAPD_INODESTEAL, reap);
748 else
749 __count_vm_events(PGINODESTEAL, reap);
750 if (current->reclaim_state)
751 current->reclaim_state->reclaimed_slab += reap;
752 }
753 iput(inode);
754 spin_lock(lru_lock);
755 return LRU_RETRY;
756 }
757
758 WARN_ON(inode->i_state & I_NEW);
759 inode->i_state |= I_FREEING;
760 list_lru_isolate_move(lru, &inode->i_lru, freeable);
761 spin_unlock(&inode->i_lock);
762
763 this_cpu_dec(nr_unused);
764 return LRU_REMOVED;
765 }
766
767 /*
768 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
769 * This is called from the superblock shrinker function with a number of inodes
770 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
771 * then are freed outside inode_lock by dispose_list().
772 */
773 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
774 {
775 LIST_HEAD(freeable);
776 long freed;
777
778 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
779 inode_lru_isolate, &freeable);
780 dispose_list(&freeable);
781 return freed;
782 }
783
784 static void __wait_on_freeing_inode(struct inode *inode);
785 /*
786 * Called with the inode lock held.
787 */
788 static struct inode *find_inode(struct super_block *sb,
789 struct hlist_head *head,
790 int (*test)(struct inode *, void *),
791 void *data)
792 {
793 struct inode *inode = NULL;
794
795 repeat:
796 hlist_for_each_entry(inode, head, i_hash) {
797 if (inode->i_sb != sb)
798 continue;
799 if (!test(inode, data))
800 continue;
801 spin_lock(&inode->i_lock);
802 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
803 __wait_on_freeing_inode(inode);
804 goto repeat;
805 }
806 __iget(inode);
807 spin_unlock(&inode->i_lock);
808 return inode;
809 }
810 return NULL;
811 }
812
813 /*
814 * find_inode_fast is the fast path version of find_inode, see the comment at
815 * iget_locked for details.
816 */
817 static struct inode *find_inode_fast(struct super_block *sb,
818 struct hlist_head *head, unsigned long ino)
819 {
820 struct inode *inode = NULL;
821
822 repeat:
823 hlist_for_each_entry(inode, head, i_hash) {
824 if (inode->i_ino != ino)
825 continue;
826 if (inode->i_sb != sb)
827 continue;
828 spin_lock(&inode->i_lock);
829 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
830 __wait_on_freeing_inode(inode);
831 goto repeat;
832 }
833 __iget(inode);
834 spin_unlock(&inode->i_lock);
835 return inode;
836 }
837 return NULL;
838 }
839
840 /*
841 * Each cpu owns a range of LAST_INO_BATCH numbers.
842 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
843 * to renew the exhausted range.
844 *
845 * This does not significantly increase overflow rate because every CPU can
846 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
847 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
848 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
849 * overflow rate by 2x, which does not seem too significant.
850 *
851 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
852 * error if st_ino won't fit in target struct field. Use 32bit counter
853 * here to attempt to avoid that.
854 */
855 #define LAST_INO_BATCH 1024
856 static DEFINE_PER_CPU(unsigned int, last_ino);
857
858 unsigned int get_next_ino(void)
859 {
860 unsigned int *p = &get_cpu_var(last_ino);
861 unsigned int res = *p;
862
863 #ifdef CONFIG_SMP
864 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
865 static atomic_t shared_last_ino;
866 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
867
868 res = next - LAST_INO_BATCH;
869 }
870 #endif
871
872 res++;
873 /* get_next_ino should not provide a 0 inode number */
874 if (unlikely(!res))
875 res++;
876 *p = res;
877 put_cpu_var(last_ino);
878 return res;
879 }
880 EXPORT_SYMBOL(get_next_ino);
881
882 /**
883 * new_inode_pseudo - obtain an inode
884 * @sb: superblock
885 *
886 * Allocates a new inode for given superblock.
887 * Inode wont be chained in superblock s_inodes list
888 * This means :
889 * - fs can't be unmount
890 * - quotas, fsnotify, writeback can't work
891 */
892 struct inode *new_inode_pseudo(struct super_block *sb)
893 {
894 struct inode *inode = alloc_inode(sb);
895
896 if (inode) {
897 spin_lock(&inode->i_lock);
898 inode->i_state = 0;
899 spin_unlock(&inode->i_lock);
900 INIT_LIST_HEAD(&inode->i_sb_list);
901 }
902 return inode;
903 }
904
905 /**
906 * new_inode - obtain an inode
907 * @sb: superblock
908 *
909 * Allocates a new inode for given superblock. The default gfp_mask
910 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
911 * If HIGHMEM pages are unsuitable or it is known that pages allocated
912 * for the page cache are not reclaimable or migratable,
913 * mapping_set_gfp_mask() must be called with suitable flags on the
914 * newly created inode's mapping
915 *
916 */
917 struct inode *new_inode(struct super_block *sb)
918 {
919 struct inode *inode;
920
921 spin_lock_prefetch(&sb->s_inode_list_lock);
922
923 inode = new_inode_pseudo(sb);
924 if (inode)
925 inode_sb_list_add(inode);
926 return inode;
927 }
928 EXPORT_SYMBOL(new_inode);
929
930 #ifdef CONFIG_DEBUG_LOCK_ALLOC
931 void lockdep_annotate_inode_mutex_key(struct inode *inode)
932 {
933 if (S_ISDIR(inode->i_mode)) {
934 struct file_system_type *type = inode->i_sb->s_type;
935
936 /* Set new key only if filesystem hasn't already changed it */
937 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
938 /*
939 * ensure nobody is actually holding i_mutex
940 */
941 // mutex_destroy(&inode->i_mutex);
942 init_rwsem(&inode->i_rwsem);
943 lockdep_set_class(&inode->i_rwsem,
944 &type->i_mutex_dir_key);
945 }
946 }
947 }
948 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
949 #endif
950
951 /**
952 * unlock_new_inode - clear the I_NEW state and wake up any waiters
953 * @inode: new inode to unlock
954 *
955 * Called when the inode is fully initialised to clear the new state of the
956 * inode and wake up anyone waiting for the inode to finish initialisation.
957 */
958 void unlock_new_inode(struct inode *inode)
959 {
960 lockdep_annotate_inode_mutex_key(inode);
961 spin_lock(&inode->i_lock);
962 WARN_ON(!(inode->i_state & I_NEW));
963 inode->i_state &= ~I_NEW;
964 smp_mb();
965 wake_up_bit(&inode->i_state, __I_NEW);
966 spin_unlock(&inode->i_lock);
967 }
968 EXPORT_SYMBOL(unlock_new_inode);
969
970 /**
971 * lock_two_nondirectories - take two i_mutexes on non-directory objects
972 *
973 * Lock any non-NULL argument that is not a directory.
974 * Zero, one or two objects may be locked by this function.
975 *
976 * @inode1: first inode to lock
977 * @inode2: second inode to lock
978 */
979 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
980 {
981 if (inode1 > inode2)
982 swap(inode1, inode2);
983
984 if (inode1 && !S_ISDIR(inode1->i_mode))
985 inode_lock(inode1);
986 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
987 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
988 }
989 EXPORT_SYMBOL(lock_two_nondirectories);
990
991 /**
992 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
993 * @inode1: first inode to unlock
994 * @inode2: second inode to unlock
995 */
996 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
997 {
998 if (inode1 && !S_ISDIR(inode1->i_mode))
999 inode_unlock(inode1);
1000 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1001 inode_unlock(inode2);
1002 }
1003 EXPORT_SYMBOL(unlock_two_nondirectories);
1004
1005 /**
1006 * inode_insert5 - obtain an inode from a mounted file system
1007 * @inode: pre-allocated inode to use for insert to cache
1008 * @hashval: hash value (usually inode number) to get
1009 * @test: callback used for comparisons between inodes
1010 * @set: callback used to initialize a new struct inode
1011 * @data: opaque data pointer to pass to @test and @set
1012 *
1013 * Search for the inode specified by @hashval and @data in the inode cache,
1014 * and if present it is return it with an increased reference count. This is
1015 * a variant of iget5_locked() for callers that don't want to fail on memory
1016 * allocation of inode.
1017 *
1018 * If the inode is not in cache, insert the pre-allocated inode to cache and
1019 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1020 * to fill it in before unlocking it via unlock_new_inode().
1021 *
1022 * Note both @test and @set are called with the inode_hash_lock held, so can't
1023 * sleep.
1024 */
1025 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1026 int (*test)(struct inode *, void *),
1027 int (*set)(struct inode *, void *), void *data)
1028 {
1029 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1030 struct inode *old;
1031
1032 again:
1033 spin_lock(&inode_hash_lock);
1034 old = find_inode(inode->i_sb, head, test, data);
1035 if (unlikely(old)) {
1036 /*
1037 * Uhhuh, somebody else created the same inode under us.
1038 * Use the old inode instead of the preallocated one.
1039 */
1040 spin_unlock(&inode_hash_lock);
1041 wait_on_inode(old);
1042 if (unlikely(inode_unhashed(old))) {
1043 iput(old);
1044 goto again;
1045 }
1046 return old;
1047 }
1048
1049 if (set && unlikely(set(inode, data))) {
1050 inode = NULL;
1051 goto unlock;
1052 }
1053
1054 /*
1055 * Return the locked inode with I_NEW set, the
1056 * caller is responsible for filling in the contents
1057 */
1058 spin_lock(&inode->i_lock);
1059 inode->i_state |= I_NEW;
1060 hlist_add_head(&inode->i_hash, head);
1061 spin_unlock(&inode->i_lock);
1062 unlock:
1063 spin_unlock(&inode_hash_lock);
1064
1065 return inode;
1066 }
1067 EXPORT_SYMBOL(inode_insert5);
1068
1069 /**
1070 * iget5_locked - obtain an inode from a mounted file system
1071 * @sb: super block of file system
1072 * @hashval: hash value (usually inode number) to get
1073 * @test: callback used for comparisons between inodes
1074 * @set: callback used to initialize a new struct inode
1075 * @data: opaque data pointer to pass to @test and @set
1076 *
1077 * Search for the inode specified by @hashval and @data in the inode cache,
1078 * and if present it is return it with an increased reference count. This is
1079 * a generalized version of iget_locked() for file systems where the inode
1080 * number is not sufficient for unique identification of an inode.
1081 *
1082 * If the inode is not in cache, allocate a new inode and return it locked,
1083 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1084 * before unlocking it via unlock_new_inode().
1085 *
1086 * Note both @test and @set are called with the inode_hash_lock held, so can't
1087 * sleep.
1088 */
1089 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1090 int (*test)(struct inode *, void *),
1091 int (*set)(struct inode *, void *), void *data)
1092 {
1093 struct inode *inode = ilookup5(sb, hashval, test, data);
1094
1095 if (!inode) {
1096 struct inode *new = new_inode(sb);
1097
1098 if (new) {
1099 inode = inode_insert5(new, hashval, test, set, data);
1100 if (unlikely(inode != new))
1101 iput(new);
1102 }
1103 }
1104 return inode;
1105 }
1106 EXPORT_SYMBOL(iget5_locked);
1107
1108 /**
1109 * iget_locked - obtain an inode from a mounted file system
1110 * @sb: super block of file system
1111 * @ino: inode number to get
1112 *
1113 * Search for the inode specified by @ino in the inode cache and if present
1114 * return it with an increased reference count. This is for file systems
1115 * where the inode number is sufficient for unique identification of an inode.
1116 *
1117 * If the inode is not in cache, allocate a new inode and return it locked,
1118 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1119 * before unlocking it via unlock_new_inode().
1120 */
1121 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1122 {
1123 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1124 struct inode *inode;
1125 again:
1126 spin_lock(&inode_hash_lock);
1127 inode = find_inode_fast(sb, head, ino);
1128 spin_unlock(&inode_hash_lock);
1129 if (inode) {
1130 wait_on_inode(inode);
1131 if (unlikely(inode_unhashed(inode))) {
1132 iput(inode);
1133 goto again;
1134 }
1135 return inode;
1136 }
1137
1138 inode = alloc_inode(sb);
1139 if (inode) {
1140 struct inode *old;
1141
1142 spin_lock(&inode_hash_lock);
1143 /* We released the lock, so.. */
1144 old = find_inode_fast(sb, head, ino);
1145 if (!old) {
1146 inode->i_ino = ino;
1147 spin_lock(&inode->i_lock);
1148 inode->i_state = I_NEW;
1149 hlist_add_head(&inode->i_hash, head);
1150 spin_unlock(&inode->i_lock);
1151 inode_sb_list_add(inode);
1152 spin_unlock(&inode_hash_lock);
1153
1154 /* Return the locked inode with I_NEW set, the
1155 * caller is responsible for filling in the contents
1156 */
1157 return inode;
1158 }
1159
1160 /*
1161 * Uhhuh, somebody else created the same inode under
1162 * us. Use the old inode instead of the one we just
1163 * allocated.
1164 */
1165 spin_unlock(&inode_hash_lock);
1166 destroy_inode(inode);
1167 inode = old;
1168 wait_on_inode(inode);
1169 if (unlikely(inode_unhashed(inode))) {
1170 iput(inode);
1171 goto again;
1172 }
1173 }
1174 return inode;
1175 }
1176 EXPORT_SYMBOL(iget_locked);
1177
1178 /*
1179 * search the inode cache for a matching inode number.
1180 * If we find one, then the inode number we are trying to
1181 * allocate is not unique and so we should not use it.
1182 *
1183 * Returns 1 if the inode number is unique, 0 if it is not.
1184 */
1185 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1186 {
1187 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1188 struct inode *inode;
1189
1190 spin_lock(&inode_hash_lock);
1191 hlist_for_each_entry(inode, b, i_hash) {
1192 if (inode->i_ino == ino && inode->i_sb == sb) {
1193 spin_unlock(&inode_hash_lock);
1194 return 0;
1195 }
1196 }
1197 spin_unlock(&inode_hash_lock);
1198
1199 return 1;
1200 }
1201
1202 /**
1203 * iunique - get a unique inode number
1204 * @sb: superblock
1205 * @max_reserved: highest reserved inode number
1206 *
1207 * Obtain an inode number that is unique on the system for a given
1208 * superblock. This is used by file systems that have no natural
1209 * permanent inode numbering system. An inode number is returned that
1210 * is higher than the reserved limit but unique.
1211 *
1212 * BUGS:
1213 * With a large number of inodes live on the file system this function
1214 * currently becomes quite slow.
1215 */
1216 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1217 {
1218 /*
1219 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1220 * error if st_ino won't fit in target struct field. Use 32bit counter
1221 * here to attempt to avoid that.
1222 */
1223 static DEFINE_SPINLOCK(iunique_lock);
1224 static unsigned int counter;
1225 ino_t res;
1226
1227 spin_lock(&iunique_lock);
1228 do {
1229 if (counter <= max_reserved)
1230 counter = max_reserved + 1;
1231 res = counter++;
1232 } while (!test_inode_iunique(sb, res));
1233 spin_unlock(&iunique_lock);
1234
1235 return res;
1236 }
1237 EXPORT_SYMBOL(iunique);
1238
1239 struct inode *igrab(struct inode *inode)
1240 {
1241 spin_lock(&inode->i_lock);
1242 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1243 __iget(inode);
1244 spin_unlock(&inode->i_lock);
1245 } else {
1246 spin_unlock(&inode->i_lock);
1247 /*
1248 * Handle the case where s_op->clear_inode is not been
1249 * called yet, and somebody is calling igrab
1250 * while the inode is getting freed.
1251 */
1252 inode = NULL;
1253 }
1254 return inode;
1255 }
1256 EXPORT_SYMBOL(igrab);
1257
1258 /**
1259 * ilookup5_nowait - search for an inode in the inode cache
1260 * @sb: super block of file system to search
1261 * @hashval: hash value (usually inode number) to search for
1262 * @test: callback used for comparisons between inodes
1263 * @data: opaque data pointer to pass to @test
1264 *
1265 * Search for the inode specified by @hashval and @data in the inode cache.
1266 * If the inode is in the cache, the inode is returned with an incremented
1267 * reference count.
1268 *
1269 * Note: I_NEW is not waited upon so you have to be very careful what you do
1270 * with the returned inode. You probably should be using ilookup5() instead.
1271 *
1272 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1273 */
1274 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1275 int (*test)(struct inode *, void *), void *data)
1276 {
1277 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1278 struct inode *inode;
1279
1280 spin_lock(&inode_hash_lock);
1281 inode = find_inode(sb, head, test, data);
1282 spin_unlock(&inode_hash_lock);
1283
1284 return inode;
1285 }
1286 EXPORT_SYMBOL(ilookup5_nowait);
1287
1288 /**
1289 * ilookup5 - search for an inode in the inode cache
1290 * @sb: super block of file system to search
1291 * @hashval: hash value (usually inode number) to search for
1292 * @test: callback used for comparisons between inodes
1293 * @data: opaque data pointer to pass to @test
1294 *
1295 * Search for the inode specified by @hashval and @data in the inode cache,
1296 * and if the inode is in the cache, return the inode with an incremented
1297 * reference count. Waits on I_NEW before returning the inode.
1298 * returned with an incremented reference count.
1299 *
1300 * This is a generalized version of ilookup() for file systems where the
1301 * inode number is not sufficient for unique identification of an inode.
1302 *
1303 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1304 */
1305 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1306 int (*test)(struct inode *, void *), void *data)
1307 {
1308 struct inode *inode;
1309 again:
1310 inode = ilookup5_nowait(sb, hashval, test, data);
1311 if (inode) {
1312 wait_on_inode(inode);
1313 if (unlikely(inode_unhashed(inode))) {
1314 iput(inode);
1315 goto again;
1316 }
1317 }
1318 return inode;
1319 }
1320 EXPORT_SYMBOL(ilookup5);
1321
1322 /**
1323 * ilookup - search for an inode in the inode cache
1324 * @sb: super block of file system to search
1325 * @ino: inode number to search for
1326 *
1327 * Search for the inode @ino in the inode cache, and if the inode is in the
1328 * cache, the inode is returned with an incremented reference count.
1329 */
1330 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1331 {
1332 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1333 struct inode *inode;
1334 again:
1335 spin_lock(&inode_hash_lock);
1336 inode = find_inode_fast(sb, head, ino);
1337 spin_unlock(&inode_hash_lock);
1338
1339 if (inode) {
1340 wait_on_inode(inode);
1341 if (unlikely(inode_unhashed(inode))) {
1342 iput(inode);
1343 goto again;
1344 }
1345 }
1346 return inode;
1347 }
1348 EXPORT_SYMBOL(ilookup);
1349
1350 /**
1351 * find_inode_nowait - find an inode in the inode cache
1352 * @sb: super block of file system to search
1353 * @hashval: hash value (usually inode number) to search for
1354 * @match: callback used for comparisons between inodes
1355 * @data: opaque data pointer to pass to @match
1356 *
1357 * Search for the inode specified by @hashval and @data in the inode
1358 * cache, where the helper function @match will return 0 if the inode
1359 * does not match, 1 if the inode does match, and -1 if the search
1360 * should be stopped. The @match function must be responsible for
1361 * taking the i_lock spin_lock and checking i_state for an inode being
1362 * freed or being initialized, and incrementing the reference count
1363 * before returning 1. It also must not sleep, since it is called with
1364 * the inode_hash_lock spinlock held.
1365 *
1366 * This is a even more generalized version of ilookup5() when the
1367 * function must never block --- find_inode() can block in
1368 * __wait_on_freeing_inode() --- or when the caller can not increment
1369 * the reference count because the resulting iput() might cause an
1370 * inode eviction. The tradeoff is that the @match funtion must be
1371 * very carefully implemented.
1372 */
1373 struct inode *find_inode_nowait(struct super_block *sb,
1374 unsigned long hashval,
1375 int (*match)(struct inode *, unsigned long,
1376 void *),
1377 void *data)
1378 {
1379 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1380 struct inode *inode, *ret_inode = NULL;
1381 int mval;
1382
1383 spin_lock(&inode_hash_lock);
1384 hlist_for_each_entry(inode, head, i_hash) {
1385 if (inode->i_sb != sb)
1386 continue;
1387 mval = match(inode, hashval, data);
1388 if (mval == 0)
1389 continue;
1390 if (mval == 1)
1391 ret_inode = inode;
1392 goto out;
1393 }
1394 out:
1395 spin_unlock(&inode_hash_lock);
1396 return ret_inode;
1397 }
1398 EXPORT_SYMBOL(find_inode_nowait);
1399
1400 int insert_inode_locked(struct inode *inode)
1401 {
1402 struct super_block *sb = inode->i_sb;
1403 ino_t ino = inode->i_ino;
1404 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1405
1406 while (1) {
1407 struct inode *old = NULL;
1408 spin_lock(&inode_hash_lock);
1409 hlist_for_each_entry(old, head, i_hash) {
1410 if (old->i_ino != ino)
1411 continue;
1412 if (old->i_sb != sb)
1413 continue;
1414 spin_lock(&old->i_lock);
1415 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1416 spin_unlock(&old->i_lock);
1417 continue;
1418 }
1419 break;
1420 }
1421 if (likely(!old)) {
1422 spin_lock(&inode->i_lock);
1423 inode->i_state |= I_NEW;
1424 hlist_add_head(&inode->i_hash, head);
1425 spin_unlock(&inode->i_lock);
1426 spin_unlock(&inode_hash_lock);
1427 return 0;
1428 }
1429 __iget(old);
1430 spin_unlock(&old->i_lock);
1431 spin_unlock(&inode_hash_lock);
1432 wait_on_inode(old);
1433 if (unlikely(!inode_unhashed(old))) {
1434 iput(old);
1435 return -EBUSY;
1436 }
1437 iput(old);
1438 }
1439 }
1440 EXPORT_SYMBOL(insert_inode_locked);
1441
1442 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1443 int (*test)(struct inode *, void *), void *data)
1444 {
1445 struct inode *old = inode_insert5(inode, hashval, test, NULL, data);
1446
1447 if (old != inode) {
1448 iput(old);
1449 return -EBUSY;
1450 }
1451 return 0;
1452 }
1453 EXPORT_SYMBOL(insert_inode_locked4);
1454
1455
1456 int generic_delete_inode(struct inode *inode)
1457 {
1458 return 1;
1459 }
1460 EXPORT_SYMBOL(generic_delete_inode);
1461
1462 /*
1463 * Called when we're dropping the last reference
1464 * to an inode.
1465 *
1466 * Call the FS "drop_inode()" function, defaulting to
1467 * the legacy UNIX filesystem behaviour. If it tells
1468 * us to evict inode, do so. Otherwise, retain inode
1469 * in cache if fs is alive, sync and evict if fs is
1470 * shutting down.
1471 */
1472 static void iput_final(struct inode *inode)
1473 {
1474 struct super_block *sb = inode->i_sb;
1475 const struct super_operations *op = inode->i_sb->s_op;
1476 int drop;
1477
1478 WARN_ON(inode->i_state & I_NEW);
1479
1480 if (op->drop_inode)
1481 drop = op->drop_inode(inode);
1482 else
1483 drop = generic_drop_inode(inode);
1484
1485 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1486 inode_add_lru(inode);
1487 spin_unlock(&inode->i_lock);
1488 return;
1489 }
1490
1491 if (!drop) {
1492 inode->i_state |= I_WILL_FREE;
1493 spin_unlock(&inode->i_lock);
1494 write_inode_now(inode, 1);
1495 spin_lock(&inode->i_lock);
1496 WARN_ON(inode->i_state & I_NEW);
1497 inode->i_state &= ~I_WILL_FREE;
1498 }
1499
1500 inode->i_state |= I_FREEING;
1501 if (!list_empty(&inode->i_lru))
1502 inode_lru_list_del(inode);
1503 spin_unlock(&inode->i_lock);
1504
1505 evict(inode);
1506 }
1507
1508 /**
1509 * iput - put an inode
1510 * @inode: inode to put
1511 *
1512 * Puts an inode, dropping its usage count. If the inode use count hits
1513 * zero, the inode is then freed and may also be destroyed.
1514 *
1515 * Consequently, iput() can sleep.
1516 */
1517 void iput(struct inode *inode)
1518 {
1519 if (!inode)
1520 return;
1521 BUG_ON(inode->i_state & I_CLEAR);
1522 retry:
1523 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1524 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1525 atomic_inc(&inode->i_count);
1526 spin_unlock(&inode->i_lock);
1527 trace_writeback_lazytime_iput(inode);
1528 mark_inode_dirty_sync(inode);
1529 goto retry;
1530 }
1531 iput_final(inode);
1532 }
1533 }
1534 EXPORT_SYMBOL(iput);
1535
1536 /**
1537 * bmap - find a block number in a file
1538 * @inode: inode of file
1539 * @block: block to find
1540 *
1541 * Returns the block number on the device holding the inode that
1542 * is the disk block number for the block of the file requested.
1543 * That is, asked for block 4 of inode 1 the function will return the
1544 * disk block relative to the disk start that holds that block of the
1545 * file.
1546 */
1547 sector_t bmap(struct inode *inode, sector_t block)
1548 {
1549 sector_t res = 0;
1550 if (inode->i_mapping->a_ops->bmap)
1551 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1552 return res;
1553 }
1554 EXPORT_SYMBOL(bmap);
1555
1556 /*
1557 * Update times in overlayed inode from underlying real inode
1558 */
1559 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1560 bool rcu)
1561 {
1562 struct dentry *upperdentry;
1563
1564 /*
1565 * Nothing to do if in rcu or if non-overlayfs
1566 */
1567 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1568 return;
1569
1570 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1571
1572 /*
1573 * If file is on lower then we can't update atime, so no worries about
1574 * stale mtime/ctime.
1575 */
1576 if (upperdentry) {
1577 struct inode *realinode = d_inode(upperdentry);
1578
1579 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1580 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1581 inode->i_mtime = realinode->i_mtime;
1582 inode->i_ctime = realinode->i_ctime;
1583 }
1584 }
1585 }
1586
1587 /*
1588 * With relative atime, only update atime if the previous atime is
1589 * earlier than either the ctime or mtime or if at least a day has
1590 * passed since the last atime update.
1591 */
1592 static int relatime_need_update(const struct path *path, struct inode *inode,
1593 struct timespec now, bool rcu)
1594 {
1595
1596 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1597 return 1;
1598
1599 update_ovl_inode_times(path->dentry, inode, rcu);
1600 /*
1601 * Is mtime younger than atime? If yes, update atime:
1602 */
1603 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1604 return 1;
1605 /*
1606 * Is ctime younger than atime? If yes, update atime:
1607 */
1608 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1609 return 1;
1610
1611 /*
1612 * Is the previous atime value older than a day? If yes,
1613 * update atime:
1614 */
1615 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1616 return 1;
1617 /*
1618 * Good, we can skip the atime update:
1619 */
1620 return 0;
1621 }
1622
1623 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1624 {
1625 int iflags = I_DIRTY_TIME;
1626 bool dirty = false;
1627
1628 if (flags & S_ATIME)
1629 inode->i_atime = *time;
1630 if (flags & S_VERSION)
1631 dirty = inode_maybe_inc_iversion(inode, false);
1632 if (flags & S_CTIME)
1633 inode->i_ctime = *time;
1634 if (flags & S_MTIME)
1635 inode->i_mtime = *time;
1636 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1637 !(inode->i_sb->s_flags & SB_LAZYTIME))
1638 dirty = true;
1639
1640 if (dirty)
1641 iflags |= I_DIRTY_SYNC;
1642 __mark_inode_dirty(inode, iflags);
1643 return 0;
1644 }
1645 EXPORT_SYMBOL(generic_update_time);
1646
1647 /*
1648 * This does the actual work of updating an inodes time or version. Must have
1649 * had called mnt_want_write() before calling this.
1650 */
1651 static int update_time(struct inode *inode, struct timespec *time, int flags)
1652 {
1653 int (*update_time)(struct inode *, struct timespec *, int);
1654
1655 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1656 generic_update_time;
1657
1658 return update_time(inode, time, flags);
1659 }
1660
1661 /**
1662 * touch_atime - update the access time
1663 * @path: the &struct path to update
1664 * @inode: inode to update
1665 *
1666 * Update the accessed time on an inode and mark it for writeback.
1667 * This function automatically handles read only file systems and media,
1668 * as well as the "noatime" flag and inode specific "noatime" markers.
1669 */
1670 bool __atime_needs_update(const struct path *path, struct inode *inode,
1671 bool rcu)
1672 {
1673 struct vfsmount *mnt = path->mnt;
1674 struct timespec now;
1675
1676 if (inode->i_flags & S_NOATIME)
1677 return false;
1678
1679 /* Atime updates will likely cause i_uid and i_gid to be written
1680 * back improprely if their true value is unknown to the vfs.
1681 */
1682 if (HAS_UNMAPPED_ID(inode))
1683 return false;
1684
1685 if (IS_NOATIME(inode))
1686 return false;
1687 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1688 return false;
1689
1690 if (mnt->mnt_flags & MNT_NOATIME)
1691 return false;
1692 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1693 return false;
1694
1695 now = current_time(inode);
1696
1697 if (!relatime_need_update(path, inode, now, rcu))
1698 return false;
1699
1700 if (timespec_equal(&inode->i_atime, &now))
1701 return false;
1702
1703 return true;
1704 }
1705
1706 void touch_atime(const struct path *path)
1707 {
1708 struct vfsmount *mnt = path->mnt;
1709 struct inode *inode = d_inode(path->dentry);
1710 struct timespec now;
1711
1712 if (!__atime_needs_update(path, inode, false))
1713 return;
1714
1715 if (!sb_start_write_trylock(inode->i_sb))
1716 return;
1717
1718 if (__mnt_want_write(mnt) != 0)
1719 goto skip_update;
1720 /*
1721 * File systems can error out when updating inodes if they need to
1722 * allocate new space to modify an inode (such is the case for
1723 * Btrfs), but since we touch atime while walking down the path we
1724 * really don't care if we failed to update the atime of the file,
1725 * so just ignore the return value.
1726 * We may also fail on filesystems that have the ability to make parts
1727 * of the fs read only, e.g. subvolumes in Btrfs.
1728 */
1729 now = current_time(inode);
1730 update_time(inode, &now, S_ATIME);
1731 __mnt_drop_write(mnt);
1732 skip_update:
1733 sb_end_write(inode->i_sb);
1734 }
1735 EXPORT_SYMBOL(touch_atime);
1736
1737 /*
1738 * The logic we want is
1739 *
1740 * if suid or (sgid and xgrp)
1741 * remove privs
1742 */
1743 int should_remove_suid(struct dentry *dentry)
1744 {
1745 umode_t mode = d_inode(dentry)->i_mode;
1746 int kill = 0;
1747
1748 /* suid always must be killed */
1749 if (unlikely(mode & S_ISUID))
1750 kill = ATTR_KILL_SUID;
1751
1752 /*
1753 * sgid without any exec bits is just a mandatory locking mark; leave
1754 * it alone. If some exec bits are set, it's a real sgid; kill it.
1755 */
1756 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1757 kill |= ATTR_KILL_SGID;
1758
1759 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1760 return kill;
1761
1762 return 0;
1763 }
1764 EXPORT_SYMBOL(should_remove_suid);
1765
1766 /*
1767 * Return mask of changes for notify_change() that need to be done as a
1768 * response to write or truncate. Return 0 if nothing has to be changed.
1769 * Negative value on error (change should be denied).
1770 */
1771 int dentry_needs_remove_privs(struct dentry *dentry)
1772 {
1773 struct inode *inode = d_inode(dentry);
1774 int mask = 0;
1775 int ret;
1776
1777 if (IS_NOSEC(inode))
1778 return 0;
1779
1780 mask = should_remove_suid(dentry);
1781 ret = security_inode_need_killpriv(dentry);
1782 if (ret < 0)
1783 return ret;
1784 if (ret)
1785 mask |= ATTR_KILL_PRIV;
1786 return mask;
1787 }
1788
1789 static int __remove_privs(struct dentry *dentry, int kill)
1790 {
1791 struct iattr newattrs;
1792
1793 newattrs.ia_valid = ATTR_FORCE | kill;
1794 /*
1795 * Note we call this on write, so notify_change will not
1796 * encounter any conflicting delegations:
1797 */
1798 return notify_change(dentry, &newattrs, NULL);
1799 }
1800
1801 /*
1802 * Remove special file priviledges (suid, capabilities) when file is written
1803 * to or truncated.
1804 */
1805 int file_remove_privs(struct file *file)
1806 {
1807 struct dentry *dentry = file_dentry(file);
1808 struct inode *inode = file_inode(file);
1809 int kill;
1810 int error = 0;
1811
1812 /* Fast path for nothing security related */
1813 if (IS_NOSEC(inode))
1814 return 0;
1815
1816 kill = dentry_needs_remove_privs(dentry);
1817 if (kill < 0)
1818 return kill;
1819 if (kill)
1820 error = __remove_privs(dentry, kill);
1821 if (!error)
1822 inode_has_no_xattr(inode);
1823
1824 return error;
1825 }
1826 EXPORT_SYMBOL(file_remove_privs);
1827
1828 /**
1829 * file_update_time - update mtime and ctime time
1830 * @file: file accessed
1831 *
1832 * Update the mtime and ctime members of an inode and mark the inode
1833 * for writeback. Note that this function is meant exclusively for
1834 * usage in the file write path of filesystems, and filesystems may
1835 * choose to explicitly ignore update via this function with the
1836 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1837 * timestamps are handled by the server. This can return an error for
1838 * file systems who need to allocate space in order to update an inode.
1839 */
1840
1841 int file_update_time(struct file *file)
1842 {
1843 struct inode *inode = file_inode(file);
1844 struct timespec now;
1845 int sync_it = 0;
1846 int ret;
1847
1848 /* First try to exhaust all avenues to not sync */
1849 if (IS_NOCMTIME(inode))
1850 return 0;
1851
1852 now = current_time(inode);
1853 if (!timespec_equal(&inode->i_mtime, &now))
1854 sync_it = S_MTIME;
1855
1856 if (!timespec_equal(&inode->i_ctime, &now))
1857 sync_it |= S_CTIME;
1858
1859 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1860 sync_it |= S_VERSION;
1861
1862 if (!sync_it)
1863 return 0;
1864
1865 /* Finally allowed to write? Takes lock. */
1866 if (__mnt_want_write_file(file))
1867 return 0;
1868
1869 ret = update_time(inode, &now, sync_it);
1870 __mnt_drop_write_file(file);
1871
1872 return ret;
1873 }
1874 EXPORT_SYMBOL(file_update_time);
1875
1876 int inode_needs_sync(struct inode *inode)
1877 {
1878 if (IS_SYNC(inode))
1879 return 1;
1880 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1881 return 1;
1882 return 0;
1883 }
1884 EXPORT_SYMBOL(inode_needs_sync);
1885
1886 /*
1887 * If we try to find an inode in the inode hash while it is being
1888 * deleted, we have to wait until the filesystem completes its
1889 * deletion before reporting that it isn't found. This function waits
1890 * until the deletion _might_ have completed. Callers are responsible
1891 * to recheck inode state.
1892 *
1893 * It doesn't matter if I_NEW is not set initially, a call to
1894 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1895 * will DTRT.
1896 */
1897 static void __wait_on_freeing_inode(struct inode *inode)
1898 {
1899 wait_queue_head_t *wq;
1900 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1901 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1902 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1903 spin_unlock(&inode->i_lock);
1904 spin_unlock(&inode_hash_lock);
1905 schedule();
1906 finish_wait(wq, &wait.wq_entry);
1907 spin_lock(&inode_hash_lock);
1908 }
1909
1910 static __initdata unsigned long ihash_entries;
1911 static int __init set_ihash_entries(char *str)
1912 {
1913 if (!str)
1914 return 0;
1915 ihash_entries = simple_strtoul(str, &str, 0);
1916 return 1;
1917 }
1918 __setup("ihash_entries=", set_ihash_entries);
1919
1920 /*
1921 * Initialize the waitqueues and inode hash table.
1922 */
1923 void __init inode_init_early(void)
1924 {
1925 /* If hashes are distributed across NUMA nodes, defer
1926 * hash allocation until vmalloc space is available.
1927 */
1928 if (hashdist)
1929 return;
1930
1931 inode_hashtable =
1932 alloc_large_system_hash("Inode-cache",
1933 sizeof(struct hlist_head),
1934 ihash_entries,
1935 14,
1936 HASH_EARLY | HASH_ZERO,
1937 &i_hash_shift,
1938 &i_hash_mask,
1939 0,
1940 0);
1941 }
1942
1943 void __init inode_init(void)
1944 {
1945 /* inode slab cache */
1946 inode_cachep = kmem_cache_create("inode_cache",
1947 sizeof(struct inode),
1948 0,
1949 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1950 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1951 init_once);
1952
1953 /* Hash may have been set up in inode_init_early */
1954 if (!hashdist)
1955 return;
1956
1957 inode_hashtable =
1958 alloc_large_system_hash("Inode-cache",
1959 sizeof(struct hlist_head),
1960 ihash_entries,
1961 14,
1962 HASH_ZERO,
1963 &i_hash_shift,
1964 &i_hash_mask,
1965 0,
1966 0);
1967 }
1968
1969 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1970 {
1971 inode->i_mode = mode;
1972 if (S_ISCHR(mode)) {
1973 inode->i_fop = &def_chr_fops;
1974 inode->i_rdev = rdev;
1975 } else if (S_ISBLK(mode)) {
1976 inode->i_fop = &def_blk_fops;
1977 inode->i_rdev = rdev;
1978 } else if (S_ISFIFO(mode))
1979 inode->i_fop = &pipefifo_fops;
1980 else if (S_ISSOCK(mode))
1981 ; /* leave it no_open_fops */
1982 else
1983 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1984 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1985 inode->i_ino);
1986 }
1987 EXPORT_SYMBOL(init_special_inode);
1988
1989 /**
1990 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1991 * @inode: New inode
1992 * @dir: Directory inode
1993 * @mode: mode of the new inode
1994 */
1995 void inode_init_owner(struct inode *inode, const struct inode *dir,
1996 umode_t mode)
1997 {
1998 inode->i_uid = current_fsuid();
1999 if (dir && dir->i_mode & S_ISGID) {
2000 inode->i_gid = dir->i_gid;
2001 if (S_ISDIR(mode))
2002 mode |= S_ISGID;
2003 } else
2004 inode->i_gid = current_fsgid();
2005 inode->i_mode = mode;
2006 }
2007 EXPORT_SYMBOL(inode_init_owner);
2008
2009 /**
2010 * inode_owner_or_capable - check current task permissions to inode
2011 * @inode: inode being checked
2012 *
2013 * Return true if current either has CAP_FOWNER in a namespace with the
2014 * inode owner uid mapped, or owns the file.
2015 */
2016 bool inode_owner_or_capable(const struct inode *inode)
2017 {
2018 struct user_namespace *ns;
2019
2020 if (uid_eq(current_fsuid(), inode->i_uid))
2021 return true;
2022
2023 ns = current_user_ns();
2024 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2025 return true;
2026 return false;
2027 }
2028 EXPORT_SYMBOL(inode_owner_or_capable);
2029
2030 /*
2031 * Direct i/o helper functions
2032 */
2033 static void __inode_dio_wait(struct inode *inode)
2034 {
2035 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2036 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2037
2038 do {
2039 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2040 if (atomic_read(&inode->i_dio_count))
2041 schedule();
2042 } while (atomic_read(&inode->i_dio_count));
2043 finish_wait(wq, &q.wq_entry);
2044 }
2045
2046 /**
2047 * inode_dio_wait - wait for outstanding DIO requests to finish
2048 * @inode: inode to wait for
2049 *
2050 * Waits for all pending direct I/O requests to finish so that we can
2051 * proceed with a truncate or equivalent operation.
2052 *
2053 * Must be called under a lock that serializes taking new references
2054 * to i_dio_count, usually by inode->i_mutex.
2055 */
2056 void inode_dio_wait(struct inode *inode)
2057 {
2058 if (atomic_read(&inode->i_dio_count))
2059 __inode_dio_wait(inode);
2060 }
2061 EXPORT_SYMBOL(inode_dio_wait);
2062
2063 /*
2064 * inode_set_flags - atomically set some inode flags
2065 *
2066 * Note: the caller should be holding i_mutex, or else be sure that
2067 * they have exclusive access to the inode structure (i.e., while the
2068 * inode is being instantiated). The reason for the cmpxchg() loop
2069 * --- which wouldn't be necessary if all code paths which modify
2070 * i_flags actually followed this rule, is that there is at least one
2071 * code path which doesn't today so we use cmpxchg() out of an abundance
2072 * of caution.
2073 *
2074 * In the long run, i_mutex is overkill, and we should probably look
2075 * at using the i_lock spinlock to protect i_flags, and then make sure
2076 * it is so documented in include/linux/fs.h and that all code follows
2077 * the locking convention!!
2078 */
2079 void inode_set_flags(struct inode *inode, unsigned int flags,
2080 unsigned int mask)
2081 {
2082 unsigned int old_flags, new_flags;
2083
2084 WARN_ON_ONCE(flags & ~mask);
2085 do {
2086 old_flags = READ_ONCE(inode->i_flags);
2087 new_flags = (old_flags & ~mask) | flags;
2088 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2089 new_flags) != old_flags));
2090 }
2091 EXPORT_SYMBOL(inode_set_flags);
2092
2093 void inode_nohighmem(struct inode *inode)
2094 {
2095 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2096 }
2097 EXPORT_SYMBOL(inode_nohighmem);
2098
2099 /**
2100 * current_time - Return FS time
2101 * @inode: inode.
2102 *
2103 * Return the current time truncated to the time granularity supported by
2104 * the fs.
2105 *
2106 * Note that inode and inode->sb cannot be NULL.
2107 * Otherwise, the function warns and returns time without truncation.
2108 */
2109 struct timespec current_time(struct inode *inode)
2110 {
2111 struct timespec now = current_kernel_time();
2112
2113 if (unlikely(!inode->i_sb)) {
2114 WARN(1, "current_time() called with uninitialized super_block in the inode");
2115 return now;
2116 }
2117
2118 return timespec_trunc(now, inode->i_sb->s_time_gran);
2119 }
2120 EXPORT_SYMBOL(current_time);