]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
KVM: x86: Wrong flags on CMPS and SCAS emulation
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22
23 /*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 /**
118 * inode_init_always - perform inode structure intialisation
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
121 *
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
124 */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 static const struct inode_operations empty_iops;
128 static const struct file_operations empty_fops;
129 struct address_space *const mapping = &inode->i_data;
130
131 inode->i_sb = sb;
132 inode->i_blkbits = sb->s_blocksize_bits;
133 inode->i_flags = 0;
134 atomic_set(&inode->i_count, 1);
135 inode->i_op = &empty_iops;
136 inode->i_fop = &empty_fops;
137 inode->__i_nlink = 1;
138 inode->i_opflags = 0;
139 i_uid_write(inode, 0);
140 i_gid_write(inode, 0);
141 atomic_set(&inode->i_writecount, 0);
142 inode->i_size = 0;
143 inode->i_blocks = 0;
144 inode->i_bytes = 0;
145 inode->i_generation = 0;
146 #ifdef CONFIG_QUOTA
147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148 #endif
149 inode->i_pipe = NULL;
150 inode->i_bdev = NULL;
151 inode->i_cdev = NULL;
152 inode->i_rdev = 0;
153 inode->dirtied_when = 0;
154
155 if (security_inode_alloc(inode))
156 goto out;
157 spin_lock_init(&inode->i_lock);
158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159
160 mutex_init(&inode->i_mutex);
161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162
163 atomic_set(&inode->i_dio_count, 0);
164
165 mapping->a_ops = &empty_aops;
166 mapping->host = inode;
167 mapping->flags = 0;
168 atomic_set(&mapping->i_mmap_writable, 0);
169 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
170 mapping->private_data = NULL;
171 mapping->backing_dev_info = &default_backing_dev_info;
172 mapping->writeback_index = 0;
173
174 /*
175 * If the block_device provides a backing_dev_info for client
176 * inodes then use that. Otherwise the inode share the bdev's
177 * backing_dev_info.
178 */
179 if (sb->s_bdev) {
180 struct backing_dev_info *bdi;
181
182 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
183 mapping->backing_dev_info = bdi;
184 }
185 inode->i_private = NULL;
186 inode->i_mapping = mapping;
187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
188 #ifdef CONFIG_FS_POSIX_ACL
189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191
192 #ifdef CONFIG_FSNOTIFY
193 inode->i_fsnotify_mask = 0;
194 #endif
195
196 this_cpu_inc(nr_inodes);
197
198 return 0;
199 out:
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(inode_init_always);
203
204 static struct inode *alloc_inode(struct super_block *sb)
205 {
206 struct inode *inode;
207
208 if (sb->s_op->alloc_inode)
209 inode = sb->s_op->alloc_inode(sb);
210 else
211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
212
213 if (!inode)
214 return NULL;
215
216 if (unlikely(inode_init_always(sb, inode))) {
217 if (inode->i_sb->s_op->destroy_inode)
218 inode->i_sb->s_op->destroy_inode(inode);
219 else
220 kmem_cache_free(inode_cachep, inode);
221 return NULL;
222 }
223
224 return inode;
225 }
226
227 void free_inode_nonrcu(struct inode *inode)
228 {
229 kmem_cache_free(inode_cachep, inode);
230 }
231 EXPORT_SYMBOL(free_inode_nonrcu);
232
233 void __destroy_inode(struct inode *inode)
234 {
235 BUG_ON(inode_has_buffers(inode));
236 security_inode_free(inode);
237 fsnotify_inode_delete(inode);
238 if (!inode->i_nlink) {
239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 atomic_long_dec(&inode->i_sb->s_remove_count);
241 }
242
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
247 posix_acl_release(inode->i_default_acl);
248 #endif
249 this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252
253 static void i_callback(struct rcu_head *head)
254 {
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 kmem_cache_free(inode_cachep, inode);
257 }
258
259 static void destroy_inode(struct inode *inode)
260 {
261 BUG_ON(!list_empty(&inode->i_lru));
262 __destroy_inode(inode);
263 if (inode->i_sb->s_op->destroy_inode)
264 inode->i_sb->s_op->destroy_inode(inode);
265 else
266 call_rcu(&inode->i_rcu, i_callback);
267 }
268
269 /**
270 * drop_nlink - directly drop an inode's link count
271 * @inode: inode
272 *
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
278 * on the filesystem.
279 */
280 void drop_nlink(struct inode *inode)
281 {
282 WARN_ON(inode->i_nlink == 0);
283 inode->__i_nlink--;
284 if (!inode->i_nlink)
285 atomic_long_inc(&inode->i_sb->s_remove_count);
286 }
287 EXPORT_SYMBOL(drop_nlink);
288
289 /**
290 * clear_nlink - directly zero an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
296 */
297 void clear_nlink(struct inode *inode)
298 {
299 if (inode->i_nlink) {
300 inode->__i_nlink = 0;
301 atomic_long_inc(&inode->i_sb->s_remove_count);
302 }
303 }
304 EXPORT_SYMBOL(clear_nlink);
305
306 /**
307 * set_nlink - directly set an inode's link count
308 * @inode: inode
309 * @nlink: new nlink (should be non-zero)
310 *
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
313 */
314 void set_nlink(struct inode *inode, unsigned int nlink)
315 {
316 if (!nlink) {
317 clear_nlink(inode);
318 } else {
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode->i_nlink == 0)
321 atomic_long_dec(&inode->i_sb->s_remove_count);
322
323 inode->__i_nlink = nlink;
324 }
325 }
326 EXPORT_SYMBOL(set_nlink);
327
328 /**
329 * inc_nlink - directly increment an inode's link count
330 * @inode: inode
331 *
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
335 */
336 void inc_nlink(struct inode *inode)
337 {
338 if (unlikely(inode->i_nlink == 0)) {
339 WARN_ON(!(inode->i_state & I_LINKABLE));
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341 }
342
343 inode->__i_nlink++;
344 }
345 EXPORT_SYMBOL(inc_nlink);
346
347 void address_space_init_once(struct address_space *mapping)
348 {
349 memset(mapping, 0, sizeof(*mapping));
350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
351 spin_lock_init(&mapping->tree_lock);
352 mutex_init(&mapping->i_mmap_mutex);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT;
356 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
357 }
358 EXPORT_SYMBOL(address_space_init_once);
359
360 /*
361 * These are initializations that only need to be done
362 * once, because the fields are idempotent across use
363 * of the inode, so let the slab aware of that.
364 */
365 void inode_init_once(struct inode *inode)
366 {
367 memset(inode, 0, sizeof(*inode));
368 INIT_HLIST_NODE(&inode->i_hash);
369 INIT_LIST_HEAD(&inode->i_devices);
370 INIT_LIST_HEAD(&inode->i_wb_list);
371 INIT_LIST_HEAD(&inode->i_lru);
372 address_space_init_once(&inode->i_data);
373 i_size_ordered_init(inode);
374 #ifdef CONFIG_FSNOTIFY
375 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
376 #endif
377 }
378 EXPORT_SYMBOL(inode_init_once);
379
380 static void init_once(void *foo)
381 {
382 struct inode *inode = (struct inode *) foo;
383
384 inode_init_once(inode);
385 }
386
387 /*
388 * inode->i_lock must be held
389 */
390 void __iget(struct inode *inode)
391 {
392 atomic_inc(&inode->i_count);
393 }
394
395 /*
396 * get additional reference to inode; caller must already hold one.
397 */
398 void ihold(struct inode *inode)
399 {
400 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
401 }
402 EXPORT_SYMBOL(ihold);
403
404 static void inode_lru_list_add(struct inode *inode)
405 {
406 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
407 this_cpu_inc(nr_unused);
408 }
409
410 /*
411 * Add inode to LRU if needed (inode is unused and clean).
412 *
413 * Needs inode->i_lock held.
414 */
415 void inode_add_lru(struct inode *inode)
416 {
417 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
418 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
419 inode_lru_list_add(inode);
420 }
421
422
423 static void inode_lru_list_del(struct inode *inode)
424 {
425
426 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 this_cpu_dec(nr_unused);
428 }
429
430 /**
431 * inode_sb_list_add - add inode to the superblock list of inodes
432 * @inode: inode to add
433 */
434 void inode_sb_list_add(struct inode *inode)
435 {
436 spin_lock(&inode_sb_list_lock);
437 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
438 spin_unlock(&inode_sb_list_lock);
439 }
440 EXPORT_SYMBOL_GPL(inode_sb_list_add);
441
442 static inline void inode_sb_list_del(struct inode *inode)
443 {
444 if (!list_empty(&inode->i_sb_list)) {
445 spin_lock(&inode_sb_list_lock);
446 list_del_init(&inode->i_sb_list);
447 spin_unlock(&inode_sb_list_lock);
448 }
449 }
450
451 static unsigned long hash(struct super_block *sb, unsigned long hashval)
452 {
453 unsigned long tmp;
454
455 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
456 L1_CACHE_BYTES;
457 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
458 return tmp & i_hash_mask;
459 }
460
461 /**
462 * __insert_inode_hash - hash an inode
463 * @inode: unhashed inode
464 * @hashval: unsigned long value used to locate this object in the
465 * inode_hashtable.
466 *
467 * Add an inode to the inode hash for this superblock.
468 */
469 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
470 {
471 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
472
473 spin_lock(&inode_hash_lock);
474 spin_lock(&inode->i_lock);
475 hlist_add_head(&inode->i_hash, b);
476 spin_unlock(&inode->i_lock);
477 spin_unlock(&inode_hash_lock);
478 }
479 EXPORT_SYMBOL(__insert_inode_hash);
480
481 /**
482 * __remove_inode_hash - remove an inode from the hash
483 * @inode: inode to unhash
484 *
485 * Remove an inode from the superblock.
486 */
487 void __remove_inode_hash(struct inode *inode)
488 {
489 spin_lock(&inode_hash_lock);
490 spin_lock(&inode->i_lock);
491 hlist_del_init(&inode->i_hash);
492 spin_unlock(&inode->i_lock);
493 spin_unlock(&inode_hash_lock);
494 }
495 EXPORT_SYMBOL(__remove_inode_hash);
496
497 void clear_inode(struct inode *inode)
498 {
499 might_sleep();
500 /*
501 * We have to cycle tree_lock here because reclaim can be still in the
502 * process of removing the last page (in __delete_from_page_cache())
503 * and we must not free mapping under it.
504 */
505 spin_lock_irq(&inode->i_data.tree_lock);
506 BUG_ON(inode->i_data.nrpages);
507 BUG_ON(inode->i_data.nrshadows);
508 spin_unlock_irq(&inode->i_data.tree_lock);
509 BUG_ON(!list_empty(&inode->i_data.private_list));
510 BUG_ON(!(inode->i_state & I_FREEING));
511 BUG_ON(inode->i_state & I_CLEAR);
512 /* don't need i_lock here, no concurrent mods to i_state */
513 inode->i_state = I_FREEING | I_CLEAR;
514 }
515 EXPORT_SYMBOL(clear_inode);
516
517 /*
518 * Free the inode passed in, removing it from the lists it is still connected
519 * to. We remove any pages still attached to the inode and wait for any IO that
520 * is still in progress before finally destroying the inode.
521 *
522 * An inode must already be marked I_FREEING so that we avoid the inode being
523 * moved back onto lists if we race with other code that manipulates the lists
524 * (e.g. writeback_single_inode). The caller is responsible for setting this.
525 *
526 * An inode must already be removed from the LRU list before being evicted from
527 * the cache. This should occur atomically with setting the I_FREEING state
528 * flag, so no inodes here should ever be on the LRU when being evicted.
529 */
530 static void evict(struct inode *inode)
531 {
532 const struct super_operations *op = inode->i_sb->s_op;
533
534 BUG_ON(!(inode->i_state & I_FREEING));
535 BUG_ON(!list_empty(&inode->i_lru));
536
537 if (!list_empty(&inode->i_wb_list))
538 inode_wb_list_del(inode);
539
540 inode_sb_list_del(inode);
541
542 /*
543 * Wait for flusher thread to be done with the inode so that filesystem
544 * does not start destroying it while writeback is still running. Since
545 * the inode has I_FREEING set, flusher thread won't start new work on
546 * the inode. We just have to wait for running writeback to finish.
547 */
548 inode_wait_for_writeback(inode);
549
550 if (op->evict_inode) {
551 op->evict_inode(inode);
552 } else {
553 truncate_inode_pages_final(&inode->i_data);
554 clear_inode(inode);
555 }
556 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
557 bd_forget(inode);
558 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
559 cd_forget(inode);
560
561 remove_inode_hash(inode);
562
563 spin_lock(&inode->i_lock);
564 wake_up_bit(&inode->i_state, __I_NEW);
565 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
566 spin_unlock(&inode->i_lock);
567
568 destroy_inode(inode);
569 }
570
571 /*
572 * dispose_list - dispose of the contents of a local list
573 * @head: the head of the list to free
574 *
575 * Dispose-list gets a local list with local inodes in it, so it doesn't
576 * need to worry about list corruption and SMP locks.
577 */
578 static void dispose_list(struct list_head *head)
579 {
580 while (!list_empty(head)) {
581 struct inode *inode;
582
583 inode = list_first_entry(head, struct inode, i_lru);
584 list_del_init(&inode->i_lru);
585
586 evict(inode);
587 }
588 }
589
590 /**
591 * evict_inodes - evict all evictable inodes for a superblock
592 * @sb: superblock to operate on
593 *
594 * Make sure that no inodes with zero refcount are retained. This is
595 * called by superblock shutdown after having MS_ACTIVE flag removed,
596 * so any inode reaching zero refcount during or after that call will
597 * be immediately evicted.
598 */
599 void evict_inodes(struct super_block *sb)
600 {
601 struct inode *inode, *next;
602 LIST_HEAD(dispose);
603
604 spin_lock(&inode_sb_list_lock);
605 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
606 if (atomic_read(&inode->i_count))
607 continue;
608
609 spin_lock(&inode->i_lock);
610 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
611 spin_unlock(&inode->i_lock);
612 continue;
613 }
614
615 inode->i_state |= I_FREEING;
616 inode_lru_list_del(inode);
617 spin_unlock(&inode->i_lock);
618 list_add(&inode->i_lru, &dispose);
619 }
620 spin_unlock(&inode_sb_list_lock);
621
622 dispose_list(&dispose);
623 }
624
625 /**
626 * invalidate_inodes - attempt to free all inodes on a superblock
627 * @sb: superblock to operate on
628 * @kill_dirty: flag to guide handling of dirty inodes
629 *
630 * Attempts to free all inodes for a given superblock. If there were any
631 * busy inodes return a non-zero value, else zero.
632 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
633 * them as busy.
634 */
635 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
636 {
637 int busy = 0;
638 struct inode *inode, *next;
639 LIST_HEAD(dispose);
640
641 spin_lock(&inode_sb_list_lock);
642 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
643 spin_lock(&inode->i_lock);
644 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
645 spin_unlock(&inode->i_lock);
646 continue;
647 }
648 if (inode->i_state & I_DIRTY && !kill_dirty) {
649 spin_unlock(&inode->i_lock);
650 busy = 1;
651 continue;
652 }
653 if (atomic_read(&inode->i_count)) {
654 spin_unlock(&inode->i_lock);
655 busy = 1;
656 continue;
657 }
658
659 inode->i_state |= I_FREEING;
660 inode_lru_list_del(inode);
661 spin_unlock(&inode->i_lock);
662 list_add(&inode->i_lru, &dispose);
663 }
664 spin_unlock(&inode_sb_list_lock);
665
666 dispose_list(&dispose);
667
668 return busy;
669 }
670
671 /*
672 * Isolate the inode from the LRU in preparation for freeing it.
673 *
674 * Any inodes which are pinned purely because of attached pagecache have their
675 * pagecache removed. If the inode has metadata buffers attached to
676 * mapping->private_list then try to remove them.
677 *
678 * If the inode has the I_REFERENCED flag set, then it means that it has been
679 * used recently - the flag is set in iput_final(). When we encounter such an
680 * inode, clear the flag and move it to the back of the LRU so it gets another
681 * pass through the LRU before it gets reclaimed. This is necessary because of
682 * the fact we are doing lazy LRU updates to minimise lock contention so the
683 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
684 * with this flag set because they are the inodes that are out of order.
685 */
686 static enum lru_status
687 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
688 {
689 struct list_head *freeable = arg;
690 struct inode *inode = container_of(item, struct inode, i_lru);
691
692 /*
693 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
694 * If we fail to get the lock, just skip it.
695 */
696 if (!spin_trylock(&inode->i_lock))
697 return LRU_SKIP;
698
699 /*
700 * Referenced or dirty inodes are still in use. Give them another pass
701 * through the LRU as we canot reclaim them now.
702 */
703 if (atomic_read(&inode->i_count) ||
704 (inode->i_state & ~I_REFERENCED)) {
705 list_del_init(&inode->i_lru);
706 spin_unlock(&inode->i_lock);
707 this_cpu_dec(nr_unused);
708 return LRU_REMOVED;
709 }
710
711 /* recently referenced inodes get one more pass */
712 if (inode->i_state & I_REFERENCED) {
713 inode->i_state &= ~I_REFERENCED;
714 spin_unlock(&inode->i_lock);
715 return LRU_ROTATE;
716 }
717
718 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
719 __iget(inode);
720 spin_unlock(&inode->i_lock);
721 spin_unlock(lru_lock);
722 if (remove_inode_buffers(inode)) {
723 unsigned long reap;
724 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
725 if (current_is_kswapd())
726 __count_vm_events(KSWAPD_INODESTEAL, reap);
727 else
728 __count_vm_events(PGINODESTEAL, reap);
729 if (current->reclaim_state)
730 current->reclaim_state->reclaimed_slab += reap;
731 }
732 iput(inode);
733 spin_lock(lru_lock);
734 return LRU_RETRY;
735 }
736
737 WARN_ON(inode->i_state & I_NEW);
738 inode->i_state |= I_FREEING;
739 list_move(&inode->i_lru, freeable);
740 spin_unlock(&inode->i_lock);
741
742 this_cpu_dec(nr_unused);
743 return LRU_REMOVED;
744 }
745
746 /*
747 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
748 * This is called from the superblock shrinker function with a number of inodes
749 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
750 * then are freed outside inode_lock by dispose_list().
751 */
752 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
753 int nid)
754 {
755 LIST_HEAD(freeable);
756 long freed;
757
758 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
759 &freeable, &nr_to_scan);
760 dispose_list(&freeable);
761 return freed;
762 }
763
764 static void __wait_on_freeing_inode(struct inode *inode);
765 /*
766 * Called with the inode lock held.
767 */
768 static struct inode *find_inode(struct super_block *sb,
769 struct hlist_head *head,
770 int (*test)(struct inode *, void *),
771 void *data)
772 {
773 struct inode *inode = NULL;
774
775 repeat:
776 hlist_for_each_entry(inode, head, i_hash) {
777 if (inode->i_sb != sb)
778 continue;
779 if (!test(inode, data))
780 continue;
781 spin_lock(&inode->i_lock);
782 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
783 __wait_on_freeing_inode(inode);
784 goto repeat;
785 }
786 __iget(inode);
787 spin_unlock(&inode->i_lock);
788 return inode;
789 }
790 return NULL;
791 }
792
793 /*
794 * find_inode_fast is the fast path version of find_inode, see the comment at
795 * iget_locked for details.
796 */
797 static struct inode *find_inode_fast(struct super_block *sb,
798 struct hlist_head *head, unsigned long ino)
799 {
800 struct inode *inode = NULL;
801
802 repeat:
803 hlist_for_each_entry(inode, head, i_hash) {
804 if (inode->i_ino != ino)
805 continue;
806 if (inode->i_sb != sb)
807 continue;
808 spin_lock(&inode->i_lock);
809 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
810 __wait_on_freeing_inode(inode);
811 goto repeat;
812 }
813 __iget(inode);
814 spin_unlock(&inode->i_lock);
815 return inode;
816 }
817 return NULL;
818 }
819
820 /*
821 * Each cpu owns a range of LAST_INO_BATCH numbers.
822 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
823 * to renew the exhausted range.
824 *
825 * This does not significantly increase overflow rate because every CPU can
826 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
827 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
828 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
829 * overflow rate by 2x, which does not seem too significant.
830 *
831 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
832 * error if st_ino won't fit in target struct field. Use 32bit counter
833 * here to attempt to avoid that.
834 */
835 #define LAST_INO_BATCH 1024
836 static DEFINE_PER_CPU(unsigned int, last_ino);
837
838 unsigned int get_next_ino(void)
839 {
840 unsigned int *p = &get_cpu_var(last_ino);
841 unsigned int res = *p;
842
843 #ifdef CONFIG_SMP
844 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
845 static atomic_t shared_last_ino;
846 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
847
848 res = next - LAST_INO_BATCH;
849 }
850 #endif
851
852 *p = ++res;
853 put_cpu_var(last_ino);
854 return res;
855 }
856 EXPORT_SYMBOL(get_next_ino);
857
858 /**
859 * new_inode_pseudo - obtain an inode
860 * @sb: superblock
861 *
862 * Allocates a new inode for given superblock.
863 * Inode wont be chained in superblock s_inodes list
864 * This means :
865 * - fs can't be unmount
866 * - quotas, fsnotify, writeback can't work
867 */
868 struct inode *new_inode_pseudo(struct super_block *sb)
869 {
870 struct inode *inode = alloc_inode(sb);
871
872 if (inode) {
873 spin_lock(&inode->i_lock);
874 inode->i_state = 0;
875 spin_unlock(&inode->i_lock);
876 INIT_LIST_HEAD(&inode->i_sb_list);
877 }
878 return inode;
879 }
880
881 /**
882 * new_inode - obtain an inode
883 * @sb: superblock
884 *
885 * Allocates a new inode for given superblock. The default gfp_mask
886 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
887 * If HIGHMEM pages are unsuitable or it is known that pages allocated
888 * for the page cache are not reclaimable or migratable,
889 * mapping_set_gfp_mask() must be called with suitable flags on the
890 * newly created inode's mapping
891 *
892 */
893 struct inode *new_inode(struct super_block *sb)
894 {
895 struct inode *inode;
896
897 spin_lock_prefetch(&inode_sb_list_lock);
898
899 inode = new_inode_pseudo(sb);
900 if (inode)
901 inode_sb_list_add(inode);
902 return inode;
903 }
904 EXPORT_SYMBOL(new_inode);
905
906 #ifdef CONFIG_DEBUG_LOCK_ALLOC
907 void lockdep_annotate_inode_mutex_key(struct inode *inode)
908 {
909 if (S_ISDIR(inode->i_mode)) {
910 struct file_system_type *type = inode->i_sb->s_type;
911
912 /* Set new key only if filesystem hasn't already changed it */
913 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
914 /*
915 * ensure nobody is actually holding i_mutex
916 */
917 mutex_destroy(&inode->i_mutex);
918 mutex_init(&inode->i_mutex);
919 lockdep_set_class(&inode->i_mutex,
920 &type->i_mutex_dir_key);
921 }
922 }
923 }
924 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
925 #endif
926
927 /**
928 * unlock_new_inode - clear the I_NEW state and wake up any waiters
929 * @inode: new inode to unlock
930 *
931 * Called when the inode is fully initialised to clear the new state of the
932 * inode and wake up anyone waiting for the inode to finish initialisation.
933 */
934 void unlock_new_inode(struct inode *inode)
935 {
936 lockdep_annotate_inode_mutex_key(inode);
937 spin_lock(&inode->i_lock);
938 WARN_ON(!(inode->i_state & I_NEW));
939 inode->i_state &= ~I_NEW;
940 smp_mb();
941 wake_up_bit(&inode->i_state, __I_NEW);
942 spin_unlock(&inode->i_lock);
943 }
944 EXPORT_SYMBOL(unlock_new_inode);
945
946 /**
947 * lock_two_nondirectories - take two i_mutexes on non-directory objects
948 *
949 * Lock any non-NULL argument that is not a directory.
950 * Zero, one or two objects may be locked by this function.
951 *
952 * @inode1: first inode to lock
953 * @inode2: second inode to lock
954 */
955 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
956 {
957 if (inode1 > inode2)
958 swap(inode1, inode2);
959
960 if (inode1 && !S_ISDIR(inode1->i_mode))
961 mutex_lock(&inode1->i_mutex);
962 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
963 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
964 }
965 EXPORT_SYMBOL(lock_two_nondirectories);
966
967 /**
968 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
969 * @inode1: first inode to unlock
970 * @inode2: second inode to unlock
971 */
972 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
973 {
974 if (inode1 && !S_ISDIR(inode1->i_mode))
975 mutex_unlock(&inode1->i_mutex);
976 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
977 mutex_unlock(&inode2->i_mutex);
978 }
979 EXPORT_SYMBOL(unlock_two_nondirectories);
980
981 /**
982 * iget5_locked - obtain an inode from a mounted file system
983 * @sb: super block of file system
984 * @hashval: hash value (usually inode number) to get
985 * @test: callback used for comparisons between inodes
986 * @set: callback used to initialize a new struct inode
987 * @data: opaque data pointer to pass to @test and @set
988 *
989 * Search for the inode specified by @hashval and @data in the inode cache,
990 * and if present it is return it with an increased reference count. This is
991 * a generalized version of iget_locked() for file systems where the inode
992 * number is not sufficient for unique identification of an inode.
993 *
994 * If the inode is not in cache, allocate a new inode and return it locked,
995 * hashed, and with the I_NEW flag set. The file system gets to fill it in
996 * before unlocking it via unlock_new_inode().
997 *
998 * Note both @test and @set are called with the inode_hash_lock held, so can't
999 * sleep.
1000 */
1001 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1002 int (*test)(struct inode *, void *),
1003 int (*set)(struct inode *, void *), void *data)
1004 {
1005 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1006 struct inode *inode;
1007
1008 spin_lock(&inode_hash_lock);
1009 inode = find_inode(sb, head, test, data);
1010 spin_unlock(&inode_hash_lock);
1011
1012 if (inode) {
1013 wait_on_inode(inode);
1014 return inode;
1015 }
1016
1017 inode = alloc_inode(sb);
1018 if (inode) {
1019 struct inode *old;
1020
1021 spin_lock(&inode_hash_lock);
1022 /* We released the lock, so.. */
1023 old = find_inode(sb, head, test, data);
1024 if (!old) {
1025 if (set(inode, data))
1026 goto set_failed;
1027
1028 spin_lock(&inode->i_lock);
1029 inode->i_state = I_NEW;
1030 hlist_add_head(&inode->i_hash, head);
1031 spin_unlock(&inode->i_lock);
1032 inode_sb_list_add(inode);
1033 spin_unlock(&inode_hash_lock);
1034
1035 /* Return the locked inode with I_NEW set, the
1036 * caller is responsible for filling in the contents
1037 */
1038 return inode;
1039 }
1040
1041 /*
1042 * Uhhuh, somebody else created the same inode under
1043 * us. Use the old inode instead of the one we just
1044 * allocated.
1045 */
1046 spin_unlock(&inode_hash_lock);
1047 destroy_inode(inode);
1048 inode = old;
1049 wait_on_inode(inode);
1050 }
1051 return inode;
1052
1053 set_failed:
1054 spin_unlock(&inode_hash_lock);
1055 destroy_inode(inode);
1056 return NULL;
1057 }
1058 EXPORT_SYMBOL(iget5_locked);
1059
1060 /**
1061 * iget_locked - obtain an inode from a mounted file system
1062 * @sb: super block of file system
1063 * @ino: inode number to get
1064 *
1065 * Search for the inode specified by @ino in the inode cache and if present
1066 * return it with an increased reference count. This is for file systems
1067 * where the inode number is sufficient for unique identification of an inode.
1068 *
1069 * If the inode is not in cache, allocate a new inode and return it locked,
1070 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1071 * before unlocking it via unlock_new_inode().
1072 */
1073 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1074 {
1075 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1076 struct inode *inode;
1077
1078 spin_lock(&inode_hash_lock);
1079 inode = find_inode_fast(sb, head, ino);
1080 spin_unlock(&inode_hash_lock);
1081 if (inode) {
1082 wait_on_inode(inode);
1083 return inode;
1084 }
1085
1086 inode = alloc_inode(sb);
1087 if (inode) {
1088 struct inode *old;
1089
1090 spin_lock(&inode_hash_lock);
1091 /* We released the lock, so.. */
1092 old = find_inode_fast(sb, head, ino);
1093 if (!old) {
1094 inode->i_ino = ino;
1095 spin_lock(&inode->i_lock);
1096 inode->i_state = I_NEW;
1097 hlist_add_head(&inode->i_hash, head);
1098 spin_unlock(&inode->i_lock);
1099 inode_sb_list_add(inode);
1100 spin_unlock(&inode_hash_lock);
1101
1102 /* Return the locked inode with I_NEW set, the
1103 * caller is responsible for filling in the contents
1104 */
1105 return inode;
1106 }
1107
1108 /*
1109 * Uhhuh, somebody else created the same inode under
1110 * us. Use the old inode instead of the one we just
1111 * allocated.
1112 */
1113 spin_unlock(&inode_hash_lock);
1114 destroy_inode(inode);
1115 inode = old;
1116 wait_on_inode(inode);
1117 }
1118 return inode;
1119 }
1120 EXPORT_SYMBOL(iget_locked);
1121
1122 /*
1123 * search the inode cache for a matching inode number.
1124 * If we find one, then the inode number we are trying to
1125 * allocate is not unique and so we should not use it.
1126 *
1127 * Returns 1 if the inode number is unique, 0 if it is not.
1128 */
1129 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1130 {
1131 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1132 struct inode *inode;
1133
1134 spin_lock(&inode_hash_lock);
1135 hlist_for_each_entry(inode, b, i_hash) {
1136 if (inode->i_ino == ino && inode->i_sb == sb) {
1137 spin_unlock(&inode_hash_lock);
1138 return 0;
1139 }
1140 }
1141 spin_unlock(&inode_hash_lock);
1142
1143 return 1;
1144 }
1145
1146 /**
1147 * iunique - get a unique inode number
1148 * @sb: superblock
1149 * @max_reserved: highest reserved inode number
1150 *
1151 * Obtain an inode number that is unique on the system for a given
1152 * superblock. This is used by file systems that have no natural
1153 * permanent inode numbering system. An inode number is returned that
1154 * is higher than the reserved limit but unique.
1155 *
1156 * BUGS:
1157 * With a large number of inodes live on the file system this function
1158 * currently becomes quite slow.
1159 */
1160 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1161 {
1162 /*
1163 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1164 * error if st_ino won't fit in target struct field. Use 32bit counter
1165 * here to attempt to avoid that.
1166 */
1167 static DEFINE_SPINLOCK(iunique_lock);
1168 static unsigned int counter;
1169 ino_t res;
1170
1171 spin_lock(&iunique_lock);
1172 do {
1173 if (counter <= max_reserved)
1174 counter = max_reserved + 1;
1175 res = counter++;
1176 } while (!test_inode_iunique(sb, res));
1177 spin_unlock(&iunique_lock);
1178
1179 return res;
1180 }
1181 EXPORT_SYMBOL(iunique);
1182
1183 struct inode *igrab(struct inode *inode)
1184 {
1185 spin_lock(&inode->i_lock);
1186 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1187 __iget(inode);
1188 spin_unlock(&inode->i_lock);
1189 } else {
1190 spin_unlock(&inode->i_lock);
1191 /*
1192 * Handle the case where s_op->clear_inode is not been
1193 * called yet, and somebody is calling igrab
1194 * while the inode is getting freed.
1195 */
1196 inode = NULL;
1197 }
1198 return inode;
1199 }
1200 EXPORT_SYMBOL(igrab);
1201
1202 /**
1203 * ilookup5_nowait - search for an inode in the inode cache
1204 * @sb: super block of file system to search
1205 * @hashval: hash value (usually inode number) to search for
1206 * @test: callback used for comparisons between inodes
1207 * @data: opaque data pointer to pass to @test
1208 *
1209 * Search for the inode specified by @hashval and @data in the inode cache.
1210 * If the inode is in the cache, the inode is returned with an incremented
1211 * reference count.
1212 *
1213 * Note: I_NEW is not waited upon so you have to be very careful what you do
1214 * with the returned inode. You probably should be using ilookup5() instead.
1215 *
1216 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1217 */
1218 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1219 int (*test)(struct inode *, void *), void *data)
1220 {
1221 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1222 struct inode *inode;
1223
1224 spin_lock(&inode_hash_lock);
1225 inode = find_inode(sb, head, test, data);
1226 spin_unlock(&inode_hash_lock);
1227
1228 return inode;
1229 }
1230 EXPORT_SYMBOL(ilookup5_nowait);
1231
1232 /**
1233 * ilookup5 - search for an inode in the inode cache
1234 * @sb: super block of file system to search
1235 * @hashval: hash value (usually inode number) to search for
1236 * @test: callback used for comparisons between inodes
1237 * @data: opaque data pointer to pass to @test
1238 *
1239 * Search for the inode specified by @hashval and @data in the inode cache,
1240 * and if the inode is in the cache, return the inode with an incremented
1241 * reference count. Waits on I_NEW before returning the inode.
1242 * returned with an incremented reference count.
1243 *
1244 * This is a generalized version of ilookup() for file systems where the
1245 * inode number is not sufficient for unique identification of an inode.
1246 *
1247 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1248 */
1249 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1250 int (*test)(struct inode *, void *), void *data)
1251 {
1252 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1253
1254 if (inode)
1255 wait_on_inode(inode);
1256 return inode;
1257 }
1258 EXPORT_SYMBOL(ilookup5);
1259
1260 /**
1261 * ilookup - search for an inode in the inode cache
1262 * @sb: super block of file system to search
1263 * @ino: inode number to search for
1264 *
1265 * Search for the inode @ino in the inode cache, and if the inode is in the
1266 * cache, the inode is returned with an incremented reference count.
1267 */
1268 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1269 {
1270 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1271 struct inode *inode;
1272
1273 spin_lock(&inode_hash_lock);
1274 inode = find_inode_fast(sb, head, ino);
1275 spin_unlock(&inode_hash_lock);
1276
1277 if (inode)
1278 wait_on_inode(inode);
1279 return inode;
1280 }
1281 EXPORT_SYMBOL(ilookup);
1282
1283 int insert_inode_locked(struct inode *inode)
1284 {
1285 struct super_block *sb = inode->i_sb;
1286 ino_t ino = inode->i_ino;
1287 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1288
1289 while (1) {
1290 struct inode *old = NULL;
1291 spin_lock(&inode_hash_lock);
1292 hlist_for_each_entry(old, head, i_hash) {
1293 if (old->i_ino != ino)
1294 continue;
1295 if (old->i_sb != sb)
1296 continue;
1297 spin_lock(&old->i_lock);
1298 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1299 spin_unlock(&old->i_lock);
1300 continue;
1301 }
1302 break;
1303 }
1304 if (likely(!old)) {
1305 spin_lock(&inode->i_lock);
1306 inode->i_state |= I_NEW;
1307 hlist_add_head(&inode->i_hash, head);
1308 spin_unlock(&inode->i_lock);
1309 spin_unlock(&inode_hash_lock);
1310 return 0;
1311 }
1312 __iget(old);
1313 spin_unlock(&old->i_lock);
1314 spin_unlock(&inode_hash_lock);
1315 wait_on_inode(old);
1316 if (unlikely(!inode_unhashed(old))) {
1317 iput(old);
1318 return -EBUSY;
1319 }
1320 iput(old);
1321 }
1322 }
1323 EXPORT_SYMBOL(insert_inode_locked);
1324
1325 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1326 int (*test)(struct inode *, void *), void *data)
1327 {
1328 struct super_block *sb = inode->i_sb;
1329 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1330
1331 while (1) {
1332 struct inode *old = NULL;
1333
1334 spin_lock(&inode_hash_lock);
1335 hlist_for_each_entry(old, head, i_hash) {
1336 if (old->i_sb != sb)
1337 continue;
1338 if (!test(old, data))
1339 continue;
1340 spin_lock(&old->i_lock);
1341 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1342 spin_unlock(&old->i_lock);
1343 continue;
1344 }
1345 break;
1346 }
1347 if (likely(!old)) {
1348 spin_lock(&inode->i_lock);
1349 inode->i_state |= I_NEW;
1350 hlist_add_head(&inode->i_hash, head);
1351 spin_unlock(&inode->i_lock);
1352 spin_unlock(&inode_hash_lock);
1353 return 0;
1354 }
1355 __iget(old);
1356 spin_unlock(&old->i_lock);
1357 spin_unlock(&inode_hash_lock);
1358 wait_on_inode(old);
1359 if (unlikely(!inode_unhashed(old))) {
1360 iput(old);
1361 return -EBUSY;
1362 }
1363 iput(old);
1364 }
1365 }
1366 EXPORT_SYMBOL(insert_inode_locked4);
1367
1368
1369 int generic_delete_inode(struct inode *inode)
1370 {
1371 return 1;
1372 }
1373 EXPORT_SYMBOL(generic_delete_inode);
1374
1375 /*
1376 * Called when we're dropping the last reference
1377 * to an inode.
1378 *
1379 * Call the FS "drop_inode()" function, defaulting to
1380 * the legacy UNIX filesystem behaviour. If it tells
1381 * us to evict inode, do so. Otherwise, retain inode
1382 * in cache if fs is alive, sync and evict if fs is
1383 * shutting down.
1384 */
1385 static void iput_final(struct inode *inode)
1386 {
1387 struct super_block *sb = inode->i_sb;
1388 const struct super_operations *op = inode->i_sb->s_op;
1389 int drop;
1390
1391 WARN_ON(inode->i_state & I_NEW);
1392
1393 if (op->drop_inode)
1394 drop = op->drop_inode(inode);
1395 else
1396 drop = generic_drop_inode(inode);
1397
1398 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1399 inode->i_state |= I_REFERENCED;
1400 inode_add_lru(inode);
1401 spin_unlock(&inode->i_lock);
1402 return;
1403 }
1404
1405 if (!drop) {
1406 inode->i_state |= I_WILL_FREE;
1407 spin_unlock(&inode->i_lock);
1408 write_inode_now(inode, 1);
1409 spin_lock(&inode->i_lock);
1410 WARN_ON(inode->i_state & I_NEW);
1411 inode->i_state &= ~I_WILL_FREE;
1412 }
1413
1414 inode->i_state |= I_FREEING;
1415 if (!list_empty(&inode->i_lru))
1416 inode_lru_list_del(inode);
1417 spin_unlock(&inode->i_lock);
1418
1419 evict(inode);
1420 }
1421
1422 /**
1423 * iput - put an inode
1424 * @inode: inode to put
1425 *
1426 * Puts an inode, dropping its usage count. If the inode use count hits
1427 * zero, the inode is then freed and may also be destroyed.
1428 *
1429 * Consequently, iput() can sleep.
1430 */
1431 void iput(struct inode *inode)
1432 {
1433 if (inode) {
1434 BUG_ON(inode->i_state & I_CLEAR);
1435
1436 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1437 iput_final(inode);
1438 }
1439 }
1440 EXPORT_SYMBOL(iput);
1441
1442 /**
1443 * bmap - find a block number in a file
1444 * @inode: inode of file
1445 * @block: block to find
1446 *
1447 * Returns the block number on the device holding the inode that
1448 * is the disk block number for the block of the file requested.
1449 * That is, asked for block 4 of inode 1 the function will return the
1450 * disk block relative to the disk start that holds that block of the
1451 * file.
1452 */
1453 sector_t bmap(struct inode *inode, sector_t block)
1454 {
1455 sector_t res = 0;
1456 if (inode->i_mapping->a_ops->bmap)
1457 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1458 return res;
1459 }
1460 EXPORT_SYMBOL(bmap);
1461
1462 /*
1463 * With relative atime, only update atime if the previous atime is
1464 * earlier than either the ctime or mtime or if at least a day has
1465 * passed since the last atime update.
1466 */
1467 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1468 struct timespec now)
1469 {
1470
1471 if (!(mnt->mnt_flags & MNT_RELATIME))
1472 return 1;
1473 /*
1474 * Is mtime younger than atime? If yes, update atime:
1475 */
1476 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1477 return 1;
1478 /*
1479 * Is ctime younger than atime? If yes, update atime:
1480 */
1481 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1482 return 1;
1483
1484 /*
1485 * Is the previous atime value older than a day? If yes,
1486 * update atime:
1487 */
1488 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1489 return 1;
1490 /*
1491 * Good, we can skip the atime update:
1492 */
1493 return 0;
1494 }
1495
1496 /*
1497 * This does the actual work of updating an inodes time or version. Must have
1498 * had called mnt_want_write() before calling this.
1499 */
1500 static int update_time(struct inode *inode, struct timespec *time, int flags)
1501 {
1502 if (inode->i_op->update_time)
1503 return inode->i_op->update_time(inode, time, flags);
1504
1505 if (flags & S_ATIME)
1506 inode->i_atime = *time;
1507 if (flags & S_VERSION)
1508 inode_inc_iversion(inode);
1509 if (flags & S_CTIME)
1510 inode->i_ctime = *time;
1511 if (flags & S_MTIME)
1512 inode->i_mtime = *time;
1513 mark_inode_dirty_sync(inode);
1514 return 0;
1515 }
1516
1517 /**
1518 * touch_atime - update the access time
1519 * @path: the &struct path to update
1520 *
1521 * Update the accessed time on an inode and mark it for writeback.
1522 * This function automatically handles read only file systems and media,
1523 * as well as the "noatime" flag and inode specific "noatime" markers.
1524 */
1525 void touch_atime(const struct path *path)
1526 {
1527 struct vfsmount *mnt = path->mnt;
1528 struct inode *inode = path->dentry->d_inode;
1529 struct timespec now;
1530
1531 if (inode->i_flags & S_NOATIME)
1532 return;
1533 if (IS_NOATIME(inode))
1534 return;
1535 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1536 return;
1537
1538 if (mnt->mnt_flags & MNT_NOATIME)
1539 return;
1540 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1541 return;
1542
1543 now = current_fs_time(inode->i_sb);
1544
1545 if (!relatime_need_update(mnt, inode, now))
1546 return;
1547
1548 if (timespec_equal(&inode->i_atime, &now))
1549 return;
1550
1551 if (!sb_start_write_trylock(inode->i_sb))
1552 return;
1553
1554 if (__mnt_want_write(mnt))
1555 goto skip_update;
1556 /*
1557 * File systems can error out when updating inodes if they need to
1558 * allocate new space to modify an inode (such is the case for
1559 * Btrfs), but since we touch atime while walking down the path we
1560 * really don't care if we failed to update the atime of the file,
1561 * so just ignore the return value.
1562 * We may also fail on filesystems that have the ability to make parts
1563 * of the fs read only, e.g. subvolumes in Btrfs.
1564 */
1565 update_time(inode, &now, S_ATIME);
1566 __mnt_drop_write(mnt);
1567 skip_update:
1568 sb_end_write(inode->i_sb);
1569 }
1570 EXPORT_SYMBOL(touch_atime);
1571
1572 /*
1573 * The logic we want is
1574 *
1575 * if suid or (sgid and xgrp)
1576 * remove privs
1577 */
1578 int should_remove_suid(struct dentry *dentry)
1579 {
1580 umode_t mode = dentry->d_inode->i_mode;
1581 int kill = 0;
1582
1583 /* suid always must be killed */
1584 if (unlikely(mode & S_ISUID))
1585 kill = ATTR_KILL_SUID;
1586
1587 /*
1588 * sgid without any exec bits is just a mandatory locking mark; leave
1589 * it alone. If some exec bits are set, it's a real sgid; kill it.
1590 */
1591 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1592 kill |= ATTR_KILL_SGID;
1593
1594 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1595 return kill;
1596
1597 return 0;
1598 }
1599 EXPORT_SYMBOL(should_remove_suid);
1600
1601 static int __remove_suid(struct dentry *dentry, int kill)
1602 {
1603 struct iattr newattrs;
1604
1605 newattrs.ia_valid = ATTR_FORCE | kill;
1606 /*
1607 * Note we call this on write, so notify_change will not
1608 * encounter any conflicting delegations:
1609 */
1610 return notify_change(dentry, &newattrs, NULL);
1611 }
1612
1613 int file_remove_suid(struct file *file)
1614 {
1615 struct dentry *dentry = file->f_path.dentry;
1616 struct inode *inode = dentry->d_inode;
1617 int killsuid;
1618 int killpriv;
1619 int error = 0;
1620
1621 /* Fast path for nothing security related */
1622 if (IS_NOSEC(inode))
1623 return 0;
1624
1625 killsuid = should_remove_suid(dentry);
1626 killpriv = security_inode_need_killpriv(dentry);
1627
1628 if (killpriv < 0)
1629 return killpriv;
1630 if (killpriv)
1631 error = security_inode_killpriv(dentry);
1632 if (!error && killsuid)
1633 error = __remove_suid(dentry, killsuid);
1634 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1635 inode->i_flags |= S_NOSEC;
1636
1637 return error;
1638 }
1639 EXPORT_SYMBOL(file_remove_suid);
1640
1641 /**
1642 * file_update_time - update mtime and ctime time
1643 * @file: file accessed
1644 *
1645 * Update the mtime and ctime members of an inode and mark the inode
1646 * for writeback. Note that this function is meant exclusively for
1647 * usage in the file write path of filesystems, and filesystems may
1648 * choose to explicitly ignore update via this function with the
1649 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1650 * timestamps are handled by the server. This can return an error for
1651 * file systems who need to allocate space in order to update an inode.
1652 */
1653
1654 int file_update_time(struct file *file)
1655 {
1656 struct inode *inode = file_inode(file);
1657 struct timespec now;
1658 int sync_it = 0;
1659 int ret;
1660
1661 /* First try to exhaust all avenues to not sync */
1662 if (IS_NOCMTIME(inode))
1663 return 0;
1664
1665 now = current_fs_time(inode->i_sb);
1666 if (!timespec_equal(&inode->i_mtime, &now))
1667 sync_it = S_MTIME;
1668
1669 if (!timespec_equal(&inode->i_ctime, &now))
1670 sync_it |= S_CTIME;
1671
1672 if (IS_I_VERSION(inode))
1673 sync_it |= S_VERSION;
1674
1675 if (!sync_it)
1676 return 0;
1677
1678 /* Finally allowed to write? Takes lock. */
1679 if (__mnt_want_write_file(file))
1680 return 0;
1681
1682 ret = update_time(inode, &now, sync_it);
1683 __mnt_drop_write_file(file);
1684
1685 return ret;
1686 }
1687 EXPORT_SYMBOL(file_update_time);
1688
1689 int inode_needs_sync(struct inode *inode)
1690 {
1691 if (IS_SYNC(inode))
1692 return 1;
1693 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1694 return 1;
1695 return 0;
1696 }
1697 EXPORT_SYMBOL(inode_needs_sync);
1698
1699 /*
1700 * If we try to find an inode in the inode hash while it is being
1701 * deleted, we have to wait until the filesystem completes its
1702 * deletion before reporting that it isn't found. This function waits
1703 * until the deletion _might_ have completed. Callers are responsible
1704 * to recheck inode state.
1705 *
1706 * It doesn't matter if I_NEW is not set initially, a call to
1707 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1708 * will DTRT.
1709 */
1710 static void __wait_on_freeing_inode(struct inode *inode)
1711 {
1712 wait_queue_head_t *wq;
1713 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1714 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1715 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1716 spin_unlock(&inode->i_lock);
1717 spin_unlock(&inode_hash_lock);
1718 schedule();
1719 finish_wait(wq, &wait.wait);
1720 spin_lock(&inode_hash_lock);
1721 }
1722
1723 static __initdata unsigned long ihash_entries;
1724 static int __init set_ihash_entries(char *str)
1725 {
1726 if (!str)
1727 return 0;
1728 ihash_entries = simple_strtoul(str, &str, 0);
1729 return 1;
1730 }
1731 __setup("ihash_entries=", set_ihash_entries);
1732
1733 /*
1734 * Initialize the waitqueues and inode hash table.
1735 */
1736 void __init inode_init_early(void)
1737 {
1738 unsigned int loop;
1739
1740 /* If hashes are distributed across NUMA nodes, defer
1741 * hash allocation until vmalloc space is available.
1742 */
1743 if (hashdist)
1744 return;
1745
1746 inode_hashtable =
1747 alloc_large_system_hash("Inode-cache",
1748 sizeof(struct hlist_head),
1749 ihash_entries,
1750 14,
1751 HASH_EARLY,
1752 &i_hash_shift,
1753 &i_hash_mask,
1754 0,
1755 0);
1756
1757 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1758 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1759 }
1760
1761 void __init inode_init(void)
1762 {
1763 unsigned int loop;
1764
1765 /* inode slab cache */
1766 inode_cachep = kmem_cache_create("inode_cache",
1767 sizeof(struct inode),
1768 0,
1769 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1770 SLAB_MEM_SPREAD),
1771 init_once);
1772
1773 /* Hash may have been set up in inode_init_early */
1774 if (!hashdist)
1775 return;
1776
1777 inode_hashtable =
1778 alloc_large_system_hash("Inode-cache",
1779 sizeof(struct hlist_head),
1780 ihash_entries,
1781 14,
1782 0,
1783 &i_hash_shift,
1784 &i_hash_mask,
1785 0,
1786 0);
1787
1788 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1789 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1790 }
1791
1792 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1793 {
1794 inode->i_mode = mode;
1795 if (S_ISCHR(mode)) {
1796 inode->i_fop = &def_chr_fops;
1797 inode->i_rdev = rdev;
1798 } else if (S_ISBLK(mode)) {
1799 inode->i_fop = &def_blk_fops;
1800 inode->i_rdev = rdev;
1801 } else if (S_ISFIFO(mode))
1802 inode->i_fop = &pipefifo_fops;
1803 else if (S_ISSOCK(mode))
1804 inode->i_fop = &bad_sock_fops;
1805 else
1806 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1807 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1808 inode->i_ino);
1809 }
1810 EXPORT_SYMBOL(init_special_inode);
1811
1812 /**
1813 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1814 * @inode: New inode
1815 * @dir: Directory inode
1816 * @mode: mode of the new inode
1817 */
1818 void inode_init_owner(struct inode *inode, const struct inode *dir,
1819 umode_t mode)
1820 {
1821 inode->i_uid = current_fsuid();
1822 if (dir && dir->i_mode & S_ISGID) {
1823 inode->i_gid = dir->i_gid;
1824 if (S_ISDIR(mode))
1825 mode |= S_ISGID;
1826 } else
1827 inode->i_gid = current_fsgid();
1828 inode->i_mode = mode;
1829 }
1830 EXPORT_SYMBOL(inode_init_owner);
1831
1832 /**
1833 * inode_owner_or_capable - check current task permissions to inode
1834 * @inode: inode being checked
1835 *
1836 * Return true if current either has CAP_FOWNER in a namespace with the
1837 * inode owner uid mapped, or owns the file.
1838 */
1839 bool inode_owner_or_capable(const struct inode *inode)
1840 {
1841 struct user_namespace *ns;
1842
1843 if (uid_eq(current_fsuid(), inode->i_uid))
1844 return true;
1845
1846 ns = current_user_ns();
1847 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1848 return true;
1849 return false;
1850 }
1851 EXPORT_SYMBOL(inode_owner_or_capable);
1852
1853 /*
1854 * Direct i/o helper functions
1855 */
1856 static void __inode_dio_wait(struct inode *inode)
1857 {
1858 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1859 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1860
1861 do {
1862 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1863 if (atomic_read(&inode->i_dio_count))
1864 schedule();
1865 } while (atomic_read(&inode->i_dio_count));
1866 finish_wait(wq, &q.wait);
1867 }
1868
1869 /**
1870 * inode_dio_wait - wait for outstanding DIO requests to finish
1871 * @inode: inode to wait for
1872 *
1873 * Waits for all pending direct I/O requests to finish so that we can
1874 * proceed with a truncate or equivalent operation.
1875 *
1876 * Must be called under a lock that serializes taking new references
1877 * to i_dio_count, usually by inode->i_mutex.
1878 */
1879 void inode_dio_wait(struct inode *inode)
1880 {
1881 if (atomic_read(&inode->i_dio_count))
1882 __inode_dio_wait(inode);
1883 }
1884 EXPORT_SYMBOL(inode_dio_wait);
1885
1886 /*
1887 * inode_dio_done - signal finish of a direct I/O requests
1888 * @inode: inode the direct I/O happens on
1889 *
1890 * This is called once we've finished processing a direct I/O request,
1891 * and is used to wake up callers waiting for direct I/O to be quiesced.
1892 */
1893 void inode_dio_done(struct inode *inode)
1894 {
1895 if (atomic_dec_and_test(&inode->i_dio_count))
1896 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1897 }
1898 EXPORT_SYMBOL(inode_dio_done);
1899
1900 /*
1901 * inode_set_flags - atomically set some inode flags
1902 *
1903 * Note: the caller should be holding i_mutex, or else be sure that
1904 * they have exclusive access to the inode structure (i.e., while the
1905 * inode is being instantiated). The reason for the cmpxchg() loop
1906 * --- which wouldn't be necessary if all code paths which modify
1907 * i_flags actually followed this rule, is that there is at least one
1908 * code path which doesn't today --- for example,
1909 * __generic_file_aio_write() calls file_remove_suid() without holding
1910 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1911 *
1912 * In the long run, i_mutex is overkill, and we should probably look
1913 * at using the i_lock spinlock to protect i_flags, and then make sure
1914 * it is so documented in include/linux/fs.h and that all code follows
1915 * the locking convention!!
1916 */
1917 void inode_set_flags(struct inode *inode, unsigned int flags,
1918 unsigned int mask)
1919 {
1920 unsigned int old_flags, new_flags;
1921
1922 WARN_ON_ONCE(flags & ~mask);
1923 do {
1924 old_flags = ACCESS_ONCE(inode->i_flags);
1925 new_flags = (old_flags & ~mask) | flags;
1926 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1927 new_flags) != old_flags));
1928 }
1929 EXPORT_SYMBOL(inode_set_flags);