2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
26 * Inode locking rules:
28 * inode->i_lock protects:
29 * inode->i_state, inode->i_hash, __iget()
30 * Inode LRU list locks protect:
31 * inode->i_sb->s_inode_lru, inode->i_lru
32 * inode->i_sb->s_inode_list_lock protects:
33 * inode->i_sb->s_inodes, inode->i_sb_list
34 * bdi->wb.list_lock protects:
35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36 * inode_hash_lock protects:
37 * inode_hashtable, inode->i_hash
41 * inode->i_sb->s_inode_list_lock
43 * Inode LRU list locks
49 * inode->i_sb->s_inode_list_lock
56 static unsigned int i_hash_mask __read_mostly
;
57 static unsigned int i_hash_shift __read_mostly
;
58 static struct hlist_head
*inode_hashtable __read_mostly
;
59 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
65 const struct address_space_operations empty_aops
= {
67 EXPORT_SYMBOL(empty_aops
);
70 * Statistics gathering..
72 struct inodes_stat_t inodes_stat
;
74 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
75 static DEFINE_PER_CPU(unsigned long, nr_unused
);
77 static struct kmem_cache
*inode_cachep __read_mostly
;
79 static long get_nr_inodes(void)
83 for_each_possible_cpu(i
)
84 sum
+= per_cpu(nr_inodes
, i
);
85 return sum
< 0 ? 0 : sum
;
88 static inline long get_nr_inodes_unused(void)
92 for_each_possible_cpu(i
)
93 sum
+= per_cpu(nr_unused
, i
);
94 return sum
< 0 ? 0 : sum
;
97 long get_nr_dirty_inodes(void)
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty
> 0 ? nr_dirty
: 0;
105 * Handle nr_inode sysctl
108 int proc_nr_inodes(struct ctl_table
*table
, int write
,
109 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
111 inodes_stat
.nr_inodes
= get_nr_inodes();
112 inodes_stat
.nr_unused
= get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
117 static int no_open(struct inode
*inode
, struct file
*file
)
123 * inode_init_always - perform inode structure initialisation
124 * @sb: superblock inode belongs to
125 * @inode: inode to initialise
127 * These are initializations that need to be done on every inode
128 * allocation as the fields are not initialised by slab allocation.
130 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
132 static const struct inode_operations empty_iops
;
133 static const struct file_operations no_open_fops
= {.open
= no_open
};
134 struct address_space
*const mapping
= &inode
->i_data
;
137 inode
->i_blkbits
= sb
->s_blocksize_bits
;
139 atomic_set(&inode
->i_count
, 1);
140 inode
->i_op
= &empty_iops
;
141 inode
->i_fop
= &no_open_fops
;
142 inode
->__i_nlink
= 1;
143 inode
->i_opflags
= 0;
145 inode
->i_opflags
|= IOP_XATTR
;
146 i_uid_write(inode
, 0);
147 i_gid_write(inode
, 0);
148 atomic_set(&inode
->i_writecount
, 0);
150 inode
->i_write_hint
= WRITE_LIFE_NOT_SET
;
153 inode
->i_generation
= 0;
154 inode
->i_pipe
= NULL
;
155 inode
->i_bdev
= NULL
;
156 inode
->i_cdev
= NULL
;
157 inode
->i_link
= NULL
;
158 inode
->i_dir_seq
= 0;
160 inode
->dirtied_when
= 0;
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 inode
->i_wb_frn_winner
= 0;
164 inode
->i_wb_frn_avg_time
= 0;
165 inode
->i_wb_frn_history
= 0;
168 if (security_inode_alloc(inode
))
170 spin_lock_init(&inode
->i_lock
);
171 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
173 init_rwsem(&inode
->i_rwsem
);
174 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
176 atomic_set(&inode
->i_dio_count
, 0);
178 mapping
->a_ops
= &empty_aops
;
179 mapping
->host
= inode
;
182 atomic_set(&mapping
->i_mmap_writable
, 0);
183 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
184 mapping
->private_data
= NULL
;
185 mapping
->writeback_index
= 0;
186 inode
->i_private
= NULL
;
187 inode
->i_mapping
= mapping
;
188 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
193 #ifdef CONFIG_FSNOTIFY
194 inode
->i_fsnotify_mask
= 0;
196 inode
->i_flctx
= NULL
;
197 this_cpu_inc(nr_inodes
);
203 EXPORT_SYMBOL(inode_init_always
);
205 static struct inode
*alloc_inode(struct super_block
*sb
)
209 if (sb
->s_op
->alloc_inode
)
210 inode
= sb
->s_op
->alloc_inode(sb
);
212 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
217 if (unlikely(inode_init_always(sb
, inode
))) {
218 if (inode
->i_sb
->s_op
->destroy_inode
)
219 inode
->i_sb
->s_op
->destroy_inode(inode
);
221 kmem_cache_free(inode_cachep
, inode
);
228 void free_inode_nonrcu(struct inode
*inode
)
230 kmem_cache_free(inode_cachep
, inode
);
232 EXPORT_SYMBOL(free_inode_nonrcu
);
234 void __destroy_inode(struct inode
*inode
)
236 BUG_ON(inode_has_buffers(inode
));
237 inode_detach_wb(inode
);
238 security_inode_free(inode
);
239 fsnotify_inode_delete(inode
);
240 locks_free_lock_context(inode
);
241 if (!inode
->i_nlink
) {
242 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
243 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
246 #ifdef CONFIG_FS_POSIX_ACL
247 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
248 posix_acl_release(inode
->i_acl
);
249 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
250 posix_acl_release(inode
->i_default_acl
);
252 this_cpu_dec(nr_inodes
);
254 EXPORT_SYMBOL(__destroy_inode
);
256 static void i_callback(struct rcu_head
*head
)
258 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
259 kmem_cache_free(inode_cachep
, inode
);
262 static void destroy_inode(struct inode
*inode
)
264 BUG_ON(!list_empty(&inode
->i_lru
));
265 __destroy_inode(inode
);
266 if (inode
->i_sb
->s_op
->destroy_inode
)
267 inode
->i_sb
->s_op
->destroy_inode(inode
);
269 call_rcu(&inode
->i_rcu
, i_callback
);
273 * drop_nlink - directly drop an inode's link count
276 * This is a low-level filesystem helper to replace any
277 * direct filesystem manipulation of i_nlink. In cases
278 * where we are attempting to track writes to the
279 * filesystem, a decrement to zero means an imminent
280 * write when the file is truncated and actually unlinked
283 void drop_nlink(struct inode
*inode
)
285 WARN_ON(inode
->i_nlink
== 0);
288 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
290 EXPORT_SYMBOL(drop_nlink
);
293 * clear_nlink - directly zero an inode's link count
296 * This is a low-level filesystem helper to replace any
297 * direct filesystem manipulation of i_nlink. See
298 * drop_nlink() for why we care about i_nlink hitting zero.
300 void clear_nlink(struct inode
*inode
)
302 if (inode
->i_nlink
) {
303 inode
->__i_nlink
= 0;
304 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
307 EXPORT_SYMBOL(clear_nlink
);
310 * set_nlink - directly set an inode's link count
312 * @nlink: new nlink (should be non-zero)
314 * This is a low-level filesystem helper to replace any
315 * direct filesystem manipulation of i_nlink.
317 void set_nlink(struct inode
*inode
, unsigned int nlink
)
322 /* Yes, some filesystems do change nlink from zero to one */
323 if (inode
->i_nlink
== 0)
324 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
326 inode
->__i_nlink
= nlink
;
329 EXPORT_SYMBOL(set_nlink
);
332 * inc_nlink - directly increment an inode's link count
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink. Currently,
337 * it is only here for parity with dec_nlink().
339 void inc_nlink(struct inode
*inode
)
341 if (unlikely(inode
->i_nlink
== 0)) {
342 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
343 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
348 EXPORT_SYMBOL(inc_nlink
);
350 static void __address_space_init_once(struct address_space
*mapping
)
352 INIT_RADIX_TREE(&mapping
->i_pages
, GFP_ATOMIC
| __GFP_ACCOUNT
);
353 init_rwsem(&mapping
->i_mmap_rwsem
);
354 INIT_LIST_HEAD(&mapping
->private_list
);
355 spin_lock_init(&mapping
->private_lock
);
356 mapping
->i_mmap
= RB_ROOT_CACHED
;
359 void address_space_init_once(struct address_space
*mapping
)
361 memset(mapping
, 0, sizeof(*mapping
));
362 __address_space_init_once(mapping
);
364 EXPORT_SYMBOL(address_space_init_once
);
367 * These are initializations that only need to be done
368 * once, because the fields are idempotent across use
369 * of the inode, so let the slab aware of that.
371 void inode_init_once(struct inode
*inode
)
373 memset(inode
, 0, sizeof(*inode
));
374 INIT_HLIST_NODE(&inode
->i_hash
);
375 INIT_LIST_HEAD(&inode
->i_devices
);
376 INIT_LIST_HEAD(&inode
->i_io_list
);
377 INIT_LIST_HEAD(&inode
->i_wb_list
);
378 INIT_LIST_HEAD(&inode
->i_lru
);
379 __address_space_init_once(&inode
->i_data
);
380 i_size_ordered_init(inode
);
382 EXPORT_SYMBOL(inode_init_once
);
384 static void init_once(void *foo
)
386 struct inode
*inode
= (struct inode
*) foo
;
388 inode_init_once(inode
);
392 * inode->i_lock must be held
394 void __iget(struct inode
*inode
)
396 atomic_inc(&inode
->i_count
);
400 * get additional reference to inode; caller must already hold one.
402 void ihold(struct inode
*inode
)
404 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
406 EXPORT_SYMBOL(ihold
);
408 static void inode_lru_list_add(struct inode
*inode
)
410 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
411 this_cpu_inc(nr_unused
);
413 inode
->i_state
|= I_REFERENCED
;
417 * Add inode to LRU if needed (inode is unused and clean).
419 * Needs inode->i_lock held.
421 void inode_add_lru(struct inode
*inode
)
423 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
424 I_FREEING
| I_WILL_FREE
)) &&
425 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& SB_ACTIVE
)
426 inode_lru_list_add(inode
);
430 static void inode_lru_list_del(struct inode
*inode
)
433 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
434 this_cpu_dec(nr_unused
);
438 * inode_sb_list_add - add inode to the superblock list of inodes
439 * @inode: inode to add
441 void inode_sb_list_add(struct inode
*inode
)
443 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
444 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
445 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
447 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
449 static inline void inode_sb_list_del(struct inode
*inode
)
451 if (!list_empty(&inode
->i_sb_list
)) {
452 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
453 list_del_init(&inode
->i_sb_list
);
454 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
458 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
462 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
464 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
465 return tmp
& i_hash_mask
;
469 * __insert_inode_hash - hash an inode
470 * @inode: unhashed inode
471 * @hashval: unsigned long value used to locate this object in the
474 * Add an inode to the inode hash for this superblock.
476 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
478 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
480 spin_lock(&inode_hash_lock
);
481 spin_lock(&inode
->i_lock
);
482 hlist_add_head(&inode
->i_hash
, b
);
483 spin_unlock(&inode
->i_lock
);
484 spin_unlock(&inode_hash_lock
);
486 EXPORT_SYMBOL(__insert_inode_hash
);
489 * __remove_inode_hash - remove an inode from the hash
490 * @inode: inode to unhash
492 * Remove an inode from the superblock.
494 void __remove_inode_hash(struct inode
*inode
)
496 spin_lock(&inode_hash_lock
);
497 spin_lock(&inode
->i_lock
);
498 hlist_del_init(&inode
->i_hash
);
499 spin_unlock(&inode
->i_lock
);
500 spin_unlock(&inode_hash_lock
);
502 EXPORT_SYMBOL(__remove_inode_hash
);
504 void clear_inode(struct inode
*inode
)
507 * We have to cycle the i_pages lock here because reclaim can be in the
508 * process of removing the last page (in __delete_from_page_cache())
509 * and we must not free the mapping under it.
511 xa_lock_irq(&inode
->i_data
.i_pages
);
512 BUG_ON(inode
->i_data
.nrpages
);
513 BUG_ON(inode
->i_data
.nrexceptional
);
514 xa_unlock_irq(&inode
->i_data
.i_pages
);
515 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
516 BUG_ON(!(inode
->i_state
& I_FREEING
));
517 BUG_ON(inode
->i_state
& I_CLEAR
);
518 BUG_ON(!list_empty(&inode
->i_wb_list
));
519 /* don't need i_lock here, no concurrent mods to i_state */
520 inode
->i_state
= I_FREEING
| I_CLEAR
;
522 EXPORT_SYMBOL(clear_inode
);
525 * Free the inode passed in, removing it from the lists it is still connected
526 * to. We remove any pages still attached to the inode and wait for any IO that
527 * is still in progress before finally destroying the inode.
529 * An inode must already be marked I_FREEING so that we avoid the inode being
530 * moved back onto lists if we race with other code that manipulates the lists
531 * (e.g. writeback_single_inode). The caller is responsible for setting this.
533 * An inode must already be removed from the LRU list before being evicted from
534 * the cache. This should occur atomically with setting the I_FREEING state
535 * flag, so no inodes here should ever be on the LRU when being evicted.
537 static void evict(struct inode
*inode
)
539 const struct super_operations
*op
= inode
->i_sb
->s_op
;
541 BUG_ON(!(inode
->i_state
& I_FREEING
));
542 BUG_ON(!list_empty(&inode
->i_lru
));
544 if (!list_empty(&inode
->i_io_list
))
545 inode_io_list_del(inode
);
547 inode_sb_list_del(inode
);
550 * Wait for flusher thread to be done with the inode so that filesystem
551 * does not start destroying it while writeback is still running. Since
552 * the inode has I_FREEING set, flusher thread won't start new work on
553 * the inode. We just have to wait for running writeback to finish.
555 inode_wait_for_writeback(inode
);
557 if (op
->evict_inode
) {
558 op
->evict_inode(inode
);
560 truncate_inode_pages_final(&inode
->i_data
);
563 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
565 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
568 remove_inode_hash(inode
);
570 spin_lock(&inode
->i_lock
);
571 wake_up_bit(&inode
->i_state
, __I_NEW
);
572 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
573 spin_unlock(&inode
->i_lock
);
575 destroy_inode(inode
);
579 * dispose_list - dispose of the contents of a local list
580 * @head: the head of the list to free
582 * Dispose-list gets a local list with local inodes in it, so it doesn't
583 * need to worry about list corruption and SMP locks.
585 static void dispose_list(struct list_head
*head
)
587 while (!list_empty(head
)) {
590 inode
= list_first_entry(head
, struct inode
, i_lru
);
591 list_del_init(&inode
->i_lru
);
599 * evict_inodes - evict all evictable inodes for a superblock
600 * @sb: superblock to operate on
602 * Make sure that no inodes with zero refcount are retained. This is
603 * called by superblock shutdown after having SB_ACTIVE flag removed,
604 * so any inode reaching zero refcount during or after that call will
605 * be immediately evicted.
607 void evict_inodes(struct super_block
*sb
)
609 struct inode
*inode
, *next
;
613 spin_lock(&sb
->s_inode_list_lock
);
614 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
615 if (atomic_read(&inode
->i_count
))
618 spin_lock(&inode
->i_lock
);
619 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
620 spin_unlock(&inode
->i_lock
);
624 inode
->i_state
|= I_FREEING
;
625 inode_lru_list_del(inode
);
626 spin_unlock(&inode
->i_lock
);
627 list_add(&inode
->i_lru
, &dispose
);
630 * We can have a ton of inodes to evict at unmount time given
631 * enough memory, check to see if we need to go to sleep for a
632 * bit so we don't livelock.
634 if (need_resched()) {
635 spin_unlock(&sb
->s_inode_list_lock
);
637 dispose_list(&dispose
);
641 spin_unlock(&sb
->s_inode_list_lock
);
643 dispose_list(&dispose
);
645 EXPORT_SYMBOL_GPL(evict_inodes
);
648 * invalidate_inodes - attempt to free all inodes on a superblock
649 * @sb: superblock to operate on
650 * @kill_dirty: flag to guide handling of dirty inodes
652 * Attempts to free all inodes for a given superblock. If there were any
653 * busy inodes return a non-zero value, else zero.
654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
657 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
660 struct inode
*inode
, *next
;
663 spin_lock(&sb
->s_inode_list_lock
);
664 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
665 spin_lock(&inode
->i_lock
);
666 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
667 spin_unlock(&inode
->i_lock
);
670 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
671 spin_unlock(&inode
->i_lock
);
675 if (atomic_read(&inode
->i_count
)) {
676 spin_unlock(&inode
->i_lock
);
681 inode
->i_state
|= I_FREEING
;
682 inode_lru_list_del(inode
);
683 spin_unlock(&inode
->i_lock
);
684 list_add(&inode
->i_lru
, &dispose
);
686 spin_unlock(&sb
->s_inode_list_lock
);
688 dispose_list(&dispose
);
694 * Isolate the inode from the LRU in preparation for freeing it.
696 * Any inodes which are pinned purely because of attached pagecache have their
697 * pagecache removed. If the inode has metadata buffers attached to
698 * mapping->private_list then try to remove them.
700 * If the inode has the I_REFERENCED flag set, then it means that it has been
701 * used recently - the flag is set in iput_final(). When we encounter such an
702 * inode, clear the flag and move it to the back of the LRU so it gets another
703 * pass through the LRU before it gets reclaimed. This is necessary because of
704 * the fact we are doing lazy LRU updates to minimise lock contention so the
705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706 * with this flag set because they are the inodes that are out of order.
708 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
709 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
711 struct list_head
*freeable
= arg
;
712 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
715 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 * If we fail to get the lock, just skip it.
718 if (!spin_trylock(&inode
->i_lock
))
722 * Referenced or dirty inodes are still in use. Give them another pass
723 * through the LRU as we canot reclaim them now.
725 if (atomic_read(&inode
->i_count
) ||
726 (inode
->i_state
& ~I_REFERENCED
)) {
727 list_lru_isolate(lru
, &inode
->i_lru
);
728 spin_unlock(&inode
->i_lock
);
729 this_cpu_dec(nr_unused
);
733 /* recently referenced inodes get one more pass */
734 if (inode
->i_state
& I_REFERENCED
) {
735 inode
->i_state
&= ~I_REFERENCED
;
736 spin_unlock(&inode
->i_lock
);
740 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
742 spin_unlock(&inode
->i_lock
);
743 spin_unlock(lru_lock
);
744 if (remove_inode_buffers(inode
)) {
746 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
747 if (current_is_kswapd())
748 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
750 __count_vm_events(PGINODESTEAL
, reap
);
751 if (current
->reclaim_state
)
752 current
->reclaim_state
->reclaimed_slab
+= reap
;
759 WARN_ON(inode
->i_state
& I_NEW
);
760 inode
->i_state
|= I_FREEING
;
761 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
762 spin_unlock(&inode
->i_lock
);
764 this_cpu_dec(nr_unused
);
769 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
770 * This is called from the superblock shrinker function with a number of inodes
771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
772 * then are freed outside inode_lock by dispose_list().
774 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
779 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
780 inode_lru_isolate
, &freeable
);
781 dispose_list(&freeable
);
785 static void __wait_on_freeing_inode(struct inode
*inode
);
787 * Called with the inode lock held.
789 static struct inode
*find_inode(struct super_block
*sb
,
790 struct hlist_head
*head
,
791 int (*test
)(struct inode
*, void *),
794 struct inode
*inode
= NULL
;
797 hlist_for_each_entry(inode
, head
, i_hash
) {
798 if (inode
->i_sb
!= sb
)
800 if (!test(inode
, data
))
802 spin_lock(&inode
->i_lock
);
803 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
804 __wait_on_freeing_inode(inode
);
807 if (unlikely(inode
->i_state
& I_CREATING
)) {
808 spin_unlock(&inode
->i_lock
);
809 return ERR_PTR(-ESTALE
);
812 spin_unlock(&inode
->i_lock
);
819 * find_inode_fast is the fast path version of find_inode, see the comment at
820 * iget_locked for details.
822 static struct inode
*find_inode_fast(struct super_block
*sb
,
823 struct hlist_head
*head
, unsigned long ino
)
825 struct inode
*inode
= NULL
;
828 hlist_for_each_entry(inode
, head
, i_hash
) {
829 if (inode
->i_ino
!= ino
)
831 if (inode
->i_sb
!= sb
)
833 spin_lock(&inode
->i_lock
);
834 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
835 __wait_on_freeing_inode(inode
);
838 if (unlikely(inode
->i_state
& I_CREATING
)) {
839 spin_unlock(&inode
->i_lock
);
840 return ERR_PTR(-ESTALE
);
843 spin_unlock(&inode
->i_lock
);
850 * Each cpu owns a range of LAST_INO_BATCH numbers.
851 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
852 * to renew the exhausted range.
854 * This does not significantly increase overflow rate because every CPU can
855 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
856 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
857 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
858 * overflow rate by 2x, which does not seem too significant.
860 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
861 * error if st_ino won't fit in target struct field. Use 32bit counter
862 * here to attempt to avoid that.
864 #define LAST_INO_BATCH 1024
865 static DEFINE_PER_CPU(unsigned int, last_ino
);
867 unsigned int get_next_ino(void)
869 unsigned int *p
= &get_cpu_var(last_ino
);
870 unsigned int res
= *p
;
873 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
874 static atomic_t shared_last_ino
;
875 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
877 res
= next
- LAST_INO_BATCH
;
882 /* get_next_ino should not provide a 0 inode number */
886 put_cpu_var(last_ino
);
889 EXPORT_SYMBOL(get_next_ino
);
892 * new_inode_pseudo - obtain an inode
895 * Allocates a new inode for given superblock.
896 * Inode wont be chained in superblock s_inodes list
898 * - fs can't be unmount
899 * - quotas, fsnotify, writeback can't work
901 struct inode
*new_inode_pseudo(struct super_block
*sb
)
903 struct inode
*inode
= alloc_inode(sb
);
906 spin_lock(&inode
->i_lock
);
908 spin_unlock(&inode
->i_lock
);
909 INIT_LIST_HEAD(&inode
->i_sb_list
);
915 * new_inode - obtain an inode
918 * Allocates a new inode for given superblock. The default gfp_mask
919 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
920 * If HIGHMEM pages are unsuitable or it is known that pages allocated
921 * for the page cache are not reclaimable or migratable,
922 * mapping_set_gfp_mask() must be called with suitable flags on the
923 * newly created inode's mapping
926 struct inode
*new_inode(struct super_block
*sb
)
930 spin_lock_prefetch(&sb
->s_inode_list_lock
);
932 inode
= new_inode_pseudo(sb
);
934 inode_sb_list_add(inode
);
937 EXPORT_SYMBOL(new_inode
);
939 #ifdef CONFIG_DEBUG_LOCK_ALLOC
940 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
942 if (S_ISDIR(inode
->i_mode
)) {
943 struct file_system_type
*type
= inode
->i_sb
->s_type
;
945 /* Set new key only if filesystem hasn't already changed it */
946 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
948 * ensure nobody is actually holding i_mutex
950 // mutex_destroy(&inode->i_mutex);
951 init_rwsem(&inode
->i_rwsem
);
952 lockdep_set_class(&inode
->i_rwsem
,
953 &type
->i_mutex_dir_key
);
957 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
961 * unlock_new_inode - clear the I_NEW state and wake up any waiters
962 * @inode: new inode to unlock
964 * Called when the inode is fully initialised to clear the new state of the
965 * inode and wake up anyone waiting for the inode to finish initialisation.
967 void unlock_new_inode(struct inode
*inode
)
969 lockdep_annotate_inode_mutex_key(inode
);
970 spin_lock(&inode
->i_lock
);
971 WARN_ON(!(inode
->i_state
& I_NEW
));
972 inode
->i_state
&= ~I_NEW
& ~I_CREATING
;
974 wake_up_bit(&inode
->i_state
, __I_NEW
);
975 spin_unlock(&inode
->i_lock
);
977 EXPORT_SYMBOL(unlock_new_inode
);
979 void discard_new_inode(struct inode
*inode
)
981 lockdep_annotate_inode_mutex_key(inode
);
982 spin_lock(&inode
->i_lock
);
983 WARN_ON(!(inode
->i_state
& I_NEW
));
984 inode
->i_state
&= ~I_NEW
;
986 wake_up_bit(&inode
->i_state
, __I_NEW
);
987 spin_unlock(&inode
->i_lock
);
990 EXPORT_SYMBOL(discard_new_inode
);
993 * lock_two_nondirectories - take two i_mutexes on non-directory objects
995 * Lock any non-NULL argument that is not a directory.
996 * Zero, one or two objects may be locked by this function.
998 * @inode1: first inode to lock
999 * @inode2: second inode to lock
1001 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1003 if (inode1
> inode2
)
1004 swap(inode1
, inode2
);
1006 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1008 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1009 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
1011 EXPORT_SYMBOL(lock_two_nondirectories
);
1014 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1015 * @inode1: first inode to unlock
1016 * @inode2: second inode to unlock
1018 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
1020 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
1021 inode_unlock(inode1
);
1022 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
1023 inode_unlock(inode2
);
1025 EXPORT_SYMBOL(unlock_two_nondirectories
);
1028 * inode_insert5 - obtain an inode from a mounted file system
1029 * @inode: pre-allocated inode to use for insert to cache
1030 * @hashval: hash value (usually inode number) to get
1031 * @test: callback used for comparisons between inodes
1032 * @set: callback used to initialize a new struct inode
1033 * @data: opaque data pointer to pass to @test and @set
1035 * Search for the inode specified by @hashval and @data in the inode cache,
1036 * and if present it is return it with an increased reference count. This is
1037 * a variant of iget5_locked() for callers that don't want to fail on memory
1038 * allocation of inode.
1040 * If the inode is not in cache, insert the pre-allocated inode to cache and
1041 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1042 * to fill it in before unlocking it via unlock_new_inode().
1044 * Note both @test and @set are called with the inode_hash_lock held, so can't
1047 struct inode
*inode_insert5(struct inode
*inode
, unsigned long hashval
,
1048 int (*test
)(struct inode
*, void *),
1049 int (*set
)(struct inode
*, void *), void *data
)
1051 struct hlist_head
*head
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
1053 bool creating
= inode
->i_state
& I_CREATING
;
1056 spin_lock(&inode_hash_lock
);
1057 old
= find_inode(inode
->i_sb
, head
, test
, data
);
1058 if (unlikely(old
)) {
1060 * Uhhuh, somebody else created the same inode under us.
1061 * Use the old inode instead of the preallocated one.
1063 spin_unlock(&inode_hash_lock
);
1067 if (unlikely(inode_unhashed(old
))) {
1074 if (set
&& unlikely(set(inode
, data
))) {
1080 * Return the locked inode with I_NEW set, the
1081 * caller is responsible for filling in the contents
1083 spin_lock(&inode
->i_lock
);
1084 inode
->i_state
|= I_NEW
;
1085 hlist_add_head(&inode
->i_hash
, head
);
1086 spin_unlock(&inode
->i_lock
);
1088 inode_sb_list_add(inode
);
1090 spin_unlock(&inode_hash_lock
);
1094 EXPORT_SYMBOL(inode_insert5
);
1097 * iget5_locked - obtain an inode from a mounted file system
1098 * @sb: super block of file system
1099 * @hashval: hash value (usually inode number) to get
1100 * @test: callback used for comparisons between inodes
1101 * @set: callback used to initialize a new struct inode
1102 * @data: opaque data pointer to pass to @test and @set
1104 * Search for the inode specified by @hashval and @data in the inode cache,
1105 * and if present it is return it with an increased reference count. This is
1106 * a generalized version of iget_locked() for file systems where the inode
1107 * number is not sufficient for unique identification of an inode.
1109 * If the inode is not in cache, allocate a new inode and return it locked,
1110 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1111 * before unlocking it via unlock_new_inode().
1113 * Note both @test and @set are called with the inode_hash_lock held, so can't
1116 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1117 int (*test
)(struct inode
*, void *),
1118 int (*set
)(struct inode
*, void *), void *data
)
1120 struct inode
*inode
= ilookup5(sb
, hashval
, test
, data
);
1123 struct inode
*new = alloc_inode(sb
);
1127 inode
= inode_insert5(new, hashval
, test
, set
, data
);
1128 if (unlikely(inode
!= new))
1134 EXPORT_SYMBOL(iget5_locked
);
1137 * iget_locked - obtain an inode from a mounted file system
1138 * @sb: super block of file system
1139 * @ino: inode number to get
1141 * Search for the inode specified by @ino in the inode cache and if present
1142 * return it with an increased reference count. This is for file systems
1143 * where the inode number is sufficient for unique identification of an inode.
1145 * If the inode is not in cache, allocate a new inode and return it locked,
1146 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1147 * before unlocking it via unlock_new_inode().
1149 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1151 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1152 struct inode
*inode
;
1154 spin_lock(&inode_hash_lock
);
1155 inode
= find_inode_fast(sb
, head
, ino
);
1156 spin_unlock(&inode_hash_lock
);
1160 wait_on_inode(inode
);
1161 if (unlikely(inode_unhashed(inode
))) {
1168 inode
= alloc_inode(sb
);
1172 spin_lock(&inode_hash_lock
);
1173 /* We released the lock, so.. */
1174 old
= find_inode_fast(sb
, head
, ino
);
1177 spin_lock(&inode
->i_lock
);
1178 inode
->i_state
= I_NEW
;
1179 hlist_add_head(&inode
->i_hash
, head
);
1180 spin_unlock(&inode
->i_lock
);
1181 inode_sb_list_add(inode
);
1182 spin_unlock(&inode_hash_lock
);
1184 /* Return the locked inode with I_NEW set, the
1185 * caller is responsible for filling in the contents
1191 * Uhhuh, somebody else created the same inode under
1192 * us. Use the old inode instead of the one we just
1195 spin_unlock(&inode_hash_lock
);
1196 destroy_inode(inode
);
1200 wait_on_inode(inode
);
1201 if (unlikely(inode_unhashed(inode
))) {
1208 EXPORT_SYMBOL(iget_locked
);
1211 * search the inode cache for a matching inode number.
1212 * If we find one, then the inode number we are trying to
1213 * allocate is not unique and so we should not use it.
1215 * Returns 1 if the inode number is unique, 0 if it is not.
1217 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1219 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1220 struct inode
*inode
;
1222 spin_lock(&inode_hash_lock
);
1223 hlist_for_each_entry(inode
, b
, i_hash
) {
1224 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1225 spin_unlock(&inode_hash_lock
);
1229 spin_unlock(&inode_hash_lock
);
1235 * iunique - get a unique inode number
1237 * @max_reserved: highest reserved inode number
1239 * Obtain an inode number that is unique on the system for a given
1240 * superblock. This is used by file systems that have no natural
1241 * permanent inode numbering system. An inode number is returned that
1242 * is higher than the reserved limit but unique.
1245 * With a large number of inodes live on the file system this function
1246 * currently becomes quite slow.
1248 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1251 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1252 * error if st_ino won't fit in target struct field. Use 32bit counter
1253 * here to attempt to avoid that.
1255 static DEFINE_SPINLOCK(iunique_lock
);
1256 static unsigned int counter
;
1259 spin_lock(&iunique_lock
);
1261 if (counter
<= max_reserved
)
1262 counter
= max_reserved
+ 1;
1264 } while (!test_inode_iunique(sb
, res
));
1265 spin_unlock(&iunique_lock
);
1269 EXPORT_SYMBOL(iunique
);
1271 struct inode
*igrab(struct inode
*inode
)
1273 spin_lock(&inode
->i_lock
);
1274 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1276 spin_unlock(&inode
->i_lock
);
1278 spin_unlock(&inode
->i_lock
);
1280 * Handle the case where s_op->clear_inode is not been
1281 * called yet, and somebody is calling igrab
1282 * while the inode is getting freed.
1288 EXPORT_SYMBOL(igrab
);
1291 * ilookup5_nowait - search for an inode in the inode cache
1292 * @sb: super block of file system to search
1293 * @hashval: hash value (usually inode number) to search for
1294 * @test: callback used for comparisons between inodes
1295 * @data: opaque data pointer to pass to @test
1297 * Search for the inode specified by @hashval and @data in the inode cache.
1298 * If the inode is in the cache, the inode is returned with an incremented
1301 * Note: I_NEW is not waited upon so you have to be very careful what you do
1302 * with the returned inode. You probably should be using ilookup5() instead.
1304 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1306 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1307 int (*test
)(struct inode
*, void *), void *data
)
1309 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1310 struct inode
*inode
;
1312 spin_lock(&inode_hash_lock
);
1313 inode
= find_inode(sb
, head
, test
, data
);
1314 spin_unlock(&inode_hash_lock
);
1316 return IS_ERR(inode
) ? NULL
: inode
;
1318 EXPORT_SYMBOL(ilookup5_nowait
);
1321 * ilookup5 - search for an inode in the inode cache
1322 * @sb: super block of file system to search
1323 * @hashval: hash value (usually inode number) to search for
1324 * @test: callback used for comparisons between inodes
1325 * @data: opaque data pointer to pass to @test
1327 * Search for the inode specified by @hashval and @data in the inode cache,
1328 * and if the inode is in the cache, return the inode with an incremented
1329 * reference count. Waits on I_NEW before returning the inode.
1330 * returned with an incremented reference count.
1332 * This is a generalized version of ilookup() for file systems where the
1333 * inode number is not sufficient for unique identification of an inode.
1335 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1337 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1338 int (*test
)(struct inode
*, void *), void *data
)
1340 struct inode
*inode
;
1342 inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1344 wait_on_inode(inode
);
1345 if (unlikely(inode_unhashed(inode
))) {
1352 EXPORT_SYMBOL(ilookup5
);
1355 * ilookup - search for an inode in the inode cache
1356 * @sb: super block of file system to search
1357 * @ino: inode number to search for
1359 * Search for the inode @ino in the inode cache, and if the inode is in the
1360 * cache, the inode is returned with an incremented reference count.
1362 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1364 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1365 struct inode
*inode
;
1367 spin_lock(&inode_hash_lock
);
1368 inode
= find_inode_fast(sb
, head
, ino
);
1369 spin_unlock(&inode_hash_lock
);
1374 wait_on_inode(inode
);
1375 if (unlikely(inode_unhashed(inode
))) {
1382 EXPORT_SYMBOL(ilookup
);
1385 * find_inode_nowait - find an inode in the inode cache
1386 * @sb: super block of file system to search
1387 * @hashval: hash value (usually inode number) to search for
1388 * @match: callback used for comparisons between inodes
1389 * @data: opaque data pointer to pass to @match
1391 * Search for the inode specified by @hashval and @data in the inode
1392 * cache, where the helper function @match will return 0 if the inode
1393 * does not match, 1 if the inode does match, and -1 if the search
1394 * should be stopped. The @match function must be responsible for
1395 * taking the i_lock spin_lock and checking i_state for an inode being
1396 * freed or being initialized, and incrementing the reference count
1397 * before returning 1. It also must not sleep, since it is called with
1398 * the inode_hash_lock spinlock held.
1400 * This is a even more generalized version of ilookup5() when the
1401 * function must never block --- find_inode() can block in
1402 * __wait_on_freeing_inode() --- or when the caller can not increment
1403 * the reference count because the resulting iput() might cause an
1404 * inode eviction. The tradeoff is that the @match funtion must be
1405 * very carefully implemented.
1407 struct inode
*find_inode_nowait(struct super_block
*sb
,
1408 unsigned long hashval
,
1409 int (*match
)(struct inode
*, unsigned long,
1413 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1414 struct inode
*inode
, *ret_inode
= NULL
;
1417 spin_lock(&inode_hash_lock
);
1418 hlist_for_each_entry(inode
, head
, i_hash
) {
1419 if (inode
->i_sb
!= sb
)
1421 mval
= match(inode
, hashval
, data
);
1429 spin_unlock(&inode_hash_lock
);
1432 EXPORT_SYMBOL(find_inode_nowait
);
1434 int insert_inode_locked(struct inode
*inode
)
1436 struct super_block
*sb
= inode
->i_sb
;
1437 ino_t ino
= inode
->i_ino
;
1438 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1441 struct inode
*old
= NULL
;
1442 spin_lock(&inode_hash_lock
);
1443 hlist_for_each_entry(old
, head
, i_hash
) {
1444 if (old
->i_ino
!= ino
)
1446 if (old
->i_sb
!= sb
)
1448 spin_lock(&old
->i_lock
);
1449 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1450 spin_unlock(&old
->i_lock
);
1456 spin_lock(&inode
->i_lock
);
1457 inode
->i_state
|= I_NEW
| I_CREATING
;
1458 hlist_add_head(&inode
->i_hash
, head
);
1459 spin_unlock(&inode
->i_lock
);
1460 spin_unlock(&inode_hash_lock
);
1463 if (unlikely(old
->i_state
& I_CREATING
)) {
1464 spin_unlock(&old
->i_lock
);
1465 spin_unlock(&inode_hash_lock
);
1469 spin_unlock(&old
->i_lock
);
1470 spin_unlock(&inode_hash_lock
);
1472 if (unlikely(!inode_unhashed(old
))) {
1479 EXPORT_SYMBOL(insert_inode_locked
);
1481 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1482 int (*test
)(struct inode
*, void *), void *data
)
1486 inode
->i_state
|= I_CREATING
;
1487 old
= inode_insert5(inode
, hashval
, test
, NULL
, data
);
1495 EXPORT_SYMBOL(insert_inode_locked4
);
1498 int generic_delete_inode(struct inode
*inode
)
1502 EXPORT_SYMBOL(generic_delete_inode
);
1505 * Called when we're dropping the last reference
1508 * Call the FS "drop_inode()" function, defaulting to
1509 * the legacy UNIX filesystem behaviour. If it tells
1510 * us to evict inode, do so. Otherwise, retain inode
1511 * in cache if fs is alive, sync and evict if fs is
1514 static void iput_final(struct inode
*inode
)
1516 struct super_block
*sb
= inode
->i_sb
;
1517 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1520 WARN_ON(inode
->i_state
& I_NEW
);
1523 drop
= op
->drop_inode(inode
);
1525 drop
= generic_drop_inode(inode
);
1527 if (!drop
&& (sb
->s_flags
& SB_ACTIVE
)) {
1528 inode_add_lru(inode
);
1529 spin_unlock(&inode
->i_lock
);
1534 inode
->i_state
|= I_WILL_FREE
;
1535 spin_unlock(&inode
->i_lock
);
1536 write_inode_now(inode
, 1);
1537 spin_lock(&inode
->i_lock
);
1538 WARN_ON(inode
->i_state
& I_NEW
);
1539 inode
->i_state
&= ~I_WILL_FREE
;
1542 inode
->i_state
|= I_FREEING
;
1543 if (!list_empty(&inode
->i_lru
))
1544 inode_lru_list_del(inode
);
1545 spin_unlock(&inode
->i_lock
);
1551 * iput - put an inode
1552 * @inode: inode to put
1554 * Puts an inode, dropping its usage count. If the inode use count hits
1555 * zero, the inode is then freed and may also be destroyed.
1557 * Consequently, iput() can sleep.
1559 void iput(struct inode
*inode
)
1563 BUG_ON(inode
->i_state
& I_CLEAR
);
1565 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1566 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1567 atomic_inc(&inode
->i_count
);
1568 spin_unlock(&inode
->i_lock
);
1569 trace_writeback_lazytime_iput(inode
);
1570 mark_inode_dirty_sync(inode
);
1576 EXPORT_SYMBOL(iput
);
1579 * bmap - find a block number in a file
1580 * @inode: inode of file
1581 * @block: block to find
1583 * Returns the block number on the device holding the inode that
1584 * is the disk block number for the block of the file requested.
1585 * That is, asked for block 4 of inode 1 the function will return the
1586 * disk block relative to the disk start that holds that block of the
1589 sector_t
bmap(struct inode
*inode
, sector_t block
)
1592 if (inode
->i_mapping
->a_ops
->bmap
)
1593 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1596 EXPORT_SYMBOL(bmap
);
1599 * With relative atime, only update atime if the previous atime is
1600 * earlier than either the ctime or mtime or if at least a day has
1601 * passed since the last atime update.
1603 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1604 struct timespec now
)
1607 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1610 * Is mtime younger than atime? If yes, update atime:
1612 if (timespec64_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1615 * Is ctime younger than atime? If yes, update atime:
1617 if (timespec64_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1621 * Is the previous atime value older than a day? If yes,
1624 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1627 * Good, we can skip the atime update:
1632 int generic_update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1634 int iflags
= I_DIRTY_TIME
;
1637 if (flags
& S_ATIME
)
1638 inode
->i_atime
= *time
;
1639 if (flags
& S_VERSION
)
1640 dirty
= inode_maybe_inc_iversion(inode
, false);
1641 if (flags
& S_CTIME
)
1642 inode
->i_ctime
= *time
;
1643 if (flags
& S_MTIME
)
1644 inode
->i_mtime
= *time
;
1645 if ((flags
& (S_ATIME
| S_CTIME
| S_MTIME
)) &&
1646 !(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1650 iflags
|= I_DIRTY_SYNC
;
1651 __mark_inode_dirty(inode
, iflags
);
1654 EXPORT_SYMBOL(generic_update_time
);
1657 * This does the actual work of updating an inodes time or version. Must have
1658 * had called mnt_want_write() before calling this.
1660 static int update_time(struct inode
*inode
, struct timespec64
*time
, int flags
)
1662 int (*update_time
)(struct inode
*, struct timespec64
*, int);
1664 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1665 generic_update_time
;
1667 return update_time(inode
, time
, flags
);
1671 * touch_atime - update the access time
1672 * @path: the &struct path to update
1673 * @inode: inode to update
1675 * Update the accessed time on an inode and mark it for writeback.
1676 * This function automatically handles read only file systems and media,
1677 * as well as the "noatime" flag and inode specific "noatime" markers.
1679 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1681 struct vfsmount
*mnt
= path
->mnt
;
1682 struct timespec64 now
;
1684 if (inode
->i_flags
& S_NOATIME
)
1687 /* Atime updates will likely cause i_uid and i_gid to be written
1688 * back improprely if their true value is unknown to the vfs.
1690 if (HAS_UNMAPPED_ID(inode
))
1693 if (IS_NOATIME(inode
))
1695 if ((inode
->i_sb
->s_flags
& SB_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1698 if (mnt
->mnt_flags
& MNT_NOATIME
)
1700 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1703 now
= current_time(inode
);
1705 if (!relatime_need_update(mnt
, inode
, timespec64_to_timespec(now
)))
1708 if (timespec64_equal(&inode
->i_atime
, &now
))
1714 void touch_atime(const struct path
*path
)
1716 struct vfsmount
*mnt
= path
->mnt
;
1717 struct inode
*inode
= d_inode(path
->dentry
);
1718 struct timespec64 now
;
1720 if (!atime_needs_update(path
, inode
))
1723 if (!sb_start_write_trylock(inode
->i_sb
))
1726 if (__mnt_want_write(mnt
) != 0)
1729 * File systems can error out when updating inodes if they need to
1730 * allocate new space to modify an inode (such is the case for
1731 * Btrfs), but since we touch atime while walking down the path we
1732 * really don't care if we failed to update the atime of the file,
1733 * so just ignore the return value.
1734 * We may also fail on filesystems that have the ability to make parts
1735 * of the fs read only, e.g. subvolumes in Btrfs.
1737 now
= current_time(inode
);
1738 update_time(inode
, &now
, S_ATIME
);
1739 __mnt_drop_write(mnt
);
1741 sb_end_write(inode
->i_sb
);
1743 EXPORT_SYMBOL(touch_atime
);
1746 * The logic we want is
1748 * if suid or (sgid and xgrp)
1751 int should_remove_suid(struct dentry
*dentry
)
1753 umode_t mode
= d_inode(dentry
)->i_mode
;
1756 /* suid always must be killed */
1757 if (unlikely(mode
& S_ISUID
))
1758 kill
= ATTR_KILL_SUID
;
1761 * sgid without any exec bits is just a mandatory locking mark; leave
1762 * it alone. If some exec bits are set, it's a real sgid; kill it.
1764 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1765 kill
|= ATTR_KILL_SGID
;
1767 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1772 EXPORT_SYMBOL(should_remove_suid
);
1775 * Return mask of changes for notify_change() that need to be done as a
1776 * response to write or truncate. Return 0 if nothing has to be changed.
1777 * Negative value on error (change should be denied).
1779 int dentry_needs_remove_privs(struct dentry
*dentry
)
1781 struct inode
*inode
= d_inode(dentry
);
1785 if (IS_NOSEC(inode
))
1788 mask
= should_remove_suid(dentry
);
1789 ret
= security_inode_need_killpriv(dentry
);
1793 mask
|= ATTR_KILL_PRIV
;
1797 static int __remove_privs(struct dentry
*dentry
, int kill
)
1799 struct iattr newattrs
;
1801 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1803 * Note we call this on write, so notify_change will not
1804 * encounter any conflicting delegations:
1806 return notify_change(dentry
, &newattrs
, NULL
);
1810 * Remove special file priviledges (suid, capabilities) when file is written
1813 int file_remove_privs(struct file
*file
)
1815 struct dentry
*dentry
= file_dentry(file
);
1816 struct inode
*inode
= file_inode(file
);
1820 /* Fast path for nothing security related */
1821 if (IS_NOSEC(inode
))
1824 kill
= dentry_needs_remove_privs(dentry
);
1828 error
= __remove_privs(dentry
, kill
);
1830 inode_has_no_xattr(inode
);
1834 EXPORT_SYMBOL(file_remove_privs
);
1837 * file_update_time - update mtime and ctime time
1838 * @file: file accessed
1840 * Update the mtime and ctime members of an inode and mark the inode
1841 * for writeback. Note that this function is meant exclusively for
1842 * usage in the file write path of filesystems, and filesystems may
1843 * choose to explicitly ignore update via this function with the
1844 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1845 * timestamps are handled by the server. This can return an error for
1846 * file systems who need to allocate space in order to update an inode.
1849 int file_update_time(struct file
*file
)
1851 struct inode
*inode
= file_inode(file
);
1852 struct timespec64 now
;
1856 /* First try to exhaust all avenues to not sync */
1857 if (IS_NOCMTIME(inode
))
1860 now
= current_time(inode
);
1861 if (!timespec64_equal(&inode
->i_mtime
, &now
))
1864 if (!timespec64_equal(&inode
->i_ctime
, &now
))
1867 if (IS_I_VERSION(inode
) && inode_iversion_need_inc(inode
))
1868 sync_it
|= S_VERSION
;
1873 /* Finally allowed to write? Takes lock. */
1874 if (__mnt_want_write_file(file
))
1877 ret
= update_time(inode
, &now
, sync_it
);
1878 __mnt_drop_write_file(file
);
1882 EXPORT_SYMBOL(file_update_time
);
1884 int inode_needs_sync(struct inode
*inode
)
1888 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1892 EXPORT_SYMBOL(inode_needs_sync
);
1895 * If we try to find an inode in the inode hash while it is being
1896 * deleted, we have to wait until the filesystem completes its
1897 * deletion before reporting that it isn't found. This function waits
1898 * until the deletion _might_ have completed. Callers are responsible
1899 * to recheck inode state.
1901 * It doesn't matter if I_NEW is not set initially, a call to
1902 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1905 static void __wait_on_freeing_inode(struct inode
*inode
)
1907 wait_queue_head_t
*wq
;
1908 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1909 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1910 prepare_to_wait(wq
, &wait
.wq_entry
, TASK_UNINTERRUPTIBLE
);
1911 spin_unlock(&inode
->i_lock
);
1912 spin_unlock(&inode_hash_lock
);
1914 finish_wait(wq
, &wait
.wq_entry
);
1915 spin_lock(&inode_hash_lock
);
1918 static __initdata
unsigned long ihash_entries
;
1919 static int __init
set_ihash_entries(char *str
)
1923 ihash_entries
= simple_strtoul(str
, &str
, 0);
1926 __setup("ihash_entries=", set_ihash_entries
);
1929 * Initialize the waitqueues and inode hash table.
1931 void __init
inode_init_early(void)
1933 /* If hashes are distributed across NUMA nodes, defer
1934 * hash allocation until vmalloc space is available.
1940 alloc_large_system_hash("Inode-cache",
1941 sizeof(struct hlist_head
),
1944 HASH_EARLY
| HASH_ZERO
,
1951 void __init
inode_init(void)
1953 /* inode slab cache */
1954 inode_cachep
= kmem_cache_create("inode_cache",
1955 sizeof(struct inode
),
1957 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1958 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1961 /* Hash may have been set up in inode_init_early */
1966 alloc_large_system_hash("Inode-cache",
1967 sizeof(struct hlist_head
),
1977 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1979 inode
->i_mode
= mode
;
1980 if (S_ISCHR(mode
)) {
1981 inode
->i_fop
= &def_chr_fops
;
1982 inode
->i_rdev
= rdev
;
1983 } else if (S_ISBLK(mode
)) {
1984 inode
->i_fop
= &def_blk_fops
;
1985 inode
->i_rdev
= rdev
;
1986 } else if (S_ISFIFO(mode
))
1987 inode
->i_fop
= &pipefifo_fops
;
1988 else if (S_ISSOCK(mode
))
1989 ; /* leave it no_open_fops */
1991 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1992 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1995 EXPORT_SYMBOL(init_special_inode
);
1998 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2000 * @dir: Directory inode
2001 * @mode: mode of the new inode
2003 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
2006 inode
->i_uid
= current_fsuid();
2007 if (dir
&& dir
->i_mode
& S_ISGID
) {
2008 inode
->i_gid
= dir
->i_gid
;
2010 /* Directories are special, and always inherit S_ISGID */
2013 else if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
) &&
2014 !in_group_p(inode
->i_gid
) &&
2015 !capable_wrt_inode_uidgid(dir
, CAP_FSETID
))
2018 inode
->i_gid
= current_fsgid();
2019 inode
->i_mode
= mode
;
2021 EXPORT_SYMBOL(inode_init_owner
);
2024 * inode_owner_or_capable - check current task permissions to inode
2025 * @inode: inode being checked
2027 * Return true if current either has CAP_FOWNER in a namespace with the
2028 * inode owner uid mapped, or owns the file.
2030 bool inode_owner_or_capable(const struct inode
*inode
)
2032 struct user_namespace
*ns
;
2034 if (uid_eq(current_fsuid(), inode
->i_uid
))
2037 ns
= current_user_ns();
2038 if (kuid_has_mapping(ns
, inode
->i_uid
) && ns_capable(ns
, CAP_FOWNER
))
2042 EXPORT_SYMBOL(inode_owner_or_capable
);
2045 * Direct i/o helper functions
2047 static void __inode_dio_wait(struct inode
*inode
)
2049 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
2050 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
2053 prepare_to_wait(wq
, &q
.wq_entry
, TASK_UNINTERRUPTIBLE
);
2054 if (atomic_read(&inode
->i_dio_count
))
2056 } while (atomic_read(&inode
->i_dio_count
));
2057 finish_wait(wq
, &q
.wq_entry
);
2061 * inode_dio_wait - wait for outstanding DIO requests to finish
2062 * @inode: inode to wait for
2064 * Waits for all pending direct I/O requests to finish so that we can
2065 * proceed with a truncate or equivalent operation.
2067 * Must be called under a lock that serializes taking new references
2068 * to i_dio_count, usually by inode->i_mutex.
2070 void inode_dio_wait(struct inode
*inode
)
2072 if (atomic_read(&inode
->i_dio_count
))
2073 __inode_dio_wait(inode
);
2075 EXPORT_SYMBOL(inode_dio_wait
);
2078 * inode_set_flags - atomically set some inode flags
2080 * Note: the caller should be holding i_mutex, or else be sure that
2081 * they have exclusive access to the inode structure (i.e., while the
2082 * inode is being instantiated). The reason for the cmpxchg() loop
2083 * --- which wouldn't be necessary if all code paths which modify
2084 * i_flags actually followed this rule, is that there is at least one
2085 * code path which doesn't today so we use cmpxchg() out of an abundance
2088 * In the long run, i_mutex is overkill, and we should probably look
2089 * at using the i_lock spinlock to protect i_flags, and then make sure
2090 * it is so documented in include/linux/fs.h and that all code follows
2091 * the locking convention!!
2093 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2096 unsigned int old_flags
, new_flags
;
2098 WARN_ON_ONCE(flags
& ~mask
);
2100 old_flags
= READ_ONCE(inode
->i_flags
);
2101 new_flags
= (old_flags
& ~mask
) | flags
;
2102 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2103 new_flags
) != old_flags
));
2105 EXPORT_SYMBOL(inode_set_flags
);
2107 void inode_nohighmem(struct inode
*inode
)
2109 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2111 EXPORT_SYMBOL(inode_nohighmem
);
2114 * timespec64_trunc - Truncate timespec64 to a granularity
2116 * @gran: Granularity in ns.
2118 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2119 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2121 struct timespec64
timespec64_trunc(struct timespec64 t
, unsigned gran
)
2123 /* Avoid division in the common cases 1 ns and 1 s. */
2126 } else if (gran
== NSEC_PER_SEC
) {
2128 } else if (gran
> 1 && gran
< NSEC_PER_SEC
) {
2129 t
.tv_nsec
-= t
.tv_nsec
% gran
;
2131 WARN(1, "illegal file time granularity: %u", gran
);
2135 EXPORT_SYMBOL(timespec64_trunc
);
2138 * current_time - Return FS time
2141 * Return the current time truncated to the time granularity supported by
2144 * Note that inode and inode->sb cannot be NULL.
2145 * Otherwise, the function warns and returns time without truncation.
2147 struct timespec64
current_time(struct inode
*inode
)
2149 struct timespec64 now
= current_kernel_time64();
2151 if (unlikely(!inode
->i_sb
)) {
2152 WARN(1, "current_time() called with uninitialized super_block in the inode");
2156 return timespec64_trunc(now
, inode
->i_sb
->s_time_gran
);
2158 EXPORT_SYMBOL(current_time
);