]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
brcm80211: Use normal DEBUG define
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include <linux/ratelimit.h>
30 #include "internal.h"
31
32 /*
33 * Inode locking rules:
34 *
35 * inode->i_lock protects:
36 * inode->i_state, inode->i_hash, __iget()
37 * inode->i_sb->s_inode_lru_lock protects:
38 * inode->i_sb->s_inode_lru, inode->i_lru
39 * inode_sb_list_lock protects:
40 * sb->s_inodes, inode->i_sb_list
41 * bdi->wb.list_lock protects:
42 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
43 * inode_hash_lock protects:
44 * inode_hashtable, inode->i_hash
45 *
46 * Lock ordering:
47 *
48 * inode_sb_list_lock
49 * inode->i_lock
50 * inode->i_sb->s_inode_lru_lock
51 *
52 * bdi->wb.list_lock
53 * inode->i_lock
54 *
55 * inode_hash_lock
56 * inode_sb_list_lock
57 * inode->i_lock
58 *
59 * iunique_lock
60 * inode_hash_lock
61 */
62
63 static unsigned int i_hash_mask __read_mostly;
64 static unsigned int i_hash_shift __read_mostly;
65 static struct hlist_head *inode_hashtable __read_mostly;
66 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
67
68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
69
70 /*
71 * Empty aops. Can be used for the cases where the user does not
72 * define any of the address_space operations.
73 */
74 const struct address_space_operations empty_aops = {
75 };
76 EXPORT_SYMBOL(empty_aops);
77
78 /*
79 * Statistics gathering..
80 */
81 struct inodes_stat_t inodes_stat;
82
83 static DEFINE_PER_CPU(unsigned int, nr_inodes);
84 static DEFINE_PER_CPU(unsigned int, nr_unused);
85
86 static struct kmem_cache *inode_cachep __read_mostly;
87
88 static int get_nr_inodes(void)
89 {
90 int i;
91 int sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_inodes, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 static inline int get_nr_inodes_unused(void)
98 {
99 int i;
100 int sum = 0;
101 for_each_possible_cpu(i)
102 sum += per_cpu(nr_unused, i);
103 return sum < 0 ? 0 : sum;
104 }
105
106 int get_nr_dirty_inodes(void)
107 {
108 /* not actually dirty inodes, but a wild approximation */
109 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
110 return nr_dirty > 0 ? nr_dirty : 0;
111 }
112
113 /*
114 * Handle nr_inode sysctl
115 */
116 #ifdef CONFIG_SYSCTL
117 int proc_nr_inodes(ctl_table *table, int write,
118 void __user *buffer, size_t *lenp, loff_t *ppos)
119 {
120 inodes_stat.nr_inodes = get_nr_inodes();
121 inodes_stat.nr_unused = get_nr_inodes_unused();
122 return proc_dointvec(table, write, buffer, lenp, ppos);
123 }
124 #endif
125
126 /**
127 * inode_init_always - perform inode structure intialisation
128 * @sb: superblock inode belongs to
129 * @inode: inode to initialise
130 *
131 * These are initializations that need to be done on every inode
132 * allocation as the fields are not initialised by slab allocation.
133 */
134 int inode_init_always(struct super_block *sb, struct inode *inode)
135 {
136 static const struct inode_operations empty_iops;
137 static const struct file_operations empty_fops;
138 struct address_space *const mapping = &inode->i_data;
139
140 inode->i_sb = sb;
141 inode->i_blkbits = sb->s_blocksize_bits;
142 inode->i_flags = 0;
143 atomic_set(&inode->i_count, 1);
144 inode->i_op = &empty_iops;
145 inode->i_fop = &empty_fops;
146 inode->__i_nlink = 1;
147 inode->i_opflags = 0;
148 inode->i_uid = 0;
149 inode->i_gid = 0;
150 atomic_set(&inode->i_writecount, 0);
151 inode->i_size = 0;
152 inode->i_blocks = 0;
153 inode->i_bytes = 0;
154 inode->i_generation = 0;
155 #ifdef CONFIG_QUOTA
156 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
157 #endif
158 inode->i_pipe = NULL;
159 inode->i_bdev = NULL;
160 inode->i_cdev = NULL;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 if (security_inode_alloc(inode))
165 goto out;
166 spin_lock_init(&inode->i_lock);
167 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
168
169 mutex_init(&inode->i_mutex);
170 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
171
172 atomic_set(&inode->i_dio_count, 0);
173
174 mapping->a_ops = &empty_aops;
175 mapping->host = inode;
176 mapping->flags = 0;
177 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 mapping->assoc_mapping = NULL;
179 mapping->backing_dev_info = &default_backing_dev_info;
180 mapping->writeback_index = 0;
181
182 /*
183 * If the block_device provides a backing_dev_info for client
184 * inodes then use that. Otherwise the inode share the bdev's
185 * backing_dev_info.
186 */
187 if (sb->s_bdev) {
188 struct backing_dev_info *bdi;
189
190 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
191 mapping->backing_dev_info = bdi;
192 }
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_LIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199
200 #ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202 #endif
203
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207 out:
208 return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211
212 static struct inode *alloc_inode(struct super_block *sb)
213 {
214 struct inode *inode;
215
216 if (sb->s_op->alloc_inode)
217 inode = sb->s_op->alloc_inode(sb);
218 else
219 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
220
221 if (!inode)
222 return NULL;
223
224 if (unlikely(inode_init_always(sb, inode))) {
225 if (inode->i_sb->s_op->destroy_inode)
226 inode->i_sb->s_op->destroy_inode(inode);
227 else
228 kmem_cache_free(inode_cachep, inode);
229 return NULL;
230 }
231
232 return inode;
233 }
234
235 void free_inode_nonrcu(struct inode *inode)
236 {
237 kmem_cache_free(inode_cachep, inode);
238 }
239 EXPORT_SYMBOL(free_inode_nonrcu);
240
241 void __destroy_inode(struct inode *inode)
242 {
243 BUG_ON(inode_has_buffers(inode));
244 security_inode_free(inode);
245 fsnotify_inode_delete(inode);
246 if (!inode->i_nlink) {
247 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
248 atomic_long_dec(&inode->i_sb->s_remove_count);
249 }
250
251 #ifdef CONFIG_FS_POSIX_ACL
252 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
253 posix_acl_release(inode->i_acl);
254 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
255 posix_acl_release(inode->i_default_acl);
256 #endif
257 this_cpu_dec(nr_inodes);
258 }
259 EXPORT_SYMBOL(__destroy_inode);
260
261 static void i_callback(struct rcu_head *head)
262 {
263 struct inode *inode = container_of(head, struct inode, i_rcu);
264 kmem_cache_free(inode_cachep, inode);
265 }
266
267 static void destroy_inode(struct inode *inode)
268 {
269 BUG_ON(!list_empty(&inode->i_lru));
270 __destroy_inode(inode);
271 if (inode->i_sb->s_op->destroy_inode)
272 inode->i_sb->s_op->destroy_inode(inode);
273 else
274 call_rcu(&inode->i_rcu, i_callback);
275 }
276
277 /**
278 * drop_nlink - directly drop an inode's link count
279 * @inode: inode
280 *
281 * This is a low-level filesystem helper to replace any
282 * direct filesystem manipulation of i_nlink. In cases
283 * where we are attempting to track writes to the
284 * filesystem, a decrement to zero means an imminent
285 * write when the file is truncated and actually unlinked
286 * on the filesystem.
287 */
288 void drop_nlink(struct inode *inode)
289 {
290 WARN_ON(inode->i_nlink == 0);
291 inode->__i_nlink--;
292 if (!inode->i_nlink)
293 atomic_long_inc(&inode->i_sb->s_remove_count);
294 }
295 EXPORT_SYMBOL(drop_nlink);
296
297 /**
298 * clear_nlink - directly zero an inode's link count
299 * @inode: inode
300 *
301 * This is a low-level filesystem helper to replace any
302 * direct filesystem manipulation of i_nlink. See
303 * drop_nlink() for why we care about i_nlink hitting zero.
304 */
305 void clear_nlink(struct inode *inode)
306 {
307 if (inode->i_nlink) {
308 inode->__i_nlink = 0;
309 atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 }
312 EXPORT_SYMBOL(clear_nlink);
313
314 /**
315 * set_nlink - directly set an inode's link count
316 * @inode: inode
317 * @nlink: new nlink (should be non-zero)
318 *
319 * This is a low-level filesystem helper to replace any
320 * direct filesystem manipulation of i_nlink.
321 */
322 void set_nlink(struct inode *inode, unsigned int nlink)
323 {
324 if (!nlink) {
325 printk_ratelimited(KERN_INFO
326 "set_nlink() clearing i_nlink on %s inode %li\n",
327 inode->i_sb->s_type->name, inode->i_ino);
328 clear_nlink(inode);
329 } else {
330 /* Yes, some filesystems do change nlink from zero to one */
331 if (inode->i_nlink == 0)
332 atomic_long_dec(&inode->i_sb->s_remove_count);
333
334 inode->__i_nlink = nlink;
335 }
336 }
337 EXPORT_SYMBOL(set_nlink);
338
339 /**
340 * inc_nlink - directly increment an inode's link count
341 * @inode: inode
342 *
343 * This is a low-level filesystem helper to replace any
344 * direct filesystem manipulation of i_nlink. Currently,
345 * it is only here for parity with dec_nlink().
346 */
347 void inc_nlink(struct inode *inode)
348 {
349 if (WARN_ON(inode->i_nlink == 0))
350 atomic_long_dec(&inode->i_sb->s_remove_count);
351
352 inode->__i_nlink++;
353 }
354 EXPORT_SYMBOL(inc_nlink);
355
356 void address_space_init_once(struct address_space *mapping)
357 {
358 memset(mapping, 0, sizeof(*mapping));
359 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
360 spin_lock_init(&mapping->tree_lock);
361 mutex_init(&mapping->i_mmap_mutex);
362 INIT_LIST_HEAD(&mapping->private_list);
363 spin_lock_init(&mapping->private_lock);
364 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
365 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
366 }
367 EXPORT_SYMBOL(address_space_init_once);
368
369 /*
370 * These are initializations that only need to be done
371 * once, because the fields are idempotent across use
372 * of the inode, so let the slab aware of that.
373 */
374 void inode_init_once(struct inode *inode)
375 {
376 memset(inode, 0, sizeof(*inode));
377 INIT_HLIST_NODE(&inode->i_hash);
378 INIT_LIST_HEAD(&inode->i_devices);
379 INIT_LIST_HEAD(&inode->i_wb_list);
380 INIT_LIST_HEAD(&inode->i_lru);
381 address_space_init_once(&inode->i_data);
382 i_size_ordered_init(inode);
383 #ifdef CONFIG_FSNOTIFY
384 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
385 #endif
386 }
387 EXPORT_SYMBOL(inode_init_once);
388
389 static void init_once(void *foo)
390 {
391 struct inode *inode = (struct inode *) foo;
392
393 inode_init_once(inode);
394 }
395
396 /*
397 * inode->i_lock must be held
398 */
399 void __iget(struct inode *inode)
400 {
401 atomic_inc(&inode->i_count);
402 }
403
404 /*
405 * get additional reference to inode; caller must already hold one.
406 */
407 void ihold(struct inode *inode)
408 {
409 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
410 }
411 EXPORT_SYMBOL(ihold);
412
413 static void inode_lru_list_add(struct inode *inode)
414 {
415 spin_lock(&inode->i_sb->s_inode_lru_lock);
416 if (list_empty(&inode->i_lru)) {
417 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
418 inode->i_sb->s_nr_inodes_unused++;
419 this_cpu_inc(nr_unused);
420 }
421 spin_unlock(&inode->i_sb->s_inode_lru_lock);
422 }
423
424 static void inode_lru_list_del(struct inode *inode)
425 {
426 spin_lock(&inode->i_sb->s_inode_lru_lock);
427 if (!list_empty(&inode->i_lru)) {
428 list_del_init(&inode->i_lru);
429 inode->i_sb->s_nr_inodes_unused--;
430 this_cpu_dec(nr_unused);
431 }
432 spin_unlock(&inode->i_sb->s_inode_lru_lock);
433 }
434
435 /**
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
438 */
439 void inode_sb_list_add(struct inode *inode)
440 {
441 spin_lock(&inode_sb_list_lock);
442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446
447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 if (!list_empty(&inode->i_sb_list)) {
450 spin_lock(&inode_sb_list_lock);
451 list_del_init(&inode->i_sb_list);
452 spin_unlock(&inode_sb_list_lock);
453 }
454 }
455
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 unsigned long tmp;
459
460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 L1_CACHE_BYTES;
462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 return tmp & i_hash_mask;
464 }
465
466 /**
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
470 * inode_hashtable.
471 *
472 * Add an inode to the inode hash for this superblock.
473 */
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477
478 spin_lock(&inode_hash_lock);
479 spin_lock(&inode->i_lock);
480 hlist_add_head(&inode->i_hash, b);
481 spin_unlock(&inode->i_lock);
482 spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485
486 /**
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
489 *
490 * Remove an inode from the superblock.
491 */
492 void __remove_inode_hash(struct inode *inode)
493 {
494 spin_lock(&inode_hash_lock);
495 spin_lock(&inode->i_lock);
496 hlist_del_init(&inode->i_hash);
497 spin_unlock(&inode->i_lock);
498 spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501
502 void end_writeback(struct inode *inode)
503 {
504 might_sleep();
505 /*
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
509 */
510 spin_lock_irq(&inode->i_data.tree_lock);
511 BUG_ON(inode->i_data.nrpages);
512 spin_unlock_irq(&inode->i_data.tree_lock);
513 BUG_ON(!list_empty(&inode->i_data.private_list));
514 BUG_ON(!(inode->i_state & I_FREEING));
515 BUG_ON(inode->i_state & I_CLEAR);
516 inode_sync_wait(inode);
517 /* don't need i_lock here, no concurrent mods to i_state */
518 inode->i_state = I_FREEING | I_CLEAR;
519 }
520 EXPORT_SYMBOL(end_writeback);
521
522 /*
523 * Free the inode passed in, removing it from the lists it is still connected
524 * to. We remove any pages still attached to the inode and wait for any IO that
525 * is still in progress before finally destroying the inode.
526 *
527 * An inode must already be marked I_FREEING so that we avoid the inode being
528 * moved back onto lists if we race with other code that manipulates the lists
529 * (e.g. writeback_single_inode). The caller is responsible for setting this.
530 *
531 * An inode must already be removed from the LRU list before being evicted from
532 * the cache. This should occur atomically with setting the I_FREEING state
533 * flag, so no inodes here should ever be on the LRU when being evicted.
534 */
535 static void evict(struct inode *inode)
536 {
537 const struct super_operations *op = inode->i_sb->s_op;
538
539 BUG_ON(!(inode->i_state & I_FREEING));
540 BUG_ON(!list_empty(&inode->i_lru));
541
542 if (!list_empty(&inode->i_wb_list))
543 inode_wb_list_del(inode);
544
545 inode_sb_list_del(inode);
546
547 if (op->evict_inode) {
548 op->evict_inode(inode);
549 } else {
550 if (inode->i_data.nrpages)
551 truncate_inode_pages(&inode->i_data, 0);
552 end_writeback(inode);
553 }
554 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
555 bd_forget(inode);
556 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
557 cd_forget(inode);
558
559 remove_inode_hash(inode);
560
561 spin_lock(&inode->i_lock);
562 wake_up_bit(&inode->i_state, __I_NEW);
563 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
564 spin_unlock(&inode->i_lock);
565
566 destroy_inode(inode);
567 }
568
569 /*
570 * dispose_list - dispose of the contents of a local list
571 * @head: the head of the list to free
572 *
573 * Dispose-list gets a local list with local inodes in it, so it doesn't
574 * need to worry about list corruption and SMP locks.
575 */
576 static void dispose_list(struct list_head *head)
577 {
578 while (!list_empty(head)) {
579 struct inode *inode;
580
581 inode = list_first_entry(head, struct inode, i_lru);
582 list_del_init(&inode->i_lru);
583
584 evict(inode);
585 }
586 }
587
588 /**
589 * evict_inodes - evict all evictable inodes for a superblock
590 * @sb: superblock to operate on
591 *
592 * Make sure that no inodes with zero refcount are retained. This is
593 * called by superblock shutdown after having MS_ACTIVE flag removed,
594 * so any inode reaching zero refcount during or after that call will
595 * be immediately evicted.
596 */
597 void evict_inodes(struct super_block *sb)
598 {
599 struct inode *inode, *next;
600 LIST_HEAD(dispose);
601
602 spin_lock(&inode_sb_list_lock);
603 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
604 if (atomic_read(&inode->i_count))
605 continue;
606
607 spin_lock(&inode->i_lock);
608 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
609 spin_unlock(&inode->i_lock);
610 continue;
611 }
612
613 inode->i_state |= I_FREEING;
614 inode_lru_list_del(inode);
615 spin_unlock(&inode->i_lock);
616 list_add(&inode->i_lru, &dispose);
617 }
618 spin_unlock(&inode_sb_list_lock);
619
620 dispose_list(&dispose);
621 }
622
623 /**
624 * invalidate_inodes - attempt to free all inodes on a superblock
625 * @sb: superblock to operate on
626 * @kill_dirty: flag to guide handling of dirty inodes
627 *
628 * Attempts to free all inodes for a given superblock. If there were any
629 * busy inodes return a non-zero value, else zero.
630 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
631 * them as busy.
632 */
633 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
634 {
635 int busy = 0;
636 struct inode *inode, *next;
637 LIST_HEAD(dispose);
638
639 spin_lock(&inode_sb_list_lock);
640 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
641 spin_lock(&inode->i_lock);
642 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
643 spin_unlock(&inode->i_lock);
644 continue;
645 }
646 if (inode->i_state & I_DIRTY && !kill_dirty) {
647 spin_unlock(&inode->i_lock);
648 busy = 1;
649 continue;
650 }
651 if (atomic_read(&inode->i_count)) {
652 spin_unlock(&inode->i_lock);
653 busy = 1;
654 continue;
655 }
656
657 inode->i_state |= I_FREEING;
658 inode_lru_list_del(inode);
659 spin_unlock(&inode->i_lock);
660 list_add(&inode->i_lru, &dispose);
661 }
662 spin_unlock(&inode_sb_list_lock);
663
664 dispose_list(&dispose);
665
666 return busy;
667 }
668
669 static int can_unuse(struct inode *inode)
670 {
671 if (inode->i_state & ~I_REFERENCED)
672 return 0;
673 if (inode_has_buffers(inode))
674 return 0;
675 if (atomic_read(&inode->i_count))
676 return 0;
677 if (inode->i_data.nrpages)
678 return 0;
679 return 1;
680 }
681
682 /*
683 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
684 * This is called from the superblock shrinker function with a number of inodes
685 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
686 * then are freed outside inode_lock by dispose_list().
687 *
688 * Any inodes which are pinned purely because of attached pagecache have their
689 * pagecache removed. If the inode has metadata buffers attached to
690 * mapping->private_list then try to remove them.
691 *
692 * If the inode has the I_REFERENCED flag set, then it means that it has been
693 * used recently - the flag is set in iput_final(). When we encounter such an
694 * inode, clear the flag and move it to the back of the LRU so it gets another
695 * pass through the LRU before it gets reclaimed. This is necessary because of
696 * the fact we are doing lazy LRU updates to minimise lock contention so the
697 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
698 * with this flag set because they are the inodes that are out of order.
699 */
700 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
701 {
702 LIST_HEAD(freeable);
703 int nr_scanned;
704 unsigned long reap = 0;
705
706 spin_lock(&sb->s_inode_lru_lock);
707 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
708 struct inode *inode;
709
710 if (list_empty(&sb->s_inode_lru))
711 break;
712
713 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
714
715 /*
716 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
717 * so use a trylock. If we fail to get the lock, just move the
718 * inode to the back of the list so we don't spin on it.
719 */
720 if (!spin_trylock(&inode->i_lock)) {
721 list_move_tail(&inode->i_lru, &sb->s_inode_lru);
722 continue;
723 }
724
725 /*
726 * Referenced or dirty inodes are still in use. Give them
727 * another pass through the LRU as we canot reclaim them now.
728 */
729 if (atomic_read(&inode->i_count) ||
730 (inode->i_state & ~I_REFERENCED)) {
731 list_del_init(&inode->i_lru);
732 spin_unlock(&inode->i_lock);
733 sb->s_nr_inodes_unused--;
734 this_cpu_dec(nr_unused);
735 continue;
736 }
737
738 /* recently referenced inodes get one more pass */
739 if (inode->i_state & I_REFERENCED) {
740 inode->i_state &= ~I_REFERENCED;
741 list_move(&inode->i_lru, &sb->s_inode_lru);
742 spin_unlock(&inode->i_lock);
743 continue;
744 }
745 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
746 __iget(inode);
747 spin_unlock(&inode->i_lock);
748 spin_unlock(&sb->s_inode_lru_lock);
749 if (remove_inode_buffers(inode))
750 reap += invalidate_mapping_pages(&inode->i_data,
751 0, -1);
752 iput(inode);
753 spin_lock(&sb->s_inode_lru_lock);
754
755 if (inode != list_entry(sb->s_inode_lru.next,
756 struct inode, i_lru))
757 continue; /* wrong inode or list_empty */
758 /* avoid lock inversions with trylock */
759 if (!spin_trylock(&inode->i_lock))
760 continue;
761 if (!can_unuse(inode)) {
762 spin_unlock(&inode->i_lock);
763 continue;
764 }
765 }
766 WARN_ON(inode->i_state & I_NEW);
767 inode->i_state |= I_FREEING;
768 spin_unlock(&inode->i_lock);
769
770 list_move(&inode->i_lru, &freeable);
771 sb->s_nr_inodes_unused--;
772 this_cpu_dec(nr_unused);
773 }
774 if (current_is_kswapd())
775 __count_vm_events(KSWAPD_INODESTEAL, reap);
776 else
777 __count_vm_events(PGINODESTEAL, reap);
778 spin_unlock(&sb->s_inode_lru_lock);
779 if (current->reclaim_state)
780 current->reclaim_state->reclaimed_slab += reap;
781
782 dispose_list(&freeable);
783 }
784
785 static void __wait_on_freeing_inode(struct inode *inode);
786 /*
787 * Called with the inode lock held.
788 */
789 static struct inode *find_inode(struct super_block *sb,
790 struct hlist_head *head,
791 int (*test)(struct inode *, void *),
792 void *data)
793 {
794 struct hlist_node *node;
795 struct inode *inode = NULL;
796
797 repeat:
798 hlist_for_each_entry(inode, node, head, i_hash) {
799 spin_lock(&inode->i_lock);
800 if (inode->i_sb != sb) {
801 spin_unlock(&inode->i_lock);
802 continue;
803 }
804 if (!test(inode, data)) {
805 spin_unlock(&inode->i_lock);
806 continue;
807 }
808 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
809 __wait_on_freeing_inode(inode);
810 goto repeat;
811 }
812 __iget(inode);
813 spin_unlock(&inode->i_lock);
814 return inode;
815 }
816 return NULL;
817 }
818
819 /*
820 * find_inode_fast is the fast path version of find_inode, see the comment at
821 * iget_locked for details.
822 */
823 static struct inode *find_inode_fast(struct super_block *sb,
824 struct hlist_head *head, unsigned long ino)
825 {
826 struct hlist_node *node;
827 struct inode *inode = NULL;
828
829 repeat:
830 hlist_for_each_entry(inode, node, head, i_hash) {
831 spin_lock(&inode->i_lock);
832 if (inode->i_ino != ino) {
833 spin_unlock(&inode->i_lock);
834 continue;
835 }
836 if (inode->i_sb != sb) {
837 spin_unlock(&inode->i_lock);
838 continue;
839 }
840 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
841 __wait_on_freeing_inode(inode);
842 goto repeat;
843 }
844 __iget(inode);
845 spin_unlock(&inode->i_lock);
846 return inode;
847 }
848 return NULL;
849 }
850
851 /*
852 * Each cpu owns a range of LAST_INO_BATCH numbers.
853 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
854 * to renew the exhausted range.
855 *
856 * This does not significantly increase overflow rate because every CPU can
857 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
858 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
859 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
860 * overflow rate by 2x, which does not seem too significant.
861 *
862 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
863 * error if st_ino won't fit in target struct field. Use 32bit counter
864 * here to attempt to avoid that.
865 */
866 #define LAST_INO_BATCH 1024
867 static DEFINE_PER_CPU(unsigned int, last_ino);
868
869 unsigned int get_next_ino(void)
870 {
871 unsigned int *p = &get_cpu_var(last_ino);
872 unsigned int res = *p;
873
874 #ifdef CONFIG_SMP
875 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
876 static atomic_t shared_last_ino;
877 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
878
879 res = next - LAST_INO_BATCH;
880 }
881 #endif
882
883 *p = ++res;
884 put_cpu_var(last_ino);
885 return res;
886 }
887 EXPORT_SYMBOL(get_next_ino);
888
889 /**
890 * new_inode_pseudo - obtain an inode
891 * @sb: superblock
892 *
893 * Allocates a new inode for given superblock.
894 * Inode wont be chained in superblock s_inodes list
895 * This means :
896 * - fs can't be unmount
897 * - quotas, fsnotify, writeback can't work
898 */
899 struct inode *new_inode_pseudo(struct super_block *sb)
900 {
901 struct inode *inode = alloc_inode(sb);
902
903 if (inode) {
904 spin_lock(&inode->i_lock);
905 inode->i_state = 0;
906 spin_unlock(&inode->i_lock);
907 INIT_LIST_HEAD(&inode->i_sb_list);
908 }
909 return inode;
910 }
911
912 /**
913 * new_inode - obtain an inode
914 * @sb: superblock
915 *
916 * Allocates a new inode for given superblock. The default gfp_mask
917 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
918 * If HIGHMEM pages are unsuitable or it is known that pages allocated
919 * for the page cache are not reclaimable or migratable,
920 * mapping_set_gfp_mask() must be called with suitable flags on the
921 * newly created inode's mapping
922 *
923 */
924 struct inode *new_inode(struct super_block *sb)
925 {
926 struct inode *inode;
927
928 spin_lock_prefetch(&inode_sb_list_lock);
929
930 inode = new_inode_pseudo(sb);
931 if (inode)
932 inode_sb_list_add(inode);
933 return inode;
934 }
935 EXPORT_SYMBOL(new_inode);
936
937 #ifdef CONFIG_DEBUG_LOCK_ALLOC
938 void lockdep_annotate_inode_mutex_key(struct inode *inode)
939 {
940 if (S_ISDIR(inode->i_mode)) {
941 struct file_system_type *type = inode->i_sb->s_type;
942
943 /* Set new key only if filesystem hasn't already changed it */
944 if (!lockdep_match_class(&inode->i_mutex,
945 &type->i_mutex_key)) {
946 /*
947 * ensure nobody is actually holding i_mutex
948 */
949 mutex_destroy(&inode->i_mutex);
950 mutex_init(&inode->i_mutex);
951 lockdep_set_class(&inode->i_mutex,
952 &type->i_mutex_dir_key);
953 }
954 }
955 }
956 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
957 #endif
958
959 /**
960 * unlock_new_inode - clear the I_NEW state and wake up any waiters
961 * @inode: new inode to unlock
962 *
963 * Called when the inode is fully initialised to clear the new state of the
964 * inode and wake up anyone waiting for the inode to finish initialisation.
965 */
966 void unlock_new_inode(struct inode *inode)
967 {
968 lockdep_annotate_inode_mutex_key(inode);
969 spin_lock(&inode->i_lock);
970 WARN_ON(!(inode->i_state & I_NEW));
971 inode->i_state &= ~I_NEW;
972 wake_up_bit(&inode->i_state, __I_NEW);
973 spin_unlock(&inode->i_lock);
974 }
975 EXPORT_SYMBOL(unlock_new_inode);
976
977 /**
978 * iget5_locked - obtain an inode from a mounted file system
979 * @sb: super block of file system
980 * @hashval: hash value (usually inode number) to get
981 * @test: callback used for comparisons between inodes
982 * @set: callback used to initialize a new struct inode
983 * @data: opaque data pointer to pass to @test and @set
984 *
985 * Search for the inode specified by @hashval and @data in the inode cache,
986 * and if present it is return it with an increased reference count. This is
987 * a generalized version of iget_locked() for file systems where the inode
988 * number is not sufficient for unique identification of an inode.
989 *
990 * If the inode is not in cache, allocate a new inode and return it locked,
991 * hashed, and with the I_NEW flag set. The file system gets to fill it in
992 * before unlocking it via unlock_new_inode().
993 *
994 * Note both @test and @set are called with the inode_hash_lock held, so can't
995 * sleep.
996 */
997 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
998 int (*test)(struct inode *, void *),
999 int (*set)(struct inode *, void *), void *data)
1000 {
1001 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1002 struct inode *inode;
1003
1004 spin_lock(&inode_hash_lock);
1005 inode = find_inode(sb, head, test, data);
1006 spin_unlock(&inode_hash_lock);
1007
1008 if (inode) {
1009 wait_on_inode(inode);
1010 return inode;
1011 }
1012
1013 inode = alloc_inode(sb);
1014 if (inode) {
1015 struct inode *old;
1016
1017 spin_lock(&inode_hash_lock);
1018 /* We released the lock, so.. */
1019 old = find_inode(sb, head, test, data);
1020 if (!old) {
1021 if (set(inode, data))
1022 goto set_failed;
1023
1024 spin_lock(&inode->i_lock);
1025 inode->i_state = I_NEW;
1026 hlist_add_head(&inode->i_hash, head);
1027 spin_unlock(&inode->i_lock);
1028 inode_sb_list_add(inode);
1029 spin_unlock(&inode_hash_lock);
1030
1031 /* Return the locked inode with I_NEW set, the
1032 * caller is responsible for filling in the contents
1033 */
1034 return inode;
1035 }
1036
1037 /*
1038 * Uhhuh, somebody else created the same inode under
1039 * us. Use the old inode instead of the one we just
1040 * allocated.
1041 */
1042 spin_unlock(&inode_hash_lock);
1043 destroy_inode(inode);
1044 inode = old;
1045 wait_on_inode(inode);
1046 }
1047 return inode;
1048
1049 set_failed:
1050 spin_unlock(&inode_hash_lock);
1051 destroy_inode(inode);
1052 return NULL;
1053 }
1054 EXPORT_SYMBOL(iget5_locked);
1055
1056 /**
1057 * iget_locked - obtain an inode from a mounted file system
1058 * @sb: super block of file system
1059 * @ino: inode number to get
1060 *
1061 * Search for the inode specified by @ino in the inode cache and if present
1062 * return it with an increased reference count. This is for file systems
1063 * where the inode number is sufficient for unique identification of an inode.
1064 *
1065 * If the inode is not in cache, allocate a new inode and return it locked,
1066 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1067 * before unlocking it via unlock_new_inode().
1068 */
1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1070 {
1071 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1072 struct inode *inode;
1073
1074 spin_lock(&inode_hash_lock);
1075 inode = find_inode_fast(sb, head, ino);
1076 spin_unlock(&inode_hash_lock);
1077 if (inode) {
1078 wait_on_inode(inode);
1079 return inode;
1080 }
1081
1082 inode = alloc_inode(sb);
1083 if (inode) {
1084 struct inode *old;
1085
1086 spin_lock(&inode_hash_lock);
1087 /* We released the lock, so.. */
1088 old = find_inode_fast(sb, head, ino);
1089 if (!old) {
1090 inode->i_ino = ino;
1091 spin_lock(&inode->i_lock);
1092 inode->i_state = I_NEW;
1093 hlist_add_head(&inode->i_hash, head);
1094 spin_unlock(&inode->i_lock);
1095 inode_sb_list_add(inode);
1096 spin_unlock(&inode_hash_lock);
1097
1098 /* Return the locked inode with I_NEW set, the
1099 * caller is responsible for filling in the contents
1100 */
1101 return inode;
1102 }
1103
1104 /*
1105 * Uhhuh, somebody else created the same inode under
1106 * us. Use the old inode instead of the one we just
1107 * allocated.
1108 */
1109 spin_unlock(&inode_hash_lock);
1110 destroy_inode(inode);
1111 inode = old;
1112 wait_on_inode(inode);
1113 }
1114 return inode;
1115 }
1116 EXPORT_SYMBOL(iget_locked);
1117
1118 /*
1119 * search the inode cache for a matching inode number.
1120 * If we find one, then the inode number we are trying to
1121 * allocate is not unique and so we should not use it.
1122 *
1123 * Returns 1 if the inode number is unique, 0 if it is not.
1124 */
1125 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1126 {
1127 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1128 struct hlist_node *node;
1129 struct inode *inode;
1130
1131 spin_lock(&inode_hash_lock);
1132 hlist_for_each_entry(inode, node, b, i_hash) {
1133 if (inode->i_ino == ino && inode->i_sb == sb) {
1134 spin_unlock(&inode_hash_lock);
1135 return 0;
1136 }
1137 }
1138 spin_unlock(&inode_hash_lock);
1139
1140 return 1;
1141 }
1142
1143 /**
1144 * iunique - get a unique inode number
1145 * @sb: superblock
1146 * @max_reserved: highest reserved inode number
1147 *
1148 * Obtain an inode number that is unique on the system for a given
1149 * superblock. This is used by file systems that have no natural
1150 * permanent inode numbering system. An inode number is returned that
1151 * is higher than the reserved limit but unique.
1152 *
1153 * BUGS:
1154 * With a large number of inodes live on the file system this function
1155 * currently becomes quite slow.
1156 */
1157 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1158 {
1159 /*
1160 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1161 * error if st_ino won't fit in target struct field. Use 32bit counter
1162 * here to attempt to avoid that.
1163 */
1164 static DEFINE_SPINLOCK(iunique_lock);
1165 static unsigned int counter;
1166 ino_t res;
1167
1168 spin_lock(&iunique_lock);
1169 do {
1170 if (counter <= max_reserved)
1171 counter = max_reserved + 1;
1172 res = counter++;
1173 } while (!test_inode_iunique(sb, res));
1174 spin_unlock(&iunique_lock);
1175
1176 return res;
1177 }
1178 EXPORT_SYMBOL(iunique);
1179
1180 struct inode *igrab(struct inode *inode)
1181 {
1182 spin_lock(&inode->i_lock);
1183 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1184 __iget(inode);
1185 spin_unlock(&inode->i_lock);
1186 } else {
1187 spin_unlock(&inode->i_lock);
1188 /*
1189 * Handle the case where s_op->clear_inode is not been
1190 * called yet, and somebody is calling igrab
1191 * while the inode is getting freed.
1192 */
1193 inode = NULL;
1194 }
1195 return inode;
1196 }
1197 EXPORT_SYMBOL(igrab);
1198
1199 /**
1200 * ilookup5_nowait - search for an inode in the inode cache
1201 * @sb: super block of file system to search
1202 * @hashval: hash value (usually inode number) to search for
1203 * @test: callback used for comparisons between inodes
1204 * @data: opaque data pointer to pass to @test
1205 *
1206 * Search for the inode specified by @hashval and @data in the inode cache.
1207 * If the inode is in the cache, the inode is returned with an incremented
1208 * reference count.
1209 *
1210 * Note: I_NEW is not waited upon so you have to be very careful what you do
1211 * with the returned inode. You probably should be using ilookup5() instead.
1212 *
1213 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1214 */
1215 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1216 int (*test)(struct inode *, void *), void *data)
1217 {
1218 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1219 struct inode *inode;
1220
1221 spin_lock(&inode_hash_lock);
1222 inode = find_inode(sb, head, test, data);
1223 spin_unlock(&inode_hash_lock);
1224
1225 return inode;
1226 }
1227 EXPORT_SYMBOL(ilookup5_nowait);
1228
1229 /**
1230 * ilookup5 - search for an inode in the inode cache
1231 * @sb: super block of file system to search
1232 * @hashval: hash value (usually inode number) to search for
1233 * @test: callback used for comparisons between inodes
1234 * @data: opaque data pointer to pass to @test
1235 *
1236 * Search for the inode specified by @hashval and @data in the inode cache,
1237 * and if the inode is in the cache, return the inode with an incremented
1238 * reference count. Waits on I_NEW before returning the inode.
1239 * returned with an incremented reference count.
1240 *
1241 * This is a generalized version of ilookup() for file systems where the
1242 * inode number is not sufficient for unique identification of an inode.
1243 *
1244 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1245 */
1246 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1247 int (*test)(struct inode *, void *), void *data)
1248 {
1249 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1250
1251 if (inode)
1252 wait_on_inode(inode);
1253 return inode;
1254 }
1255 EXPORT_SYMBOL(ilookup5);
1256
1257 /**
1258 * ilookup - search for an inode in the inode cache
1259 * @sb: super block of file system to search
1260 * @ino: inode number to search for
1261 *
1262 * Search for the inode @ino in the inode cache, and if the inode is in the
1263 * cache, the inode is returned with an incremented reference count.
1264 */
1265 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1266 {
1267 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1268 struct inode *inode;
1269
1270 spin_lock(&inode_hash_lock);
1271 inode = find_inode_fast(sb, head, ino);
1272 spin_unlock(&inode_hash_lock);
1273
1274 if (inode)
1275 wait_on_inode(inode);
1276 return inode;
1277 }
1278 EXPORT_SYMBOL(ilookup);
1279
1280 int insert_inode_locked(struct inode *inode)
1281 {
1282 struct super_block *sb = inode->i_sb;
1283 ino_t ino = inode->i_ino;
1284 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285
1286 while (1) {
1287 struct hlist_node *node;
1288 struct inode *old = NULL;
1289 spin_lock(&inode_hash_lock);
1290 hlist_for_each_entry(old, node, head, i_hash) {
1291 if (old->i_ino != ino)
1292 continue;
1293 if (old->i_sb != sb)
1294 continue;
1295 spin_lock(&old->i_lock);
1296 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1297 spin_unlock(&old->i_lock);
1298 continue;
1299 }
1300 break;
1301 }
1302 if (likely(!node)) {
1303 spin_lock(&inode->i_lock);
1304 inode->i_state |= I_NEW;
1305 hlist_add_head(&inode->i_hash, head);
1306 spin_unlock(&inode->i_lock);
1307 spin_unlock(&inode_hash_lock);
1308 return 0;
1309 }
1310 __iget(old);
1311 spin_unlock(&old->i_lock);
1312 spin_unlock(&inode_hash_lock);
1313 wait_on_inode(old);
1314 if (unlikely(!inode_unhashed(old))) {
1315 iput(old);
1316 return -EBUSY;
1317 }
1318 iput(old);
1319 }
1320 }
1321 EXPORT_SYMBOL(insert_inode_locked);
1322
1323 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1324 int (*test)(struct inode *, void *), void *data)
1325 {
1326 struct super_block *sb = inode->i_sb;
1327 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1328
1329 while (1) {
1330 struct hlist_node *node;
1331 struct inode *old = NULL;
1332
1333 spin_lock(&inode_hash_lock);
1334 hlist_for_each_entry(old, node, head, i_hash) {
1335 if (old->i_sb != sb)
1336 continue;
1337 if (!test(old, data))
1338 continue;
1339 spin_lock(&old->i_lock);
1340 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341 spin_unlock(&old->i_lock);
1342 continue;
1343 }
1344 break;
1345 }
1346 if (likely(!node)) {
1347 spin_lock(&inode->i_lock);
1348 inode->i_state |= I_NEW;
1349 hlist_add_head(&inode->i_hash, head);
1350 spin_unlock(&inode->i_lock);
1351 spin_unlock(&inode_hash_lock);
1352 return 0;
1353 }
1354 __iget(old);
1355 spin_unlock(&old->i_lock);
1356 spin_unlock(&inode_hash_lock);
1357 wait_on_inode(old);
1358 if (unlikely(!inode_unhashed(old))) {
1359 iput(old);
1360 return -EBUSY;
1361 }
1362 iput(old);
1363 }
1364 }
1365 EXPORT_SYMBOL(insert_inode_locked4);
1366
1367
1368 int generic_delete_inode(struct inode *inode)
1369 {
1370 return 1;
1371 }
1372 EXPORT_SYMBOL(generic_delete_inode);
1373
1374 /*
1375 * Normal UNIX filesystem behaviour: delete the
1376 * inode when the usage count drops to zero, and
1377 * i_nlink is zero.
1378 */
1379 int generic_drop_inode(struct inode *inode)
1380 {
1381 return !inode->i_nlink || inode_unhashed(inode);
1382 }
1383 EXPORT_SYMBOL_GPL(generic_drop_inode);
1384
1385 /*
1386 * Called when we're dropping the last reference
1387 * to an inode.
1388 *
1389 * Call the FS "drop_inode()" function, defaulting to
1390 * the legacy UNIX filesystem behaviour. If it tells
1391 * us to evict inode, do so. Otherwise, retain inode
1392 * in cache if fs is alive, sync and evict if fs is
1393 * shutting down.
1394 */
1395 static void iput_final(struct inode *inode)
1396 {
1397 struct super_block *sb = inode->i_sb;
1398 const struct super_operations *op = inode->i_sb->s_op;
1399 int drop;
1400
1401 WARN_ON(inode->i_state & I_NEW);
1402
1403 if (op->drop_inode)
1404 drop = op->drop_inode(inode);
1405 else
1406 drop = generic_drop_inode(inode);
1407
1408 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1409 inode->i_state |= I_REFERENCED;
1410 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1411 inode_lru_list_add(inode);
1412 spin_unlock(&inode->i_lock);
1413 return;
1414 }
1415
1416 if (!drop) {
1417 inode->i_state |= I_WILL_FREE;
1418 spin_unlock(&inode->i_lock);
1419 write_inode_now(inode, 1);
1420 spin_lock(&inode->i_lock);
1421 WARN_ON(inode->i_state & I_NEW);
1422 inode->i_state &= ~I_WILL_FREE;
1423 }
1424
1425 inode->i_state |= I_FREEING;
1426 if (!list_empty(&inode->i_lru))
1427 inode_lru_list_del(inode);
1428 spin_unlock(&inode->i_lock);
1429
1430 evict(inode);
1431 }
1432
1433 /**
1434 * iput - put an inode
1435 * @inode: inode to put
1436 *
1437 * Puts an inode, dropping its usage count. If the inode use count hits
1438 * zero, the inode is then freed and may also be destroyed.
1439 *
1440 * Consequently, iput() can sleep.
1441 */
1442 void iput(struct inode *inode)
1443 {
1444 if (inode) {
1445 BUG_ON(inode->i_state & I_CLEAR);
1446
1447 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1448 iput_final(inode);
1449 }
1450 }
1451 EXPORT_SYMBOL(iput);
1452
1453 /**
1454 * bmap - find a block number in a file
1455 * @inode: inode of file
1456 * @block: block to find
1457 *
1458 * Returns the block number on the device holding the inode that
1459 * is the disk block number for the block of the file requested.
1460 * That is, asked for block 4 of inode 1 the function will return the
1461 * disk block relative to the disk start that holds that block of the
1462 * file.
1463 */
1464 sector_t bmap(struct inode *inode, sector_t block)
1465 {
1466 sector_t res = 0;
1467 if (inode->i_mapping->a_ops->bmap)
1468 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1469 return res;
1470 }
1471 EXPORT_SYMBOL(bmap);
1472
1473 /*
1474 * With relative atime, only update atime if the previous atime is
1475 * earlier than either the ctime or mtime or if at least a day has
1476 * passed since the last atime update.
1477 */
1478 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1479 struct timespec now)
1480 {
1481
1482 if (!(mnt->mnt_flags & MNT_RELATIME))
1483 return 1;
1484 /*
1485 * Is mtime younger than atime? If yes, update atime:
1486 */
1487 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1488 return 1;
1489 /*
1490 * Is ctime younger than atime? If yes, update atime:
1491 */
1492 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1493 return 1;
1494
1495 /*
1496 * Is the previous atime value older than a day? If yes,
1497 * update atime:
1498 */
1499 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1500 return 1;
1501 /*
1502 * Good, we can skip the atime update:
1503 */
1504 return 0;
1505 }
1506
1507 /**
1508 * touch_atime - update the access time
1509 * @mnt: mount the inode is accessed on
1510 * @dentry: dentry accessed
1511 *
1512 * Update the accessed time on an inode and mark it for writeback.
1513 * This function automatically handles read only file systems and media,
1514 * as well as the "noatime" flag and inode specific "noatime" markers.
1515 */
1516 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1517 {
1518 struct inode *inode = dentry->d_inode;
1519 struct timespec now;
1520
1521 if (inode->i_flags & S_NOATIME)
1522 return;
1523 if (IS_NOATIME(inode))
1524 return;
1525 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1526 return;
1527
1528 if (mnt->mnt_flags & MNT_NOATIME)
1529 return;
1530 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1531 return;
1532
1533 now = current_fs_time(inode->i_sb);
1534
1535 if (!relatime_need_update(mnt, inode, now))
1536 return;
1537
1538 if (timespec_equal(&inode->i_atime, &now))
1539 return;
1540
1541 if (mnt_want_write(mnt))
1542 return;
1543
1544 inode->i_atime = now;
1545 mark_inode_dirty_sync(inode);
1546 mnt_drop_write(mnt);
1547 }
1548 EXPORT_SYMBOL(touch_atime);
1549
1550 /**
1551 * file_update_time - update mtime and ctime time
1552 * @file: file accessed
1553 *
1554 * Update the mtime and ctime members of an inode and mark the inode
1555 * for writeback. Note that this function is meant exclusively for
1556 * usage in the file write path of filesystems, and filesystems may
1557 * choose to explicitly ignore update via this function with the
1558 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1559 * timestamps are handled by the server.
1560 */
1561
1562 void file_update_time(struct file *file)
1563 {
1564 struct inode *inode = file->f_path.dentry->d_inode;
1565 struct timespec now;
1566 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1567
1568 /* First try to exhaust all avenues to not sync */
1569 if (IS_NOCMTIME(inode))
1570 return;
1571
1572 now = current_fs_time(inode->i_sb);
1573 if (!timespec_equal(&inode->i_mtime, &now))
1574 sync_it = S_MTIME;
1575
1576 if (!timespec_equal(&inode->i_ctime, &now))
1577 sync_it |= S_CTIME;
1578
1579 if (IS_I_VERSION(inode))
1580 sync_it |= S_VERSION;
1581
1582 if (!sync_it)
1583 return;
1584
1585 /* Finally allowed to write? Takes lock. */
1586 if (mnt_want_write_file(file))
1587 return;
1588
1589 /* Only change inode inside the lock region */
1590 if (sync_it & S_VERSION)
1591 inode_inc_iversion(inode);
1592 if (sync_it & S_CTIME)
1593 inode->i_ctime = now;
1594 if (sync_it & S_MTIME)
1595 inode->i_mtime = now;
1596 mark_inode_dirty_sync(inode);
1597 mnt_drop_write_file(file);
1598 }
1599 EXPORT_SYMBOL(file_update_time);
1600
1601 int inode_needs_sync(struct inode *inode)
1602 {
1603 if (IS_SYNC(inode))
1604 return 1;
1605 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1606 return 1;
1607 return 0;
1608 }
1609 EXPORT_SYMBOL(inode_needs_sync);
1610
1611 int inode_wait(void *word)
1612 {
1613 schedule();
1614 return 0;
1615 }
1616 EXPORT_SYMBOL(inode_wait);
1617
1618 /*
1619 * If we try to find an inode in the inode hash while it is being
1620 * deleted, we have to wait until the filesystem completes its
1621 * deletion before reporting that it isn't found. This function waits
1622 * until the deletion _might_ have completed. Callers are responsible
1623 * to recheck inode state.
1624 *
1625 * It doesn't matter if I_NEW is not set initially, a call to
1626 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1627 * will DTRT.
1628 */
1629 static void __wait_on_freeing_inode(struct inode *inode)
1630 {
1631 wait_queue_head_t *wq;
1632 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1633 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1634 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1635 spin_unlock(&inode->i_lock);
1636 spin_unlock(&inode_hash_lock);
1637 schedule();
1638 finish_wait(wq, &wait.wait);
1639 spin_lock(&inode_hash_lock);
1640 }
1641
1642 static __initdata unsigned long ihash_entries;
1643 static int __init set_ihash_entries(char *str)
1644 {
1645 if (!str)
1646 return 0;
1647 ihash_entries = simple_strtoul(str, &str, 0);
1648 return 1;
1649 }
1650 __setup("ihash_entries=", set_ihash_entries);
1651
1652 /*
1653 * Initialize the waitqueues and inode hash table.
1654 */
1655 void __init inode_init_early(void)
1656 {
1657 int loop;
1658
1659 /* If hashes are distributed across NUMA nodes, defer
1660 * hash allocation until vmalloc space is available.
1661 */
1662 if (hashdist)
1663 return;
1664
1665 inode_hashtable =
1666 alloc_large_system_hash("Inode-cache",
1667 sizeof(struct hlist_head),
1668 ihash_entries,
1669 14,
1670 HASH_EARLY,
1671 &i_hash_shift,
1672 &i_hash_mask,
1673 0);
1674
1675 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1676 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1677 }
1678
1679 void __init inode_init(void)
1680 {
1681 int loop;
1682
1683 /* inode slab cache */
1684 inode_cachep = kmem_cache_create("inode_cache",
1685 sizeof(struct inode),
1686 0,
1687 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1688 SLAB_MEM_SPREAD),
1689 init_once);
1690
1691 /* Hash may have been set up in inode_init_early */
1692 if (!hashdist)
1693 return;
1694
1695 inode_hashtable =
1696 alloc_large_system_hash("Inode-cache",
1697 sizeof(struct hlist_head),
1698 ihash_entries,
1699 14,
1700 0,
1701 &i_hash_shift,
1702 &i_hash_mask,
1703 0);
1704
1705 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1706 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1707 }
1708
1709 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1710 {
1711 inode->i_mode = mode;
1712 if (S_ISCHR(mode)) {
1713 inode->i_fop = &def_chr_fops;
1714 inode->i_rdev = rdev;
1715 } else if (S_ISBLK(mode)) {
1716 inode->i_fop = &def_blk_fops;
1717 inode->i_rdev = rdev;
1718 } else if (S_ISFIFO(mode))
1719 inode->i_fop = &def_fifo_fops;
1720 else if (S_ISSOCK(mode))
1721 inode->i_fop = &bad_sock_fops;
1722 else
1723 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1724 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1725 inode->i_ino);
1726 }
1727 EXPORT_SYMBOL(init_special_inode);
1728
1729 /**
1730 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1731 * @inode: New inode
1732 * @dir: Directory inode
1733 * @mode: mode of the new inode
1734 */
1735 void inode_init_owner(struct inode *inode, const struct inode *dir,
1736 umode_t mode)
1737 {
1738 inode->i_uid = current_fsuid();
1739 if (dir && dir->i_mode & S_ISGID) {
1740 inode->i_gid = dir->i_gid;
1741 if (S_ISDIR(mode))
1742 mode |= S_ISGID;
1743 } else
1744 inode->i_gid = current_fsgid();
1745 inode->i_mode = mode;
1746 }
1747 EXPORT_SYMBOL(inode_init_owner);
1748
1749 /**
1750 * inode_owner_or_capable - check current task permissions to inode
1751 * @inode: inode being checked
1752 *
1753 * Return true if current either has CAP_FOWNER to the inode, or
1754 * owns the file.
1755 */
1756 bool inode_owner_or_capable(const struct inode *inode)
1757 {
1758 struct user_namespace *ns = inode_userns(inode);
1759
1760 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1761 return true;
1762 if (ns_capable(ns, CAP_FOWNER))
1763 return true;
1764 return false;
1765 }
1766 EXPORT_SYMBOL(inode_owner_or_capable);