]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - fs/inode.c
tools build: Use $(shell ) instead of `` to get embedded libperl's ccopts
[mirror_ubuntu-focal-kernel.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic64_set(&inode->i_sequence, 0);
141 atomic_set(&inode->i_count, 1);
142 inode->i_op = &empty_iops;
143 inode->i_fop = &no_open_fops;
144 inode->__i_nlink = 1;
145 inode->i_opflags = 0;
146 if (sb->s_xattr)
147 inode->i_opflags |= IOP_XATTR;
148 i_uid_write(inode, 0);
149 i_gid_write(inode, 0);
150 atomic_set(&inode->i_writecount, 0);
151 inode->i_size = 0;
152 inode->i_write_hint = WRITE_LIFE_NOT_SET;
153 inode->i_blocks = 0;
154 inode->i_bytes = 0;
155 inode->i_generation = 0;
156 inode->i_pipe = NULL;
157 inode->i_bdev = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
168 #endif
169
170 if (security_inode_alloc(inode))
171 goto out;
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177
178 atomic_set(&inode->i_dio_count, 0);
179
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
182 mapping->flags = 0;
183 mapping->wb_err = 0;
184 atomic_set(&mapping->i_mmap_writable, 0);
185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
186 atomic_set(&mapping->nr_thps, 0);
187 #endif
188 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
189 mapping->private_data = NULL;
190 mapping->writeback_index = 0;
191 inode->i_private = NULL;
192 inode->i_mapping = mapping;
193 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
194 #ifdef CONFIG_FS_POSIX_ACL
195 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
196 #endif
197
198 #ifdef CONFIG_FSNOTIFY
199 inode->i_fsnotify_mask = 0;
200 #endif
201 inode->i_flctx = NULL;
202 this_cpu_inc(nr_inodes);
203
204 return 0;
205 out:
206 return -ENOMEM;
207 }
208 EXPORT_SYMBOL(inode_init_always);
209
210 void free_inode_nonrcu(struct inode *inode)
211 {
212 kmem_cache_free(inode_cachep, inode);
213 }
214 EXPORT_SYMBOL(free_inode_nonrcu);
215
216 static void i_callback(struct rcu_head *head)
217 {
218 struct inode *inode = container_of(head, struct inode, i_rcu);
219 if (inode->free_inode)
220 inode->free_inode(inode);
221 else
222 free_inode_nonrcu(inode);
223 }
224
225 static struct inode *alloc_inode(struct super_block *sb)
226 {
227 const struct super_operations *ops = sb->s_op;
228 struct inode *inode;
229
230 if (ops->alloc_inode)
231 inode = ops->alloc_inode(sb);
232 else
233 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
234
235 if (!inode)
236 return NULL;
237
238 if (unlikely(inode_init_always(sb, inode))) {
239 if (ops->destroy_inode) {
240 ops->destroy_inode(inode);
241 if (!ops->free_inode)
242 return NULL;
243 }
244 inode->free_inode = ops->free_inode;
245 i_callback(&inode->i_rcu);
246 return NULL;
247 }
248
249 return inode;
250 }
251
252 void __destroy_inode(struct inode *inode)
253 {
254 BUG_ON(inode_has_buffers(inode));
255 inode_detach_wb(inode);
256 security_inode_free(inode);
257 fsnotify_inode_delete(inode);
258 locks_free_lock_context(inode);
259 if (!inode->i_nlink) {
260 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
261 atomic_long_dec(&inode->i_sb->s_remove_count);
262 }
263
264 #ifdef CONFIG_FS_POSIX_ACL
265 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
266 posix_acl_release(inode->i_acl);
267 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
268 posix_acl_release(inode->i_default_acl);
269 #endif
270 this_cpu_dec(nr_inodes);
271 }
272 EXPORT_SYMBOL(__destroy_inode);
273
274 static void destroy_inode(struct inode *inode)
275 {
276 const struct super_operations *ops = inode->i_sb->s_op;
277
278 BUG_ON(!list_empty(&inode->i_lru));
279 __destroy_inode(inode);
280 if (ops->destroy_inode) {
281 ops->destroy_inode(inode);
282 if (!ops->free_inode)
283 return;
284 }
285 inode->free_inode = ops->free_inode;
286 call_rcu(&inode->i_rcu, i_callback);
287 }
288
289 /**
290 * drop_nlink - directly drop an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. In cases
295 * where we are attempting to track writes to the
296 * filesystem, a decrement to zero means an imminent
297 * write when the file is truncated and actually unlinked
298 * on the filesystem.
299 */
300 void drop_nlink(struct inode *inode)
301 {
302 WARN_ON(inode->i_nlink == 0);
303 inode->__i_nlink--;
304 if (!inode->i_nlink)
305 atomic_long_inc(&inode->i_sb->s_remove_count);
306 }
307 EXPORT_SYMBOL(drop_nlink);
308
309 /**
310 * clear_nlink - directly zero an inode's link count
311 * @inode: inode
312 *
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink. See
315 * drop_nlink() for why we care about i_nlink hitting zero.
316 */
317 void clear_nlink(struct inode *inode)
318 {
319 if (inode->i_nlink) {
320 inode->__i_nlink = 0;
321 atomic_long_inc(&inode->i_sb->s_remove_count);
322 }
323 }
324 EXPORT_SYMBOL(clear_nlink);
325
326 /**
327 * set_nlink - directly set an inode's link count
328 * @inode: inode
329 * @nlink: new nlink (should be non-zero)
330 *
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink.
333 */
334 void set_nlink(struct inode *inode, unsigned int nlink)
335 {
336 if (!nlink) {
337 clear_nlink(inode);
338 } else {
339 /* Yes, some filesystems do change nlink from zero to one */
340 if (inode->i_nlink == 0)
341 atomic_long_dec(&inode->i_sb->s_remove_count);
342
343 inode->__i_nlink = nlink;
344 }
345 }
346 EXPORT_SYMBOL(set_nlink);
347
348 /**
349 * inc_nlink - directly increment an inode's link count
350 * @inode: inode
351 *
352 * This is a low-level filesystem helper to replace any
353 * direct filesystem manipulation of i_nlink. Currently,
354 * it is only here for parity with dec_nlink().
355 */
356 void inc_nlink(struct inode *inode)
357 {
358 if (unlikely(inode->i_nlink == 0)) {
359 WARN_ON(!(inode->i_state & I_LINKABLE));
360 atomic_long_dec(&inode->i_sb->s_remove_count);
361 }
362
363 inode->__i_nlink++;
364 }
365 EXPORT_SYMBOL(inc_nlink);
366
367 static void __address_space_init_once(struct address_space *mapping)
368 {
369 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
370 init_rwsem(&mapping->i_mmap_rwsem);
371 INIT_LIST_HEAD(&mapping->private_list);
372 spin_lock_init(&mapping->private_lock);
373 mapping->i_mmap = RB_ROOT_CACHED;
374 }
375
376 void address_space_init_once(struct address_space *mapping)
377 {
378 memset(mapping, 0, sizeof(*mapping));
379 __address_space_init_once(mapping);
380 }
381 EXPORT_SYMBOL(address_space_init_once);
382
383 /*
384 * These are initializations that only need to be done
385 * once, because the fields are idempotent across use
386 * of the inode, so let the slab aware of that.
387 */
388 void inode_init_once(struct inode *inode)
389 {
390 memset(inode, 0, sizeof(*inode));
391 INIT_HLIST_NODE(&inode->i_hash);
392 INIT_LIST_HEAD(&inode->i_devices);
393 INIT_LIST_HEAD(&inode->i_io_list);
394 INIT_LIST_HEAD(&inode->i_wb_list);
395 INIT_LIST_HEAD(&inode->i_lru);
396 __address_space_init_once(&inode->i_data);
397 i_size_ordered_init(inode);
398 }
399 EXPORT_SYMBOL(inode_init_once);
400
401 static void init_once(void *foo)
402 {
403 struct inode *inode = (struct inode *) foo;
404
405 inode_init_once(inode);
406 }
407
408 /*
409 * inode->i_lock must be held
410 */
411 void __iget(struct inode *inode)
412 {
413 atomic_inc(&inode->i_count);
414 }
415
416 /*
417 * get additional reference to inode; caller must already hold one.
418 */
419 void ihold(struct inode *inode)
420 {
421 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
422 }
423 EXPORT_SYMBOL(ihold);
424
425 static void inode_lru_list_add(struct inode *inode)
426 {
427 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_inc(nr_unused);
429 else
430 inode->i_state |= I_REFERENCED;
431 }
432
433 /*
434 * Add inode to LRU if needed (inode is unused and clean).
435 *
436 * Needs inode->i_lock held.
437 */
438 void inode_add_lru(struct inode *inode)
439 {
440 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
441 I_FREEING | I_WILL_FREE)) &&
442 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
443 inode_lru_list_add(inode);
444 }
445
446
447 static void inode_lru_list_del(struct inode *inode)
448 {
449
450 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
451 this_cpu_dec(nr_unused);
452 }
453
454 /**
455 * inode_sb_list_add - add inode to the superblock list of inodes
456 * @inode: inode to add
457 */
458 void inode_sb_list_add(struct inode *inode)
459 {
460 spin_lock(&inode->i_sb->s_inode_list_lock);
461 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
462 spin_unlock(&inode->i_sb->s_inode_list_lock);
463 }
464 EXPORT_SYMBOL_GPL(inode_sb_list_add);
465
466 static inline void inode_sb_list_del(struct inode *inode)
467 {
468 if (!list_empty(&inode->i_sb_list)) {
469 spin_lock(&inode->i_sb->s_inode_list_lock);
470 list_del_init(&inode->i_sb_list);
471 spin_unlock(&inode->i_sb->s_inode_list_lock);
472 }
473 }
474
475 static unsigned long hash(struct super_block *sb, unsigned long hashval)
476 {
477 unsigned long tmp;
478
479 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
480 L1_CACHE_BYTES;
481 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
482 return tmp & i_hash_mask;
483 }
484
485 /**
486 * __insert_inode_hash - hash an inode
487 * @inode: unhashed inode
488 * @hashval: unsigned long value used to locate this object in the
489 * inode_hashtable.
490 *
491 * Add an inode to the inode hash for this superblock.
492 */
493 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
494 {
495 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
496
497 spin_lock(&inode_hash_lock);
498 spin_lock(&inode->i_lock);
499 hlist_add_head(&inode->i_hash, b);
500 spin_unlock(&inode->i_lock);
501 spin_unlock(&inode_hash_lock);
502 }
503 EXPORT_SYMBOL(__insert_inode_hash);
504
505 /**
506 * __remove_inode_hash - remove an inode from the hash
507 * @inode: inode to unhash
508 *
509 * Remove an inode from the superblock.
510 */
511 void __remove_inode_hash(struct inode *inode)
512 {
513 spin_lock(&inode_hash_lock);
514 spin_lock(&inode->i_lock);
515 hlist_del_init(&inode->i_hash);
516 spin_unlock(&inode->i_lock);
517 spin_unlock(&inode_hash_lock);
518 }
519 EXPORT_SYMBOL(__remove_inode_hash);
520
521 void clear_inode(struct inode *inode)
522 {
523 /*
524 * We have to cycle the i_pages lock here because reclaim can be in the
525 * process of removing the last page (in __delete_from_page_cache())
526 * and we must not free the mapping under it.
527 */
528 xa_lock_irq(&inode->i_data.i_pages);
529 BUG_ON(inode->i_data.nrpages);
530 BUG_ON(inode->i_data.nrexceptional);
531 xa_unlock_irq(&inode->i_data.i_pages);
532 BUG_ON(!list_empty(&inode->i_data.private_list));
533 BUG_ON(!(inode->i_state & I_FREEING));
534 BUG_ON(inode->i_state & I_CLEAR);
535 BUG_ON(!list_empty(&inode->i_wb_list));
536 /* don't need i_lock here, no concurrent mods to i_state */
537 inode->i_state = I_FREEING | I_CLEAR;
538 }
539 EXPORT_SYMBOL(clear_inode);
540
541 /*
542 * Free the inode passed in, removing it from the lists it is still connected
543 * to. We remove any pages still attached to the inode and wait for any IO that
544 * is still in progress before finally destroying the inode.
545 *
546 * An inode must already be marked I_FREEING so that we avoid the inode being
547 * moved back onto lists if we race with other code that manipulates the lists
548 * (e.g. writeback_single_inode). The caller is responsible for setting this.
549 *
550 * An inode must already be removed from the LRU list before being evicted from
551 * the cache. This should occur atomically with setting the I_FREEING state
552 * flag, so no inodes here should ever be on the LRU when being evicted.
553 */
554 static void evict(struct inode *inode)
555 {
556 const struct super_operations *op = inode->i_sb->s_op;
557
558 BUG_ON(!(inode->i_state & I_FREEING));
559 BUG_ON(!list_empty(&inode->i_lru));
560
561 if (!list_empty(&inode->i_io_list))
562 inode_io_list_del(inode);
563
564 inode_sb_list_del(inode);
565
566 /*
567 * Wait for flusher thread to be done with the inode so that filesystem
568 * does not start destroying it while writeback is still running. Since
569 * the inode has I_FREEING set, flusher thread won't start new work on
570 * the inode. We just have to wait for running writeback to finish.
571 */
572 inode_wait_for_writeback(inode);
573
574 if (op->evict_inode) {
575 op->evict_inode(inode);
576 } else {
577 truncate_inode_pages_final(&inode->i_data);
578 clear_inode(inode);
579 }
580 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
581 bd_forget(inode);
582 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
583 cd_forget(inode);
584
585 remove_inode_hash(inode);
586
587 spin_lock(&inode->i_lock);
588 wake_up_bit(&inode->i_state, __I_NEW);
589 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
590 spin_unlock(&inode->i_lock);
591
592 destroy_inode(inode);
593 }
594
595 /*
596 * dispose_list - dispose of the contents of a local list
597 * @head: the head of the list to free
598 *
599 * Dispose-list gets a local list with local inodes in it, so it doesn't
600 * need to worry about list corruption and SMP locks.
601 */
602 static void dispose_list(struct list_head *head)
603 {
604 while (!list_empty(head)) {
605 struct inode *inode;
606
607 inode = list_first_entry(head, struct inode, i_lru);
608 list_del_init(&inode->i_lru);
609
610 evict(inode);
611 cond_resched();
612 }
613 }
614
615 /**
616 * evict_inodes - evict all evictable inodes for a superblock
617 * @sb: superblock to operate on
618 *
619 * Make sure that no inodes with zero refcount are retained. This is
620 * called by superblock shutdown after having SB_ACTIVE flag removed,
621 * so any inode reaching zero refcount during or after that call will
622 * be immediately evicted.
623 */
624 void evict_inodes(struct super_block *sb)
625 {
626 struct inode *inode, *next;
627 LIST_HEAD(dispose);
628
629 again:
630 spin_lock(&sb->s_inode_list_lock);
631 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
632 if (atomic_read(&inode->i_count))
633 continue;
634
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
638 continue;
639 }
640
641 inode->i_state |= I_FREEING;
642 inode_lru_list_del(inode);
643 spin_unlock(&inode->i_lock);
644 list_add(&inode->i_lru, &dispose);
645
646 /*
647 * We can have a ton of inodes to evict at unmount time given
648 * enough memory, check to see if we need to go to sleep for a
649 * bit so we don't livelock.
650 */
651 if (need_resched()) {
652 spin_unlock(&sb->s_inode_list_lock);
653 cond_resched();
654 dispose_list(&dispose);
655 goto again;
656 }
657 }
658 spin_unlock(&sb->s_inode_list_lock);
659
660 dispose_list(&dispose);
661 }
662 EXPORT_SYMBOL_GPL(evict_inodes);
663
664 /**
665 * invalidate_inodes - attempt to free all inodes on a superblock
666 * @sb: superblock to operate on
667 * @kill_dirty: flag to guide handling of dirty inodes
668 *
669 * Attempts to free all inodes for a given superblock. If there were any
670 * busy inodes return a non-zero value, else zero.
671 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
672 * them as busy.
673 */
674 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
675 {
676 int busy = 0;
677 struct inode *inode, *next;
678 LIST_HEAD(dispose);
679
680 again:
681 spin_lock(&sb->s_inode_list_lock);
682 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
683 spin_lock(&inode->i_lock);
684 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
685 spin_unlock(&inode->i_lock);
686 continue;
687 }
688 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
689 spin_unlock(&inode->i_lock);
690 busy = 1;
691 continue;
692 }
693 if (atomic_read(&inode->i_count)) {
694 spin_unlock(&inode->i_lock);
695 busy = 1;
696 continue;
697 }
698
699 inode->i_state |= I_FREEING;
700 inode_lru_list_del(inode);
701 spin_unlock(&inode->i_lock);
702 list_add(&inode->i_lru, &dispose);
703 if (need_resched()) {
704 spin_unlock(&sb->s_inode_list_lock);
705 cond_resched();
706 dispose_list(&dispose);
707 goto again;
708 }
709 }
710 spin_unlock(&sb->s_inode_list_lock);
711
712 dispose_list(&dispose);
713
714 return busy;
715 }
716
717 /*
718 * Isolate the inode from the LRU in preparation for freeing it.
719 *
720 * Any inodes which are pinned purely because of attached pagecache have their
721 * pagecache removed. If the inode has metadata buffers attached to
722 * mapping->private_list then try to remove them.
723 *
724 * If the inode has the I_REFERENCED flag set, then it means that it has been
725 * used recently - the flag is set in iput_final(). When we encounter such an
726 * inode, clear the flag and move it to the back of the LRU so it gets another
727 * pass through the LRU before it gets reclaimed. This is necessary because of
728 * the fact we are doing lazy LRU updates to minimise lock contention so the
729 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
730 * with this flag set because they are the inodes that are out of order.
731 */
732 static enum lru_status inode_lru_isolate(struct list_head *item,
733 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
734 {
735 struct list_head *freeable = arg;
736 struct inode *inode = container_of(item, struct inode, i_lru);
737
738 /*
739 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
740 * If we fail to get the lock, just skip it.
741 */
742 if (!spin_trylock(&inode->i_lock))
743 return LRU_SKIP;
744
745 /*
746 * Referenced or dirty inodes are still in use. Give them another pass
747 * through the LRU as we canot reclaim them now.
748 */
749 if (atomic_read(&inode->i_count) ||
750 (inode->i_state & ~I_REFERENCED)) {
751 list_lru_isolate(lru, &inode->i_lru);
752 spin_unlock(&inode->i_lock);
753 this_cpu_dec(nr_unused);
754 return LRU_REMOVED;
755 }
756
757 /* recently referenced inodes get one more pass */
758 if (inode->i_state & I_REFERENCED) {
759 inode->i_state &= ~I_REFERENCED;
760 spin_unlock(&inode->i_lock);
761 return LRU_ROTATE;
762 }
763
764 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
765 __iget(inode);
766 spin_unlock(&inode->i_lock);
767 spin_unlock(lru_lock);
768 if (remove_inode_buffers(inode)) {
769 unsigned long reap;
770 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
771 if (current_is_kswapd())
772 __count_vm_events(KSWAPD_INODESTEAL, reap);
773 else
774 __count_vm_events(PGINODESTEAL, reap);
775 if (current->reclaim_state)
776 current->reclaim_state->reclaimed_slab += reap;
777 }
778 iput(inode);
779 spin_lock(lru_lock);
780 return LRU_RETRY;
781 }
782
783 WARN_ON(inode->i_state & I_NEW);
784 inode->i_state |= I_FREEING;
785 list_lru_isolate_move(lru, &inode->i_lru, freeable);
786 spin_unlock(&inode->i_lock);
787
788 this_cpu_dec(nr_unused);
789 return LRU_REMOVED;
790 }
791
792 /*
793 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
794 * This is called from the superblock shrinker function with a number of inodes
795 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
796 * then are freed outside inode_lock by dispose_list().
797 */
798 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
799 {
800 LIST_HEAD(freeable);
801 long freed;
802
803 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
804 inode_lru_isolate, &freeable);
805 dispose_list(&freeable);
806 return freed;
807 }
808
809 static void __wait_on_freeing_inode(struct inode *inode);
810 /*
811 * Called with the inode lock held.
812 */
813 static struct inode *find_inode(struct super_block *sb,
814 struct hlist_head *head,
815 int (*test)(struct inode *, void *),
816 void *data)
817 {
818 struct inode *inode = NULL;
819
820 repeat:
821 hlist_for_each_entry(inode, head, i_hash) {
822 if (inode->i_sb != sb)
823 continue;
824 if (!test(inode, data))
825 continue;
826 spin_lock(&inode->i_lock);
827 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
828 __wait_on_freeing_inode(inode);
829 goto repeat;
830 }
831 if (unlikely(inode->i_state & I_CREATING)) {
832 spin_unlock(&inode->i_lock);
833 return ERR_PTR(-ESTALE);
834 }
835 __iget(inode);
836 spin_unlock(&inode->i_lock);
837 return inode;
838 }
839 return NULL;
840 }
841
842 /*
843 * find_inode_fast is the fast path version of find_inode, see the comment at
844 * iget_locked for details.
845 */
846 static struct inode *find_inode_fast(struct super_block *sb,
847 struct hlist_head *head, unsigned long ino)
848 {
849 struct inode *inode = NULL;
850
851 repeat:
852 hlist_for_each_entry(inode, head, i_hash) {
853 if (inode->i_ino != ino)
854 continue;
855 if (inode->i_sb != sb)
856 continue;
857 spin_lock(&inode->i_lock);
858 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
859 __wait_on_freeing_inode(inode);
860 goto repeat;
861 }
862 if (unlikely(inode->i_state & I_CREATING)) {
863 spin_unlock(&inode->i_lock);
864 return ERR_PTR(-ESTALE);
865 }
866 __iget(inode);
867 spin_unlock(&inode->i_lock);
868 return inode;
869 }
870 return NULL;
871 }
872
873 /*
874 * Each cpu owns a range of LAST_INO_BATCH numbers.
875 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
876 * to renew the exhausted range.
877 *
878 * This does not significantly increase overflow rate because every CPU can
879 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
880 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
881 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
882 * overflow rate by 2x, which does not seem too significant.
883 *
884 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
885 * error if st_ino won't fit in target struct field. Use 32bit counter
886 * here to attempt to avoid that.
887 */
888 #define LAST_INO_BATCH 1024
889 static DEFINE_PER_CPU(unsigned int, last_ino);
890
891 unsigned int get_next_ino(void)
892 {
893 unsigned int *p = &get_cpu_var(last_ino);
894 unsigned int res = *p;
895
896 #ifdef CONFIG_SMP
897 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
898 static atomic_t shared_last_ino;
899 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
900
901 res = next - LAST_INO_BATCH;
902 }
903 #endif
904
905 res++;
906 /* get_next_ino should not provide a 0 inode number */
907 if (unlikely(!res))
908 res++;
909 *p = res;
910 put_cpu_var(last_ino);
911 return res;
912 }
913 EXPORT_SYMBOL(get_next_ino);
914
915 /**
916 * new_inode_pseudo - obtain an inode
917 * @sb: superblock
918 *
919 * Allocates a new inode for given superblock.
920 * Inode wont be chained in superblock s_inodes list
921 * This means :
922 * - fs can't be unmount
923 * - quotas, fsnotify, writeback can't work
924 */
925 struct inode *new_inode_pseudo(struct super_block *sb)
926 {
927 struct inode *inode = alloc_inode(sb);
928
929 if (inode) {
930 spin_lock(&inode->i_lock);
931 inode->i_state = 0;
932 spin_unlock(&inode->i_lock);
933 INIT_LIST_HEAD(&inode->i_sb_list);
934 }
935 return inode;
936 }
937
938 /**
939 * new_inode - obtain an inode
940 * @sb: superblock
941 *
942 * Allocates a new inode for given superblock. The default gfp_mask
943 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
944 * If HIGHMEM pages are unsuitable or it is known that pages allocated
945 * for the page cache are not reclaimable or migratable,
946 * mapping_set_gfp_mask() must be called with suitable flags on the
947 * newly created inode's mapping
948 *
949 */
950 struct inode *new_inode(struct super_block *sb)
951 {
952 struct inode *inode;
953
954 spin_lock_prefetch(&sb->s_inode_list_lock);
955
956 inode = new_inode_pseudo(sb);
957 if (inode)
958 inode_sb_list_add(inode);
959 return inode;
960 }
961 EXPORT_SYMBOL(new_inode);
962
963 #ifdef CONFIG_DEBUG_LOCK_ALLOC
964 void lockdep_annotate_inode_mutex_key(struct inode *inode)
965 {
966 if (S_ISDIR(inode->i_mode)) {
967 struct file_system_type *type = inode->i_sb->s_type;
968
969 /* Set new key only if filesystem hasn't already changed it */
970 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
971 /*
972 * ensure nobody is actually holding i_mutex
973 */
974 // mutex_destroy(&inode->i_mutex);
975 init_rwsem(&inode->i_rwsem);
976 lockdep_set_class(&inode->i_rwsem,
977 &type->i_mutex_dir_key);
978 }
979 }
980 }
981 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
982 #endif
983
984 /**
985 * unlock_new_inode - clear the I_NEW state and wake up any waiters
986 * @inode: new inode to unlock
987 *
988 * Called when the inode is fully initialised to clear the new state of the
989 * inode and wake up anyone waiting for the inode to finish initialisation.
990 */
991 void unlock_new_inode(struct inode *inode)
992 {
993 lockdep_annotate_inode_mutex_key(inode);
994 spin_lock(&inode->i_lock);
995 WARN_ON(!(inode->i_state & I_NEW));
996 inode->i_state &= ~I_NEW & ~I_CREATING;
997 smp_mb();
998 wake_up_bit(&inode->i_state, __I_NEW);
999 spin_unlock(&inode->i_lock);
1000 }
1001 EXPORT_SYMBOL(unlock_new_inode);
1002
1003 void discard_new_inode(struct inode *inode)
1004 {
1005 lockdep_annotate_inode_mutex_key(inode);
1006 spin_lock(&inode->i_lock);
1007 WARN_ON(!(inode->i_state & I_NEW));
1008 inode->i_state &= ~I_NEW;
1009 smp_mb();
1010 wake_up_bit(&inode->i_state, __I_NEW);
1011 spin_unlock(&inode->i_lock);
1012 iput(inode);
1013 }
1014 EXPORT_SYMBOL(discard_new_inode);
1015
1016 /**
1017 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1018 *
1019 * Lock any non-NULL argument that is not a directory.
1020 * Zero, one or two objects may be locked by this function.
1021 *
1022 * @inode1: first inode to lock
1023 * @inode2: second inode to lock
1024 */
1025 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1026 {
1027 if (inode1 > inode2)
1028 swap(inode1, inode2);
1029
1030 if (inode1 && !S_ISDIR(inode1->i_mode))
1031 inode_lock(inode1);
1032 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1033 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1034 }
1035 EXPORT_SYMBOL(lock_two_nondirectories);
1036
1037 /**
1038 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1039 * @inode1: first inode to unlock
1040 * @inode2: second inode to unlock
1041 */
1042 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1043 {
1044 if (inode1 && !S_ISDIR(inode1->i_mode))
1045 inode_unlock(inode1);
1046 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1047 inode_unlock(inode2);
1048 }
1049 EXPORT_SYMBOL(unlock_two_nondirectories);
1050
1051 /**
1052 * inode_insert5 - obtain an inode from a mounted file system
1053 * @inode: pre-allocated inode to use for insert to cache
1054 * @hashval: hash value (usually inode number) to get
1055 * @test: callback used for comparisons between inodes
1056 * @set: callback used to initialize a new struct inode
1057 * @data: opaque data pointer to pass to @test and @set
1058 *
1059 * Search for the inode specified by @hashval and @data in the inode cache,
1060 * and if present it is return it with an increased reference count. This is
1061 * a variant of iget5_locked() for callers that don't want to fail on memory
1062 * allocation of inode.
1063 *
1064 * If the inode is not in cache, insert the pre-allocated inode to cache and
1065 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1066 * to fill it in before unlocking it via unlock_new_inode().
1067 *
1068 * Note both @test and @set are called with the inode_hash_lock held, so can't
1069 * sleep.
1070 */
1071 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1072 int (*test)(struct inode *, void *),
1073 int (*set)(struct inode *, void *), void *data)
1074 {
1075 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1076 struct inode *old;
1077 bool creating = inode->i_state & I_CREATING;
1078
1079 again:
1080 spin_lock(&inode_hash_lock);
1081 old = find_inode(inode->i_sb, head, test, data);
1082 if (unlikely(old)) {
1083 /*
1084 * Uhhuh, somebody else created the same inode under us.
1085 * Use the old inode instead of the preallocated one.
1086 */
1087 spin_unlock(&inode_hash_lock);
1088 if (IS_ERR(old))
1089 return NULL;
1090 wait_on_inode(old);
1091 if (unlikely(inode_unhashed(old))) {
1092 iput(old);
1093 goto again;
1094 }
1095 return old;
1096 }
1097
1098 if (set && unlikely(set(inode, data))) {
1099 inode = NULL;
1100 goto unlock;
1101 }
1102
1103 /*
1104 * Return the locked inode with I_NEW set, the
1105 * caller is responsible for filling in the contents
1106 */
1107 spin_lock(&inode->i_lock);
1108 inode->i_state |= I_NEW;
1109 hlist_add_head(&inode->i_hash, head);
1110 spin_unlock(&inode->i_lock);
1111 if (!creating)
1112 inode_sb_list_add(inode);
1113 unlock:
1114 spin_unlock(&inode_hash_lock);
1115
1116 return inode;
1117 }
1118 EXPORT_SYMBOL(inode_insert5);
1119
1120 /**
1121 * iget5_locked - obtain an inode from a mounted file system
1122 * @sb: super block of file system
1123 * @hashval: hash value (usually inode number) to get
1124 * @test: callback used for comparisons between inodes
1125 * @set: callback used to initialize a new struct inode
1126 * @data: opaque data pointer to pass to @test and @set
1127 *
1128 * Search for the inode specified by @hashval and @data in the inode cache,
1129 * and if present it is return it with an increased reference count. This is
1130 * a generalized version of iget_locked() for file systems where the inode
1131 * number is not sufficient for unique identification of an inode.
1132 *
1133 * If the inode is not in cache, allocate a new inode and return it locked,
1134 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1135 * before unlocking it via unlock_new_inode().
1136 *
1137 * Note both @test and @set are called with the inode_hash_lock held, so can't
1138 * sleep.
1139 */
1140 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1141 int (*test)(struct inode *, void *),
1142 int (*set)(struct inode *, void *), void *data)
1143 {
1144 struct inode *inode = ilookup5(sb, hashval, test, data);
1145
1146 if (!inode) {
1147 struct inode *new = alloc_inode(sb);
1148
1149 if (new) {
1150 new->i_state = 0;
1151 inode = inode_insert5(new, hashval, test, set, data);
1152 if (unlikely(inode != new))
1153 destroy_inode(new);
1154 }
1155 }
1156 return inode;
1157 }
1158 EXPORT_SYMBOL(iget5_locked);
1159
1160 /**
1161 * iget_locked - obtain an inode from a mounted file system
1162 * @sb: super block of file system
1163 * @ino: inode number to get
1164 *
1165 * Search for the inode specified by @ino in the inode cache and if present
1166 * return it with an increased reference count. This is for file systems
1167 * where the inode number is sufficient for unique identification of an inode.
1168 *
1169 * If the inode is not in cache, allocate a new inode and return it locked,
1170 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1171 * before unlocking it via unlock_new_inode().
1172 */
1173 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1174 {
1175 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1176 struct inode *inode;
1177 again:
1178 spin_lock(&inode_hash_lock);
1179 inode = find_inode_fast(sb, head, ino);
1180 spin_unlock(&inode_hash_lock);
1181 if (inode) {
1182 if (IS_ERR(inode))
1183 return NULL;
1184 wait_on_inode(inode);
1185 if (unlikely(inode_unhashed(inode))) {
1186 iput(inode);
1187 goto again;
1188 }
1189 return inode;
1190 }
1191
1192 inode = alloc_inode(sb);
1193 if (inode) {
1194 struct inode *old;
1195
1196 spin_lock(&inode_hash_lock);
1197 /* We released the lock, so.. */
1198 old = find_inode_fast(sb, head, ino);
1199 if (!old) {
1200 inode->i_ino = ino;
1201 spin_lock(&inode->i_lock);
1202 inode->i_state = I_NEW;
1203 hlist_add_head(&inode->i_hash, head);
1204 spin_unlock(&inode->i_lock);
1205 inode_sb_list_add(inode);
1206 spin_unlock(&inode_hash_lock);
1207
1208 /* Return the locked inode with I_NEW set, the
1209 * caller is responsible for filling in the contents
1210 */
1211 return inode;
1212 }
1213
1214 /*
1215 * Uhhuh, somebody else created the same inode under
1216 * us. Use the old inode instead of the one we just
1217 * allocated.
1218 */
1219 spin_unlock(&inode_hash_lock);
1220 destroy_inode(inode);
1221 if (IS_ERR(old))
1222 return NULL;
1223 inode = old;
1224 wait_on_inode(inode);
1225 if (unlikely(inode_unhashed(inode))) {
1226 iput(inode);
1227 goto again;
1228 }
1229 }
1230 return inode;
1231 }
1232 EXPORT_SYMBOL(iget_locked);
1233
1234 /*
1235 * search the inode cache for a matching inode number.
1236 * If we find one, then the inode number we are trying to
1237 * allocate is not unique and so we should not use it.
1238 *
1239 * Returns 1 if the inode number is unique, 0 if it is not.
1240 */
1241 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1242 {
1243 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1244 struct inode *inode;
1245
1246 spin_lock(&inode_hash_lock);
1247 hlist_for_each_entry(inode, b, i_hash) {
1248 if (inode->i_ino == ino && inode->i_sb == sb) {
1249 spin_unlock(&inode_hash_lock);
1250 return 0;
1251 }
1252 }
1253 spin_unlock(&inode_hash_lock);
1254
1255 return 1;
1256 }
1257
1258 /**
1259 * iunique - get a unique inode number
1260 * @sb: superblock
1261 * @max_reserved: highest reserved inode number
1262 *
1263 * Obtain an inode number that is unique on the system for a given
1264 * superblock. This is used by file systems that have no natural
1265 * permanent inode numbering system. An inode number is returned that
1266 * is higher than the reserved limit but unique.
1267 *
1268 * BUGS:
1269 * With a large number of inodes live on the file system this function
1270 * currently becomes quite slow.
1271 */
1272 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1273 {
1274 /*
1275 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1276 * error if st_ino won't fit in target struct field. Use 32bit counter
1277 * here to attempt to avoid that.
1278 */
1279 static DEFINE_SPINLOCK(iunique_lock);
1280 static unsigned int counter;
1281 ino_t res;
1282
1283 spin_lock(&iunique_lock);
1284 do {
1285 if (counter <= max_reserved)
1286 counter = max_reserved + 1;
1287 res = counter++;
1288 } while (!test_inode_iunique(sb, res));
1289 spin_unlock(&iunique_lock);
1290
1291 return res;
1292 }
1293 EXPORT_SYMBOL(iunique);
1294
1295 struct inode *igrab(struct inode *inode)
1296 {
1297 spin_lock(&inode->i_lock);
1298 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1299 __iget(inode);
1300 spin_unlock(&inode->i_lock);
1301 } else {
1302 spin_unlock(&inode->i_lock);
1303 /*
1304 * Handle the case where s_op->clear_inode is not been
1305 * called yet, and somebody is calling igrab
1306 * while the inode is getting freed.
1307 */
1308 inode = NULL;
1309 }
1310 return inode;
1311 }
1312 EXPORT_SYMBOL(igrab);
1313
1314 /**
1315 * ilookup5_nowait - search for an inode in the inode cache
1316 * @sb: super block of file system to search
1317 * @hashval: hash value (usually inode number) to search for
1318 * @test: callback used for comparisons between inodes
1319 * @data: opaque data pointer to pass to @test
1320 *
1321 * Search for the inode specified by @hashval and @data in the inode cache.
1322 * If the inode is in the cache, the inode is returned with an incremented
1323 * reference count.
1324 *
1325 * Note: I_NEW is not waited upon so you have to be very careful what you do
1326 * with the returned inode. You probably should be using ilookup5() instead.
1327 *
1328 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1329 */
1330 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1331 int (*test)(struct inode *, void *), void *data)
1332 {
1333 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1334 struct inode *inode;
1335
1336 spin_lock(&inode_hash_lock);
1337 inode = find_inode(sb, head, test, data);
1338 spin_unlock(&inode_hash_lock);
1339
1340 return IS_ERR(inode) ? NULL : inode;
1341 }
1342 EXPORT_SYMBOL(ilookup5_nowait);
1343
1344 /**
1345 * ilookup5 - search for an inode in the inode cache
1346 * @sb: super block of file system to search
1347 * @hashval: hash value (usually inode number) to search for
1348 * @test: callback used for comparisons between inodes
1349 * @data: opaque data pointer to pass to @test
1350 *
1351 * Search for the inode specified by @hashval and @data in the inode cache,
1352 * and if the inode is in the cache, return the inode with an incremented
1353 * reference count. Waits on I_NEW before returning the inode.
1354 * returned with an incremented reference count.
1355 *
1356 * This is a generalized version of ilookup() for file systems where the
1357 * inode number is not sufficient for unique identification of an inode.
1358 *
1359 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1360 */
1361 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1362 int (*test)(struct inode *, void *), void *data)
1363 {
1364 struct inode *inode;
1365 again:
1366 inode = ilookup5_nowait(sb, hashval, test, data);
1367 if (inode) {
1368 wait_on_inode(inode);
1369 if (unlikely(inode_unhashed(inode))) {
1370 iput(inode);
1371 goto again;
1372 }
1373 }
1374 return inode;
1375 }
1376 EXPORT_SYMBOL(ilookup5);
1377
1378 /**
1379 * ilookup - search for an inode in the inode cache
1380 * @sb: super block of file system to search
1381 * @ino: inode number to search for
1382 *
1383 * Search for the inode @ino in the inode cache, and if the inode is in the
1384 * cache, the inode is returned with an incremented reference count.
1385 */
1386 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1387 {
1388 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1389 struct inode *inode;
1390 again:
1391 spin_lock(&inode_hash_lock);
1392 inode = find_inode_fast(sb, head, ino);
1393 spin_unlock(&inode_hash_lock);
1394
1395 if (inode) {
1396 if (IS_ERR(inode))
1397 return NULL;
1398 wait_on_inode(inode);
1399 if (unlikely(inode_unhashed(inode))) {
1400 iput(inode);
1401 goto again;
1402 }
1403 }
1404 return inode;
1405 }
1406 EXPORT_SYMBOL(ilookup);
1407
1408 /**
1409 * find_inode_nowait - find an inode in the inode cache
1410 * @sb: super block of file system to search
1411 * @hashval: hash value (usually inode number) to search for
1412 * @match: callback used for comparisons between inodes
1413 * @data: opaque data pointer to pass to @match
1414 *
1415 * Search for the inode specified by @hashval and @data in the inode
1416 * cache, where the helper function @match will return 0 if the inode
1417 * does not match, 1 if the inode does match, and -1 if the search
1418 * should be stopped. The @match function must be responsible for
1419 * taking the i_lock spin_lock and checking i_state for an inode being
1420 * freed or being initialized, and incrementing the reference count
1421 * before returning 1. It also must not sleep, since it is called with
1422 * the inode_hash_lock spinlock held.
1423 *
1424 * This is a even more generalized version of ilookup5() when the
1425 * function must never block --- find_inode() can block in
1426 * __wait_on_freeing_inode() --- or when the caller can not increment
1427 * the reference count because the resulting iput() might cause an
1428 * inode eviction. The tradeoff is that the @match funtion must be
1429 * very carefully implemented.
1430 */
1431 struct inode *find_inode_nowait(struct super_block *sb,
1432 unsigned long hashval,
1433 int (*match)(struct inode *, unsigned long,
1434 void *),
1435 void *data)
1436 {
1437 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1438 struct inode *inode, *ret_inode = NULL;
1439 int mval;
1440
1441 spin_lock(&inode_hash_lock);
1442 hlist_for_each_entry(inode, head, i_hash) {
1443 if (inode->i_sb != sb)
1444 continue;
1445 mval = match(inode, hashval, data);
1446 if (mval == 0)
1447 continue;
1448 if (mval == 1)
1449 ret_inode = inode;
1450 goto out;
1451 }
1452 out:
1453 spin_unlock(&inode_hash_lock);
1454 return ret_inode;
1455 }
1456 EXPORT_SYMBOL(find_inode_nowait);
1457
1458 int insert_inode_locked(struct inode *inode)
1459 {
1460 struct super_block *sb = inode->i_sb;
1461 ino_t ino = inode->i_ino;
1462 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1463
1464 while (1) {
1465 struct inode *old = NULL;
1466 spin_lock(&inode_hash_lock);
1467 hlist_for_each_entry(old, head, i_hash) {
1468 if (old->i_ino != ino)
1469 continue;
1470 if (old->i_sb != sb)
1471 continue;
1472 spin_lock(&old->i_lock);
1473 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1474 spin_unlock(&old->i_lock);
1475 continue;
1476 }
1477 break;
1478 }
1479 if (likely(!old)) {
1480 spin_lock(&inode->i_lock);
1481 inode->i_state |= I_NEW | I_CREATING;
1482 hlist_add_head(&inode->i_hash, head);
1483 spin_unlock(&inode->i_lock);
1484 spin_unlock(&inode_hash_lock);
1485 return 0;
1486 }
1487 if (unlikely(old->i_state & I_CREATING)) {
1488 spin_unlock(&old->i_lock);
1489 spin_unlock(&inode_hash_lock);
1490 return -EBUSY;
1491 }
1492 __iget(old);
1493 spin_unlock(&old->i_lock);
1494 spin_unlock(&inode_hash_lock);
1495 wait_on_inode(old);
1496 if (unlikely(!inode_unhashed(old))) {
1497 iput(old);
1498 return -EBUSY;
1499 }
1500 iput(old);
1501 }
1502 }
1503 EXPORT_SYMBOL(insert_inode_locked);
1504
1505 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1506 int (*test)(struct inode *, void *), void *data)
1507 {
1508 struct inode *old;
1509
1510 inode->i_state |= I_CREATING;
1511 old = inode_insert5(inode, hashval, test, NULL, data);
1512
1513 if (old != inode) {
1514 iput(old);
1515 return -EBUSY;
1516 }
1517 return 0;
1518 }
1519 EXPORT_SYMBOL(insert_inode_locked4);
1520
1521
1522 int generic_delete_inode(struct inode *inode)
1523 {
1524 return 1;
1525 }
1526 EXPORT_SYMBOL(generic_delete_inode);
1527
1528 /*
1529 * Called when we're dropping the last reference
1530 * to an inode.
1531 *
1532 * Call the FS "drop_inode()" function, defaulting to
1533 * the legacy UNIX filesystem behaviour. If it tells
1534 * us to evict inode, do so. Otherwise, retain inode
1535 * in cache if fs is alive, sync and evict if fs is
1536 * shutting down.
1537 */
1538 static void iput_final(struct inode *inode)
1539 {
1540 struct super_block *sb = inode->i_sb;
1541 const struct super_operations *op = inode->i_sb->s_op;
1542 int drop;
1543
1544 WARN_ON(inode->i_state & I_NEW);
1545
1546 if (op->drop_inode)
1547 drop = op->drop_inode(inode);
1548 else
1549 drop = generic_drop_inode(inode);
1550
1551 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1552 inode_add_lru(inode);
1553 spin_unlock(&inode->i_lock);
1554 return;
1555 }
1556
1557 if (!drop) {
1558 inode->i_state |= I_WILL_FREE;
1559 spin_unlock(&inode->i_lock);
1560 write_inode_now(inode, 1);
1561 spin_lock(&inode->i_lock);
1562 WARN_ON(inode->i_state & I_NEW);
1563 inode->i_state &= ~I_WILL_FREE;
1564 }
1565
1566 inode->i_state |= I_FREEING;
1567 if (!list_empty(&inode->i_lru))
1568 inode_lru_list_del(inode);
1569 spin_unlock(&inode->i_lock);
1570
1571 evict(inode);
1572 }
1573
1574 /**
1575 * iput - put an inode
1576 * @inode: inode to put
1577 *
1578 * Puts an inode, dropping its usage count. If the inode use count hits
1579 * zero, the inode is then freed and may also be destroyed.
1580 *
1581 * Consequently, iput() can sleep.
1582 */
1583 void iput(struct inode *inode)
1584 {
1585 if (!inode)
1586 return;
1587 BUG_ON(inode->i_state & I_CLEAR);
1588 retry:
1589 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1590 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1591 atomic_inc(&inode->i_count);
1592 spin_unlock(&inode->i_lock);
1593 trace_writeback_lazytime_iput(inode);
1594 mark_inode_dirty_sync(inode);
1595 goto retry;
1596 }
1597 iput_final(inode);
1598 }
1599 }
1600 EXPORT_SYMBOL(iput);
1601
1602 /**
1603 * bmap - find a block number in a file
1604 * @inode: inode of file
1605 * @block: block to find
1606 *
1607 * Returns the block number on the device holding the inode that
1608 * is the disk block number for the block of the file requested.
1609 * That is, asked for block 4 of inode 1 the function will return the
1610 * disk block relative to the disk start that holds that block of the
1611 * file.
1612 */
1613 sector_t bmap(struct inode *inode, sector_t block)
1614 {
1615 sector_t res = 0;
1616 if (inode->i_mapping->a_ops->bmap)
1617 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1618 return res;
1619 }
1620 EXPORT_SYMBOL(bmap);
1621
1622 /*
1623 * With relative atime, only update atime if the previous atime is
1624 * earlier than either the ctime or mtime or if at least a day has
1625 * passed since the last atime update.
1626 */
1627 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1628 struct timespec64 now)
1629 {
1630
1631 if (!(mnt->mnt_flags & MNT_RELATIME))
1632 return 1;
1633 /*
1634 * Is mtime younger than atime? If yes, update atime:
1635 */
1636 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1637 return 1;
1638 /*
1639 * Is ctime younger than atime? If yes, update atime:
1640 */
1641 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1642 return 1;
1643
1644 /*
1645 * Is the previous atime value older than a day? If yes,
1646 * update atime:
1647 */
1648 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1649 return 1;
1650 /*
1651 * Good, we can skip the atime update:
1652 */
1653 return 0;
1654 }
1655
1656 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1657 {
1658 int iflags = I_DIRTY_TIME;
1659 bool dirty = false;
1660
1661 if (flags & S_ATIME)
1662 inode->i_atime = *time;
1663 if (flags & S_VERSION)
1664 dirty = inode_maybe_inc_iversion(inode, false);
1665 if (flags & S_CTIME)
1666 inode->i_ctime = *time;
1667 if (flags & S_MTIME)
1668 inode->i_mtime = *time;
1669 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1670 !(inode->i_sb->s_flags & SB_LAZYTIME))
1671 dirty = true;
1672
1673 if (dirty)
1674 iflags |= I_DIRTY_SYNC;
1675 __mark_inode_dirty(inode, iflags);
1676 return 0;
1677 }
1678 EXPORT_SYMBOL(generic_update_time);
1679
1680 /*
1681 * This does the actual work of updating an inodes time or version. Must have
1682 * had called mnt_want_write() before calling this.
1683 */
1684 int update_time(struct inode *inode, struct timespec64 *time, int flags)
1685 {
1686 int (*update_time)(struct inode *, struct timespec64 *, int);
1687
1688 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1689 generic_update_time;
1690
1691 return update_time(inode, time, flags);
1692 }
1693 EXPORT_SYMBOL_GPL(update_time);
1694
1695 /**
1696 * touch_atime - update the access time
1697 * @path: the &struct path to update
1698 * @inode: inode to update
1699 *
1700 * Update the accessed time on an inode and mark it for writeback.
1701 * This function automatically handles read only file systems and media,
1702 * as well as the "noatime" flag and inode specific "noatime" markers.
1703 */
1704 bool atime_needs_update(const struct path *path, struct inode *inode)
1705 {
1706 struct vfsmount *mnt = path->mnt;
1707 struct timespec64 now;
1708
1709 if (inode->i_flags & S_NOATIME)
1710 return false;
1711
1712 /* Atime updates will likely cause i_uid and i_gid to be written
1713 * back improprely if their true value is unknown to the vfs.
1714 */
1715 if (HAS_UNMAPPED_ID(inode))
1716 return false;
1717
1718 if (IS_NOATIME(inode))
1719 return false;
1720 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1721 return false;
1722
1723 if (mnt->mnt_flags & MNT_NOATIME)
1724 return false;
1725 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1726 return false;
1727
1728 now = current_time(inode);
1729
1730 if (!relatime_need_update(mnt, inode, now))
1731 return false;
1732
1733 if (timespec64_equal(&inode->i_atime, &now))
1734 return false;
1735
1736 return true;
1737 }
1738
1739 void touch_atime(const struct path *path)
1740 {
1741 struct vfsmount *mnt = path->mnt;
1742 struct inode *inode = d_inode(path->dentry);
1743 struct timespec64 now;
1744
1745 if (!atime_needs_update(path, inode))
1746 return;
1747
1748 if (!sb_start_write_trylock(inode->i_sb))
1749 return;
1750
1751 if (__mnt_want_write(mnt) != 0)
1752 goto skip_update;
1753 /*
1754 * File systems can error out when updating inodes if they need to
1755 * allocate new space to modify an inode (such is the case for
1756 * Btrfs), but since we touch atime while walking down the path we
1757 * really don't care if we failed to update the atime of the file,
1758 * so just ignore the return value.
1759 * We may also fail on filesystems that have the ability to make parts
1760 * of the fs read only, e.g. subvolumes in Btrfs.
1761 */
1762 now = current_time(inode);
1763 update_time(inode, &now, S_ATIME);
1764 __mnt_drop_write(mnt);
1765 skip_update:
1766 sb_end_write(inode->i_sb);
1767 }
1768 EXPORT_SYMBOL(touch_atime);
1769
1770 /*
1771 * The logic we want is
1772 *
1773 * if suid or (sgid and xgrp)
1774 * remove privs
1775 */
1776 int should_remove_suid(struct dentry *dentry)
1777 {
1778 umode_t mode = d_inode(dentry)->i_mode;
1779 int kill = 0;
1780
1781 /* suid always must be killed */
1782 if (unlikely(mode & S_ISUID))
1783 kill = ATTR_KILL_SUID;
1784
1785 /*
1786 * sgid without any exec bits is just a mandatory locking mark; leave
1787 * it alone. If some exec bits are set, it's a real sgid; kill it.
1788 */
1789 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1790 kill |= ATTR_KILL_SGID;
1791
1792 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1793 return kill;
1794
1795 return 0;
1796 }
1797 EXPORT_SYMBOL(should_remove_suid);
1798
1799 /*
1800 * Return mask of changes for notify_change() that need to be done as a
1801 * response to write or truncate. Return 0 if nothing has to be changed.
1802 * Negative value on error (change should be denied).
1803 */
1804 int dentry_needs_remove_privs(struct dentry *dentry)
1805 {
1806 struct inode *inode = d_inode(dentry);
1807 int mask = 0;
1808 int ret;
1809
1810 if (IS_NOSEC(inode))
1811 return 0;
1812
1813 mask = should_remove_suid(dentry);
1814 ret = security_inode_need_killpriv(dentry);
1815 if (ret < 0)
1816 return ret;
1817 if (ret)
1818 mask |= ATTR_KILL_PRIV;
1819 return mask;
1820 }
1821
1822 static int __remove_privs(struct dentry *dentry, int kill)
1823 {
1824 struct iattr newattrs;
1825
1826 newattrs.ia_valid = ATTR_FORCE | kill;
1827 /*
1828 * Note we call this on write, so notify_change will not
1829 * encounter any conflicting delegations:
1830 */
1831 return notify_change(dentry, &newattrs, NULL);
1832 }
1833
1834 /*
1835 * Remove special file priviledges (suid, capabilities) when file is written
1836 * to or truncated.
1837 */
1838 int file_remove_privs(struct file *file)
1839 {
1840 struct dentry *dentry = file_dentry(file);
1841 struct inode *inode = file_inode(file);
1842 int kill;
1843 int error = 0;
1844
1845 /*
1846 * Fast path for nothing security related.
1847 * As well for non-regular files, e.g. blkdev inodes.
1848 * For example, blkdev_write_iter() might get here
1849 * trying to remove privs which it is not allowed to.
1850 */
1851 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1852 return 0;
1853
1854 kill = dentry_needs_remove_privs(dentry);
1855 if (kill < 0)
1856 return kill;
1857 if (kill)
1858 error = __remove_privs(dentry, kill);
1859 if (!error)
1860 inode_has_no_xattr(inode);
1861
1862 return error;
1863 }
1864 EXPORT_SYMBOL(file_remove_privs);
1865
1866 /**
1867 * file_update_time - update mtime and ctime time
1868 * @file: file accessed
1869 *
1870 * Update the mtime and ctime members of an inode and mark the inode
1871 * for writeback. Note that this function is meant exclusively for
1872 * usage in the file write path of filesystems, and filesystems may
1873 * choose to explicitly ignore update via this function with the
1874 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1875 * timestamps are handled by the server. This can return an error for
1876 * file systems who need to allocate space in order to update an inode.
1877 */
1878
1879 int file_update_time(struct file *file)
1880 {
1881 struct inode *inode = file_inode(file);
1882 struct timespec64 now;
1883 int sync_it = 0;
1884 int ret;
1885
1886 /* First try to exhaust all avenues to not sync */
1887 if (IS_NOCMTIME(inode))
1888 return 0;
1889
1890 now = current_time(inode);
1891 if (!timespec64_equal(&inode->i_mtime, &now))
1892 sync_it = S_MTIME;
1893
1894 if (!timespec64_equal(&inode->i_ctime, &now))
1895 sync_it |= S_CTIME;
1896
1897 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1898 sync_it |= S_VERSION;
1899
1900 if (!sync_it)
1901 return 0;
1902
1903 /* Finally allowed to write? Takes lock. */
1904 if (__mnt_want_write_file(file))
1905 return 0;
1906
1907 ret = update_time(inode, &now, sync_it);
1908 __mnt_drop_write_file(file);
1909
1910 return ret;
1911 }
1912 EXPORT_SYMBOL(file_update_time);
1913
1914 /* Caller must hold the file's inode lock */
1915 int file_modified(struct file *file)
1916 {
1917 int err;
1918
1919 /*
1920 * Clear the security bits if the process is not being run by root.
1921 * This keeps people from modifying setuid and setgid binaries.
1922 */
1923 err = file_remove_privs(file);
1924 if (err)
1925 return err;
1926
1927 if (unlikely(file->f_mode & FMODE_NOCMTIME))
1928 return 0;
1929
1930 return file_update_time(file);
1931 }
1932 EXPORT_SYMBOL(file_modified);
1933
1934 int inode_needs_sync(struct inode *inode)
1935 {
1936 if (IS_SYNC(inode))
1937 return 1;
1938 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1939 return 1;
1940 return 0;
1941 }
1942 EXPORT_SYMBOL(inode_needs_sync);
1943
1944 /*
1945 * If we try to find an inode in the inode hash while it is being
1946 * deleted, we have to wait until the filesystem completes its
1947 * deletion before reporting that it isn't found. This function waits
1948 * until the deletion _might_ have completed. Callers are responsible
1949 * to recheck inode state.
1950 *
1951 * It doesn't matter if I_NEW is not set initially, a call to
1952 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1953 * will DTRT.
1954 */
1955 static void __wait_on_freeing_inode(struct inode *inode)
1956 {
1957 wait_queue_head_t *wq;
1958 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1959 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1960 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1961 spin_unlock(&inode->i_lock);
1962 spin_unlock(&inode_hash_lock);
1963 schedule();
1964 finish_wait(wq, &wait.wq_entry);
1965 spin_lock(&inode_hash_lock);
1966 }
1967
1968 static __initdata unsigned long ihash_entries;
1969 static int __init set_ihash_entries(char *str)
1970 {
1971 if (!str)
1972 return 0;
1973 ihash_entries = simple_strtoul(str, &str, 0);
1974 return 1;
1975 }
1976 __setup("ihash_entries=", set_ihash_entries);
1977
1978 /*
1979 * Initialize the waitqueues and inode hash table.
1980 */
1981 void __init inode_init_early(void)
1982 {
1983 /* If hashes are distributed across NUMA nodes, defer
1984 * hash allocation until vmalloc space is available.
1985 */
1986 if (hashdist)
1987 return;
1988
1989 inode_hashtable =
1990 alloc_large_system_hash("Inode-cache",
1991 sizeof(struct hlist_head),
1992 ihash_entries,
1993 14,
1994 HASH_EARLY | HASH_ZERO,
1995 &i_hash_shift,
1996 &i_hash_mask,
1997 0,
1998 0);
1999 }
2000
2001 void __init inode_init(void)
2002 {
2003 /* inode slab cache */
2004 inode_cachep = kmem_cache_create("inode_cache",
2005 sizeof(struct inode),
2006 0,
2007 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2008 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2009 init_once);
2010
2011 /* Hash may have been set up in inode_init_early */
2012 if (!hashdist)
2013 return;
2014
2015 inode_hashtable =
2016 alloc_large_system_hash("Inode-cache",
2017 sizeof(struct hlist_head),
2018 ihash_entries,
2019 14,
2020 HASH_ZERO,
2021 &i_hash_shift,
2022 &i_hash_mask,
2023 0,
2024 0);
2025 }
2026
2027 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2028 {
2029 inode->i_mode = mode;
2030 if (S_ISCHR(mode)) {
2031 inode->i_fop = &def_chr_fops;
2032 inode->i_rdev = rdev;
2033 } else if (S_ISBLK(mode)) {
2034 inode->i_fop = &def_blk_fops;
2035 inode->i_rdev = rdev;
2036 } else if (S_ISFIFO(mode))
2037 inode->i_fop = &pipefifo_fops;
2038 else if (S_ISSOCK(mode))
2039 ; /* leave it no_open_fops */
2040 else
2041 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2042 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2043 inode->i_ino);
2044 }
2045 EXPORT_SYMBOL(init_special_inode);
2046
2047 /**
2048 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2049 * @inode: New inode
2050 * @dir: Directory inode
2051 * @mode: mode of the new inode
2052 */
2053 void inode_init_owner(struct inode *inode, const struct inode *dir,
2054 umode_t mode)
2055 {
2056 inode->i_uid = current_fsuid();
2057 if (dir && dir->i_mode & S_ISGID) {
2058 inode->i_gid = dir->i_gid;
2059
2060 /* Directories are special, and always inherit S_ISGID */
2061 if (S_ISDIR(mode))
2062 mode |= S_ISGID;
2063 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2064 !in_group_p(inode->i_gid) &&
2065 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2066 mode &= ~S_ISGID;
2067 } else
2068 inode->i_gid = current_fsgid();
2069 inode->i_mode = mode;
2070 }
2071 EXPORT_SYMBOL(inode_init_owner);
2072
2073 /**
2074 * inode_owner_or_capable - check current task permissions to inode
2075 * @inode: inode being checked
2076 *
2077 * Return true if current either has CAP_FOWNER in a namespace with the
2078 * inode owner uid mapped, or owns the file.
2079 */
2080 bool inode_owner_or_capable(const struct inode *inode)
2081 {
2082 struct user_namespace *ns;
2083
2084 if (uid_eq(current_fsuid(), inode->i_uid))
2085 return true;
2086
2087 ns = current_user_ns();
2088 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2089 return true;
2090 return false;
2091 }
2092 EXPORT_SYMBOL(inode_owner_or_capable);
2093
2094 /*
2095 * Direct i/o helper functions
2096 */
2097 static void __inode_dio_wait(struct inode *inode)
2098 {
2099 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2100 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2101
2102 do {
2103 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2104 if (atomic_read(&inode->i_dio_count))
2105 schedule();
2106 } while (atomic_read(&inode->i_dio_count));
2107 finish_wait(wq, &q.wq_entry);
2108 }
2109
2110 /**
2111 * inode_dio_wait - wait for outstanding DIO requests to finish
2112 * @inode: inode to wait for
2113 *
2114 * Waits for all pending direct I/O requests to finish so that we can
2115 * proceed with a truncate or equivalent operation.
2116 *
2117 * Must be called under a lock that serializes taking new references
2118 * to i_dio_count, usually by inode->i_mutex.
2119 */
2120 void inode_dio_wait(struct inode *inode)
2121 {
2122 if (atomic_read(&inode->i_dio_count))
2123 __inode_dio_wait(inode);
2124 }
2125 EXPORT_SYMBOL(inode_dio_wait);
2126
2127 /*
2128 * inode_set_flags - atomically set some inode flags
2129 *
2130 * Note: the caller should be holding i_mutex, or else be sure that
2131 * they have exclusive access to the inode structure (i.e., while the
2132 * inode is being instantiated). The reason for the cmpxchg() loop
2133 * --- which wouldn't be necessary if all code paths which modify
2134 * i_flags actually followed this rule, is that there is at least one
2135 * code path which doesn't today so we use cmpxchg() out of an abundance
2136 * of caution.
2137 *
2138 * In the long run, i_mutex is overkill, and we should probably look
2139 * at using the i_lock spinlock to protect i_flags, and then make sure
2140 * it is so documented in include/linux/fs.h and that all code follows
2141 * the locking convention!!
2142 */
2143 void inode_set_flags(struct inode *inode, unsigned int flags,
2144 unsigned int mask)
2145 {
2146 WARN_ON_ONCE(flags & ~mask);
2147 set_mask_bits(&inode->i_flags, mask, flags);
2148 }
2149 EXPORT_SYMBOL(inode_set_flags);
2150
2151 void inode_nohighmem(struct inode *inode)
2152 {
2153 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2154 }
2155 EXPORT_SYMBOL(inode_nohighmem);
2156
2157 /**
2158 * timespec64_trunc - Truncate timespec64 to a granularity
2159 * @t: Timespec64
2160 * @gran: Granularity in ns.
2161 *
2162 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2163 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2164 */
2165 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2166 {
2167 /* Avoid division in the common cases 1 ns and 1 s. */
2168 if (gran == 1) {
2169 /* nothing */
2170 } else if (gran == NSEC_PER_SEC) {
2171 t.tv_nsec = 0;
2172 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2173 t.tv_nsec -= t.tv_nsec % gran;
2174 } else {
2175 WARN(1, "illegal file time granularity: %u", gran);
2176 }
2177 return t;
2178 }
2179 EXPORT_SYMBOL(timespec64_trunc);
2180
2181 /**
2182 * timestamp_truncate - Truncate timespec to a granularity
2183 * @t: Timespec
2184 * @inode: inode being updated
2185 *
2186 * Truncate a timespec to the granularity supported by the fs
2187 * containing the inode. Always rounds down. gran must
2188 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2189 */
2190 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2191 {
2192 struct super_block *sb = inode->i_sb;
2193 unsigned int gran = sb->s_time_gran;
2194
2195 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2196 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2197 t.tv_nsec = 0;
2198
2199 /* Avoid division in the common cases 1 ns and 1 s. */
2200 if (gran == 1)
2201 ; /* nothing */
2202 else if (gran == NSEC_PER_SEC)
2203 t.tv_nsec = 0;
2204 else if (gran > 1 && gran < NSEC_PER_SEC)
2205 t.tv_nsec -= t.tv_nsec % gran;
2206 else
2207 WARN(1, "invalid file time granularity: %u", gran);
2208 return t;
2209 }
2210 EXPORT_SYMBOL(timestamp_truncate);
2211
2212 /**
2213 * current_time - Return FS time
2214 * @inode: inode.
2215 *
2216 * Return the current time truncated to the time granularity supported by
2217 * the fs.
2218 *
2219 * Note that inode and inode->sb cannot be NULL.
2220 * Otherwise, the function warns and returns time without truncation.
2221 */
2222 struct timespec64 current_time(struct inode *inode)
2223 {
2224 struct timespec64 now;
2225
2226 ktime_get_coarse_real_ts64(&now);
2227
2228 if (unlikely(!inode->i_sb)) {
2229 WARN(1, "current_time() called with uninitialized super_block in the inode");
2230 return now;
2231 }
2232
2233 return timestamp_truncate(now, inode);
2234 }
2235 EXPORT_SYMBOL(current_time);
2236
2237 /*
2238 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2239 * configurations.
2240 *
2241 * Note: the caller should be holding i_mutex, or else be sure that they have
2242 * exclusive access to the inode structure.
2243 */
2244 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2245 unsigned int flags)
2246 {
2247 /*
2248 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2249 * the relevant capability.
2250 *
2251 * This test looks nicer. Thanks to Pauline Middelink
2252 */
2253 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2254 !capable(CAP_LINUX_IMMUTABLE))
2255 return -EPERM;
2256
2257 return 0;
2258 }
2259 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2260
2261 /*
2262 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2263 * configurations.
2264 *
2265 * Note: the caller should be holding i_mutex, or else be sure that they have
2266 * exclusive access to the inode structure.
2267 */
2268 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2269 struct fsxattr *fa)
2270 {
2271 /*
2272 * Can't modify an immutable/append-only file unless we have
2273 * appropriate permission.
2274 */
2275 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2276 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2277 !capable(CAP_LINUX_IMMUTABLE))
2278 return -EPERM;
2279
2280 /*
2281 * Project Quota ID state is only allowed to change from within the init
2282 * namespace. Enforce that restriction only if we are trying to change
2283 * the quota ID state. Everything else is allowed in user namespaces.
2284 */
2285 if (current_user_ns() != &init_user_ns) {
2286 if (old_fa->fsx_projid != fa->fsx_projid)
2287 return -EINVAL;
2288 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2289 FS_XFLAG_PROJINHERIT)
2290 return -EINVAL;
2291 }
2292
2293 /* Check extent size hints. */
2294 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2295 return -EINVAL;
2296
2297 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2298 !S_ISDIR(inode->i_mode))
2299 return -EINVAL;
2300
2301 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2302 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2303 return -EINVAL;
2304
2305 /*
2306 * It is only valid to set the DAX flag on regular files and
2307 * directories on filesystems.
2308 */
2309 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2310 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2311 return -EINVAL;
2312
2313 /* Extent size hints of zero turn off the flags. */
2314 if (fa->fsx_extsize == 0)
2315 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2316 if (fa->fsx_cowextsize == 0)
2317 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2318
2319 return 0;
2320 }
2321 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);