]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
new helper: file_inode(file)
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21
22 /*
23 * Inode locking rules:
24 *
25 * inode->i_lock protects:
26 * inode->i_state, inode->i_hash, __iget()
27 * inode->i_sb->s_inode_lru_lock protects:
28 * inode->i_sb->s_inode_lru, inode->i_lru
29 * inode_sb_list_lock protects:
30 * sb->s_inodes, inode->i_sb_list
31 * bdi->wb.list_lock protects:
32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33 * inode_hash_lock protects:
34 * inode_hashtable, inode->i_hash
35 *
36 * Lock ordering:
37 *
38 * inode_sb_list_lock
39 * inode->i_lock
40 * inode->i_sb->s_inode_lru_lock
41 *
42 * bdi->wb.list_lock
43 * inode->i_lock
44 *
45 * inode_hash_lock
46 * inode_sb_list_lock
47 * inode->i_lock
48 *
49 * iunique_lock
50 * inode_hash_lock
51 */
52
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static int get_nr_inodes(void)
79 {
80 int i;
81 int sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline int get_nr_inodes_unused(void)
88 {
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 int get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 /**
117 * inode_init_always - perform inode structure intialisation
118 * @sb: superblock inode belongs to
119 * @inode: inode to initialise
120 *
121 * These are initializations that need to be done on every inode
122 * allocation as the fields are not initialised by slab allocation.
123 */
124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 static const struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->__i_nlink = 1;
137 inode->i_opflags = 0;
138 i_uid_write(inode, 0);
139 i_gid_write(inode, 0);
140 atomic_set(&inode->i_writecount, 0);
141 inode->i_size = 0;
142 inode->i_blocks = 0;
143 inode->i_bytes = 0;
144 inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 inode->i_pipe = NULL;
149 inode->i_bdev = NULL;
150 inode->i_cdev = NULL;
151 inode->i_rdev = 0;
152 inode->dirtied_when = 0;
153
154 if (security_inode_alloc(inode))
155 goto out;
156 spin_lock_init(&inode->i_lock);
157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158
159 mutex_init(&inode->i_mutex);
160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161
162 atomic_set(&inode->i_dio_count, 0);
163
164 mapping->a_ops = &empty_aops;
165 mapping->host = inode;
166 mapping->flags = 0;
167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 mapping->private_data = NULL;
169 mapping->backing_dev_info = &default_backing_dev_info;
170 mapping->writeback_index = 0;
171
172 /*
173 * If the block_device provides a backing_dev_info for client
174 * inodes then use that. Otherwise the inode share the bdev's
175 * backing_dev_info.
176 */
177 if (sb->s_bdev) {
178 struct backing_dev_info *bdi;
179
180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 mapping->backing_dev_info = bdi;
182 }
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
193
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230
231 void __destroy_inode(struct inode *inode)
232 {
233 BUG_ON(inode_has_buffers(inode));
234 security_inode_free(inode);
235 fsnotify_inode_delete(inode);
236 if (!inode->i_nlink) {
237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 atomic_long_dec(&inode->i_sb->s_remove_count);
239 }
240
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 posix_acl_release(inode->i_acl);
244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_default_acl);
246 #endif
247 this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250
251 static void i_callback(struct rcu_head *head)
252 {
253 struct inode *inode = container_of(head, struct inode, i_rcu);
254 kmem_cache_free(inode_cachep, inode);
255 }
256
257 static void destroy_inode(struct inode *inode)
258 {
259 BUG_ON(!list_empty(&inode->i_lru));
260 __destroy_inode(inode);
261 if (inode->i_sb->s_op->destroy_inode)
262 inode->i_sb->s_op->destroy_inode(inode);
263 else
264 call_rcu(&inode->i_rcu, i_callback);
265 }
266
267 /**
268 * drop_nlink - directly drop an inode's link count
269 * @inode: inode
270 *
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
276 * on the filesystem.
277 */
278 void drop_nlink(struct inode *inode)
279 {
280 WARN_ON(inode->i_nlink == 0);
281 inode->__i_nlink--;
282 if (!inode->i_nlink)
283 atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286
287 /**
288 * clear_nlink - directly zero an inode's link count
289 * @inode: inode
290 *
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
294 */
295 void clear_nlink(struct inode *inode)
296 {
297 if (inode->i_nlink) {
298 inode->__i_nlink = 0;
299 atomic_long_inc(&inode->i_sb->s_remove_count);
300 }
301 }
302 EXPORT_SYMBOL(clear_nlink);
303
304 /**
305 * set_nlink - directly set an inode's link count
306 * @inode: inode
307 * @nlink: new nlink (should be non-zero)
308 *
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
311 */
312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 if (!nlink) {
315 clear_nlink(inode);
316 } else {
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode->i_nlink == 0)
319 atomic_long_dec(&inode->i_sb->s_remove_count);
320
321 inode->__i_nlink = nlink;
322 }
323 }
324 EXPORT_SYMBOL(set_nlink);
325
326 /**
327 * inc_nlink - directly increment an inode's link count
328 * @inode: inode
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
333 */
334 void inc_nlink(struct inode *inode)
335 {
336 if (WARN_ON(inode->i_nlink == 0))
337 atomic_long_dec(&inode->i_sb->s_remove_count);
338
339 inode->__i_nlink++;
340 }
341 EXPORT_SYMBOL(inc_nlink);
342
343 void address_space_init_once(struct address_space *mapping)
344 {
345 memset(mapping, 0, sizeof(*mapping));
346 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
347 spin_lock_init(&mapping->tree_lock);
348 mutex_init(&mapping->i_mmap_mutex);
349 INIT_LIST_HEAD(&mapping->private_list);
350 spin_lock_init(&mapping->private_lock);
351 mapping->i_mmap = RB_ROOT;
352 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
353 }
354 EXPORT_SYMBOL(address_space_init_once);
355
356 /*
357 * These are initializations that only need to be done
358 * once, because the fields are idempotent across use
359 * of the inode, so let the slab aware of that.
360 */
361 void inode_init_once(struct inode *inode)
362 {
363 memset(inode, 0, sizeof(*inode));
364 INIT_HLIST_NODE(&inode->i_hash);
365 INIT_LIST_HEAD(&inode->i_devices);
366 INIT_LIST_HEAD(&inode->i_wb_list);
367 INIT_LIST_HEAD(&inode->i_lru);
368 address_space_init_once(&inode->i_data);
369 i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
373 }
374 EXPORT_SYMBOL(inode_init_once);
375
376 static void init_once(void *foo)
377 {
378 struct inode *inode = (struct inode *) foo;
379
380 inode_init_once(inode);
381 }
382
383 /*
384 * inode->i_lock must be held
385 */
386 void __iget(struct inode *inode)
387 {
388 atomic_inc(&inode->i_count);
389 }
390
391 /*
392 * get additional reference to inode; caller must already hold one.
393 */
394 void ihold(struct inode *inode)
395 {
396 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397 }
398 EXPORT_SYMBOL(ihold);
399
400 static void inode_lru_list_add(struct inode *inode)
401 {
402 spin_lock(&inode->i_sb->s_inode_lru_lock);
403 if (list_empty(&inode->i_lru)) {
404 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
405 inode->i_sb->s_nr_inodes_unused++;
406 this_cpu_inc(nr_unused);
407 }
408 spin_unlock(&inode->i_sb->s_inode_lru_lock);
409 }
410
411 /*
412 * Add inode to LRU if needed (inode is unused and clean).
413 *
414 * Needs inode->i_lock held.
415 */
416 void inode_add_lru(struct inode *inode)
417 {
418 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 inode_lru_list_add(inode);
421 }
422
423
424 static void inode_lru_list_del(struct inode *inode)
425 {
426 spin_lock(&inode->i_sb->s_inode_lru_lock);
427 if (!list_empty(&inode->i_lru)) {
428 list_del_init(&inode->i_lru);
429 inode->i_sb->s_nr_inodes_unused--;
430 this_cpu_dec(nr_unused);
431 }
432 spin_unlock(&inode->i_sb->s_inode_lru_lock);
433 }
434
435 /**
436 * inode_sb_list_add - add inode to the superblock list of inodes
437 * @inode: inode to add
438 */
439 void inode_sb_list_add(struct inode *inode)
440 {
441 spin_lock(&inode_sb_list_lock);
442 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
443 spin_unlock(&inode_sb_list_lock);
444 }
445 EXPORT_SYMBOL_GPL(inode_sb_list_add);
446
447 static inline void inode_sb_list_del(struct inode *inode)
448 {
449 if (!list_empty(&inode->i_sb_list)) {
450 spin_lock(&inode_sb_list_lock);
451 list_del_init(&inode->i_sb_list);
452 spin_unlock(&inode_sb_list_lock);
453 }
454 }
455
456 static unsigned long hash(struct super_block *sb, unsigned long hashval)
457 {
458 unsigned long tmp;
459
460 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
461 L1_CACHE_BYTES;
462 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
463 return tmp & i_hash_mask;
464 }
465
466 /**
467 * __insert_inode_hash - hash an inode
468 * @inode: unhashed inode
469 * @hashval: unsigned long value used to locate this object in the
470 * inode_hashtable.
471 *
472 * Add an inode to the inode hash for this superblock.
473 */
474 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
475 {
476 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
477
478 spin_lock(&inode_hash_lock);
479 spin_lock(&inode->i_lock);
480 hlist_add_head(&inode->i_hash, b);
481 spin_unlock(&inode->i_lock);
482 spin_unlock(&inode_hash_lock);
483 }
484 EXPORT_SYMBOL(__insert_inode_hash);
485
486 /**
487 * __remove_inode_hash - remove an inode from the hash
488 * @inode: inode to unhash
489 *
490 * Remove an inode from the superblock.
491 */
492 void __remove_inode_hash(struct inode *inode)
493 {
494 spin_lock(&inode_hash_lock);
495 spin_lock(&inode->i_lock);
496 hlist_del_init(&inode->i_hash);
497 spin_unlock(&inode->i_lock);
498 spin_unlock(&inode_hash_lock);
499 }
500 EXPORT_SYMBOL(__remove_inode_hash);
501
502 void clear_inode(struct inode *inode)
503 {
504 might_sleep();
505 /*
506 * We have to cycle tree_lock here because reclaim can be still in the
507 * process of removing the last page (in __delete_from_page_cache())
508 * and we must not free mapping under it.
509 */
510 spin_lock_irq(&inode->i_data.tree_lock);
511 BUG_ON(inode->i_data.nrpages);
512 spin_unlock_irq(&inode->i_data.tree_lock);
513 BUG_ON(!list_empty(&inode->i_data.private_list));
514 BUG_ON(!(inode->i_state & I_FREEING));
515 BUG_ON(inode->i_state & I_CLEAR);
516 /* don't need i_lock here, no concurrent mods to i_state */
517 inode->i_state = I_FREEING | I_CLEAR;
518 }
519 EXPORT_SYMBOL(clear_inode);
520
521 /*
522 * Free the inode passed in, removing it from the lists it is still connected
523 * to. We remove any pages still attached to the inode and wait for any IO that
524 * is still in progress before finally destroying the inode.
525 *
526 * An inode must already be marked I_FREEING so that we avoid the inode being
527 * moved back onto lists if we race with other code that manipulates the lists
528 * (e.g. writeback_single_inode). The caller is responsible for setting this.
529 *
530 * An inode must already be removed from the LRU list before being evicted from
531 * the cache. This should occur atomically with setting the I_FREEING state
532 * flag, so no inodes here should ever be on the LRU when being evicted.
533 */
534 static void evict(struct inode *inode)
535 {
536 const struct super_operations *op = inode->i_sb->s_op;
537
538 BUG_ON(!(inode->i_state & I_FREEING));
539 BUG_ON(!list_empty(&inode->i_lru));
540
541 if (!list_empty(&inode->i_wb_list))
542 inode_wb_list_del(inode);
543
544 inode_sb_list_del(inode);
545
546 /*
547 * Wait for flusher thread to be done with the inode so that filesystem
548 * does not start destroying it while writeback is still running. Since
549 * the inode has I_FREEING set, flusher thread won't start new work on
550 * the inode. We just have to wait for running writeback to finish.
551 */
552 inode_wait_for_writeback(inode);
553
554 if (op->evict_inode) {
555 op->evict_inode(inode);
556 } else {
557 if (inode->i_data.nrpages)
558 truncate_inode_pages(&inode->i_data, 0);
559 clear_inode(inode);
560 }
561 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
562 bd_forget(inode);
563 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
564 cd_forget(inode);
565
566 remove_inode_hash(inode);
567
568 spin_lock(&inode->i_lock);
569 wake_up_bit(&inode->i_state, __I_NEW);
570 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
571 spin_unlock(&inode->i_lock);
572
573 destroy_inode(inode);
574 }
575
576 /*
577 * dispose_list - dispose of the contents of a local list
578 * @head: the head of the list to free
579 *
580 * Dispose-list gets a local list with local inodes in it, so it doesn't
581 * need to worry about list corruption and SMP locks.
582 */
583 static void dispose_list(struct list_head *head)
584 {
585 while (!list_empty(head)) {
586 struct inode *inode;
587
588 inode = list_first_entry(head, struct inode, i_lru);
589 list_del_init(&inode->i_lru);
590
591 evict(inode);
592 }
593 }
594
595 /**
596 * evict_inodes - evict all evictable inodes for a superblock
597 * @sb: superblock to operate on
598 *
599 * Make sure that no inodes with zero refcount are retained. This is
600 * called by superblock shutdown after having MS_ACTIVE flag removed,
601 * so any inode reaching zero refcount during or after that call will
602 * be immediately evicted.
603 */
604 void evict_inodes(struct super_block *sb)
605 {
606 struct inode *inode, *next;
607 LIST_HEAD(dispose);
608
609 spin_lock(&inode_sb_list_lock);
610 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
611 if (atomic_read(&inode->i_count))
612 continue;
613
614 spin_lock(&inode->i_lock);
615 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
616 spin_unlock(&inode->i_lock);
617 continue;
618 }
619
620 inode->i_state |= I_FREEING;
621 inode_lru_list_del(inode);
622 spin_unlock(&inode->i_lock);
623 list_add(&inode->i_lru, &dispose);
624 }
625 spin_unlock(&inode_sb_list_lock);
626
627 dispose_list(&dispose);
628 }
629
630 /**
631 * invalidate_inodes - attempt to free all inodes on a superblock
632 * @sb: superblock to operate on
633 * @kill_dirty: flag to guide handling of dirty inodes
634 *
635 * Attempts to free all inodes for a given superblock. If there were any
636 * busy inodes return a non-zero value, else zero.
637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
638 * them as busy.
639 */
640 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
641 {
642 int busy = 0;
643 struct inode *inode, *next;
644 LIST_HEAD(dispose);
645
646 spin_lock(&inode_sb_list_lock);
647 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
648 spin_lock(&inode->i_lock);
649 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 spin_unlock(&inode->i_lock);
651 continue;
652 }
653 if (inode->i_state & I_DIRTY && !kill_dirty) {
654 spin_unlock(&inode->i_lock);
655 busy = 1;
656 continue;
657 }
658 if (atomic_read(&inode->i_count)) {
659 spin_unlock(&inode->i_lock);
660 busy = 1;
661 continue;
662 }
663
664 inode->i_state |= I_FREEING;
665 inode_lru_list_del(inode);
666 spin_unlock(&inode->i_lock);
667 list_add(&inode->i_lru, &dispose);
668 }
669 spin_unlock(&inode_sb_list_lock);
670
671 dispose_list(&dispose);
672
673 return busy;
674 }
675
676 static int can_unuse(struct inode *inode)
677 {
678 if (inode->i_state & ~I_REFERENCED)
679 return 0;
680 if (inode_has_buffers(inode))
681 return 0;
682 if (atomic_read(&inode->i_count))
683 return 0;
684 if (inode->i_data.nrpages)
685 return 0;
686 return 1;
687 }
688
689 /*
690 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
691 * This is called from the superblock shrinker function with a number of inodes
692 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
693 * then are freed outside inode_lock by dispose_list().
694 *
695 * Any inodes which are pinned purely because of attached pagecache have their
696 * pagecache removed. If the inode has metadata buffers attached to
697 * mapping->private_list then try to remove them.
698 *
699 * If the inode has the I_REFERENCED flag set, then it means that it has been
700 * used recently - the flag is set in iput_final(). When we encounter such an
701 * inode, clear the flag and move it to the back of the LRU so it gets another
702 * pass through the LRU before it gets reclaimed. This is necessary because of
703 * the fact we are doing lazy LRU updates to minimise lock contention so the
704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
705 * with this flag set because they are the inodes that are out of order.
706 */
707 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
708 {
709 LIST_HEAD(freeable);
710 int nr_scanned;
711 unsigned long reap = 0;
712
713 spin_lock(&sb->s_inode_lru_lock);
714 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
715 struct inode *inode;
716
717 if (list_empty(&sb->s_inode_lru))
718 break;
719
720 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
721
722 /*
723 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
724 * so use a trylock. If we fail to get the lock, just move the
725 * inode to the back of the list so we don't spin on it.
726 */
727 if (!spin_trylock(&inode->i_lock)) {
728 list_move_tail(&inode->i_lru, &sb->s_inode_lru);
729 continue;
730 }
731
732 /*
733 * Referenced or dirty inodes are still in use. Give them
734 * another pass through the LRU as we canot reclaim them now.
735 */
736 if (atomic_read(&inode->i_count) ||
737 (inode->i_state & ~I_REFERENCED)) {
738 list_del_init(&inode->i_lru);
739 spin_unlock(&inode->i_lock);
740 sb->s_nr_inodes_unused--;
741 this_cpu_dec(nr_unused);
742 continue;
743 }
744
745 /* recently referenced inodes get one more pass */
746 if (inode->i_state & I_REFERENCED) {
747 inode->i_state &= ~I_REFERENCED;
748 list_move(&inode->i_lru, &sb->s_inode_lru);
749 spin_unlock(&inode->i_lock);
750 continue;
751 }
752 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
753 __iget(inode);
754 spin_unlock(&inode->i_lock);
755 spin_unlock(&sb->s_inode_lru_lock);
756 if (remove_inode_buffers(inode))
757 reap += invalidate_mapping_pages(&inode->i_data,
758 0, -1);
759 iput(inode);
760 spin_lock(&sb->s_inode_lru_lock);
761
762 if (inode != list_entry(sb->s_inode_lru.next,
763 struct inode, i_lru))
764 continue; /* wrong inode or list_empty */
765 /* avoid lock inversions with trylock */
766 if (!spin_trylock(&inode->i_lock))
767 continue;
768 if (!can_unuse(inode)) {
769 spin_unlock(&inode->i_lock);
770 continue;
771 }
772 }
773 WARN_ON(inode->i_state & I_NEW);
774 inode->i_state |= I_FREEING;
775 spin_unlock(&inode->i_lock);
776
777 list_move(&inode->i_lru, &freeable);
778 sb->s_nr_inodes_unused--;
779 this_cpu_dec(nr_unused);
780 }
781 if (current_is_kswapd())
782 __count_vm_events(KSWAPD_INODESTEAL, reap);
783 else
784 __count_vm_events(PGINODESTEAL, reap);
785 spin_unlock(&sb->s_inode_lru_lock);
786 if (current->reclaim_state)
787 current->reclaim_state->reclaimed_slab += reap;
788
789 dispose_list(&freeable);
790 }
791
792 static void __wait_on_freeing_inode(struct inode *inode);
793 /*
794 * Called with the inode lock held.
795 */
796 static struct inode *find_inode(struct super_block *sb,
797 struct hlist_head *head,
798 int (*test)(struct inode *, void *),
799 void *data)
800 {
801 struct hlist_node *node;
802 struct inode *inode = NULL;
803
804 repeat:
805 hlist_for_each_entry(inode, node, head, i_hash) {
806 spin_lock(&inode->i_lock);
807 if (inode->i_sb != sb) {
808 spin_unlock(&inode->i_lock);
809 continue;
810 }
811 if (!test(inode, data)) {
812 spin_unlock(&inode->i_lock);
813 continue;
814 }
815 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
816 __wait_on_freeing_inode(inode);
817 goto repeat;
818 }
819 __iget(inode);
820 spin_unlock(&inode->i_lock);
821 return inode;
822 }
823 return NULL;
824 }
825
826 /*
827 * find_inode_fast is the fast path version of find_inode, see the comment at
828 * iget_locked for details.
829 */
830 static struct inode *find_inode_fast(struct super_block *sb,
831 struct hlist_head *head, unsigned long ino)
832 {
833 struct hlist_node *node;
834 struct inode *inode = NULL;
835
836 repeat:
837 hlist_for_each_entry(inode, node, head, i_hash) {
838 spin_lock(&inode->i_lock);
839 if (inode->i_ino != ino) {
840 spin_unlock(&inode->i_lock);
841 continue;
842 }
843 if (inode->i_sb != sb) {
844 spin_unlock(&inode->i_lock);
845 continue;
846 }
847 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
848 __wait_on_freeing_inode(inode);
849 goto repeat;
850 }
851 __iget(inode);
852 spin_unlock(&inode->i_lock);
853 return inode;
854 }
855 return NULL;
856 }
857
858 /*
859 * Each cpu owns a range of LAST_INO_BATCH numbers.
860 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
861 * to renew the exhausted range.
862 *
863 * This does not significantly increase overflow rate because every CPU can
864 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
865 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
866 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
867 * overflow rate by 2x, which does not seem too significant.
868 *
869 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
870 * error if st_ino won't fit in target struct field. Use 32bit counter
871 * here to attempt to avoid that.
872 */
873 #define LAST_INO_BATCH 1024
874 static DEFINE_PER_CPU(unsigned int, last_ino);
875
876 unsigned int get_next_ino(void)
877 {
878 unsigned int *p = &get_cpu_var(last_ino);
879 unsigned int res = *p;
880
881 #ifdef CONFIG_SMP
882 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
883 static atomic_t shared_last_ino;
884 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
885
886 res = next - LAST_INO_BATCH;
887 }
888 #endif
889
890 *p = ++res;
891 put_cpu_var(last_ino);
892 return res;
893 }
894 EXPORT_SYMBOL(get_next_ino);
895
896 /**
897 * new_inode_pseudo - obtain an inode
898 * @sb: superblock
899 *
900 * Allocates a new inode for given superblock.
901 * Inode wont be chained in superblock s_inodes list
902 * This means :
903 * - fs can't be unmount
904 * - quotas, fsnotify, writeback can't work
905 */
906 struct inode *new_inode_pseudo(struct super_block *sb)
907 {
908 struct inode *inode = alloc_inode(sb);
909
910 if (inode) {
911 spin_lock(&inode->i_lock);
912 inode->i_state = 0;
913 spin_unlock(&inode->i_lock);
914 INIT_LIST_HEAD(&inode->i_sb_list);
915 }
916 return inode;
917 }
918
919 /**
920 * new_inode - obtain an inode
921 * @sb: superblock
922 *
923 * Allocates a new inode for given superblock. The default gfp_mask
924 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
925 * If HIGHMEM pages are unsuitable or it is known that pages allocated
926 * for the page cache are not reclaimable or migratable,
927 * mapping_set_gfp_mask() must be called with suitable flags on the
928 * newly created inode's mapping
929 *
930 */
931 struct inode *new_inode(struct super_block *sb)
932 {
933 struct inode *inode;
934
935 spin_lock_prefetch(&inode_sb_list_lock);
936
937 inode = new_inode_pseudo(sb);
938 if (inode)
939 inode_sb_list_add(inode);
940 return inode;
941 }
942 EXPORT_SYMBOL(new_inode);
943
944 #ifdef CONFIG_DEBUG_LOCK_ALLOC
945 void lockdep_annotate_inode_mutex_key(struct inode *inode)
946 {
947 if (S_ISDIR(inode->i_mode)) {
948 struct file_system_type *type = inode->i_sb->s_type;
949
950 /* Set new key only if filesystem hasn't already changed it */
951 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
952 /*
953 * ensure nobody is actually holding i_mutex
954 */
955 mutex_destroy(&inode->i_mutex);
956 mutex_init(&inode->i_mutex);
957 lockdep_set_class(&inode->i_mutex,
958 &type->i_mutex_dir_key);
959 }
960 }
961 }
962 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
963 #endif
964
965 /**
966 * unlock_new_inode - clear the I_NEW state and wake up any waiters
967 * @inode: new inode to unlock
968 *
969 * Called when the inode is fully initialised to clear the new state of the
970 * inode and wake up anyone waiting for the inode to finish initialisation.
971 */
972 void unlock_new_inode(struct inode *inode)
973 {
974 lockdep_annotate_inode_mutex_key(inode);
975 spin_lock(&inode->i_lock);
976 WARN_ON(!(inode->i_state & I_NEW));
977 inode->i_state &= ~I_NEW;
978 smp_mb();
979 wake_up_bit(&inode->i_state, __I_NEW);
980 spin_unlock(&inode->i_lock);
981 }
982 EXPORT_SYMBOL(unlock_new_inode);
983
984 /**
985 * iget5_locked - obtain an inode from a mounted file system
986 * @sb: super block of file system
987 * @hashval: hash value (usually inode number) to get
988 * @test: callback used for comparisons between inodes
989 * @set: callback used to initialize a new struct inode
990 * @data: opaque data pointer to pass to @test and @set
991 *
992 * Search for the inode specified by @hashval and @data in the inode cache,
993 * and if present it is return it with an increased reference count. This is
994 * a generalized version of iget_locked() for file systems where the inode
995 * number is not sufficient for unique identification of an inode.
996 *
997 * If the inode is not in cache, allocate a new inode and return it locked,
998 * hashed, and with the I_NEW flag set. The file system gets to fill it in
999 * before unlocking it via unlock_new_inode().
1000 *
1001 * Note both @test and @set are called with the inode_hash_lock held, so can't
1002 * sleep.
1003 */
1004 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1005 int (*test)(struct inode *, void *),
1006 int (*set)(struct inode *, void *), void *data)
1007 {
1008 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1009 struct inode *inode;
1010
1011 spin_lock(&inode_hash_lock);
1012 inode = find_inode(sb, head, test, data);
1013 spin_unlock(&inode_hash_lock);
1014
1015 if (inode) {
1016 wait_on_inode(inode);
1017 return inode;
1018 }
1019
1020 inode = alloc_inode(sb);
1021 if (inode) {
1022 struct inode *old;
1023
1024 spin_lock(&inode_hash_lock);
1025 /* We released the lock, so.. */
1026 old = find_inode(sb, head, test, data);
1027 if (!old) {
1028 if (set(inode, data))
1029 goto set_failed;
1030
1031 spin_lock(&inode->i_lock);
1032 inode->i_state = I_NEW;
1033 hlist_add_head(&inode->i_hash, head);
1034 spin_unlock(&inode->i_lock);
1035 inode_sb_list_add(inode);
1036 spin_unlock(&inode_hash_lock);
1037
1038 /* Return the locked inode with I_NEW set, the
1039 * caller is responsible for filling in the contents
1040 */
1041 return inode;
1042 }
1043
1044 /*
1045 * Uhhuh, somebody else created the same inode under
1046 * us. Use the old inode instead of the one we just
1047 * allocated.
1048 */
1049 spin_unlock(&inode_hash_lock);
1050 destroy_inode(inode);
1051 inode = old;
1052 wait_on_inode(inode);
1053 }
1054 return inode;
1055
1056 set_failed:
1057 spin_unlock(&inode_hash_lock);
1058 destroy_inode(inode);
1059 return NULL;
1060 }
1061 EXPORT_SYMBOL(iget5_locked);
1062
1063 /**
1064 * iget_locked - obtain an inode from a mounted file system
1065 * @sb: super block of file system
1066 * @ino: inode number to get
1067 *
1068 * Search for the inode specified by @ino in the inode cache and if present
1069 * return it with an increased reference count. This is for file systems
1070 * where the inode number is sufficient for unique identification of an inode.
1071 *
1072 * If the inode is not in cache, allocate a new inode and return it locked,
1073 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1074 * before unlocking it via unlock_new_inode().
1075 */
1076 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1077 {
1078 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1079 struct inode *inode;
1080
1081 spin_lock(&inode_hash_lock);
1082 inode = find_inode_fast(sb, head, ino);
1083 spin_unlock(&inode_hash_lock);
1084 if (inode) {
1085 wait_on_inode(inode);
1086 return inode;
1087 }
1088
1089 inode = alloc_inode(sb);
1090 if (inode) {
1091 struct inode *old;
1092
1093 spin_lock(&inode_hash_lock);
1094 /* We released the lock, so.. */
1095 old = find_inode_fast(sb, head, ino);
1096 if (!old) {
1097 inode->i_ino = ino;
1098 spin_lock(&inode->i_lock);
1099 inode->i_state = I_NEW;
1100 hlist_add_head(&inode->i_hash, head);
1101 spin_unlock(&inode->i_lock);
1102 inode_sb_list_add(inode);
1103 spin_unlock(&inode_hash_lock);
1104
1105 /* Return the locked inode with I_NEW set, the
1106 * caller is responsible for filling in the contents
1107 */
1108 return inode;
1109 }
1110
1111 /*
1112 * Uhhuh, somebody else created the same inode under
1113 * us. Use the old inode instead of the one we just
1114 * allocated.
1115 */
1116 spin_unlock(&inode_hash_lock);
1117 destroy_inode(inode);
1118 inode = old;
1119 wait_on_inode(inode);
1120 }
1121 return inode;
1122 }
1123 EXPORT_SYMBOL(iget_locked);
1124
1125 /*
1126 * search the inode cache for a matching inode number.
1127 * If we find one, then the inode number we are trying to
1128 * allocate is not unique and so we should not use it.
1129 *
1130 * Returns 1 if the inode number is unique, 0 if it is not.
1131 */
1132 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1133 {
1134 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1135 struct hlist_node *node;
1136 struct inode *inode;
1137
1138 spin_lock(&inode_hash_lock);
1139 hlist_for_each_entry(inode, node, b, i_hash) {
1140 if (inode->i_ino == ino && inode->i_sb == sb) {
1141 spin_unlock(&inode_hash_lock);
1142 return 0;
1143 }
1144 }
1145 spin_unlock(&inode_hash_lock);
1146
1147 return 1;
1148 }
1149
1150 /**
1151 * iunique - get a unique inode number
1152 * @sb: superblock
1153 * @max_reserved: highest reserved inode number
1154 *
1155 * Obtain an inode number that is unique on the system for a given
1156 * superblock. This is used by file systems that have no natural
1157 * permanent inode numbering system. An inode number is returned that
1158 * is higher than the reserved limit but unique.
1159 *
1160 * BUGS:
1161 * With a large number of inodes live on the file system this function
1162 * currently becomes quite slow.
1163 */
1164 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1165 {
1166 /*
1167 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1168 * error if st_ino won't fit in target struct field. Use 32bit counter
1169 * here to attempt to avoid that.
1170 */
1171 static DEFINE_SPINLOCK(iunique_lock);
1172 static unsigned int counter;
1173 ino_t res;
1174
1175 spin_lock(&iunique_lock);
1176 do {
1177 if (counter <= max_reserved)
1178 counter = max_reserved + 1;
1179 res = counter++;
1180 } while (!test_inode_iunique(sb, res));
1181 spin_unlock(&iunique_lock);
1182
1183 return res;
1184 }
1185 EXPORT_SYMBOL(iunique);
1186
1187 struct inode *igrab(struct inode *inode)
1188 {
1189 spin_lock(&inode->i_lock);
1190 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1191 __iget(inode);
1192 spin_unlock(&inode->i_lock);
1193 } else {
1194 spin_unlock(&inode->i_lock);
1195 /*
1196 * Handle the case where s_op->clear_inode is not been
1197 * called yet, and somebody is calling igrab
1198 * while the inode is getting freed.
1199 */
1200 inode = NULL;
1201 }
1202 return inode;
1203 }
1204 EXPORT_SYMBOL(igrab);
1205
1206 /**
1207 * ilookup5_nowait - search for an inode in the inode cache
1208 * @sb: super block of file system to search
1209 * @hashval: hash value (usually inode number) to search for
1210 * @test: callback used for comparisons between inodes
1211 * @data: opaque data pointer to pass to @test
1212 *
1213 * Search for the inode specified by @hashval and @data in the inode cache.
1214 * If the inode is in the cache, the inode is returned with an incremented
1215 * reference count.
1216 *
1217 * Note: I_NEW is not waited upon so you have to be very careful what you do
1218 * with the returned inode. You probably should be using ilookup5() instead.
1219 *
1220 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1221 */
1222 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1223 int (*test)(struct inode *, void *), void *data)
1224 {
1225 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1226 struct inode *inode;
1227
1228 spin_lock(&inode_hash_lock);
1229 inode = find_inode(sb, head, test, data);
1230 spin_unlock(&inode_hash_lock);
1231
1232 return inode;
1233 }
1234 EXPORT_SYMBOL(ilookup5_nowait);
1235
1236 /**
1237 * ilookup5 - search for an inode in the inode cache
1238 * @sb: super block of file system to search
1239 * @hashval: hash value (usually inode number) to search for
1240 * @test: callback used for comparisons between inodes
1241 * @data: opaque data pointer to pass to @test
1242 *
1243 * Search for the inode specified by @hashval and @data in the inode cache,
1244 * and if the inode is in the cache, return the inode with an incremented
1245 * reference count. Waits on I_NEW before returning the inode.
1246 * returned with an incremented reference count.
1247 *
1248 * This is a generalized version of ilookup() for file systems where the
1249 * inode number is not sufficient for unique identification of an inode.
1250 *
1251 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1252 */
1253 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1254 int (*test)(struct inode *, void *), void *data)
1255 {
1256 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1257
1258 if (inode)
1259 wait_on_inode(inode);
1260 return inode;
1261 }
1262 EXPORT_SYMBOL(ilookup5);
1263
1264 /**
1265 * ilookup - search for an inode in the inode cache
1266 * @sb: super block of file system to search
1267 * @ino: inode number to search for
1268 *
1269 * Search for the inode @ino in the inode cache, and if the inode is in the
1270 * cache, the inode is returned with an incremented reference count.
1271 */
1272 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1273 {
1274 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1275 struct inode *inode;
1276
1277 spin_lock(&inode_hash_lock);
1278 inode = find_inode_fast(sb, head, ino);
1279 spin_unlock(&inode_hash_lock);
1280
1281 if (inode)
1282 wait_on_inode(inode);
1283 return inode;
1284 }
1285 EXPORT_SYMBOL(ilookup);
1286
1287 int insert_inode_locked(struct inode *inode)
1288 {
1289 struct super_block *sb = inode->i_sb;
1290 ino_t ino = inode->i_ino;
1291 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1292
1293 while (1) {
1294 struct hlist_node *node;
1295 struct inode *old = NULL;
1296 spin_lock(&inode_hash_lock);
1297 hlist_for_each_entry(old, node, head, i_hash) {
1298 if (old->i_ino != ino)
1299 continue;
1300 if (old->i_sb != sb)
1301 continue;
1302 spin_lock(&old->i_lock);
1303 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1304 spin_unlock(&old->i_lock);
1305 continue;
1306 }
1307 break;
1308 }
1309 if (likely(!node)) {
1310 spin_lock(&inode->i_lock);
1311 inode->i_state |= I_NEW;
1312 hlist_add_head(&inode->i_hash, head);
1313 spin_unlock(&inode->i_lock);
1314 spin_unlock(&inode_hash_lock);
1315 return 0;
1316 }
1317 __iget(old);
1318 spin_unlock(&old->i_lock);
1319 spin_unlock(&inode_hash_lock);
1320 wait_on_inode(old);
1321 if (unlikely(!inode_unhashed(old))) {
1322 iput(old);
1323 return -EBUSY;
1324 }
1325 iput(old);
1326 }
1327 }
1328 EXPORT_SYMBOL(insert_inode_locked);
1329
1330 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1331 int (*test)(struct inode *, void *), void *data)
1332 {
1333 struct super_block *sb = inode->i_sb;
1334 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1335
1336 while (1) {
1337 struct hlist_node *node;
1338 struct inode *old = NULL;
1339
1340 spin_lock(&inode_hash_lock);
1341 hlist_for_each_entry(old, node, head, i_hash) {
1342 if (old->i_sb != sb)
1343 continue;
1344 if (!test(old, data))
1345 continue;
1346 spin_lock(&old->i_lock);
1347 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1348 spin_unlock(&old->i_lock);
1349 continue;
1350 }
1351 break;
1352 }
1353 if (likely(!node)) {
1354 spin_lock(&inode->i_lock);
1355 inode->i_state |= I_NEW;
1356 hlist_add_head(&inode->i_hash, head);
1357 spin_unlock(&inode->i_lock);
1358 spin_unlock(&inode_hash_lock);
1359 return 0;
1360 }
1361 __iget(old);
1362 spin_unlock(&old->i_lock);
1363 spin_unlock(&inode_hash_lock);
1364 wait_on_inode(old);
1365 if (unlikely(!inode_unhashed(old))) {
1366 iput(old);
1367 return -EBUSY;
1368 }
1369 iput(old);
1370 }
1371 }
1372 EXPORT_SYMBOL(insert_inode_locked4);
1373
1374
1375 int generic_delete_inode(struct inode *inode)
1376 {
1377 return 1;
1378 }
1379 EXPORT_SYMBOL(generic_delete_inode);
1380
1381 /*
1382 * Called when we're dropping the last reference
1383 * to an inode.
1384 *
1385 * Call the FS "drop_inode()" function, defaulting to
1386 * the legacy UNIX filesystem behaviour. If it tells
1387 * us to evict inode, do so. Otherwise, retain inode
1388 * in cache if fs is alive, sync and evict if fs is
1389 * shutting down.
1390 */
1391 static void iput_final(struct inode *inode)
1392 {
1393 struct super_block *sb = inode->i_sb;
1394 const struct super_operations *op = inode->i_sb->s_op;
1395 int drop;
1396
1397 WARN_ON(inode->i_state & I_NEW);
1398
1399 if (op->drop_inode)
1400 drop = op->drop_inode(inode);
1401 else
1402 drop = generic_drop_inode(inode);
1403
1404 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1405 inode->i_state |= I_REFERENCED;
1406 inode_add_lru(inode);
1407 spin_unlock(&inode->i_lock);
1408 return;
1409 }
1410
1411 if (!drop) {
1412 inode->i_state |= I_WILL_FREE;
1413 spin_unlock(&inode->i_lock);
1414 write_inode_now(inode, 1);
1415 spin_lock(&inode->i_lock);
1416 WARN_ON(inode->i_state & I_NEW);
1417 inode->i_state &= ~I_WILL_FREE;
1418 }
1419
1420 inode->i_state |= I_FREEING;
1421 if (!list_empty(&inode->i_lru))
1422 inode_lru_list_del(inode);
1423 spin_unlock(&inode->i_lock);
1424
1425 evict(inode);
1426 }
1427
1428 /**
1429 * iput - put an inode
1430 * @inode: inode to put
1431 *
1432 * Puts an inode, dropping its usage count. If the inode use count hits
1433 * zero, the inode is then freed and may also be destroyed.
1434 *
1435 * Consequently, iput() can sleep.
1436 */
1437 void iput(struct inode *inode)
1438 {
1439 if (inode) {
1440 BUG_ON(inode->i_state & I_CLEAR);
1441
1442 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1443 iput_final(inode);
1444 }
1445 }
1446 EXPORT_SYMBOL(iput);
1447
1448 /**
1449 * bmap - find a block number in a file
1450 * @inode: inode of file
1451 * @block: block to find
1452 *
1453 * Returns the block number on the device holding the inode that
1454 * is the disk block number for the block of the file requested.
1455 * That is, asked for block 4 of inode 1 the function will return the
1456 * disk block relative to the disk start that holds that block of the
1457 * file.
1458 */
1459 sector_t bmap(struct inode *inode, sector_t block)
1460 {
1461 sector_t res = 0;
1462 if (inode->i_mapping->a_ops->bmap)
1463 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1464 return res;
1465 }
1466 EXPORT_SYMBOL(bmap);
1467
1468 /*
1469 * With relative atime, only update atime if the previous atime is
1470 * earlier than either the ctime or mtime or if at least a day has
1471 * passed since the last atime update.
1472 */
1473 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1474 struct timespec now)
1475 {
1476
1477 if (!(mnt->mnt_flags & MNT_RELATIME))
1478 return 1;
1479 /*
1480 * Is mtime younger than atime? If yes, update atime:
1481 */
1482 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1483 return 1;
1484 /*
1485 * Is ctime younger than atime? If yes, update atime:
1486 */
1487 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1488 return 1;
1489
1490 /*
1491 * Is the previous atime value older than a day? If yes,
1492 * update atime:
1493 */
1494 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1495 return 1;
1496 /*
1497 * Good, we can skip the atime update:
1498 */
1499 return 0;
1500 }
1501
1502 /*
1503 * This does the actual work of updating an inodes time or version. Must have
1504 * had called mnt_want_write() before calling this.
1505 */
1506 static int update_time(struct inode *inode, struct timespec *time, int flags)
1507 {
1508 if (inode->i_op->update_time)
1509 return inode->i_op->update_time(inode, time, flags);
1510
1511 if (flags & S_ATIME)
1512 inode->i_atime = *time;
1513 if (flags & S_VERSION)
1514 inode_inc_iversion(inode);
1515 if (flags & S_CTIME)
1516 inode->i_ctime = *time;
1517 if (flags & S_MTIME)
1518 inode->i_mtime = *time;
1519 mark_inode_dirty_sync(inode);
1520 return 0;
1521 }
1522
1523 /**
1524 * touch_atime - update the access time
1525 * @path: the &struct path to update
1526 *
1527 * Update the accessed time on an inode and mark it for writeback.
1528 * This function automatically handles read only file systems and media,
1529 * as well as the "noatime" flag and inode specific "noatime" markers.
1530 */
1531 void touch_atime(struct path *path)
1532 {
1533 struct vfsmount *mnt = path->mnt;
1534 struct inode *inode = path->dentry->d_inode;
1535 struct timespec now;
1536
1537 if (inode->i_flags & S_NOATIME)
1538 return;
1539 if (IS_NOATIME(inode))
1540 return;
1541 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1542 return;
1543
1544 if (mnt->mnt_flags & MNT_NOATIME)
1545 return;
1546 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1547 return;
1548
1549 now = current_fs_time(inode->i_sb);
1550
1551 if (!relatime_need_update(mnt, inode, now))
1552 return;
1553
1554 if (timespec_equal(&inode->i_atime, &now))
1555 return;
1556
1557 if (!sb_start_write_trylock(inode->i_sb))
1558 return;
1559
1560 if (__mnt_want_write(mnt))
1561 goto skip_update;
1562 /*
1563 * File systems can error out when updating inodes if they need to
1564 * allocate new space to modify an inode (such is the case for
1565 * Btrfs), but since we touch atime while walking down the path we
1566 * really don't care if we failed to update the atime of the file,
1567 * so just ignore the return value.
1568 * We may also fail on filesystems that have the ability to make parts
1569 * of the fs read only, e.g. subvolumes in Btrfs.
1570 */
1571 update_time(inode, &now, S_ATIME);
1572 __mnt_drop_write(mnt);
1573 skip_update:
1574 sb_end_write(inode->i_sb);
1575 }
1576 EXPORT_SYMBOL(touch_atime);
1577
1578 /*
1579 * The logic we want is
1580 *
1581 * if suid or (sgid and xgrp)
1582 * remove privs
1583 */
1584 int should_remove_suid(struct dentry *dentry)
1585 {
1586 umode_t mode = dentry->d_inode->i_mode;
1587 int kill = 0;
1588
1589 /* suid always must be killed */
1590 if (unlikely(mode & S_ISUID))
1591 kill = ATTR_KILL_SUID;
1592
1593 /*
1594 * sgid without any exec bits is just a mandatory locking mark; leave
1595 * it alone. If some exec bits are set, it's a real sgid; kill it.
1596 */
1597 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1598 kill |= ATTR_KILL_SGID;
1599
1600 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1601 return kill;
1602
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(should_remove_suid);
1606
1607 static int __remove_suid(struct dentry *dentry, int kill)
1608 {
1609 struct iattr newattrs;
1610
1611 newattrs.ia_valid = ATTR_FORCE | kill;
1612 return notify_change(dentry, &newattrs);
1613 }
1614
1615 int file_remove_suid(struct file *file)
1616 {
1617 struct dentry *dentry = file->f_path.dentry;
1618 struct inode *inode = dentry->d_inode;
1619 int killsuid;
1620 int killpriv;
1621 int error = 0;
1622
1623 /* Fast path for nothing security related */
1624 if (IS_NOSEC(inode))
1625 return 0;
1626
1627 killsuid = should_remove_suid(dentry);
1628 killpriv = security_inode_need_killpriv(dentry);
1629
1630 if (killpriv < 0)
1631 return killpriv;
1632 if (killpriv)
1633 error = security_inode_killpriv(dentry);
1634 if (!error && killsuid)
1635 error = __remove_suid(dentry, killsuid);
1636 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1637 inode->i_flags |= S_NOSEC;
1638
1639 return error;
1640 }
1641 EXPORT_SYMBOL(file_remove_suid);
1642
1643 /**
1644 * file_update_time - update mtime and ctime time
1645 * @file: file accessed
1646 *
1647 * Update the mtime and ctime members of an inode and mark the inode
1648 * for writeback. Note that this function is meant exclusively for
1649 * usage in the file write path of filesystems, and filesystems may
1650 * choose to explicitly ignore update via this function with the
1651 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1652 * timestamps are handled by the server. This can return an error for
1653 * file systems who need to allocate space in order to update an inode.
1654 */
1655
1656 int file_update_time(struct file *file)
1657 {
1658 struct inode *inode = file_inode(file);
1659 struct timespec now;
1660 int sync_it = 0;
1661 int ret;
1662
1663 /* First try to exhaust all avenues to not sync */
1664 if (IS_NOCMTIME(inode))
1665 return 0;
1666
1667 now = current_fs_time(inode->i_sb);
1668 if (!timespec_equal(&inode->i_mtime, &now))
1669 sync_it = S_MTIME;
1670
1671 if (!timespec_equal(&inode->i_ctime, &now))
1672 sync_it |= S_CTIME;
1673
1674 if (IS_I_VERSION(inode))
1675 sync_it |= S_VERSION;
1676
1677 if (!sync_it)
1678 return 0;
1679
1680 /* Finally allowed to write? Takes lock. */
1681 if (__mnt_want_write_file(file))
1682 return 0;
1683
1684 ret = update_time(inode, &now, sync_it);
1685 __mnt_drop_write_file(file);
1686
1687 return ret;
1688 }
1689 EXPORT_SYMBOL(file_update_time);
1690
1691 int inode_needs_sync(struct inode *inode)
1692 {
1693 if (IS_SYNC(inode))
1694 return 1;
1695 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1696 return 1;
1697 return 0;
1698 }
1699 EXPORT_SYMBOL(inode_needs_sync);
1700
1701 int inode_wait(void *word)
1702 {
1703 schedule();
1704 return 0;
1705 }
1706 EXPORT_SYMBOL(inode_wait);
1707
1708 /*
1709 * If we try to find an inode in the inode hash while it is being
1710 * deleted, we have to wait until the filesystem completes its
1711 * deletion before reporting that it isn't found. This function waits
1712 * until the deletion _might_ have completed. Callers are responsible
1713 * to recheck inode state.
1714 *
1715 * It doesn't matter if I_NEW is not set initially, a call to
1716 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1717 * will DTRT.
1718 */
1719 static void __wait_on_freeing_inode(struct inode *inode)
1720 {
1721 wait_queue_head_t *wq;
1722 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1723 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1724 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1725 spin_unlock(&inode->i_lock);
1726 spin_unlock(&inode_hash_lock);
1727 schedule();
1728 finish_wait(wq, &wait.wait);
1729 spin_lock(&inode_hash_lock);
1730 }
1731
1732 static __initdata unsigned long ihash_entries;
1733 static int __init set_ihash_entries(char *str)
1734 {
1735 if (!str)
1736 return 0;
1737 ihash_entries = simple_strtoul(str, &str, 0);
1738 return 1;
1739 }
1740 __setup("ihash_entries=", set_ihash_entries);
1741
1742 /*
1743 * Initialize the waitqueues and inode hash table.
1744 */
1745 void __init inode_init_early(void)
1746 {
1747 unsigned int loop;
1748
1749 /* If hashes are distributed across NUMA nodes, defer
1750 * hash allocation until vmalloc space is available.
1751 */
1752 if (hashdist)
1753 return;
1754
1755 inode_hashtable =
1756 alloc_large_system_hash("Inode-cache",
1757 sizeof(struct hlist_head),
1758 ihash_entries,
1759 14,
1760 HASH_EARLY,
1761 &i_hash_shift,
1762 &i_hash_mask,
1763 0,
1764 0);
1765
1766 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1767 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1768 }
1769
1770 void __init inode_init(void)
1771 {
1772 unsigned int loop;
1773
1774 /* inode slab cache */
1775 inode_cachep = kmem_cache_create("inode_cache",
1776 sizeof(struct inode),
1777 0,
1778 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1779 SLAB_MEM_SPREAD),
1780 init_once);
1781
1782 /* Hash may have been set up in inode_init_early */
1783 if (!hashdist)
1784 return;
1785
1786 inode_hashtable =
1787 alloc_large_system_hash("Inode-cache",
1788 sizeof(struct hlist_head),
1789 ihash_entries,
1790 14,
1791 0,
1792 &i_hash_shift,
1793 &i_hash_mask,
1794 0,
1795 0);
1796
1797 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1798 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1799 }
1800
1801 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1802 {
1803 inode->i_mode = mode;
1804 if (S_ISCHR(mode)) {
1805 inode->i_fop = &def_chr_fops;
1806 inode->i_rdev = rdev;
1807 } else if (S_ISBLK(mode)) {
1808 inode->i_fop = &def_blk_fops;
1809 inode->i_rdev = rdev;
1810 } else if (S_ISFIFO(mode))
1811 inode->i_fop = &def_fifo_fops;
1812 else if (S_ISSOCK(mode))
1813 inode->i_fop = &bad_sock_fops;
1814 else
1815 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1816 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1817 inode->i_ino);
1818 }
1819 EXPORT_SYMBOL(init_special_inode);
1820
1821 /**
1822 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1823 * @inode: New inode
1824 * @dir: Directory inode
1825 * @mode: mode of the new inode
1826 */
1827 void inode_init_owner(struct inode *inode, const struct inode *dir,
1828 umode_t mode)
1829 {
1830 inode->i_uid = current_fsuid();
1831 if (dir && dir->i_mode & S_ISGID) {
1832 inode->i_gid = dir->i_gid;
1833 if (S_ISDIR(mode))
1834 mode |= S_ISGID;
1835 } else
1836 inode->i_gid = current_fsgid();
1837 inode->i_mode = mode;
1838 }
1839 EXPORT_SYMBOL(inode_init_owner);
1840
1841 /**
1842 * inode_owner_or_capable - check current task permissions to inode
1843 * @inode: inode being checked
1844 *
1845 * Return true if current either has CAP_FOWNER to the inode, or
1846 * owns the file.
1847 */
1848 bool inode_owner_or_capable(const struct inode *inode)
1849 {
1850 if (uid_eq(current_fsuid(), inode->i_uid))
1851 return true;
1852 if (inode_capable(inode, CAP_FOWNER))
1853 return true;
1854 return false;
1855 }
1856 EXPORT_SYMBOL(inode_owner_or_capable);
1857
1858 /*
1859 * Direct i/o helper functions
1860 */
1861 static void __inode_dio_wait(struct inode *inode)
1862 {
1863 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1864 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1865
1866 do {
1867 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1868 if (atomic_read(&inode->i_dio_count))
1869 schedule();
1870 } while (atomic_read(&inode->i_dio_count));
1871 finish_wait(wq, &q.wait);
1872 }
1873
1874 /**
1875 * inode_dio_wait - wait for outstanding DIO requests to finish
1876 * @inode: inode to wait for
1877 *
1878 * Waits for all pending direct I/O requests to finish so that we can
1879 * proceed with a truncate or equivalent operation.
1880 *
1881 * Must be called under a lock that serializes taking new references
1882 * to i_dio_count, usually by inode->i_mutex.
1883 */
1884 void inode_dio_wait(struct inode *inode)
1885 {
1886 if (atomic_read(&inode->i_dio_count))
1887 __inode_dio_wait(inode);
1888 }
1889 EXPORT_SYMBOL(inode_dio_wait);
1890
1891 /*
1892 * inode_dio_done - signal finish of a direct I/O requests
1893 * @inode: inode the direct I/O happens on
1894 *
1895 * This is called once we've finished processing a direct I/O request,
1896 * and is used to wake up callers waiting for direct I/O to be quiesced.
1897 */
1898 void inode_dio_done(struct inode *inode)
1899 {
1900 if (atomic_dec_and_test(&inode->i_dio_count))
1901 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1902 }
1903 EXPORT_SYMBOL(inode_dio_done);