]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
switch hppfs to ->evict_inode()
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 #include <linux/posix_acl.h>
28
29 /*
30 * This is needed for the following functions:
31 * - inode_has_buffers
32 * - invalidate_inode_buffers
33 * - invalidate_bdev
34 *
35 * FIXME: remove all knowledge of the buffer layer from this file
36 */
37 #include <linux/buffer_head.h>
38
39 /*
40 * New inode.c implementation.
41 *
42 * This implementation has the basic premise of trying
43 * to be extremely low-overhead and SMP-safe, yet be
44 * simple enough to be "obviously correct".
45 *
46 * Famous last words.
47 */
48
49 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
50
51 /* #define INODE_PARANOIA 1 */
52 /* #define INODE_DEBUG 1 */
53
54 /*
55 * Inode lookup is no longer as critical as it used to be:
56 * most of the lookups are going to be through the dcache.
57 */
58 #define I_HASHBITS i_hash_shift
59 #define I_HASHMASK i_hash_mask
60
61 static unsigned int i_hash_mask __read_mostly;
62 static unsigned int i_hash_shift __read_mostly;
63
64 /*
65 * Each inode can be on two separate lists. One is
66 * the hash list of the inode, used for lookups. The
67 * other linked list is the "type" list:
68 * "in_use" - valid inode, i_count > 0, i_nlink > 0
69 * "dirty" - as "in_use" but also dirty
70 * "unused" - valid inode, i_count = 0
71 *
72 * A "dirty" list is maintained for each super block,
73 * allowing for low-overhead inode sync() operations.
74 */
75
76 LIST_HEAD(inode_in_use);
77 LIST_HEAD(inode_unused);
78 static struct hlist_head *inode_hashtable __read_mostly;
79
80 /*
81 * A simple spinlock to protect the list manipulations.
82 *
83 * NOTE! You also have to own the lock if you change
84 * the i_state of an inode while it is in use..
85 */
86 DEFINE_SPINLOCK(inode_lock);
87
88 /*
89 * iprune_sem provides exclusion between the kswapd or try_to_free_pages
90 * icache shrinking path, and the umount path. Without this exclusion,
91 * by the time prune_icache calls iput for the inode whose pages it has
92 * been invalidating, or by the time it calls clear_inode & destroy_inode
93 * from its final dispose_list, the struct super_block they refer to
94 * (for inode->i_sb->s_op) may already have been freed and reused.
95 *
96 * We make this an rwsem because the fastpath is icache shrinking. In
97 * some cases a filesystem may be doing a significant amount of work in
98 * its inode reclaim code, so this should improve parallelism.
99 */
100 static DECLARE_RWSEM(iprune_sem);
101
102 /*
103 * Statistics gathering..
104 */
105 struct inodes_stat_t inodes_stat;
106
107 static struct kmem_cache *inode_cachep __read_mostly;
108
109 static void wake_up_inode(struct inode *inode)
110 {
111 /*
112 * Prevent speculative execution through spin_unlock(&inode_lock);
113 */
114 smp_mb();
115 wake_up_bit(&inode->i_state, __I_NEW);
116 }
117
118 /**
119 * inode_init_always - perform inode structure intialisation
120 * @sb: superblock inode belongs to
121 * @inode: inode to initialise
122 *
123 * These are initializations that need to be done on every inode
124 * allocation as the fields are not initialised by slab allocation.
125 */
126 int inode_init_always(struct super_block *sb, struct inode *inode)
127 {
128 static const struct address_space_operations empty_aops;
129 static const struct inode_operations empty_iops;
130 static const struct file_operations empty_fops;
131 struct address_space *const mapping = &inode->i_data;
132
133 inode->i_sb = sb;
134 inode->i_blkbits = sb->s_blocksize_bits;
135 inode->i_flags = 0;
136 atomic_set(&inode->i_count, 1);
137 inode->i_op = &empty_iops;
138 inode->i_fop = &empty_fops;
139 inode->i_nlink = 1;
140 inode->i_uid = 0;
141 inode->i_gid = 0;
142 atomic_set(&inode->i_writecount, 0);
143 inode->i_size = 0;
144 inode->i_blocks = 0;
145 inode->i_bytes = 0;
146 inode->i_generation = 0;
147 #ifdef CONFIG_QUOTA
148 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
149 #endif
150 inode->i_pipe = NULL;
151 inode->i_bdev = NULL;
152 inode->i_cdev = NULL;
153 inode->i_rdev = 0;
154 inode->dirtied_when = 0;
155
156 if (security_inode_alloc(inode))
157 goto out;
158 spin_lock_init(&inode->i_lock);
159 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
160
161 mutex_init(&inode->i_mutex);
162 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
163
164 init_rwsem(&inode->i_alloc_sem);
165 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
166
167 mapping->a_ops = &empty_aops;
168 mapping->host = inode;
169 mapping->flags = 0;
170 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
171 mapping->assoc_mapping = NULL;
172 mapping->backing_dev_info = &default_backing_dev_info;
173 mapping->writeback_index = 0;
174
175 /*
176 * If the block_device provides a backing_dev_info for client
177 * inodes then use that. Otherwise the inode share the bdev's
178 * backing_dev_info.
179 */
180 if (sb->s_bdev) {
181 struct backing_dev_info *bdi;
182
183 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
184 mapping->backing_dev_info = bdi;
185 }
186 inode->i_private = NULL;
187 inode->i_mapping = mapping;
188 #ifdef CONFIG_FS_POSIX_ACL
189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191
192 #ifdef CONFIG_FSNOTIFY
193 inode->i_fsnotify_mask = 0;
194 #endif
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
225 void __destroy_inode(struct inode *inode)
226 {
227 BUG_ON(inode_has_buffers(inode));
228 security_inode_free(inode);
229 fsnotify_inode_delete(inode);
230 #ifdef CONFIG_FS_POSIX_ACL
231 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
232 posix_acl_release(inode->i_acl);
233 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
234 posix_acl_release(inode->i_default_acl);
235 #endif
236 }
237 EXPORT_SYMBOL(__destroy_inode);
238
239 void destroy_inode(struct inode *inode)
240 {
241 __destroy_inode(inode);
242 if (inode->i_sb->s_op->destroy_inode)
243 inode->i_sb->s_op->destroy_inode(inode);
244 else
245 kmem_cache_free(inode_cachep, (inode));
246 }
247
248 /*
249 * These are initializations that only need to be done
250 * once, because the fields are idempotent across use
251 * of the inode, so let the slab aware of that.
252 */
253 void inode_init_once(struct inode *inode)
254 {
255 memset(inode, 0, sizeof(*inode));
256 INIT_HLIST_NODE(&inode->i_hash);
257 INIT_LIST_HEAD(&inode->i_dentry);
258 INIT_LIST_HEAD(&inode->i_devices);
259 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
260 spin_lock_init(&inode->i_data.tree_lock);
261 spin_lock_init(&inode->i_data.i_mmap_lock);
262 INIT_LIST_HEAD(&inode->i_data.private_list);
263 spin_lock_init(&inode->i_data.private_lock);
264 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
265 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
266 i_size_ordered_init(inode);
267 #ifdef CONFIG_INOTIFY
268 INIT_LIST_HEAD(&inode->inotify_watches);
269 mutex_init(&inode->inotify_mutex);
270 #endif
271 #ifdef CONFIG_FSNOTIFY
272 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
273 #endif
274 }
275 EXPORT_SYMBOL(inode_init_once);
276
277 static void init_once(void *foo)
278 {
279 struct inode *inode = (struct inode *) foo;
280
281 inode_init_once(inode);
282 }
283
284 /*
285 * inode_lock must be held
286 */
287 void __iget(struct inode *inode)
288 {
289 if (atomic_inc_return(&inode->i_count) != 1)
290 return;
291
292 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
293 list_move(&inode->i_list, &inode_in_use);
294 inodes_stat.nr_unused--;
295 }
296
297 void end_writeback(struct inode *inode)
298 {
299 might_sleep();
300 BUG_ON(inode->i_data.nrpages);
301 BUG_ON(!list_empty(&inode->i_data.private_list));
302 BUG_ON(!(inode->i_state & I_FREEING));
303 BUG_ON(inode->i_state & I_CLEAR);
304 inode_sync_wait(inode);
305 inode->i_state = I_FREEING | I_CLEAR;
306 }
307 EXPORT_SYMBOL(end_writeback);
308
309 /**
310 * clear_inode - clear an inode
311 * @inode: inode to clear
312 *
313 * This is called by the filesystem to tell us
314 * that the inode is no longer useful. We just
315 * terminate it with extreme prejudice.
316 */
317 void clear_inode(struct inode *inode)
318 {
319 might_sleep();
320 invalidate_inode_buffers(inode);
321
322 BUG_ON(inode->i_data.nrpages);
323 BUG_ON(!(inode->i_state & I_FREEING));
324 BUG_ON(inode->i_state & I_CLEAR);
325 inode_sync_wait(inode);
326 if (inode->i_sb->s_op->clear_inode)
327 inode->i_sb->s_op->clear_inode(inode);
328 inode->i_state = I_FREEING | I_CLEAR;
329 }
330 EXPORT_SYMBOL(clear_inode);
331
332 static void evict(struct inode *inode, int delete)
333 {
334 const struct super_operations *op = inode->i_sb->s_op;
335
336 if (op->evict_inode) {
337 op->evict_inode(inode);
338 } else if (delete && op->delete_inode) {
339 op->delete_inode(inode);
340 } else {
341 if (inode->i_data.nrpages)
342 truncate_inode_pages(&inode->i_data, 0);
343 clear_inode(inode);
344 }
345 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
346 bd_forget(inode);
347 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
348 cd_forget(inode);
349 }
350
351 /*
352 * dispose_list - dispose of the contents of a local list
353 * @head: the head of the list to free
354 *
355 * Dispose-list gets a local list with local inodes in it, so it doesn't
356 * need to worry about list corruption and SMP locks.
357 */
358 static void dispose_list(struct list_head *head)
359 {
360 int nr_disposed = 0;
361
362 while (!list_empty(head)) {
363 struct inode *inode;
364
365 inode = list_first_entry(head, struct inode, i_list);
366 list_del(&inode->i_list);
367
368 evict(inode, 0);
369
370 spin_lock(&inode_lock);
371 hlist_del_init(&inode->i_hash);
372 list_del_init(&inode->i_sb_list);
373 spin_unlock(&inode_lock);
374
375 wake_up_inode(inode);
376 destroy_inode(inode);
377 nr_disposed++;
378 }
379 spin_lock(&inode_lock);
380 inodes_stat.nr_inodes -= nr_disposed;
381 spin_unlock(&inode_lock);
382 }
383
384 /*
385 * Invalidate all inodes for a device.
386 */
387 static int invalidate_list(struct list_head *head, struct list_head *dispose)
388 {
389 struct list_head *next;
390 int busy = 0, count = 0;
391
392 next = head->next;
393 for (;;) {
394 struct list_head *tmp = next;
395 struct inode *inode;
396
397 /*
398 * We can reschedule here without worrying about the list's
399 * consistency because the per-sb list of inodes must not
400 * change during umount anymore, and because iprune_sem keeps
401 * shrink_icache_memory() away.
402 */
403 cond_resched_lock(&inode_lock);
404
405 next = next->next;
406 if (tmp == head)
407 break;
408 inode = list_entry(tmp, struct inode, i_sb_list);
409 if (inode->i_state & I_NEW)
410 continue;
411 invalidate_inode_buffers(inode);
412 if (!atomic_read(&inode->i_count)) {
413 list_move(&inode->i_list, dispose);
414 WARN_ON(inode->i_state & I_NEW);
415 inode->i_state |= I_FREEING;
416 count++;
417 continue;
418 }
419 busy = 1;
420 }
421 /* only unused inodes may be cached with i_count zero */
422 inodes_stat.nr_unused -= count;
423 return busy;
424 }
425
426 /**
427 * invalidate_inodes - discard the inodes on a device
428 * @sb: superblock
429 *
430 * Discard all of the inodes for a given superblock. If the discard
431 * fails because there are busy inodes then a non zero value is returned.
432 * If the discard is successful all the inodes have been discarded.
433 */
434 int invalidate_inodes(struct super_block *sb)
435 {
436 int busy;
437 LIST_HEAD(throw_away);
438
439 down_write(&iprune_sem);
440 spin_lock(&inode_lock);
441 inotify_unmount_inodes(&sb->s_inodes);
442 fsnotify_unmount_inodes(&sb->s_inodes);
443 busy = invalidate_list(&sb->s_inodes, &throw_away);
444 spin_unlock(&inode_lock);
445
446 dispose_list(&throw_away);
447 up_write(&iprune_sem);
448
449 return busy;
450 }
451 EXPORT_SYMBOL(invalidate_inodes);
452
453 static int can_unuse(struct inode *inode)
454 {
455 if (inode->i_state)
456 return 0;
457 if (inode_has_buffers(inode))
458 return 0;
459 if (atomic_read(&inode->i_count))
460 return 0;
461 if (inode->i_data.nrpages)
462 return 0;
463 return 1;
464 }
465
466 /*
467 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
468 * a temporary list and then are freed outside inode_lock by dispose_list().
469 *
470 * Any inodes which are pinned purely because of attached pagecache have their
471 * pagecache removed. We expect the final iput() on that inode to add it to
472 * the front of the inode_unused list. So look for it there and if the
473 * inode is still freeable, proceed. The right inode is found 99.9% of the
474 * time in testing on a 4-way.
475 *
476 * If the inode has metadata buffers attached to mapping->private_list then
477 * try to remove them.
478 */
479 static void prune_icache(int nr_to_scan)
480 {
481 LIST_HEAD(freeable);
482 int nr_pruned = 0;
483 int nr_scanned;
484 unsigned long reap = 0;
485
486 down_read(&iprune_sem);
487 spin_lock(&inode_lock);
488 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
489 struct inode *inode;
490
491 if (list_empty(&inode_unused))
492 break;
493
494 inode = list_entry(inode_unused.prev, struct inode, i_list);
495
496 if (inode->i_state || atomic_read(&inode->i_count)) {
497 list_move(&inode->i_list, &inode_unused);
498 continue;
499 }
500 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
501 __iget(inode);
502 spin_unlock(&inode_lock);
503 if (remove_inode_buffers(inode))
504 reap += invalidate_mapping_pages(&inode->i_data,
505 0, -1);
506 iput(inode);
507 spin_lock(&inode_lock);
508
509 if (inode != list_entry(inode_unused.next,
510 struct inode, i_list))
511 continue; /* wrong inode or list_empty */
512 if (!can_unuse(inode))
513 continue;
514 }
515 list_move(&inode->i_list, &freeable);
516 WARN_ON(inode->i_state & I_NEW);
517 inode->i_state |= I_FREEING;
518 nr_pruned++;
519 }
520 inodes_stat.nr_unused -= nr_pruned;
521 if (current_is_kswapd())
522 __count_vm_events(KSWAPD_INODESTEAL, reap);
523 else
524 __count_vm_events(PGINODESTEAL, reap);
525 spin_unlock(&inode_lock);
526
527 dispose_list(&freeable);
528 up_read(&iprune_sem);
529 }
530
531 /*
532 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
533 * "unused" means that no dentries are referring to the inodes: the files are
534 * not open and the dcache references to those inodes have already been
535 * reclaimed.
536 *
537 * This function is passed the number of inodes to scan, and it returns the
538 * total number of remaining possibly-reclaimable inodes.
539 */
540 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
541 {
542 if (nr) {
543 /*
544 * Nasty deadlock avoidance. We may hold various FS locks,
545 * and we don't want to recurse into the FS that called us
546 * in clear_inode() and friends..
547 */
548 if (!(gfp_mask & __GFP_FS))
549 return -1;
550 prune_icache(nr);
551 }
552 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
553 }
554
555 static struct shrinker icache_shrinker = {
556 .shrink = shrink_icache_memory,
557 .seeks = DEFAULT_SEEKS,
558 };
559
560 static void __wait_on_freeing_inode(struct inode *inode);
561 /*
562 * Called with the inode lock held.
563 * NOTE: we are not increasing the inode-refcount, you must call __iget()
564 * by hand after calling find_inode now! This simplifies iunique and won't
565 * add any additional branch in the common code.
566 */
567 static struct inode *find_inode(struct super_block *sb,
568 struct hlist_head *head,
569 int (*test)(struct inode *, void *),
570 void *data)
571 {
572 struct hlist_node *node;
573 struct inode *inode = NULL;
574
575 repeat:
576 hlist_for_each_entry(inode, node, head, i_hash) {
577 if (inode->i_sb != sb)
578 continue;
579 if (!test(inode, data))
580 continue;
581 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
582 __wait_on_freeing_inode(inode);
583 goto repeat;
584 }
585 break;
586 }
587 return node ? inode : NULL;
588 }
589
590 /*
591 * find_inode_fast is the fast path version of find_inode, see the comment at
592 * iget_locked for details.
593 */
594 static struct inode *find_inode_fast(struct super_block *sb,
595 struct hlist_head *head, unsigned long ino)
596 {
597 struct hlist_node *node;
598 struct inode *inode = NULL;
599
600 repeat:
601 hlist_for_each_entry(inode, node, head, i_hash) {
602 if (inode->i_ino != ino)
603 continue;
604 if (inode->i_sb != sb)
605 continue;
606 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
607 __wait_on_freeing_inode(inode);
608 goto repeat;
609 }
610 break;
611 }
612 return node ? inode : NULL;
613 }
614
615 static unsigned long hash(struct super_block *sb, unsigned long hashval)
616 {
617 unsigned long tmp;
618
619 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
620 L1_CACHE_BYTES;
621 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
622 return tmp & I_HASHMASK;
623 }
624
625 static inline void
626 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
627 struct inode *inode)
628 {
629 inodes_stat.nr_inodes++;
630 list_add(&inode->i_list, &inode_in_use);
631 list_add(&inode->i_sb_list, &sb->s_inodes);
632 if (head)
633 hlist_add_head(&inode->i_hash, head);
634 }
635
636 /**
637 * inode_add_to_lists - add a new inode to relevant lists
638 * @sb: superblock inode belongs to
639 * @inode: inode to mark in use
640 *
641 * When an inode is allocated it needs to be accounted for, added to the in use
642 * list, the owning superblock and the inode hash. This needs to be done under
643 * the inode_lock, so export a function to do this rather than the inode lock
644 * itself. We calculate the hash list to add to here so it is all internal
645 * which requires the caller to have already set up the inode number in the
646 * inode to add.
647 */
648 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
649 {
650 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
651
652 spin_lock(&inode_lock);
653 __inode_add_to_lists(sb, head, inode);
654 spin_unlock(&inode_lock);
655 }
656 EXPORT_SYMBOL_GPL(inode_add_to_lists);
657
658 /**
659 * new_inode - obtain an inode
660 * @sb: superblock
661 *
662 * Allocates a new inode for given superblock. The default gfp_mask
663 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
664 * If HIGHMEM pages are unsuitable or it is known that pages allocated
665 * for the page cache are not reclaimable or migratable,
666 * mapping_set_gfp_mask() must be called with suitable flags on the
667 * newly created inode's mapping
668 *
669 */
670 struct inode *new_inode(struct super_block *sb)
671 {
672 /*
673 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
674 * error if st_ino won't fit in target struct field. Use 32bit counter
675 * here to attempt to avoid that.
676 */
677 static unsigned int last_ino;
678 struct inode *inode;
679
680 spin_lock_prefetch(&inode_lock);
681
682 inode = alloc_inode(sb);
683 if (inode) {
684 spin_lock(&inode_lock);
685 __inode_add_to_lists(sb, NULL, inode);
686 inode->i_ino = ++last_ino;
687 inode->i_state = 0;
688 spin_unlock(&inode_lock);
689 }
690 return inode;
691 }
692 EXPORT_SYMBOL(new_inode);
693
694 void unlock_new_inode(struct inode *inode)
695 {
696 #ifdef CONFIG_DEBUG_LOCK_ALLOC
697 if (inode->i_mode & S_IFDIR) {
698 struct file_system_type *type = inode->i_sb->s_type;
699
700 /* Set new key only if filesystem hasn't already changed it */
701 if (!lockdep_match_class(&inode->i_mutex,
702 &type->i_mutex_key)) {
703 /*
704 * ensure nobody is actually holding i_mutex
705 */
706 mutex_destroy(&inode->i_mutex);
707 mutex_init(&inode->i_mutex);
708 lockdep_set_class(&inode->i_mutex,
709 &type->i_mutex_dir_key);
710 }
711 }
712 #endif
713 /*
714 * This is special! We do not need the spinlock when clearing I_NEW,
715 * because we're guaranteed that nobody else tries to do anything about
716 * the state of the inode when it is locked, as we just created it (so
717 * there can be no old holders that haven't tested I_NEW).
718 * However we must emit the memory barrier so that other CPUs reliably
719 * see the clearing of I_NEW after the other inode initialisation has
720 * completed.
721 */
722 smp_mb();
723 WARN_ON(!(inode->i_state & I_NEW));
724 inode->i_state &= ~I_NEW;
725 wake_up_inode(inode);
726 }
727 EXPORT_SYMBOL(unlock_new_inode);
728
729 /*
730 * This is called without the inode lock held.. Be careful.
731 *
732 * We no longer cache the sb_flags in i_flags - see fs.h
733 * -- rmk@arm.uk.linux.org
734 */
735 static struct inode *get_new_inode(struct super_block *sb,
736 struct hlist_head *head,
737 int (*test)(struct inode *, void *),
738 int (*set)(struct inode *, void *),
739 void *data)
740 {
741 struct inode *inode;
742
743 inode = alloc_inode(sb);
744 if (inode) {
745 struct inode *old;
746
747 spin_lock(&inode_lock);
748 /* We released the lock, so.. */
749 old = find_inode(sb, head, test, data);
750 if (!old) {
751 if (set(inode, data))
752 goto set_failed;
753
754 __inode_add_to_lists(sb, head, inode);
755 inode->i_state = I_NEW;
756 spin_unlock(&inode_lock);
757
758 /* Return the locked inode with I_NEW set, the
759 * caller is responsible for filling in the contents
760 */
761 return inode;
762 }
763
764 /*
765 * Uhhuh, somebody else created the same inode under
766 * us. Use the old inode instead of the one we just
767 * allocated.
768 */
769 __iget(old);
770 spin_unlock(&inode_lock);
771 destroy_inode(inode);
772 inode = old;
773 wait_on_inode(inode);
774 }
775 return inode;
776
777 set_failed:
778 spin_unlock(&inode_lock);
779 destroy_inode(inode);
780 return NULL;
781 }
782
783 /*
784 * get_new_inode_fast is the fast path version of get_new_inode, see the
785 * comment at iget_locked for details.
786 */
787 static struct inode *get_new_inode_fast(struct super_block *sb,
788 struct hlist_head *head, unsigned long ino)
789 {
790 struct inode *inode;
791
792 inode = alloc_inode(sb);
793 if (inode) {
794 struct inode *old;
795
796 spin_lock(&inode_lock);
797 /* We released the lock, so.. */
798 old = find_inode_fast(sb, head, ino);
799 if (!old) {
800 inode->i_ino = ino;
801 __inode_add_to_lists(sb, head, inode);
802 inode->i_state = I_NEW;
803 spin_unlock(&inode_lock);
804
805 /* Return the locked inode with I_NEW set, the
806 * caller is responsible for filling in the contents
807 */
808 return inode;
809 }
810
811 /*
812 * Uhhuh, somebody else created the same inode under
813 * us. Use the old inode instead of the one we just
814 * allocated.
815 */
816 __iget(old);
817 spin_unlock(&inode_lock);
818 destroy_inode(inode);
819 inode = old;
820 wait_on_inode(inode);
821 }
822 return inode;
823 }
824
825 /**
826 * iunique - get a unique inode number
827 * @sb: superblock
828 * @max_reserved: highest reserved inode number
829 *
830 * Obtain an inode number that is unique on the system for a given
831 * superblock. This is used by file systems that have no natural
832 * permanent inode numbering system. An inode number is returned that
833 * is higher than the reserved limit but unique.
834 *
835 * BUGS:
836 * With a large number of inodes live on the file system this function
837 * currently becomes quite slow.
838 */
839 ino_t iunique(struct super_block *sb, ino_t max_reserved)
840 {
841 /*
842 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
843 * error if st_ino won't fit in target struct field. Use 32bit counter
844 * here to attempt to avoid that.
845 */
846 static unsigned int counter;
847 struct inode *inode;
848 struct hlist_head *head;
849 ino_t res;
850
851 spin_lock(&inode_lock);
852 do {
853 if (counter <= max_reserved)
854 counter = max_reserved + 1;
855 res = counter++;
856 head = inode_hashtable + hash(sb, res);
857 inode = find_inode_fast(sb, head, res);
858 } while (inode != NULL);
859 spin_unlock(&inode_lock);
860
861 return res;
862 }
863 EXPORT_SYMBOL(iunique);
864
865 struct inode *igrab(struct inode *inode)
866 {
867 spin_lock(&inode_lock);
868 if (!(inode->i_state & (I_FREEING|I_WILL_FREE)))
869 __iget(inode);
870 else
871 /*
872 * Handle the case where s_op->clear_inode is not been
873 * called yet, and somebody is calling igrab
874 * while the inode is getting freed.
875 */
876 inode = NULL;
877 spin_unlock(&inode_lock);
878 return inode;
879 }
880 EXPORT_SYMBOL(igrab);
881
882 /**
883 * ifind - internal function, you want ilookup5() or iget5().
884 * @sb: super block of file system to search
885 * @head: the head of the list to search
886 * @test: callback used for comparisons between inodes
887 * @data: opaque data pointer to pass to @test
888 * @wait: if true wait for the inode to be unlocked, if false do not
889 *
890 * ifind() searches for the inode specified by @data in the inode
891 * cache. This is a generalized version of ifind_fast() for file systems where
892 * the inode number is not sufficient for unique identification of an inode.
893 *
894 * If the inode is in the cache, the inode is returned with an incremented
895 * reference count.
896 *
897 * Otherwise NULL is returned.
898 *
899 * Note, @test is called with the inode_lock held, so can't sleep.
900 */
901 static struct inode *ifind(struct super_block *sb,
902 struct hlist_head *head, int (*test)(struct inode *, void *),
903 void *data, const int wait)
904 {
905 struct inode *inode;
906
907 spin_lock(&inode_lock);
908 inode = find_inode(sb, head, test, data);
909 if (inode) {
910 __iget(inode);
911 spin_unlock(&inode_lock);
912 if (likely(wait))
913 wait_on_inode(inode);
914 return inode;
915 }
916 spin_unlock(&inode_lock);
917 return NULL;
918 }
919
920 /**
921 * ifind_fast - internal function, you want ilookup() or iget().
922 * @sb: super block of file system to search
923 * @head: head of the list to search
924 * @ino: inode number to search for
925 *
926 * ifind_fast() searches for the inode @ino in the inode cache. This is for
927 * file systems where the inode number is sufficient for unique identification
928 * of an inode.
929 *
930 * If the inode is in the cache, the inode is returned with an incremented
931 * reference count.
932 *
933 * Otherwise NULL is returned.
934 */
935 static struct inode *ifind_fast(struct super_block *sb,
936 struct hlist_head *head, unsigned long ino)
937 {
938 struct inode *inode;
939
940 spin_lock(&inode_lock);
941 inode = find_inode_fast(sb, head, ino);
942 if (inode) {
943 __iget(inode);
944 spin_unlock(&inode_lock);
945 wait_on_inode(inode);
946 return inode;
947 }
948 spin_unlock(&inode_lock);
949 return NULL;
950 }
951
952 /**
953 * ilookup5_nowait - search for an inode in the inode cache
954 * @sb: super block of file system to search
955 * @hashval: hash value (usually inode number) to search for
956 * @test: callback used for comparisons between inodes
957 * @data: opaque data pointer to pass to @test
958 *
959 * ilookup5() uses ifind() to search for the inode specified by @hashval and
960 * @data in the inode cache. This is a generalized version of ilookup() for
961 * file systems where the inode number is not sufficient for unique
962 * identification of an inode.
963 *
964 * If the inode is in the cache, the inode is returned with an incremented
965 * reference count. Note, the inode lock is not waited upon so you have to be
966 * very careful what you do with the returned inode. You probably should be
967 * using ilookup5() instead.
968 *
969 * Otherwise NULL is returned.
970 *
971 * Note, @test is called with the inode_lock held, so can't sleep.
972 */
973 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
974 int (*test)(struct inode *, void *), void *data)
975 {
976 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
977
978 return ifind(sb, head, test, data, 0);
979 }
980 EXPORT_SYMBOL(ilookup5_nowait);
981
982 /**
983 * ilookup5 - search for an inode in the inode cache
984 * @sb: super block of file system to search
985 * @hashval: hash value (usually inode number) to search for
986 * @test: callback used for comparisons between inodes
987 * @data: opaque data pointer to pass to @test
988 *
989 * ilookup5() uses ifind() to search for the inode specified by @hashval and
990 * @data in the inode cache. This is a generalized version of ilookup() for
991 * file systems where the inode number is not sufficient for unique
992 * identification of an inode.
993 *
994 * If the inode is in the cache, the inode lock is waited upon and the inode is
995 * returned with an incremented reference count.
996 *
997 * Otherwise NULL is returned.
998 *
999 * Note, @test is called with the inode_lock held, so can't sleep.
1000 */
1001 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1002 int (*test)(struct inode *, void *), void *data)
1003 {
1004 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1005
1006 return ifind(sb, head, test, data, 1);
1007 }
1008 EXPORT_SYMBOL(ilookup5);
1009
1010 /**
1011 * ilookup - search for an inode in the inode cache
1012 * @sb: super block of file system to search
1013 * @ino: inode number to search for
1014 *
1015 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1016 * This is for file systems where the inode number is sufficient for unique
1017 * identification of an inode.
1018 *
1019 * If the inode is in the cache, the inode is returned with an incremented
1020 * reference count.
1021 *
1022 * Otherwise NULL is returned.
1023 */
1024 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1025 {
1026 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1027
1028 return ifind_fast(sb, head, ino);
1029 }
1030 EXPORT_SYMBOL(ilookup);
1031
1032 /**
1033 * iget5_locked - obtain an inode from a mounted file system
1034 * @sb: super block of file system
1035 * @hashval: hash value (usually inode number) to get
1036 * @test: callback used for comparisons between inodes
1037 * @set: callback used to initialize a new struct inode
1038 * @data: opaque data pointer to pass to @test and @set
1039 *
1040 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1041 * and @data in the inode cache and if present it is returned with an increased
1042 * reference count. This is a generalized version of iget_locked() for file
1043 * systems where the inode number is not sufficient for unique identification
1044 * of an inode.
1045 *
1046 * If the inode is not in cache, get_new_inode() is called to allocate a new
1047 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1048 * file system gets to fill it in before unlocking it via unlock_new_inode().
1049 *
1050 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1051 */
1052 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1053 int (*test)(struct inode *, void *),
1054 int (*set)(struct inode *, void *), void *data)
1055 {
1056 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1057 struct inode *inode;
1058
1059 inode = ifind(sb, head, test, data, 1);
1060 if (inode)
1061 return inode;
1062 /*
1063 * get_new_inode() will do the right thing, re-trying the search
1064 * in case it had to block at any point.
1065 */
1066 return get_new_inode(sb, head, test, set, data);
1067 }
1068 EXPORT_SYMBOL(iget5_locked);
1069
1070 /**
1071 * iget_locked - obtain an inode from a mounted file system
1072 * @sb: super block of file system
1073 * @ino: inode number to get
1074 *
1075 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1076 * the inode cache and if present it is returned with an increased reference
1077 * count. This is for file systems where the inode number is sufficient for
1078 * unique identification of an inode.
1079 *
1080 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1081 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1082 * The file system gets to fill it in before unlocking it via
1083 * unlock_new_inode().
1084 */
1085 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1086 {
1087 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1088 struct inode *inode;
1089
1090 inode = ifind_fast(sb, head, ino);
1091 if (inode)
1092 return inode;
1093 /*
1094 * get_new_inode_fast() will do the right thing, re-trying the search
1095 * in case it had to block at any point.
1096 */
1097 return get_new_inode_fast(sb, head, ino);
1098 }
1099 EXPORT_SYMBOL(iget_locked);
1100
1101 int insert_inode_locked(struct inode *inode)
1102 {
1103 struct super_block *sb = inode->i_sb;
1104 ino_t ino = inode->i_ino;
1105 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1106
1107 inode->i_state |= I_NEW;
1108 while (1) {
1109 struct hlist_node *node;
1110 struct inode *old = NULL;
1111 spin_lock(&inode_lock);
1112 hlist_for_each_entry(old, node, head, i_hash) {
1113 if (old->i_ino != ino)
1114 continue;
1115 if (old->i_sb != sb)
1116 continue;
1117 if (old->i_state & (I_FREEING|I_WILL_FREE))
1118 continue;
1119 break;
1120 }
1121 if (likely(!node)) {
1122 hlist_add_head(&inode->i_hash, head);
1123 spin_unlock(&inode_lock);
1124 return 0;
1125 }
1126 __iget(old);
1127 spin_unlock(&inode_lock);
1128 wait_on_inode(old);
1129 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1130 iput(old);
1131 return -EBUSY;
1132 }
1133 iput(old);
1134 }
1135 }
1136 EXPORT_SYMBOL(insert_inode_locked);
1137
1138 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1139 int (*test)(struct inode *, void *), void *data)
1140 {
1141 struct super_block *sb = inode->i_sb;
1142 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1143
1144 inode->i_state |= I_NEW;
1145
1146 while (1) {
1147 struct hlist_node *node;
1148 struct inode *old = NULL;
1149
1150 spin_lock(&inode_lock);
1151 hlist_for_each_entry(old, node, head, i_hash) {
1152 if (old->i_sb != sb)
1153 continue;
1154 if (!test(old, data))
1155 continue;
1156 if (old->i_state & (I_FREEING|I_WILL_FREE))
1157 continue;
1158 break;
1159 }
1160 if (likely(!node)) {
1161 hlist_add_head(&inode->i_hash, head);
1162 spin_unlock(&inode_lock);
1163 return 0;
1164 }
1165 __iget(old);
1166 spin_unlock(&inode_lock);
1167 wait_on_inode(old);
1168 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1169 iput(old);
1170 return -EBUSY;
1171 }
1172 iput(old);
1173 }
1174 }
1175 EXPORT_SYMBOL(insert_inode_locked4);
1176
1177 /**
1178 * __insert_inode_hash - hash an inode
1179 * @inode: unhashed inode
1180 * @hashval: unsigned long value used to locate this object in the
1181 * inode_hashtable.
1182 *
1183 * Add an inode to the inode hash for this superblock.
1184 */
1185 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1186 {
1187 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1188 spin_lock(&inode_lock);
1189 hlist_add_head(&inode->i_hash, head);
1190 spin_unlock(&inode_lock);
1191 }
1192 EXPORT_SYMBOL(__insert_inode_hash);
1193
1194 /**
1195 * remove_inode_hash - remove an inode from the hash
1196 * @inode: inode to unhash
1197 *
1198 * Remove an inode from the superblock.
1199 */
1200 void remove_inode_hash(struct inode *inode)
1201 {
1202 spin_lock(&inode_lock);
1203 hlist_del_init(&inode->i_hash);
1204 spin_unlock(&inode_lock);
1205 }
1206 EXPORT_SYMBOL(remove_inode_hash);
1207
1208 /*
1209 * Tell the filesystem that this inode is no longer of any interest and should
1210 * be completely destroyed.
1211 *
1212 * We leave the inode in the inode hash table until *after* the filesystem's
1213 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1214 * instigate) will always find up-to-date information either in the hash or on
1215 * disk.
1216 *
1217 * I_FREEING is set so that no-one will take a new reference to the inode while
1218 * it is being deleted.
1219 */
1220 void generic_delete_inode(struct inode *inode)
1221 {
1222 list_del_init(&inode->i_list);
1223 list_del_init(&inode->i_sb_list);
1224 WARN_ON(inode->i_state & I_NEW);
1225 inode->i_state |= I_FREEING;
1226 inodes_stat.nr_inodes--;
1227 spin_unlock(&inode_lock);
1228
1229 evict(inode, 1);
1230
1231 spin_lock(&inode_lock);
1232 hlist_del_init(&inode->i_hash);
1233 spin_unlock(&inode_lock);
1234 wake_up_inode(inode);
1235 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
1236 destroy_inode(inode);
1237 }
1238 EXPORT_SYMBOL(generic_delete_inode);
1239
1240 /**
1241 * generic_detach_inode - remove inode from inode lists
1242 * @inode: inode to remove
1243 *
1244 * Remove inode from inode lists, write it if it's dirty. This is just an
1245 * internal VFS helper exported for hugetlbfs. Do not use!
1246 *
1247 * Returns 1 if inode should be completely destroyed.
1248 */
1249 static int generic_detach_inode(struct inode *inode)
1250 {
1251 struct super_block *sb = inode->i_sb;
1252
1253 if (!hlist_unhashed(&inode->i_hash)) {
1254 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1255 list_move(&inode->i_list, &inode_unused);
1256 inodes_stat.nr_unused++;
1257 if (sb->s_flags & MS_ACTIVE) {
1258 spin_unlock(&inode_lock);
1259 return 0;
1260 }
1261 WARN_ON(inode->i_state & I_NEW);
1262 inode->i_state |= I_WILL_FREE;
1263 spin_unlock(&inode_lock);
1264 write_inode_now(inode, 1);
1265 spin_lock(&inode_lock);
1266 WARN_ON(inode->i_state & I_NEW);
1267 inode->i_state &= ~I_WILL_FREE;
1268 inodes_stat.nr_unused--;
1269 hlist_del_init(&inode->i_hash);
1270 }
1271 list_del_init(&inode->i_list);
1272 list_del_init(&inode->i_sb_list);
1273 WARN_ON(inode->i_state & I_NEW);
1274 inode->i_state |= I_FREEING;
1275 inodes_stat.nr_inodes--;
1276 spin_unlock(&inode_lock);
1277 return 1;
1278 }
1279
1280 static void generic_forget_inode(struct inode *inode)
1281 {
1282 if (!generic_detach_inode(inode))
1283 return;
1284 evict(inode, 0);
1285 wake_up_inode(inode);
1286 destroy_inode(inode);
1287 }
1288
1289 /*
1290 * Normal UNIX filesystem behaviour: delete the
1291 * inode when the usage count drops to zero, and
1292 * i_nlink is zero.
1293 */
1294 void generic_drop_inode(struct inode *inode)
1295 {
1296 if (!inode->i_nlink)
1297 generic_delete_inode(inode);
1298 else
1299 generic_forget_inode(inode);
1300 }
1301 EXPORT_SYMBOL_GPL(generic_drop_inode);
1302
1303 /*
1304 * Called when we're dropping the last reference
1305 * to an inode.
1306 *
1307 * Call the FS "drop()" function, defaulting to
1308 * the legacy UNIX filesystem behaviour..
1309 *
1310 * NOTE! NOTE! NOTE! We're called with the inode lock
1311 * held, and the drop function is supposed to release
1312 * the lock!
1313 */
1314 static inline void iput_final(struct inode *inode)
1315 {
1316 const struct super_operations *op = inode->i_sb->s_op;
1317 void (*drop)(struct inode *) = generic_drop_inode;
1318
1319 if (op && op->drop_inode)
1320 drop = op->drop_inode;
1321 drop(inode);
1322 }
1323
1324 /**
1325 * iput - put an inode
1326 * @inode: inode to put
1327 *
1328 * Puts an inode, dropping its usage count. If the inode use count hits
1329 * zero, the inode is then freed and may also be destroyed.
1330 *
1331 * Consequently, iput() can sleep.
1332 */
1333 void iput(struct inode *inode)
1334 {
1335 if (inode) {
1336 BUG_ON(inode->i_state & I_CLEAR);
1337
1338 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1339 iput_final(inode);
1340 }
1341 }
1342 EXPORT_SYMBOL(iput);
1343
1344 /**
1345 * bmap - find a block number in a file
1346 * @inode: inode of file
1347 * @block: block to find
1348 *
1349 * Returns the block number on the device holding the inode that
1350 * is the disk block number for the block of the file requested.
1351 * That is, asked for block 4 of inode 1 the function will return the
1352 * disk block relative to the disk start that holds that block of the
1353 * file.
1354 */
1355 sector_t bmap(struct inode *inode, sector_t block)
1356 {
1357 sector_t res = 0;
1358 if (inode->i_mapping->a_ops->bmap)
1359 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1360 return res;
1361 }
1362 EXPORT_SYMBOL(bmap);
1363
1364 /*
1365 * With relative atime, only update atime if the previous atime is
1366 * earlier than either the ctime or mtime or if at least a day has
1367 * passed since the last atime update.
1368 */
1369 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1370 struct timespec now)
1371 {
1372
1373 if (!(mnt->mnt_flags & MNT_RELATIME))
1374 return 1;
1375 /*
1376 * Is mtime younger than atime? If yes, update atime:
1377 */
1378 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1379 return 1;
1380 /*
1381 * Is ctime younger than atime? If yes, update atime:
1382 */
1383 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1384 return 1;
1385
1386 /*
1387 * Is the previous atime value older than a day? If yes,
1388 * update atime:
1389 */
1390 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1391 return 1;
1392 /*
1393 * Good, we can skip the atime update:
1394 */
1395 return 0;
1396 }
1397
1398 /**
1399 * touch_atime - update the access time
1400 * @mnt: mount the inode is accessed on
1401 * @dentry: dentry accessed
1402 *
1403 * Update the accessed time on an inode and mark it for writeback.
1404 * This function automatically handles read only file systems and media,
1405 * as well as the "noatime" flag and inode specific "noatime" markers.
1406 */
1407 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1408 {
1409 struct inode *inode = dentry->d_inode;
1410 struct timespec now;
1411
1412 if (inode->i_flags & S_NOATIME)
1413 return;
1414 if (IS_NOATIME(inode))
1415 return;
1416 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1417 return;
1418
1419 if (mnt->mnt_flags & MNT_NOATIME)
1420 return;
1421 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1422 return;
1423
1424 now = current_fs_time(inode->i_sb);
1425
1426 if (!relatime_need_update(mnt, inode, now))
1427 return;
1428
1429 if (timespec_equal(&inode->i_atime, &now))
1430 return;
1431
1432 if (mnt_want_write(mnt))
1433 return;
1434
1435 inode->i_atime = now;
1436 mark_inode_dirty_sync(inode);
1437 mnt_drop_write(mnt);
1438 }
1439 EXPORT_SYMBOL(touch_atime);
1440
1441 /**
1442 * file_update_time - update mtime and ctime time
1443 * @file: file accessed
1444 *
1445 * Update the mtime and ctime members of an inode and mark the inode
1446 * for writeback. Note that this function is meant exclusively for
1447 * usage in the file write path of filesystems, and filesystems may
1448 * choose to explicitly ignore update via this function with the
1449 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1450 * timestamps are handled by the server.
1451 */
1452
1453 void file_update_time(struct file *file)
1454 {
1455 struct inode *inode = file->f_path.dentry->d_inode;
1456 struct timespec now;
1457 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1458
1459 /* First try to exhaust all avenues to not sync */
1460 if (IS_NOCMTIME(inode))
1461 return;
1462
1463 now = current_fs_time(inode->i_sb);
1464 if (!timespec_equal(&inode->i_mtime, &now))
1465 sync_it = S_MTIME;
1466
1467 if (!timespec_equal(&inode->i_ctime, &now))
1468 sync_it |= S_CTIME;
1469
1470 if (IS_I_VERSION(inode))
1471 sync_it |= S_VERSION;
1472
1473 if (!sync_it)
1474 return;
1475
1476 /* Finally allowed to write? Takes lock. */
1477 if (mnt_want_write_file(file))
1478 return;
1479
1480 /* Only change inode inside the lock region */
1481 if (sync_it & S_VERSION)
1482 inode_inc_iversion(inode);
1483 if (sync_it & S_CTIME)
1484 inode->i_ctime = now;
1485 if (sync_it & S_MTIME)
1486 inode->i_mtime = now;
1487 mark_inode_dirty_sync(inode);
1488 mnt_drop_write(file->f_path.mnt);
1489 }
1490 EXPORT_SYMBOL(file_update_time);
1491
1492 int inode_needs_sync(struct inode *inode)
1493 {
1494 if (IS_SYNC(inode))
1495 return 1;
1496 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1497 return 1;
1498 return 0;
1499 }
1500 EXPORT_SYMBOL(inode_needs_sync);
1501
1502 int inode_wait(void *word)
1503 {
1504 schedule();
1505 return 0;
1506 }
1507 EXPORT_SYMBOL(inode_wait);
1508
1509 /*
1510 * If we try to find an inode in the inode hash while it is being
1511 * deleted, we have to wait until the filesystem completes its
1512 * deletion before reporting that it isn't found. This function waits
1513 * until the deletion _might_ have completed. Callers are responsible
1514 * to recheck inode state.
1515 *
1516 * It doesn't matter if I_NEW is not set initially, a call to
1517 * wake_up_inode() after removing from the hash list will DTRT.
1518 *
1519 * This is called with inode_lock held.
1520 */
1521 static void __wait_on_freeing_inode(struct inode *inode)
1522 {
1523 wait_queue_head_t *wq;
1524 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1525 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1526 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1527 spin_unlock(&inode_lock);
1528 schedule();
1529 finish_wait(wq, &wait.wait);
1530 spin_lock(&inode_lock);
1531 }
1532
1533 static __initdata unsigned long ihash_entries;
1534 static int __init set_ihash_entries(char *str)
1535 {
1536 if (!str)
1537 return 0;
1538 ihash_entries = simple_strtoul(str, &str, 0);
1539 return 1;
1540 }
1541 __setup("ihash_entries=", set_ihash_entries);
1542
1543 /*
1544 * Initialize the waitqueues and inode hash table.
1545 */
1546 void __init inode_init_early(void)
1547 {
1548 int loop;
1549
1550 /* If hashes are distributed across NUMA nodes, defer
1551 * hash allocation until vmalloc space is available.
1552 */
1553 if (hashdist)
1554 return;
1555
1556 inode_hashtable =
1557 alloc_large_system_hash("Inode-cache",
1558 sizeof(struct hlist_head),
1559 ihash_entries,
1560 14,
1561 HASH_EARLY,
1562 &i_hash_shift,
1563 &i_hash_mask,
1564 0);
1565
1566 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1567 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1568 }
1569
1570 void __init inode_init(void)
1571 {
1572 int loop;
1573
1574 /* inode slab cache */
1575 inode_cachep = kmem_cache_create("inode_cache",
1576 sizeof(struct inode),
1577 0,
1578 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1579 SLAB_MEM_SPREAD),
1580 init_once);
1581 register_shrinker(&icache_shrinker);
1582
1583 /* Hash may have been set up in inode_init_early */
1584 if (!hashdist)
1585 return;
1586
1587 inode_hashtable =
1588 alloc_large_system_hash("Inode-cache",
1589 sizeof(struct hlist_head),
1590 ihash_entries,
1591 14,
1592 0,
1593 &i_hash_shift,
1594 &i_hash_mask,
1595 0);
1596
1597 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1598 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1599 }
1600
1601 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1602 {
1603 inode->i_mode = mode;
1604 if (S_ISCHR(mode)) {
1605 inode->i_fop = &def_chr_fops;
1606 inode->i_rdev = rdev;
1607 } else if (S_ISBLK(mode)) {
1608 inode->i_fop = &def_blk_fops;
1609 inode->i_rdev = rdev;
1610 } else if (S_ISFIFO(mode))
1611 inode->i_fop = &def_fifo_fops;
1612 else if (S_ISSOCK(mode))
1613 inode->i_fop = &bad_sock_fops;
1614 else
1615 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1616 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1617 inode->i_ino);
1618 }
1619 EXPORT_SYMBOL(init_special_inode);
1620
1621 /**
1622 * Init uid,gid,mode for new inode according to posix standards
1623 * @inode: New inode
1624 * @dir: Directory inode
1625 * @mode: mode of the new inode
1626 */
1627 void inode_init_owner(struct inode *inode, const struct inode *dir,
1628 mode_t mode)
1629 {
1630 inode->i_uid = current_fsuid();
1631 if (dir && dir->i_mode & S_ISGID) {
1632 inode->i_gid = dir->i_gid;
1633 if (S_ISDIR(mode))
1634 mode |= S_ISGID;
1635 } else
1636 inode->i_gid = current_fsgid();
1637 inode->i_mode = mode;
1638 }
1639 EXPORT_SYMBOL(inode_init_owner);