]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/inode.c
Merge tag 'for-5.5-rc8-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-hirsute-kernel.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 if (sb->s_xattr)
146 inode->i_opflags |= IOP_XATTR;
147 i_uid_write(inode, 0);
148 i_gid_write(inode, 0);
149 atomic_set(&inode->i_writecount, 0);
150 inode->i_size = 0;
151 inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 inode->i_blocks = 0;
153 inode->i_bytes = 0;
154 inode->i_generation = 0;
155 inode->i_pipe = NULL;
156 inode->i_bdev = NULL;
157 inode->i_cdev = NULL;
158 inode->i_link = NULL;
159 inode->i_dir_seq = 0;
160 inode->i_rdev = 0;
161 inode->dirtied_when = 0;
162
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 inode->i_wb_frn_winner = 0;
165 inode->i_wb_frn_avg_time = 0;
166 inode->i_wb_frn_history = 0;
167 #endif
168
169 if (security_inode_alloc(inode))
170 goto out;
171 spin_lock_init(&inode->i_lock);
172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173
174 init_rwsem(&inode->i_rwsem);
175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176
177 atomic_set(&inode->i_dio_count, 0);
178
179 mapping->a_ops = &empty_aops;
180 mapping->host = inode;
181 mapping->flags = 0;
182 mapping->wb_err = 0;
183 atomic_set(&mapping->i_mmap_writable, 0);
184 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
185 atomic_set(&mapping->nr_thps, 0);
186 #endif
187 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
188 mapping->private_data = NULL;
189 mapping->writeback_index = 0;
190 inode->i_private = NULL;
191 inode->i_mapping = mapping;
192 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
193 #ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196
197 #ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199 #endif
200 inode->i_flctx = NULL;
201 this_cpu_inc(nr_inodes);
202
203 return 0;
204 out:
205 return -ENOMEM;
206 }
207 EXPORT_SYMBOL(inode_init_always);
208
209 void free_inode_nonrcu(struct inode *inode)
210 {
211 kmem_cache_free(inode_cachep, inode);
212 }
213 EXPORT_SYMBOL(free_inode_nonrcu);
214
215 static void i_callback(struct rcu_head *head)
216 {
217 struct inode *inode = container_of(head, struct inode, i_rcu);
218 if (inode->free_inode)
219 inode->free_inode(inode);
220 else
221 free_inode_nonrcu(inode);
222 }
223
224 static struct inode *alloc_inode(struct super_block *sb)
225 {
226 const struct super_operations *ops = sb->s_op;
227 struct inode *inode;
228
229 if (ops->alloc_inode)
230 inode = ops->alloc_inode(sb);
231 else
232 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
233
234 if (!inode)
235 return NULL;
236
237 if (unlikely(inode_init_always(sb, inode))) {
238 if (ops->destroy_inode) {
239 ops->destroy_inode(inode);
240 if (!ops->free_inode)
241 return NULL;
242 }
243 inode->free_inode = ops->free_inode;
244 i_callback(&inode->i_rcu);
245 return NULL;
246 }
247
248 return inode;
249 }
250
251 void __destroy_inode(struct inode *inode)
252 {
253 BUG_ON(inode_has_buffers(inode));
254 inode_detach_wb(inode);
255 security_inode_free(inode);
256 fsnotify_inode_delete(inode);
257 locks_free_lock_context(inode);
258 if (!inode->i_nlink) {
259 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
260 atomic_long_dec(&inode->i_sb->s_remove_count);
261 }
262
263 #ifdef CONFIG_FS_POSIX_ACL
264 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
265 posix_acl_release(inode->i_acl);
266 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
267 posix_acl_release(inode->i_default_acl);
268 #endif
269 this_cpu_dec(nr_inodes);
270 }
271 EXPORT_SYMBOL(__destroy_inode);
272
273 static void destroy_inode(struct inode *inode)
274 {
275 const struct super_operations *ops = inode->i_sb->s_op;
276
277 BUG_ON(!list_empty(&inode->i_lru));
278 __destroy_inode(inode);
279 if (ops->destroy_inode) {
280 ops->destroy_inode(inode);
281 if (!ops->free_inode)
282 return;
283 }
284 inode->free_inode = ops->free_inode;
285 call_rcu(&inode->i_rcu, i_callback);
286 }
287
288 /**
289 * drop_nlink - directly drop an inode's link count
290 * @inode: inode
291 *
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. In cases
294 * where we are attempting to track writes to the
295 * filesystem, a decrement to zero means an imminent
296 * write when the file is truncated and actually unlinked
297 * on the filesystem.
298 */
299 void drop_nlink(struct inode *inode)
300 {
301 WARN_ON(inode->i_nlink == 0);
302 inode->__i_nlink--;
303 if (!inode->i_nlink)
304 atomic_long_inc(&inode->i_sb->s_remove_count);
305 }
306 EXPORT_SYMBOL(drop_nlink);
307
308 /**
309 * clear_nlink - directly zero an inode's link count
310 * @inode: inode
311 *
312 * This is a low-level filesystem helper to replace any
313 * direct filesystem manipulation of i_nlink. See
314 * drop_nlink() for why we care about i_nlink hitting zero.
315 */
316 void clear_nlink(struct inode *inode)
317 {
318 if (inode->i_nlink) {
319 inode->__i_nlink = 0;
320 atomic_long_inc(&inode->i_sb->s_remove_count);
321 }
322 }
323 EXPORT_SYMBOL(clear_nlink);
324
325 /**
326 * set_nlink - directly set an inode's link count
327 * @inode: inode
328 * @nlink: new nlink (should be non-zero)
329 *
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink.
332 */
333 void set_nlink(struct inode *inode, unsigned int nlink)
334 {
335 if (!nlink) {
336 clear_nlink(inode);
337 } else {
338 /* Yes, some filesystems do change nlink from zero to one */
339 if (inode->i_nlink == 0)
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341
342 inode->__i_nlink = nlink;
343 }
344 }
345 EXPORT_SYMBOL(set_nlink);
346
347 /**
348 * inc_nlink - directly increment an inode's link count
349 * @inode: inode
350 *
351 * This is a low-level filesystem helper to replace any
352 * direct filesystem manipulation of i_nlink. Currently,
353 * it is only here for parity with dec_nlink().
354 */
355 void inc_nlink(struct inode *inode)
356 {
357 if (unlikely(inode->i_nlink == 0)) {
358 WARN_ON(!(inode->i_state & I_LINKABLE));
359 atomic_long_dec(&inode->i_sb->s_remove_count);
360 }
361
362 inode->__i_nlink++;
363 }
364 EXPORT_SYMBOL(inc_nlink);
365
366 static void __address_space_init_once(struct address_space *mapping)
367 {
368 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
369 init_rwsem(&mapping->i_mmap_rwsem);
370 INIT_LIST_HEAD(&mapping->private_list);
371 spin_lock_init(&mapping->private_lock);
372 mapping->i_mmap = RB_ROOT_CACHED;
373 }
374
375 void address_space_init_once(struct address_space *mapping)
376 {
377 memset(mapping, 0, sizeof(*mapping));
378 __address_space_init_once(mapping);
379 }
380 EXPORT_SYMBOL(address_space_init_once);
381
382 /*
383 * These are initializations that only need to be done
384 * once, because the fields are idempotent across use
385 * of the inode, so let the slab aware of that.
386 */
387 void inode_init_once(struct inode *inode)
388 {
389 memset(inode, 0, sizeof(*inode));
390 INIT_HLIST_NODE(&inode->i_hash);
391 INIT_LIST_HEAD(&inode->i_devices);
392 INIT_LIST_HEAD(&inode->i_io_list);
393 INIT_LIST_HEAD(&inode->i_wb_list);
394 INIT_LIST_HEAD(&inode->i_lru);
395 __address_space_init_once(&inode->i_data);
396 i_size_ordered_init(inode);
397 }
398 EXPORT_SYMBOL(inode_init_once);
399
400 static void init_once(void *foo)
401 {
402 struct inode *inode = (struct inode *) foo;
403
404 inode_init_once(inode);
405 }
406
407 /*
408 * inode->i_lock must be held
409 */
410 void __iget(struct inode *inode)
411 {
412 atomic_inc(&inode->i_count);
413 }
414
415 /*
416 * get additional reference to inode; caller must already hold one.
417 */
418 void ihold(struct inode *inode)
419 {
420 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
421 }
422 EXPORT_SYMBOL(ihold);
423
424 static void inode_lru_list_add(struct inode *inode)
425 {
426 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 this_cpu_inc(nr_unused);
428 else
429 inode->i_state |= I_REFERENCED;
430 }
431
432 /*
433 * Add inode to LRU if needed (inode is unused and clean).
434 *
435 * Needs inode->i_lock held.
436 */
437 void inode_add_lru(struct inode *inode)
438 {
439 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
440 I_FREEING | I_WILL_FREE)) &&
441 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
442 inode_lru_list_add(inode);
443 }
444
445
446 static void inode_lru_list_del(struct inode *inode)
447 {
448
449 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
450 this_cpu_dec(nr_unused);
451 }
452
453 /**
454 * inode_sb_list_add - add inode to the superblock list of inodes
455 * @inode: inode to add
456 */
457 void inode_sb_list_add(struct inode *inode)
458 {
459 spin_lock(&inode->i_sb->s_inode_list_lock);
460 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
461 spin_unlock(&inode->i_sb->s_inode_list_lock);
462 }
463 EXPORT_SYMBOL_GPL(inode_sb_list_add);
464
465 static inline void inode_sb_list_del(struct inode *inode)
466 {
467 if (!list_empty(&inode->i_sb_list)) {
468 spin_lock(&inode->i_sb->s_inode_list_lock);
469 list_del_init(&inode->i_sb_list);
470 spin_unlock(&inode->i_sb->s_inode_list_lock);
471 }
472 }
473
474 static unsigned long hash(struct super_block *sb, unsigned long hashval)
475 {
476 unsigned long tmp;
477
478 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
479 L1_CACHE_BYTES;
480 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
481 return tmp & i_hash_mask;
482 }
483
484 /**
485 * __insert_inode_hash - hash an inode
486 * @inode: unhashed inode
487 * @hashval: unsigned long value used to locate this object in the
488 * inode_hashtable.
489 *
490 * Add an inode to the inode hash for this superblock.
491 */
492 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
493 {
494 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
495
496 spin_lock(&inode_hash_lock);
497 spin_lock(&inode->i_lock);
498 hlist_add_head(&inode->i_hash, b);
499 spin_unlock(&inode->i_lock);
500 spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__insert_inode_hash);
503
504 /**
505 * __remove_inode_hash - remove an inode from the hash
506 * @inode: inode to unhash
507 *
508 * Remove an inode from the superblock.
509 */
510 void __remove_inode_hash(struct inode *inode)
511 {
512 spin_lock(&inode_hash_lock);
513 spin_lock(&inode->i_lock);
514 hlist_del_init(&inode->i_hash);
515 spin_unlock(&inode->i_lock);
516 spin_unlock(&inode_hash_lock);
517 }
518 EXPORT_SYMBOL(__remove_inode_hash);
519
520 void clear_inode(struct inode *inode)
521 {
522 /*
523 * We have to cycle the i_pages lock here because reclaim can be in the
524 * process of removing the last page (in __delete_from_page_cache())
525 * and we must not free the mapping under it.
526 */
527 xa_lock_irq(&inode->i_data.i_pages);
528 BUG_ON(inode->i_data.nrpages);
529 BUG_ON(inode->i_data.nrexceptional);
530 xa_unlock_irq(&inode->i_data.i_pages);
531 BUG_ON(!list_empty(&inode->i_data.private_list));
532 BUG_ON(!(inode->i_state & I_FREEING));
533 BUG_ON(inode->i_state & I_CLEAR);
534 BUG_ON(!list_empty(&inode->i_wb_list));
535 /* don't need i_lock here, no concurrent mods to i_state */
536 inode->i_state = I_FREEING | I_CLEAR;
537 }
538 EXPORT_SYMBOL(clear_inode);
539
540 /*
541 * Free the inode passed in, removing it from the lists it is still connected
542 * to. We remove any pages still attached to the inode and wait for any IO that
543 * is still in progress before finally destroying the inode.
544 *
545 * An inode must already be marked I_FREEING so that we avoid the inode being
546 * moved back onto lists if we race with other code that manipulates the lists
547 * (e.g. writeback_single_inode). The caller is responsible for setting this.
548 *
549 * An inode must already be removed from the LRU list before being evicted from
550 * the cache. This should occur atomically with setting the I_FREEING state
551 * flag, so no inodes here should ever be on the LRU when being evicted.
552 */
553 static void evict(struct inode *inode)
554 {
555 const struct super_operations *op = inode->i_sb->s_op;
556
557 BUG_ON(!(inode->i_state & I_FREEING));
558 BUG_ON(!list_empty(&inode->i_lru));
559
560 if (!list_empty(&inode->i_io_list))
561 inode_io_list_del(inode);
562
563 inode_sb_list_del(inode);
564
565 /*
566 * Wait for flusher thread to be done with the inode so that filesystem
567 * does not start destroying it while writeback is still running. Since
568 * the inode has I_FREEING set, flusher thread won't start new work on
569 * the inode. We just have to wait for running writeback to finish.
570 */
571 inode_wait_for_writeback(inode);
572
573 if (op->evict_inode) {
574 op->evict_inode(inode);
575 } else {
576 truncate_inode_pages_final(&inode->i_data);
577 clear_inode(inode);
578 }
579 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
580 bd_forget(inode);
581 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
582 cd_forget(inode);
583
584 remove_inode_hash(inode);
585
586 spin_lock(&inode->i_lock);
587 wake_up_bit(&inode->i_state, __I_NEW);
588 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
589 spin_unlock(&inode->i_lock);
590
591 destroy_inode(inode);
592 }
593
594 /*
595 * dispose_list - dispose of the contents of a local list
596 * @head: the head of the list to free
597 *
598 * Dispose-list gets a local list with local inodes in it, so it doesn't
599 * need to worry about list corruption and SMP locks.
600 */
601 static void dispose_list(struct list_head *head)
602 {
603 while (!list_empty(head)) {
604 struct inode *inode;
605
606 inode = list_first_entry(head, struct inode, i_lru);
607 list_del_init(&inode->i_lru);
608
609 evict(inode);
610 cond_resched();
611 }
612 }
613
614 /**
615 * evict_inodes - evict all evictable inodes for a superblock
616 * @sb: superblock to operate on
617 *
618 * Make sure that no inodes with zero refcount are retained. This is
619 * called by superblock shutdown after having SB_ACTIVE flag removed,
620 * so any inode reaching zero refcount during or after that call will
621 * be immediately evicted.
622 */
623 void evict_inodes(struct super_block *sb)
624 {
625 struct inode *inode, *next;
626 LIST_HEAD(dispose);
627
628 again:
629 spin_lock(&sb->s_inode_list_lock);
630 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
631 if (atomic_read(&inode->i_count))
632 continue;
633
634 spin_lock(&inode->i_lock);
635 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
636 spin_unlock(&inode->i_lock);
637 continue;
638 }
639
640 inode->i_state |= I_FREEING;
641 inode_lru_list_del(inode);
642 spin_unlock(&inode->i_lock);
643 list_add(&inode->i_lru, &dispose);
644
645 /*
646 * We can have a ton of inodes to evict at unmount time given
647 * enough memory, check to see if we need to go to sleep for a
648 * bit so we don't livelock.
649 */
650 if (need_resched()) {
651 spin_unlock(&sb->s_inode_list_lock);
652 cond_resched();
653 dispose_list(&dispose);
654 goto again;
655 }
656 }
657 spin_unlock(&sb->s_inode_list_lock);
658
659 dispose_list(&dispose);
660 }
661 EXPORT_SYMBOL_GPL(evict_inodes);
662
663 /**
664 * invalidate_inodes - attempt to free all inodes on a superblock
665 * @sb: superblock to operate on
666 * @kill_dirty: flag to guide handling of dirty inodes
667 *
668 * Attempts to free all inodes for a given superblock. If there were any
669 * busy inodes return a non-zero value, else zero.
670 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
671 * them as busy.
672 */
673 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
674 {
675 int busy = 0;
676 struct inode *inode, *next;
677 LIST_HEAD(dispose);
678
679 again:
680 spin_lock(&sb->s_inode_list_lock);
681 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
682 spin_lock(&inode->i_lock);
683 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
684 spin_unlock(&inode->i_lock);
685 continue;
686 }
687 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
688 spin_unlock(&inode->i_lock);
689 busy = 1;
690 continue;
691 }
692 if (atomic_read(&inode->i_count)) {
693 spin_unlock(&inode->i_lock);
694 busy = 1;
695 continue;
696 }
697
698 inode->i_state |= I_FREEING;
699 inode_lru_list_del(inode);
700 spin_unlock(&inode->i_lock);
701 list_add(&inode->i_lru, &dispose);
702 if (need_resched()) {
703 spin_unlock(&sb->s_inode_list_lock);
704 cond_resched();
705 dispose_list(&dispose);
706 goto again;
707 }
708 }
709 spin_unlock(&sb->s_inode_list_lock);
710
711 dispose_list(&dispose);
712
713 return busy;
714 }
715
716 /*
717 * Isolate the inode from the LRU in preparation for freeing it.
718 *
719 * Any inodes which are pinned purely because of attached pagecache have their
720 * pagecache removed. If the inode has metadata buffers attached to
721 * mapping->private_list then try to remove them.
722 *
723 * If the inode has the I_REFERENCED flag set, then it means that it has been
724 * used recently - the flag is set in iput_final(). When we encounter such an
725 * inode, clear the flag and move it to the back of the LRU so it gets another
726 * pass through the LRU before it gets reclaimed. This is necessary because of
727 * the fact we are doing lazy LRU updates to minimise lock contention so the
728 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
729 * with this flag set because they are the inodes that are out of order.
730 */
731 static enum lru_status inode_lru_isolate(struct list_head *item,
732 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
733 {
734 struct list_head *freeable = arg;
735 struct inode *inode = container_of(item, struct inode, i_lru);
736
737 /*
738 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
739 * If we fail to get the lock, just skip it.
740 */
741 if (!spin_trylock(&inode->i_lock))
742 return LRU_SKIP;
743
744 /*
745 * Referenced or dirty inodes are still in use. Give them another pass
746 * through the LRU as we canot reclaim them now.
747 */
748 if (atomic_read(&inode->i_count) ||
749 (inode->i_state & ~I_REFERENCED)) {
750 list_lru_isolate(lru, &inode->i_lru);
751 spin_unlock(&inode->i_lock);
752 this_cpu_dec(nr_unused);
753 return LRU_REMOVED;
754 }
755
756 /* recently referenced inodes get one more pass */
757 if (inode->i_state & I_REFERENCED) {
758 inode->i_state &= ~I_REFERENCED;
759 spin_unlock(&inode->i_lock);
760 return LRU_ROTATE;
761 }
762
763 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
764 __iget(inode);
765 spin_unlock(&inode->i_lock);
766 spin_unlock(lru_lock);
767 if (remove_inode_buffers(inode)) {
768 unsigned long reap;
769 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
770 if (current_is_kswapd())
771 __count_vm_events(KSWAPD_INODESTEAL, reap);
772 else
773 __count_vm_events(PGINODESTEAL, reap);
774 if (current->reclaim_state)
775 current->reclaim_state->reclaimed_slab += reap;
776 }
777 iput(inode);
778 spin_lock(lru_lock);
779 return LRU_RETRY;
780 }
781
782 WARN_ON(inode->i_state & I_NEW);
783 inode->i_state |= I_FREEING;
784 list_lru_isolate_move(lru, &inode->i_lru, freeable);
785 spin_unlock(&inode->i_lock);
786
787 this_cpu_dec(nr_unused);
788 return LRU_REMOVED;
789 }
790
791 /*
792 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
793 * This is called from the superblock shrinker function with a number of inodes
794 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
795 * then are freed outside inode_lock by dispose_list().
796 */
797 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
798 {
799 LIST_HEAD(freeable);
800 long freed;
801
802 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
803 inode_lru_isolate, &freeable);
804 dispose_list(&freeable);
805 return freed;
806 }
807
808 static void __wait_on_freeing_inode(struct inode *inode);
809 /*
810 * Called with the inode lock held.
811 */
812 static struct inode *find_inode(struct super_block *sb,
813 struct hlist_head *head,
814 int (*test)(struct inode *, void *),
815 void *data)
816 {
817 struct inode *inode = NULL;
818
819 repeat:
820 hlist_for_each_entry(inode, head, i_hash) {
821 if (inode->i_sb != sb)
822 continue;
823 if (!test(inode, data))
824 continue;
825 spin_lock(&inode->i_lock);
826 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
827 __wait_on_freeing_inode(inode);
828 goto repeat;
829 }
830 if (unlikely(inode->i_state & I_CREATING)) {
831 spin_unlock(&inode->i_lock);
832 return ERR_PTR(-ESTALE);
833 }
834 __iget(inode);
835 spin_unlock(&inode->i_lock);
836 return inode;
837 }
838 return NULL;
839 }
840
841 /*
842 * find_inode_fast is the fast path version of find_inode, see the comment at
843 * iget_locked for details.
844 */
845 static struct inode *find_inode_fast(struct super_block *sb,
846 struct hlist_head *head, unsigned long ino)
847 {
848 struct inode *inode = NULL;
849
850 repeat:
851 hlist_for_each_entry(inode, head, i_hash) {
852 if (inode->i_ino != ino)
853 continue;
854 if (inode->i_sb != sb)
855 continue;
856 spin_lock(&inode->i_lock);
857 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
858 __wait_on_freeing_inode(inode);
859 goto repeat;
860 }
861 if (unlikely(inode->i_state & I_CREATING)) {
862 spin_unlock(&inode->i_lock);
863 return ERR_PTR(-ESTALE);
864 }
865 __iget(inode);
866 spin_unlock(&inode->i_lock);
867 return inode;
868 }
869 return NULL;
870 }
871
872 /*
873 * Each cpu owns a range of LAST_INO_BATCH numbers.
874 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
875 * to renew the exhausted range.
876 *
877 * This does not significantly increase overflow rate because every CPU can
878 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
879 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
880 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
881 * overflow rate by 2x, which does not seem too significant.
882 *
883 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
884 * error if st_ino won't fit in target struct field. Use 32bit counter
885 * here to attempt to avoid that.
886 */
887 #define LAST_INO_BATCH 1024
888 static DEFINE_PER_CPU(unsigned int, last_ino);
889
890 unsigned int get_next_ino(void)
891 {
892 unsigned int *p = &get_cpu_var(last_ino);
893 unsigned int res = *p;
894
895 #ifdef CONFIG_SMP
896 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
897 static atomic_t shared_last_ino;
898 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
899
900 res = next - LAST_INO_BATCH;
901 }
902 #endif
903
904 res++;
905 /* get_next_ino should not provide a 0 inode number */
906 if (unlikely(!res))
907 res++;
908 *p = res;
909 put_cpu_var(last_ino);
910 return res;
911 }
912 EXPORT_SYMBOL(get_next_ino);
913
914 /**
915 * new_inode_pseudo - obtain an inode
916 * @sb: superblock
917 *
918 * Allocates a new inode for given superblock.
919 * Inode wont be chained in superblock s_inodes list
920 * This means :
921 * - fs can't be unmount
922 * - quotas, fsnotify, writeback can't work
923 */
924 struct inode *new_inode_pseudo(struct super_block *sb)
925 {
926 struct inode *inode = alloc_inode(sb);
927
928 if (inode) {
929 spin_lock(&inode->i_lock);
930 inode->i_state = 0;
931 spin_unlock(&inode->i_lock);
932 INIT_LIST_HEAD(&inode->i_sb_list);
933 }
934 return inode;
935 }
936
937 /**
938 * new_inode - obtain an inode
939 * @sb: superblock
940 *
941 * Allocates a new inode for given superblock. The default gfp_mask
942 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
943 * If HIGHMEM pages are unsuitable or it is known that pages allocated
944 * for the page cache are not reclaimable or migratable,
945 * mapping_set_gfp_mask() must be called with suitable flags on the
946 * newly created inode's mapping
947 *
948 */
949 struct inode *new_inode(struct super_block *sb)
950 {
951 struct inode *inode;
952
953 spin_lock_prefetch(&sb->s_inode_list_lock);
954
955 inode = new_inode_pseudo(sb);
956 if (inode)
957 inode_sb_list_add(inode);
958 return inode;
959 }
960 EXPORT_SYMBOL(new_inode);
961
962 #ifdef CONFIG_DEBUG_LOCK_ALLOC
963 void lockdep_annotate_inode_mutex_key(struct inode *inode)
964 {
965 if (S_ISDIR(inode->i_mode)) {
966 struct file_system_type *type = inode->i_sb->s_type;
967
968 /* Set new key only if filesystem hasn't already changed it */
969 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
970 /*
971 * ensure nobody is actually holding i_mutex
972 */
973 // mutex_destroy(&inode->i_mutex);
974 init_rwsem(&inode->i_rwsem);
975 lockdep_set_class(&inode->i_rwsem,
976 &type->i_mutex_dir_key);
977 }
978 }
979 }
980 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
981 #endif
982
983 /**
984 * unlock_new_inode - clear the I_NEW state and wake up any waiters
985 * @inode: new inode to unlock
986 *
987 * Called when the inode is fully initialised to clear the new state of the
988 * inode and wake up anyone waiting for the inode to finish initialisation.
989 */
990 void unlock_new_inode(struct inode *inode)
991 {
992 lockdep_annotate_inode_mutex_key(inode);
993 spin_lock(&inode->i_lock);
994 WARN_ON(!(inode->i_state & I_NEW));
995 inode->i_state &= ~I_NEW & ~I_CREATING;
996 smp_mb();
997 wake_up_bit(&inode->i_state, __I_NEW);
998 spin_unlock(&inode->i_lock);
999 }
1000 EXPORT_SYMBOL(unlock_new_inode);
1001
1002 void discard_new_inode(struct inode *inode)
1003 {
1004 lockdep_annotate_inode_mutex_key(inode);
1005 spin_lock(&inode->i_lock);
1006 WARN_ON(!(inode->i_state & I_NEW));
1007 inode->i_state &= ~I_NEW;
1008 smp_mb();
1009 wake_up_bit(&inode->i_state, __I_NEW);
1010 spin_unlock(&inode->i_lock);
1011 iput(inode);
1012 }
1013 EXPORT_SYMBOL(discard_new_inode);
1014
1015 /**
1016 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1017 *
1018 * Lock any non-NULL argument that is not a directory.
1019 * Zero, one or two objects may be locked by this function.
1020 *
1021 * @inode1: first inode to lock
1022 * @inode2: second inode to lock
1023 */
1024 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1025 {
1026 if (inode1 > inode2)
1027 swap(inode1, inode2);
1028
1029 if (inode1 && !S_ISDIR(inode1->i_mode))
1030 inode_lock(inode1);
1031 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1032 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1033 }
1034 EXPORT_SYMBOL(lock_two_nondirectories);
1035
1036 /**
1037 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1038 * @inode1: first inode to unlock
1039 * @inode2: second inode to unlock
1040 */
1041 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1042 {
1043 if (inode1 && !S_ISDIR(inode1->i_mode))
1044 inode_unlock(inode1);
1045 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1046 inode_unlock(inode2);
1047 }
1048 EXPORT_SYMBOL(unlock_two_nondirectories);
1049
1050 /**
1051 * inode_insert5 - obtain an inode from a mounted file system
1052 * @inode: pre-allocated inode to use for insert to cache
1053 * @hashval: hash value (usually inode number) to get
1054 * @test: callback used for comparisons between inodes
1055 * @set: callback used to initialize a new struct inode
1056 * @data: opaque data pointer to pass to @test and @set
1057 *
1058 * Search for the inode specified by @hashval and @data in the inode cache,
1059 * and if present it is return it with an increased reference count. This is
1060 * a variant of iget5_locked() for callers that don't want to fail on memory
1061 * allocation of inode.
1062 *
1063 * If the inode is not in cache, insert the pre-allocated inode to cache and
1064 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1065 * to fill it in before unlocking it via unlock_new_inode().
1066 *
1067 * Note both @test and @set are called with the inode_hash_lock held, so can't
1068 * sleep.
1069 */
1070 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1071 int (*test)(struct inode *, void *),
1072 int (*set)(struct inode *, void *), void *data)
1073 {
1074 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1075 struct inode *old;
1076 bool creating = inode->i_state & I_CREATING;
1077
1078 again:
1079 spin_lock(&inode_hash_lock);
1080 old = find_inode(inode->i_sb, head, test, data);
1081 if (unlikely(old)) {
1082 /*
1083 * Uhhuh, somebody else created the same inode under us.
1084 * Use the old inode instead of the preallocated one.
1085 */
1086 spin_unlock(&inode_hash_lock);
1087 if (IS_ERR(old))
1088 return NULL;
1089 wait_on_inode(old);
1090 if (unlikely(inode_unhashed(old))) {
1091 iput(old);
1092 goto again;
1093 }
1094 return old;
1095 }
1096
1097 if (set && unlikely(set(inode, data))) {
1098 inode = NULL;
1099 goto unlock;
1100 }
1101
1102 /*
1103 * Return the locked inode with I_NEW set, the
1104 * caller is responsible for filling in the contents
1105 */
1106 spin_lock(&inode->i_lock);
1107 inode->i_state |= I_NEW;
1108 hlist_add_head(&inode->i_hash, head);
1109 spin_unlock(&inode->i_lock);
1110 if (!creating)
1111 inode_sb_list_add(inode);
1112 unlock:
1113 spin_unlock(&inode_hash_lock);
1114
1115 return inode;
1116 }
1117 EXPORT_SYMBOL(inode_insert5);
1118
1119 /**
1120 * iget5_locked - obtain an inode from a mounted file system
1121 * @sb: super block of file system
1122 * @hashval: hash value (usually inode number) to get
1123 * @test: callback used for comparisons between inodes
1124 * @set: callback used to initialize a new struct inode
1125 * @data: opaque data pointer to pass to @test and @set
1126 *
1127 * Search for the inode specified by @hashval and @data in the inode cache,
1128 * and if present it is return it with an increased reference count. This is
1129 * a generalized version of iget_locked() for file systems where the inode
1130 * number is not sufficient for unique identification of an inode.
1131 *
1132 * If the inode is not in cache, allocate a new inode and return it locked,
1133 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1134 * before unlocking it via unlock_new_inode().
1135 *
1136 * Note both @test and @set are called with the inode_hash_lock held, so can't
1137 * sleep.
1138 */
1139 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1140 int (*test)(struct inode *, void *),
1141 int (*set)(struct inode *, void *), void *data)
1142 {
1143 struct inode *inode = ilookup5(sb, hashval, test, data);
1144
1145 if (!inode) {
1146 struct inode *new = alloc_inode(sb);
1147
1148 if (new) {
1149 new->i_state = 0;
1150 inode = inode_insert5(new, hashval, test, set, data);
1151 if (unlikely(inode != new))
1152 destroy_inode(new);
1153 }
1154 }
1155 return inode;
1156 }
1157 EXPORT_SYMBOL(iget5_locked);
1158
1159 /**
1160 * iget_locked - obtain an inode from a mounted file system
1161 * @sb: super block of file system
1162 * @ino: inode number to get
1163 *
1164 * Search for the inode specified by @ino in the inode cache and if present
1165 * return it with an increased reference count. This is for file systems
1166 * where the inode number is sufficient for unique identification of an inode.
1167 *
1168 * If the inode is not in cache, allocate a new inode and return it locked,
1169 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1170 * before unlocking it via unlock_new_inode().
1171 */
1172 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1173 {
1174 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1175 struct inode *inode;
1176 again:
1177 spin_lock(&inode_hash_lock);
1178 inode = find_inode_fast(sb, head, ino);
1179 spin_unlock(&inode_hash_lock);
1180 if (inode) {
1181 if (IS_ERR(inode))
1182 return NULL;
1183 wait_on_inode(inode);
1184 if (unlikely(inode_unhashed(inode))) {
1185 iput(inode);
1186 goto again;
1187 }
1188 return inode;
1189 }
1190
1191 inode = alloc_inode(sb);
1192 if (inode) {
1193 struct inode *old;
1194
1195 spin_lock(&inode_hash_lock);
1196 /* We released the lock, so.. */
1197 old = find_inode_fast(sb, head, ino);
1198 if (!old) {
1199 inode->i_ino = ino;
1200 spin_lock(&inode->i_lock);
1201 inode->i_state = I_NEW;
1202 hlist_add_head(&inode->i_hash, head);
1203 spin_unlock(&inode->i_lock);
1204 inode_sb_list_add(inode);
1205 spin_unlock(&inode_hash_lock);
1206
1207 /* Return the locked inode with I_NEW set, the
1208 * caller is responsible for filling in the contents
1209 */
1210 return inode;
1211 }
1212
1213 /*
1214 * Uhhuh, somebody else created the same inode under
1215 * us. Use the old inode instead of the one we just
1216 * allocated.
1217 */
1218 spin_unlock(&inode_hash_lock);
1219 destroy_inode(inode);
1220 if (IS_ERR(old))
1221 return NULL;
1222 inode = old;
1223 wait_on_inode(inode);
1224 if (unlikely(inode_unhashed(inode))) {
1225 iput(inode);
1226 goto again;
1227 }
1228 }
1229 return inode;
1230 }
1231 EXPORT_SYMBOL(iget_locked);
1232
1233 /*
1234 * search the inode cache for a matching inode number.
1235 * If we find one, then the inode number we are trying to
1236 * allocate is not unique and so we should not use it.
1237 *
1238 * Returns 1 if the inode number is unique, 0 if it is not.
1239 */
1240 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1241 {
1242 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1243 struct inode *inode;
1244
1245 spin_lock(&inode_hash_lock);
1246 hlist_for_each_entry(inode, b, i_hash) {
1247 if (inode->i_ino == ino && inode->i_sb == sb) {
1248 spin_unlock(&inode_hash_lock);
1249 return 0;
1250 }
1251 }
1252 spin_unlock(&inode_hash_lock);
1253
1254 return 1;
1255 }
1256
1257 /**
1258 * iunique - get a unique inode number
1259 * @sb: superblock
1260 * @max_reserved: highest reserved inode number
1261 *
1262 * Obtain an inode number that is unique on the system for a given
1263 * superblock. This is used by file systems that have no natural
1264 * permanent inode numbering system. An inode number is returned that
1265 * is higher than the reserved limit but unique.
1266 *
1267 * BUGS:
1268 * With a large number of inodes live on the file system this function
1269 * currently becomes quite slow.
1270 */
1271 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1272 {
1273 /*
1274 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1275 * error if st_ino won't fit in target struct field. Use 32bit counter
1276 * here to attempt to avoid that.
1277 */
1278 static DEFINE_SPINLOCK(iunique_lock);
1279 static unsigned int counter;
1280 ino_t res;
1281
1282 spin_lock(&iunique_lock);
1283 do {
1284 if (counter <= max_reserved)
1285 counter = max_reserved + 1;
1286 res = counter++;
1287 } while (!test_inode_iunique(sb, res));
1288 spin_unlock(&iunique_lock);
1289
1290 return res;
1291 }
1292 EXPORT_SYMBOL(iunique);
1293
1294 struct inode *igrab(struct inode *inode)
1295 {
1296 spin_lock(&inode->i_lock);
1297 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1298 __iget(inode);
1299 spin_unlock(&inode->i_lock);
1300 } else {
1301 spin_unlock(&inode->i_lock);
1302 /*
1303 * Handle the case where s_op->clear_inode is not been
1304 * called yet, and somebody is calling igrab
1305 * while the inode is getting freed.
1306 */
1307 inode = NULL;
1308 }
1309 return inode;
1310 }
1311 EXPORT_SYMBOL(igrab);
1312
1313 /**
1314 * ilookup5_nowait - search for an inode in the inode cache
1315 * @sb: super block of file system to search
1316 * @hashval: hash value (usually inode number) to search for
1317 * @test: callback used for comparisons between inodes
1318 * @data: opaque data pointer to pass to @test
1319 *
1320 * Search for the inode specified by @hashval and @data in the inode cache.
1321 * If the inode is in the cache, the inode is returned with an incremented
1322 * reference count.
1323 *
1324 * Note: I_NEW is not waited upon so you have to be very careful what you do
1325 * with the returned inode. You probably should be using ilookup5() instead.
1326 *
1327 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1328 */
1329 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1330 int (*test)(struct inode *, void *), void *data)
1331 {
1332 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1333 struct inode *inode;
1334
1335 spin_lock(&inode_hash_lock);
1336 inode = find_inode(sb, head, test, data);
1337 spin_unlock(&inode_hash_lock);
1338
1339 return IS_ERR(inode) ? NULL : inode;
1340 }
1341 EXPORT_SYMBOL(ilookup5_nowait);
1342
1343 /**
1344 * ilookup5 - search for an inode in the inode cache
1345 * @sb: super block of file system to search
1346 * @hashval: hash value (usually inode number) to search for
1347 * @test: callback used for comparisons between inodes
1348 * @data: opaque data pointer to pass to @test
1349 *
1350 * Search for the inode specified by @hashval and @data in the inode cache,
1351 * and if the inode is in the cache, return the inode with an incremented
1352 * reference count. Waits on I_NEW before returning the inode.
1353 * returned with an incremented reference count.
1354 *
1355 * This is a generalized version of ilookup() for file systems where the
1356 * inode number is not sufficient for unique identification of an inode.
1357 *
1358 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1359 */
1360 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1361 int (*test)(struct inode *, void *), void *data)
1362 {
1363 struct inode *inode;
1364 again:
1365 inode = ilookup5_nowait(sb, hashval, test, data);
1366 if (inode) {
1367 wait_on_inode(inode);
1368 if (unlikely(inode_unhashed(inode))) {
1369 iput(inode);
1370 goto again;
1371 }
1372 }
1373 return inode;
1374 }
1375 EXPORT_SYMBOL(ilookup5);
1376
1377 /**
1378 * ilookup - search for an inode in the inode cache
1379 * @sb: super block of file system to search
1380 * @ino: inode number to search for
1381 *
1382 * Search for the inode @ino in the inode cache, and if the inode is in the
1383 * cache, the inode is returned with an incremented reference count.
1384 */
1385 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1386 {
1387 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1388 struct inode *inode;
1389 again:
1390 spin_lock(&inode_hash_lock);
1391 inode = find_inode_fast(sb, head, ino);
1392 spin_unlock(&inode_hash_lock);
1393
1394 if (inode) {
1395 if (IS_ERR(inode))
1396 return NULL;
1397 wait_on_inode(inode);
1398 if (unlikely(inode_unhashed(inode))) {
1399 iput(inode);
1400 goto again;
1401 }
1402 }
1403 return inode;
1404 }
1405 EXPORT_SYMBOL(ilookup);
1406
1407 /**
1408 * find_inode_nowait - find an inode in the inode cache
1409 * @sb: super block of file system to search
1410 * @hashval: hash value (usually inode number) to search for
1411 * @match: callback used for comparisons between inodes
1412 * @data: opaque data pointer to pass to @match
1413 *
1414 * Search for the inode specified by @hashval and @data in the inode
1415 * cache, where the helper function @match will return 0 if the inode
1416 * does not match, 1 if the inode does match, and -1 if the search
1417 * should be stopped. The @match function must be responsible for
1418 * taking the i_lock spin_lock and checking i_state for an inode being
1419 * freed or being initialized, and incrementing the reference count
1420 * before returning 1. It also must not sleep, since it is called with
1421 * the inode_hash_lock spinlock held.
1422 *
1423 * This is a even more generalized version of ilookup5() when the
1424 * function must never block --- find_inode() can block in
1425 * __wait_on_freeing_inode() --- or when the caller can not increment
1426 * the reference count because the resulting iput() might cause an
1427 * inode eviction. The tradeoff is that the @match funtion must be
1428 * very carefully implemented.
1429 */
1430 struct inode *find_inode_nowait(struct super_block *sb,
1431 unsigned long hashval,
1432 int (*match)(struct inode *, unsigned long,
1433 void *),
1434 void *data)
1435 {
1436 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1437 struct inode *inode, *ret_inode = NULL;
1438 int mval;
1439
1440 spin_lock(&inode_hash_lock);
1441 hlist_for_each_entry(inode, head, i_hash) {
1442 if (inode->i_sb != sb)
1443 continue;
1444 mval = match(inode, hashval, data);
1445 if (mval == 0)
1446 continue;
1447 if (mval == 1)
1448 ret_inode = inode;
1449 goto out;
1450 }
1451 out:
1452 spin_unlock(&inode_hash_lock);
1453 return ret_inode;
1454 }
1455 EXPORT_SYMBOL(find_inode_nowait);
1456
1457 int insert_inode_locked(struct inode *inode)
1458 {
1459 struct super_block *sb = inode->i_sb;
1460 ino_t ino = inode->i_ino;
1461 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1462
1463 while (1) {
1464 struct inode *old = NULL;
1465 spin_lock(&inode_hash_lock);
1466 hlist_for_each_entry(old, head, i_hash) {
1467 if (old->i_ino != ino)
1468 continue;
1469 if (old->i_sb != sb)
1470 continue;
1471 spin_lock(&old->i_lock);
1472 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1473 spin_unlock(&old->i_lock);
1474 continue;
1475 }
1476 break;
1477 }
1478 if (likely(!old)) {
1479 spin_lock(&inode->i_lock);
1480 inode->i_state |= I_NEW | I_CREATING;
1481 hlist_add_head(&inode->i_hash, head);
1482 spin_unlock(&inode->i_lock);
1483 spin_unlock(&inode_hash_lock);
1484 return 0;
1485 }
1486 if (unlikely(old->i_state & I_CREATING)) {
1487 spin_unlock(&old->i_lock);
1488 spin_unlock(&inode_hash_lock);
1489 return -EBUSY;
1490 }
1491 __iget(old);
1492 spin_unlock(&old->i_lock);
1493 spin_unlock(&inode_hash_lock);
1494 wait_on_inode(old);
1495 if (unlikely(!inode_unhashed(old))) {
1496 iput(old);
1497 return -EBUSY;
1498 }
1499 iput(old);
1500 }
1501 }
1502 EXPORT_SYMBOL(insert_inode_locked);
1503
1504 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1505 int (*test)(struct inode *, void *), void *data)
1506 {
1507 struct inode *old;
1508
1509 inode->i_state |= I_CREATING;
1510 old = inode_insert5(inode, hashval, test, NULL, data);
1511
1512 if (old != inode) {
1513 iput(old);
1514 return -EBUSY;
1515 }
1516 return 0;
1517 }
1518 EXPORT_SYMBOL(insert_inode_locked4);
1519
1520
1521 int generic_delete_inode(struct inode *inode)
1522 {
1523 return 1;
1524 }
1525 EXPORT_SYMBOL(generic_delete_inode);
1526
1527 /*
1528 * Called when we're dropping the last reference
1529 * to an inode.
1530 *
1531 * Call the FS "drop_inode()" function, defaulting to
1532 * the legacy UNIX filesystem behaviour. If it tells
1533 * us to evict inode, do so. Otherwise, retain inode
1534 * in cache if fs is alive, sync and evict if fs is
1535 * shutting down.
1536 */
1537 static void iput_final(struct inode *inode)
1538 {
1539 struct super_block *sb = inode->i_sb;
1540 const struct super_operations *op = inode->i_sb->s_op;
1541 int drop;
1542
1543 WARN_ON(inode->i_state & I_NEW);
1544
1545 if (op->drop_inode)
1546 drop = op->drop_inode(inode);
1547 else
1548 drop = generic_drop_inode(inode);
1549
1550 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1551 inode_add_lru(inode);
1552 spin_unlock(&inode->i_lock);
1553 return;
1554 }
1555
1556 if (!drop) {
1557 inode->i_state |= I_WILL_FREE;
1558 spin_unlock(&inode->i_lock);
1559 write_inode_now(inode, 1);
1560 spin_lock(&inode->i_lock);
1561 WARN_ON(inode->i_state & I_NEW);
1562 inode->i_state &= ~I_WILL_FREE;
1563 }
1564
1565 inode->i_state |= I_FREEING;
1566 if (!list_empty(&inode->i_lru))
1567 inode_lru_list_del(inode);
1568 spin_unlock(&inode->i_lock);
1569
1570 evict(inode);
1571 }
1572
1573 /**
1574 * iput - put an inode
1575 * @inode: inode to put
1576 *
1577 * Puts an inode, dropping its usage count. If the inode use count hits
1578 * zero, the inode is then freed and may also be destroyed.
1579 *
1580 * Consequently, iput() can sleep.
1581 */
1582 void iput(struct inode *inode)
1583 {
1584 if (!inode)
1585 return;
1586 BUG_ON(inode->i_state & I_CLEAR);
1587 retry:
1588 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1589 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1590 atomic_inc(&inode->i_count);
1591 spin_unlock(&inode->i_lock);
1592 trace_writeback_lazytime_iput(inode);
1593 mark_inode_dirty_sync(inode);
1594 goto retry;
1595 }
1596 iput_final(inode);
1597 }
1598 }
1599 EXPORT_SYMBOL(iput);
1600
1601 /**
1602 * bmap - find a block number in a file
1603 * @inode: inode of file
1604 * @block: block to find
1605 *
1606 * Returns the block number on the device holding the inode that
1607 * is the disk block number for the block of the file requested.
1608 * That is, asked for block 4 of inode 1 the function will return the
1609 * disk block relative to the disk start that holds that block of the
1610 * file.
1611 */
1612 sector_t bmap(struct inode *inode, sector_t block)
1613 {
1614 sector_t res = 0;
1615 if (inode->i_mapping->a_ops->bmap)
1616 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1617 return res;
1618 }
1619 EXPORT_SYMBOL(bmap);
1620
1621 /*
1622 * With relative atime, only update atime if the previous atime is
1623 * earlier than either the ctime or mtime or if at least a day has
1624 * passed since the last atime update.
1625 */
1626 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1627 struct timespec64 now)
1628 {
1629
1630 if (!(mnt->mnt_flags & MNT_RELATIME))
1631 return 1;
1632 /*
1633 * Is mtime younger than atime? If yes, update atime:
1634 */
1635 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1636 return 1;
1637 /*
1638 * Is ctime younger than atime? If yes, update atime:
1639 */
1640 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1641 return 1;
1642
1643 /*
1644 * Is the previous atime value older than a day? If yes,
1645 * update atime:
1646 */
1647 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1648 return 1;
1649 /*
1650 * Good, we can skip the atime update:
1651 */
1652 return 0;
1653 }
1654
1655 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1656 {
1657 int iflags = I_DIRTY_TIME;
1658 bool dirty = false;
1659
1660 if (flags & S_ATIME)
1661 inode->i_atime = *time;
1662 if (flags & S_VERSION)
1663 dirty = inode_maybe_inc_iversion(inode, false);
1664 if (flags & S_CTIME)
1665 inode->i_ctime = *time;
1666 if (flags & S_MTIME)
1667 inode->i_mtime = *time;
1668 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1669 !(inode->i_sb->s_flags & SB_LAZYTIME))
1670 dirty = true;
1671
1672 if (dirty)
1673 iflags |= I_DIRTY_SYNC;
1674 __mark_inode_dirty(inode, iflags);
1675 return 0;
1676 }
1677 EXPORT_SYMBOL(generic_update_time);
1678
1679 /*
1680 * This does the actual work of updating an inodes time or version. Must have
1681 * had called mnt_want_write() before calling this.
1682 */
1683 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1684 {
1685 int (*update_time)(struct inode *, struct timespec64 *, int);
1686
1687 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1688 generic_update_time;
1689
1690 return update_time(inode, time, flags);
1691 }
1692
1693 /**
1694 * touch_atime - update the access time
1695 * @path: the &struct path to update
1696 * @inode: inode to update
1697 *
1698 * Update the accessed time on an inode and mark it for writeback.
1699 * This function automatically handles read only file systems and media,
1700 * as well as the "noatime" flag and inode specific "noatime" markers.
1701 */
1702 bool atime_needs_update(const struct path *path, struct inode *inode)
1703 {
1704 struct vfsmount *mnt = path->mnt;
1705 struct timespec64 now;
1706
1707 if (inode->i_flags & S_NOATIME)
1708 return false;
1709
1710 /* Atime updates will likely cause i_uid and i_gid to be written
1711 * back improprely if their true value is unknown to the vfs.
1712 */
1713 if (HAS_UNMAPPED_ID(inode))
1714 return false;
1715
1716 if (IS_NOATIME(inode))
1717 return false;
1718 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1719 return false;
1720
1721 if (mnt->mnt_flags & MNT_NOATIME)
1722 return false;
1723 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1724 return false;
1725
1726 now = current_time(inode);
1727
1728 if (!relatime_need_update(mnt, inode, now))
1729 return false;
1730
1731 if (timespec64_equal(&inode->i_atime, &now))
1732 return false;
1733
1734 return true;
1735 }
1736
1737 void touch_atime(const struct path *path)
1738 {
1739 struct vfsmount *mnt = path->mnt;
1740 struct inode *inode = d_inode(path->dentry);
1741 struct timespec64 now;
1742
1743 if (!atime_needs_update(path, inode))
1744 return;
1745
1746 if (!sb_start_write_trylock(inode->i_sb))
1747 return;
1748
1749 if (__mnt_want_write(mnt) != 0)
1750 goto skip_update;
1751 /*
1752 * File systems can error out when updating inodes if they need to
1753 * allocate new space to modify an inode (such is the case for
1754 * Btrfs), but since we touch atime while walking down the path we
1755 * really don't care if we failed to update the atime of the file,
1756 * so just ignore the return value.
1757 * We may also fail on filesystems that have the ability to make parts
1758 * of the fs read only, e.g. subvolumes in Btrfs.
1759 */
1760 now = current_time(inode);
1761 update_time(inode, &now, S_ATIME);
1762 __mnt_drop_write(mnt);
1763 skip_update:
1764 sb_end_write(inode->i_sb);
1765 }
1766 EXPORT_SYMBOL(touch_atime);
1767
1768 /*
1769 * The logic we want is
1770 *
1771 * if suid or (sgid and xgrp)
1772 * remove privs
1773 */
1774 int should_remove_suid(struct dentry *dentry)
1775 {
1776 umode_t mode = d_inode(dentry)->i_mode;
1777 int kill = 0;
1778
1779 /* suid always must be killed */
1780 if (unlikely(mode & S_ISUID))
1781 kill = ATTR_KILL_SUID;
1782
1783 /*
1784 * sgid without any exec bits is just a mandatory locking mark; leave
1785 * it alone. If some exec bits are set, it's a real sgid; kill it.
1786 */
1787 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1788 kill |= ATTR_KILL_SGID;
1789
1790 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1791 return kill;
1792
1793 return 0;
1794 }
1795 EXPORT_SYMBOL(should_remove_suid);
1796
1797 /*
1798 * Return mask of changes for notify_change() that need to be done as a
1799 * response to write or truncate. Return 0 if nothing has to be changed.
1800 * Negative value on error (change should be denied).
1801 */
1802 int dentry_needs_remove_privs(struct dentry *dentry)
1803 {
1804 struct inode *inode = d_inode(dentry);
1805 int mask = 0;
1806 int ret;
1807
1808 if (IS_NOSEC(inode))
1809 return 0;
1810
1811 mask = should_remove_suid(dentry);
1812 ret = security_inode_need_killpriv(dentry);
1813 if (ret < 0)
1814 return ret;
1815 if (ret)
1816 mask |= ATTR_KILL_PRIV;
1817 return mask;
1818 }
1819
1820 static int __remove_privs(struct dentry *dentry, int kill)
1821 {
1822 struct iattr newattrs;
1823
1824 newattrs.ia_valid = ATTR_FORCE | kill;
1825 /*
1826 * Note we call this on write, so notify_change will not
1827 * encounter any conflicting delegations:
1828 */
1829 return notify_change(dentry, &newattrs, NULL);
1830 }
1831
1832 /*
1833 * Remove special file priviledges (suid, capabilities) when file is written
1834 * to or truncated.
1835 */
1836 int file_remove_privs(struct file *file)
1837 {
1838 struct dentry *dentry = file_dentry(file);
1839 struct inode *inode = file_inode(file);
1840 int kill;
1841 int error = 0;
1842
1843 /*
1844 * Fast path for nothing security related.
1845 * As well for non-regular files, e.g. blkdev inodes.
1846 * For example, blkdev_write_iter() might get here
1847 * trying to remove privs which it is not allowed to.
1848 */
1849 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1850 return 0;
1851
1852 kill = dentry_needs_remove_privs(dentry);
1853 if (kill < 0)
1854 return kill;
1855 if (kill)
1856 error = __remove_privs(dentry, kill);
1857 if (!error)
1858 inode_has_no_xattr(inode);
1859
1860 return error;
1861 }
1862 EXPORT_SYMBOL(file_remove_privs);
1863
1864 /**
1865 * file_update_time - update mtime and ctime time
1866 * @file: file accessed
1867 *
1868 * Update the mtime and ctime members of an inode and mark the inode
1869 * for writeback. Note that this function is meant exclusively for
1870 * usage in the file write path of filesystems, and filesystems may
1871 * choose to explicitly ignore update via this function with the
1872 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1873 * timestamps are handled by the server. This can return an error for
1874 * file systems who need to allocate space in order to update an inode.
1875 */
1876
1877 int file_update_time(struct file *file)
1878 {
1879 struct inode *inode = file_inode(file);
1880 struct timespec64 now;
1881 int sync_it = 0;
1882 int ret;
1883
1884 /* First try to exhaust all avenues to not sync */
1885 if (IS_NOCMTIME(inode))
1886 return 0;
1887
1888 now = current_time(inode);
1889 if (!timespec64_equal(&inode->i_mtime, &now))
1890 sync_it = S_MTIME;
1891
1892 if (!timespec64_equal(&inode->i_ctime, &now))
1893 sync_it |= S_CTIME;
1894
1895 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1896 sync_it |= S_VERSION;
1897
1898 if (!sync_it)
1899 return 0;
1900
1901 /* Finally allowed to write? Takes lock. */
1902 if (__mnt_want_write_file(file))
1903 return 0;
1904
1905 ret = update_time(inode, &now, sync_it);
1906 __mnt_drop_write_file(file);
1907
1908 return ret;
1909 }
1910 EXPORT_SYMBOL(file_update_time);
1911
1912 /* Caller must hold the file's inode lock */
1913 int file_modified(struct file *file)
1914 {
1915 int err;
1916
1917 /*
1918 * Clear the security bits if the process is not being run by root.
1919 * This keeps people from modifying setuid and setgid binaries.
1920 */
1921 err = file_remove_privs(file);
1922 if (err)
1923 return err;
1924
1925 if (unlikely(file->f_mode & FMODE_NOCMTIME))
1926 return 0;
1927
1928 return file_update_time(file);
1929 }
1930 EXPORT_SYMBOL(file_modified);
1931
1932 int inode_needs_sync(struct inode *inode)
1933 {
1934 if (IS_SYNC(inode))
1935 return 1;
1936 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1937 return 1;
1938 return 0;
1939 }
1940 EXPORT_SYMBOL(inode_needs_sync);
1941
1942 /*
1943 * If we try to find an inode in the inode hash while it is being
1944 * deleted, we have to wait until the filesystem completes its
1945 * deletion before reporting that it isn't found. This function waits
1946 * until the deletion _might_ have completed. Callers are responsible
1947 * to recheck inode state.
1948 *
1949 * It doesn't matter if I_NEW is not set initially, a call to
1950 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1951 * will DTRT.
1952 */
1953 static void __wait_on_freeing_inode(struct inode *inode)
1954 {
1955 wait_queue_head_t *wq;
1956 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1957 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1958 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1959 spin_unlock(&inode->i_lock);
1960 spin_unlock(&inode_hash_lock);
1961 schedule();
1962 finish_wait(wq, &wait.wq_entry);
1963 spin_lock(&inode_hash_lock);
1964 }
1965
1966 static __initdata unsigned long ihash_entries;
1967 static int __init set_ihash_entries(char *str)
1968 {
1969 if (!str)
1970 return 0;
1971 ihash_entries = simple_strtoul(str, &str, 0);
1972 return 1;
1973 }
1974 __setup("ihash_entries=", set_ihash_entries);
1975
1976 /*
1977 * Initialize the waitqueues and inode hash table.
1978 */
1979 void __init inode_init_early(void)
1980 {
1981 /* If hashes are distributed across NUMA nodes, defer
1982 * hash allocation until vmalloc space is available.
1983 */
1984 if (hashdist)
1985 return;
1986
1987 inode_hashtable =
1988 alloc_large_system_hash("Inode-cache",
1989 sizeof(struct hlist_head),
1990 ihash_entries,
1991 14,
1992 HASH_EARLY | HASH_ZERO,
1993 &i_hash_shift,
1994 &i_hash_mask,
1995 0,
1996 0);
1997 }
1998
1999 void __init inode_init(void)
2000 {
2001 /* inode slab cache */
2002 inode_cachep = kmem_cache_create("inode_cache",
2003 sizeof(struct inode),
2004 0,
2005 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2006 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2007 init_once);
2008
2009 /* Hash may have been set up in inode_init_early */
2010 if (!hashdist)
2011 return;
2012
2013 inode_hashtable =
2014 alloc_large_system_hash("Inode-cache",
2015 sizeof(struct hlist_head),
2016 ihash_entries,
2017 14,
2018 HASH_ZERO,
2019 &i_hash_shift,
2020 &i_hash_mask,
2021 0,
2022 0);
2023 }
2024
2025 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2026 {
2027 inode->i_mode = mode;
2028 if (S_ISCHR(mode)) {
2029 inode->i_fop = &def_chr_fops;
2030 inode->i_rdev = rdev;
2031 } else if (S_ISBLK(mode)) {
2032 inode->i_fop = &def_blk_fops;
2033 inode->i_rdev = rdev;
2034 } else if (S_ISFIFO(mode))
2035 inode->i_fop = &pipefifo_fops;
2036 else if (S_ISSOCK(mode))
2037 ; /* leave it no_open_fops */
2038 else
2039 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2040 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2041 inode->i_ino);
2042 }
2043 EXPORT_SYMBOL(init_special_inode);
2044
2045 /**
2046 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2047 * @inode: New inode
2048 * @dir: Directory inode
2049 * @mode: mode of the new inode
2050 */
2051 void inode_init_owner(struct inode *inode, const struct inode *dir,
2052 umode_t mode)
2053 {
2054 inode->i_uid = current_fsuid();
2055 if (dir && dir->i_mode & S_ISGID) {
2056 inode->i_gid = dir->i_gid;
2057
2058 /* Directories are special, and always inherit S_ISGID */
2059 if (S_ISDIR(mode))
2060 mode |= S_ISGID;
2061 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2062 !in_group_p(inode->i_gid) &&
2063 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2064 mode &= ~S_ISGID;
2065 } else
2066 inode->i_gid = current_fsgid();
2067 inode->i_mode = mode;
2068 }
2069 EXPORT_SYMBOL(inode_init_owner);
2070
2071 /**
2072 * inode_owner_or_capable - check current task permissions to inode
2073 * @inode: inode being checked
2074 *
2075 * Return true if current either has CAP_FOWNER in a namespace with the
2076 * inode owner uid mapped, or owns the file.
2077 */
2078 bool inode_owner_or_capable(const struct inode *inode)
2079 {
2080 struct user_namespace *ns;
2081
2082 if (uid_eq(current_fsuid(), inode->i_uid))
2083 return true;
2084
2085 ns = current_user_ns();
2086 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2087 return true;
2088 return false;
2089 }
2090 EXPORT_SYMBOL(inode_owner_or_capable);
2091
2092 /*
2093 * Direct i/o helper functions
2094 */
2095 static void __inode_dio_wait(struct inode *inode)
2096 {
2097 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2098 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2099
2100 do {
2101 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2102 if (atomic_read(&inode->i_dio_count))
2103 schedule();
2104 } while (atomic_read(&inode->i_dio_count));
2105 finish_wait(wq, &q.wq_entry);
2106 }
2107
2108 /**
2109 * inode_dio_wait - wait for outstanding DIO requests to finish
2110 * @inode: inode to wait for
2111 *
2112 * Waits for all pending direct I/O requests to finish so that we can
2113 * proceed with a truncate or equivalent operation.
2114 *
2115 * Must be called under a lock that serializes taking new references
2116 * to i_dio_count, usually by inode->i_mutex.
2117 */
2118 void inode_dio_wait(struct inode *inode)
2119 {
2120 if (atomic_read(&inode->i_dio_count))
2121 __inode_dio_wait(inode);
2122 }
2123 EXPORT_SYMBOL(inode_dio_wait);
2124
2125 /*
2126 * inode_set_flags - atomically set some inode flags
2127 *
2128 * Note: the caller should be holding i_mutex, or else be sure that
2129 * they have exclusive access to the inode structure (i.e., while the
2130 * inode is being instantiated). The reason for the cmpxchg() loop
2131 * --- which wouldn't be necessary if all code paths which modify
2132 * i_flags actually followed this rule, is that there is at least one
2133 * code path which doesn't today so we use cmpxchg() out of an abundance
2134 * of caution.
2135 *
2136 * In the long run, i_mutex is overkill, and we should probably look
2137 * at using the i_lock spinlock to protect i_flags, and then make sure
2138 * it is so documented in include/linux/fs.h and that all code follows
2139 * the locking convention!!
2140 */
2141 void inode_set_flags(struct inode *inode, unsigned int flags,
2142 unsigned int mask)
2143 {
2144 WARN_ON_ONCE(flags & ~mask);
2145 set_mask_bits(&inode->i_flags, mask, flags);
2146 }
2147 EXPORT_SYMBOL(inode_set_flags);
2148
2149 void inode_nohighmem(struct inode *inode)
2150 {
2151 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2152 }
2153 EXPORT_SYMBOL(inode_nohighmem);
2154
2155 /**
2156 * timespec64_trunc - Truncate timespec64 to a granularity
2157 * @t: Timespec64
2158 * @gran: Granularity in ns.
2159 *
2160 * Truncate a timespec64 to a granularity. Always rounds down. gran must
2161 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2162 */
2163 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2164 {
2165 /* Avoid division in the common cases 1 ns and 1 s. */
2166 if (gran == 1) {
2167 /* nothing */
2168 } else if (gran == NSEC_PER_SEC) {
2169 t.tv_nsec = 0;
2170 } else if (gran > 1 && gran < NSEC_PER_SEC) {
2171 t.tv_nsec -= t.tv_nsec % gran;
2172 } else {
2173 WARN(1, "illegal file time granularity: %u", gran);
2174 }
2175 return t;
2176 }
2177 EXPORT_SYMBOL(timespec64_trunc);
2178
2179 /**
2180 * timestamp_truncate - Truncate timespec to a granularity
2181 * @t: Timespec
2182 * @inode: inode being updated
2183 *
2184 * Truncate a timespec to the granularity supported by the fs
2185 * containing the inode. Always rounds down. gran must
2186 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2187 */
2188 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2189 {
2190 struct super_block *sb = inode->i_sb;
2191 unsigned int gran = sb->s_time_gran;
2192
2193 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2194 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2195 t.tv_nsec = 0;
2196
2197 /* Avoid division in the common cases 1 ns and 1 s. */
2198 if (gran == 1)
2199 ; /* nothing */
2200 else if (gran == NSEC_PER_SEC)
2201 t.tv_nsec = 0;
2202 else if (gran > 1 && gran < NSEC_PER_SEC)
2203 t.tv_nsec -= t.tv_nsec % gran;
2204 else
2205 WARN(1, "invalid file time granularity: %u", gran);
2206 return t;
2207 }
2208 EXPORT_SYMBOL(timestamp_truncate);
2209
2210 /**
2211 * current_time - Return FS time
2212 * @inode: inode.
2213 *
2214 * Return the current time truncated to the time granularity supported by
2215 * the fs.
2216 *
2217 * Note that inode and inode->sb cannot be NULL.
2218 * Otherwise, the function warns and returns time without truncation.
2219 */
2220 struct timespec64 current_time(struct inode *inode)
2221 {
2222 struct timespec64 now;
2223
2224 ktime_get_coarse_real_ts64(&now);
2225
2226 if (unlikely(!inode->i_sb)) {
2227 WARN(1, "current_time() called with uninitialized super_block in the inode");
2228 return now;
2229 }
2230
2231 return timestamp_truncate(now, inode);
2232 }
2233 EXPORT_SYMBOL(current_time);
2234
2235 /*
2236 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2237 * configurations.
2238 *
2239 * Note: the caller should be holding i_mutex, or else be sure that they have
2240 * exclusive access to the inode structure.
2241 */
2242 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2243 unsigned int flags)
2244 {
2245 /*
2246 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2247 * the relevant capability.
2248 *
2249 * This test looks nicer. Thanks to Pauline Middelink
2250 */
2251 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2252 !capable(CAP_LINUX_IMMUTABLE))
2253 return -EPERM;
2254
2255 return 0;
2256 }
2257 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2258
2259 /*
2260 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2261 * configurations.
2262 *
2263 * Note: the caller should be holding i_mutex, or else be sure that they have
2264 * exclusive access to the inode structure.
2265 */
2266 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2267 struct fsxattr *fa)
2268 {
2269 /*
2270 * Can't modify an immutable/append-only file unless we have
2271 * appropriate permission.
2272 */
2273 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2274 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2275 !capable(CAP_LINUX_IMMUTABLE))
2276 return -EPERM;
2277
2278 /*
2279 * Project Quota ID state is only allowed to change from within the init
2280 * namespace. Enforce that restriction only if we are trying to change
2281 * the quota ID state. Everything else is allowed in user namespaces.
2282 */
2283 if (current_user_ns() != &init_user_ns) {
2284 if (old_fa->fsx_projid != fa->fsx_projid)
2285 return -EINVAL;
2286 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2287 FS_XFLAG_PROJINHERIT)
2288 return -EINVAL;
2289 }
2290
2291 /* Check extent size hints. */
2292 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2293 return -EINVAL;
2294
2295 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2296 !S_ISDIR(inode->i_mode))
2297 return -EINVAL;
2298
2299 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2300 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2301 return -EINVAL;
2302
2303 /*
2304 * It is only valid to set the DAX flag on regular files and
2305 * directories on filesystems.
2306 */
2307 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2308 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2309 return -EINVAL;
2310
2311 /* Extent size hints of zero turn off the flags. */
2312 if (fa->fsx_extsize == 0)
2313 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2314 if (fa->fsx_cowextsize == 0)
2315 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2316
2317 return 0;
2318 }
2319 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);