]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
UBUNTU: Start new release
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static long get_nr_inodes(void)
79 {
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline long get_nr_inodes_unused(void)
88 {
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 long get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 return -ENXIO;
119 }
120
121 /**
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 if (sb->s_xattr)
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_write_hint = WRITE_LIFE_NOT_SET;
150 inode->i_blocks = 0;
151 inode->i_bytes = 0;
152 inode->i_generation = 0;
153 inode->i_pipe = NULL;
154 inode->i_bdev = NULL;
155 inode->i_cdev = NULL;
156 inode->i_link = NULL;
157 inode->i_dir_seq = 0;
158 inode->i_rdev = 0;
159 inode->dirtied_when = 0;
160
161 #ifdef CONFIG_CGROUP_WRITEBACK
162 inode->i_wb_frn_winner = 0;
163 inode->i_wb_frn_avg_time = 0;
164 inode->i_wb_frn_history = 0;
165 #endif
166
167 if (security_inode_alloc(inode))
168 goto out;
169 spin_lock_init(&inode->i_lock);
170 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
171
172 init_rwsem(&inode->i_rwsem);
173 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
174
175 atomic_set(&inode->i_dio_count, 0);
176
177 mapping->a_ops = &empty_aops;
178 mapping->host = inode;
179 mapping->flags = 0;
180 mapping->wb_err = 0;
181 atomic_set(&mapping->i_mmap_writable, 0);
182 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
183 mapping->private_data = NULL;
184 mapping->writeback_index = 0;
185 inode->i_private = NULL;
186 inode->i_mapping = mapping;
187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
188 #ifdef CONFIG_FS_POSIX_ACL
189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191
192 #ifdef CONFIG_FSNOTIFY
193 inode->i_fsnotify_mask = 0;
194 #endif
195 inode->i_flctx = NULL;
196 this_cpu_inc(nr_inodes);
197
198 return 0;
199 out:
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(inode_init_always);
203
204 static struct inode *alloc_inode(struct super_block *sb)
205 {
206 struct inode *inode;
207
208 if (sb->s_op->alloc_inode)
209 inode = sb->s_op->alloc_inode(sb);
210 else
211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
212
213 if (!inode)
214 return NULL;
215
216 if (unlikely(inode_init_always(sb, inode))) {
217 if (inode->i_sb->s_op->destroy_inode)
218 inode->i_sb->s_op->destroy_inode(inode);
219 else
220 kmem_cache_free(inode_cachep, inode);
221 return NULL;
222 }
223
224 return inode;
225 }
226
227 void free_inode_nonrcu(struct inode *inode)
228 {
229 kmem_cache_free(inode_cachep, inode);
230 }
231 EXPORT_SYMBOL(free_inode_nonrcu);
232
233 void __destroy_inode(struct inode *inode)
234 {
235 BUG_ON(inode_has_buffers(inode));
236 inode_detach_wb(inode);
237 security_inode_free(inode);
238 fsnotify_inode_delete(inode);
239 locks_free_lock_context(inode);
240 if (!inode->i_nlink) {
241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
242 atomic_long_dec(&inode->i_sb->s_remove_count);
243 }
244
245 #ifdef CONFIG_FS_POSIX_ACL
246 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
247 posix_acl_release(inode->i_acl);
248 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
249 posix_acl_release(inode->i_default_acl);
250 #endif
251 this_cpu_dec(nr_inodes);
252 }
253 EXPORT_SYMBOL(__destroy_inode);
254
255 static void i_callback(struct rcu_head *head)
256 {
257 struct inode *inode = container_of(head, struct inode, i_rcu);
258 kmem_cache_free(inode_cachep, inode);
259 }
260
261 static void destroy_inode(struct inode *inode)
262 {
263 BUG_ON(!list_empty(&inode->i_lru));
264 __destroy_inode(inode);
265 if (inode->i_sb->s_op->destroy_inode)
266 inode->i_sb->s_op->destroy_inode(inode);
267 else
268 call_rcu(&inode->i_rcu, i_callback);
269 }
270
271 /**
272 * drop_nlink - directly drop an inode's link count
273 * @inode: inode
274 *
275 * This is a low-level filesystem helper to replace any
276 * direct filesystem manipulation of i_nlink. In cases
277 * where we are attempting to track writes to the
278 * filesystem, a decrement to zero means an imminent
279 * write when the file is truncated and actually unlinked
280 * on the filesystem.
281 */
282 void drop_nlink(struct inode *inode)
283 {
284 WARN_ON(inode->i_nlink == 0);
285 inode->__i_nlink--;
286 if (!inode->i_nlink)
287 atomic_long_inc(&inode->i_sb->s_remove_count);
288 }
289 EXPORT_SYMBOL(drop_nlink);
290
291 /**
292 * clear_nlink - directly zero an inode's link count
293 * @inode: inode
294 *
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. See
297 * drop_nlink() for why we care about i_nlink hitting zero.
298 */
299 void clear_nlink(struct inode *inode)
300 {
301 if (inode->i_nlink) {
302 inode->__i_nlink = 0;
303 atomic_long_inc(&inode->i_sb->s_remove_count);
304 }
305 }
306 EXPORT_SYMBOL(clear_nlink);
307
308 /**
309 * set_nlink - directly set an inode's link count
310 * @inode: inode
311 * @nlink: new nlink (should be non-zero)
312 *
313 * This is a low-level filesystem helper to replace any
314 * direct filesystem manipulation of i_nlink.
315 */
316 void set_nlink(struct inode *inode, unsigned int nlink)
317 {
318 if (!nlink) {
319 clear_nlink(inode);
320 } else {
321 /* Yes, some filesystems do change nlink from zero to one */
322 if (inode->i_nlink == 0)
323 atomic_long_dec(&inode->i_sb->s_remove_count);
324
325 inode->__i_nlink = nlink;
326 }
327 }
328 EXPORT_SYMBOL(set_nlink);
329
330 /**
331 * inc_nlink - directly increment an inode's link count
332 * @inode: inode
333 *
334 * This is a low-level filesystem helper to replace any
335 * direct filesystem manipulation of i_nlink. Currently,
336 * it is only here for parity with dec_nlink().
337 */
338 void inc_nlink(struct inode *inode)
339 {
340 if (unlikely(inode->i_nlink == 0)) {
341 WARN_ON(!(inode->i_state & I_LINKABLE));
342 atomic_long_dec(&inode->i_sb->s_remove_count);
343 }
344
345 inode->__i_nlink++;
346 }
347 EXPORT_SYMBOL(inc_nlink);
348
349 void address_space_init_once(struct address_space *mapping)
350 {
351 memset(mapping, 0, sizeof(*mapping));
352 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
353 spin_lock_init(&mapping->tree_lock);
354 init_rwsem(&mapping->i_mmap_rwsem);
355 INIT_LIST_HEAD(&mapping->private_list);
356 spin_lock_init(&mapping->private_lock);
357 mapping->i_mmap = RB_ROOT_CACHED;
358 }
359 EXPORT_SYMBOL(address_space_init_once);
360
361 /*
362 * These are initializations that only need to be done
363 * once, because the fields are idempotent across use
364 * of the inode, so let the slab aware of that.
365 */
366 void inode_init_once(struct inode *inode)
367 {
368 memset(inode, 0, sizeof(*inode));
369 INIT_HLIST_NODE(&inode->i_hash);
370 INIT_LIST_HEAD(&inode->i_devices);
371 INIT_LIST_HEAD(&inode->i_io_list);
372 INIT_LIST_HEAD(&inode->i_wb_list);
373 INIT_LIST_HEAD(&inode->i_lru);
374 address_space_init_once(&inode->i_data);
375 i_size_ordered_init(inode);
376 }
377 EXPORT_SYMBOL(inode_init_once);
378
379 static void init_once(void *foo)
380 {
381 struct inode *inode = (struct inode *) foo;
382
383 inode_init_once(inode);
384 }
385
386 /*
387 * inode->i_lock must be held
388 */
389 void __iget(struct inode *inode)
390 {
391 atomic_inc(&inode->i_count);
392 }
393
394 /*
395 * get additional reference to inode; caller must already hold one.
396 */
397 void ihold(struct inode *inode)
398 {
399 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 this_cpu_inc(nr_unused);
407 else
408 inode->i_state |= I_REFERENCED;
409 }
410
411 /*
412 * Add inode to LRU if needed (inode is unused and clean).
413 *
414 * Needs inode->i_lock held.
415 */
416 void inode_add_lru(struct inode *inode)
417 {
418 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
419 I_FREEING | I_WILL_FREE)) &&
420 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
421 inode_lru_list_add(inode);
422 }
423
424
425 static void inode_lru_list_del(struct inode *inode)
426 {
427
428 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 this_cpu_dec(nr_unused);
430 }
431
432 /**
433 * inode_sb_list_add - add inode to the superblock list of inodes
434 * @inode: inode to add
435 */
436 void inode_sb_list_add(struct inode *inode)
437 {
438 spin_lock(&inode->i_sb->s_inode_list_lock);
439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 spin_unlock(&inode->i_sb->s_inode_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443
444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 if (!list_empty(&inode->i_sb_list)) {
447 spin_lock(&inode->i_sb->s_inode_list_lock);
448 list_del_init(&inode->i_sb_list);
449 spin_unlock(&inode->i_sb->s_inode_list_lock);
450 }
451 }
452
453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 unsigned long tmp;
456
457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 L1_CACHE_BYTES;
459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 return tmp & i_hash_mask;
461 }
462
463 /**
464 * __insert_inode_hash - hash an inode
465 * @inode: unhashed inode
466 * @hashval: unsigned long value used to locate this object in the
467 * inode_hashtable.
468 *
469 * Add an inode to the inode hash for this superblock.
470 */
471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474
475 spin_lock(&inode_hash_lock);
476 spin_lock(&inode->i_lock);
477 hlist_add_head(&inode->i_hash, b);
478 spin_unlock(&inode->i_lock);
479 spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482
483 /**
484 * __remove_inode_hash - remove an inode from the hash
485 * @inode: inode to unhash
486 *
487 * Remove an inode from the superblock.
488 */
489 void __remove_inode_hash(struct inode *inode)
490 {
491 spin_lock(&inode_hash_lock);
492 spin_lock(&inode->i_lock);
493 hlist_del_init(&inode->i_hash);
494 spin_unlock(&inode->i_lock);
495 spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498
499 void clear_inode(struct inode *inode)
500 {
501 might_sleep();
502 /*
503 * We have to cycle tree_lock here because reclaim can be still in the
504 * process of removing the last page (in __delete_from_page_cache())
505 * and we must not free mapping under it.
506 */
507 spin_lock_irq(&inode->i_data.tree_lock);
508 BUG_ON(inode->i_data.nrpages);
509 BUG_ON(inode->i_data.nrexceptional);
510 spin_unlock_irq(&inode->i_data.tree_lock);
511 BUG_ON(!list_empty(&inode->i_data.private_list));
512 BUG_ON(!(inode->i_state & I_FREEING));
513 BUG_ON(inode->i_state & I_CLEAR);
514 BUG_ON(!list_empty(&inode->i_wb_list));
515 /* don't need i_lock here, no concurrent mods to i_state */
516 inode->i_state = I_FREEING | I_CLEAR;
517 }
518 EXPORT_SYMBOL(clear_inode);
519
520 /*
521 * Free the inode passed in, removing it from the lists it is still connected
522 * to. We remove any pages still attached to the inode and wait for any IO that
523 * is still in progress before finally destroying the inode.
524 *
525 * An inode must already be marked I_FREEING so that we avoid the inode being
526 * moved back onto lists if we race with other code that manipulates the lists
527 * (e.g. writeback_single_inode). The caller is responsible for setting this.
528 *
529 * An inode must already be removed from the LRU list before being evicted from
530 * the cache. This should occur atomically with setting the I_FREEING state
531 * flag, so no inodes here should ever be on the LRU when being evicted.
532 */
533 static void evict(struct inode *inode)
534 {
535 const struct super_operations *op = inode->i_sb->s_op;
536
537 BUG_ON(!(inode->i_state & I_FREEING));
538 BUG_ON(!list_empty(&inode->i_lru));
539
540 if (!list_empty(&inode->i_io_list))
541 inode_io_list_del(inode);
542
543 inode_sb_list_del(inode);
544
545 /*
546 * Wait for flusher thread to be done with the inode so that filesystem
547 * does not start destroying it while writeback is still running. Since
548 * the inode has I_FREEING set, flusher thread won't start new work on
549 * the inode. We just have to wait for running writeback to finish.
550 */
551 inode_wait_for_writeback(inode);
552
553 if (op->evict_inode) {
554 op->evict_inode(inode);
555 } else {
556 truncate_inode_pages_final(&inode->i_data);
557 clear_inode(inode);
558 }
559 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
560 bd_forget(inode);
561 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
562 cd_forget(inode);
563
564 remove_inode_hash(inode);
565
566 spin_lock(&inode->i_lock);
567 wake_up_bit(&inode->i_state, __I_NEW);
568 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
569 spin_unlock(&inode->i_lock);
570
571 destroy_inode(inode);
572 }
573
574 /*
575 * dispose_list - dispose of the contents of a local list
576 * @head: the head of the list to free
577 *
578 * Dispose-list gets a local list with local inodes in it, so it doesn't
579 * need to worry about list corruption and SMP locks.
580 */
581 static void dispose_list(struct list_head *head)
582 {
583 while (!list_empty(head)) {
584 struct inode *inode;
585
586 inode = list_first_entry(head, struct inode, i_lru);
587 list_del_init(&inode->i_lru);
588
589 evict(inode);
590 cond_resched();
591 }
592 }
593
594 /**
595 * evict_inodes - evict all evictable inodes for a superblock
596 * @sb: superblock to operate on
597 *
598 * Make sure that no inodes with zero refcount are retained. This is
599 * called by superblock shutdown after having SB_ACTIVE flag removed,
600 * so any inode reaching zero refcount during or after that call will
601 * be immediately evicted.
602 */
603 void evict_inodes(struct super_block *sb)
604 {
605 struct inode *inode, *next;
606 LIST_HEAD(dispose);
607
608 again:
609 spin_lock(&sb->s_inode_list_lock);
610 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
611 if (atomic_read(&inode->i_count))
612 continue;
613
614 spin_lock(&inode->i_lock);
615 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
616 spin_unlock(&inode->i_lock);
617 continue;
618 }
619
620 inode->i_state |= I_FREEING;
621 inode_lru_list_del(inode);
622 spin_unlock(&inode->i_lock);
623 list_add(&inode->i_lru, &dispose);
624
625 /*
626 * We can have a ton of inodes to evict at unmount time given
627 * enough memory, check to see if we need to go to sleep for a
628 * bit so we don't livelock.
629 */
630 if (need_resched()) {
631 spin_unlock(&sb->s_inode_list_lock);
632 cond_resched();
633 dispose_list(&dispose);
634 goto again;
635 }
636 }
637 spin_unlock(&sb->s_inode_list_lock);
638
639 dispose_list(&dispose);
640 }
641 EXPORT_SYMBOL_GPL(evict_inodes);
642
643 /**
644 * invalidate_inodes - attempt to free all inodes on a superblock
645 * @sb: superblock to operate on
646 * @kill_dirty: flag to guide handling of dirty inodes
647 *
648 * Attempts to free all inodes for a given superblock. If there were any
649 * busy inodes return a non-zero value, else zero.
650 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
651 * them as busy.
652 */
653 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
654 {
655 int busy = 0;
656 struct inode *inode, *next;
657 LIST_HEAD(dispose);
658
659 spin_lock(&sb->s_inode_list_lock);
660 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
661 spin_lock(&inode->i_lock);
662 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
663 spin_unlock(&inode->i_lock);
664 continue;
665 }
666 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
667 spin_unlock(&inode->i_lock);
668 busy = 1;
669 continue;
670 }
671 if (atomic_read(&inode->i_count)) {
672 spin_unlock(&inode->i_lock);
673 busy = 1;
674 continue;
675 }
676
677 inode->i_state |= I_FREEING;
678 inode_lru_list_del(inode);
679 spin_unlock(&inode->i_lock);
680 list_add(&inode->i_lru, &dispose);
681 }
682 spin_unlock(&sb->s_inode_list_lock);
683
684 dispose_list(&dispose);
685
686 return busy;
687 }
688
689 /*
690 * Isolate the inode from the LRU in preparation for freeing it.
691 *
692 * Any inodes which are pinned purely because of attached pagecache have their
693 * pagecache removed. If the inode has metadata buffers attached to
694 * mapping->private_list then try to remove them.
695 *
696 * If the inode has the I_REFERENCED flag set, then it means that it has been
697 * used recently - the flag is set in iput_final(). When we encounter such an
698 * inode, clear the flag and move it to the back of the LRU so it gets another
699 * pass through the LRU before it gets reclaimed. This is necessary because of
700 * the fact we are doing lazy LRU updates to minimise lock contention so the
701 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
702 * with this flag set because they are the inodes that are out of order.
703 */
704 static enum lru_status inode_lru_isolate(struct list_head *item,
705 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
706 {
707 struct list_head *freeable = arg;
708 struct inode *inode = container_of(item, struct inode, i_lru);
709
710 /*
711 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
712 * If we fail to get the lock, just skip it.
713 */
714 if (!spin_trylock(&inode->i_lock))
715 return LRU_SKIP;
716
717 /*
718 * Referenced or dirty inodes are still in use. Give them another pass
719 * through the LRU as we canot reclaim them now.
720 */
721 if (atomic_read(&inode->i_count) ||
722 (inode->i_state & ~I_REFERENCED)) {
723 list_lru_isolate(lru, &inode->i_lru);
724 spin_unlock(&inode->i_lock);
725 this_cpu_dec(nr_unused);
726 return LRU_REMOVED;
727 }
728
729 /* recently referenced inodes get one more pass */
730 if (inode->i_state & I_REFERENCED) {
731 inode->i_state &= ~I_REFERENCED;
732 spin_unlock(&inode->i_lock);
733 return LRU_ROTATE;
734 }
735
736 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
737 __iget(inode);
738 spin_unlock(&inode->i_lock);
739 spin_unlock(lru_lock);
740 if (remove_inode_buffers(inode)) {
741 unsigned long reap;
742 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
743 if (current_is_kswapd())
744 __count_vm_events(KSWAPD_INODESTEAL, reap);
745 else
746 __count_vm_events(PGINODESTEAL, reap);
747 if (current->reclaim_state)
748 current->reclaim_state->reclaimed_slab += reap;
749 }
750 iput(inode);
751 spin_lock(lru_lock);
752 return LRU_RETRY;
753 }
754
755 WARN_ON(inode->i_state & I_NEW);
756 inode->i_state |= I_FREEING;
757 list_lru_isolate_move(lru, &inode->i_lru, freeable);
758 spin_unlock(&inode->i_lock);
759
760 this_cpu_dec(nr_unused);
761 return LRU_REMOVED;
762 }
763
764 /*
765 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
766 * This is called from the superblock shrinker function with a number of inodes
767 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
768 * then are freed outside inode_lock by dispose_list().
769 */
770 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
771 {
772 LIST_HEAD(freeable);
773 long freed;
774
775 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
776 inode_lru_isolate, &freeable);
777 dispose_list(&freeable);
778 return freed;
779 }
780
781 static void __wait_on_freeing_inode(struct inode *inode);
782 /*
783 * Called with the inode lock held.
784 */
785 static struct inode *find_inode(struct super_block *sb,
786 struct hlist_head *head,
787 int (*test)(struct inode *, void *),
788 void *data)
789 {
790 struct inode *inode = NULL;
791
792 repeat:
793 hlist_for_each_entry(inode, head, i_hash) {
794 if (inode->i_sb != sb)
795 continue;
796 if (!test(inode, data))
797 continue;
798 spin_lock(&inode->i_lock);
799 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
800 __wait_on_freeing_inode(inode);
801 goto repeat;
802 }
803 if (unlikely(inode->i_state & I_CREATING)) {
804 spin_unlock(&inode->i_lock);
805 return ERR_PTR(-ESTALE);
806 }
807 __iget(inode);
808 spin_unlock(&inode->i_lock);
809 return inode;
810 }
811 return NULL;
812 }
813
814 /*
815 * find_inode_fast is the fast path version of find_inode, see the comment at
816 * iget_locked for details.
817 */
818 static struct inode *find_inode_fast(struct super_block *sb,
819 struct hlist_head *head, unsigned long ino)
820 {
821 struct inode *inode = NULL;
822
823 repeat:
824 hlist_for_each_entry(inode, head, i_hash) {
825 if (inode->i_ino != ino)
826 continue;
827 if (inode->i_sb != sb)
828 continue;
829 spin_lock(&inode->i_lock);
830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
831 __wait_on_freeing_inode(inode);
832 goto repeat;
833 }
834 if (unlikely(inode->i_state & I_CREATING)) {
835 spin_unlock(&inode->i_lock);
836 return ERR_PTR(-ESTALE);
837 }
838 __iget(inode);
839 spin_unlock(&inode->i_lock);
840 return inode;
841 }
842 return NULL;
843 }
844
845 /*
846 * Each cpu owns a range of LAST_INO_BATCH numbers.
847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
848 * to renew the exhausted range.
849 *
850 * This does not significantly increase overflow rate because every CPU can
851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
854 * overflow rate by 2x, which does not seem too significant.
855 *
856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
857 * error if st_ino won't fit in target struct field. Use 32bit counter
858 * here to attempt to avoid that.
859 */
860 #define LAST_INO_BATCH 1024
861 static DEFINE_PER_CPU(unsigned int, last_ino);
862
863 unsigned int get_next_ino(void)
864 {
865 unsigned int *p = &get_cpu_var(last_ino);
866 unsigned int res = *p;
867
868 #ifdef CONFIG_SMP
869 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
870 static atomic_t shared_last_ino;
871 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
872
873 res = next - LAST_INO_BATCH;
874 }
875 #endif
876
877 res++;
878 /* get_next_ino should not provide a 0 inode number */
879 if (unlikely(!res))
880 res++;
881 *p = res;
882 put_cpu_var(last_ino);
883 return res;
884 }
885 EXPORT_SYMBOL(get_next_ino);
886
887 /**
888 * new_inode_pseudo - obtain an inode
889 * @sb: superblock
890 *
891 * Allocates a new inode for given superblock.
892 * Inode wont be chained in superblock s_inodes list
893 * This means :
894 * - fs can't be unmount
895 * - quotas, fsnotify, writeback can't work
896 */
897 struct inode *new_inode_pseudo(struct super_block *sb)
898 {
899 struct inode *inode = alloc_inode(sb);
900
901 if (inode) {
902 spin_lock(&inode->i_lock);
903 inode->i_state = 0;
904 spin_unlock(&inode->i_lock);
905 INIT_LIST_HEAD(&inode->i_sb_list);
906 }
907 return inode;
908 }
909
910 /**
911 * new_inode - obtain an inode
912 * @sb: superblock
913 *
914 * Allocates a new inode for given superblock. The default gfp_mask
915 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
916 * If HIGHMEM pages are unsuitable or it is known that pages allocated
917 * for the page cache are not reclaimable or migratable,
918 * mapping_set_gfp_mask() must be called with suitable flags on the
919 * newly created inode's mapping
920 *
921 */
922 struct inode *new_inode(struct super_block *sb)
923 {
924 struct inode *inode;
925
926 spin_lock_prefetch(&sb->s_inode_list_lock);
927
928 inode = new_inode_pseudo(sb);
929 if (inode)
930 inode_sb_list_add(inode);
931 return inode;
932 }
933 EXPORT_SYMBOL(new_inode);
934
935 #ifdef CONFIG_DEBUG_LOCK_ALLOC
936 void lockdep_annotate_inode_mutex_key(struct inode *inode)
937 {
938 if (S_ISDIR(inode->i_mode)) {
939 struct file_system_type *type = inode->i_sb->s_type;
940
941 /* Set new key only if filesystem hasn't already changed it */
942 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
943 /*
944 * ensure nobody is actually holding i_mutex
945 */
946 // mutex_destroy(&inode->i_mutex);
947 init_rwsem(&inode->i_rwsem);
948 lockdep_set_class(&inode->i_rwsem,
949 &type->i_mutex_dir_key);
950 }
951 }
952 }
953 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
954 #endif
955
956 /**
957 * unlock_new_inode - clear the I_NEW state and wake up any waiters
958 * @inode: new inode to unlock
959 *
960 * Called when the inode is fully initialised to clear the new state of the
961 * inode and wake up anyone waiting for the inode to finish initialisation.
962 */
963 void unlock_new_inode(struct inode *inode)
964 {
965 lockdep_annotate_inode_mutex_key(inode);
966 spin_lock(&inode->i_lock);
967 WARN_ON(!(inode->i_state & I_NEW));
968 inode->i_state &= ~I_NEW & ~I_CREATING;
969 smp_mb();
970 wake_up_bit(&inode->i_state, __I_NEW);
971 spin_unlock(&inode->i_lock);
972 }
973 EXPORT_SYMBOL(unlock_new_inode);
974
975 void discard_new_inode(struct inode *inode)
976 {
977 lockdep_annotate_inode_mutex_key(inode);
978 spin_lock(&inode->i_lock);
979 WARN_ON(!(inode->i_state & I_NEW));
980 inode->i_state &= ~I_NEW;
981 smp_mb();
982 wake_up_bit(&inode->i_state, __I_NEW);
983 spin_unlock(&inode->i_lock);
984 iput(inode);
985 }
986 EXPORT_SYMBOL(discard_new_inode);
987
988 /**
989 * lock_two_nondirectories - take two i_mutexes on non-directory objects
990 *
991 * Lock any non-NULL argument that is not a directory.
992 * Zero, one or two objects may be locked by this function.
993 *
994 * @inode1: first inode to lock
995 * @inode2: second inode to lock
996 */
997 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
998 {
999 if (inode1 > inode2)
1000 swap(inode1, inode2);
1001
1002 if (inode1 && !S_ISDIR(inode1->i_mode))
1003 inode_lock(inode1);
1004 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1005 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1006 }
1007 EXPORT_SYMBOL(lock_two_nondirectories);
1008
1009 /**
1010 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1011 * @inode1: first inode to unlock
1012 * @inode2: second inode to unlock
1013 */
1014 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1015 {
1016 if (inode1 && !S_ISDIR(inode1->i_mode))
1017 inode_unlock(inode1);
1018 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1019 inode_unlock(inode2);
1020 }
1021 EXPORT_SYMBOL(unlock_two_nondirectories);
1022
1023 /**
1024 * iget5_locked - obtain an inode from a mounted file system
1025 * @sb: super block of file system
1026 * @hashval: hash value (usually inode number) to get
1027 * @test: callback used for comparisons between inodes
1028 * @set: callback used to initialize a new struct inode
1029 * @data: opaque data pointer to pass to @test and @set
1030 *
1031 * Search for the inode specified by @hashval and @data in the inode cache,
1032 * and if present it is return it with an increased reference count. This is
1033 * a generalized version of iget_locked() for file systems where the inode
1034 * number is not sufficient for unique identification of an inode.
1035 *
1036 * If the inode is not in cache, allocate a new inode and return it locked,
1037 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1038 * before unlocking it via unlock_new_inode().
1039 *
1040 * Note both @test and @set are called with the inode_hash_lock held, so can't
1041 * sleep.
1042 */
1043 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1044 int (*test)(struct inode *, void *),
1045 int (*set)(struct inode *, void *), void *data)
1046 {
1047 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1048 struct inode *inode;
1049 again:
1050 spin_lock(&inode_hash_lock);
1051 inode = find_inode(sb, head, test, data);
1052 spin_unlock(&inode_hash_lock);
1053
1054 if (inode) {
1055 wait_on_inode(inode);
1056 if (unlikely(inode_unhashed(inode))) {
1057 iput(inode);
1058 goto again;
1059 }
1060 return inode;
1061 }
1062
1063 inode = alloc_inode(sb);
1064 if (inode) {
1065 struct inode *old;
1066
1067 spin_lock(&inode_hash_lock);
1068 /* We released the lock, so.. */
1069 old = find_inode(sb, head, test, data);
1070 if (!old) {
1071 if (set(inode, data))
1072 goto set_failed;
1073
1074 spin_lock(&inode->i_lock);
1075 inode->i_state = I_NEW;
1076 hlist_add_head(&inode->i_hash, head);
1077 spin_unlock(&inode->i_lock);
1078 inode_sb_list_add(inode);
1079 spin_unlock(&inode_hash_lock);
1080
1081 /* Return the locked inode with I_NEW set, the
1082 * caller is responsible for filling in the contents
1083 */
1084 return inode;
1085 }
1086
1087 /*
1088 * Uhhuh, somebody else created the same inode under
1089 * us. Use the old inode instead of the one we just
1090 * allocated.
1091 */
1092 spin_unlock(&inode_hash_lock);
1093 destroy_inode(inode);
1094 inode = old;
1095 wait_on_inode(inode);
1096 if (unlikely(inode_unhashed(inode))) {
1097 iput(inode);
1098 goto again;
1099 }
1100 }
1101 return inode;
1102
1103 set_failed:
1104 spin_unlock(&inode_hash_lock);
1105 destroy_inode(inode);
1106 return NULL;
1107 }
1108 EXPORT_SYMBOL(iget5_locked);
1109
1110 /**
1111 * iget_locked - obtain an inode from a mounted file system
1112 * @sb: super block of file system
1113 * @ino: inode number to get
1114 *
1115 * Search for the inode specified by @ino in the inode cache and if present
1116 * return it with an increased reference count. This is for file systems
1117 * where the inode number is sufficient for unique identification of an inode.
1118 *
1119 * If the inode is not in cache, allocate a new inode and return it locked,
1120 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1121 * before unlocking it via unlock_new_inode().
1122 */
1123 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1124 {
1125 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1126 struct inode *inode;
1127 again:
1128 spin_lock(&inode_hash_lock);
1129 inode = find_inode_fast(sb, head, ino);
1130 spin_unlock(&inode_hash_lock);
1131 if (inode) {
1132 if (IS_ERR(inode))
1133 return NULL;
1134 wait_on_inode(inode);
1135 if (unlikely(inode_unhashed(inode))) {
1136 iput(inode);
1137 goto again;
1138 }
1139 return inode;
1140 }
1141
1142 inode = alloc_inode(sb);
1143 if (inode) {
1144 struct inode *old;
1145
1146 spin_lock(&inode_hash_lock);
1147 /* We released the lock, so.. */
1148 old = find_inode_fast(sb, head, ino);
1149 if (!old) {
1150 inode->i_ino = ino;
1151 spin_lock(&inode->i_lock);
1152 inode->i_state = I_NEW;
1153 hlist_add_head(&inode->i_hash, head);
1154 spin_unlock(&inode->i_lock);
1155 inode_sb_list_add(inode);
1156 spin_unlock(&inode_hash_lock);
1157
1158 /* Return the locked inode with I_NEW set, the
1159 * caller is responsible for filling in the contents
1160 */
1161 return inode;
1162 }
1163
1164 /*
1165 * Uhhuh, somebody else created the same inode under
1166 * us. Use the old inode instead of the one we just
1167 * allocated.
1168 */
1169 spin_unlock(&inode_hash_lock);
1170 destroy_inode(inode);
1171 if (IS_ERR(old))
1172 return NULL;
1173 inode = old;
1174 wait_on_inode(inode);
1175 if (unlikely(inode_unhashed(inode))) {
1176 iput(inode);
1177 goto again;
1178 }
1179 }
1180 return inode;
1181 }
1182 EXPORT_SYMBOL(iget_locked);
1183
1184 /*
1185 * search the inode cache for a matching inode number.
1186 * If we find one, then the inode number we are trying to
1187 * allocate is not unique and so we should not use it.
1188 *
1189 * Returns 1 if the inode number is unique, 0 if it is not.
1190 */
1191 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1192 {
1193 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1194 struct inode *inode;
1195
1196 spin_lock(&inode_hash_lock);
1197 hlist_for_each_entry(inode, b, i_hash) {
1198 if (inode->i_ino == ino && inode->i_sb == sb) {
1199 spin_unlock(&inode_hash_lock);
1200 return 0;
1201 }
1202 }
1203 spin_unlock(&inode_hash_lock);
1204
1205 return 1;
1206 }
1207
1208 /**
1209 * iunique - get a unique inode number
1210 * @sb: superblock
1211 * @max_reserved: highest reserved inode number
1212 *
1213 * Obtain an inode number that is unique on the system for a given
1214 * superblock. This is used by file systems that have no natural
1215 * permanent inode numbering system. An inode number is returned that
1216 * is higher than the reserved limit but unique.
1217 *
1218 * BUGS:
1219 * With a large number of inodes live on the file system this function
1220 * currently becomes quite slow.
1221 */
1222 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1223 {
1224 /*
1225 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1226 * error if st_ino won't fit in target struct field. Use 32bit counter
1227 * here to attempt to avoid that.
1228 */
1229 static DEFINE_SPINLOCK(iunique_lock);
1230 static unsigned int counter;
1231 ino_t res;
1232
1233 spin_lock(&iunique_lock);
1234 do {
1235 if (counter <= max_reserved)
1236 counter = max_reserved + 1;
1237 res = counter++;
1238 } while (!test_inode_iunique(sb, res));
1239 spin_unlock(&iunique_lock);
1240
1241 return res;
1242 }
1243 EXPORT_SYMBOL(iunique);
1244
1245 struct inode *igrab(struct inode *inode)
1246 {
1247 spin_lock(&inode->i_lock);
1248 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1249 __iget(inode);
1250 spin_unlock(&inode->i_lock);
1251 } else {
1252 spin_unlock(&inode->i_lock);
1253 /*
1254 * Handle the case where s_op->clear_inode is not been
1255 * called yet, and somebody is calling igrab
1256 * while the inode is getting freed.
1257 */
1258 inode = NULL;
1259 }
1260 return inode;
1261 }
1262 EXPORT_SYMBOL(igrab);
1263
1264 /**
1265 * ilookup5_nowait - search for an inode in the inode cache
1266 * @sb: super block of file system to search
1267 * @hashval: hash value (usually inode number) to search for
1268 * @test: callback used for comparisons between inodes
1269 * @data: opaque data pointer to pass to @test
1270 *
1271 * Search for the inode specified by @hashval and @data in the inode cache.
1272 * If the inode is in the cache, the inode is returned with an incremented
1273 * reference count.
1274 *
1275 * Note: I_NEW is not waited upon so you have to be very careful what you do
1276 * with the returned inode. You probably should be using ilookup5() instead.
1277 *
1278 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1279 */
1280 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1281 int (*test)(struct inode *, void *), void *data)
1282 {
1283 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1284 struct inode *inode;
1285
1286 spin_lock(&inode_hash_lock);
1287 inode = find_inode(sb, head, test, data);
1288 spin_unlock(&inode_hash_lock);
1289
1290 return IS_ERR(inode) ? NULL : inode;
1291 }
1292 EXPORT_SYMBOL(ilookup5_nowait);
1293
1294 /**
1295 * ilookup5 - search for an inode in the inode cache
1296 * @sb: super block of file system to search
1297 * @hashval: hash value (usually inode number) to search for
1298 * @test: callback used for comparisons between inodes
1299 * @data: opaque data pointer to pass to @test
1300 *
1301 * Search for the inode specified by @hashval and @data in the inode cache,
1302 * and if the inode is in the cache, return the inode with an incremented
1303 * reference count. Waits on I_NEW before returning the inode.
1304 * returned with an incremented reference count.
1305 *
1306 * This is a generalized version of ilookup() for file systems where the
1307 * inode number is not sufficient for unique identification of an inode.
1308 *
1309 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1310 */
1311 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1312 int (*test)(struct inode *, void *), void *data)
1313 {
1314 struct inode *inode;
1315 again:
1316 inode = ilookup5_nowait(sb, hashval, test, data);
1317 if (inode) {
1318 if (IS_ERR(inode))
1319 return NULL;
1320 wait_on_inode(inode);
1321 if (unlikely(inode_unhashed(inode))) {
1322 iput(inode);
1323 goto again;
1324 }
1325 }
1326 return inode;
1327 }
1328 EXPORT_SYMBOL(ilookup5);
1329
1330 /**
1331 * ilookup - search for an inode in the inode cache
1332 * @sb: super block of file system to search
1333 * @ino: inode number to search for
1334 *
1335 * Search for the inode @ino in the inode cache, and if the inode is in the
1336 * cache, the inode is returned with an incremented reference count.
1337 */
1338 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1339 {
1340 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1341 struct inode *inode;
1342 again:
1343 spin_lock(&inode_hash_lock);
1344 inode = find_inode_fast(sb, head, ino);
1345 spin_unlock(&inode_hash_lock);
1346
1347 if (inode) {
1348 wait_on_inode(inode);
1349 if (unlikely(inode_unhashed(inode))) {
1350 iput(inode);
1351 goto again;
1352 }
1353 }
1354 return inode;
1355 }
1356 EXPORT_SYMBOL(ilookup);
1357
1358 /**
1359 * find_inode_nowait - find an inode in the inode cache
1360 * @sb: super block of file system to search
1361 * @hashval: hash value (usually inode number) to search for
1362 * @match: callback used for comparisons between inodes
1363 * @data: opaque data pointer to pass to @match
1364 *
1365 * Search for the inode specified by @hashval and @data in the inode
1366 * cache, where the helper function @match will return 0 if the inode
1367 * does not match, 1 if the inode does match, and -1 if the search
1368 * should be stopped. The @match function must be responsible for
1369 * taking the i_lock spin_lock and checking i_state for an inode being
1370 * freed or being initialized, and incrementing the reference count
1371 * before returning 1. It also must not sleep, since it is called with
1372 * the inode_hash_lock spinlock held.
1373 *
1374 * This is a even more generalized version of ilookup5() when the
1375 * function must never block --- find_inode() can block in
1376 * __wait_on_freeing_inode() --- or when the caller can not increment
1377 * the reference count because the resulting iput() might cause an
1378 * inode eviction. The tradeoff is that the @match funtion must be
1379 * very carefully implemented.
1380 */
1381 struct inode *find_inode_nowait(struct super_block *sb,
1382 unsigned long hashval,
1383 int (*match)(struct inode *, unsigned long,
1384 void *),
1385 void *data)
1386 {
1387 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1388 struct inode *inode, *ret_inode = NULL;
1389 int mval;
1390
1391 spin_lock(&inode_hash_lock);
1392 hlist_for_each_entry(inode, head, i_hash) {
1393 if (inode->i_sb != sb)
1394 continue;
1395 mval = match(inode, hashval, data);
1396 if (mval == 0)
1397 continue;
1398 if (mval == 1)
1399 ret_inode = inode;
1400 goto out;
1401 }
1402 out:
1403 spin_unlock(&inode_hash_lock);
1404 return ret_inode;
1405 }
1406 EXPORT_SYMBOL(find_inode_nowait);
1407
1408 int insert_inode_locked(struct inode *inode)
1409 {
1410 struct super_block *sb = inode->i_sb;
1411 ino_t ino = inode->i_ino;
1412 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1413
1414 while (1) {
1415 struct inode *old = NULL;
1416 spin_lock(&inode_hash_lock);
1417 hlist_for_each_entry(old, head, i_hash) {
1418 if (old->i_ino != ino)
1419 continue;
1420 if (old->i_sb != sb)
1421 continue;
1422 spin_lock(&old->i_lock);
1423 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1424 spin_unlock(&old->i_lock);
1425 continue;
1426 }
1427 break;
1428 }
1429 if (likely(!old)) {
1430 spin_lock(&inode->i_lock);
1431 inode->i_state |= I_NEW | I_CREATING;
1432 hlist_add_head(&inode->i_hash, head);
1433 spin_unlock(&inode->i_lock);
1434 spin_unlock(&inode_hash_lock);
1435 return 0;
1436 }
1437 if (unlikely(old->i_state & I_CREATING)) {
1438 spin_unlock(&old->i_lock);
1439 spin_unlock(&inode_hash_lock);
1440 return -EBUSY;
1441 }
1442 __iget(old);
1443 spin_unlock(&old->i_lock);
1444 spin_unlock(&inode_hash_lock);
1445 wait_on_inode(old);
1446 if (unlikely(!inode_unhashed(old))) {
1447 iput(old);
1448 return -EBUSY;
1449 }
1450 iput(old);
1451 }
1452 }
1453 EXPORT_SYMBOL(insert_inode_locked);
1454
1455 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1456 int (*test)(struct inode *, void *), void *data)
1457 {
1458 struct super_block *sb = inode->i_sb;
1459 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1460
1461 inode->i_state |= I_CREATING;
1462
1463 while (1) {
1464 struct inode *old = NULL;
1465
1466 spin_lock(&inode_hash_lock);
1467 hlist_for_each_entry(old, head, i_hash) {
1468 if (old->i_sb != sb)
1469 continue;
1470 if (!test(old, data))
1471 continue;
1472 spin_lock(&old->i_lock);
1473 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1474 spin_unlock(&old->i_lock);
1475 continue;
1476 }
1477 break;
1478 }
1479 if (likely(!old)) {
1480 spin_lock(&inode->i_lock);
1481 inode->i_state |= I_NEW | I_CREATING;
1482 hlist_add_head(&inode->i_hash, head);
1483 spin_unlock(&inode->i_lock);
1484 spin_unlock(&inode_hash_lock);
1485 return 0;
1486 }
1487 if (unlikely(old->i_state & I_CREATING)) {
1488 spin_unlock(&old->i_lock);
1489 spin_unlock(&inode_hash_lock);
1490 return -EBUSY;
1491 }
1492 __iget(old);
1493 spin_unlock(&old->i_lock);
1494 spin_unlock(&inode_hash_lock);
1495 wait_on_inode(old);
1496 if (unlikely(!inode_unhashed(old))) {
1497 iput(old);
1498 return -EBUSY;
1499 }
1500 iput(old);
1501 }
1502 }
1503 EXPORT_SYMBOL(insert_inode_locked4);
1504
1505
1506 int generic_delete_inode(struct inode *inode)
1507 {
1508 return 1;
1509 }
1510 EXPORT_SYMBOL(generic_delete_inode);
1511
1512 /*
1513 * Called when we're dropping the last reference
1514 * to an inode.
1515 *
1516 * Call the FS "drop_inode()" function, defaulting to
1517 * the legacy UNIX filesystem behaviour. If it tells
1518 * us to evict inode, do so. Otherwise, retain inode
1519 * in cache if fs is alive, sync and evict if fs is
1520 * shutting down.
1521 */
1522 static void iput_final(struct inode *inode)
1523 {
1524 struct super_block *sb = inode->i_sb;
1525 const struct super_operations *op = inode->i_sb->s_op;
1526 int drop;
1527
1528 WARN_ON(inode->i_state & I_NEW);
1529
1530 if (op->drop_inode)
1531 drop = op->drop_inode(inode);
1532 else
1533 drop = generic_drop_inode(inode);
1534
1535 if (!drop && (sb->s_flags & SB_ACTIVE)) {
1536 inode_add_lru(inode);
1537 spin_unlock(&inode->i_lock);
1538 return;
1539 }
1540
1541 if (!drop) {
1542 inode->i_state |= I_WILL_FREE;
1543 spin_unlock(&inode->i_lock);
1544 write_inode_now(inode, 1);
1545 spin_lock(&inode->i_lock);
1546 WARN_ON(inode->i_state & I_NEW);
1547 inode->i_state &= ~I_WILL_FREE;
1548 }
1549
1550 inode->i_state |= I_FREEING;
1551 if (!list_empty(&inode->i_lru))
1552 inode_lru_list_del(inode);
1553 spin_unlock(&inode->i_lock);
1554
1555 evict(inode);
1556 }
1557
1558 /**
1559 * iput - put an inode
1560 * @inode: inode to put
1561 *
1562 * Puts an inode, dropping its usage count. If the inode use count hits
1563 * zero, the inode is then freed and may also be destroyed.
1564 *
1565 * Consequently, iput() can sleep.
1566 */
1567 void iput(struct inode *inode)
1568 {
1569 if (!inode)
1570 return;
1571 BUG_ON(inode->i_state & I_CLEAR);
1572 retry:
1573 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1574 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1575 atomic_inc(&inode->i_count);
1576 inode->i_state &= ~I_DIRTY_TIME;
1577 spin_unlock(&inode->i_lock);
1578 trace_writeback_lazytime_iput(inode);
1579 mark_inode_dirty_sync(inode);
1580 goto retry;
1581 }
1582 iput_final(inode);
1583 }
1584 }
1585 EXPORT_SYMBOL(iput);
1586
1587 /**
1588 * bmap - find a block number in a file
1589 * @inode: inode of file
1590 * @block: block to find
1591 *
1592 * Returns the block number on the device holding the inode that
1593 * is the disk block number for the block of the file requested.
1594 * That is, asked for block 4 of inode 1 the function will return the
1595 * disk block relative to the disk start that holds that block of the
1596 * file.
1597 */
1598 sector_t bmap(struct inode *inode, sector_t block)
1599 {
1600 sector_t res = 0;
1601 if (inode->i_mapping->a_ops->bmap)
1602 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1603 return res;
1604 }
1605 EXPORT_SYMBOL(bmap);
1606
1607 /*
1608 * Update times in overlayed inode from underlying real inode
1609 */
1610 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1611 bool rcu)
1612 {
1613 struct dentry *upperdentry;
1614
1615 /*
1616 * Nothing to do if in rcu or if non-overlayfs
1617 */
1618 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1619 return;
1620
1621 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1622
1623 /*
1624 * If file is on lower then we can't update atime, so no worries about
1625 * stale mtime/ctime.
1626 */
1627 if (upperdentry) {
1628 struct inode *realinode = d_inode(upperdentry);
1629
1630 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1631 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1632 inode->i_mtime = realinode->i_mtime;
1633 inode->i_ctime = realinode->i_ctime;
1634 }
1635 }
1636 }
1637
1638 /*
1639 * With relative atime, only update atime if the previous atime is
1640 * earlier than either the ctime or mtime or if at least a day has
1641 * passed since the last atime update.
1642 */
1643 static int relatime_need_update(const struct path *path, struct inode *inode,
1644 struct timespec now, bool rcu)
1645 {
1646
1647 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1648 return 1;
1649
1650 update_ovl_inode_times(path->dentry, inode, rcu);
1651 /*
1652 * Is mtime younger than atime? If yes, update atime:
1653 */
1654 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1655 return 1;
1656 /*
1657 * Is ctime younger than atime? If yes, update atime:
1658 */
1659 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1660 return 1;
1661
1662 /*
1663 * Is the previous atime value older than a day? If yes,
1664 * update atime:
1665 */
1666 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1667 return 1;
1668 /*
1669 * Good, we can skip the atime update:
1670 */
1671 return 0;
1672 }
1673
1674 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1675 {
1676 int iflags = I_DIRTY_TIME;
1677
1678 if (flags & S_ATIME)
1679 inode->i_atime = *time;
1680 if (flags & S_VERSION)
1681 inode_inc_iversion(inode);
1682 if (flags & S_CTIME)
1683 inode->i_ctime = *time;
1684 if (flags & S_MTIME)
1685 inode->i_mtime = *time;
1686
1687 if (!(inode->i_sb->s_flags & SB_LAZYTIME) || (flags & S_VERSION))
1688 iflags |= I_DIRTY_SYNC;
1689 __mark_inode_dirty(inode, iflags);
1690 return 0;
1691 }
1692 EXPORT_SYMBOL(generic_update_time);
1693
1694 /*
1695 * This does the actual work of updating an inodes time or version. Must have
1696 * had called mnt_want_write() before calling this.
1697 */
1698 int update_time(struct inode *inode, struct timespec *time, int flags)
1699 {
1700 int (*update_time)(struct inode *, struct timespec *, int);
1701
1702 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1703 generic_update_time;
1704
1705 return update_time(inode, time, flags);
1706 }
1707 EXPORT_SYMBOL_GPL(update_time);
1708
1709 /**
1710 * touch_atime - update the access time
1711 * @path: the &struct path to update
1712 * @inode: inode to update
1713 *
1714 * Update the accessed time on an inode and mark it for writeback.
1715 * This function automatically handles read only file systems and media,
1716 * as well as the "noatime" flag and inode specific "noatime" markers.
1717 */
1718 bool __atime_needs_update(const struct path *path, struct inode *inode,
1719 bool rcu)
1720 {
1721 struct vfsmount *mnt = path->mnt;
1722 struct timespec now;
1723
1724 if (inode->i_flags & S_NOATIME)
1725 return false;
1726
1727 /* Atime updates will likely cause i_uid and i_gid to be written
1728 * back improprely if their true value is unknown to the vfs.
1729 */
1730 if (HAS_UNMAPPED_ID(inode))
1731 return false;
1732
1733 if (IS_NOATIME(inode))
1734 return false;
1735 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1736 return false;
1737
1738 if (mnt->mnt_flags & MNT_NOATIME)
1739 return false;
1740 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1741 return false;
1742
1743 now = current_time(inode);
1744
1745 if (!relatime_need_update(path, inode, now, rcu))
1746 return false;
1747
1748 if (timespec_equal(&inode->i_atime, &now))
1749 return false;
1750
1751 return true;
1752 }
1753
1754 void touch_atime(const struct path *path)
1755 {
1756 struct vfsmount *mnt = path->mnt;
1757 struct inode *inode = d_inode(path->dentry);
1758 struct timespec now;
1759
1760 if (!__atime_needs_update(path, inode, false))
1761 return;
1762
1763 if (!sb_start_write_trylock(inode->i_sb))
1764 return;
1765
1766 if (__mnt_want_write(mnt) != 0)
1767 goto skip_update;
1768 /*
1769 * File systems can error out when updating inodes if they need to
1770 * allocate new space to modify an inode (such is the case for
1771 * Btrfs), but since we touch atime while walking down the path we
1772 * really don't care if we failed to update the atime of the file,
1773 * so just ignore the return value.
1774 * We may also fail on filesystems that have the ability to make parts
1775 * of the fs read only, e.g. subvolumes in Btrfs.
1776 */
1777 now = current_time(inode);
1778 update_time(inode, &now, S_ATIME);
1779 __mnt_drop_write(mnt);
1780 skip_update:
1781 sb_end_write(inode->i_sb);
1782 }
1783 EXPORT_SYMBOL(touch_atime);
1784
1785 /*
1786 * The logic we want is
1787 *
1788 * if suid or (sgid and xgrp)
1789 * remove privs
1790 */
1791 int should_remove_suid(struct dentry *dentry)
1792 {
1793 struct inode *inode = d_inode(dentry);
1794 umode_t mode = inode->i_mode;
1795 int kill = 0;
1796
1797 /* suid always must be killed */
1798 if (unlikely(mode & S_ISUID))
1799 kill = ATTR_KILL_SUID;
1800
1801 /*
1802 * sgid without any exec bits is just a mandatory locking mark; leave
1803 * it alone. If some exec bits are set, it's a real sgid; kill it.
1804 */
1805 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1806 kill |= ATTR_KILL_SGID;
1807
1808 if (unlikely(kill && !capable_wrt_inode_uidgid(inode, CAP_FSETID) &&
1809 S_ISREG(mode)))
1810 return kill;
1811
1812 return 0;
1813 }
1814 EXPORT_SYMBOL(should_remove_suid);
1815
1816 /*
1817 * Return mask of changes for notify_change() that need to be done as a
1818 * response to write or truncate. Return 0 if nothing has to be changed.
1819 * Negative value on error (change should be denied).
1820 */
1821 int dentry_needs_remove_privs(struct dentry *dentry)
1822 {
1823 struct inode *inode = d_inode(dentry);
1824 int mask = 0;
1825 int ret;
1826
1827 if (IS_NOSEC(inode))
1828 return 0;
1829
1830 mask = should_remove_suid(dentry);
1831 ret = security_inode_need_killpriv(dentry);
1832 if (ret < 0)
1833 return ret;
1834 if (ret)
1835 mask |= ATTR_KILL_PRIV;
1836 return mask;
1837 }
1838
1839 static int __remove_privs(struct dentry *dentry, int kill)
1840 {
1841 struct iattr newattrs;
1842
1843 newattrs.ia_valid = ATTR_FORCE | kill;
1844 /*
1845 * Note we call this on write, so notify_change will not
1846 * encounter any conflicting delegations:
1847 */
1848 return notify_change(dentry, &newattrs, NULL);
1849 }
1850
1851 /*
1852 * Remove special file priviledges (suid, capabilities) when file is written
1853 * to or truncated.
1854 */
1855 int file_remove_privs(struct file *file)
1856 {
1857 struct dentry *dentry = file_dentry(file);
1858 struct inode *inode = file_inode(file);
1859 int kill;
1860 int error = 0;
1861
1862 /* Fast path for nothing security related */
1863 if (IS_NOSEC(inode))
1864 return 0;
1865
1866 kill = dentry_needs_remove_privs(dentry);
1867 if (kill < 0)
1868 return kill;
1869 if (kill)
1870 error = __remove_privs(dentry, kill);
1871 if (!error)
1872 inode_has_no_xattr(inode);
1873
1874 return error;
1875 }
1876 EXPORT_SYMBOL(file_remove_privs);
1877
1878 /**
1879 * file_update_time - update mtime and ctime time
1880 * @file: file accessed
1881 *
1882 * Update the mtime and ctime members of an inode and mark the inode
1883 * for writeback. Note that this function is meant exclusively for
1884 * usage in the file write path of filesystems, and filesystems may
1885 * choose to explicitly ignore update via this function with the
1886 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1887 * timestamps are handled by the server. This can return an error for
1888 * file systems who need to allocate space in order to update an inode.
1889 */
1890
1891 int file_update_time(struct file *file)
1892 {
1893 struct inode *inode = file_inode(file);
1894 struct timespec now;
1895 int sync_it = 0;
1896 int ret;
1897
1898 /* First try to exhaust all avenues to not sync */
1899 if (IS_NOCMTIME(inode))
1900 return 0;
1901
1902 now = current_time(inode);
1903 if (!timespec_equal(&inode->i_mtime, &now))
1904 sync_it = S_MTIME;
1905
1906 if (!timespec_equal(&inode->i_ctime, &now))
1907 sync_it |= S_CTIME;
1908
1909 if (IS_I_VERSION(inode))
1910 sync_it |= S_VERSION;
1911
1912 if (!sync_it)
1913 return 0;
1914
1915 /* Finally allowed to write? Takes lock. */
1916 if (__mnt_want_write_file(file))
1917 return 0;
1918
1919 ret = update_time(inode, &now, sync_it);
1920 __mnt_drop_write_file(file);
1921
1922 return ret;
1923 }
1924 EXPORT_SYMBOL(file_update_time);
1925
1926 int inode_needs_sync(struct inode *inode)
1927 {
1928 if (IS_SYNC(inode))
1929 return 1;
1930 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1931 return 1;
1932 return 0;
1933 }
1934 EXPORT_SYMBOL(inode_needs_sync);
1935
1936 /*
1937 * If we try to find an inode in the inode hash while it is being
1938 * deleted, we have to wait until the filesystem completes its
1939 * deletion before reporting that it isn't found. This function waits
1940 * until the deletion _might_ have completed. Callers are responsible
1941 * to recheck inode state.
1942 *
1943 * It doesn't matter if I_NEW is not set initially, a call to
1944 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1945 * will DTRT.
1946 */
1947 static void __wait_on_freeing_inode(struct inode *inode)
1948 {
1949 wait_queue_head_t *wq;
1950 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1951 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1952 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1953 spin_unlock(&inode->i_lock);
1954 spin_unlock(&inode_hash_lock);
1955 schedule();
1956 finish_wait(wq, &wait.wq_entry);
1957 spin_lock(&inode_hash_lock);
1958 }
1959
1960 static __initdata unsigned long ihash_entries;
1961 static int __init set_ihash_entries(char *str)
1962 {
1963 if (!str)
1964 return 0;
1965 ihash_entries = simple_strtoul(str, &str, 0);
1966 return 1;
1967 }
1968 __setup("ihash_entries=", set_ihash_entries);
1969
1970 /*
1971 * Initialize the waitqueues and inode hash table.
1972 */
1973 void __init inode_init_early(void)
1974 {
1975 /* If hashes are distributed across NUMA nodes, defer
1976 * hash allocation until vmalloc space is available.
1977 */
1978 if (hashdist)
1979 return;
1980
1981 inode_hashtable =
1982 alloc_large_system_hash("Inode-cache",
1983 sizeof(struct hlist_head),
1984 ihash_entries,
1985 14,
1986 HASH_EARLY | HASH_ZERO,
1987 &i_hash_shift,
1988 &i_hash_mask,
1989 0,
1990 0);
1991 }
1992
1993 void __init inode_init(void)
1994 {
1995 /* inode slab cache */
1996 inode_cachep = kmem_cache_create("inode_cache",
1997 sizeof(struct inode),
1998 0,
1999 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2000 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2001 init_once);
2002
2003 /* Hash may have been set up in inode_init_early */
2004 if (!hashdist)
2005 return;
2006
2007 inode_hashtable =
2008 alloc_large_system_hash("Inode-cache",
2009 sizeof(struct hlist_head),
2010 ihash_entries,
2011 14,
2012 HASH_ZERO,
2013 &i_hash_shift,
2014 &i_hash_mask,
2015 0,
2016 0);
2017 }
2018
2019 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2020 {
2021 inode->i_mode = mode;
2022 if (S_ISCHR(mode)) {
2023 inode->i_fop = &def_chr_fops;
2024 inode->i_rdev = rdev;
2025 } else if (S_ISBLK(mode)) {
2026 inode->i_fop = &def_blk_fops;
2027 inode->i_rdev = rdev;
2028 } else if (S_ISFIFO(mode))
2029 inode->i_fop = &pipefifo_fops;
2030 else if (S_ISSOCK(mode))
2031 ; /* leave it no_open_fops */
2032 else
2033 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2034 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2035 inode->i_ino);
2036 }
2037 EXPORT_SYMBOL(init_special_inode);
2038
2039 /**
2040 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2041 * @inode: New inode
2042 * @dir: Directory inode
2043 * @mode: mode of the new inode
2044 */
2045 void inode_init_owner(struct inode *inode, const struct inode *dir,
2046 umode_t mode)
2047 {
2048 inode->i_uid = current_fsuid();
2049 if (dir && dir->i_mode & S_ISGID) {
2050 inode->i_gid = dir->i_gid;
2051
2052 /* Directories are special, and always inherit S_ISGID */
2053 if (S_ISDIR(mode))
2054 mode |= S_ISGID;
2055 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2056 !in_group_p(inode->i_gid) &&
2057 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2058 mode &= ~S_ISGID;
2059 } else
2060 inode->i_gid = current_fsgid();
2061 inode->i_mode = mode;
2062 }
2063 EXPORT_SYMBOL(inode_init_owner);
2064
2065 /**
2066 * inode_owner_or_capable - check current task permissions to inode
2067 * @inode: inode being checked
2068 *
2069 * Return true if current either has CAP_FOWNER in a namespace with the
2070 * inode owner uid mapped, or owns the file.
2071 */
2072 bool inode_owner_or_capable(const struct inode *inode)
2073 {
2074 struct user_namespace *ns;
2075
2076 if (uid_eq(current_fsuid(), inode->i_uid))
2077 return true;
2078
2079 ns = current_user_ns();
2080 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2081 return true;
2082 return false;
2083 }
2084 EXPORT_SYMBOL(inode_owner_or_capable);
2085
2086 /*
2087 * Direct i/o helper functions
2088 */
2089 static void __inode_dio_wait(struct inode *inode)
2090 {
2091 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2092 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2093
2094 do {
2095 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2096 if (atomic_read(&inode->i_dio_count))
2097 schedule();
2098 } while (atomic_read(&inode->i_dio_count));
2099 finish_wait(wq, &q.wq_entry);
2100 }
2101
2102 /**
2103 * inode_dio_wait - wait for outstanding DIO requests to finish
2104 * @inode: inode to wait for
2105 *
2106 * Waits for all pending direct I/O requests to finish so that we can
2107 * proceed with a truncate or equivalent operation.
2108 *
2109 * Must be called under a lock that serializes taking new references
2110 * to i_dio_count, usually by inode->i_mutex.
2111 */
2112 void inode_dio_wait(struct inode *inode)
2113 {
2114 if (atomic_read(&inode->i_dio_count))
2115 __inode_dio_wait(inode);
2116 }
2117 EXPORT_SYMBOL(inode_dio_wait);
2118
2119 /*
2120 * inode_set_flags - atomically set some inode flags
2121 *
2122 * Note: the caller should be holding i_mutex, or else be sure that
2123 * they have exclusive access to the inode structure (i.e., while the
2124 * inode is being instantiated). The reason for the cmpxchg() loop
2125 * --- which wouldn't be necessary if all code paths which modify
2126 * i_flags actually followed this rule, is that there is at least one
2127 * code path which doesn't today so we use cmpxchg() out of an abundance
2128 * of caution.
2129 *
2130 * In the long run, i_mutex is overkill, and we should probably look
2131 * at using the i_lock spinlock to protect i_flags, and then make sure
2132 * it is so documented in include/linux/fs.h and that all code follows
2133 * the locking convention!!
2134 */
2135 void inode_set_flags(struct inode *inode, unsigned int flags,
2136 unsigned int mask)
2137 {
2138 unsigned int old_flags, new_flags;
2139
2140 WARN_ON_ONCE(flags & ~mask);
2141 do {
2142 old_flags = READ_ONCE(inode->i_flags);
2143 new_flags = (old_flags & ~mask) | flags;
2144 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2145 new_flags) != old_flags));
2146 }
2147 EXPORT_SYMBOL(inode_set_flags);
2148
2149 void inode_nohighmem(struct inode *inode)
2150 {
2151 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2152 }
2153 EXPORT_SYMBOL(inode_nohighmem);
2154
2155 /**
2156 * current_time - Return FS time
2157 * @inode: inode.
2158 *
2159 * Return the current time truncated to the time granularity supported by
2160 * the fs.
2161 *
2162 * Note that inode and inode->sb cannot be NULL.
2163 * Otherwise, the function warns and returns time without truncation.
2164 */
2165 struct timespec current_time(struct inode *inode)
2166 {
2167 struct timespec now = current_kernel_time();
2168
2169 if (unlikely(!inode->i_sb)) {
2170 WARN(1, "current_time() called with uninitialized super_block in the inode");
2171 return now;
2172 }
2173
2174 return timespec_trunc(now, inode->i_sb->s_time_gran);
2175 }
2176 EXPORT_SYMBOL(current_time);