]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/inode.c
netfilter: nft_exthdr: check for IPv6 packet before further processing
[mirror_ubuntu-jammy-kernel.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic64_set(&inode->i_sequence, 0);
141 atomic_set(&inode->i_count, 1);
142 inode->i_op = &empty_iops;
143 inode->i_fop = &no_open_fops;
144 inode->i_ino = 0;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
168 #endif
169
170 if (security_inode_alloc(inode))
171 goto out;
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177
178 atomic_set(&inode->i_dio_count, 0);
179
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
182 mapping->flags = 0;
183 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 __set_bit(AS_THP_SUPPORT, &mapping->flags);
185 mapping->wb_err = 0;
186 atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 atomic_set(&mapping->nr_thps, 0);
189 #endif
190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 mapping->private_data = NULL;
192 mapping->writeback_index = 0;
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199
200 #ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202 #endif
203 inode->i_flctx = NULL;
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207 out:
208 return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211
212 void free_inode_nonrcu(struct inode *inode)
213 {
214 kmem_cache_free(inode_cachep, inode);
215 }
216 EXPORT_SYMBOL(free_inode_nonrcu);
217
218 static void i_callback(struct rcu_head *head)
219 {
220 struct inode *inode = container_of(head, struct inode, i_rcu);
221 if (inode->free_inode)
222 inode->free_inode(inode);
223 else
224 free_inode_nonrcu(inode);
225 }
226
227 static struct inode *alloc_inode(struct super_block *sb)
228 {
229 const struct super_operations *ops = sb->s_op;
230 struct inode *inode;
231
232 if (ops->alloc_inode)
233 inode = ops->alloc_inode(sb);
234 else
235 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
236
237 if (!inode)
238 return NULL;
239
240 if (unlikely(inode_init_always(sb, inode))) {
241 if (ops->destroy_inode) {
242 ops->destroy_inode(inode);
243 if (!ops->free_inode)
244 return NULL;
245 }
246 inode->free_inode = ops->free_inode;
247 i_callback(&inode->i_rcu);
248 return NULL;
249 }
250
251 return inode;
252 }
253
254 void __destroy_inode(struct inode *inode)
255 {
256 BUG_ON(inode_has_buffers(inode));
257 inode_detach_wb(inode);
258 security_inode_free(inode);
259 fsnotify_inode_delete(inode);
260 locks_free_lock_context(inode);
261 if (!inode->i_nlink) {
262 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
263 atomic_long_dec(&inode->i_sb->s_remove_count);
264 }
265
266 #ifdef CONFIG_FS_POSIX_ACL
267 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
268 posix_acl_release(inode->i_acl);
269 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
270 posix_acl_release(inode->i_default_acl);
271 #endif
272 this_cpu_dec(nr_inodes);
273 }
274 EXPORT_SYMBOL(__destroy_inode);
275
276 static void destroy_inode(struct inode *inode)
277 {
278 const struct super_operations *ops = inode->i_sb->s_op;
279
280 BUG_ON(!list_empty(&inode->i_lru));
281 __destroy_inode(inode);
282 if (ops->destroy_inode) {
283 ops->destroy_inode(inode);
284 if (!ops->free_inode)
285 return;
286 }
287 inode->free_inode = ops->free_inode;
288 call_rcu(&inode->i_rcu, i_callback);
289 }
290
291 /**
292 * drop_nlink - directly drop an inode's link count
293 * @inode: inode
294 *
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. In cases
297 * where we are attempting to track writes to the
298 * filesystem, a decrement to zero means an imminent
299 * write when the file is truncated and actually unlinked
300 * on the filesystem.
301 */
302 void drop_nlink(struct inode *inode)
303 {
304 WARN_ON(inode->i_nlink == 0);
305 inode->__i_nlink--;
306 if (!inode->i_nlink)
307 atomic_long_inc(&inode->i_sb->s_remove_count);
308 }
309 EXPORT_SYMBOL(drop_nlink);
310
311 /**
312 * clear_nlink - directly zero an inode's link count
313 * @inode: inode
314 *
315 * This is a low-level filesystem helper to replace any
316 * direct filesystem manipulation of i_nlink. See
317 * drop_nlink() for why we care about i_nlink hitting zero.
318 */
319 void clear_nlink(struct inode *inode)
320 {
321 if (inode->i_nlink) {
322 inode->__i_nlink = 0;
323 atomic_long_inc(&inode->i_sb->s_remove_count);
324 }
325 }
326 EXPORT_SYMBOL(clear_nlink);
327
328 /**
329 * set_nlink - directly set an inode's link count
330 * @inode: inode
331 * @nlink: new nlink (should be non-zero)
332 *
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink.
335 */
336 void set_nlink(struct inode *inode, unsigned int nlink)
337 {
338 if (!nlink) {
339 clear_nlink(inode);
340 } else {
341 /* Yes, some filesystems do change nlink from zero to one */
342 if (inode->i_nlink == 0)
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344
345 inode->__i_nlink = nlink;
346 }
347 }
348 EXPORT_SYMBOL(set_nlink);
349
350 /**
351 * inc_nlink - directly increment an inode's link count
352 * @inode: inode
353 *
354 * This is a low-level filesystem helper to replace any
355 * direct filesystem manipulation of i_nlink. Currently,
356 * it is only here for parity with dec_nlink().
357 */
358 void inc_nlink(struct inode *inode)
359 {
360 if (unlikely(inode->i_nlink == 0)) {
361 WARN_ON(!(inode->i_state & I_LINKABLE));
362 atomic_long_dec(&inode->i_sb->s_remove_count);
363 }
364
365 inode->__i_nlink++;
366 }
367 EXPORT_SYMBOL(inc_nlink);
368
369 static void __address_space_init_once(struct address_space *mapping)
370 {
371 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
372 init_rwsem(&mapping->i_mmap_rwsem);
373 INIT_LIST_HEAD(&mapping->private_list);
374 spin_lock_init(&mapping->private_lock);
375 mapping->i_mmap = RB_ROOT_CACHED;
376 }
377
378 void address_space_init_once(struct address_space *mapping)
379 {
380 memset(mapping, 0, sizeof(*mapping));
381 __address_space_init_once(mapping);
382 }
383 EXPORT_SYMBOL(address_space_init_once);
384
385 /*
386 * These are initializations that only need to be done
387 * once, because the fields are idempotent across use
388 * of the inode, so let the slab aware of that.
389 */
390 void inode_init_once(struct inode *inode)
391 {
392 memset(inode, 0, sizeof(*inode));
393 INIT_HLIST_NODE(&inode->i_hash);
394 INIT_LIST_HEAD(&inode->i_devices);
395 INIT_LIST_HEAD(&inode->i_io_list);
396 INIT_LIST_HEAD(&inode->i_wb_list);
397 INIT_LIST_HEAD(&inode->i_lru);
398 __address_space_init_once(&inode->i_data);
399 i_size_ordered_init(inode);
400 }
401 EXPORT_SYMBOL(inode_init_once);
402
403 static void init_once(void *foo)
404 {
405 struct inode *inode = (struct inode *) foo;
406
407 inode_init_once(inode);
408 }
409
410 /*
411 * inode->i_lock must be held
412 */
413 void __iget(struct inode *inode)
414 {
415 atomic_inc(&inode->i_count);
416 }
417
418 /*
419 * get additional reference to inode; caller must already hold one.
420 */
421 void ihold(struct inode *inode)
422 {
423 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
424 }
425 EXPORT_SYMBOL(ihold);
426
427 static void inode_lru_list_add(struct inode *inode)
428 {
429 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 this_cpu_inc(nr_unused);
431 else
432 inode->i_state |= I_REFERENCED;
433 }
434
435 /*
436 * Add inode to LRU if needed (inode is unused and clean).
437 *
438 * Needs inode->i_lock held.
439 */
440 void inode_add_lru(struct inode *inode)
441 {
442 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
443 I_FREEING | I_WILL_FREE)) &&
444 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
445 inode_lru_list_add(inode);
446 }
447
448
449 static void inode_lru_list_del(struct inode *inode)
450 {
451
452 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
453 this_cpu_dec(nr_unused);
454 }
455
456 /**
457 * inode_sb_list_add - add inode to the superblock list of inodes
458 * @inode: inode to add
459 */
460 void inode_sb_list_add(struct inode *inode)
461 {
462 spin_lock(&inode->i_sb->s_inode_list_lock);
463 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
464 spin_unlock(&inode->i_sb->s_inode_list_lock);
465 }
466 EXPORT_SYMBOL_GPL(inode_sb_list_add);
467
468 static inline void inode_sb_list_del(struct inode *inode)
469 {
470 if (!list_empty(&inode->i_sb_list)) {
471 spin_lock(&inode->i_sb->s_inode_list_lock);
472 list_del_init(&inode->i_sb_list);
473 spin_unlock(&inode->i_sb->s_inode_list_lock);
474 }
475 }
476
477 static unsigned long hash(struct super_block *sb, unsigned long hashval)
478 {
479 unsigned long tmp;
480
481 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
482 L1_CACHE_BYTES;
483 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
484 return tmp & i_hash_mask;
485 }
486
487 /**
488 * __insert_inode_hash - hash an inode
489 * @inode: unhashed inode
490 * @hashval: unsigned long value used to locate this object in the
491 * inode_hashtable.
492 *
493 * Add an inode to the inode hash for this superblock.
494 */
495 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
496 {
497 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
498
499 spin_lock(&inode_hash_lock);
500 spin_lock(&inode->i_lock);
501 hlist_add_head_rcu(&inode->i_hash, b);
502 spin_unlock(&inode->i_lock);
503 spin_unlock(&inode_hash_lock);
504 }
505 EXPORT_SYMBOL(__insert_inode_hash);
506
507 /**
508 * __remove_inode_hash - remove an inode from the hash
509 * @inode: inode to unhash
510 *
511 * Remove an inode from the superblock.
512 */
513 void __remove_inode_hash(struct inode *inode)
514 {
515 spin_lock(&inode_hash_lock);
516 spin_lock(&inode->i_lock);
517 hlist_del_init_rcu(&inode->i_hash);
518 spin_unlock(&inode->i_lock);
519 spin_unlock(&inode_hash_lock);
520 }
521 EXPORT_SYMBOL(__remove_inode_hash);
522
523 void clear_inode(struct inode *inode)
524 {
525 /*
526 * We have to cycle the i_pages lock here because reclaim can be in the
527 * process of removing the last page (in __delete_from_page_cache())
528 * and we must not free the mapping under it.
529 */
530 xa_lock_irq(&inode->i_data.i_pages);
531 BUG_ON(inode->i_data.nrpages);
532 /*
533 * Almost always, mapping_empty(&inode->i_data) here; but there are
534 * two known and long-standing ways in which nodes may get left behind
535 * (when deep radix-tree node allocation failed partway; or when THP
536 * collapse_file() failed). Until those two known cases are cleaned up,
537 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
538 * nor even WARN_ON(!mapping_empty).
539 */
540 xa_unlock_irq(&inode->i_data.i_pages);
541 BUG_ON(!list_empty(&inode->i_data.private_list));
542 BUG_ON(!(inode->i_state & I_FREEING));
543 BUG_ON(inode->i_state & I_CLEAR);
544 BUG_ON(!list_empty(&inode->i_wb_list));
545 /* don't need i_lock here, no concurrent mods to i_state */
546 inode->i_state = I_FREEING | I_CLEAR;
547 }
548 EXPORT_SYMBOL(clear_inode);
549
550 /*
551 * Free the inode passed in, removing it from the lists it is still connected
552 * to. We remove any pages still attached to the inode and wait for any IO that
553 * is still in progress before finally destroying the inode.
554 *
555 * An inode must already be marked I_FREEING so that we avoid the inode being
556 * moved back onto lists if we race with other code that manipulates the lists
557 * (e.g. writeback_single_inode). The caller is responsible for setting this.
558 *
559 * An inode must already be removed from the LRU list before being evicted from
560 * the cache. This should occur atomically with setting the I_FREEING state
561 * flag, so no inodes here should ever be on the LRU when being evicted.
562 */
563 static void evict(struct inode *inode)
564 {
565 const struct super_operations *op = inode->i_sb->s_op;
566
567 BUG_ON(!(inode->i_state & I_FREEING));
568 BUG_ON(!list_empty(&inode->i_lru));
569
570 if (!list_empty(&inode->i_io_list))
571 inode_io_list_del(inode);
572
573 inode_sb_list_del(inode);
574
575 /*
576 * Wait for flusher thread to be done with the inode so that filesystem
577 * does not start destroying it while writeback is still running. Since
578 * the inode has I_FREEING set, flusher thread won't start new work on
579 * the inode. We just have to wait for running writeback to finish.
580 */
581 inode_wait_for_writeback(inode);
582
583 if (op->evict_inode) {
584 op->evict_inode(inode);
585 } else {
586 truncate_inode_pages_final(&inode->i_data);
587 clear_inode(inode);
588 }
589 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
590 cd_forget(inode);
591
592 remove_inode_hash(inode);
593
594 spin_lock(&inode->i_lock);
595 wake_up_bit(&inode->i_state, __I_NEW);
596 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
597 spin_unlock(&inode->i_lock);
598
599 destroy_inode(inode);
600 }
601
602 /*
603 * dispose_list - dispose of the contents of a local list
604 * @head: the head of the list to free
605 *
606 * Dispose-list gets a local list with local inodes in it, so it doesn't
607 * need to worry about list corruption and SMP locks.
608 */
609 static void dispose_list(struct list_head *head)
610 {
611 while (!list_empty(head)) {
612 struct inode *inode;
613
614 inode = list_first_entry(head, struct inode, i_lru);
615 list_del_init(&inode->i_lru);
616
617 evict(inode);
618 cond_resched();
619 }
620 }
621
622 /**
623 * evict_inodes - evict all evictable inodes for a superblock
624 * @sb: superblock to operate on
625 *
626 * Make sure that no inodes with zero refcount are retained. This is
627 * called by superblock shutdown after having SB_ACTIVE flag removed,
628 * so any inode reaching zero refcount during or after that call will
629 * be immediately evicted.
630 */
631 void evict_inodes(struct super_block *sb)
632 {
633 struct inode *inode, *next;
634 LIST_HEAD(dispose);
635
636 again:
637 spin_lock(&sb->s_inode_list_lock);
638 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
639 if (atomic_read(&inode->i_count))
640 continue;
641
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
645 continue;
646 }
647
648 inode->i_state |= I_FREEING;
649 inode_lru_list_del(inode);
650 spin_unlock(&inode->i_lock);
651 list_add(&inode->i_lru, &dispose);
652
653 /*
654 * We can have a ton of inodes to evict at unmount time given
655 * enough memory, check to see if we need to go to sleep for a
656 * bit so we don't livelock.
657 */
658 if (need_resched()) {
659 spin_unlock(&sb->s_inode_list_lock);
660 cond_resched();
661 dispose_list(&dispose);
662 goto again;
663 }
664 }
665 spin_unlock(&sb->s_inode_list_lock);
666
667 dispose_list(&dispose);
668 }
669 EXPORT_SYMBOL_GPL(evict_inodes);
670
671 /**
672 * invalidate_inodes - attempt to free all inodes on a superblock
673 * @sb: superblock to operate on
674 * @kill_dirty: flag to guide handling of dirty inodes
675 *
676 * Attempts to free all inodes for a given superblock. If there were any
677 * busy inodes return a non-zero value, else zero.
678 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
679 * them as busy.
680 */
681 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
682 {
683 int busy = 0;
684 struct inode *inode, *next;
685 LIST_HEAD(dispose);
686
687 again:
688 spin_lock(&sb->s_inode_list_lock);
689 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
690 spin_lock(&inode->i_lock);
691 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
692 spin_unlock(&inode->i_lock);
693 continue;
694 }
695 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
696 spin_unlock(&inode->i_lock);
697 busy = 1;
698 continue;
699 }
700 if (atomic_read(&inode->i_count)) {
701 spin_unlock(&inode->i_lock);
702 busy = 1;
703 continue;
704 }
705
706 inode->i_state |= I_FREEING;
707 inode_lru_list_del(inode);
708 spin_unlock(&inode->i_lock);
709 list_add(&inode->i_lru, &dispose);
710 if (need_resched()) {
711 spin_unlock(&sb->s_inode_list_lock);
712 cond_resched();
713 dispose_list(&dispose);
714 goto again;
715 }
716 }
717 spin_unlock(&sb->s_inode_list_lock);
718
719 dispose_list(&dispose);
720
721 return busy;
722 }
723
724 /*
725 * Isolate the inode from the LRU in preparation for freeing it.
726 *
727 * Any inodes which are pinned purely because of attached pagecache have their
728 * pagecache removed. If the inode has metadata buffers attached to
729 * mapping->private_list then try to remove them.
730 *
731 * If the inode has the I_REFERENCED flag set, then it means that it has been
732 * used recently - the flag is set in iput_final(). When we encounter such an
733 * inode, clear the flag and move it to the back of the LRU so it gets another
734 * pass through the LRU before it gets reclaimed. This is necessary because of
735 * the fact we are doing lazy LRU updates to minimise lock contention so the
736 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
737 * with this flag set because they are the inodes that are out of order.
738 */
739 static enum lru_status inode_lru_isolate(struct list_head *item,
740 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
741 {
742 struct list_head *freeable = arg;
743 struct inode *inode = container_of(item, struct inode, i_lru);
744
745 /*
746 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
747 * If we fail to get the lock, just skip it.
748 */
749 if (!spin_trylock(&inode->i_lock))
750 return LRU_SKIP;
751
752 /*
753 * Referenced or dirty inodes are still in use. Give them another pass
754 * through the LRU as we canot reclaim them now.
755 */
756 if (atomic_read(&inode->i_count) ||
757 (inode->i_state & ~I_REFERENCED)) {
758 list_lru_isolate(lru, &inode->i_lru);
759 spin_unlock(&inode->i_lock);
760 this_cpu_dec(nr_unused);
761 return LRU_REMOVED;
762 }
763
764 /* recently referenced inodes get one more pass */
765 if (inode->i_state & I_REFERENCED) {
766 inode->i_state &= ~I_REFERENCED;
767 spin_unlock(&inode->i_lock);
768 return LRU_ROTATE;
769 }
770
771 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
772 __iget(inode);
773 spin_unlock(&inode->i_lock);
774 spin_unlock(lru_lock);
775 if (remove_inode_buffers(inode)) {
776 unsigned long reap;
777 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
778 if (current_is_kswapd())
779 __count_vm_events(KSWAPD_INODESTEAL, reap);
780 else
781 __count_vm_events(PGINODESTEAL, reap);
782 if (current->reclaim_state)
783 current->reclaim_state->reclaimed_slab += reap;
784 }
785 iput(inode);
786 spin_lock(lru_lock);
787 return LRU_RETRY;
788 }
789
790 WARN_ON(inode->i_state & I_NEW);
791 inode->i_state |= I_FREEING;
792 list_lru_isolate_move(lru, &inode->i_lru, freeable);
793 spin_unlock(&inode->i_lock);
794
795 this_cpu_dec(nr_unused);
796 return LRU_REMOVED;
797 }
798
799 /*
800 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
801 * This is called from the superblock shrinker function with a number of inodes
802 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
803 * then are freed outside inode_lock by dispose_list().
804 */
805 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
806 {
807 LIST_HEAD(freeable);
808 long freed;
809
810 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
811 inode_lru_isolate, &freeable);
812 dispose_list(&freeable);
813 return freed;
814 }
815
816 static void __wait_on_freeing_inode(struct inode *inode);
817 /*
818 * Called with the inode lock held.
819 */
820 static struct inode *find_inode(struct super_block *sb,
821 struct hlist_head *head,
822 int (*test)(struct inode *, void *),
823 void *data)
824 {
825 struct inode *inode = NULL;
826
827 repeat:
828 hlist_for_each_entry(inode, head, i_hash) {
829 if (inode->i_sb != sb)
830 continue;
831 if (!test(inode, data))
832 continue;
833 spin_lock(&inode->i_lock);
834 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
835 __wait_on_freeing_inode(inode);
836 goto repeat;
837 }
838 if (unlikely(inode->i_state & I_CREATING)) {
839 spin_unlock(&inode->i_lock);
840 return ERR_PTR(-ESTALE);
841 }
842 __iget(inode);
843 spin_unlock(&inode->i_lock);
844 return inode;
845 }
846 return NULL;
847 }
848
849 /*
850 * find_inode_fast is the fast path version of find_inode, see the comment at
851 * iget_locked for details.
852 */
853 static struct inode *find_inode_fast(struct super_block *sb,
854 struct hlist_head *head, unsigned long ino)
855 {
856 struct inode *inode = NULL;
857
858 repeat:
859 hlist_for_each_entry(inode, head, i_hash) {
860 if (inode->i_ino != ino)
861 continue;
862 if (inode->i_sb != sb)
863 continue;
864 spin_lock(&inode->i_lock);
865 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
866 __wait_on_freeing_inode(inode);
867 goto repeat;
868 }
869 if (unlikely(inode->i_state & I_CREATING)) {
870 spin_unlock(&inode->i_lock);
871 return ERR_PTR(-ESTALE);
872 }
873 __iget(inode);
874 spin_unlock(&inode->i_lock);
875 return inode;
876 }
877 return NULL;
878 }
879
880 /*
881 * Each cpu owns a range of LAST_INO_BATCH numbers.
882 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
883 * to renew the exhausted range.
884 *
885 * This does not significantly increase overflow rate because every CPU can
886 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
887 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
888 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
889 * overflow rate by 2x, which does not seem too significant.
890 *
891 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
892 * error if st_ino won't fit in target struct field. Use 32bit counter
893 * here to attempt to avoid that.
894 */
895 #define LAST_INO_BATCH 1024
896 static DEFINE_PER_CPU(unsigned int, last_ino);
897
898 unsigned int get_next_ino(void)
899 {
900 unsigned int *p = &get_cpu_var(last_ino);
901 unsigned int res = *p;
902
903 #ifdef CONFIG_SMP
904 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
905 static atomic_t shared_last_ino;
906 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
907
908 res = next - LAST_INO_BATCH;
909 }
910 #endif
911
912 res++;
913 /* get_next_ino should not provide a 0 inode number */
914 if (unlikely(!res))
915 res++;
916 *p = res;
917 put_cpu_var(last_ino);
918 return res;
919 }
920 EXPORT_SYMBOL(get_next_ino);
921
922 /**
923 * new_inode_pseudo - obtain an inode
924 * @sb: superblock
925 *
926 * Allocates a new inode for given superblock.
927 * Inode wont be chained in superblock s_inodes list
928 * This means :
929 * - fs can't be unmount
930 * - quotas, fsnotify, writeback can't work
931 */
932 struct inode *new_inode_pseudo(struct super_block *sb)
933 {
934 struct inode *inode = alloc_inode(sb);
935
936 if (inode) {
937 spin_lock(&inode->i_lock);
938 inode->i_state = 0;
939 spin_unlock(&inode->i_lock);
940 INIT_LIST_HEAD(&inode->i_sb_list);
941 }
942 return inode;
943 }
944
945 /**
946 * new_inode - obtain an inode
947 * @sb: superblock
948 *
949 * Allocates a new inode for given superblock. The default gfp_mask
950 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
951 * If HIGHMEM pages are unsuitable or it is known that pages allocated
952 * for the page cache are not reclaimable or migratable,
953 * mapping_set_gfp_mask() must be called with suitable flags on the
954 * newly created inode's mapping
955 *
956 */
957 struct inode *new_inode(struct super_block *sb)
958 {
959 struct inode *inode;
960
961 spin_lock_prefetch(&sb->s_inode_list_lock);
962
963 inode = new_inode_pseudo(sb);
964 if (inode)
965 inode_sb_list_add(inode);
966 return inode;
967 }
968 EXPORT_SYMBOL(new_inode);
969
970 #ifdef CONFIG_DEBUG_LOCK_ALLOC
971 void lockdep_annotate_inode_mutex_key(struct inode *inode)
972 {
973 if (S_ISDIR(inode->i_mode)) {
974 struct file_system_type *type = inode->i_sb->s_type;
975
976 /* Set new key only if filesystem hasn't already changed it */
977 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
978 /*
979 * ensure nobody is actually holding i_mutex
980 */
981 // mutex_destroy(&inode->i_mutex);
982 init_rwsem(&inode->i_rwsem);
983 lockdep_set_class(&inode->i_rwsem,
984 &type->i_mutex_dir_key);
985 }
986 }
987 }
988 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
989 #endif
990
991 /**
992 * unlock_new_inode - clear the I_NEW state and wake up any waiters
993 * @inode: new inode to unlock
994 *
995 * Called when the inode is fully initialised to clear the new state of the
996 * inode and wake up anyone waiting for the inode to finish initialisation.
997 */
998 void unlock_new_inode(struct inode *inode)
999 {
1000 lockdep_annotate_inode_mutex_key(inode);
1001 spin_lock(&inode->i_lock);
1002 WARN_ON(!(inode->i_state & I_NEW));
1003 inode->i_state &= ~I_NEW & ~I_CREATING;
1004 smp_mb();
1005 wake_up_bit(&inode->i_state, __I_NEW);
1006 spin_unlock(&inode->i_lock);
1007 }
1008 EXPORT_SYMBOL(unlock_new_inode);
1009
1010 void discard_new_inode(struct inode *inode)
1011 {
1012 lockdep_annotate_inode_mutex_key(inode);
1013 spin_lock(&inode->i_lock);
1014 WARN_ON(!(inode->i_state & I_NEW));
1015 inode->i_state &= ~I_NEW;
1016 smp_mb();
1017 wake_up_bit(&inode->i_state, __I_NEW);
1018 spin_unlock(&inode->i_lock);
1019 iput(inode);
1020 }
1021 EXPORT_SYMBOL(discard_new_inode);
1022
1023 /**
1024 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1025 *
1026 * Lock any non-NULL argument that is not a directory.
1027 * Zero, one or two objects may be locked by this function.
1028 *
1029 * @inode1: first inode to lock
1030 * @inode2: second inode to lock
1031 */
1032 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1033 {
1034 if (inode1 > inode2)
1035 swap(inode1, inode2);
1036
1037 if (inode1 && !S_ISDIR(inode1->i_mode))
1038 inode_lock(inode1);
1039 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1040 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1041 }
1042 EXPORT_SYMBOL(lock_two_nondirectories);
1043
1044 /**
1045 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1046 * @inode1: first inode to unlock
1047 * @inode2: second inode to unlock
1048 */
1049 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1050 {
1051 if (inode1 && !S_ISDIR(inode1->i_mode))
1052 inode_unlock(inode1);
1053 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1054 inode_unlock(inode2);
1055 }
1056 EXPORT_SYMBOL(unlock_two_nondirectories);
1057
1058 /**
1059 * inode_insert5 - obtain an inode from a mounted file system
1060 * @inode: pre-allocated inode to use for insert to cache
1061 * @hashval: hash value (usually inode number) to get
1062 * @test: callback used for comparisons between inodes
1063 * @set: callback used to initialize a new struct inode
1064 * @data: opaque data pointer to pass to @test and @set
1065 *
1066 * Search for the inode specified by @hashval and @data in the inode cache,
1067 * and if present it is return it with an increased reference count. This is
1068 * a variant of iget5_locked() for callers that don't want to fail on memory
1069 * allocation of inode.
1070 *
1071 * If the inode is not in cache, insert the pre-allocated inode to cache and
1072 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1073 * to fill it in before unlocking it via unlock_new_inode().
1074 *
1075 * Note both @test and @set are called with the inode_hash_lock held, so can't
1076 * sleep.
1077 */
1078 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1079 int (*test)(struct inode *, void *),
1080 int (*set)(struct inode *, void *), void *data)
1081 {
1082 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1083 struct inode *old;
1084 bool creating = inode->i_state & I_CREATING;
1085
1086 again:
1087 spin_lock(&inode_hash_lock);
1088 old = find_inode(inode->i_sb, head, test, data);
1089 if (unlikely(old)) {
1090 /*
1091 * Uhhuh, somebody else created the same inode under us.
1092 * Use the old inode instead of the preallocated one.
1093 */
1094 spin_unlock(&inode_hash_lock);
1095 if (IS_ERR(old))
1096 return NULL;
1097 wait_on_inode(old);
1098 if (unlikely(inode_unhashed(old))) {
1099 iput(old);
1100 goto again;
1101 }
1102 return old;
1103 }
1104
1105 if (set && unlikely(set(inode, data))) {
1106 inode = NULL;
1107 goto unlock;
1108 }
1109
1110 /*
1111 * Return the locked inode with I_NEW set, the
1112 * caller is responsible for filling in the contents
1113 */
1114 spin_lock(&inode->i_lock);
1115 inode->i_state |= I_NEW;
1116 hlist_add_head_rcu(&inode->i_hash, head);
1117 spin_unlock(&inode->i_lock);
1118 if (!creating)
1119 inode_sb_list_add(inode);
1120 unlock:
1121 spin_unlock(&inode_hash_lock);
1122
1123 return inode;
1124 }
1125 EXPORT_SYMBOL(inode_insert5);
1126
1127 /**
1128 * iget5_locked - obtain an inode from a mounted file system
1129 * @sb: super block of file system
1130 * @hashval: hash value (usually inode number) to get
1131 * @test: callback used for comparisons between inodes
1132 * @set: callback used to initialize a new struct inode
1133 * @data: opaque data pointer to pass to @test and @set
1134 *
1135 * Search for the inode specified by @hashval and @data in the inode cache,
1136 * and if present it is return it with an increased reference count. This is
1137 * a generalized version of iget_locked() for file systems where the inode
1138 * number is not sufficient for unique identification of an inode.
1139 *
1140 * If the inode is not in cache, allocate a new inode and return it locked,
1141 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1142 * before unlocking it via unlock_new_inode().
1143 *
1144 * Note both @test and @set are called with the inode_hash_lock held, so can't
1145 * sleep.
1146 */
1147 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1148 int (*test)(struct inode *, void *),
1149 int (*set)(struct inode *, void *), void *data)
1150 {
1151 struct inode *inode = ilookup5(sb, hashval, test, data);
1152
1153 if (!inode) {
1154 struct inode *new = alloc_inode(sb);
1155
1156 if (new) {
1157 new->i_state = 0;
1158 inode = inode_insert5(new, hashval, test, set, data);
1159 if (unlikely(inode != new))
1160 destroy_inode(new);
1161 }
1162 }
1163 return inode;
1164 }
1165 EXPORT_SYMBOL(iget5_locked);
1166
1167 /**
1168 * iget_locked - obtain an inode from a mounted file system
1169 * @sb: super block of file system
1170 * @ino: inode number to get
1171 *
1172 * Search for the inode specified by @ino in the inode cache and if present
1173 * return it with an increased reference count. This is for file systems
1174 * where the inode number is sufficient for unique identification of an inode.
1175 *
1176 * If the inode is not in cache, allocate a new inode and return it locked,
1177 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1178 * before unlocking it via unlock_new_inode().
1179 */
1180 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1181 {
1182 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1183 struct inode *inode;
1184 again:
1185 spin_lock(&inode_hash_lock);
1186 inode = find_inode_fast(sb, head, ino);
1187 spin_unlock(&inode_hash_lock);
1188 if (inode) {
1189 if (IS_ERR(inode))
1190 return NULL;
1191 wait_on_inode(inode);
1192 if (unlikely(inode_unhashed(inode))) {
1193 iput(inode);
1194 goto again;
1195 }
1196 return inode;
1197 }
1198
1199 inode = alloc_inode(sb);
1200 if (inode) {
1201 struct inode *old;
1202
1203 spin_lock(&inode_hash_lock);
1204 /* We released the lock, so.. */
1205 old = find_inode_fast(sb, head, ino);
1206 if (!old) {
1207 inode->i_ino = ino;
1208 spin_lock(&inode->i_lock);
1209 inode->i_state = I_NEW;
1210 hlist_add_head_rcu(&inode->i_hash, head);
1211 spin_unlock(&inode->i_lock);
1212 inode_sb_list_add(inode);
1213 spin_unlock(&inode_hash_lock);
1214
1215 /* Return the locked inode with I_NEW set, the
1216 * caller is responsible for filling in the contents
1217 */
1218 return inode;
1219 }
1220
1221 /*
1222 * Uhhuh, somebody else created the same inode under
1223 * us. Use the old inode instead of the one we just
1224 * allocated.
1225 */
1226 spin_unlock(&inode_hash_lock);
1227 destroy_inode(inode);
1228 if (IS_ERR(old))
1229 return NULL;
1230 inode = old;
1231 wait_on_inode(inode);
1232 if (unlikely(inode_unhashed(inode))) {
1233 iput(inode);
1234 goto again;
1235 }
1236 }
1237 return inode;
1238 }
1239 EXPORT_SYMBOL(iget_locked);
1240
1241 /*
1242 * search the inode cache for a matching inode number.
1243 * If we find one, then the inode number we are trying to
1244 * allocate is not unique and so we should not use it.
1245 *
1246 * Returns 1 if the inode number is unique, 0 if it is not.
1247 */
1248 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1249 {
1250 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1251 struct inode *inode;
1252
1253 hlist_for_each_entry_rcu(inode, b, i_hash) {
1254 if (inode->i_ino == ino && inode->i_sb == sb)
1255 return 0;
1256 }
1257 return 1;
1258 }
1259
1260 /**
1261 * iunique - get a unique inode number
1262 * @sb: superblock
1263 * @max_reserved: highest reserved inode number
1264 *
1265 * Obtain an inode number that is unique on the system for a given
1266 * superblock. This is used by file systems that have no natural
1267 * permanent inode numbering system. An inode number is returned that
1268 * is higher than the reserved limit but unique.
1269 *
1270 * BUGS:
1271 * With a large number of inodes live on the file system this function
1272 * currently becomes quite slow.
1273 */
1274 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1275 {
1276 /*
1277 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1278 * error if st_ino won't fit in target struct field. Use 32bit counter
1279 * here to attempt to avoid that.
1280 */
1281 static DEFINE_SPINLOCK(iunique_lock);
1282 static unsigned int counter;
1283 ino_t res;
1284
1285 rcu_read_lock();
1286 spin_lock(&iunique_lock);
1287 do {
1288 if (counter <= max_reserved)
1289 counter = max_reserved + 1;
1290 res = counter++;
1291 } while (!test_inode_iunique(sb, res));
1292 spin_unlock(&iunique_lock);
1293 rcu_read_unlock();
1294
1295 return res;
1296 }
1297 EXPORT_SYMBOL(iunique);
1298
1299 struct inode *igrab(struct inode *inode)
1300 {
1301 spin_lock(&inode->i_lock);
1302 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1303 __iget(inode);
1304 spin_unlock(&inode->i_lock);
1305 } else {
1306 spin_unlock(&inode->i_lock);
1307 /*
1308 * Handle the case where s_op->clear_inode is not been
1309 * called yet, and somebody is calling igrab
1310 * while the inode is getting freed.
1311 */
1312 inode = NULL;
1313 }
1314 return inode;
1315 }
1316 EXPORT_SYMBOL(igrab);
1317
1318 /**
1319 * ilookup5_nowait - search for an inode in the inode cache
1320 * @sb: super block of file system to search
1321 * @hashval: hash value (usually inode number) to search for
1322 * @test: callback used for comparisons between inodes
1323 * @data: opaque data pointer to pass to @test
1324 *
1325 * Search for the inode specified by @hashval and @data in the inode cache.
1326 * If the inode is in the cache, the inode is returned with an incremented
1327 * reference count.
1328 *
1329 * Note: I_NEW is not waited upon so you have to be very careful what you do
1330 * with the returned inode. You probably should be using ilookup5() instead.
1331 *
1332 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1333 */
1334 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1335 int (*test)(struct inode *, void *), void *data)
1336 {
1337 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1338 struct inode *inode;
1339
1340 spin_lock(&inode_hash_lock);
1341 inode = find_inode(sb, head, test, data);
1342 spin_unlock(&inode_hash_lock);
1343
1344 return IS_ERR(inode) ? NULL : inode;
1345 }
1346 EXPORT_SYMBOL(ilookup5_nowait);
1347
1348 /**
1349 * ilookup5 - search for an inode in the inode cache
1350 * @sb: super block of file system to search
1351 * @hashval: hash value (usually inode number) to search for
1352 * @test: callback used for comparisons between inodes
1353 * @data: opaque data pointer to pass to @test
1354 *
1355 * Search for the inode specified by @hashval and @data in the inode cache,
1356 * and if the inode is in the cache, return the inode with an incremented
1357 * reference count. Waits on I_NEW before returning the inode.
1358 * returned with an incremented reference count.
1359 *
1360 * This is a generalized version of ilookup() for file systems where the
1361 * inode number is not sufficient for unique identification of an inode.
1362 *
1363 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1364 */
1365 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1366 int (*test)(struct inode *, void *), void *data)
1367 {
1368 struct inode *inode;
1369 again:
1370 inode = ilookup5_nowait(sb, hashval, test, data);
1371 if (inode) {
1372 wait_on_inode(inode);
1373 if (unlikely(inode_unhashed(inode))) {
1374 iput(inode);
1375 goto again;
1376 }
1377 }
1378 return inode;
1379 }
1380 EXPORT_SYMBOL(ilookup5);
1381
1382 /**
1383 * ilookup - search for an inode in the inode cache
1384 * @sb: super block of file system to search
1385 * @ino: inode number to search for
1386 *
1387 * Search for the inode @ino in the inode cache, and if the inode is in the
1388 * cache, the inode is returned with an incremented reference count.
1389 */
1390 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1391 {
1392 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1393 struct inode *inode;
1394 again:
1395 spin_lock(&inode_hash_lock);
1396 inode = find_inode_fast(sb, head, ino);
1397 spin_unlock(&inode_hash_lock);
1398
1399 if (inode) {
1400 if (IS_ERR(inode))
1401 return NULL;
1402 wait_on_inode(inode);
1403 if (unlikely(inode_unhashed(inode))) {
1404 iput(inode);
1405 goto again;
1406 }
1407 }
1408 return inode;
1409 }
1410 EXPORT_SYMBOL(ilookup);
1411
1412 /**
1413 * find_inode_nowait - find an inode in the inode cache
1414 * @sb: super block of file system to search
1415 * @hashval: hash value (usually inode number) to search for
1416 * @match: callback used for comparisons between inodes
1417 * @data: opaque data pointer to pass to @match
1418 *
1419 * Search for the inode specified by @hashval and @data in the inode
1420 * cache, where the helper function @match will return 0 if the inode
1421 * does not match, 1 if the inode does match, and -1 if the search
1422 * should be stopped. The @match function must be responsible for
1423 * taking the i_lock spin_lock and checking i_state for an inode being
1424 * freed or being initialized, and incrementing the reference count
1425 * before returning 1. It also must not sleep, since it is called with
1426 * the inode_hash_lock spinlock held.
1427 *
1428 * This is a even more generalized version of ilookup5() when the
1429 * function must never block --- find_inode() can block in
1430 * __wait_on_freeing_inode() --- or when the caller can not increment
1431 * the reference count because the resulting iput() might cause an
1432 * inode eviction. The tradeoff is that the @match funtion must be
1433 * very carefully implemented.
1434 */
1435 struct inode *find_inode_nowait(struct super_block *sb,
1436 unsigned long hashval,
1437 int (*match)(struct inode *, unsigned long,
1438 void *),
1439 void *data)
1440 {
1441 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1442 struct inode *inode, *ret_inode = NULL;
1443 int mval;
1444
1445 spin_lock(&inode_hash_lock);
1446 hlist_for_each_entry(inode, head, i_hash) {
1447 if (inode->i_sb != sb)
1448 continue;
1449 mval = match(inode, hashval, data);
1450 if (mval == 0)
1451 continue;
1452 if (mval == 1)
1453 ret_inode = inode;
1454 goto out;
1455 }
1456 out:
1457 spin_unlock(&inode_hash_lock);
1458 return ret_inode;
1459 }
1460 EXPORT_SYMBOL(find_inode_nowait);
1461
1462 /**
1463 * find_inode_rcu - find an inode in the inode cache
1464 * @sb: Super block of file system to search
1465 * @hashval: Key to hash
1466 * @test: Function to test match on an inode
1467 * @data: Data for test function
1468 *
1469 * Search for the inode specified by @hashval and @data in the inode cache,
1470 * where the helper function @test will return 0 if the inode does not match
1471 * and 1 if it does. The @test function must be responsible for taking the
1472 * i_lock spin_lock and checking i_state for an inode being freed or being
1473 * initialized.
1474 *
1475 * If successful, this will return the inode for which the @test function
1476 * returned 1 and NULL otherwise.
1477 *
1478 * The @test function is not permitted to take a ref on any inode presented.
1479 * It is also not permitted to sleep.
1480 *
1481 * The caller must hold the RCU read lock.
1482 */
1483 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1484 int (*test)(struct inode *, void *), void *data)
1485 {
1486 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1487 struct inode *inode;
1488
1489 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1490 "suspicious find_inode_rcu() usage");
1491
1492 hlist_for_each_entry_rcu(inode, head, i_hash) {
1493 if (inode->i_sb == sb &&
1494 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1495 test(inode, data))
1496 return inode;
1497 }
1498 return NULL;
1499 }
1500 EXPORT_SYMBOL(find_inode_rcu);
1501
1502 /**
1503 * find_inode_by_ino_rcu - Find an inode in the inode cache
1504 * @sb: Super block of file system to search
1505 * @ino: The inode number to match
1506 *
1507 * Search for the inode specified by @hashval and @data in the inode cache,
1508 * where the helper function @test will return 0 if the inode does not match
1509 * and 1 if it does. The @test function must be responsible for taking the
1510 * i_lock spin_lock and checking i_state for an inode being freed or being
1511 * initialized.
1512 *
1513 * If successful, this will return the inode for which the @test function
1514 * returned 1 and NULL otherwise.
1515 *
1516 * The @test function is not permitted to take a ref on any inode presented.
1517 * It is also not permitted to sleep.
1518 *
1519 * The caller must hold the RCU read lock.
1520 */
1521 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1522 unsigned long ino)
1523 {
1524 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1525 struct inode *inode;
1526
1527 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1528 "suspicious find_inode_by_ino_rcu() usage");
1529
1530 hlist_for_each_entry_rcu(inode, head, i_hash) {
1531 if (inode->i_ino == ino &&
1532 inode->i_sb == sb &&
1533 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1534 return inode;
1535 }
1536 return NULL;
1537 }
1538 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1539
1540 int insert_inode_locked(struct inode *inode)
1541 {
1542 struct super_block *sb = inode->i_sb;
1543 ino_t ino = inode->i_ino;
1544 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1545
1546 while (1) {
1547 struct inode *old = NULL;
1548 spin_lock(&inode_hash_lock);
1549 hlist_for_each_entry(old, head, i_hash) {
1550 if (old->i_ino != ino)
1551 continue;
1552 if (old->i_sb != sb)
1553 continue;
1554 spin_lock(&old->i_lock);
1555 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1556 spin_unlock(&old->i_lock);
1557 continue;
1558 }
1559 break;
1560 }
1561 if (likely(!old)) {
1562 spin_lock(&inode->i_lock);
1563 inode->i_state |= I_NEW | I_CREATING;
1564 hlist_add_head_rcu(&inode->i_hash, head);
1565 spin_unlock(&inode->i_lock);
1566 spin_unlock(&inode_hash_lock);
1567 return 0;
1568 }
1569 if (unlikely(old->i_state & I_CREATING)) {
1570 spin_unlock(&old->i_lock);
1571 spin_unlock(&inode_hash_lock);
1572 return -EBUSY;
1573 }
1574 __iget(old);
1575 spin_unlock(&old->i_lock);
1576 spin_unlock(&inode_hash_lock);
1577 wait_on_inode(old);
1578 if (unlikely(!inode_unhashed(old))) {
1579 iput(old);
1580 return -EBUSY;
1581 }
1582 iput(old);
1583 }
1584 }
1585 EXPORT_SYMBOL(insert_inode_locked);
1586
1587 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1588 int (*test)(struct inode *, void *), void *data)
1589 {
1590 struct inode *old;
1591
1592 inode->i_state |= I_CREATING;
1593 old = inode_insert5(inode, hashval, test, NULL, data);
1594
1595 if (old != inode) {
1596 iput(old);
1597 return -EBUSY;
1598 }
1599 return 0;
1600 }
1601 EXPORT_SYMBOL(insert_inode_locked4);
1602
1603
1604 int generic_delete_inode(struct inode *inode)
1605 {
1606 return 1;
1607 }
1608 EXPORT_SYMBOL(generic_delete_inode);
1609
1610 /*
1611 * Called when we're dropping the last reference
1612 * to an inode.
1613 *
1614 * Call the FS "drop_inode()" function, defaulting to
1615 * the legacy UNIX filesystem behaviour. If it tells
1616 * us to evict inode, do so. Otherwise, retain inode
1617 * in cache if fs is alive, sync and evict if fs is
1618 * shutting down.
1619 */
1620 static void iput_final(struct inode *inode)
1621 {
1622 struct super_block *sb = inode->i_sb;
1623 const struct super_operations *op = inode->i_sb->s_op;
1624 unsigned long state;
1625 int drop;
1626
1627 WARN_ON(inode->i_state & I_NEW);
1628
1629 if (op->drop_inode)
1630 drop = op->drop_inode(inode);
1631 else
1632 drop = generic_drop_inode(inode);
1633
1634 if (!drop &&
1635 !(inode->i_state & I_DONTCACHE) &&
1636 (sb->s_flags & SB_ACTIVE)) {
1637 inode_add_lru(inode);
1638 spin_unlock(&inode->i_lock);
1639 return;
1640 }
1641
1642 state = inode->i_state;
1643 if (!drop) {
1644 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1645 spin_unlock(&inode->i_lock);
1646
1647 write_inode_now(inode, 1);
1648
1649 spin_lock(&inode->i_lock);
1650 state = inode->i_state;
1651 WARN_ON(state & I_NEW);
1652 state &= ~I_WILL_FREE;
1653 }
1654
1655 WRITE_ONCE(inode->i_state, state | I_FREEING);
1656 if (!list_empty(&inode->i_lru))
1657 inode_lru_list_del(inode);
1658 spin_unlock(&inode->i_lock);
1659
1660 evict(inode);
1661 }
1662
1663 /**
1664 * iput - put an inode
1665 * @inode: inode to put
1666 *
1667 * Puts an inode, dropping its usage count. If the inode use count hits
1668 * zero, the inode is then freed and may also be destroyed.
1669 *
1670 * Consequently, iput() can sleep.
1671 */
1672 void iput(struct inode *inode)
1673 {
1674 if (!inode)
1675 return;
1676 BUG_ON(inode->i_state & I_CLEAR);
1677 retry:
1678 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1679 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1680 atomic_inc(&inode->i_count);
1681 spin_unlock(&inode->i_lock);
1682 trace_writeback_lazytime_iput(inode);
1683 mark_inode_dirty_sync(inode);
1684 goto retry;
1685 }
1686 iput_final(inode);
1687 }
1688 }
1689 EXPORT_SYMBOL(iput);
1690
1691 #ifdef CONFIG_BLOCK
1692 /**
1693 * bmap - find a block number in a file
1694 * @inode: inode owning the block number being requested
1695 * @block: pointer containing the block to find
1696 *
1697 * Replaces the value in ``*block`` with the block number on the device holding
1698 * corresponding to the requested block number in the file.
1699 * That is, asked for block 4 of inode 1 the function will replace the
1700 * 4 in ``*block``, with disk block relative to the disk start that holds that
1701 * block of the file.
1702 *
1703 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1704 * hole, returns 0 and ``*block`` is also set to 0.
1705 */
1706 int bmap(struct inode *inode, sector_t *block)
1707 {
1708 if (!inode->i_mapping->a_ops->bmap)
1709 return -EINVAL;
1710
1711 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1712 return 0;
1713 }
1714 EXPORT_SYMBOL(bmap);
1715 #endif
1716
1717 /*
1718 * With relative atime, only update atime if the previous atime is
1719 * earlier than either the ctime or mtime or if at least a day has
1720 * passed since the last atime update.
1721 */
1722 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1723 struct timespec64 now)
1724 {
1725
1726 if (!(mnt->mnt_flags & MNT_RELATIME))
1727 return 1;
1728 /*
1729 * Is mtime younger than atime? If yes, update atime:
1730 */
1731 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1732 return 1;
1733 /*
1734 * Is ctime younger than atime? If yes, update atime:
1735 */
1736 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1737 return 1;
1738
1739 /*
1740 * Is the previous atime value older than a day? If yes,
1741 * update atime:
1742 */
1743 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1744 return 1;
1745 /*
1746 * Good, we can skip the atime update:
1747 */
1748 return 0;
1749 }
1750
1751 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1752 {
1753 int dirty_flags = 0;
1754
1755 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1756 if (flags & S_ATIME)
1757 inode->i_atime = *time;
1758 if (flags & S_CTIME)
1759 inode->i_ctime = *time;
1760 if (flags & S_MTIME)
1761 inode->i_mtime = *time;
1762
1763 if (inode->i_sb->s_flags & SB_LAZYTIME)
1764 dirty_flags |= I_DIRTY_TIME;
1765 else
1766 dirty_flags |= I_DIRTY_SYNC;
1767 }
1768
1769 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1770 dirty_flags |= I_DIRTY_SYNC;
1771
1772 __mark_inode_dirty(inode, dirty_flags);
1773 return 0;
1774 }
1775 EXPORT_SYMBOL(generic_update_time);
1776
1777 /*
1778 * This does the actual work of updating an inodes time or version. Must have
1779 * had called mnt_want_write() before calling this.
1780 */
1781 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1782 {
1783 if (inode->i_op->update_time)
1784 return inode->i_op->update_time(inode, time, flags);
1785 return generic_update_time(inode, time, flags);
1786 }
1787
1788 /**
1789 * atime_needs_update - update the access time
1790 * @path: the &struct path to update
1791 * @inode: inode to update
1792 *
1793 * Update the accessed time on an inode and mark it for writeback.
1794 * This function automatically handles read only file systems and media,
1795 * as well as the "noatime" flag and inode specific "noatime" markers.
1796 */
1797 bool atime_needs_update(const struct path *path, struct inode *inode)
1798 {
1799 struct vfsmount *mnt = path->mnt;
1800 struct timespec64 now;
1801
1802 if (inode->i_flags & S_NOATIME)
1803 return false;
1804
1805 /* Atime updates will likely cause i_uid and i_gid to be written
1806 * back improprely if their true value is unknown to the vfs.
1807 */
1808 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1809 return false;
1810
1811 if (IS_NOATIME(inode))
1812 return false;
1813 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1814 return false;
1815
1816 if (mnt->mnt_flags & MNT_NOATIME)
1817 return false;
1818 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1819 return false;
1820
1821 now = current_time(inode);
1822
1823 if (!relatime_need_update(mnt, inode, now))
1824 return false;
1825
1826 if (timespec64_equal(&inode->i_atime, &now))
1827 return false;
1828
1829 return true;
1830 }
1831
1832 void touch_atime(const struct path *path)
1833 {
1834 struct vfsmount *mnt = path->mnt;
1835 struct inode *inode = d_inode(path->dentry);
1836 struct timespec64 now;
1837
1838 if (!atime_needs_update(path, inode))
1839 return;
1840
1841 if (!sb_start_write_trylock(inode->i_sb))
1842 return;
1843
1844 if (__mnt_want_write(mnt) != 0)
1845 goto skip_update;
1846 /*
1847 * File systems can error out when updating inodes if they need to
1848 * allocate new space to modify an inode (such is the case for
1849 * Btrfs), but since we touch atime while walking down the path we
1850 * really don't care if we failed to update the atime of the file,
1851 * so just ignore the return value.
1852 * We may also fail on filesystems that have the ability to make parts
1853 * of the fs read only, e.g. subvolumes in Btrfs.
1854 */
1855 now = current_time(inode);
1856 update_time(inode, &now, S_ATIME);
1857 __mnt_drop_write(mnt);
1858 skip_update:
1859 sb_end_write(inode->i_sb);
1860 }
1861 EXPORT_SYMBOL(touch_atime);
1862
1863 /*
1864 * The logic we want is
1865 *
1866 * if suid or (sgid and xgrp)
1867 * remove privs
1868 */
1869 int should_remove_suid(struct dentry *dentry)
1870 {
1871 umode_t mode = d_inode(dentry)->i_mode;
1872 int kill = 0;
1873
1874 /* suid always must be killed */
1875 if (unlikely(mode & S_ISUID))
1876 kill = ATTR_KILL_SUID;
1877
1878 /*
1879 * sgid without any exec bits is just a mandatory locking mark; leave
1880 * it alone. If some exec bits are set, it's a real sgid; kill it.
1881 */
1882 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1883 kill |= ATTR_KILL_SGID;
1884
1885 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1886 return kill;
1887
1888 return 0;
1889 }
1890 EXPORT_SYMBOL(should_remove_suid);
1891
1892 /*
1893 * Return mask of changes for notify_change() that need to be done as a
1894 * response to write or truncate. Return 0 if nothing has to be changed.
1895 * Negative value on error (change should be denied).
1896 */
1897 int dentry_needs_remove_privs(struct dentry *dentry)
1898 {
1899 struct inode *inode = d_inode(dentry);
1900 int mask = 0;
1901 int ret;
1902
1903 if (IS_NOSEC(inode))
1904 return 0;
1905
1906 mask = should_remove_suid(dentry);
1907 ret = security_inode_need_killpriv(dentry);
1908 if (ret < 0)
1909 return ret;
1910 if (ret)
1911 mask |= ATTR_KILL_PRIV;
1912 return mask;
1913 }
1914
1915 static int __remove_privs(struct user_namespace *mnt_userns,
1916 struct dentry *dentry, int kill)
1917 {
1918 struct iattr newattrs;
1919
1920 newattrs.ia_valid = ATTR_FORCE | kill;
1921 /*
1922 * Note we call this on write, so notify_change will not
1923 * encounter any conflicting delegations:
1924 */
1925 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1926 }
1927
1928 /*
1929 * Remove special file priviledges (suid, capabilities) when file is written
1930 * to or truncated.
1931 */
1932 int file_remove_privs(struct file *file)
1933 {
1934 struct dentry *dentry = file_dentry(file);
1935 struct inode *inode = file_inode(file);
1936 int kill;
1937 int error = 0;
1938
1939 /*
1940 * Fast path for nothing security related.
1941 * As well for non-regular files, e.g. blkdev inodes.
1942 * For example, blkdev_write_iter() might get here
1943 * trying to remove privs which it is not allowed to.
1944 */
1945 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1946 return 0;
1947
1948 kill = dentry_needs_remove_privs(dentry);
1949 if (kill < 0)
1950 return kill;
1951 if (kill)
1952 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1953 if (!error)
1954 inode_has_no_xattr(inode);
1955
1956 return error;
1957 }
1958 EXPORT_SYMBOL(file_remove_privs);
1959
1960 /**
1961 * file_update_time - update mtime and ctime time
1962 * @file: file accessed
1963 *
1964 * Update the mtime and ctime members of an inode and mark the inode
1965 * for writeback. Note that this function is meant exclusively for
1966 * usage in the file write path of filesystems, and filesystems may
1967 * choose to explicitly ignore update via this function with the
1968 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1969 * timestamps are handled by the server. This can return an error for
1970 * file systems who need to allocate space in order to update an inode.
1971 */
1972
1973 int file_update_time(struct file *file)
1974 {
1975 struct inode *inode = file_inode(file);
1976 struct timespec64 now;
1977 int sync_it = 0;
1978 int ret;
1979
1980 /* First try to exhaust all avenues to not sync */
1981 if (IS_NOCMTIME(inode))
1982 return 0;
1983
1984 now = current_time(inode);
1985 if (!timespec64_equal(&inode->i_mtime, &now))
1986 sync_it = S_MTIME;
1987
1988 if (!timespec64_equal(&inode->i_ctime, &now))
1989 sync_it |= S_CTIME;
1990
1991 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1992 sync_it |= S_VERSION;
1993
1994 if (!sync_it)
1995 return 0;
1996
1997 /* Finally allowed to write? Takes lock. */
1998 if (__mnt_want_write_file(file))
1999 return 0;
2000
2001 ret = update_time(inode, &now, sync_it);
2002 __mnt_drop_write_file(file);
2003
2004 return ret;
2005 }
2006 EXPORT_SYMBOL(file_update_time);
2007
2008 /* Caller must hold the file's inode lock */
2009 int file_modified(struct file *file)
2010 {
2011 int err;
2012
2013 /*
2014 * Clear the security bits if the process is not being run by root.
2015 * This keeps people from modifying setuid and setgid binaries.
2016 */
2017 err = file_remove_privs(file);
2018 if (err)
2019 return err;
2020
2021 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2022 return 0;
2023
2024 return file_update_time(file);
2025 }
2026 EXPORT_SYMBOL(file_modified);
2027
2028 int inode_needs_sync(struct inode *inode)
2029 {
2030 if (IS_SYNC(inode))
2031 return 1;
2032 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2033 return 1;
2034 return 0;
2035 }
2036 EXPORT_SYMBOL(inode_needs_sync);
2037
2038 /*
2039 * If we try to find an inode in the inode hash while it is being
2040 * deleted, we have to wait until the filesystem completes its
2041 * deletion before reporting that it isn't found. This function waits
2042 * until the deletion _might_ have completed. Callers are responsible
2043 * to recheck inode state.
2044 *
2045 * It doesn't matter if I_NEW is not set initially, a call to
2046 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2047 * will DTRT.
2048 */
2049 static void __wait_on_freeing_inode(struct inode *inode)
2050 {
2051 wait_queue_head_t *wq;
2052 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2053 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2054 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2055 spin_unlock(&inode->i_lock);
2056 spin_unlock(&inode_hash_lock);
2057 schedule();
2058 finish_wait(wq, &wait.wq_entry);
2059 spin_lock(&inode_hash_lock);
2060 }
2061
2062 static __initdata unsigned long ihash_entries;
2063 static int __init set_ihash_entries(char *str)
2064 {
2065 if (!str)
2066 return 0;
2067 ihash_entries = simple_strtoul(str, &str, 0);
2068 return 1;
2069 }
2070 __setup("ihash_entries=", set_ihash_entries);
2071
2072 /*
2073 * Initialize the waitqueues and inode hash table.
2074 */
2075 void __init inode_init_early(void)
2076 {
2077 /* If hashes are distributed across NUMA nodes, defer
2078 * hash allocation until vmalloc space is available.
2079 */
2080 if (hashdist)
2081 return;
2082
2083 inode_hashtable =
2084 alloc_large_system_hash("Inode-cache",
2085 sizeof(struct hlist_head),
2086 ihash_entries,
2087 14,
2088 HASH_EARLY | HASH_ZERO,
2089 &i_hash_shift,
2090 &i_hash_mask,
2091 0,
2092 0);
2093 }
2094
2095 void __init inode_init(void)
2096 {
2097 /* inode slab cache */
2098 inode_cachep = kmem_cache_create("inode_cache",
2099 sizeof(struct inode),
2100 0,
2101 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2102 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2103 init_once);
2104
2105 /* Hash may have been set up in inode_init_early */
2106 if (!hashdist)
2107 return;
2108
2109 inode_hashtable =
2110 alloc_large_system_hash("Inode-cache",
2111 sizeof(struct hlist_head),
2112 ihash_entries,
2113 14,
2114 HASH_ZERO,
2115 &i_hash_shift,
2116 &i_hash_mask,
2117 0,
2118 0);
2119 }
2120
2121 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2122 {
2123 inode->i_mode = mode;
2124 if (S_ISCHR(mode)) {
2125 inode->i_fop = &def_chr_fops;
2126 inode->i_rdev = rdev;
2127 } else if (S_ISBLK(mode)) {
2128 inode->i_fop = &def_blk_fops;
2129 inode->i_rdev = rdev;
2130 } else if (S_ISFIFO(mode))
2131 inode->i_fop = &pipefifo_fops;
2132 else if (S_ISSOCK(mode))
2133 ; /* leave it no_open_fops */
2134 else
2135 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2136 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2137 inode->i_ino);
2138 }
2139 EXPORT_SYMBOL(init_special_inode);
2140
2141 /**
2142 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2143 * @mnt_userns: User namespace of the mount the inode was created from
2144 * @inode: New inode
2145 * @dir: Directory inode
2146 * @mode: mode of the new inode
2147 *
2148 * If the inode has been created through an idmapped mount the user namespace of
2149 * the vfsmount must be passed through @mnt_userns. This function will then take
2150 * care to map the inode according to @mnt_userns before checking permissions
2151 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2152 * checking is to be performed on the raw inode simply passs init_user_ns.
2153 */
2154 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2155 const struct inode *dir, umode_t mode)
2156 {
2157 inode_fsuid_set(inode, mnt_userns);
2158 if (dir && dir->i_mode & S_ISGID) {
2159 inode->i_gid = dir->i_gid;
2160
2161 /* Directories are special, and always inherit S_ISGID */
2162 if (S_ISDIR(mode))
2163 mode |= S_ISGID;
2164 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2165 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2166 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2167 mode &= ~S_ISGID;
2168 } else
2169 inode_fsgid_set(inode, mnt_userns);
2170 inode->i_mode = mode;
2171 }
2172 EXPORT_SYMBOL(inode_init_owner);
2173
2174 /**
2175 * inode_owner_or_capable - check current task permissions to inode
2176 * @mnt_userns: user namespace of the mount the inode was found from
2177 * @inode: inode being checked
2178 *
2179 * Return true if current either has CAP_FOWNER in a namespace with the
2180 * inode owner uid mapped, or owns the file.
2181 *
2182 * If the inode has been found through an idmapped mount the user namespace of
2183 * the vfsmount must be passed through @mnt_userns. This function will then take
2184 * care to map the inode according to @mnt_userns before checking permissions.
2185 * On non-idmapped mounts or if permission checking is to be performed on the
2186 * raw inode simply passs init_user_ns.
2187 */
2188 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2189 const struct inode *inode)
2190 {
2191 kuid_t i_uid;
2192 struct user_namespace *ns;
2193
2194 i_uid = i_uid_into_mnt(mnt_userns, inode);
2195 if (uid_eq(current_fsuid(), i_uid))
2196 return true;
2197
2198 ns = current_user_ns();
2199 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2200 return true;
2201 return false;
2202 }
2203 EXPORT_SYMBOL(inode_owner_or_capable);
2204
2205 /*
2206 * Direct i/o helper functions
2207 */
2208 static void __inode_dio_wait(struct inode *inode)
2209 {
2210 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2211 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2212
2213 do {
2214 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2215 if (atomic_read(&inode->i_dio_count))
2216 schedule();
2217 } while (atomic_read(&inode->i_dio_count));
2218 finish_wait(wq, &q.wq_entry);
2219 }
2220
2221 /**
2222 * inode_dio_wait - wait for outstanding DIO requests to finish
2223 * @inode: inode to wait for
2224 *
2225 * Waits for all pending direct I/O requests to finish so that we can
2226 * proceed with a truncate or equivalent operation.
2227 *
2228 * Must be called under a lock that serializes taking new references
2229 * to i_dio_count, usually by inode->i_mutex.
2230 */
2231 void inode_dio_wait(struct inode *inode)
2232 {
2233 if (atomic_read(&inode->i_dio_count))
2234 __inode_dio_wait(inode);
2235 }
2236 EXPORT_SYMBOL(inode_dio_wait);
2237
2238 /*
2239 * inode_set_flags - atomically set some inode flags
2240 *
2241 * Note: the caller should be holding i_mutex, or else be sure that
2242 * they have exclusive access to the inode structure (i.e., while the
2243 * inode is being instantiated). The reason for the cmpxchg() loop
2244 * --- which wouldn't be necessary if all code paths which modify
2245 * i_flags actually followed this rule, is that there is at least one
2246 * code path which doesn't today so we use cmpxchg() out of an abundance
2247 * of caution.
2248 *
2249 * In the long run, i_mutex is overkill, and we should probably look
2250 * at using the i_lock spinlock to protect i_flags, and then make sure
2251 * it is so documented in include/linux/fs.h and that all code follows
2252 * the locking convention!!
2253 */
2254 void inode_set_flags(struct inode *inode, unsigned int flags,
2255 unsigned int mask)
2256 {
2257 WARN_ON_ONCE(flags & ~mask);
2258 set_mask_bits(&inode->i_flags, mask, flags);
2259 }
2260 EXPORT_SYMBOL(inode_set_flags);
2261
2262 void inode_nohighmem(struct inode *inode)
2263 {
2264 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2265 }
2266 EXPORT_SYMBOL(inode_nohighmem);
2267
2268 /**
2269 * timestamp_truncate - Truncate timespec to a granularity
2270 * @t: Timespec
2271 * @inode: inode being updated
2272 *
2273 * Truncate a timespec to the granularity supported by the fs
2274 * containing the inode. Always rounds down. gran must
2275 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2276 */
2277 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2278 {
2279 struct super_block *sb = inode->i_sb;
2280 unsigned int gran = sb->s_time_gran;
2281
2282 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2283 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2284 t.tv_nsec = 0;
2285
2286 /* Avoid division in the common cases 1 ns and 1 s. */
2287 if (gran == 1)
2288 ; /* nothing */
2289 else if (gran == NSEC_PER_SEC)
2290 t.tv_nsec = 0;
2291 else if (gran > 1 && gran < NSEC_PER_SEC)
2292 t.tv_nsec -= t.tv_nsec % gran;
2293 else
2294 WARN(1, "invalid file time granularity: %u", gran);
2295 return t;
2296 }
2297 EXPORT_SYMBOL(timestamp_truncate);
2298
2299 /**
2300 * current_time - Return FS time
2301 * @inode: inode.
2302 *
2303 * Return the current time truncated to the time granularity supported by
2304 * the fs.
2305 *
2306 * Note that inode and inode->sb cannot be NULL.
2307 * Otherwise, the function warns and returns time without truncation.
2308 */
2309 struct timespec64 current_time(struct inode *inode)
2310 {
2311 struct timespec64 now;
2312
2313 ktime_get_coarse_real_ts64(&now);
2314
2315 if (unlikely(!inode->i_sb)) {
2316 WARN(1, "current_time() called with uninitialized super_block in the inode");
2317 return now;
2318 }
2319
2320 return timestamp_truncate(now, inode);
2321 }
2322 EXPORT_SYMBOL(current_time);