]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
perf tools: Call clang to compile C source to object code
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode_sb_list_lock protects:
32 * sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode_sb_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode_sb_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure intialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_rdev = 0;
157 inode->dirtied_when = 0;
158
159 if (security_inode_alloc(inode))
160 goto out;
161 spin_lock_init(&inode->i_lock);
162 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163
164 mutex_init(&inode->i_mutex);
165 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166
167 atomic_set(&inode->i_dio_count, 0);
168
169 mapping->a_ops = &empty_aops;
170 mapping->host = inode;
171 mapping->flags = 0;
172 atomic_set(&mapping->i_mmap_writable, 0);
173 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 mapping->private_data = NULL;
175 mapping->writeback_index = 0;
176 inode->i_private = NULL;
177 inode->i_mapping = mapping;
178 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
179 #ifdef CONFIG_FS_POSIX_ACL
180 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
181 #endif
182
183 #ifdef CONFIG_FSNOTIFY
184 inode->i_fsnotify_mask = 0;
185 #endif
186 inode->i_flctx = NULL;
187 this_cpu_inc(nr_inodes);
188
189 return 0;
190 out:
191 return -ENOMEM;
192 }
193 EXPORT_SYMBOL(inode_init_always);
194
195 static struct inode *alloc_inode(struct super_block *sb)
196 {
197 struct inode *inode;
198
199 if (sb->s_op->alloc_inode)
200 inode = sb->s_op->alloc_inode(sb);
201 else
202 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
203
204 if (!inode)
205 return NULL;
206
207 if (unlikely(inode_init_always(sb, inode))) {
208 if (inode->i_sb->s_op->destroy_inode)
209 inode->i_sb->s_op->destroy_inode(inode);
210 else
211 kmem_cache_free(inode_cachep, inode);
212 return NULL;
213 }
214
215 return inode;
216 }
217
218 void free_inode_nonrcu(struct inode *inode)
219 {
220 kmem_cache_free(inode_cachep, inode);
221 }
222 EXPORT_SYMBOL(free_inode_nonrcu);
223
224 void __destroy_inode(struct inode *inode)
225 {
226 BUG_ON(inode_has_buffers(inode));
227 inode_detach_wb(inode);
228 security_inode_free(inode);
229 fsnotify_inode_delete(inode);
230 locks_free_lock_context(inode->i_flctx);
231 if (!inode->i_nlink) {
232 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
233 atomic_long_dec(&inode->i_sb->s_remove_count);
234 }
235
236 #ifdef CONFIG_FS_POSIX_ACL
237 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
238 posix_acl_release(inode->i_acl);
239 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
240 posix_acl_release(inode->i_default_acl);
241 #endif
242 this_cpu_dec(nr_inodes);
243 }
244 EXPORT_SYMBOL(__destroy_inode);
245
246 static void i_callback(struct rcu_head *head)
247 {
248 struct inode *inode = container_of(head, struct inode, i_rcu);
249 kmem_cache_free(inode_cachep, inode);
250 }
251
252 static void destroy_inode(struct inode *inode)
253 {
254 BUG_ON(!list_empty(&inode->i_lru));
255 __destroy_inode(inode);
256 if (inode->i_sb->s_op->destroy_inode)
257 inode->i_sb->s_op->destroy_inode(inode);
258 else
259 call_rcu(&inode->i_rcu, i_callback);
260 }
261
262 /**
263 * drop_nlink - directly drop an inode's link count
264 * @inode: inode
265 *
266 * This is a low-level filesystem helper to replace any
267 * direct filesystem manipulation of i_nlink. In cases
268 * where we are attempting to track writes to the
269 * filesystem, a decrement to zero means an imminent
270 * write when the file is truncated and actually unlinked
271 * on the filesystem.
272 */
273 void drop_nlink(struct inode *inode)
274 {
275 WARN_ON(inode->i_nlink == 0);
276 inode->__i_nlink--;
277 if (!inode->i_nlink)
278 atomic_long_inc(&inode->i_sb->s_remove_count);
279 }
280 EXPORT_SYMBOL(drop_nlink);
281
282 /**
283 * clear_nlink - directly zero an inode's link count
284 * @inode: inode
285 *
286 * This is a low-level filesystem helper to replace any
287 * direct filesystem manipulation of i_nlink. See
288 * drop_nlink() for why we care about i_nlink hitting zero.
289 */
290 void clear_nlink(struct inode *inode)
291 {
292 if (inode->i_nlink) {
293 inode->__i_nlink = 0;
294 atomic_long_inc(&inode->i_sb->s_remove_count);
295 }
296 }
297 EXPORT_SYMBOL(clear_nlink);
298
299 /**
300 * set_nlink - directly set an inode's link count
301 * @inode: inode
302 * @nlink: new nlink (should be non-zero)
303 *
304 * This is a low-level filesystem helper to replace any
305 * direct filesystem manipulation of i_nlink.
306 */
307 void set_nlink(struct inode *inode, unsigned int nlink)
308 {
309 if (!nlink) {
310 clear_nlink(inode);
311 } else {
312 /* Yes, some filesystems do change nlink from zero to one */
313 if (inode->i_nlink == 0)
314 atomic_long_dec(&inode->i_sb->s_remove_count);
315
316 inode->__i_nlink = nlink;
317 }
318 }
319 EXPORT_SYMBOL(set_nlink);
320
321 /**
322 * inc_nlink - directly increment an inode's link count
323 * @inode: inode
324 *
325 * This is a low-level filesystem helper to replace any
326 * direct filesystem manipulation of i_nlink. Currently,
327 * it is only here for parity with dec_nlink().
328 */
329 void inc_nlink(struct inode *inode)
330 {
331 if (unlikely(inode->i_nlink == 0)) {
332 WARN_ON(!(inode->i_state & I_LINKABLE));
333 atomic_long_dec(&inode->i_sb->s_remove_count);
334 }
335
336 inode->__i_nlink++;
337 }
338 EXPORT_SYMBOL(inc_nlink);
339
340 void address_space_init_once(struct address_space *mapping)
341 {
342 memset(mapping, 0, sizeof(*mapping));
343 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
344 spin_lock_init(&mapping->tree_lock);
345 init_rwsem(&mapping->i_mmap_rwsem);
346 INIT_LIST_HEAD(&mapping->private_list);
347 spin_lock_init(&mapping->private_lock);
348 mapping->i_mmap = RB_ROOT;
349 }
350 EXPORT_SYMBOL(address_space_init_once);
351
352 /*
353 * These are initializations that only need to be done
354 * once, because the fields are idempotent across use
355 * of the inode, so let the slab aware of that.
356 */
357 void inode_init_once(struct inode *inode)
358 {
359 memset(inode, 0, sizeof(*inode));
360 INIT_HLIST_NODE(&inode->i_hash);
361 INIT_LIST_HEAD(&inode->i_devices);
362 INIT_LIST_HEAD(&inode->i_wb_list);
363 INIT_LIST_HEAD(&inode->i_lru);
364 address_space_init_once(&inode->i_data);
365 i_size_ordered_init(inode);
366 #ifdef CONFIG_FSNOTIFY
367 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
368 #endif
369 }
370 EXPORT_SYMBOL(inode_init_once);
371
372 static void init_once(void *foo)
373 {
374 struct inode *inode = (struct inode *) foo;
375
376 inode_init_once(inode);
377 }
378
379 /*
380 * inode->i_lock must be held
381 */
382 void __iget(struct inode *inode)
383 {
384 atomic_inc(&inode->i_count);
385 }
386
387 /*
388 * get additional reference to inode; caller must already hold one.
389 */
390 void ihold(struct inode *inode)
391 {
392 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
393 }
394 EXPORT_SYMBOL(ihold);
395
396 static void inode_lru_list_add(struct inode *inode)
397 {
398 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
399 this_cpu_inc(nr_unused);
400 }
401
402 /*
403 * Add inode to LRU if needed (inode is unused and clean).
404 *
405 * Needs inode->i_lock held.
406 */
407 void inode_add_lru(struct inode *inode)
408 {
409 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
410 I_FREEING | I_WILL_FREE)) &&
411 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
412 inode_lru_list_add(inode);
413 }
414
415
416 static void inode_lru_list_del(struct inode *inode)
417 {
418
419 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
420 this_cpu_dec(nr_unused);
421 }
422
423 /**
424 * inode_sb_list_add - add inode to the superblock list of inodes
425 * @inode: inode to add
426 */
427 void inode_sb_list_add(struct inode *inode)
428 {
429 spin_lock(&inode_sb_list_lock);
430 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
431 spin_unlock(&inode_sb_list_lock);
432 }
433 EXPORT_SYMBOL_GPL(inode_sb_list_add);
434
435 static inline void inode_sb_list_del(struct inode *inode)
436 {
437 if (!list_empty(&inode->i_sb_list)) {
438 spin_lock(&inode_sb_list_lock);
439 list_del_init(&inode->i_sb_list);
440 spin_unlock(&inode_sb_list_lock);
441 }
442 }
443
444 static unsigned long hash(struct super_block *sb, unsigned long hashval)
445 {
446 unsigned long tmp;
447
448 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
449 L1_CACHE_BYTES;
450 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
451 return tmp & i_hash_mask;
452 }
453
454 /**
455 * __insert_inode_hash - hash an inode
456 * @inode: unhashed inode
457 * @hashval: unsigned long value used to locate this object in the
458 * inode_hashtable.
459 *
460 * Add an inode to the inode hash for this superblock.
461 */
462 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
463 {
464 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
465
466 spin_lock(&inode_hash_lock);
467 spin_lock(&inode->i_lock);
468 hlist_add_head(&inode->i_hash, b);
469 spin_unlock(&inode->i_lock);
470 spin_unlock(&inode_hash_lock);
471 }
472 EXPORT_SYMBOL(__insert_inode_hash);
473
474 /**
475 * __remove_inode_hash - remove an inode from the hash
476 * @inode: inode to unhash
477 *
478 * Remove an inode from the superblock.
479 */
480 void __remove_inode_hash(struct inode *inode)
481 {
482 spin_lock(&inode_hash_lock);
483 spin_lock(&inode->i_lock);
484 hlist_del_init(&inode->i_hash);
485 spin_unlock(&inode->i_lock);
486 spin_unlock(&inode_hash_lock);
487 }
488 EXPORT_SYMBOL(__remove_inode_hash);
489
490 void clear_inode(struct inode *inode)
491 {
492 might_sleep();
493 /*
494 * We have to cycle tree_lock here because reclaim can be still in the
495 * process of removing the last page (in __delete_from_page_cache())
496 * and we must not free mapping under it.
497 */
498 spin_lock_irq(&inode->i_data.tree_lock);
499 BUG_ON(inode->i_data.nrpages);
500 BUG_ON(inode->i_data.nrshadows);
501 spin_unlock_irq(&inode->i_data.tree_lock);
502 BUG_ON(!list_empty(&inode->i_data.private_list));
503 BUG_ON(!(inode->i_state & I_FREEING));
504 BUG_ON(inode->i_state & I_CLEAR);
505 /* don't need i_lock here, no concurrent mods to i_state */
506 inode->i_state = I_FREEING | I_CLEAR;
507 }
508 EXPORT_SYMBOL(clear_inode);
509
510 /*
511 * Free the inode passed in, removing it from the lists it is still connected
512 * to. We remove any pages still attached to the inode and wait for any IO that
513 * is still in progress before finally destroying the inode.
514 *
515 * An inode must already be marked I_FREEING so that we avoid the inode being
516 * moved back onto lists if we race with other code that manipulates the lists
517 * (e.g. writeback_single_inode). The caller is responsible for setting this.
518 *
519 * An inode must already be removed from the LRU list before being evicted from
520 * the cache. This should occur atomically with setting the I_FREEING state
521 * flag, so no inodes here should ever be on the LRU when being evicted.
522 */
523 static void evict(struct inode *inode)
524 {
525 const struct super_operations *op = inode->i_sb->s_op;
526
527 BUG_ON(!(inode->i_state & I_FREEING));
528 BUG_ON(!list_empty(&inode->i_lru));
529
530 if (!list_empty(&inode->i_wb_list))
531 inode_wb_list_del(inode);
532
533 inode_sb_list_del(inode);
534
535 /*
536 * Wait for flusher thread to be done with the inode so that filesystem
537 * does not start destroying it while writeback is still running. Since
538 * the inode has I_FREEING set, flusher thread won't start new work on
539 * the inode. We just have to wait for running writeback to finish.
540 */
541 inode_wait_for_writeback(inode);
542
543 if (op->evict_inode) {
544 op->evict_inode(inode);
545 } else {
546 truncate_inode_pages_final(&inode->i_data);
547 clear_inode(inode);
548 }
549 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
550 bd_forget(inode);
551 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
552 cd_forget(inode);
553
554 remove_inode_hash(inode);
555
556 spin_lock(&inode->i_lock);
557 wake_up_bit(&inode->i_state, __I_NEW);
558 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
559 spin_unlock(&inode->i_lock);
560
561 destroy_inode(inode);
562 }
563
564 /*
565 * dispose_list - dispose of the contents of a local list
566 * @head: the head of the list to free
567 *
568 * Dispose-list gets a local list with local inodes in it, so it doesn't
569 * need to worry about list corruption and SMP locks.
570 */
571 static void dispose_list(struct list_head *head)
572 {
573 while (!list_empty(head)) {
574 struct inode *inode;
575
576 inode = list_first_entry(head, struct inode, i_lru);
577 list_del_init(&inode->i_lru);
578
579 evict(inode);
580 }
581 }
582
583 /**
584 * evict_inodes - evict all evictable inodes for a superblock
585 * @sb: superblock to operate on
586 *
587 * Make sure that no inodes with zero refcount are retained. This is
588 * called by superblock shutdown after having MS_ACTIVE flag removed,
589 * so any inode reaching zero refcount during or after that call will
590 * be immediately evicted.
591 */
592 void evict_inodes(struct super_block *sb)
593 {
594 struct inode *inode, *next;
595 LIST_HEAD(dispose);
596
597 spin_lock(&inode_sb_list_lock);
598 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
599 if (atomic_read(&inode->i_count))
600 continue;
601
602 spin_lock(&inode->i_lock);
603 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
604 spin_unlock(&inode->i_lock);
605 continue;
606 }
607
608 inode->i_state |= I_FREEING;
609 inode_lru_list_del(inode);
610 spin_unlock(&inode->i_lock);
611 list_add(&inode->i_lru, &dispose);
612 }
613 spin_unlock(&inode_sb_list_lock);
614
615 dispose_list(&dispose);
616 }
617
618 /**
619 * invalidate_inodes - attempt to free all inodes on a superblock
620 * @sb: superblock to operate on
621 * @kill_dirty: flag to guide handling of dirty inodes
622 *
623 * Attempts to free all inodes for a given superblock. If there were any
624 * busy inodes return a non-zero value, else zero.
625 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
626 * them as busy.
627 */
628 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
629 {
630 int busy = 0;
631 struct inode *inode, *next;
632 LIST_HEAD(dispose);
633
634 spin_lock(&inode_sb_list_lock);
635 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
636 spin_lock(&inode->i_lock);
637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 spin_unlock(&inode->i_lock);
639 continue;
640 }
641 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
642 spin_unlock(&inode->i_lock);
643 busy = 1;
644 continue;
645 }
646 if (atomic_read(&inode->i_count)) {
647 spin_unlock(&inode->i_lock);
648 busy = 1;
649 continue;
650 }
651
652 inode->i_state |= I_FREEING;
653 inode_lru_list_del(inode);
654 spin_unlock(&inode->i_lock);
655 list_add(&inode->i_lru, &dispose);
656 }
657 spin_unlock(&inode_sb_list_lock);
658
659 dispose_list(&dispose);
660
661 return busy;
662 }
663
664 /*
665 * Isolate the inode from the LRU in preparation for freeing it.
666 *
667 * Any inodes which are pinned purely because of attached pagecache have their
668 * pagecache removed. If the inode has metadata buffers attached to
669 * mapping->private_list then try to remove them.
670 *
671 * If the inode has the I_REFERENCED flag set, then it means that it has been
672 * used recently - the flag is set in iput_final(). When we encounter such an
673 * inode, clear the flag and move it to the back of the LRU so it gets another
674 * pass through the LRU before it gets reclaimed. This is necessary because of
675 * the fact we are doing lazy LRU updates to minimise lock contention so the
676 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
677 * with this flag set because they are the inodes that are out of order.
678 */
679 static enum lru_status inode_lru_isolate(struct list_head *item,
680 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
681 {
682 struct list_head *freeable = arg;
683 struct inode *inode = container_of(item, struct inode, i_lru);
684
685 /*
686 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
687 * If we fail to get the lock, just skip it.
688 */
689 if (!spin_trylock(&inode->i_lock))
690 return LRU_SKIP;
691
692 /*
693 * Referenced or dirty inodes are still in use. Give them another pass
694 * through the LRU as we canot reclaim them now.
695 */
696 if (atomic_read(&inode->i_count) ||
697 (inode->i_state & ~I_REFERENCED)) {
698 list_lru_isolate(lru, &inode->i_lru);
699 spin_unlock(&inode->i_lock);
700 this_cpu_dec(nr_unused);
701 return LRU_REMOVED;
702 }
703
704 /* recently referenced inodes get one more pass */
705 if (inode->i_state & I_REFERENCED) {
706 inode->i_state &= ~I_REFERENCED;
707 spin_unlock(&inode->i_lock);
708 return LRU_ROTATE;
709 }
710
711 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
712 __iget(inode);
713 spin_unlock(&inode->i_lock);
714 spin_unlock(lru_lock);
715 if (remove_inode_buffers(inode)) {
716 unsigned long reap;
717 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
718 if (current_is_kswapd())
719 __count_vm_events(KSWAPD_INODESTEAL, reap);
720 else
721 __count_vm_events(PGINODESTEAL, reap);
722 if (current->reclaim_state)
723 current->reclaim_state->reclaimed_slab += reap;
724 }
725 iput(inode);
726 spin_lock(lru_lock);
727 return LRU_RETRY;
728 }
729
730 WARN_ON(inode->i_state & I_NEW);
731 inode->i_state |= I_FREEING;
732 list_lru_isolate_move(lru, &inode->i_lru, freeable);
733 spin_unlock(&inode->i_lock);
734
735 this_cpu_dec(nr_unused);
736 return LRU_REMOVED;
737 }
738
739 /*
740 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
741 * This is called from the superblock shrinker function with a number of inodes
742 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
743 * then are freed outside inode_lock by dispose_list().
744 */
745 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
746 {
747 LIST_HEAD(freeable);
748 long freed;
749
750 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
751 inode_lru_isolate, &freeable);
752 dispose_list(&freeable);
753 return freed;
754 }
755
756 static void __wait_on_freeing_inode(struct inode *inode);
757 /*
758 * Called with the inode lock held.
759 */
760 static struct inode *find_inode(struct super_block *sb,
761 struct hlist_head *head,
762 int (*test)(struct inode *, void *),
763 void *data)
764 {
765 struct inode *inode = NULL;
766
767 repeat:
768 hlist_for_each_entry(inode, head, i_hash) {
769 if (inode->i_sb != sb)
770 continue;
771 if (!test(inode, data))
772 continue;
773 spin_lock(&inode->i_lock);
774 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
775 __wait_on_freeing_inode(inode);
776 goto repeat;
777 }
778 __iget(inode);
779 spin_unlock(&inode->i_lock);
780 return inode;
781 }
782 return NULL;
783 }
784
785 /*
786 * find_inode_fast is the fast path version of find_inode, see the comment at
787 * iget_locked for details.
788 */
789 static struct inode *find_inode_fast(struct super_block *sb,
790 struct hlist_head *head, unsigned long ino)
791 {
792 struct inode *inode = NULL;
793
794 repeat:
795 hlist_for_each_entry(inode, head, i_hash) {
796 if (inode->i_ino != ino)
797 continue;
798 if (inode->i_sb != sb)
799 continue;
800 spin_lock(&inode->i_lock);
801 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
802 __wait_on_freeing_inode(inode);
803 goto repeat;
804 }
805 __iget(inode);
806 spin_unlock(&inode->i_lock);
807 return inode;
808 }
809 return NULL;
810 }
811
812 /*
813 * Each cpu owns a range of LAST_INO_BATCH numbers.
814 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
815 * to renew the exhausted range.
816 *
817 * This does not significantly increase overflow rate because every CPU can
818 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
819 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
820 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
821 * overflow rate by 2x, which does not seem too significant.
822 *
823 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
824 * error if st_ino won't fit in target struct field. Use 32bit counter
825 * here to attempt to avoid that.
826 */
827 #define LAST_INO_BATCH 1024
828 static DEFINE_PER_CPU(unsigned int, last_ino);
829
830 unsigned int get_next_ino(void)
831 {
832 unsigned int *p = &get_cpu_var(last_ino);
833 unsigned int res = *p;
834
835 #ifdef CONFIG_SMP
836 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
837 static atomic_t shared_last_ino;
838 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
839
840 res = next - LAST_INO_BATCH;
841 }
842 #endif
843
844 res++;
845 /* get_next_ino should not provide a 0 inode number */
846 if (unlikely(!res))
847 res++;
848 *p = res;
849 put_cpu_var(last_ino);
850 return res;
851 }
852 EXPORT_SYMBOL(get_next_ino);
853
854 /**
855 * new_inode_pseudo - obtain an inode
856 * @sb: superblock
857 *
858 * Allocates a new inode for given superblock.
859 * Inode wont be chained in superblock s_inodes list
860 * This means :
861 * - fs can't be unmount
862 * - quotas, fsnotify, writeback can't work
863 */
864 struct inode *new_inode_pseudo(struct super_block *sb)
865 {
866 struct inode *inode = alloc_inode(sb);
867
868 if (inode) {
869 spin_lock(&inode->i_lock);
870 inode->i_state = 0;
871 spin_unlock(&inode->i_lock);
872 INIT_LIST_HEAD(&inode->i_sb_list);
873 }
874 return inode;
875 }
876
877 /**
878 * new_inode - obtain an inode
879 * @sb: superblock
880 *
881 * Allocates a new inode for given superblock. The default gfp_mask
882 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
883 * If HIGHMEM pages are unsuitable or it is known that pages allocated
884 * for the page cache are not reclaimable or migratable,
885 * mapping_set_gfp_mask() must be called with suitable flags on the
886 * newly created inode's mapping
887 *
888 */
889 struct inode *new_inode(struct super_block *sb)
890 {
891 struct inode *inode;
892
893 spin_lock_prefetch(&inode_sb_list_lock);
894
895 inode = new_inode_pseudo(sb);
896 if (inode)
897 inode_sb_list_add(inode);
898 return inode;
899 }
900 EXPORT_SYMBOL(new_inode);
901
902 #ifdef CONFIG_DEBUG_LOCK_ALLOC
903 void lockdep_annotate_inode_mutex_key(struct inode *inode)
904 {
905 if (S_ISDIR(inode->i_mode)) {
906 struct file_system_type *type = inode->i_sb->s_type;
907
908 /* Set new key only if filesystem hasn't already changed it */
909 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
910 /*
911 * ensure nobody is actually holding i_mutex
912 */
913 mutex_destroy(&inode->i_mutex);
914 mutex_init(&inode->i_mutex);
915 lockdep_set_class(&inode->i_mutex,
916 &type->i_mutex_dir_key);
917 }
918 }
919 }
920 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
921 #endif
922
923 /**
924 * unlock_new_inode - clear the I_NEW state and wake up any waiters
925 * @inode: new inode to unlock
926 *
927 * Called when the inode is fully initialised to clear the new state of the
928 * inode and wake up anyone waiting for the inode to finish initialisation.
929 */
930 void unlock_new_inode(struct inode *inode)
931 {
932 lockdep_annotate_inode_mutex_key(inode);
933 spin_lock(&inode->i_lock);
934 WARN_ON(!(inode->i_state & I_NEW));
935 inode->i_state &= ~I_NEW;
936 smp_mb();
937 wake_up_bit(&inode->i_state, __I_NEW);
938 spin_unlock(&inode->i_lock);
939 }
940 EXPORT_SYMBOL(unlock_new_inode);
941
942 /**
943 * lock_two_nondirectories - take two i_mutexes on non-directory objects
944 *
945 * Lock any non-NULL argument that is not a directory.
946 * Zero, one or two objects may be locked by this function.
947 *
948 * @inode1: first inode to lock
949 * @inode2: second inode to lock
950 */
951 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
952 {
953 if (inode1 > inode2)
954 swap(inode1, inode2);
955
956 if (inode1 && !S_ISDIR(inode1->i_mode))
957 mutex_lock(&inode1->i_mutex);
958 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
959 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
960 }
961 EXPORT_SYMBOL(lock_two_nondirectories);
962
963 /**
964 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
965 * @inode1: first inode to unlock
966 * @inode2: second inode to unlock
967 */
968 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
969 {
970 if (inode1 && !S_ISDIR(inode1->i_mode))
971 mutex_unlock(&inode1->i_mutex);
972 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
973 mutex_unlock(&inode2->i_mutex);
974 }
975 EXPORT_SYMBOL(unlock_two_nondirectories);
976
977 /**
978 * iget5_locked - obtain an inode from a mounted file system
979 * @sb: super block of file system
980 * @hashval: hash value (usually inode number) to get
981 * @test: callback used for comparisons between inodes
982 * @set: callback used to initialize a new struct inode
983 * @data: opaque data pointer to pass to @test and @set
984 *
985 * Search for the inode specified by @hashval and @data in the inode cache,
986 * and if present it is return it with an increased reference count. This is
987 * a generalized version of iget_locked() for file systems where the inode
988 * number is not sufficient for unique identification of an inode.
989 *
990 * If the inode is not in cache, allocate a new inode and return it locked,
991 * hashed, and with the I_NEW flag set. The file system gets to fill it in
992 * before unlocking it via unlock_new_inode().
993 *
994 * Note both @test and @set are called with the inode_hash_lock held, so can't
995 * sleep.
996 */
997 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
998 int (*test)(struct inode *, void *),
999 int (*set)(struct inode *, void *), void *data)
1000 {
1001 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1002 struct inode *inode;
1003
1004 spin_lock(&inode_hash_lock);
1005 inode = find_inode(sb, head, test, data);
1006 spin_unlock(&inode_hash_lock);
1007
1008 if (inode) {
1009 wait_on_inode(inode);
1010 return inode;
1011 }
1012
1013 inode = alloc_inode(sb);
1014 if (inode) {
1015 struct inode *old;
1016
1017 spin_lock(&inode_hash_lock);
1018 /* We released the lock, so.. */
1019 old = find_inode(sb, head, test, data);
1020 if (!old) {
1021 if (set(inode, data))
1022 goto set_failed;
1023
1024 spin_lock(&inode->i_lock);
1025 inode->i_state = I_NEW;
1026 hlist_add_head(&inode->i_hash, head);
1027 spin_unlock(&inode->i_lock);
1028 inode_sb_list_add(inode);
1029 spin_unlock(&inode_hash_lock);
1030
1031 /* Return the locked inode with I_NEW set, the
1032 * caller is responsible for filling in the contents
1033 */
1034 return inode;
1035 }
1036
1037 /*
1038 * Uhhuh, somebody else created the same inode under
1039 * us. Use the old inode instead of the one we just
1040 * allocated.
1041 */
1042 spin_unlock(&inode_hash_lock);
1043 destroy_inode(inode);
1044 inode = old;
1045 wait_on_inode(inode);
1046 }
1047 return inode;
1048
1049 set_failed:
1050 spin_unlock(&inode_hash_lock);
1051 destroy_inode(inode);
1052 return NULL;
1053 }
1054 EXPORT_SYMBOL(iget5_locked);
1055
1056 /**
1057 * iget_locked - obtain an inode from a mounted file system
1058 * @sb: super block of file system
1059 * @ino: inode number to get
1060 *
1061 * Search for the inode specified by @ino in the inode cache and if present
1062 * return it with an increased reference count. This is for file systems
1063 * where the inode number is sufficient for unique identification of an inode.
1064 *
1065 * If the inode is not in cache, allocate a new inode and return it locked,
1066 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1067 * before unlocking it via unlock_new_inode().
1068 */
1069 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1070 {
1071 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1072 struct inode *inode;
1073
1074 spin_lock(&inode_hash_lock);
1075 inode = find_inode_fast(sb, head, ino);
1076 spin_unlock(&inode_hash_lock);
1077 if (inode) {
1078 wait_on_inode(inode);
1079 return inode;
1080 }
1081
1082 inode = alloc_inode(sb);
1083 if (inode) {
1084 struct inode *old;
1085
1086 spin_lock(&inode_hash_lock);
1087 /* We released the lock, so.. */
1088 old = find_inode_fast(sb, head, ino);
1089 if (!old) {
1090 inode->i_ino = ino;
1091 spin_lock(&inode->i_lock);
1092 inode->i_state = I_NEW;
1093 hlist_add_head(&inode->i_hash, head);
1094 spin_unlock(&inode->i_lock);
1095 inode_sb_list_add(inode);
1096 spin_unlock(&inode_hash_lock);
1097
1098 /* Return the locked inode with I_NEW set, the
1099 * caller is responsible for filling in the contents
1100 */
1101 return inode;
1102 }
1103
1104 /*
1105 * Uhhuh, somebody else created the same inode under
1106 * us. Use the old inode instead of the one we just
1107 * allocated.
1108 */
1109 spin_unlock(&inode_hash_lock);
1110 destroy_inode(inode);
1111 inode = old;
1112 wait_on_inode(inode);
1113 }
1114 return inode;
1115 }
1116 EXPORT_SYMBOL(iget_locked);
1117
1118 /*
1119 * search the inode cache for a matching inode number.
1120 * If we find one, then the inode number we are trying to
1121 * allocate is not unique and so we should not use it.
1122 *
1123 * Returns 1 if the inode number is unique, 0 if it is not.
1124 */
1125 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1126 {
1127 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1128 struct inode *inode;
1129
1130 spin_lock(&inode_hash_lock);
1131 hlist_for_each_entry(inode, b, i_hash) {
1132 if (inode->i_ino == ino && inode->i_sb == sb) {
1133 spin_unlock(&inode_hash_lock);
1134 return 0;
1135 }
1136 }
1137 spin_unlock(&inode_hash_lock);
1138
1139 return 1;
1140 }
1141
1142 /**
1143 * iunique - get a unique inode number
1144 * @sb: superblock
1145 * @max_reserved: highest reserved inode number
1146 *
1147 * Obtain an inode number that is unique on the system for a given
1148 * superblock. This is used by file systems that have no natural
1149 * permanent inode numbering system. An inode number is returned that
1150 * is higher than the reserved limit but unique.
1151 *
1152 * BUGS:
1153 * With a large number of inodes live on the file system this function
1154 * currently becomes quite slow.
1155 */
1156 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1157 {
1158 /*
1159 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1160 * error if st_ino won't fit in target struct field. Use 32bit counter
1161 * here to attempt to avoid that.
1162 */
1163 static DEFINE_SPINLOCK(iunique_lock);
1164 static unsigned int counter;
1165 ino_t res;
1166
1167 spin_lock(&iunique_lock);
1168 do {
1169 if (counter <= max_reserved)
1170 counter = max_reserved + 1;
1171 res = counter++;
1172 } while (!test_inode_iunique(sb, res));
1173 spin_unlock(&iunique_lock);
1174
1175 return res;
1176 }
1177 EXPORT_SYMBOL(iunique);
1178
1179 struct inode *igrab(struct inode *inode)
1180 {
1181 spin_lock(&inode->i_lock);
1182 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1183 __iget(inode);
1184 spin_unlock(&inode->i_lock);
1185 } else {
1186 spin_unlock(&inode->i_lock);
1187 /*
1188 * Handle the case where s_op->clear_inode is not been
1189 * called yet, and somebody is calling igrab
1190 * while the inode is getting freed.
1191 */
1192 inode = NULL;
1193 }
1194 return inode;
1195 }
1196 EXPORT_SYMBOL(igrab);
1197
1198 /**
1199 * ilookup5_nowait - search for an inode in the inode cache
1200 * @sb: super block of file system to search
1201 * @hashval: hash value (usually inode number) to search for
1202 * @test: callback used for comparisons between inodes
1203 * @data: opaque data pointer to pass to @test
1204 *
1205 * Search for the inode specified by @hashval and @data in the inode cache.
1206 * If the inode is in the cache, the inode is returned with an incremented
1207 * reference count.
1208 *
1209 * Note: I_NEW is not waited upon so you have to be very careful what you do
1210 * with the returned inode. You probably should be using ilookup5() instead.
1211 *
1212 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1213 */
1214 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1215 int (*test)(struct inode *, void *), void *data)
1216 {
1217 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1218 struct inode *inode;
1219
1220 spin_lock(&inode_hash_lock);
1221 inode = find_inode(sb, head, test, data);
1222 spin_unlock(&inode_hash_lock);
1223
1224 return inode;
1225 }
1226 EXPORT_SYMBOL(ilookup5_nowait);
1227
1228 /**
1229 * ilookup5 - search for an inode in the inode cache
1230 * @sb: super block of file system to search
1231 * @hashval: hash value (usually inode number) to search for
1232 * @test: callback used for comparisons between inodes
1233 * @data: opaque data pointer to pass to @test
1234 *
1235 * Search for the inode specified by @hashval and @data in the inode cache,
1236 * and if the inode is in the cache, return the inode with an incremented
1237 * reference count. Waits on I_NEW before returning the inode.
1238 * returned with an incremented reference count.
1239 *
1240 * This is a generalized version of ilookup() for file systems where the
1241 * inode number is not sufficient for unique identification of an inode.
1242 *
1243 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1244 */
1245 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1246 int (*test)(struct inode *, void *), void *data)
1247 {
1248 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1249
1250 if (inode)
1251 wait_on_inode(inode);
1252 return inode;
1253 }
1254 EXPORT_SYMBOL(ilookup5);
1255
1256 /**
1257 * ilookup - search for an inode in the inode cache
1258 * @sb: super block of file system to search
1259 * @ino: inode number to search for
1260 *
1261 * Search for the inode @ino in the inode cache, and if the inode is in the
1262 * cache, the inode is returned with an incremented reference count.
1263 */
1264 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1265 {
1266 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1267 struct inode *inode;
1268
1269 spin_lock(&inode_hash_lock);
1270 inode = find_inode_fast(sb, head, ino);
1271 spin_unlock(&inode_hash_lock);
1272
1273 if (inode)
1274 wait_on_inode(inode);
1275 return inode;
1276 }
1277 EXPORT_SYMBOL(ilookup);
1278
1279 /**
1280 * find_inode_nowait - find an inode in the inode cache
1281 * @sb: super block of file system to search
1282 * @hashval: hash value (usually inode number) to search for
1283 * @match: callback used for comparisons between inodes
1284 * @data: opaque data pointer to pass to @match
1285 *
1286 * Search for the inode specified by @hashval and @data in the inode
1287 * cache, where the helper function @match will return 0 if the inode
1288 * does not match, 1 if the inode does match, and -1 if the search
1289 * should be stopped. The @match function must be responsible for
1290 * taking the i_lock spin_lock and checking i_state for an inode being
1291 * freed or being initialized, and incrementing the reference count
1292 * before returning 1. It also must not sleep, since it is called with
1293 * the inode_hash_lock spinlock held.
1294 *
1295 * This is a even more generalized version of ilookup5() when the
1296 * function must never block --- find_inode() can block in
1297 * __wait_on_freeing_inode() --- or when the caller can not increment
1298 * the reference count because the resulting iput() might cause an
1299 * inode eviction. The tradeoff is that the @match funtion must be
1300 * very carefully implemented.
1301 */
1302 struct inode *find_inode_nowait(struct super_block *sb,
1303 unsigned long hashval,
1304 int (*match)(struct inode *, unsigned long,
1305 void *),
1306 void *data)
1307 {
1308 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1309 struct inode *inode, *ret_inode = NULL;
1310 int mval;
1311
1312 spin_lock(&inode_hash_lock);
1313 hlist_for_each_entry(inode, head, i_hash) {
1314 if (inode->i_sb != sb)
1315 continue;
1316 mval = match(inode, hashval, data);
1317 if (mval == 0)
1318 continue;
1319 if (mval == 1)
1320 ret_inode = inode;
1321 goto out;
1322 }
1323 out:
1324 spin_unlock(&inode_hash_lock);
1325 return ret_inode;
1326 }
1327 EXPORT_SYMBOL(find_inode_nowait);
1328
1329 int insert_inode_locked(struct inode *inode)
1330 {
1331 struct super_block *sb = inode->i_sb;
1332 ino_t ino = inode->i_ino;
1333 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1334
1335 while (1) {
1336 struct inode *old = NULL;
1337 spin_lock(&inode_hash_lock);
1338 hlist_for_each_entry(old, head, i_hash) {
1339 if (old->i_ino != ino)
1340 continue;
1341 if (old->i_sb != sb)
1342 continue;
1343 spin_lock(&old->i_lock);
1344 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1345 spin_unlock(&old->i_lock);
1346 continue;
1347 }
1348 break;
1349 }
1350 if (likely(!old)) {
1351 spin_lock(&inode->i_lock);
1352 inode->i_state |= I_NEW;
1353 hlist_add_head(&inode->i_hash, head);
1354 spin_unlock(&inode->i_lock);
1355 spin_unlock(&inode_hash_lock);
1356 return 0;
1357 }
1358 __iget(old);
1359 spin_unlock(&old->i_lock);
1360 spin_unlock(&inode_hash_lock);
1361 wait_on_inode(old);
1362 if (unlikely(!inode_unhashed(old))) {
1363 iput(old);
1364 return -EBUSY;
1365 }
1366 iput(old);
1367 }
1368 }
1369 EXPORT_SYMBOL(insert_inode_locked);
1370
1371 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1372 int (*test)(struct inode *, void *), void *data)
1373 {
1374 struct super_block *sb = inode->i_sb;
1375 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1376
1377 while (1) {
1378 struct inode *old = NULL;
1379
1380 spin_lock(&inode_hash_lock);
1381 hlist_for_each_entry(old, head, i_hash) {
1382 if (old->i_sb != sb)
1383 continue;
1384 if (!test(old, data))
1385 continue;
1386 spin_lock(&old->i_lock);
1387 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1388 spin_unlock(&old->i_lock);
1389 continue;
1390 }
1391 break;
1392 }
1393 if (likely(!old)) {
1394 spin_lock(&inode->i_lock);
1395 inode->i_state |= I_NEW;
1396 hlist_add_head(&inode->i_hash, head);
1397 spin_unlock(&inode->i_lock);
1398 spin_unlock(&inode_hash_lock);
1399 return 0;
1400 }
1401 __iget(old);
1402 spin_unlock(&old->i_lock);
1403 spin_unlock(&inode_hash_lock);
1404 wait_on_inode(old);
1405 if (unlikely(!inode_unhashed(old))) {
1406 iput(old);
1407 return -EBUSY;
1408 }
1409 iput(old);
1410 }
1411 }
1412 EXPORT_SYMBOL(insert_inode_locked4);
1413
1414
1415 int generic_delete_inode(struct inode *inode)
1416 {
1417 return 1;
1418 }
1419 EXPORT_SYMBOL(generic_delete_inode);
1420
1421 /*
1422 * Called when we're dropping the last reference
1423 * to an inode.
1424 *
1425 * Call the FS "drop_inode()" function, defaulting to
1426 * the legacy UNIX filesystem behaviour. If it tells
1427 * us to evict inode, do so. Otherwise, retain inode
1428 * in cache if fs is alive, sync and evict if fs is
1429 * shutting down.
1430 */
1431 static void iput_final(struct inode *inode)
1432 {
1433 struct super_block *sb = inode->i_sb;
1434 const struct super_operations *op = inode->i_sb->s_op;
1435 int drop;
1436
1437 WARN_ON(inode->i_state & I_NEW);
1438
1439 if (op->drop_inode)
1440 drop = op->drop_inode(inode);
1441 else
1442 drop = generic_drop_inode(inode);
1443
1444 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1445 inode->i_state |= I_REFERENCED;
1446 inode_add_lru(inode);
1447 spin_unlock(&inode->i_lock);
1448 return;
1449 }
1450
1451 if (!drop) {
1452 inode->i_state |= I_WILL_FREE;
1453 spin_unlock(&inode->i_lock);
1454 write_inode_now(inode, 1);
1455 spin_lock(&inode->i_lock);
1456 WARN_ON(inode->i_state & I_NEW);
1457 inode->i_state &= ~I_WILL_FREE;
1458 }
1459
1460 inode->i_state |= I_FREEING;
1461 if (!list_empty(&inode->i_lru))
1462 inode_lru_list_del(inode);
1463 spin_unlock(&inode->i_lock);
1464
1465 evict(inode);
1466 }
1467
1468 /**
1469 * iput - put an inode
1470 * @inode: inode to put
1471 *
1472 * Puts an inode, dropping its usage count. If the inode use count hits
1473 * zero, the inode is then freed and may also be destroyed.
1474 *
1475 * Consequently, iput() can sleep.
1476 */
1477 void iput(struct inode *inode)
1478 {
1479 if (!inode)
1480 return;
1481 BUG_ON(inode->i_state & I_CLEAR);
1482 retry:
1483 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1484 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1485 atomic_inc(&inode->i_count);
1486 inode->i_state &= ~I_DIRTY_TIME;
1487 spin_unlock(&inode->i_lock);
1488 trace_writeback_lazytime_iput(inode);
1489 mark_inode_dirty_sync(inode);
1490 goto retry;
1491 }
1492 iput_final(inode);
1493 }
1494 }
1495 EXPORT_SYMBOL(iput);
1496
1497 /**
1498 * bmap - find a block number in a file
1499 * @inode: inode of file
1500 * @block: block to find
1501 *
1502 * Returns the block number on the device holding the inode that
1503 * is the disk block number for the block of the file requested.
1504 * That is, asked for block 4 of inode 1 the function will return the
1505 * disk block relative to the disk start that holds that block of the
1506 * file.
1507 */
1508 sector_t bmap(struct inode *inode, sector_t block)
1509 {
1510 sector_t res = 0;
1511 if (inode->i_mapping->a_ops->bmap)
1512 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1513 return res;
1514 }
1515 EXPORT_SYMBOL(bmap);
1516
1517 /*
1518 * With relative atime, only update atime if the previous atime is
1519 * earlier than either the ctime or mtime or if at least a day has
1520 * passed since the last atime update.
1521 */
1522 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1523 struct timespec now)
1524 {
1525
1526 if (!(mnt->mnt_flags & MNT_RELATIME))
1527 return 1;
1528 /*
1529 * Is mtime younger than atime? If yes, update atime:
1530 */
1531 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1532 return 1;
1533 /*
1534 * Is ctime younger than atime? If yes, update atime:
1535 */
1536 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1537 return 1;
1538
1539 /*
1540 * Is the previous atime value older than a day? If yes,
1541 * update atime:
1542 */
1543 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1544 return 1;
1545 /*
1546 * Good, we can skip the atime update:
1547 */
1548 return 0;
1549 }
1550
1551 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1552 {
1553 int iflags = I_DIRTY_TIME;
1554
1555 if (flags & S_ATIME)
1556 inode->i_atime = *time;
1557 if (flags & S_VERSION)
1558 inode_inc_iversion(inode);
1559 if (flags & S_CTIME)
1560 inode->i_ctime = *time;
1561 if (flags & S_MTIME)
1562 inode->i_mtime = *time;
1563
1564 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1565 iflags |= I_DIRTY_SYNC;
1566 __mark_inode_dirty(inode, iflags);
1567 return 0;
1568 }
1569 EXPORT_SYMBOL(generic_update_time);
1570
1571 /*
1572 * This does the actual work of updating an inodes time or version. Must have
1573 * had called mnt_want_write() before calling this.
1574 */
1575 static int update_time(struct inode *inode, struct timespec *time, int flags)
1576 {
1577 int (*update_time)(struct inode *, struct timespec *, int);
1578
1579 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1580 generic_update_time;
1581
1582 return update_time(inode, time, flags);
1583 }
1584
1585 /**
1586 * touch_atime - update the access time
1587 * @path: the &struct path to update
1588 *
1589 * Update the accessed time on an inode and mark it for writeback.
1590 * This function automatically handles read only file systems and media,
1591 * as well as the "noatime" flag and inode specific "noatime" markers.
1592 */
1593 bool atime_needs_update(const struct path *path, struct inode *inode)
1594 {
1595 struct vfsmount *mnt = path->mnt;
1596 struct timespec now;
1597
1598 if (inode->i_flags & S_NOATIME)
1599 return false;
1600 if (IS_NOATIME(inode))
1601 return false;
1602 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1603 return false;
1604
1605 if (mnt->mnt_flags & MNT_NOATIME)
1606 return false;
1607 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1608 return false;
1609
1610 now = current_fs_time(inode->i_sb);
1611
1612 if (!relatime_need_update(mnt, inode, now))
1613 return false;
1614
1615 if (timespec_equal(&inode->i_atime, &now))
1616 return false;
1617
1618 return true;
1619 }
1620
1621 void touch_atime(const struct path *path)
1622 {
1623 struct vfsmount *mnt = path->mnt;
1624 struct inode *inode = d_inode(path->dentry);
1625 struct timespec now;
1626
1627 if (!atime_needs_update(path, inode))
1628 return;
1629
1630 if (!sb_start_write_trylock(inode->i_sb))
1631 return;
1632
1633 if (__mnt_want_write(mnt) != 0)
1634 goto skip_update;
1635 /*
1636 * File systems can error out when updating inodes if they need to
1637 * allocate new space to modify an inode (such is the case for
1638 * Btrfs), but since we touch atime while walking down the path we
1639 * really don't care if we failed to update the atime of the file,
1640 * so just ignore the return value.
1641 * We may also fail on filesystems that have the ability to make parts
1642 * of the fs read only, e.g. subvolumes in Btrfs.
1643 */
1644 now = current_fs_time(inode->i_sb);
1645 update_time(inode, &now, S_ATIME);
1646 __mnt_drop_write(mnt);
1647 skip_update:
1648 sb_end_write(inode->i_sb);
1649 }
1650 EXPORT_SYMBOL(touch_atime);
1651
1652 /*
1653 * The logic we want is
1654 *
1655 * if suid or (sgid and xgrp)
1656 * remove privs
1657 */
1658 int should_remove_suid(struct dentry *dentry)
1659 {
1660 umode_t mode = d_inode(dentry)->i_mode;
1661 int kill = 0;
1662
1663 /* suid always must be killed */
1664 if (unlikely(mode & S_ISUID))
1665 kill = ATTR_KILL_SUID;
1666
1667 /*
1668 * sgid without any exec bits is just a mandatory locking mark; leave
1669 * it alone. If some exec bits are set, it's a real sgid; kill it.
1670 */
1671 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1672 kill |= ATTR_KILL_SGID;
1673
1674 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1675 return kill;
1676
1677 return 0;
1678 }
1679 EXPORT_SYMBOL(should_remove_suid);
1680
1681 /*
1682 * Return mask of changes for notify_change() that need to be done as a
1683 * response to write or truncate. Return 0 if nothing has to be changed.
1684 * Negative value on error (change should be denied).
1685 */
1686 int dentry_needs_remove_privs(struct dentry *dentry)
1687 {
1688 struct inode *inode = d_inode(dentry);
1689 int mask = 0;
1690 int ret;
1691
1692 if (IS_NOSEC(inode))
1693 return 0;
1694
1695 mask = should_remove_suid(dentry);
1696 ret = security_inode_need_killpriv(dentry);
1697 if (ret < 0)
1698 return ret;
1699 if (ret)
1700 mask |= ATTR_KILL_PRIV;
1701 return mask;
1702 }
1703 EXPORT_SYMBOL(dentry_needs_remove_privs);
1704
1705 static int __remove_privs(struct dentry *dentry, int kill)
1706 {
1707 struct iattr newattrs;
1708
1709 newattrs.ia_valid = ATTR_FORCE | kill;
1710 /*
1711 * Note we call this on write, so notify_change will not
1712 * encounter any conflicting delegations:
1713 */
1714 return notify_change(dentry, &newattrs, NULL);
1715 }
1716
1717 /*
1718 * Remove special file priviledges (suid, capabilities) when file is written
1719 * to or truncated.
1720 */
1721 int file_remove_privs(struct file *file)
1722 {
1723 struct dentry *dentry = file->f_path.dentry;
1724 struct inode *inode = d_inode(dentry);
1725 int kill;
1726 int error = 0;
1727
1728 /* Fast path for nothing security related */
1729 if (IS_NOSEC(inode))
1730 return 0;
1731
1732 kill = file_needs_remove_privs(file);
1733 if (kill < 0)
1734 return kill;
1735 if (kill)
1736 error = __remove_privs(dentry, kill);
1737 if (!error)
1738 inode_has_no_xattr(inode);
1739
1740 return error;
1741 }
1742 EXPORT_SYMBOL(file_remove_privs);
1743
1744 /**
1745 * file_update_time - update mtime and ctime time
1746 * @file: file accessed
1747 *
1748 * Update the mtime and ctime members of an inode and mark the inode
1749 * for writeback. Note that this function is meant exclusively for
1750 * usage in the file write path of filesystems, and filesystems may
1751 * choose to explicitly ignore update via this function with the
1752 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1753 * timestamps are handled by the server. This can return an error for
1754 * file systems who need to allocate space in order to update an inode.
1755 */
1756
1757 int file_update_time(struct file *file)
1758 {
1759 struct inode *inode = file_inode(file);
1760 struct timespec now;
1761 int sync_it = 0;
1762 int ret;
1763
1764 /* First try to exhaust all avenues to not sync */
1765 if (IS_NOCMTIME(inode))
1766 return 0;
1767
1768 now = current_fs_time(inode->i_sb);
1769 if (!timespec_equal(&inode->i_mtime, &now))
1770 sync_it = S_MTIME;
1771
1772 if (!timespec_equal(&inode->i_ctime, &now))
1773 sync_it |= S_CTIME;
1774
1775 if (IS_I_VERSION(inode))
1776 sync_it |= S_VERSION;
1777
1778 if (!sync_it)
1779 return 0;
1780
1781 /* Finally allowed to write? Takes lock. */
1782 if (__mnt_want_write_file(file))
1783 return 0;
1784
1785 ret = update_time(inode, &now, sync_it);
1786 __mnt_drop_write_file(file);
1787
1788 return ret;
1789 }
1790 EXPORT_SYMBOL(file_update_time);
1791
1792 int inode_needs_sync(struct inode *inode)
1793 {
1794 if (IS_SYNC(inode))
1795 return 1;
1796 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1797 return 1;
1798 return 0;
1799 }
1800 EXPORT_SYMBOL(inode_needs_sync);
1801
1802 /*
1803 * If we try to find an inode in the inode hash while it is being
1804 * deleted, we have to wait until the filesystem completes its
1805 * deletion before reporting that it isn't found. This function waits
1806 * until the deletion _might_ have completed. Callers are responsible
1807 * to recheck inode state.
1808 *
1809 * It doesn't matter if I_NEW is not set initially, a call to
1810 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1811 * will DTRT.
1812 */
1813 static void __wait_on_freeing_inode(struct inode *inode)
1814 {
1815 wait_queue_head_t *wq;
1816 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1817 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1818 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1819 spin_unlock(&inode->i_lock);
1820 spin_unlock(&inode_hash_lock);
1821 schedule();
1822 finish_wait(wq, &wait.wait);
1823 spin_lock(&inode_hash_lock);
1824 }
1825
1826 static __initdata unsigned long ihash_entries;
1827 static int __init set_ihash_entries(char *str)
1828 {
1829 if (!str)
1830 return 0;
1831 ihash_entries = simple_strtoul(str, &str, 0);
1832 return 1;
1833 }
1834 __setup("ihash_entries=", set_ihash_entries);
1835
1836 /*
1837 * Initialize the waitqueues and inode hash table.
1838 */
1839 void __init inode_init_early(void)
1840 {
1841 unsigned int loop;
1842
1843 /* If hashes are distributed across NUMA nodes, defer
1844 * hash allocation until vmalloc space is available.
1845 */
1846 if (hashdist)
1847 return;
1848
1849 inode_hashtable =
1850 alloc_large_system_hash("Inode-cache",
1851 sizeof(struct hlist_head),
1852 ihash_entries,
1853 14,
1854 HASH_EARLY,
1855 &i_hash_shift,
1856 &i_hash_mask,
1857 0,
1858 0);
1859
1860 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1861 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1862 }
1863
1864 void __init inode_init(void)
1865 {
1866 unsigned int loop;
1867
1868 /* inode slab cache */
1869 inode_cachep = kmem_cache_create("inode_cache",
1870 sizeof(struct inode),
1871 0,
1872 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1873 SLAB_MEM_SPREAD),
1874 init_once);
1875
1876 /* Hash may have been set up in inode_init_early */
1877 if (!hashdist)
1878 return;
1879
1880 inode_hashtable =
1881 alloc_large_system_hash("Inode-cache",
1882 sizeof(struct hlist_head),
1883 ihash_entries,
1884 14,
1885 0,
1886 &i_hash_shift,
1887 &i_hash_mask,
1888 0,
1889 0);
1890
1891 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1892 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1893 }
1894
1895 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1896 {
1897 inode->i_mode = mode;
1898 if (S_ISCHR(mode)) {
1899 inode->i_fop = &def_chr_fops;
1900 inode->i_rdev = rdev;
1901 } else if (S_ISBLK(mode)) {
1902 inode->i_fop = &def_blk_fops;
1903 inode->i_rdev = rdev;
1904 } else if (S_ISFIFO(mode))
1905 inode->i_fop = &pipefifo_fops;
1906 else if (S_ISSOCK(mode))
1907 ; /* leave it no_open_fops */
1908 else
1909 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1910 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1911 inode->i_ino);
1912 }
1913 EXPORT_SYMBOL(init_special_inode);
1914
1915 /**
1916 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1917 * @inode: New inode
1918 * @dir: Directory inode
1919 * @mode: mode of the new inode
1920 */
1921 void inode_init_owner(struct inode *inode, const struct inode *dir,
1922 umode_t mode)
1923 {
1924 inode->i_uid = current_fsuid();
1925 if (dir && dir->i_mode & S_ISGID) {
1926 inode->i_gid = dir->i_gid;
1927 if (S_ISDIR(mode))
1928 mode |= S_ISGID;
1929 } else
1930 inode->i_gid = current_fsgid();
1931 inode->i_mode = mode;
1932 }
1933 EXPORT_SYMBOL(inode_init_owner);
1934
1935 /**
1936 * inode_owner_or_capable - check current task permissions to inode
1937 * @inode: inode being checked
1938 *
1939 * Return true if current either has CAP_FOWNER in a namespace with the
1940 * inode owner uid mapped, or owns the file.
1941 */
1942 bool inode_owner_or_capable(const struct inode *inode)
1943 {
1944 struct user_namespace *ns;
1945
1946 if (uid_eq(current_fsuid(), inode->i_uid))
1947 return true;
1948
1949 ns = current_user_ns();
1950 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1951 return true;
1952 return false;
1953 }
1954 EXPORT_SYMBOL(inode_owner_or_capable);
1955
1956 /*
1957 * Direct i/o helper functions
1958 */
1959 static void __inode_dio_wait(struct inode *inode)
1960 {
1961 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1962 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1963
1964 do {
1965 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1966 if (atomic_read(&inode->i_dio_count))
1967 schedule();
1968 } while (atomic_read(&inode->i_dio_count));
1969 finish_wait(wq, &q.wait);
1970 }
1971
1972 /**
1973 * inode_dio_wait - wait for outstanding DIO requests to finish
1974 * @inode: inode to wait for
1975 *
1976 * Waits for all pending direct I/O requests to finish so that we can
1977 * proceed with a truncate or equivalent operation.
1978 *
1979 * Must be called under a lock that serializes taking new references
1980 * to i_dio_count, usually by inode->i_mutex.
1981 */
1982 void inode_dio_wait(struct inode *inode)
1983 {
1984 if (atomic_read(&inode->i_dio_count))
1985 __inode_dio_wait(inode);
1986 }
1987 EXPORT_SYMBOL(inode_dio_wait);
1988
1989 /*
1990 * inode_set_flags - atomically set some inode flags
1991 *
1992 * Note: the caller should be holding i_mutex, or else be sure that
1993 * they have exclusive access to the inode structure (i.e., while the
1994 * inode is being instantiated). The reason for the cmpxchg() loop
1995 * --- which wouldn't be necessary if all code paths which modify
1996 * i_flags actually followed this rule, is that there is at least one
1997 * code path which doesn't today so we use cmpxchg() out of an abundance
1998 * of caution.
1999 *
2000 * In the long run, i_mutex is overkill, and we should probably look
2001 * at using the i_lock spinlock to protect i_flags, and then make sure
2002 * it is so documented in include/linux/fs.h and that all code follows
2003 * the locking convention!!
2004 */
2005 void inode_set_flags(struct inode *inode, unsigned int flags,
2006 unsigned int mask)
2007 {
2008 unsigned int old_flags, new_flags;
2009
2010 WARN_ON_ONCE(flags & ~mask);
2011 do {
2012 old_flags = ACCESS_ONCE(inode->i_flags);
2013 new_flags = (old_flags & ~mask) | flags;
2014 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2015 new_flags) != old_flags));
2016 }
2017 EXPORT_SYMBOL(inode_set_flags);