]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - fs/inode.c
smack: use pernet operations for hook registration
[mirror_ubuntu-artful-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 /*
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
63 */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67
68 /*
69 * Statistics gathering..
70 */
71 struct inodes_stat_t inodes_stat;
72
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75
76 static struct kmem_cache *inode_cachep __read_mostly;
77
78 static long get_nr_inodes(void)
79 {
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
85 }
86
87 static inline long get_nr_inodes_unused(void)
88 {
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 long get_nr_dirty_inodes(void)
97 {
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
101 }
102
103 /*
104 * Handle nr_inode sysctl
105 */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 return -ENXIO;
119 }
120
121 /**
122 * inode_init_always - perform inode structure initialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
125 *
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
128 */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
134
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 if (sb->s_xattr)
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_dir_seq = 0;
157 inode->i_rdev = 0;
158 inode->dirtied_when = 0;
159
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 inode->i_wb_frn_winner = 0;
162 inode->i_wb_frn_avg_time = 0;
163 inode->i_wb_frn_history = 0;
164 #endif
165
166 if (security_inode_alloc(inode))
167 goto out;
168 spin_lock_init(&inode->i_lock);
169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
170
171 init_rwsem(&inode->i_rwsem);
172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
173
174 atomic_set(&inode->i_dio_count, 0);
175
176 mapping->a_ops = &empty_aops;
177 mapping->host = inode;
178 mapping->flags = 0;
179 atomic_set(&mapping->i_mmap_writable, 0);
180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 mapping->private_data = NULL;
182 mapping->writeback_index = 0;
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
193 inode->i_flctx = NULL;
194 this_cpu_inc(nr_inodes);
195
196 return 0;
197 out:
198 return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 struct inode *inode;
205
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210
211 if (!inode)
212 return NULL;
213
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
220 }
221
222 return inode;
223 }
224
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230
231 void __destroy_inode(struct inode *inode)
232 {
233 BUG_ON(inode_has_buffers(inode));
234 inode_detach_wb(inode);
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 locks_free_lock_context(inode);
238 if (!inode->i_nlink) {
239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 atomic_long_dec(&inode->i_sb->s_remove_count);
241 }
242
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 posix_acl_release(inode->i_default_acl);
248 #endif
249 this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252
253 static void i_callback(struct rcu_head *head)
254 {
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 kmem_cache_free(inode_cachep, inode);
257 }
258
259 static void destroy_inode(struct inode *inode)
260 {
261 BUG_ON(!list_empty(&inode->i_lru));
262 __destroy_inode(inode);
263 if (inode->i_sb->s_op->destroy_inode)
264 inode->i_sb->s_op->destroy_inode(inode);
265 else
266 call_rcu(&inode->i_rcu, i_callback);
267 }
268
269 /**
270 * drop_nlink - directly drop an inode's link count
271 * @inode: inode
272 *
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
278 * on the filesystem.
279 */
280 void drop_nlink(struct inode *inode)
281 {
282 WARN_ON(inode->i_nlink == 0);
283 inode->__i_nlink--;
284 if (!inode->i_nlink)
285 atomic_long_inc(&inode->i_sb->s_remove_count);
286 }
287 EXPORT_SYMBOL(drop_nlink);
288
289 /**
290 * clear_nlink - directly zero an inode's link count
291 * @inode: inode
292 *
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
296 */
297 void clear_nlink(struct inode *inode)
298 {
299 if (inode->i_nlink) {
300 inode->__i_nlink = 0;
301 atomic_long_inc(&inode->i_sb->s_remove_count);
302 }
303 }
304 EXPORT_SYMBOL(clear_nlink);
305
306 /**
307 * set_nlink - directly set an inode's link count
308 * @inode: inode
309 * @nlink: new nlink (should be non-zero)
310 *
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
313 */
314 void set_nlink(struct inode *inode, unsigned int nlink)
315 {
316 if (!nlink) {
317 clear_nlink(inode);
318 } else {
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode->i_nlink == 0)
321 atomic_long_dec(&inode->i_sb->s_remove_count);
322
323 inode->__i_nlink = nlink;
324 }
325 }
326 EXPORT_SYMBOL(set_nlink);
327
328 /**
329 * inc_nlink - directly increment an inode's link count
330 * @inode: inode
331 *
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
335 */
336 void inc_nlink(struct inode *inode)
337 {
338 if (unlikely(inode->i_nlink == 0)) {
339 WARN_ON(!(inode->i_state & I_LINKABLE));
340 atomic_long_dec(&inode->i_sb->s_remove_count);
341 }
342
343 inode->__i_nlink++;
344 }
345 EXPORT_SYMBOL(inc_nlink);
346
347 void address_space_init_once(struct address_space *mapping)
348 {
349 memset(mapping, 0, sizeof(*mapping));
350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 spin_lock_init(&mapping->tree_lock);
352 init_rwsem(&mapping->i_mmap_rwsem);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT;
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358
359 /*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364 void inode_init_once(struct inode *inode)
365 {
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_io_list);
370 INIT_LIST_HEAD(&inode->i_wb_list);
371 INIT_LIST_HEAD(&inode->i_lru);
372 address_space_init_once(&inode->i_data);
373 i_size_ordered_init(inode);
374 }
375 EXPORT_SYMBOL(inode_init_once);
376
377 static void init_once(void *foo)
378 {
379 struct inode *inode = (struct inode *) foo;
380
381 inode_init_once(inode);
382 }
383
384 /*
385 * inode->i_lock must be held
386 */
387 void __iget(struct inode *inode)
388 {
389 atomic_inc(&inode->i_count);
390 }
391
392 /*
393 * get additional reference to inode; caller must already hold one.
394 */
395 void ihold(struct inode *inode)
396 {
397 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
398 }
399 EXPORT_SYMBOL(ihold);
400
401 static void inode_lru_list_add(struct inode *inode)
402 {
403 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
404 this_cpu_inc(nr_unused);
405 else
406 inode->i_state |= I_REFERENCED;
407 }
408
409 /*
410 * Add inode to LRU if needed (inode is unused and clean).
411 *
412 * Needs inode->i_lock held.
413 */
414 void inode_add_lru(struct inode *inode)
415 {
416 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
417 I_FREEING | I_WILL_FREE)) &&
418 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
419 inode_lru_list_add(inode);
420 }
421
422
423 static void inode_lru_list_del(struct inode *inode)
424 {
425
426 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
427 this_cpu_dec(nr_unused);
428 }
429
430 /**
431 * inode_sb_list_add - add inode to the superblock list of inodes
432 * @inode: inode to add
433 */
434 void inode_sb_list_add(struct inode *inode)
435 {
436 spin_lock(&inode->i_sb->s_inode_list_lock);
437 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
438 spin_unlock(&inode->i_sb->s_inode_list_lock);
439 }
440 EXPORT_SYMBOL_GPL(inode_sb_list_add);
441
442 static inline void inode_sb_list_del(struct inode *inode)
443 {
444 if (!list_empty(&inode->i_sb_list)) {
445 spin_lock(&inode->i_sb->s_inode_list_lock);
446 list_del_init(&inode->i_sb_list);
447 spin_unlock(&inode->i_sb->s_inode_list_lock);
448 }
449 }
450
451 static unsigned long hash(struct super_block *sb, unsigned long hashval)
452 {
453 unsigned long tmp;
454
455 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
456 L1_CACHE_BYTES;
457 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
458 return tmp & i_hash_mask;
459 }
460
461 /**
462 * __insert_inode_hash - hash an inode
463 * @inode: unhashed inode
464 * @hashval: unsigned long value used to locate this object in the
465 * inode_hashtable.
466 *
467 * Add an inode to the inode hash for this superblock.
468 */
469 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
470 {
471 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
472
473 spin_lock(&inode_hash_lock);
474 spin_lock(&inode->i_lock);
475 hlist_add_head(&inode->i_hash, b);
476 spin_unlock(&inode->i_lock);
477 spin_unlock(&inode_hash_lock);
478 }
479 EXPORT_SYMBOL(__insert_inode_hash);
480
481 /**
482 * __remove_inode_hash - remove an inode from the hash
483 * @inode: inode to unhash
484 *
485 * Remove an inode from the superblock.
486 */
487 void __remove_inode_hash(struct inode *inode)
488 {
489 spin_lock(&inode_hash_lock);
490 spin_lock(&inode->i_lock);
491 hlist_del_init(&inode->i_hash);
492 spin_unlock(&inode->i_lock);
493 spin_unlock(&inode_hash_lock);
494 }
495 EXPORT_SYMBOL(__remove_inode_hash);
496
497 void clear_inode(struct inode *inode)
498 {
499 might_sleep();
500 /*
501 * We have to cycle tree_lock here because reclaim can be still in the
502 * process of removing the last page (in __delete_from_page_cache())
503 * and we must not free mapping under it.
504 */
505 spin_lock_irq(&inode->i_data.tree_lock);
506 BUG_ON(inode->i_data.nrpages);
507 BUG_ON(inode->i_data.nrexceptional);
508 spin_unlock_irq(&inode->i_data.tree_lock);
509 BUG_ON(!list_empty(&inode->i_data.private_list));
510 BUG_ON(!(inode->i_state & I_FREEING));
511 BUG_ON(inode->i_state & I_CLEAR);
512 BUG_ON(!list_empty(&inode->i_wb_list));
513 /* don't need i_lock here, no concurrent mods to i_state */
514 inode->i_state = I_FREEING | I_CLEAR;
515 }
516 EXPORT_SYMBOL(clear_inode);
517
518 /*
519 * Free the inode passed in, removing it from the lists it is still connected
520 * to. We remove any pages still attached to the inode and wait for any IO that
521 * is still in progress before finally destroying the inode.
522 *
523 * An inode must already be marked I_FREEING so that we avoid the inode being
524 * moved back onto lists if we race with other code that manipulates the lists
525 * (e.g. writeback_single_inode). The caller is responsible for setting this.
526 *
527 * An inode must already be removed from the LRU list before being evicted from
528 * the cache. This should occur atomically with setting the I_FREEING state
529 * flag, so no inodes here should ever be on the LRU when being evicted.
530 */
531 static void evict(struct inode *inode)
532 {
533 const struct super_operations *op = inode->i_sb->s_op;
534
535 BUG_ON(!(inode->i_state & I_FREEING));
536 BUG_ON(!list_empty(&inode->i_lru));
537
538 if (!list_empty(&inode->i_io_list))
539 inode_io_list_del(inode);
540
541 inode_sb_list_del(inode);
542
543 /*
544 * Wait for flusher thread to be done with the inode so that filesystem
545 * does not start destroying it while writeback is still running. Since
546 * the inode has I_FREEING set, flusher thread won't start new work on
547 * the inode. We just have to wait for running writeback to finish.
548 */
549 inode_wait_for_writeback(inode);
550
551 if (op->evict_inode) {
552 op->evict_inode(inode);
553 } else {
554 truncate_inode_pages_final(&inode->i_data);
555 clear_inode(inode);
556 }
557 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
558 bd_forget(inode);
559 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
560 cd_forget(inode);
561
562 remove_inode_hash(inode);
563
564 spin_lock(&inode->i_lock);
565 wake_up_bit(&inode->i_state, __I_NEW);
566 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
567 spin_unlock(&inode->i_lock);
568
569 destroy_inode(inode);
570 }
571
572 /*
573 * dispose_list - dispose of the contents of a local list
574 * @head: the head of the list to free
575 *
576 * Dispose-list gets a local list with local inodes in it, so it doesn't
577 * need to worry about list corruption and SMP locks.
578 */
579 static void dispose_list(struct list_head *head)
580 {
581 while (!list_empty(head)) {
582 struct inode *inode;
583
584 inode = list_first_entry(head, struct inode, i_lru);
585 list_del_init(&inode->i_lru);
586
587 evict(inode);
588 cond_resched();
589 }
590 }
591
592 /**
593 * evict_inodes - evict all evictable inodes for a superblock
594 * @sb: superblock to operate on
595 *
596 * Make sure that no inodes with zero refcount are retained. This is
597 * called by superblock shutdown after having MS_ACTIVE flag removed,
598 * so any inode reaching zero refcount during or after that call will
599 * be immediately evicted.
600 */
601 void evict_inodes(struct super_block *sb)
602 {
603 struct inode *inode, *next;
604 LIST_HEAD(dispose);
605
606 again:
607 spin_lock(&sb->s_inode_list_lock);
608 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
609 if (atomic_read(&inode->i_count))
610 continue;
611
612 spin_lock(&inode->i_lock);
613 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
614 spin_unlock(&inode->i_lock);
615 continue;
616 }
617
618 inode->i_state |= I_FREEING;
619 inode_lru_list_del(inode);
620 spin_unlock(&inode->i_lock);
621 list_add(&inode->i_lru, &dispose);
622
623 /*
624 * We can have a ton of inodes to evict at unmount time given
625 * enough memory, check to see if we need to go to sleep for a
626 * bit so we don't livelock.
627 */
628 if (need_resched()) {
629 spin_unlock(&sb->s_inode_list_lock);
630 cond_resched();
631 dispose_list(&dispose);
632 goto again;
633 }
634 }
635 spin_unlock(&sb->s_inode_list_lock);
636
637 dispose_list(&dispose);
638 }
639
640 /**
641 * invalidate_inodes - attempt to free all inodes on a superblock
642 * @sb: superblock to operate on
643 * @kill_dirty: flag to guide handling of dirty inodes
644 *
645 * Attempts to free all inodes for a given superblock. If there were any
646 * busy inodes return a non-zero value, else zero.
647 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
648 * them as busy.
649 */
650 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
651 {
652 int busy = 0;
653 struct inode *inode, *next;
654 LIST_HEAD(dispose);
655
656 spin_lock(&sb->s_inode_list_lock);
657 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
658 spin_lock(&inode->i_lock);
659 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
660 spin_unlock(&inode->i_lock);
661 continue;
662 }
663 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
664 spin_unlock(&inode->i_lock);
665 busy = 1;
666 continue;
667 }
668 if (atomic_read(&inode->i_count)) {
669 spin_unlock(&inode->i_lock);
670 busy = 1;
671 continue;
672 }
673
674 inode->i_state |= I_FREEING;
675 inode_lru_list_del(inode);
676 spin_unlock(&inode->i_lock);
677 list_add(&inode->i_lru, &dispose);
678 }
679 spin_unlock(&sb->s_inode_list_lock);
680
681 dispose_list(&dispose);
682
683 return busy;
684 }
685
686 /*
687 * Isolate the inode from the LRU in preparation for freeing it.
688 *
689 * Any inodes which are pinned purely because of attached pagecache have their
690 * pagecache removed. If the inode has metadata buffers attached to
691 * mapping->private_list then try to remove them.
692 *
693 * If the inode has the I_REFERENCED flag set, then it means that it has been
694 * used recently - the flag is set in iput_final(). When we encounter such an
695 * inode, clear the flag and move it to the back of the LRU so it gets another
696 * pass through the LRU before it gets reclaimed. This is necessary because of
697 * the fact we are doing lazy LRU updates to minimise lock contention so the
698 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
699 * with this flag set because they are the inodes that are out of order.
700 */
701 static enum lru_status inode_lru_isolate(struct list_head *item,
702 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
703 {
704 struct list_head *freeable = arg;
705 struct inode *inode = container_of(item, struct inode, i_lru);
706
707 /*
708 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
709 * If we fail to get the lock, just skip it.
710 */
711 if (!spin_trylock(&inode->i_lock))
712 return LRU_SKIP;
713
714 /*
715 * Referenced or dirty inodes are still in use. Give them another pass
716 * through the LRU as we canot reclaim them now.
717 */
718 if (atomic_read(&inode->i_count) ||
719 (inode->i_state & ~I_REFERENCED)) {
720 list_lru_isolate(lru, &inode->i_lru);
721 spin_unlock(&inode->i_lock);
722 this_cpu_dec(nr_unused);
723 return LRU_REMOVED;
724 }
725
726 /* recently referenced inodes get one more pass */
727 if (inode->i_state & I_REFERENCED) {
728 inode->i_state &= ~I_REFERENCED;
729 spin_unlock(&inode->i_lock);
730 return LRU_ROTATE;
731 }
732
733 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
734 __iget(inode);
735 spin_unlock(&inode->i_lock);
736 spin_unlock(lru_lock);
737 if (remove_inode_buffers(inode)) {
738 unsigned long reap;
739 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
740 if (current_is_kswapd())
741 __count_vm_events(KSWAPD_INODESTEAL, reap);
742 else
743 __count_vm_events(PGINODESTEAL, reap);
744 if (current->reclaim_state)
745 current->reclaim_state->reclaimed_slab += reap;
746 }
747 iput(inode);
748 spin_lock(lru_lock);
749 return LRU_RETRY;
750 }
751
752 WARN_ON(inode->i_state & I_NEW);
753 inode->i_state |= I_FREEING;
754 list_lru_isolate_move(lru, &inode->i_lru, freeable);
755 spin_unlock(&inode->i_lock);
756
757 this_cpu_dec(nr_unused);
758 return LRU_REMOVED;
759 }
760
761 /*
762 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
763 * This is called from the superblock shrinker function with a number of inodes
764 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
765 * then are freed outside inode_lock by dispose_list().
766 */
767 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
768 {
769 LIST_HEAD(freeable);
770 long freed;
771
772 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
773 inode_lru_isolate, &freeable);
774 dispose_list(&freeable);
775 return freed;
776 }
777
778 static void __wait_on_freeing_inode(struct inode *inode);
779 /*
780 * Called with the inode lock held.
781 */
782 static struct inode *find_inode(struct super_block *sb,
783 struct hlist_head *head,
784 int (*test)(struct inode *, void *),
785 void *data)
786 {
787 struct inode *inode = NULL;
788
789 repeat:
790 hlist_for_each_entry(inode, head, i_hash) {
791 if (inode->i_sb != sb)
792 continue;
793 if (!test(inode, data))
794 continue;
795 spin_lock(&inode->i_lock);
796 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
797 __wait_on_freeing_inode(inode);
798 goto repeat;
799 }
800 __iget(inode);
801 spin_unlock(&inode->i_lock);
802 return inode;
803 }
804 return NULL;
805 }
806
807 /*
808 * find_inode_fast is the fast path version of find_inode, see the comment at
809 * iget_locked for details.
810 */
811 static struct inode *find_inode_fast(struct super_block *sb,
812 struct hlist_head *head, unsigned long ino)
813 {
814 struct inode *inode = NULL;
815
816 repeat:
817 hlist_for_each_entry(inode, head, i_hash) {
818 if (inode->i_ino != ino)
819 continue;
820 if (inode->i_sb != sb)
821 continue;
822 spin_lock(&inode->i_lock);
823 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
824 __wait_on_freeing_inode(inode);
825 goto repeat;
826 }
827 __iget(inode);
828 spin_unlock(&inode->i_lock);
829 return inode;
830 }
831 return NULL;
832 }
833
834 /*
835 * Each cpu owns a range of LAST_INO_BATCH numbers.
836 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
837 * to renew the exhausted range.
838 *
839 * This does not significantly increase overflow rate because every CPU can
840 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
841 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
842 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
843 * overflow rate by 2x, which does not seem too significant.
844 *
845 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
846 * error if st_ino won't fit in target struct field. Use 32bit counter
847 * here to attempt to avoid that.
848 */
849 #define LAST_INO_BATCH 1024
850 static DEFINE_PER_CPU(unsigned int, last_ino);
851
852 unsigned int get_next_ino(void)
853 {
854 unsigned int *p = &get_cpu_var(last_ino);
855 unsigned int res = *p;
856
857 #ifdef CONFIG_SMP
858 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
859 static atomic_t shared_last_ino;
860 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
861
862 res = next - LAST_INO_BATCH;
863 }
864 #endif
865
866 res++;
867 /* get_next_ino should not provide a 0 inode number */
868 if (unlikely(!res))
869 res++;
870 *p = res;
871 put_cpu_var(last_ino);
872 return res;
873 }
874 EXPORT_SYMBOL(get_next_ino);
875
876 /**
877 * new_inode_pseudo - obtain an inode
878 * @sb: superblock
879 *
880 * Allocates a new inode for given superblock.
881 * Inode wont be chained in superblock s_inodes list
882 * This means :
883 * - fs can't be unmount
884 * - quotas, fsnotify, writeback can't work
885 */
886 struct inode *new_inode_pseudo(struct super_block *sb)
887 {
888 struct inode *inode = alloc_inode(sb);
889
890 if (inode) {
891 spin_lock(&inode->i_lock);
892 inode->i_state = 0;
893 spin_unlock(&inode->i_lock);
894 INIT_LIST_HEAD(&inode->i_sb_list);
895 }
896 return inode;
897 }
898
899 /**
900 * new_inode - obtain an inode
901 * @sb: superblock
902 *
903 * Allocates a new inode for given superblock. The default gfp_mask
904 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
905 * If HIGHMEM pages are unsuitable or it is known that pages allocated
906 * for the page cache are not reclaimable or migratable,
907 * mapping_set_gfp_mask() must be called with suitable flags on the
908 * newly created inode's mapping
909 *
910 */
911 struct inode *new_inode(struct super_block *sb)
912 {
913 struct inode *inode;
914
915 spin_lock_prefetch(&sb->s_inode_list_lock);
916
917 inode = new_inode_pseudo(sb);
918 if (inode)
919 inode_sb_list_add(inode);
920 return inode;
921 }
922 EXPORT_SYMBOL(new_inode);
923
924 #ifdef CONFIG_DEBUG_LOCK_ALLOC
925 void lockdep_annotate_inode_mutex_key(struct inode *inode)
926 {
927 if (S_ISDIR(inode->i_mode)) {
928 struct file_system_type *type = inode->i_sb->s_type;
929
930 /* Set new key only if filesystem hasn't already changed it */
931 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
932 /*
933 * ensure nobody is actually holding i_mutex
934 */
935 // mutex_destroy(&inode->i_mutex);
936 init_rwsem(&inode->i_rwsem);
937 lockdep_set_class(&inode->i_rwsem,
938 &type->i_mutex_dir_key);
939 }
940 }
941 }
942 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
943 #endif
944
945 /**
946 * unlock_new_inode - clear the I_NEW state and wake up any waiters
947 * @inode: new inode to unlock
948 *
949 * Called when the inode is fully initialised to clear the new state of the
950 * inode and wake up anyone waiting for the inode to finish initialisation.
951 */
952 void unlock_new_inode(struct inode *inode)
953 {
954 lockdep_annotate_inode_mutex_key(inode);
955 spin_lock(&inode->i_lock);
956 WARN_ON(!(inode->i_state & I_NEW));
957 inode->i_state &= ~I_NEW;
958 smp_mb();
959 wake_up_bit(&inode->i_state, __I_NEW);
960 spin_unlock(&inode->i_lock);
961 }
962 EXPORT_SYMBOL(unlock_new_inode);
963
964 /**
965 * lock_two_nondirectories - take two i_mutexes on non-directory objects
966 *
967 * Lock any non-NULL argument that is not a directory.
968 * Zero, one or two objects may be locked by this function.
969 *
970 * @inode1: first inode to lock
971 * @inode2: second inode to lock
972 */
973 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
974 {
975 if (inode1 > inode2)
976 swap(inode1, inode2);
977
978 if (inode1 && !S_ISDIR(inode1->i_mode))
979 inode_lock(inode1);
980 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
981 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
982 }
983 EXPORT_SYMBOL(lock_two_nondirectories);
984
985 /**
986 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
987 * @inode1: first inode to unlock
988 * @inode2: second inode to unlock
989 */
990 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
991 {
992 if (inode1 && !S_ISDIR(inode1->i_mode))
993 inode_unlock(inode1);
994 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
995 inode_unlock(inode2);
996 }
997 EXPORT_SYMBOL(unlock_two_nondirectories);
998
999 /**
1000 * iget5_locked - obtain an inode from a mounted file system
1001 * @sb: super block of file system
1002 * @hashval: hash value (usually inode number) to get
1003 * @test: callback used for comparisons between inodes
1004 * @set: callback used to initialize a new struct inode
1005 * @data: opaque data pointer to pass to @test and @set
1006 *
1007 * Search for the inode specified by @hashval and @data in the inode cache,
1008 * and if present it is return it with an increased reference count. This is
1009 * a generalized version of iget_locked() for file systems where the inode
1010 * number is not sufficient for unique identification of an inode.
1011 *
1012 * If the inode is not in cache, allocate a new inode and return it locked,
1013 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1014 * before unlocking it via unlock_new_inode().
1015 *
1016 * Note both @test and @set are called with the inode_hash_lock held, so can't
1017 * sleep.
1018 */
1019 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1020 int (*test)(struct inode *, void *),
1021 int (*set)(struct inode *, void *), void *data)
1022 {
1023 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1024 struct inode *inode;
1025 again:
1026 spin_lock(&inode_hash_lock);
1027 inode = find_inode(sb, head, test, data);
1028 spin_unlock(&inode_hash_lock);
1029
1030 if (inode) {
1031 wait_on_inode(inode);
1032 if (unlikely(inode_unhashed(inode))) {
1033 iput(inode);
1034 goto again;
1035 }
1036 return inode;
1037 }
1038
1039 inode = alloc_inode(sb);
1040 if (inode) {
1041 struct inode *old;
1042
1043 spin_lock(&inode_hash_lock);
1044 /* We released the lock, so.. */
1045 old = find_inode(sb, head, test, data);
1046 if (!old) {
1047 if (set(inode, data))
1048 goto set_failed;
1049
1050 spin_lock(&inode->i_lock);
1051 inode->i_state = I_NEW;
1052 hlist_add_head(&inode->i_hash, head);
1053 spin_unlock(&inode->i_lock);
1054 inode_sb_list_add(inode);
1055 spin_unlock(&inode_hash_lock);
1056
1057 /* Return the locked inode with I_NEW set, the
1058 * caller is responsible for filling in the contents
1059 */
1060 return inode;
1061 }
1062
1063 /*
1064 * Uhhuh, somebody else created the same inode under
1065 * us. Use the old inode instead of the one we just
1066 * allocated.
1067 */
1068 spin_unlock(&inode_hash_lock);
1069 destroy_inode(inode);
1070 inode = old;
1071 wait_on_inode(inode);
1072 if (unlikely(inode_unhashed(inode))) {
1073 iput(inode);
1074 goto again;
1075 }
1076 }
1077 return inode;
1078
1079 set_failed:
1080 spin_unlock(&inode_hash_lock);
1081 destroy_inode(inode);
1082 return NULL;
1083 }
1084 EXPORT_SYMBOL(iget5_locked);
1085
1086 /**
1087 * iget_locked - obtain an inode from a mounted file system
1088 * @sb: super block of file system
1089 * @ino: inode number to get
1090 *
1091 * Search for the inode specified by @ino in the inode cache and if present
1092 * return it with an increased reference count. This is for file systems
1093 * where the inode number is sufficient for unique identification of an inode.
1094 *
1095 * If the inode is not in cache, allocate a new inode and return it locked,
1096 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1097 * before unlocking it via unlock_new_inode().
1098 */
1099 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1100 {
1101 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1102 struct inode *inode;
1103 again:
1104 spin_lock(&inode_hash_lock);
1105 inode = find_inode_fast(sb, head, ino);
1106 spin_unlock(&inode_hash_lock);
1107 if (inode) {
1108 wait_on_inode(inode);
1109 if (unlikely(inode_unhashed(inode))) {
1110 iput(inode);
1111 goto again;
1112 }
1113 return inode;
1114 }
1115
1116 inode = alloc_inode(sb);
1117 if (inode) {
1118 struct inode *old;
1119
1120 spin_lock(&inode_hash_lock);
1121 /* We released the lock, so.. */
1122 old = find_inode_fast(sb, head, ino);
1123 if (!old) {
1124 inode->i_ino = ino;
1125 spin_lock(&inode->i_lock);
1126 inode->i_state = I_NEW;
1127 hlist_add_head(&inode->i_hash, head);
1128 spin_unlock(&inode->i_lock);
1129 inode_sb_list_add(inode);
1130 spin_unlock(&inode_hash_lock);
1131
1132 /* Return the locked inode with I_NEW set, the
1133 * caller is responsible for filling in the contents
1134 */
1135 return inode;
1136 }
1137
1138 /*
1139 * Uhhuh, somebody else created the same inode under
1140 * us. Use the old inode instead of the one we just
1141 * allocated.
1142 */
1143 spin_unlock(&inode_hash_lock);
1144 destroy_inode(inode);
1145 inode = old;
1146 wait_on_inode(inode);
1147 if (unlikely(inode_unhashed(inode))) {
1148 iput(inode);
1149 goto again;
1150 }
1151 }
1152 return inode;
1153 }
1154 EXPORT_SYMBOL(iget_locked);
1155
1156 /*
1157 * search the inode cache for a matching inode number.
1158 * If we find one, then the inode number we are trying to
1159 * allocate is not unique and so we should not use it.
1160 *
1161 * Returns 1 if the inode number is unique, 0 if it is not.
1162 */
1163 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1164 {
1165 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1166 struct inode *inode;
1167
1168 spin_lock(&inode_hash_lock);
1169 hlist_for_each_entry(inode, b, i_hash) {
1170 if (inode->i_ino == ino && inode->i_sb == sb) {
1171 spin_unlock(&inode_hash_lock);
1172 return 0;
1173 }
1174 }
1175 spin_unlock(&inode_hash_lock);
1176
1177 return 1;
1178 }
1179
1180 /**
1181 * iunique - get a unique inode number
1182 * @sb: superblock
1183 * @max_reserved: highest reserved inode number
1184 *
1185 * Obtain an inode number that is unique on the system for a given
1186 * superblock. This is used by file systems that have no natural
1187 * permanent inode numbering system. An inode number is returned that
1188 * is higher than the reserved limit but unique.
1189 *
1190 * BUGS:
1191 * With a large number of inodes live on the file system this function
1192 * currently becomes quite slow.
1193 */
1194 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1195 {
1196 /*
1197 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1198 * error if st_ino won't fit in target struct field. Use 32bit counter
1199 * here to attempt to avoid that.
1200 */
1201 static DEFINE_SPINLOCK(iunique_lock);
1202 static unsigned int counter;
1203 ino_t res;
1204
1205 spin_lock(&iunique_lock);
1206 do {
1207 if (counter <= max_reserved)
1208 counter = max_reserved + 1;
1209 res = counter++;
1210 } while (!test_inode_iunique(sb, res));
1211 spin_unlock(&iunique_lock);
1212
1213 return res;
1214 }
1215 EXPORT_SYMBOL(iunique);
1216
1217 struct inode *igrab(struct inode *inode)
1218 {
1219 spin_lock(&inode->i_lock);
1220 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1221 __iget(inode);
1222 spin_unlock(&inode->i_lock);
1223 } else {
1224 spin_unlock(&inode->i_lock);
1225 /*
1226 * Handle the case where s_op->clear_inode is not been
1227 * called yet, and somebody is calling igrab
1228 * while the inode is getting freed.
1229 */
1230 inode = NULL;
1231 }
1232 return inode;
1233 }
1234 EXPORT_SYMBOL(igrab);
1235
1236 /**
1237 * ilookup5_nowait - search for an inode in the inode cache
1238 * @sb: super block of file system to search
1239 * @hashval: hash value (usually inode number) to search for
1240 * @test: callback used for comparisons between inodes
1241 * @data: opaque data pointer to pass to @test
1242 *
1243 * Search for the inode specified by @hashval and @data in the inode cache.
1244 * If the inode is in the cache, the inode is returned with an incremented
1245 * reference count.
1246 *
1247 * Note: I_NEW is not waited upon so you have to be very careful what you do
1248 * with the returned inode. You probably should be using ilookup5() instead.
1249 *
1250 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1251 */
1252 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1253 int (*test)(struct inode *, void *), void *data)
1254 {
1255 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1256 struct inode *inode;
1257
1258 spin_lock(&inode_hash_lock);
1259 inode = find_inode(sb, head, test, data);
1260 spin_unlock(&inode_hash_lock);
1261
1262 return inode;
1263 }
1264 EXPORT_SYMBOL(ilookup5_nowait);
1265
1266 /**
1267 * ilookup5 - search for an inode in the inode cache
1268 * @sb: super block of file system to search
1269 * @hashval: hash value (usually inode number) to search for
1270 * @test: callback used for comparisons between inodes
1271 * @data: opaque data pointer to pass to @test
1272 *
1273 * Search for the inode specified by @hashval and @data in the inode cache,
1274 * and if the inode is in the cache, return the inode with an incremented
1275 * reference count. Waits on I_NEW before returning the inode.
1276 * returned with an incremented reference count.
1277 *
1278 * This is a generalized version of ilookup() for file systems where the
1279 * inode number is not sufficient for unique identification of an inode.
1280 *
1281 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1282 */
1283 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1284 int (*test)(struct inode *, void *), void *data)
1285 {
1286 struct inode *inode;
1287 again:
1288 inode = ilookup5_nowait(sb, hashval, test, data);
1289 if (inode) {
1290 wait_on_inode(inode);
1291 if (unlikely(inode_unhashed(inode))) {
1292 iput(inode);
1293 goto again;
1294 }
1295 }
1296 return inode;
1297 }
1298 EXPORT_SYMBOL(ilookup5);
1299
1300 /**
1301 * ilookup - search for an inode in the inode cache
1302 * @sb: super block of file system to search
1303 * @ino: inode number to search for
1304 *
1305 * Search for the inode @ino in the inode cache, and if the inode is in the
1306 * cache, the inode is returned with an incremented reference count.
1307 */
1308 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1309 {
1310 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1311 struct inode *inode;
1312 again:
1313 spin_lock(&inode_hash_lock);
1314 inode = find_inode_fast(sb, head, ino);
1315 spin_unlock(&inode_hash_lock);
1316
1317 if (inode) {
1318 wait_on_inode(inode);
1319 if (unlikely(inode_unhashed(inode))) {
1320 iput(inode);
1321 goto again;
1322 }
1323 }
1324 return inode;
1325 }
1326 EXPORT_SYMBOL(ilookup);
1327
1328 /**
1329 * find_inode_nowait - find an inode in the inode cache
1330 * @sb: super block of file system to search
1331 * @hashval: hash value (usually inode number) to search for
1332 * @match: callback used for comparisons between inodes
1333 * @data: opaque data pointer to pass to @match
1334 *
1335 * Search for the inode specified by @hashval and @data in the inode
1336 * cache, where the helper function @match will return 0 if the inode
1337 * does not match, 1 if the inode does match, and -1 if the search
1338 * should be stopped. The @match function must be responsible for
1339 * taking the i_lock spin_lock and checking i_state for an inode being
1340 * freed or being initialized, and incrementing the reference count
1341 * before returning 1. It also must not sleep, since it is called with
1342 * the inode_hash_lock spinlock held.
1343 *
1344 * This is a even more generalized version of ilookup5() when the
1345 * function must never block --- find_inode() can block in
1346 * __wait_on_freeing_inode() --- or when the caller can not increment
1347 * the reference count because the resulting iput() might cause an
1348 * inode eviction. The tradeoff is that the @match funtion must be
1349 * very carefully implemented.
1350 */
1351 struct inode *find_inode_nowait(struct super_block *sb,
1352 unsigned long hashval,
1353 int (*match)(struct inode *, unsigned long,
1354 void *),
1355 void *data)
1356 {
1357 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1358 struct inode *inode, *ret_inode = NULL;
1359 int mval;
1360
1361 spin_lock(&inode_hash_lock);
1362 hlist_for_each_entry(inode, head, i_hash) {
1363 if (inode->i_sb != sb)
1364 continue;
1365 mval = match(inode, hashval, data);
1366 if (mval == 0)
1367 continue;
1368 if (mval == 1)
1369 ret_inode = inode;
1370 goto out;
1371 }
1372 out:
1373 spin_unlock(&inode_hash_lock);
1374 return ret_inode;
1375 }
1376 EXPORT_SYMBOL(find_inode_nowait);
1377
1378 int insert_inode_locked(struct inode *inode)
1379 {
1380 struct super_block *sb = inode->i_sb;
1381 ino_t ino = inode->i_ino;
1382 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1383
1384 while (1) {
1385 struct inode *old = NULL;
1386 spin_lock(&inode_hash_lock);
1387 hlist_for_each_entry(old, head, i_hash) {
1388 if (old->i_ino != ino)
1389 continue;
1390 if (old->i_sb != sb)
1391 continue;
1392 spin_lock(&old->i_lock);
1393 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1394 spin_unlock(&old->i_lock);
1395 continue;
1396 }
1397 break;
1398 }
1399 if (likely(!old)) {
1400 spin_lock(&inode->i_lock);
1401 inode->i_state |= I_NEW;
1402 hlist_add_head(&inode->i_hash, head);
1403 spin_unlock(&inode->i_lock);
1404 spin_unlock(&inode_hash_lock);
1405 return 0;
1406 }
1407 __iget(old);
1408 spin_unlock(&old->i_lock);
1409 spin_unlock(&inode_hash_lock);
1410 wait_on_inode(old);
1411 if (unlikely(!inode_unhashed(old))) {
1412 iput(old);
1413 return -EBUSY;
1414 }
1415 iput(old);
1416 }
1417 }
1418 EXPORT_SYMBOL(insert_inode_locked);
1419
1420 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1421 int (*test)(struct inode *, void *), void *data)
1422 {
1423 struct super_block *sb = inode->i_sb;
1424 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1425
1426 while (1) {
1427 struct inode *old = NULL;
1428
1429 spin_lock(&inode_hash_lock);
1430 hlist_for_each_entry(old, head, i_hash) {
1431 if (old->i_sb != sb)
1432 continue;
1433 if (!test(old, data))
1434 continue;
1435 spin_lock(&old->i_lock);
1436 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1437 spin_unlock(&old->i_lock);
1438 continue;
1439 }
1440 break;
1441 }
1442 if (likely(!old)) {
1443 spin_lock(&inode->i_lock);
1444 inode->i_state |= I_NEW;
1445 hlist_add_head(&inode->i_hash, head);
1446 spin_unlock(&inode->i_lock);
1447 spin_unlock(&inode_hash_lock);
1448 return 0;
1449 }
1450 __iget(old);
1451 spin_unlock(&old->i_lock);
1452 spin_unlock(&inode_hash_lock);
1453 wait_on_inode(old);
1454 if (unlikely(!inode_unhashed(old))) {
1455 iput(old);
1456 return -EBUSY;
1457 }
1458 iput(old);
1459 }
1460 }
1461 EXPORT_SYMBOL(insert_inode_locked4);
1462
1463
1464 int generic_delete_inode(struct inode *inode)
1465 {
1466 return 1;
1467 }
1468 EXPORT_SYMBOL(generic_delete_inode);
1469
1470 /*
1471 * Called when we're dropping the last reference
1472 * to an inode.
1473 *
1474 * Call the FS "drop_inode()" function, defaulting to
1475 * the legacy UNIX filesystem behaviour. If it tells
1476 * us to evict inode, do so. Otherwise, retain inode
1477 * in cache if fs is alive, sync and evict if fs is
1478 * shutting down.
1479 */
1480 static void iput_final(struct inode *inode)
1481 {
1482 struct super_block *sb = inode->i_sb;
1483 const struct super_operations *op = inode->i_sb->s_op;
1484 int drop;
1485
1486 WARN_ON(inode->i_state & I_NEW);
1487
1488 if (op->drop_inode)
1489 drop = op->drop_inode(inode);
1490 else
1491 drop = generic_drop_inode(inode);
1492
1493 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1494 inode_add_lru(inode);
1495 spin_unlock(&inode->i_lock);
1496 return;
1497 }
1498
1499 if (!drop) {
1500 inode->i_state |= I_WILL_FREE;
1501 spin_unlock(&inode->i_lock);
1502 write_inode_now(inode, 1);
1503 spin_lock(&inode->i_lock);
1504 WARN_ON(inode->i_state & I_NEW);
1505 inode->i_state &= ~I_WILL_FREE;
1506 }
1507
1508 inode->i_state |= I_FREEING;
1509 if (!list_empty(&inode->i_lru))
1510 inode_lru_list_del(inode);
1511 spin_unlock(&inode->i_lock);
1512
1513 evict(inode);
1514 }
1515
1516 /**
1517 * iput - put an inode
1518 * @inode: inode to put
1519 *
1520 * Puts an inode, dropping its usage count. If the inode use count hits
1521 * zero, the inode is then freed and may also be destroyed.
1522 *
1523 * Consequently, iput() can sleep.
1524 */
1525 void iput(struct inode *inode)
1526 {
1527 if (!inode)
1528 return;
1529 BUG_ON(inode->i_state & I_CLEAR);
1530 retry:
1531 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1532 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1533 atomic_inc(&inode->i_count);
1534 inode->i_state &= ~I_DIRTY_TIME;
1535 spin_unlock(&inode->i_lock);
1536 trace_writeback_lazytime_iput(inode);
1537 mark_inode_dirty_sync(inode);
1538 goto retry;
1539 }
1540 iput_final(inode);
1541 }
1542 }
1543 EXPORT_SYMBOL(iput);
1544
1545 /**
1546 * bmap - find a block number in a file
1547 * @inode: inode of file
1548 * @block: block to find
1549 *
1550 * Returns the block number on the device holding the inode that
1551 * is the disk block number for the block of the file requested.
1552 * That is, asked for block 4 of inode 1 the function will return the
1553 * disk block relative to the disk start that holds that block of the
1554 * file.
1555 */
1556 sector_t bmap(struct inode *inode, sector_t block)
1557 {
1558 sector_t res = 0;
1559 if (inode->i_mapping->a_ops->bmap)
1560 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1561 return res;
1562 }
1563 EXPORT_SYMBOL(bmap);
1564
1565 /*
1566 * Update times in overlayed inode from underlying real inode
1567 */
1568 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1569 bool rcu)
1570 {
1571 if (!rcu) {
1572 struct inode *realinode = d_real_inode(dentry);
1573
1574 if (unlikely(inode != realinode) &&
1575 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1576 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1577 inode->i_mtime = realinode->i_mtime;
1578 inode->i_ctime = realinode->i_ctime;
1579 }
1580 }
1581 }
1582
1583 /*
1584 * With relative atime, only update atime if the previous atime is
1585 * earlier than either the ctime or mtime or if at least a day has
1586 * passed since the last atime update.
1587 */
1588 static int relatime_need_update(const struct path *path, struct inode *inode,
1589 struct timespec now, bool rcu)
1590 {
1591
1592 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1593 return 1;
1594
1595 update_ovl_inode_times(path->dentry, inode, rcu);
1596 /*
1597 * Is mtime younger than atime? If yes, update atime:
1598 */
1599 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1600 return 1;
1601 /*
1602 * Is ctime younger than atime? If yes, update atime:
1603 */
1604 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1605 return 1;
1606
1607 /*
1608 * Is the previous atime value older than a day? If yes,
1609 * update atime:
1610 */
1611 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1612 return 1;
1613 /*
1614 * Good, we can skip the atime update:
1615 */
1616 return 0;
1617 }
1618
1619 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1620 {
1621 int iflags = I_DIRTY_TIME;
1622
1623 if (flags & S_ATIME)
1624 inode->i_atime = *time;
1625 if (flags & S_VERSION)
1626 inode_inc_iversion(inode);
1627 if (flags & S_CTIME)
1628 inode->i_ctime = *time;
1629 if (flags & S_MTIME)
1630 inode->i_mtime = *time;
1631
1632 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1633 iflags |= I_DIRTY_SYNC;
1634 __mark_inode_dirty(inode, iflags);
1635 return 0;
1636 }
1637 EXPORT_SYMBOL(generic_update_time);
1638
1639 /*
1640 * This does the actual work of updating an inodes time or version. Must have
1641 * had called mnt_want_write() before calling this.
1642 */
1643 static int update_time(struct inode *inode, struct timespec *time, int flags)
1644 {
1645 int (*update_time)(struct inode *, struct timespec *, int);
1646
1647 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1648 generic_update_time;
1649
1650 return update_time(inode, time, flags);
1651 }
1652
1653 /**
1654 * touch_atime - update the access time
1655 * @path: the &struct path to update
1656 * @inode: inode to update
1657 *
1658 * Update the accessed time on an inode and mark it for writeback.
1659 * This function automatically handles read only file systems and media,
1660 * as well as the "noatime" flag and inode specific "noatime" markers.
1661 */
1662 bool __atime_needs_update(const struct path *path, struct inode *inode,
1663 bool rcu)
1664 {
1665 struct vfsmount *mnt = path->mnt;
1666 struct timespec now;
1667
1668 if (inode->i_flags & S_NOATIME)
1669 return false;
1670
1671 /* Atime updates will likely cause i_uid and i_gid to be written
1672 * back improprely if their true value is unknown to the vfs.
1673 */
1674 if (HAS_UNMAPPED_ID(inode))
1675 return false;
1676
1677 if (IS_NOATIME(inode))
1678 return false;
1679 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1680 return false;
1681
1682 if (mnt->mnt_flags & MNT_NOATIME)
1683 return false;
1684 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1685 return false;
1686
1687 now = current_time(inode);
1688
1689 if (!relatime_need_update(path, inode, now, rcu))
1690 return false;
1691
1692 if (timespec_equal(&inode->i_atime, &now))
1693 return false;
1694
1695 return true;
1696 }
1697
1698 void touch_atime(const struct path *path)
1699 {
1700 struct vfsmount *mnt = path->mnt;
1701 struct inode *inode = d_inode(path->dentry);
1702 struct timespec now;
1703
1704 if (!__atime_needs_update(path, inode, false))
1705 return;
1706
1707 if (!sb_start_write_trylock(inode->i_sb))
1708 return;
1709
1710 if (__mnt_want_write(mnt) != 0)
1711 goto skip_update;
1712 /*
1713 * File systems can error out when updating inodes if they need to
1714 * allocate new space to modify an inode (such is the case for
1715 * Btrfs), but since we touch atime while walking down the path we
1716 * really don't care if we failed to update the atime of the file,
1717 * so just ignore the return value.
1718 * We may also fail on filesystems that have the ability to make parts
1719 * of the fs read only, e.g. subvolumes in Btrfs.
1720 */
1721 now = current_time(inode);
1722 update_time(inode, &now, S_ATIME);
1723 __mnt_drop_write(mnt);
1724 skip_update:
1725 sb_end_write(inode->i_sb);
1726 }
1727 EXPORT_SYMBOL(touch_atime);
1728
1729 /*
1730 * The logic we want is
1731 *
1732 * if suid or (sgid and xgrp)
1733 * remove privs
1734 */
1735 int should_remove_suid(struct dentry *dentry)
1736 {
1737 umode_t mode = d_inode(dentry)->i_mode;
1738 int kill = 0;
1739
1740 /* suid always must be killed */
1741 if (unlikely(mode & S_ISUID))
1742 kill = ATTR_KILL_SUID;
1743
1744 /*
1745 * sgid without any exec bits is just a mandatory locking mark; leave
1746 * it alone. If some exec bits are set, it's a real sgid; kill it.
1747 */
1748 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1749 kill |= ATTR_KILL_SGID;
1750
1751 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1752 return kill;
1753
1754 return 0;
1755 }
1756 EXPORT_SYMBOL(should_remove_suid);
1757
1758 /*
1759 * Return mask of changes for notify_change() that need to be done as a
1760 * response to write or truncate. Return 0 if nothing has to be changed.
1761 * Negative value on error (change should be denied).
1762 */
1763 int dentry_needs_remove_privs(struct dentry *dentry)
1764 {
1765 struct inode *inode = d_inode(dentry);
1766 int mask = 0;
1767 int ret;
1768
1769 if (IS_NOSEC(inode))
1770 return 0;
1771
1772 mask = should_remove_suid(dentry);
1773 ret = security_inode_need_killpriv(dentry);
1774 if (ret < 0)
1775 return ret;
1776 if (ret)
1777 mask |= ATTR_KILL_PRIV;
1778 return mask;
1779 }
1780
1781 static int __remove_privs(struct dentry *dentry, int kill)
1782 {
1783 struct iattr newattrs;
1784
1785 newattrs.ia_valid = ATTR_FORCE | kill;
1786 /*
1787 * Note we call this on write, so notify_change will not
1788 * encounter any conflicting delegations:
1789 */
1790 return notify_change(dentry, &newattrs, NULL);
1791 }
1792
1793 /*
1794 * Remove special file priviledges (suid, capabilities) when file is written
1795 * to or truncated.
1796 */
1797 int file_remove_privs(struct file *file)
1798 {
1799 struct dentry *dentry = file_dentry(file);
1800 struct inode *inode = file_inode(file);
1801 int kill;
1802 int error = 0;
1803
1804 /* Fast path for nothing security related */
1805 if (IS_NOSEC(inode))
1806 return 0;
1807
1808 kill = dentry_needs_remove_privs(dentry);
1809 if (kill < 0)
1810 return kill;
1811 if (kill)
1812 error = __remove_privs(dentry, kill);
1813 if (!error)
1814 inode_has_no_xattr(inode);
1815
1816 return error;
1817 }
1818 EXPORT_SYMBOL(file_remove_privs);
1819
1820 /**
1821 * file_update_time - update mtime and ctime time
1822 * @file: file accessed
1823 *
1824 * Update the mtime and ctime members of an inode and mark the inode
1825 * for writeback. Note that this function is meant exclusively for
1826 * usage in the file write path of filesystems, and filesystems may
1827 * choose to explicitly ignore update via this function with the
1828 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1829 * timestamps are handled by the server. This can return an error for
1830 * file systems who need to allocate space in order to update an inode.
1831 */
1832
1833 int file_update_time(struct file *file)
1834 {
1835 struct inode *inode = file_inode(file);
1836 struct timespec now;
1837 int sync_it = 0;
1838 int ret;
1839
1840 /* First try to exhaust all avenues to not sync */
1841 if (IS_NOCMTIME(inode))
1842 return 0;
1843
1844 now = current_time(inode);
1845 if (!timespec_equal(&inode->i_mtime, &now))
1846 sync_it = S_MTIME;
1847
1848 if (!timespec_equal(&inode->i_ctime, &now))
1849 sync_it |= S_CTIME;
1850
1851 if (IS_I_VERSION(inode))
1852 sync_it |= S_VERSION;
1853
1854 if (!sync_it)
1855 return 0;
1856
1857 /* Finally allowed to write? Takes lock. */
1858 if (__mnt_want_write_file(file))
1859 return 0;
1860
1861 ret = update_time(inode, &now, sync_it);
1862 __mnt_drop_write_file(file);
1863
1864 return ret;
1865 }
1866 EXPORT_SYMBOL(file_update_time);
1867
1868 int inode_needs_sync(struct inode *inode)
1869 {
1870 if (IS_SYNC(inode))
1871 return 1;
1872 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1873 return 1;
1874 return 0;
1875 }
1876 EXPORT_SYMBOL(inode_needs_sync);
1877
1878 /*
1879 * If we try to find an inode in the inode hash while it is being
1880 * deleted, we have to wait until the filesystem completes its
1881 * deletion before reporting that it isn't found. This function waits
1882 * until the deletion _might_ have completed. Callers are responsible
1883 * to recheck inode state.
1884 *
1885 * It doesn't matter if I_NEW is not set initially, a call to
1886 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1887 * will DTRT.
1888 */
1889 static void __wait_on_freeing_inode(struct inode *inode)
1890 {
1891 wait_queue_head_t *wq;
1892 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1893 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1894 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1895 spin_unlock(&inode->i_lock);
1896 spin_unlock(&inode_hash_lock);
1897 schedule();
1898 finish_wait(wq, &wait.wait);
1899 spin_lock(&inode_hash_lock);
1900 }
1901
1902 static __initdata unsigned long ihash_entries;
1903 static int __init set_ihash_entries(char *str)
1904 {
1905 if (!str)
1906 return 0;
1907 ihash_entries = simple_strtoul(str, &str, 0);
1908 return 1;
1909 }
1910 __setup("ihash_entries=", set_ihash_entries);
1911
1912 /*
1913 * Initialize the waitqueues and inode hash table.
1914 */
1915 void __init inode_init_early(void)
1916 {
1917 unsigned int loop;
1918
1919 /* If hashes are distributed across NUMA nodes, defer
1920 * hash allocation until vmalloc space is available.
1921 */
1922 if (hashdist)
1923 return;
1924
1925 inode_hashtable =
1926 alloc_large_system_hash("Inode-cache",
1927 sizeof(struct hlist_head),
1928 ihash_entries,
1929 14,
1930 HASH_EARLY,
1931 &i_hash_shift,
1932 &i_hash_mask,
1933 0,
1934 0);
1935
1936 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1937 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1938 }
1939
1940 void __init inode_init(void)
1941 {
1942 unsigned int loop;
1943
1944 /* inode slab cache */
1945 inode_cachep = kmem_cache_create("inode_cache",
1946 sizeof(struct inode),
1947 0,
1948 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1949 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1950 init_once);
1951
1952 /* Hash may have been set up in inode_init_early */
1953 if (!hashdist)
1954 return;
1955
1956 inode_hashtable =
1957 alloc_large_system_hash("Inode-cache",
1958 sizeof(struct hlist_head),
1959 ihash_entries,
1960 14,
1961 0,
1962 &i_hash_shift,
1963 &i_hash_mask,
1964 0,
1965 0);
1966
1967 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1968 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1969 }
1970
1971 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1972 {
1973 inode->i_mode = mode;
1974 if (S_ISCHR(mode)) {
1975 inode->i_fop = &def_chr_fops;
1976 inode->i_rdev = rdev;
1977 } else if (S_ISBLK(mode)) {
1978 inode->i_fop = &def_blk_fops;
1979 inode->i_rdev = rdev;
1980 } else if (S_ISFIFO(mode))
1981 inode->i_fop = &pipefifo_fops;
1982 else if (S_ISSOCK(mode))
1983 ; /* leave it no_open_fops */
1984 else
1985 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1986 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1987 inode->i_ino);
1988 }
1989 EXPORT_SYMBOL(init_special_inode);
1990
1991 /**
1992 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1993 * @inode: New inode
1994 * @dir: Directory inode
1995 * @mode: mode of the new inode
1996 */
1997 void inode_init_owner(struct inode *inode, const struct inode *dir,
1998 umode_t mode)
1999 {
2000 inode->i_uid = current_fsuid();
2001 if (dir && dir->i_mode & S_ISGID) {
2002 inode->i_gid = dir->i_gid;
2003 if (S_ISDIR(mode))
2004 mode |= S_ISGID;
2005 } else
2006 inode->i_gid = current_fsgid();
2007 inode->i_mode = mode;
2008 }
2009 EXPORT_SYMBOL(inode_init_owner);
2010
2011 /**
2012 * inode_owner_or_capable - check current task permissions to inode
2013 * @inode: inode being checked
2014 *
2015 * Return true if current either has CAP_FOWNER in a namespace with the
2016 * inode owner uid mapped, or owns the file.
2017 */
2018 bool inode_owner_or_capable(const struct inode *inode)
2019 {
2020 struct user_namespace *ns;
2021
2022 if (uid_eq(current_fsuid(), inode->i_uid))
2023 return true;
2024
2025 ns = current_user_ns();
2026 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2027 return true;
2028 return false;
2029 }
2030 EXPORT_SYMBOL(inode_owner_or_capable);
2031
2032 /*
2033 * Direct i/o helper functions
2034 */
2035 static void __inode_dio_wait(struct inode *inode)
2036 {
2037 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2038 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2039
2040 do {
2041 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2042 if (atomic_read(&inode->i_dio_count))
2043 schedule();
2044 } while (atomic_read(&inode->i_dio_count));
2045 finish_wait(wq, &q.wait);
2046 }
2047
2048 /**
2049 * inode_dio_wait - wait for outstanding DIO requests to finish
2050 * @inode: inode to wait for
2051 *
2052 * Waits for all pending direct I/O requests to finish so that we can
2053 * proceed with a truncate or equivalent operation.
2054 *
2055 * Must be called under a lock that serializes taking new references
2056 * to i_dio_count, usually by inode->i_mutex.
2057 */
2058 void inode_dio_wait(struct inode *inode)
2059 {
2060 if (atomic_read(&inode->i_dio_count))
2061 __inode_dio_wait(inode);
2062 }
2063 EXPORT_SYMBOL(inode_dio_wait);
2064
2065 /*
2066 * inode_set_flags - atomically set some inode flags
2067 *
2068 * Note: the caller should be holding i_mutex, or else be sure that
2069 * they have exclusive access to the inode structure (i.e., while the
2070 * inode is being instantiated). The reason for the cmpxchg() loop
2071 * --- which wouldn't be necessary if all code paths which modify
2072 * i_flags actually followed this rule, is that there is at least one
2073 * code path which doesn't today so we use cmpxchg() out of an abundance
2074 * of caution.
2075 *
2076 * In the long run, i_mutex is overkill, and we should probably look
2077 * at using the i_lock spinlock to protect i_flags, and then make sure
2078 * it is so documented in include/linux/fs.h and that all code follows
2079 * the locking convention!!
2080 */
2081 void inode_set_flags(struct inode *inode, unsigned int flags,
2082 unsigned int mask)
2083 {
2084 unsigned int old_flags, new_flags;
2085
2086 WARN_ON_ONCE(flags & ~mask);
2087 do {
2088 old_flags = ACCESS_ONCE(inode->i_flags);
2089 new_flags = (old_flags & ~mask) | flags;
2090 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2091 new_flags) != old_flags));
2092 }
2093 EXPORT_SYMBOL(inode_set_flags);
2094
2095 void inode_nohighmem(struct inode *inode)
2096 {
2097 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2098 }
2099 EXPORT_SYMBOL(inode_nohighmem);
2100
2101 /**
2102 * current_time - Return FS time
2103 * @inode: inode.
2104 *
2105 * Return the current time truncated to the time granularity supported by
2106 * the fs.
2107 *
2108 * Note that inode and inode->sb cannot be NULL.
2109 * Otherwise, the function warns and returns time without truncation.
2110 */
2111 struct timespec current_time(struct inode *inode)
2112 {
2113 struct timespec now = current_kernel_time();
2114
2115 if (unlikely(!inode->i_sb)) {
2116 WARN(1, "current_time() called with uninitialized super_block in the inode");
2117 return now;
2118 }
2119
2120 return timespec_trunc(now, inode->i_sb->s_time_gran);
2121 }
2122 EXPORT_SYMBOL(current_time);