]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
Merge tag 'nios2-v4.2' of git://git.rocketboards.org/linux-socfpga-next
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23
24 /*
25 * Inode locking rules:
26 *
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode_sb_list_lock protects:
32 * sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
37 *
38 * Lock ordering:
39 *
40 * inode_sb_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
43 *
44 * bdi->wb.list_lock
45 * inode->i_lock
46 *
47 * inode_hash_lock
48 * inode_sb_list_lock
49 * inode->i_lock
50 *
51 * iunique_lock
52 * inode_hash_lock
53 */
54
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure intialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic_set(&inode->i_count, 1);
141 inode->i_op = &empty_iops;
142 inode->i_fop = &no_open_fops;
143 inode->__i_nlink = 1;
144 inode->i_opflags = 0;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_rdev = 0;
157 inode->dirtied_when = 0;
158
159 if (security_inode_alloc(inode))
160 goto out;
161 spin_lock_init(&inode->i_lock);
162 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163
164 mutex_init(&inode->i_mutex);
165 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166
167 atomic_set(&inode->i_dio_count, 0);
168
169 mapping->a_ops = &empty_aops;
170 mapping->host = inode;
171 mapping->flags = 0;
172 atomic_set(&mapping->i_mmap_writable, 0);
173 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 mapping->private_data = NULL;
175 mapping->writeback_index = 0;
176 inode->i_private = NULL;
177 inode->i_mapping = mapping;
178 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
179 #ifdef CONFIG_FS_POSIX_ACL
180 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
181 #endif
182
183 #ifdef CONFIG_FSNOTIFY
184 inode->i_fsnotify_mask = 0;
185 #endif
186 inode->i_flctx = NULL;
187 this_cpu_inc(nr_inodes);
188
189 return 0;
190 out:
191 return -ENOMEM;
192 }
193 EXPORT_SYMBOL(inode_init_always);
194
195 static struct inode *alloc_inode(struct super_block *sb)
196 {
197 struct inode *inode;
198
199 if (sb->s_op->alloc_inode)
200 inode = sb->s_op->alloc_inode(sb);
201 else
202 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
203
204 if (!inode)
205 return NULL;
206
207 if (unlikely(inode_init_always(sb, inode))) {
208 if (inode->i_sb->s_op->destroy_inode)
209 inode->i_sb->s_op->destroy_inode(inode);
210 else
211 kmem_cache_free(inode_cachep, inode);
212 return NULL;
213 }
214
215 return inode;
216 }
217
218 void free_inode_nonrcu(struct inode *inode)
219 {
220 kmem_cache_free(inode_cachep, inode);
221 }
222 EXPORT_SYMBOL(free_inode_nonrcu);
223
224 void __destroy_inode(struct inode *inode)
225 {
226 BUG_ON(inode_has_buffers(inode));
227 inode_detach_wb(inode);
228 security_inode_free(inode);
229 fsnotify_inode_delete(inode);
230 locks_free_lock_context(inode->i_flctx);
231 if (!inode->i_nlink) {
232 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
233 atomic_long_dec(&inode->i_sb->s_remove_count);
234 }
235
236 #ifdef CONFIG_FS_POSIX_ACL
237 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
238 posix_acl_release(inode->i_acl);
239 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
240 posix_acl_release(inode->i_default_acl);
241 #endif
242 this_cpu_dec(nr_inodes);
243 }
244 EXPORT_SYMBOL(__destroy_inode);
245
246 static void i_callback(struct rcu_head *head)
247 {
248 struct inode *inode = container_of(head, struct inode, i_rcu);
249 kmem_cache_free(inode_cachep, inode);
250 }
251
252 static void destroy_inode(struct inode *inode)
253 {
254 BUG_ON(!list_empty(&inode->i_lru));
255 __destroy_inode(inode);
256 if (inode->i_sb->s_op->destroy_inode)
257 inode->i_sb->s_op->destroy_inode(inode);
258 else
259 call_rcu(&inode->i_rcu, i_callback);
260 }
261
262 /**
263 * drop_nlink - directly drop an inode's link count
264 * @inode: inode
265 *
266 * This is a low-level filesystem helper to replace any
267 * direct filesystem manipulation of i_nlink. In cases
268 * where we are attempting to track writes to the
269 * filesystem, a decrement to zero means an imminent
270 * write when the file is truncated and actually unlinked
271 * on the filesystem.
272 */
273 void drop_nlink(struct inode *inode)
274 {
275 WARN_ON(inode->i_nlink == 0);
276 inode->__i_nlink--;
277 if (!inode->i_nlink)
278 atomic_long_inc(&inode->i_sb->s_remove_count);
279 }
280 EXPORT_SYMBOL(drop_nlink);
281
282 /**
283 * clear_nlink - directly zero an inode's link count
284 * @inode: inode
285 *
286 * This is a low-level filesystem helper to replace any
287 * direct filesystem manipulation of i_nlink. See
288 * drop_nlink() for why we care about i_nlink hitting zero.
289 */
290 void clear_nlink(struct inode *inode)
291 {
292 if (inode->i_nlink) {
293 inode->__i_nlink = 0;
294 atomic_long_inc(&inode->i_sb->s_remove_count);
295 }
296 }
297 EXPORT_SYMBOL(clear_nlink);
298
299 /**
300 * set_nlink - directly set an inode's link count
301 * @inode: inode
302 * @nlink: new nlink (should be non-zero)
303 *
304 * This is a low-level filesystem helper to replace any
305 * direct filesystem manipulation of i_nlink.
306 */
307 void set_nlink(struct inode *inode, unsigned int nlink)
308 {
309 if (!nlink) {
310 clear_nlink(inode);
311 } else {
312 /* Yes, some filesystems do change nlink from zero to one */
313 if (inode->i_nlink == 0)
314 atomic_long_dec(&inode->i_sb->s_remove_count);
315
316 inode->__i_nlink = nlink;
317 }
318 }
319 EXPORT_SYMBOL(set_nlink);
320
321 /**
322 * inc_nlink - directly increment an inode's link count
323 * @inode: inode
324 *
325 * This is a low-level filesystem helper to replace any
326 * direct filesystem manipulation of i_nlink. Currently,
327 * it is only here for parity with dec_nlink().
328 */
329 void inc_nlink(struct inode *inode)
330 {
331 if (unlikely(inode->i_nlink == 0)) {
332 WARN_ON(!(inode->i_state & I_LINKABLE));
333 atomic_long_dec(&inode->i_sb->s_remove_count);
334 }
335
336 inode->__i_nlink++;
337 }
338 EXPORT_SYMBOL(inc_nlink);
339
340 void address_space_init_once(struct address_space *mapping)
341 {
342 memset(mapping, 0, sizeof(*mapping));
343 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
344 spin_lock_init(&mapping->tree_lock);
345 init_rwsem(&mapping->i_mmap_rwsem);
346 INIT_LIST_HEAD(&mapping->private_list);
347 spin_lock_init(&mapping->private_lock);
348 mapping->i_mmap = RB_ROOT;
349 }
350 EXPORT_SYMBOL(address_space_init_once);
351
352 /*
353 * These are initializations that only need to be done
354 * once, because the fields are idempotent across use
355 * of the inode, so let the slab aware of that.
356 */
357 void inode_init_once(struct inode *inode)
358 {
359 memset(inode, 0, sizeof(*inode));
360 INIT_HLIST_NODE(&inode->i_hash);
361 INIT_LIST_HEAD(&inode->i_devices);
362 INIT_LIST_HEAD(&inode->i_wb_list);
363 INIT_LIST_HEAD(&inode->i_lru);
364 address_space_init_once(&inode->i_data);
365 i_size_ordered_init(inode);
366 #ifdef CONFIG_FSNOTIFY
367 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
368 #endif
369 }
370 EXPORT_SYMBOL(inode_init_once);
371
372 static void init_once(void *foo)
373 {
374 struct inode *inode = (struct inode *) foo;
375
376 inode_init_once(inode);
377 }
378
379 /*
380 * inode->i_lock must be held
381 */
382 void __iget(struct inode *inode)
383 {
384 atomic_inc(&inode->i_count);
385 }
386
387 /*
388 * get additional reference to inode; caller must already hold one.
389 */
390 void ihold(struct inode *inode)
391 {
392 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
393 }
394 EXPORT_SYMBOL(ihold);
395
396 static void inode_lru_list_add(struct inode *inode)
397 {
398 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
399 this_cpu_inc(nr_unused);
400 }
401
402 /*
403 * Add inode to LRU if needed (inode is unused and clean).
404 *
405 * Needs inode->i_lock held.
406 */
407 void inode_add_lru(struct inode *inode)
408 {
409 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
410 I_FREEING | I_WILL_FREE)) &&
411 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
412 inode_lru_list_add(inode);
413 }
414
415
416 static void inode_lru_list_del(struct inode *inode)
417 {
418
419 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
420 this_cpu_dec(nr_unused);
421 }
422
423 /**
424 * inode_sb_list_add - add inode to the superblock list of inodes
425 * @inode: inode to add
426 */
427 void inode_sb_list_add(struct inode *inode)
428 {
429 spin_lock(&inode_sb_list_lock);
430 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
431 spin_unlock(&inode_sb_list_lock);
432 }
433 EXPORT_SYMBOL_GPL(inode_sb_list_add);
434
435 static inline void inode_sb_list_del(struct inode *inode)
436 {
437 if (!list_empty(&inode->i_sb_list)) {
438 spin_lock(&inode_sb_list_lock);
439 list_del_init(&inode->i_sb_list);
440 spin_unlock(&inode_sb_list_lock);
441 }
442 }
443
444 static unsigned long hash(struct super_block *sb, unsigned long hashval)
445 {
446 unsigned long tmp;
447
448 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
449 L1_CACHE_BYTES;
450 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
451 return tmp & i_hash_mask;
452 }
453
454 /**
455 * __insert_inode_hash - hash an inode
456 * @inode: unhashed inode
457 * @hashval: unsigned long value used to locate this object in the
458 * inode_hashtable.
459 *
460 * Add an inode to the inode hash for this superblock.
461 */
462 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
463 {
464 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
465
466 spin_lock(&inode_hash_lock);
467 spin_lock(&inode->i_lock);
468 hlist_add_head(&inode->i_hash, b);
469 spin_unlock(&inode->i_lock);
470 spin_unlock(&inode_hash_lock);
471 }
472 EXPORT_SYMBOL(__insert_inode_hash);
473
474 /**
475 * __remove_inode_hash - remove an inode from the hash
476 * @inode: inode to unhash
477 *
478 * Remove an inode from the superblock.
479 */
480 void __remove_inode_hash(struct inode *inode)
481 {
482 spin_lock(&inode_hash_lock);
483 spin_lock(&inode->i_lock);
484 hlist_del_init(&inode->i_hash);
485 spin_unlock(&inode->i_lock);
486 spin_unlock(&inode_hash_lock);
487 }
488 EXPORT_SYMBOL(__remove_inode_hash);
489
490 void clear_inode(struct inode *inode)
491 {
492 might_sleep();
493 /*
494 * We have to cycle tree_lock here because reclaim can be still in the
495 * process of removing the last page (in __delete_from_page_cache())
496 * and we must not free mapping under it.
497 */
498 spin_lock_irq(&inode->i_data.tree_lock);
499 BUG_ON(inode->i_data.nrpages);
500 BUG_ON(inode->i_data.nrshadows);
501 spin_unlock_irq(&inode->i_data.tree_lock);
502 BUG_ON(!list_empty(&inode->i_data.private_list));
503 BUG_ON(!(inode->i_state & I_FREEING));
504 BUG_ON(inode->i_state & I_CLEAR);
505 /* don't need i_lock here, no concurrent mods to i_state */
506 inode->i_state = I_FREEING | I_CLEAR;
507 }
508 EXPORT_SYMBOL(clear_inode);
509
510 /*
511 * Free the inode passed in, removing it from the lists it is still connected
512 * to. We remove any pages still attached to the inode and wait for any IO that
513 * is still in progress before finally destroying the inode.
514 *
515 * An inode must already be marked I_FREEING so that we avoid the inode being
516 * moved back onto lists if we race with other code that manipulates the lists
517 * (e.g. writeback_single_inode). The caller is responsible for setting this.
518 *
519 * An inode must already be removed from the LRU list before being evicted from
520 * the cache. This should occur atomically with setting the I_FREEING state
521 * flag, so no inodes here should ever be on the LRU when being evicted.
522 */
523 static void evict(struct inode *inode)
524 {
525 const struct super_operations *op = inode->i_sb->s_op;
526
527 BUG_ON(!(inode->i_state & I_FREEING));
528 BUG_ON(!list_empty(&inode->i_lru));
529
530 if (!list_empty(&inode->i_wb_list))
531 inode_wb_list_del(inode);
532
533 inode_sb_list_del(inode);
534
535 /*
536 * Wait for flusher thread to be done with the inode so that filesystem
537 * does not start destroying it while writeback is still running. Since
538 * the inode has I_FREEING set, flusher thread won't start new work on
539 * the inode. We just have to wait for running writeback to finish.
540 */
541 inode_wait_for_writeback(inode);
542
543 if (op->evict_inode) {
544 op->evict_inode(inode);
545 } else {
546 truncate_inode_pages_final(&inode->i_data);
547 clear_inode(inode);
548 }
549 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
550 bd_forget(inode);
551 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
552 cd_forget(inode);
553
554 remove_inode_hash(inode);
555
556 spin_lock(&inode->i_lock);
557 wake_up_bit(&inode->i_state, __I_NEW);
558 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
559 spin_unlock(&inode->i_lock);
560
561 destroy_inode(inode);
562 }
563
564 /*
565 * dispose_list - dispose of the contents of a local list
566 * @head: the head of the list to free
567 *
568 * Dispose-list gets a local list with local inodes in it, so it doesn't
569 * need to worry about list corruption and SMP locks.
570 */
571 static void dispose_list(struct list_head *head)
572 {
573 while (!list_empty(head)) {
574 struct inode *inode;
575
576 inode = list_first_entry(head, struct inode, i_lru);
577 list_del_init(&inode->i_lru);
578
579 evict(inode);
580 }
581 }
582
583 /**
584 * evict_inodes - evict all evictable inodes for a superblock
585 * @sb: superblock to operate on
586 *
587 * Make sure that no inodes with zero refcount are retained. This is
588 * called by superblock shutdown after having MS_ACTIVE flag removed,
589 * so any inode reaching zero refcount during or after that call will
590 * be immediately evicted.
591 */
592 void evict_inodes(struct super_block *sb)
593 {
594 struct inode *inode, *next;
595 LIST_HEAD(dispose);
596
597 spin_lock(&inode_sb_list_lock);
598 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
599 if (atomic_read(&inode->i_count))
600 continue;
601
602 spin_lock(&inode->i_lock);
603 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
604 spin_unlock(&inode->i_lock);
605 continue;
606 }
607
608 inode->i_state |= I_FREEING;
609 inode_lru_list_del(inode);
610 spin_unlock(&inode->i_lock);
611 list_add(&inode->i_lru, &dispose);
612 }
613 spin_unlock(&inode_sb_list_lock);
614
615 dispose_list(&dispose);
616 }
617
618 /**
619 * invalidate_inodes - attempt to free all inodes on a superblock
620 * @sb: superblock to operate on
621 * @kill_dirty: flag to guide handling of dirty inodes
622 *
623 * Attempts to free all inodes for a given superblock. If there were any
624 * busy inodes return a non-zero value, else zero.
625 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
626 * them as busy.
627 */
628 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
629 {
630 int busy = 0;
631 struct inode *inode, *next;
632 LIST_HEAD(dispose);
633
634 spin_lock(&inode_sb_list_lock);
635 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
636 spin_lock(&inode->i_lock);
637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 spin_unlock(&inode->i_lock);
639 continue;
640 }
641 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
642 spin_unlock(&inode->i_lock);
643 busy = 1;
644 continue;
645 }
646 if (atomic_read(&inode->i_count)) {
647 spin_unlock(&inode->i_lock);
648 busy = 1;
649 continue;
650 }
651
652 inode->i_state |= I_FREEING;
653 inode_lru_list_del(inode);
654 spin_unlock(&inode->i_lock);
655 list_add(&inode->i_lru, &dispose);
656 }
657 spin_unlock(&inode_sb_list_lock);
658
659 dispose_list(&dispose);
660
661 return busy;
662 }
663
664 /*
665 * Isolate the inode from the LRU in preparation for freeing it.
666 *
667 * Any inodes which are pinned purely because of attached pagecache have their
668 * pagecache removed. If the inode has metadata buffers attached to
669 * mapping->private_list then try to remove them.
670 *
671 * If the inode has the I_REFERENCED flag set, then it means that it has been
672 * used recently - the flag is set in iput_final(). When we encounter such an
673 * inode, clear the flag and move it to the back of the LRU so it gets another
674 * pass through the LRU before it gets reclaimed. This is necessary because of
675 * the fact we are doing lazy LRU updates to minimise lock contention so the
676 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
677 * with this flag set because they are the inodes that are out of order.
678 */
679 static enum lru_status inode_lru_isolate(struct list_head *item,
680 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
681 {
682 struct list_head *freeable = arg;
683 struct inode *inode = container_of(item, struct inode, i_lru);
684
685 /*
686 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
687 * If we fail to get the lock, just skip it.
688 */
689 if (!spin_trylock(&inode->i_lock))
690 return LRU_SKIP;
691
692 /*
693 * Referenced or dirty inodes are still in use. Give them another pass
694 * through the LRU as we canot reclaim them now.
695 */
696 if (atomic_read(&inode->i_count) ||
697 (inode->i_state & ~I_REFERENCED)) {
698 list_lru_isolate(lru, &inode->i_lru);
699 spin_unlock(&inode->i_lock);
700 this_cpu_dec(nr_unused);
701 return LRU_REMOVED;
702 }
703
704 /* recently referenced inodes get one more pass */
705 if (inode->i_state & I_REFERENCED) {
706 inode->i_state &= ~I_REFERENCED;
707 spin_unlock(&inode->i_lock);
708 return LRU_ROTATE;
709 }
710
711 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
712 __iget(inode);
713 spin_unlock(&inode->i_lock);
714 spin_unlock(lru_lock);
715 if (remove_inode_buffers(inode)) {
716 unsigned long reap;
717 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
718 if (current_is_kswapd())
719 __count_vm_events(KSWAPD_INODESTEAL, reap);
720 else
721 __count_vm_events(PGINODESTEAL, reap);
722 if (current->reclaim_state)
723 current->reclaim_state->reclaimed_slab += reap;
724 }
725 iput(inode);
726 spin_lock(lru_lock);
727 return LRU_RETRY;
728 }
729
730 WARN_ON(inode->i_state & I_NEW);
731 inode->i_state |= I_FREEING;
732 list_lru_isolate_move(lru, &inode->i_lru, freeable);
733 spin_unlock(&inode->i_lock);
734
735 this_cpu_dec(nr_unused);
736 return LRU_REMOVED;
737 }
738
739 /*
740 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
741 * This is called from the superblock shrinker function with a number of inodes
742 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
743 * then are freed outside inode_lock by dispose_list().
744 */
745 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
746 {
747 LIST_HEAD(freeable);
748 long freed;
749
750 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
751 inode_lru_isolate, &freeable);
752 dispose_list(&freeable);
753 return freed;
754 }
755
756 static void __wait_on_freeing_inode(struct inode *inode);
757 /*
758 * Called with the inode lock held.
759 */
760 static struct inode *find_inode(struct super_block *sb,
761 struct hlist_head *head,
762 int (*test)(struct inode *, void *),
763 void *data)
764 {
765 struct inode *inode = NULL;
766
767 repeat:
768 hlist_for_each_entry(inode, head, i_hash) {
769 if (inode->i_sb != sb)
770 continue;
771 if (!test(inode, data))
772 continue;
773 spin_lock(&inode->i_lock);
774 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
775 __wait_on_freeing_inode(inode);
776 goto repeat;
777 }
778 __iget(inode);
779 spin_unlock(&inode->i_lock);
780 return inode;
781 }
782 return NULL;
783 }
784
785 /*
786 * find_inode_fast is the fast path version of find_inode, see the comment at
787 * iget_locked for details.
788 */
789 static struct inode *find_inode_fast(struct super_block *sb,
790 struct hlist_head *head, unsigned long ino)
791 {
792 struct inode *inode = NULL;
793
794 repeat:
795 hlist_for_each_entry(inode, head, i_hash) {
796 if (inode->i_ino != ino)
797 continue;
798 if (inode->i_sb != sb)
799 continue;
800 spin_lock(&inode->i_lock);
801 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
802 __wait_on_freeing_inode(inode);
803 goto repeat;
804 }
805 __iget(inode);
806 spin_unlock(&inode->i_lock);
807 return inode;
808 }
809 return NULL;
810 }
811
812 /*
813 * Each cpu owns a range of LAST_INO_BATCH numbers.
814 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
815 * to renew the exhausted range.
816 *
817 * This does not significantly increase overflow rate because every CPU can
818 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
819 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
820 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
821 * overflow rate by 2x, which does not seem too significant.
822 *
823 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
824 * error if st_ino won't fit in target struct field. Use 32bit counter
825 * here to attempt to avoid that.
826 */
827 #define LAST_INO_BATCH 1024
828 static DEFINE_PER_CPU(unsigned int, last_ino);
829
830 unsigned int get_next_ino(void)
831 {
832 unsigned int *p = &get_cpu_var(last_ino);
833 unsigned int res = *p;
834
835 #ifdef CONFIG_SMP
836 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
837 static atomic_t shared_last_ino;
838 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
839
840 res = next - LAST_INO_BATCH;
841 }
842 #endif
843
844 *p = ++res;
845 put_cpu_var(last_ino);
846 return res;
847 }
848 EXPORT_SYMBOL(get_next_ino);
849
850 /**
851 * new_inode_pseudo - obtain an inode
852 * @sb: superblock
853 *
854 * Allocates a new inode for given superblock.
855 * Inode wont be chained in superblock s_inodes list
856 * This means :
857 * - fs can't be unmount
858 * - quotas, fsnotify, writeback can't work
859 */
860 struct inode *new_inode_pseudo(struct super_block *sb)
861 {
862 struct inode *inode = alloc_inode(sb);
863
864 if (inode) {
865 spin_lock(&inode->i_lock);
866 inode->i_state = 0;
867 spin_unlock(&inode->i_lock);
868 INIT_LIST_HEAD(&inode->i_sb_list);
869 }
870 return inode;
871 }
872
873 /**
874 * new_inode - obtain an inode
875 * @sb: superblock
876 *
877 * Allocates a new inode for given superblock. The default gfp_mask
878 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
879 * If HIGHMEM pages are unsuitable or it is known that pages allocated
880 * for the page cache are not reclaimable or migratable,
881 * mapping_set_gfp_mask() must be called with suitable flags on the
882 * newly created inode's mapping
883 *
884 */
885 struct inode *new_inode(struct super_block *sb)
886 {
887 struct inode *inode;
888
889 spin_lock_prefetch(&inode_sb_list_lock);
890
891 inode = new_inode_pseudo(sb);
892 if (inode)
893 inode_sb_list_add(inode);
894 return inode;
895 }
896 EXPORT_SYMBOL(new_inode);
897
898 #ifdef CONFIG_DEBUG_LOCK_ALLOC
899 void lockdep_annotate_inode_mutex_key(struct inode *inode)
900 {
901 if (S_ISDIR(inode->i_mode)) {
902 struct file_system_type *type = inode->i_sb->s_type;
903
904 /* Set new key only if filesystem hasn't already changed it */
905 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
906 /*
907 * ensure nobody is actually holding i_mutex
908 */
909 mutex_destroy(&inode->i_mutex);
910 mutex_init(&inode->i_mutex);
911 lockdep_set_class(&inode->i_mutex,
912 &type->i_mutex_dir_key);
913 }
914 }
915 }
916 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
917 #endif
918
919 /**
920 * unlock_new_inode - clear the I_NEW state and wake up any waiters
921 * @inode: new inode to unlock
922 *
923 * Called when the inode is fully initialised to clear the new state of the
924 * inode and wake up anyone waiting for the inode to finish initialisation.
925 */
926 void unlock_new_inode(struct inode *inode)
927 {
928 lockdep_annotate_inode_mutex_key(inode);
929 spin_lock(&inode->i_lock);
930 WARN_ON(!(inode->i_state & I_NEW));
931 inode->i_state &= ~I_NEW;
932 smp_mb();
933 wake_up_bit(&inode->i_state, __I_NEW);
934 spin_unlock(&inode->i_lock);
935 }
936 EXPORT_SYMBOL(unlock_new_inode);
937
938 /**
939 * lock_two_nondirectories - take two i_mutexes on non-directory objects
940 *
941 * Lock any non-NULL argument that is not a directory.
942 * Zero, one or two objects may be locked by this function.
943 *
944 * @inode1: first inode to lock
945 * @inode2: second inode to lock
946 */
947 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
948 {
949 if (inode1 > inode2)
950 swap(inode1, inode2);
951
952 if (inode1 && !S_ISDIR(inode1->i_mode))
953 mutex_lock(&inode1->i_mutex);
954 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
955 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
956 }
957 EXPORT_SYMBOL(lock_two_nondirectories);
958
959 /**
960 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
961 * @inode1: first inode to unlock
962 * @inode2: second inode to unlock
963 */
964 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
965 {
966 if (inode1 && !S_ISDIR(inode1->i_mode))
967 mutex_unlock(&inode1->i_mutex);
968 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
969 mutex_unlock(&inode2->i_mutex);
970 }
971 EXPORT_SYMBOL(unlock_two_nondirectories);
972
973 /**
974 * iget5_locked - obtain an inode from a mounted file system
975 * @sb: super block of file system
976 * @hashval: hash value (usually inode number) to get
977 * @test: callback used for comparisons between inodes
978 * @set: callback used to initialize a new struct inode
979 * @data: opaque data pointer to pass to @test and @set
980 *
981 * Search for the inode specified by @hashval and @data in the inode cache,
982 * and if present it is return it with an increased reference count. This is
983 * a generalized version of iget_locked() for file systems where the inode
984 * number is not sufficient for unique identification of an inode.
985 *
986 * If the inode is not in cache, allocate a new inode and return it locked,
987 * hashed, and with the I_NEW flag set. The file system gets to fill it in
988 * before unlocking it via unlock_new_inode().
989 *
990 * Note both @test and @set are called with the inode_hash_lock held, so can't
991 * sleep.
992 */
993 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
994 int (*test)(struct inode *, void *),
995 int (*set)(struct inode *, void *), void *data)
996 {
997 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
998 struct inode *inode;
999
1000 spin_lock(&inode_hash_lock);
1001 inode = find_inode(sb, head, test, data);
1002 spin_unlock(&inode_hash_lock);
1003
1004 if (inode) {
1005 wait_on_inode(inode);
1006 return inode;
1007 }
1008
1009 inode = alloc_inode(sb);
1010 if (inode) {
1011 struct inode *old;
1012
1013 spin_lock(&inode_hash_lock);
1014 /* We released the lock, so.. */
1015 old = find_inode(sb, head, test, data);
1016 if (!old) {
1017 if (set(inode, data))
1018 goto set_failed;
1019
1020 spin_lock(&inode->i_lock);
1021 inode->i_state = I_NEW;
1022 hlist_add_head(&inode->i_hash, head);
1023 spin_unlock(&inode->i_lock);
1024 inode_sb_list_add(inode);
1025 spin_unlock(&inode_hash_lock);
1026
1027 /* Return the locked inode with I_NEW set, the
1028 * caller is responsible for filling in the contents
1029 */
1030 return inode;
1031 }
1032
1033 /*
1034 * Uhhuh, somebody else created the same inode under
1035 * us. Use the old inode instead of the one we just
1036 * allocated.
1037 */
1038 spin_unlock(&inode_hash_lock);
1039 destroy_inode(inode);
1040 inode = old;
1041 wait_on_inode(inode);
1042 }
1043 return inode;
1044
1045 set_failed:
1046 spin_unlock(&inode_hash_lock);
1047 destroy_inode(inode);
1048 return NULL;
1049 }
1050 EXPORT_SYMBOL(iget5_locked);
1051
1052 /**
1053 * iget_locked - obtain an inode from a mounted file system
1054 * @sb: super block of file system
1055 * @ino: inode number to get
1056 *
1057 * Search for the inode specified by @ino in the inode cache and if present
1058 * return it with an increased reference count. This is for file systems
1059 * where the inode number is sufficient for unique identification of an inode.
1060 *
1061 * If the inode is not in cache, allocate a new inode and return it locked,
1062 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1063 * before unlocking it via unlock_new_inode().
1064 */
1065 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1066 {
1067 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1068 struct inode *inode;
1069
1070 spin_lock(&inode_hash_lock);
1071 inode = find_inode_fast(sb, head, ino);
1072 spin_unlock(&inode_hash_lock);
1073 if (inode) {
1074 wait_on_inode(inode);
1075 return inode;
1076 }
1077
1078 inode = alloc_inode(sb);
1079 if (inode) {
1080 struct inode *old;
1081
1082 spin_lock(&inode_hash_lock);
1083 /* We released the lock, so.. */
1084 old = find_inode_fast(sb, head, ino);
1085 if (!old) {
1086 inode->i_ino = ino;
1087 spin_lock(&inode->i_lock);
1088 inode->i_state = I_NEW;
1089 hlist_add_head(&inode->i_hash, head);
1090 spin_unlock(&inode->i_lock);
1091 inode_sb_list_add(inode);
1092 spin_unlock(&inode_hash_lock);
1093
1094 /* Return the locked inode with I_NEW set, the
1095 * caller is responsible for filling in the contents
1096 */
1097 return inode;
1098 }
1099
1100 /*
1101 * Uhhuh, somebody else created the same inode under
1102 * us. Use the old inode instead of the one we just
1103 * allocated.
1104 */
1105 spin_unlock(&inode_hash_lock);
1106 destroy_inode(inode);
1107 inode = old;
1108 wait_on_inode(inode);
1109 }
1110 return inode;
1111 }
1112 EXPORT_SYMBOL(iget_locked);
1113
1114 /*
1115 * search the inode cache for a matching inode number.
1116 * If we find one, then the inode number we are trying to
1117 * allocate is not unique and so we should not use it.
1118 *
1119 * Returns 1 if the inode number is unique, 0 if it is not.
1120 */
1121 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1122 {
1123 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1124 struct inode *inode;
1125
1126 spin_lock(&inode_hash_lock);
1127 hlist_for_each_entry(inode, b, i_hash) {
1128 if (inode->i_ino == ino && inode->i_sb == sb) {
1129 spin_unlock(&inode_hash_lock);
1130 return 0;
1131 }
1132 }
1133 spin_unlock(&inode_hash_lock);
1134
1135 return 1;
1136 }
1137
1138 /**
1139 * iunique - get a unique inode number
1140 * @sb: superblock
1141 * @max_reserved: highest reserved inode number
1142 *
1143 * Obtain an inode number that is unique on the system for a given
1144 * superblock. This is used by file systems that have no natural
1145 * permanent inode numbering system. An inode number is returned that
1146 * is higher than the reserved limit but unique.
1147 *
1148 * BUGS:
1149 * With a large number of inodes live on the file system this function
1150 * currently becomes quite slow.
1151 */
1152 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1153 {
1154 /*
1155 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1156 * error if st_ino won't fit in target struct field. Use 32bit counter
1157 * here to attempt to avoid that.
1158 */
1159 static DEFINE_SPINLOCK(iunique_lock);
1160 static unsigned int counter;
1161 ino_t res;
1162
1163 spin_lock(&iunique_lock);
1164 do {
1165 if (counter <= max_reserved)
1166 counter = max_reserved + 1;
1167 res = counter++;
1168 } while (!test_inode_iunique(sb, res));
1169 spin_unlock(&iunique_lock);
1170
1171 return res;
1172 }
1173 EXPORT_SYMBOL(iunique);
1174
1175 struct inode *igrab(struct inode *inode)
1176 {
1177 spin_lock(&inode->i_lock);
1178 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1179 __iget(inode);
1180 spin_unlock(&inode->i_lock);
1181 } else {
1182 spin_unlock(&inode->i_lock);
1183 /*
1184 * Handle the case where s_op->clear_inode is not been
1185 * called yet, and somebody is calling igrab
1186 * while the inode is getting freed.
1187 */
1188 inode = NULL;
1189 }
1190 return inode;
1191 }
1192 EXPORT_SYMBOL(igrab);
1193
1194 /**
1195 * ilookup5_nowait - search for an inode in the inode cache
1196 * @sb: super block of file system to search
1197 * @hashval: hash value (usually inode number) to search for
1198 * @test: callback used for comparisons between inodes
1199 * @data: opaque data pointer to pass to @test
1200 *
1201 * Search for the inode specified by @hashval and @data in the inode cache.
1202 * If the inode is in the cache, the inode is returned with an incremented
1203 * reference count.
1204 *
1205 * Note: I_NEW is not waited upon so you have to be very careful what you do
1206 * with the returned inode. You probably should be using ilookup5() instead.
1207 *
1208 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1209 */
1210 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1211 int (*test)(struct inode *, void *), void *data)
1212 {
1213 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1214 struct inode *inode;
1215
1216 spin_lock(&inode_hash_lock);
1217 inode = find_inode(sb, head, test, data);
1218 spin_unlock(&inode_hash_lock);
1219
1220 return inode;
1221 }
1222 EXPORT_SYMBOL(ilookup5_nowait);
1223
1224 /**
1225 * ilookup5 - search for an inode in the inode cache
1226 * @sb: super block of file system to search
1227 * @hashval: hash value (usually inode number) to search for
1228 * @test: callback used for comparisons between inodes
1229 * @data: opaque data pointer to pass to @test
1230 *
1231 * Search for the inode specified by @hashval and @data in the inode cache,
1232 * and if the inode is in the cache, return the inode with an incremented
1233 * reference count. Waits on I_NEW before returning the inode.
1234 * returned with an incremented reference count.
1235 *
1236 * This is a generalized version of ilookup() for file systems where the
1237 * inode number is not sufficient for unique identification of an inode.
1238 *
1239 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1240 */
1241 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1242 int (*test)(struct inode *, void *), void *data)
1243 {
1244 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1245
1246 if (inode)
1247 wait_on_inode(inode);
1248 return inode;
1249 }
1250 EXPORT_SYMBOL(ilookup5);
1251
1252 /**
1253 * ilookup - search for an inode in the inode cache
1254 * @sb: super block of file system to search
1255 * @ino: inode number to search for
1256 *
1257 * Search for the inode @ino in the inode cache, and if the inode is in the
1258 * cache, the inode is returned with an incremented reference count.
1259 */
1260 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1261 {
1262 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1263 struct inode *inode;
1264
1265 spin_lock(&inode_hash_lock);
1266 inode = find_inode_fast(sb, head, ino);
1267 spin_unlock(&inode_hash_lock);
1268
1269 if (inode)
1270 wait_on_inode(inode);
1271 return inode;
1272 }
1273 EXPORT_SYMBOL(ilookup);
1274
1275 /**
1276 * find_inode_nowait - find an inode in the inode cache
1277 * @sb: super block of file system to search
1278 * @hashval: hash value (usually inode number) to search for
1279 * @match: callback used for comparisons between inodes
1280 * @data: opaque data pointer to pass to @match
1281 *
1282 * Search for the inode specified by @hashval and @data in the inode
1283 * cache, where the helper function @match will return 0 if the inode
1284 * does not match, 1 if the inode does match, and -1 if the search
1285 * should be stopped. The @match function must be responsible for
1286 * taking the i_lock spin_lock and checking i_state for an inode being
1287 * freed or being initialized, and incrementing the reference count
1288 * before returning 1. It also must not sleep, since it is called with
1289 * the inode_hash_lock spinlock held.
1290 *
1291 * This is a even more generalized version of ilookup5() when the
1292 * function must never block --- find_inode() can block in
1293 * __wait_on_freeing_inode() --- or when the caller can not increment
1294 * the reference count because the resulting iput() might cause an
1295 * inode eviction. The tradeoff is that the @match funtion must be
1296 * very carefully implemented.
1297 */
1298 struct inode *find_inode_nowait(struct super_block *sb,
1299 unsigned long hashval,
1300 int (*match)(struct inode *, unsigned long,
1301 void *),
1302 void *data)
1303 {
1304 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1305 struct inode *inode, *ret_inode = NULL;
1306 int mval;
1307
1308 spin_lock(&inode_hash_lock);
1309 hlist_for_each_entry(inode, head, i_hash) {
1310 if (inode->i_sb != sb)
1311 continue;
1312 mval = match(inode, hashval, data);
1313 if (mval == 0)
1314 continue;
1315 if (mval == 1)
1316 ret_inode = inode;
1317 goto out;
1318 }
1319 out:
1320 spin_unlock(&inode_hash_lock);
1321 return ret_inode;
1322 }
1323 EXPORT_SYMBOL(find_inode_nowait);
1324
1325 int insert_inode_locked(struct inode *inode)
1326 {
1327 struct super_block *sb = inode->i_sb;
1328 ino_t ino = inode->i_ino;
1329 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1330
1331 while (1) {
1332 struct inode *old = NULL;
1333 spin_lock(&inode_hash_lock);
1334 hlist_for_each_entry(old, head, i_hash) {
1335 if (old->i_ino != ino)
1336 continue;
1337 if (old->i_sb != sb)
1338 continue;
1339 spin_lock(&old->i_lock);
1340 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1341 spin_unlock(&old->i_lock);
1342 continue;
1343 }
1344 break;
1345 }
1346 if (likely(!old)) {
1347 spin_lock(&inode->i_lock);
1348 inode->i_state |= I_NEW;
1349 hlist_add_head(&inode->i_hash, head);
1350 spin_unlock(&inode->i_lock);
1351 spin_unlock(&inode_hash_lock);
1352 return 0;
1353 }
1354 __iget(old);
1355 spin_unlock(&old->i_lock);
1356 spin_unlock(&inode_hash_lock);
1357 wait_on_inode(old);
1358 if (unlikely(!inode_unhashed(old))) {
1359 iput(old);
1360 return -EBUSY;
1361 }
1362 iput(old);
1363 }
1364 }
1365 EXPORT_SYMBOL(insert_inode_locked);
1366
1367 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1368 int (*test)(struct inode *, void *), void *data)
1369 {
1370 struct super_block *sb = inode->i_sb;
1371 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1372
1373 while (1) {
1374 struct inode *old = NULL;
1375
1376 spin_lock(&inode_hash_lock);
1377 hlist_for_each_entry(old, head, i_hash) {
1378 if (old->i_sb != sb)
1379 continue;
1380 if (!test(old, data))
1381 continue;
1382 spin_lock(&old->i_lock);
1383 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1384 spin_unlock(&old->i_lock);
1385 continue;
1386 }
1387 break;
1388 }
1389 if (likely(!old)) {
1390 spin_lock(&inode->i_lock);
1391 inode->i_state |= I_NEW;
1392 hlist_add_head(&inode->i_hash, head);
1393 spin_unlock(&inode->i_lock);
1394 spin_unlock(&inode_hash_lock);
1395 return 0;
1396 }
1397 __iget(old);
1398 spin_unlock(&old->i_lock);
1399 spin_unlock(&inode_hash_lock);
1400 wait_on_inode(old);
1401 if (unlikely(!inode_unhashed(old))) {
1402 iput(old);
1403 return -EBUSY;
1404 }
1405 iput(old);
1406 }
1407 }
1408 EXPORT_SYMBOL(insert_inode_locked4);
1409
1410
1411 int generic_delete_inode(struct inode *inode)
1412 {
1413 return 1;
1414 }
1415 EXPORT_SYMBOL(generic_delete_inode);
1416
1417 /*
1418 * Called when we're dropping the last reference
1419 * to an inode.
1420 *
1421 * Call the FS "drop_inode()" function, defaulting to
1422 * the legacy UNIX filesystem behaviour. If it tells
1423 * us to evict inode, do so. Otherwise, retain inode
1424 * in cache if fs is alive, sync and evict if fs is
1425 * shutting down.
1426 */
1427 static void iput_final(struct inode *inode)
1428 {
1429 struct super_block *sb = inode->i_sb;
1430 const struct super_operations *op = inode->i_sb->s_op;
1431 int drop;
1432
1433 WARN_ON(inode->i_state & I_NEW);
1434
1435 if (op->drop_inode)
1436 drop = op->drop_inode(inode);
1437 else
1438 drop = generic_drop_inode(inode);
1439
1440 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1441 inode->i_state |= I_REFERENCED;
1442 inode_add_lru(inode);
1443 spin_unlock(&inode->i_lock);
1444 return;
1445 }
1446
1447 if (!drop) {
1448 inode->i_state |= I_WILL_FREE;
1449 spin_unlock(&inode->i_lock);
1450 write_inode_now(inode, 1);
1451 spin_lock(&inode->i_lock);
1452 WARN_ON(inode->i_state & I_NEW);
1453 inode->i_state &= ~I_WILL_FREE;
1454 }
1455
1456 inode->i_state |= I_FREEING;
1457 if (!list_empty(&inode->i_lru))
1458 inode_lru_list_del(inode);
1459 spin_unlock(&inode->i_lock);
1460
1461 evict(inode);
1462 }
1463
1464 /**
1465 * iput - put an inode
1466 * @inode: inode to put
1467 *
1468 * Puts an inode, dropping its usage count. If the inode use count hits
1469 * zero, the inode is then freed and may also be destroyed.
1470 *
1471 * Consequently, iput() can sleep.
1472 */
1473 void iput(struct inode *inode)
1474 {
1475 if (!inode)
1476 return;
1477 BUG_ON(inode->i_state & I_CLEAR);
1478 retry:
1479 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1480 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1481 atomic_inc(&inode->i_count);
1482 inode->i_state &= ~I_DIRTY_TIME;
1483 spin_unlock(&inode->i_lock);
1484 trace_writeback_lazytime_iput(inode);
1485 mark_inode_dirty_sync(inode);
1486 goto retry;
1487 }
1488 iput_final(inode);
1489 }
1490 }
1491 EXPORT_SYMBOL(iput);
1492
1493 /**
1494 * bmap - find a block number in a file
1495 * @inode: inode of file
1496 * @block: block to find
1497 *
1498 * Returns the block number on the device holding the inode that
1499 * is the disk block number for the block of the file requested.
1500 * That is, asked for block 4 of inode 1 the function will return the
1501 * disk block relative to the disk start that holds that block of the
1502 * file.
1503 */
1504 sector_t bmap(struct inode *inode, sector_t block)
1505 {
1506 sector_t res = 0;
1507 if (inode->i_mapping->a_ops->bmap)
1508 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1509 return res;
1510 }
1511 EXPORT_SYMBOL(bmap);
1512
1513 /*
1514 * With relative atime, only update atime if the previous atime is
1515 * earlier than either the ctime or mtime or if at least a day has
1516 * passed since the last atime update.
1517 */
1518 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1519 struct timespec now)
1520 {
1521
1522 if (!(mnt->mnt_flags & MNT_RELATIME))
1523 return 1;
1524 /*
1525 * Is mtime younger than atime? If yes, update atime:
1526 */
1527 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1528 return 1;
1529 /*
1530 * Is ctime younger than atime? If yes, update atime:
1531 */
1532 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1533 return 1;
1534
1535 /*
1536 * Is the previous atime value older than a day? If yes,
1537 * update atime:
1538 */
1539 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1540 return 1;
1541 /*
1542 * Good, we can skip the atime update:
1543 */
1544 return 0;
1545 }
1546
1547 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1548 {
1549 int iflags = I_DIRTY_TIME;
1550
1551 if (flags & S_ATIME)
1552 inode->i_atime = *time;
1553 if (flags & S_VERSION)
1554 inode_inc_iversion(inode);
1555 if (flags & S_CTIME)
1556 inode->i_ctime = *time;
1557 if (flags & S_MTIME)
1558 inode->i_mtime = *time;
1559
1560 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1561 iflags |= I_DIRTY_SYNC;
1562 __mark_inode_dirty(inode, iflags);
1563 return 0;
1564 }
1565 EXPORT_SYMBOL(generic_update_time);
1566
1567 /*
1568 * This does the actual work of updating an inodes time or version. Must have
1569 * had called mnt_want_write() before calling this.
1570 */
1571 static int update_time(struct inode *inode, struct timespec *time, int flags)
1572 {
1573 int (*update_time)(struct inode *, struct timespec *, int);
1574
1575 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1576 generic_update_time;
1577
1578 return update_time(inode, time, flags);
1579 }
1580
1581 /**
1582 * touch_atime - update the access time
1583 * @path: the &struct path to update
1584 *
1585 * Update the accessed time on an inode and mark it for writeback.
1586 * This function automatically handles read only file systems and media,
1587 * as well as the "noatime" flag and inode specific "noatime" markers.
1588 */
1589 bool atime_needs_update(const struct path *path, struct inode *inode)
1590 {
1591 struct vfsmount *mnt = path->mnt;
1592 struct timespec now;
1593
1594 if (inode->i_flags & S_NOATIME)
1595 return false;
1596 if (IS_NOATIME(inode))
1597 return false;
1598 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1599 return false;
1600
1601 if (mnt->mnt_flags & MNT_NOATIME)
1602 return false;
1603 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1604 return false;
1605
1606 now = current_fs_time(inode->i_sb);
1607
1608 if (!relatime_need_update(mnt, inode, now))
1609 return false;
1610
1611 if (timespec_equal(&inode->i_atime, &now))
1612 return false;
1613
1614 return true;
1615 }
1616
1617 void touch_atime(const struct path *path)
1618 {
1619 struct vfsmount *mnt = path->mnt;
1620 struct inode *inode = d_inode(path->dentry);
1621 struct timespec now;
1622
1623 if (!atime_needs_update(path, inode))
1624 return;
1625
1626 if (!sb_start_write_trylock(inode->i_sb))
1627 return;
1628
1629 if (__mnt_want_write(mnt) != 0)
1630 goto skip_update;
1631 /*
1632 * File systems can error out when updating inodes if they need to
1633 * allocate new space to modify an inode (such is the case for
1634 * Btrfs), but since we touch atime while walking down the path we
1635 * really don't care if we failed to update the atime of the file,
1636 * so just ignore the return value.
1637 * We may also fail on filesystems that have the ability to make parts
1638 * of the fs read only, e.g. subvolumes in Btrfs.
1639 */
1640 now = current_fs_time(inode->i_sb);
1641 update_time(inode, &now, S_ATIME);
1642 __mnt_drop_write(mnt);
1643 skip_update:
1644 sb_end_write(inode->i_sb);
1645 }
1646 EXPORT_SYMBOL(touch_atime);
1647
1648 /*
1649 * The logic we want is
1650 *
1651 * if suid or (sgid and xgrp)
1652 * remove privs
1653 */
1654 int should_remove_suid(struct dentry *dentry)
1655 {
1656 umode_t mode = d_inode(dentry)->i_mode;
1657 int kill = 0;
1658
1659 /* suid always must be killed */
1660 if (unlikely(mode & S_ISUID))
1661 kill = ATTR_KILL_SUID;
1662
1663 /*
1664 * sgid without any exec bits is just a mandatory locking mark; leave
1665 * it alone. If some exec bits are set, it's a real sgid; kill it.
1666 */
1667 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1668 kill |= ATTR_KILL_SGID;
1669
1670 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1671 return kill;
1672
1673 return 0;
1674 }
1675 EXPORT_SYMBOL(should_remove_suid);
1676
1677 static int __remove_suid(struct dentry *dentry, int kill)
1678 {
1679 struct iattr newattrs;
1680
1681 newattrs.ia_valid = ATTR_FORCE | kill;
1682 /*
1683 * Note we call this on write, so notify_change will not
1684 * encounter any conflicting delegations:
1685 */
1686 return notify_change(dentry, &newattrs, NULL);
1687 }
1688
1689 int file_remove_suid(struct file *file)
1690 {
1691 struct dentry *dentry = file->f_path.dentry;
1692 struct inode *inode = d_inode(dentry);
1693 int killsuid;
1694 int killpriv;
1695 int error = 0;
1696
1697 /* Fast path for nothing security related */
1698 if (IS_NOSEC(inode))
1699 return 0;
1700
1701 killsuid = should_remove_suid(dentry);
1702 killpriv = security_inode_need_killpriv(dentry);
1703
1704 if (killpriv < 0)
1705 return killpriv;
1706 if (killpriv)
1707 error = security_inode_killpriv(dentry);
1708 if (!error && killsuid)
1709 error = __remove_suid(dentry, killsuid);
1710 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1711 inode->i_flags |= S_NOSEC;
1712
1713 return error;
1714 }
1715 EXPORT_SYMBOL(file_remove_suid);
1716
1717 /**
1718 * file_update_time - update mtime and ctime time
1719 * @file: file accessed
1720 *
1721 * Update the mtime and ctime members of an inode and mark the inode
1722 * for writeback. Note that this function is meant exclusively for
1723 * usage in the file write path of filesystems, and filesystems may
1724 * choose to explicitly ignore update via this function with the
1725 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1726 * timestamps are handled by the server. This can return an error for
1727 * file systems who need to allocate space in order to update an inode.
1728 */
1729
1730 int file_update_time(struct file *file)
1731 {
1732 struct inode *inode = file_inode(file);
1733 struct timespec now;
1734 int sync_it = 0;
1735 int ret;
1736
1737 /* First try to exhaust all avenues to not sync */
1738 if (IS_NOCMTIME(inode))
1739 return 0;
1740
1741 now = current_fs_time(inode->i_sb);
1742 if (!timespec_equal(&inode->i_mtime, &now))
1743 sync_it = S_MTIME;
1744
1745 if (!timespec_equal(&inode->i_ctime, &now))
1746 sync_it |= S_CTIME;
1747
1748 if (IS_I_VERSION(inode))
1749 sync_it |= S_VERSION;
1750
1751 if (!sync_it)
1752 return 0;
1753
1754 /* Finally allowed to write? Takes lock. */
1755 if (__mnt_want_write_file(file))
1756 return 0;
1757
1758 ret = update_time(inode, &now, sync_it);
1759 __mnt_drop_write_file(file);
1760
1761 return ret;
1762 }
1763 EXPORT_SYMBOL(file_update_time);
1764
1765 int inode_needs_sync(struct inode *inode)
1766 {
1767 if (IS_SYNC(inode))
1768 return 1;
1769 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1770 return 1;
1771 return 0;
1772 }
1773 EXPORT_SYMBOL(inode_needs_sync);
1774
1775 /*
1776 * If we try to find an inode in the inode hash while it is being
1777 * deleted, we have to wait until the filesystem completes its
1778 * deletion before reporting that it isn't found. This function waits
1779 * until the deletion _might_ have completed. Callers are responsible
1780 * to recheck inode state.
1781 *
1782 * It doesn't matter if I_NEW is not set initially, a call to
1783 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1784 * will DTRT.
1785 */
1786 static void __wait_on_freeing_inode(struct inode *inode)
1787 {
1788 wait_queue_head_t *wq;
1789 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1790 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1791 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1792 spin_unlock(&inode->i_lock);
1793 spin_unlock(&inode_hash_lock);
1794 schedule();
1795 finish_wait(wq, &wait.wait);
1796 spin_lock(&inode_hash_lock);
1797 }
1798
1799 static __initdata unsigned long ihash_entries;
1800 static int __init set_ihash_entries(char *str)
1801 {
1802 if (!str)
1803 return 0;
1804 ihash_entries = simple_strtoul(str, &str, 0);
1805 return 1;
1806 }
1807 __setup("ihash_entries=", set_ihash_entries);
1808
1809 /*
1810 * Initialize the waitqueues and inode hash table.
1811 */
1812 void __init inode_init_early(void)
1813 {
1814 unsigned int loop;
1815
1816 /* If hashes are distributed across NUMA nodes, defer
1817 * hash allocation until vmalloc space is available.
1818 */
1819 if (hashdist)
1820 return;
1821
1822 inode_hashtable =
1823 alloc_large_system_hash("Inode-cache",
1824 sizeof(struct hlist_head),
1825 ihash_entries,
1826 14,
1827 HASH_EARLY,
1828 &i_hash_shift,
1829 &i_hash_mask,
1830 0,
1831 0);
1832
1833 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1834 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1835 }
1836
1837 void __init inode_init(void)
1838 {
1839 unsigned int loop;
1840
1841 /* inode slab cache */
1842 inode_cachep = kmem_cache_create("inode_cache",
1843 sizeof(struct inode),
1844 0,
1845 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1846 SLAB_MEM_SPREAD),
1847 init_once);
1848
1849 /* Hash may have been set up in inode_init_early */
1850 if (!hashdist)
1851 return;
1852
1853 inode_hashtable =
1854 alloc_large_system_hash("Inode-cache",
1855 sizeof(struct hlist_head),
1856 ihash_entries,
1857 14,
1858 0,
1859 &i_hash_shift,
1860 &i_hash_mask,
1861 0,
1862 0);
1863
1864 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1865 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1866 }
1867
1868 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1869 {
1870 inode->i_mode = mode;
1871 if (S_ISCHR(mode)) {
1872 inode->i_fop = &def_chr_fops;
1873 inode->i_rdev = rdev;
1874 } else if (S_ISBLK(mode)) {
1875 inode->i_fop = &def_blk_fops;
1876 inode->i_rdev = rdev;
1877 } else if (S_ISFIFO(mode))
1878 inode->i_fop = &pipefifo_fops;
1879 else if (S_ISSOCK(mode))
1880 ; /* leave it no_open_fops */
1881 else
1882 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1883 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1884 inode->i_ino);
1885 }
1886 EXPORT_SYMBOL(init_special_inode);
1887
1888 /**
1889 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1890 * @inode: New inode
1891 * @dir: Directory inode
1892 * @mode: mode of the new inode
1893 */
1894 void inode_init_owner(struct inode *inode, const struct inode *dir,
1895 umode_t mode)
1896 {
1897 inode->i_uid = current_fsuid();
1898 if (dir && dir->i_mode & S_ISGID) {
1899 inode->i_gid = dir->i_gid;
1900 if (S_ISDIR(mode))
1901 mode |= S_ISGID;
1902 } else
1903 inode->i_gid = current_fsgid();
1904 inode->i_mode = mode;
1905 }
1906 EXPORT_SYMBOL(inode_init_owner);
1907
1908 /**
1909 * inode_owner_or_capable - check current task permissions to inode
1910 * @inode: inode being checked
1911 *
1912 * Return true if current either has CAP_FOWNER in a namespace with the
1913 * inode owner uid mapped, or owns the file.
1914 */
1915 bool inode_owner_or_capable(const struct inode *inode)
1916 {
1917 struct user_namespace *ns;
1918
1919 if (uid_eq(current_fsuid(), inode->i_uid))
1920 return true;
1921
1922 ns = current_user_ns();
1923 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1924 return true;
1925 return false;
1926 }
1927 EXPORT_SYMBOL(inode_owner_or_capable);
1928
1929 /*
1930 * Direct i/o helper functions
1931 */
1932 static void __inode_dio_wait(struct inode *inode)
1933 {
1934 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1935 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1936
1937 do {
1938 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1939 if (atomic_read(&inode->i_dio_count))
1940 schedule();
1941 } while (atomic_read(&inode->i_dio_count));
1942 finish_wait(wq, &q.wait);
1943 }
1944
1945 /**
1946 * inode_dio_wait - wait for outstanding DIO requests to finish
1947 * @inode: inode to wait for
1948 *
1949 * Waits for all pending direct I/O requests to finish so that we can
1950 * proceed with a truncate or equivalent operation.
1951 *
1952 * Must be called under a lock that serializes taking new references
1953 * to i_dio_count, usually by inode->i_mutex.
1954 */
1955 void inode_dio_wait(struct inode *inode)
1956 {
1957 if (atomic_read(&inode->i_dio_count))
1958 __inode_dio_wait(inode);
1959 }
1960 EXPORT_SYMBOL(inode_dio_wait);
1961
1962 /*
1963 * inode_set_flags - atomically set some inode flags
1964 *
1965 * Note: the caller should be holding i_mutex, or else be sure that
1966 * they have exclusive access to the inode structure (i.e., while the
1967 * inode is being instantiated). The reason for the cmpxchg() loop
1968 * --- which wouldn't be necessary if all code paths which modify
1969 * i_flags actually followed this rule, is that there is at least one
1970 * code path which doesn't today --- for example,
1971 * __generic_file_aio_write() calls file_remove_suid() without holding
1972 * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1973 *
1974 * In the long run, i_mutex is overkill, and we should probably look
1975 * at using the i_lock spinlock to protect i_flags, and then make sure
1976 * it is so documented in include/linux/fs.h and that all code follows
1977 * the locking convention!!
1978 */
1979 void inode_set_flags(struct inode *inode, unsigned int flags,
1980 unsigned int mask)
1981 {
1982 unsigned int old_flags, new_flags;
1983
1984 WARN_ON_ONCE(flags & ~mask);
1985 do {
1986 old_flags = ACCESS_ONCE(inode->i_flags);
1987 new_flags = (old_flags & ~mask) | flags;
1988 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1989 new_flags) != old_flags));
1990 }
1991 EXPORT_SYMBOL(inode_set_flags);