]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/inode.c
Merge tag 'irqchip-fixes-5.11-1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / fs / inode.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26
27 /*
28 * Inode locking rules:
29 *
30 * inode->i_lock protects:
31 * inode->i_state, inode->i_hash, __iget()
32 * Inode LRU list locks protect:
33 * inode->i_sb->s_inode_lru, inode->i_lru
34 * inode->i_sb->s_inode_list_lock protects:
35 * inode->i_sb->s_inodes, inode->i_sb_list
36 * bdi->wb.list_lock protects:
37 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38 * inode_hash_lock protects:
39 * inode_hashtable, inode->i_hash
40 *
41 * Lock ordering:
42 *
43 * inode->i_sb->s_inode_list_lock
44 * inode->i_lock
45 * Inode LRU list locks
46 *
47 * bdi->wb.list_lock
48 * inode->i_lock
49 *
50 * inode_hash_lock
51 * inode->i_sb->s_inode_list_lock
52 * inode->i_lock
53 *
54 * iunique_lock
55 * inode_hash_lock
56 */
57
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62
63 /*
64 * Empty aops. Can be used for the cases where the user does not
65 * define any of the address_space operations.
66 */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70
71 /*
72 * Statistics gathering..
73 */
74 struct inodes_stat_t inodes_stat;
75
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78
79 static struct kmem_cache *inode_cachep __read_mostly;
80
81 static long get_nr_inodes(void)
82 {
83 int i;
84 long sum = 0;
85 for_each_possible_cpu(i)
86 sum += per_cpu(nr_inodes, i);
87 return sum < 0 ? 0 : sum;
88 }
89
90 static inline long get_nr_inodes_unused(void)
91 {
92 int i;
93 long sum = 0;
94 for_each_possible_cpu(i)
95 sum += per_cpu(nr_unused, i);
96 return sum < 0 ? 0 : sum;
97 }
98
99 long get_nr_dirty_inodes(void)
100 {
101 /* not actually dirty inodes, but a wild approximation */
102 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 return nr_dirty > 0 ? nr_dirty : 0;
104 }
105
106 /*
107 * Handle nr_inode sysctl
108 */
109 #ifdef CONFIG_SYSCTL
110 int proc_nr_inodes(struct ctl_table *table, int write,
111 void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 inodes_stat.nr_inodes = get_nr_inodes();
114 inodes_stat.nr_unused = get_nr_inodes_unused();
115 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118
119 static int no_open(struct inode *inode, struct file *file)
120 {
121 return -ENXIO;
122 }
123
124 /**
125 * inode_init_always - perform inode structure initialisation
126 * @sb: superblock inode belongs to
127 * @inode: inode to initialise
128 *
129 * These are initializations that need to be done on every inode
130 * allocation as the fields are not initialised by slab allocation.
131 */
132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 static const struct inode_operations empty_iops;
135 static const struct file_operations no_open_fops = {.open = no_open};
136 struct address_space *const mapping = &inode->i_data;
137
138 inode->i_sb = sb;
139 inode->i_blkbits = sb->s_blocksize_bits;
140 inode->i_flags = 0;
141 atomic64_set(&inode->i_sequence, 0);
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &no_open_fops;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
168 #endif
169
170 if (security_inode_alloc(inode))
171 goto out;
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177
178 atomic_set(&inode->i_dio_count, 0);
179
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
182 mapping->flags = 0;
183 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 __set_bit(AS_THP_SUPPORT, &mapping->flags);
185 mapping->wb_err = 0;
186 atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 atomic_set(&mapping->nr_thps, 0);
189 #endif
190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 mapping->private_data = NULL;
192 mapping->writeback_index = 0;
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199
200 #ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202 #endif
203 inode->i_flctx = NULL;
204 this_cpu_inc(nr_inodes);
205
206 return 0;
207 out:
208 return -ENOMEM;
209 }
210 EXPORT_SYMBOL(inode_init_always);
211
212 void free_inode_nonrcu(struct inode *inode)
213 {
214 kmem_cache_free(inode_cachep, inode);
215 }
216 EXPORT_SYMBOL(free_inode_nonrcu);
217
218 static void i_callback(struct rcu_head *head)
219 {
220 struct inode *inode = container_of(head, struct inode, i_rcu);
221 if (inode->free_inode)
222 inode->free_inode(inode);
223 else
224 free_inode_nonrcu(inode);
225 }
226
227 static struct inode *alloc_inode(struct super_block *sb)
228 {
229 const struct super_operations *ops = sb->s_op;
230 struct inode *inode;
231
232 if (ops->alloc_inode)
233 inode = ops->alloc_inode(sb);
234 else
235 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
236
237 if (!inode)
238 return NULL;
239
240 if (unlikely(inode_init_always(sb, inode))) {
241 if (ops->destroy_inode) {
242 ops->destroy_inode(inode);
243 if (!ops->free_inode)
244 return NULL;
245 }
246 inode->free_inode = ops->free_inode;
247 i_callback(&inode->i_rcu);
248 return NULL;
249 }
250
251 return inode;
252 }
253
254 void __destroy_inode(struct inode *inode)
255 {
256 BUG_ON(inode_has_buffers(inode));
257 inode_detach_wb(inode);
258 security_inode_free(inode);
259 fsnotify_inode_delete(inode);
260 locks_free_lock_context(inode);
261 if (!inode->i_nlink) {
262 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
263 atomic_long_dec(&inode->i_sb->s_remove_count);
264 }
265
266 #ifdef CONFIG_FS_POSIX_ACL
267 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
268 posix_acl_release(inode->i_acl);
269 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
270 posix_acl_release(inode->i_default_acl);
271 #endif
272 this_cpu_dec(nr_inodes);
273 }
274 EXPORT_SYMBOL(__destroy_inode);
275
276 static void destroy_inode(struct inode *inode)
277 {
278 const struct super_operations *ops = inode->i_sb->s_op;
279
280 BUG_ON(!list_empty(&inode->i_lru));
281 __destroy_inode(inode);
282 if (ops->destroy_inode) {
283 ops->destroy_inode(inode);
284 if (!ops->free_inode)
285 return;
286 }
287 inode->free_inode = ops->free_inode;
288 call_rcu(&inode->i_rcu, i_callback);
289 }
290
291 /**
292 * drop_nlink - directly drop an inode's link count
293 * @inode: inode
294 *
295 * This is a low-level filesystem helper to replace any
296 * direct filesystem manipulation of i_nlink. In cases
297 * where we are attempting to track writes to the
298 * filesystem, a decrement to zero means an imminent
299 * write when the file is truncated and actually unlinked
300 * on the filesystem.
301 */
302 void drop_nlink(struct inode *inode)
303 {
304 WARN_ON(inode->i_nlink == 0);
305 inode->__i_nlink--;
306 if (!inode->i_nlink)
307 atomic_long_inc(&inode->i_sb->s_remove_count);
308 }
309 EXPORT_SYMBOL(drop_nlink);
310
311 /**
312 * clear_nlink - directly zero an inode's link count
313 * @inode: inode
314 *
315 * This is a low-level filesystem helper to replace any
316 * direct filesystem manipulation of i_nlink. See
317 * drop_nlink() for why we care about i_nlink hitting zero.
318 */
319 void clear_nlink(struct inode *inode)
320 {
321 if (inode->i_nlink) {
322 inode->__i_nlink = 0;
323 atomic_long_inc(&inode->i_sb->s_remove_count);
324 }
325 }
326 EXPORT_SYMBOL(clear_nlink);
327
328 /**
329 * set_nlink - directly set an inode's link count
330 * @inode: inode
331 * @nlink: new nlink (should be non-zero)
332 *
333 * This is a low-level filesystem helper to replace any
334 * direct filesystem manipulation of i_nlink.
335 */
336 void set_nlink(struct inode *inode, unsigned int nlink)
337 {
338 if (!nlink) {
339 clear_nlink(inode);
340 } else {
341 /* Yes, some filesystems do change nlink from zero to one */
342 if (inode->i_nlink == 0)
343 atomic_long_dec(&inode->i_sb->s_remove_count);
344
345 inode->__i_nlink = nlink;
346 }
347 }
348 EXPORT_SYMBOL(set_nlink);
349
350 /**
351 * inc_nlink - directly increment an inode's link count
352 * @inode: inode
353 *
354 * This is a low-level filesystem helper to replace any
355 * direct filesystem manipulation of i_nlink. Currently,
356 * it is only here for parity with dec_nlink().
357 */
358 void inc_nlink(struct inode *inode)
359 {
360 if (unlikely(inode->i_nlink == 0)) {
361 WARN_ON(!(inode->i_state & I_LINKABLE));
362 atomic_long_dec(&inode->i_sb->s_remove_count);
363 }
364
365 inode->__i_nlink++;
366 }
367 EXPORT_SYMBOL(inc_nlink);
368
369 static void __address_space_init_once(struct address_space *mapping)
370 {
371 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
372 init_rwsem(&mapping->i_mmap_rwsem);
373 INIT_LIST_HEAD(&mapping->private_list);
374 spin_lock_init(&mapping->private_lock);
375 mapping->i_mmap = RB_ROOT_CACHED;
376 }
377
378 void address_space_init_once(struct address_space *mapping)
379 {
380 memset(mapping, 0, sizeof(*mapping));
381 __address_space_init_once(mapping);
382 }
383 EXPORT_SYMBOL(address_space_init_once);
384
385 /*
386 * These are initializations that only need to be done
387 * once, because the fields are idempotent across use
388 * of the inode, so let the slab aware of that.
389 */
390 void inode_init_once(struct inode *inode)
391 {
392 memset(inode, 0, sizeof(*inode));
393 INIT_HLIST_NODE(&inode->i_hash);
394 INIT_LIST_HEAD(&inode->i_devices);
395 INIT_LIST_HEAD(&inode->i_io_list);
396 INIT_LIST_HEAD(&inode->i_wb_list);
397 INIT_LIST_HEAD(&inode->i_lru);
398 __address_space_init_once(&inode->i_data);
399 i_size_ordered_init(inode);
400 }
401 EXPORT_SYMBOL(inode_init_once);
402
403 static void init_once(void *foo)
404 {
405 struct inode *inode = (struct inode *) foo;
406
407 inode_init_once(inode);
408 }
409
410 /*
411 * inode->i_lock must be held
412 */
413 void __iget(struct inode *inode)
414 {
415 atomic_inc(&inode->i_count);
416 }
417
418 /*
419 * get additional reference to inode; caller must already hold one.
420 */
421 void ihold(struct inode *inode)
422 {
423 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
424 }
425 EXPORT_SYMBOL(ihold);
426
427 static void inode_lru_list_add(struct inode *inode)
428 {
429 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
430 this_cpu_inc(nr_unused);
431 else
432 inode->i_state |= I_REFERENCED;
433 }
434
435 /*
436 * Add inode to LRU if needed (inode is unused and clean).
437 *
438 * Needs inode->i_lock held.
439 */
440 void inode_add_lru(struct inode *inode)
441 {
442 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
443 I_FREEING | I_WILL_FREE)) &&
444 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
445 inode_lru_list_add(inode);
446 }
447
448
449 static void inode_lru_list_del(struct inode *inode)
450 {
451
452 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
453 this_cpu_dec(nr_unused);
454 }
455
456 /**
457 * inode_sb_list_add - add inode to the superblock list of inodes
458 * @inode: inode to add
459 */
460 void inode_sb_list_add(struct inode *inode)
461 {
462 spin_lock(&inode->i_sb->s_inode_list_lock);
463 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
464 spin_unlock(&inode->i_sb->s_inode_list_lock);
465 }
466 EXPORT_SYMBOL_GPL(inode_sb_list_add);
467
468 static inline void inode_sb_list_del(struct inode *inode)
469 {
470 if (!list_empty(&inode->i_sb_list)) {
471 spin_lock(&inode->i_sb->s_inode_list_lock);
472 list_del_init(&inode->i_sb_list);
473 spin_unlock(&inode->i_sb->s_inode_list_lock);
474 }
475 }
476
477 static unsigned long hash(struct super_block *sb, unsigned long hashval)
478 {
479 unsigned long tmp;
480
481 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
482 L1_CACHE_BYTES;
483 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
484 return tmp & i_hash_mask;
485 }
486
487 /**
488 * __insert_inode_hash - hash an inode
489 * @inode: unhashed inode
490 * @hashval: unsigned long value used to locate this object in the
491 * inode_hashtable.
492 *
493 * Add an inode to the inode hash for this superblock.
494 */
495 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
496 {
497 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
498
499 spin_lock(&inode_hash_lock);
500 spin_lock(&inode->i_lock);
501 hlist_add_head_rcu(&inode->i_hash, b);
502 spin_unlock(&inode->i_lock);
503 spin_unlock(&inode_hash_lock);
504 }
505 EXPORT_SYMBOL(__insert_inode_hash);
506
507 /**
508 * __remove_inode_hash - remove an inode from the hash
509 * @inode: inode to unhash
510 *
511 * Remove an inode from the superblock.
512 */
513 void __remove_inode_hash(struct inode *inode)
514 {
515 spin_lock(&inode_hash_lock);
516 spin_lock(&inode->i_lock);
517 hlist_del_init_rcu(&inode->i_hash);
518 spin_unlock(&inode->i_lock);
519 spin_unlock(&inode_hash_lock);
520 }
521 EXPORT_SYMBOL(__remove_inode_hash);
522
523 void clear_inode(struct inode *inode)
524 {
525 /*
526 * We have to cycle the i_pages lock here because reclaim can be in the
527 * process of removing the last page (in __delete_from_page_cache())
528 * and we must not free the mapping under it.
529 */
530 xa_lock_irq(&inode->i_data.i_pages);
531 BUG_ON(inode->i_data.nrpages);
532 BUG_ON(inode->i_data.nrexceptional);
533 xa_unlock_irq(&inode->i_data.i_pages);
534 BUG_ON(!list_empty(&inode->i_data.private_list));
535 BUG_ON(!(inode->i_state & I_FREEING));
536 BUG_ON(inode->i_state & I_CLEAR);
537 BUG_ON(!list_empty(&inode->i_wb_list));
538 /* don't need i_lock here, no concurrent mods to i_state */
539 inode->i_state = I_FREEING | I_CLEAR;
540 }
541 EXPORT_SYMBOL(clear_inode);
542
543 /*
544 * Free the inode passed in, removing it from the lists it is still connected
545 * to. We remove any pages still attached to the inode and wait for any IO that
546 * is still in progress before finally destroying the inode.
547 *
548 * An inode must already be marked I_FREEING so that we avoid the inode being
549 * moved back onto lists if we race with other code that manipulates the lists
550 * (e.g. writeback_single_inode). The caller is responsible for setting this.
551 *
552 * An inode must already be removed from the LRU list before being evicted from
553 * the cache. This should occur atomically with setting the I_FREEING state
554 * flag, so no inodes here should ever be on the LRU when being evicted.
555 */
556 static void evict(struct inode *inode)
557 {
558 const struct super_operations *op = inode->i_sb->s_op;
559
560 BUG_ON(!(inode->i_state & I_FREEING));
561 BUG_ON(!list_empty(&inode->i_lru));
562
563 if (!list_empty(&inode->i_io_list))
564 inode_io_list_del(inode);
565
566 inode_sb_list_del(inode);
567
568 /*
569 * Wait for flusher thread to be done with the inode so that filesystem
570 * does not start destroying it while writeback is still running. Since
571 * the inode has I_FREEING set, flusher thread won't start new work on
572 * the inode. We just have to wait for running writeback to finish.
573 */
574 inode_wait_for_writeback(inode);
575
576 if (op->evict_inode) {
577 op->evict_inode(inode);
578 } else {
579 truncate_inode_pages_final(&inode->i_data);
580 clear_inode(inode);
581 }
582 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
583 cd_forget(inode);
584
585 remove_inode_hash(inode);
586
587 spin_lock(&inode->i_lock);
588 wake_up_bit(&inode->i_state, __I_NEW);
589 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
590 spin_unlock(&inode->i_lock);
591
592 destroy_inode(inode);
593 }
594
595 /*
596 * dispose_list - dispose of the contents of a local list
597 * @head: the head of the list to free
598 *
599 * Dispose-list gets a local list with local inodes in it, so it doesn't
600 * need to worry about list corruption and SMP locks.
601 */
602 static void dispose_list(struct list_head *head)
603 {
604 while (!list_empty(head)) {
605 struct inode *inode;
606
607 inode = list_first_entry(head, struct inode, i_lru);
608 list_del_init(&inode->i_lru);
609
610 evict(inode);
611 cond_resched();
612 }
613 }
614
615 /**
616 * evict_inodes - evict all evictable inodes for a superblock
617 * @sb: superblock to operate on
618 *
619 * Make sure that no inodes with zero refcount are retained. This is
620 * called by superblock shutdown after having SB_ACTIVE flag removed,
621 * so any inode reaching zero refcount during or after that call will
622 * be immediately evicted.
623 */
624 void evict_inodes(struct super_block *sb)
625 {
626 struct inode *inode, *next;
627 LIST_HEAD(dispose);
628
629 again:
630 spin_lock(&sb->s_inode_list_lock);
631 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
632 if (atomic_read(&inode->i_count))
633 continue;
634
635 spin_lock(&inode->i_lock);
636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 spin_unlock(&inode->i_lock);
638 continue;
639 }
640
641 inode->i_state |= I_FREEING;
642 inode_lru_list_del(inode);
643 spin_unlock(&inode->i_lock);
644 list_add(&inode->i_lru, &dispose);
645
646 /*
647 * We can have a ton of inodes to evict at unmount time given
648 * enough memory, check to see if we need to go to sleep for a
649 * bit so we don't livelock.
650 */
651 if (need_resched()) {
652 spin_unlock(&sb->s_inode_list_lock);
653 cond_resched();
654 dispose_list(&dispose);
655 goto again;
656 }
657 }
658 spin_unlock(&sb->s_inode_list_lock);
659
660 dispose_list(&dispose);
661 }
662 EXPORT_SYMBOL_GPL(evict_inodes);
663
664 /**
665 * invalidate_inodes - attempt to free all inodes on a superblock
666 * @sb: superblock to operate on
667 * @kill_dirty: flag to guide handling of dirty inodes
668 *
669 * Attempts to free all inodes for a given superblock. If there were any
670 * busy inodes return a non-zero value, else zero.
671 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
672 * them as busy.
673 */
674 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
675 {
676 int busy = 0;
677 struct inode *inode, *next;
678 LIST_HEAD(dispose);
679
680 again:
681 spin_lock(&sb->s_inode_list_lock);
682 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
683 spin_lock(&inode->i_lock);
684 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
685 spin_unlock(&inode->i_lock);
686 continue;
687 }
688 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
689 spin_unlock(&inode->i_lock);
690 busy = 1;
691 continue;
692 }
693 if (atomic_read(&inode->i_count)) {
694 spin_unlock(&inode->i_lock);
695 busy = 1;
696 continue;
697 }
698
699 inode->i_state |= I_FREEING;
700 inode_lru_list_del(inode);
701 spin_unlock(&inode->i_lock);
702 list_add(&inode->i_lru, &dispose);
703 if (need_resched()) {
704 spin_unlock(&sb->s_inode_list_lock);
705 cond_resched();
706 dispose_list(&dispose);
707 goto again;
708 }
709 }
710 spin_unlock(&sb->s_inode_list_lock);
711
712 dispose_list(&dispose);
713
714 return busy;
715 }
716
717 /*
718 * Isolate the inode from the LRU in preparation for freeing it.
719 *
720 * Any inodes which are pinned purely because of attached pagecache have their
721 * pagecache removed. If the inode has metadata buffers attached to
722 * mapping->private_list then try to remove them.
723 *
724 * If the inode has the I_REFERENCED flag set, then it means that it has been
725 * used recently - the flag is set in iput_final(). When we encounter such an
726 * inode, clear the flag and move it to the back of the LRU so it gets another
727 * pass through the LRU before it gets reclaimed. This is necessary because of
728 * the fact we are doing lazy LRU updates to minimise lock contention so the
729 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
730 * with this flag set because they are the inodes that are out of order.
731 */
732 static enum lru_status inode_lru_isolate(struct list_head *item,
733 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
734 {
735 struct list_head *freeable = arg;
736 struct inode *inode = container_of(item, struct inode, i_lru);
737
738 /*
739 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
740 * If we fail to get the lock, just skip it.
741 */
742 if (!spin_trylock(&inode->i_lock))
743 return LRU_SKIP;
744
745 /*
746 * Referenced or dirty inodes are still in use. Give them another pass
747 * through the LRU as we canot reclaim them now.
748 */
749 if (atomic_read(&inode->i_count) ||
750 (inode->i_state & ~I_REFERENCED)) {
751 list_lru_isolate(lru, &inode->i_lru);
752 spin_unlock(&inode->i_lock);
753 this_cpu_dec(nr_unused);
754 return LRU_REMOVED;
755 }
756
757 /* recently referenced inodes get one more pass */
758 if (inode->i_state & I_REFERENCED) {
759 inode->i_state &= ~I_REFERENCED;
760 spin_unlock(&inode->i_lock);
761 return LRU_ROTATE;
762 }
763
764 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
765 __iget(inode);
766 spin_unlock(&inode->i_lock);
767 spin_unlock(lru_lock);
768 if (remove_inode_buffers(inode)) {
769 unsigned long reap;
770 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
771 if (current_is_kswapd())
772 __count_vm_events(KSWAPD_INODESTEAL, reap);
773 else
774 __count_vm_events(PGINODESTEAL, reap);
775 if (current->reclaim_state)
776 current->reclaim_state->reclaimed_slab += reap;
777 }
778 iput(inode);
779 spin_lock(lru_lock);
780 return LRU_RETRY;
781 }
782
783 WARN_ON(inode->i_state & I_NEW);
784 inode->i_state |= I_FREEING;
785 list_lru_isolate_move(lru, &inode->i_lru, freeable);
786 spin_unlock(&inode->i_lock);
787
788 this_cpu_dec(nr_unused);
789 return LRU_REMOVED;
790 }
791
792 /*
793 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
794 * This is called from the superblock shrinker function with a number of inodes
795 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
796 * then are freed outside inode_lock by dispose_list().
797 */
798 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
799 {
800 LIST_HEAD(freeable);
801 long freed;
802
803 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
804 inode_lru_isolate, &freeable);
805 dispose_list(&freeable);
806 return freed;
807 }
808
809 static void __wait_on_freeing_inode(struct inode *inode);
810 /*
811 * Called with the inode lock held.
812 */
813 static struct inode *find_inode(struct super_block *sb,
814 struct hlist_head *head,
815 int (*test)(struct inode *, void *),
816 void *data)
817 {
818 struct inode *inode = NULL;
819
820 repeat:
821 hlist_for_each_entry(inode, head, i_hash) {
822 if (inode->i_sb != sb)
823 continue;
824 if (!test(inode, data))
825 continue;
826 spin_lock(&inode->i_lock);
827 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
828 __wait_on_freeing_inode(inode);
829 goto repeat;
830 }
831 if (unlikely(inode->i_state & I_CREATING)) {
832 spin_unlock(&inode->i_lock);
833 return ERR_PTR(-ESTALE);
834 }
835 __iget(inode);
836 spin_unlock(&inode->i_lock);
837 return inode;
838 }
839 return NULL;
840 }
841
842 /*
843 * find_inode_fast is the fast path version of find_inode, see the comment at
844 * iget_locked for details.
845 */
846 static struct inode *find_inode_fast(struct super_block *sb,
847 struct hlist_head *head, unsigned long ino)
848 {
849 struct inode *inode = NULL;
850
851 repeat:
852 hlist_for_each_entry(inode, head, i_hash) {
853 if (inode->i_ino != ino)
854 continue;
855 if (inode->i_sb != sb)
856 continue;
857 spin_lock(&inode->i_lock);
858 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
859 __wait_on_freeing_inode(inode);
860 goto repeat;
861 }
862 if (unlikely(inode->i_state & I_CREATING)) {
863 spin_unlock(&inode->i_lock);
864 return ERR_PTR(-ESTALE);
865 }
866 __iget(inode);
867 spin_unlock(&inode->i_lock);
868 return inode;
869 }
870 return NULL;
871 }
872
873 /*
874 * Each cpu owns a range of LAST_INO_BATCH numbers.
875 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
876 * to renew the exhausted range.
877 *
878 * This does not significantly increase overflow rate because every CPU can
879 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
880 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
881 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
882 * overflow rate by 2x, which does not seem too significant.
883 *
884 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
885 * error if st_ino won't fit in target struct field. Use 32bit counter
886 * here to attempt to avoid that.
887 */
888 #define LAST_INO_BATCH 1024
889 static DEFINE_PER_CPU(unsigned int, last_ino);
890
891 unsigned int get_next_ino(void)
892 {
893 unsigned int *p = &get_cpu_var(last_ino);
894 unsigned int res = *p;
895
896 #ifdef CONFIG_SMP
897 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
898 static atomic_t shared_last_ino;
899 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
900
901 res = next - LAST_INO_BATCH;
902 }
903 #endif
904
905 res++;
906 /* get_next_ino should not provide a 0 inode number */
907 if (unlikely(!res))
908 res++;
909 *p = res;
910 put_cpu_var(last_ino);
911 return res;
912 }
913 EXPORT_SYMBOL(get_next_ino);
914
915 /**
916 * new_inode_pseudo - obtain an inode
917 * @sb: superblock
918 *
919 * Allocates a new inode for given superblock.
920 * Inode wont be chained in superblock s_inodes list
921 * This means :
922 * - fs can't be unmount
923 * - quotas, fsnotify, writeback can't work
924 */
925 struct inode *new_inode_pseudo(struct super_block *sb)
926 {
927 struct inode *inode = alloc_inode(sb);
928
929 if (inode) {
930 spin_lock(&inode->i_lock);
931 inode->i_state = 0;
932 spin_unlock(&inode->i_lock);
933 INIT_LIST_HEAD(&inode->i_sb_list);
934 }
935 return inode;
936 }
937
938 /**
939 * new_inode - obtain an inode
940 * @sb: superblock
941 *
942 * Allocates a new inode for given superblock. The default gfp_mask
943 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
944 * If HIGHMEM pages are unsuitable or it is known that pages allocated
945 * for the page cache are not reclaimable or migratable,
946 * mapping_set_gfp_mask() must be called with suitable flags on the
947 * newly created inode's mapping
948 *
949 */
950 struct inode *new_inode(struct super_block *sb)
951 {
952 struct inode *inode;
953
954 spin_lock_prefetch(&sb->s_inode_list_lock);
955
956 inode = new_inode_pseudo(sb);
957 if (inode)
958 inode_sb_list_add(inode);
959 return inode;
960 }
961 EXPORT_SYMBOL(new_inode);
962
963 #ifdef CONFIG_DEBUG_LOCK_ALLOC
964 void lockdep_annotate_inode_mutex_key(struct inode *inode)
965 {
966 if (S_ISDIR(inode->i_mode)) {
967 struct file_system_type *type = inode->i_sb->s_type;
968
969 /* Set new key only if filesystem hasn't already changed it */
970 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
971 /*
972 * ensure nobody is actually holding i_mutex
973 */
974 // mutex_destroy(&inode->i_mutex);
975 init_rwsem(&inode->i_rwsem);
976 lockdep_set_class(&inode->i_rwsem,
977 &type->i_mutex_dir_key);
978 }
979 }
980 }
981 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
982 #endif
983
984 /**
985 * unlock_new_inode - clear the I_NEW state and wake up any waiters
986 * @inode: new inode to unlock
987 *
988 * Called when the inode is fully initialised to clear the new state of the
989 * inode and wake up anyone waiting for the inode to finish initialisation.
990 */
991 void unlock_new_inode(struct inode *inode)
992 {
993 lockdep_annotate_inode_mutex_key(inode);
994 spin_lock(&inode->i_lock);
995 WARN_ON(!(inode->i_state & I_NEW));
996 inode->i_state &= ~I_NEW & ~I_CREATING;
997 smp_mb();
998 wake_up_bit(&inode->i_state, __I_NEW);
999 spin_unlock(&inode->i_lock);
1000 }
1001 EXPORT_SYMBOL(unlock_new_inode);
1002
1003 void discard_new_inode(struct inode *inode)
1004 {
1005 lockdep_annotate_inode_mutex_key(inode);
1006 spin_lock(&inode->i_lock);
1007 WARN_ON(!(inode->i_state & I_NEW));
1008 inode->i_state &= ~I_NEW;
1009 smp_mb();
1010 wake_up_bit(&inode->i_state, __I_NEW);
1011 spin_unlock(&inode->i_lock);
1012 iput(inode);
1013 }
1014 EXPORT_SYMBOL(discard_new_inode);
1015
1016 /**
1017 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1018 *
1019 * Lock any non-NULL argument that is not a directory.
1020 * Zero, one or two objects may be locked by this function.
1021 *
1022 * @inode1: first inode to lock
1023 * @inode2: second inode to lock
1024 */
1025 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1026 {
1027 if (inode1 > inode2)
1028 swap(inode1, inode2);
1029
1030 if (inode1 && !S_ISDIR(inode1->i_mode))
1031 inode_lock(inode1);
1032 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1033 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1034 }
1035 EXPORT_SYMBOL(lock_two_nondirectories);
1036
1037 /**
1038 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1039 * @inode1: first inode to unlock
1040 * @inode2: second inode to unlock
1041 */
1042 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1043 {
1044 if (inode1 && !S_ISDIR(inode1->i_mode))
1045 inode_unlock(inode1);
1046 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1047 inode_unlock(inode2);
1048 }
1049 EXPORT_SYMBOL(unlock_two_nondirectories);
1050
1051 /**
1052 * inode_insert5 - obtain an inode from a mounted file system
1053 * @inode: pre-allocated inode to use for insert to cache
1054 * @hashval: hash value (usually inode number) to get
1055 * @test: callback used for comparisons between inodes
1056 * @set: callback used to initialize a new struct inode
1057 * @data: opaque data pointer to pass to @test and @set
1058 *
1059 * Search for the inode specified by @hashval and @data in the inode cache,
1060 * and if present it is return it with an increased reference count. This is
1061 * a variant of iget5_locked() for callers that don't want to fail on memory
1062 * allocation of inode.
1063 *
1064 * If the inode is not in cache, insert the pre-allocated inode to cache and
1065 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1066 * to fill it in before unlocking it via unlock_new_inode().
1067 *
1068 * Note both @test and @set are called with the inode_hash_lock held, so can't
1069 * sleep.
1070 */
1071 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1072 int (*test)(struct inode *, void *),
1073 int (*set)(struct inode *, void *), void *data)
1074 {
1075 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1076 struct inode *old;
1077 bool creating = inode->i_state & I_CREATING;
1078
1079 again:
1080 spin_lock(&inode_hash_lock);
1081 old = find_inode(inode->i_sb, head, test, data);
1082 if (unlikely(old)) {
1083 /*
1084 * Uhhuh, somebody else created the same inode under us.
1085 * Use the old inode instead of the preallocated one.
1086 */
1087 spin_unlock(&inode_hash_lock);
1088 if (IS_ERR(old))
1089 return NULL;
1090 wait_on_inode(old);
1091 if (unlikely(inode_unhashed(old))) {
1092 iput(old);
1093 goto again;
1094 }
1095 return old;
1096 }
1097
1098 if (set && unlikely(set(inode, data))) {
1099 inode = NULL;
1100 goto unlock;
1101 }
1102
1103 /*
1104 * Return the locked inode with I_NEW set, the
1105 * caller is responsible for filling in the contents
1106 */
1107 spin_lock(&inode->i_lock);
1108 inode->i_state |= I_NEW;
1109 hlist_add_head_rcu(&inode->i_hash, head);
1110 spin_unlock(&inode->i_lock);
1111 if (!creating)
1112 inode_sb_list_add(inode);
1113 unlock:
1114 spin_unlock(&inode_hash_lock);
1115
1116 return inode;
1117 }
1118 EXPORT_SYMBOL(inode_insert5);
1119
1120 /**
1121 * iget5_locked - obtain an inode from a mounted file system
1122 * @sb: super block of file system
1123 * @hashval: hash value (usually inode number) to get
1124 * @test: callback used for comparisons between inodes
1125 * @set: callback used to initialize a new struct inode
1126 * @data: opaque data pointer to pass to @test and @set
1127 *
1128 * Search for the inode specified by @hashval and @data in the inode cache,
1129 * and if present it is return it with an increased reference count. This is
1130 * a generalized version of iget_locked() for file systems where the inode
1131 * number is not sufficient for unique identification of an inode.
1132 *
1133 * If the inode is not in cache, allocate a new inode and return it locked,
1134 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1135 * before unlocking it via unlock_new_inode().
1136 *
1137 * Note both @test and @set are called with the inode_hash_lock held, so can't
1138 * sleep.
1139 */
1140 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1141 int (*test)(struct inode *, void *),
1142 int (*set)(struct inode *, void *), void *data)
1143 {
1144 struct inode *inode = ilookup5(sb, hashval, test, data);
1145
1146 if (!inode) {
1147 struct inode *new = alloc_inode(sb);
1148
1149 if (new) {
1150 new->i_state = 0;
1151 inode = inode_insert5(new, hashval, test, set, data);
1152 if (unlikely(inode != new))
1153 destroy_inode(new);
1154 }
1155 }
1156 return inode;
1157 }
1158 EXPORT_SYMBOL(iget5_locked);
1159
1160 /**
1161 * iget_locked - obtain an inode from a mounted file system
1162 * @sb: super block of file system
1163 * @ino: inode number to get
1164 *
1165 * Search for the inode specified by @ino in the inode cache and if present
1166 * return it with an increased reference count. This is for file systems
1167 * where the inode number is sufficient for unique identification of an inode.
1168 *
1169 * If the inode is not in cache, allocate a new inode and return it locked,
1170 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1171 * before unlocking it via unlock_new_inode().
1172 */
1173 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1174 {
1175 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1176 struct inode *inode;
1177 again:
1178 spin_lock(&inode_hash_lock);
1179 inode = find_inode_fast(sb, head, ino);
1180 spin_unlock(&inode_hash_lock);
1181 if (inode) {
1182 if (IS_ERR(inode))
1183 return NULL;
1184 wait_on_inode(inode);
1185 if (unlikely(inode_unhashed(inode))) {
1186 iput(inode);
1187 goto again;
1188 }
1189 return inode;
1190 }
1191
1192 inode = alloc_inode(sb);
1193 if (inode) {
1194 struct inode *old;
1195
1196 spin_lock(&inode_hash_lock);
1197 /* We released the lock, so.. */
1198 old = find_inode_fast(sb, head, ino);
1199 if (!old) {
1200 inode->i_ino = ino;
1201 spin_lock(&inode->i_lock);
1202 inode->i_state = I_NEW;
1203 hlist_add_head_rcu(&inode->i_hash, head);
1204 spin_unlock(&inode->i_lock);
1205 inode_sb_list_add(inode);
1206 spin_unlock(&inode_hash_lock);
1207
1208 /* Return the locked inode with I_NEW set, the
1209 * caller is responsible for filling in the contents
1210 */
1211 return inode;
1212 }
1213
1214 /*
1215 * Uhhuh, somebody else created the same inode under
1216 * us. Use the old inode instead of the one we just
1217 * allocated.
1218 */
1219 spin_unlock(&inode_hash_lock);
1220 destroy_inode(inode);
1221 if (IS_ERR(old))
1222 return NULL;
1223 inode = old;
1224 wait_on_inode(inode);
1225 if (unlikely(inode_unhashed(inode))) {
1226 iput(inode);
1227 goto again;
1228 }
1229 }
1230 return inode;
1231 }
1232 EXPORT_SYMBOL(iget_locked);
1233
1234 /*
1235 * search the inode cache for a matching inode number.
1236 * If we find one, then the inode number we are trying to
1237 * allocate is not unique and so we should not use it.
1238 *
1239 * Returns 1 if the inode number is unique, 0 if it is not.
1240 */
1241 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1242 {
1243 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1244 struct inode *inode;
1245
1246 hlist_for_each_entry_rcu(inode, b, i_hash) {
1247 if (inode->i_ino == ino && inode->i_sb == sb)
1248 return 0;
1249 }
1250 return 1;
1251 }
1252
1253 /**
1254 * iunique - get a unique inode number
1255 * @sb: superblock
1256 * @max_reserved: highest reserved inode number
1257 *
1258 * Obtain an inode number that is unique on the system for a given
1259 * superblock. This is used by file systems that have no natural
1260 * permanent inode numbering system. An inode number is returned that
1261 * is higher than the reserved limit but unique.
1262 *
1263 * BUGS:
1264 * With a large number of inodes live on the file system this function
1265 * currently becomes quite slow.
1266 */
1267 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1268 {
1269 /*
1270 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1271 * error if st_ino won't fit in target struct field. Use 32bit counter
1272 * here to attempt to avoid that.
1273 */
1274 static DEFINE_SPINLOCK(iunique_lock);
1275 static unsigned int counter;
1276 ino_t res;
1277
1278 rcu_read_lock();
1279 spin_lock(&iunique_lock);
1280 do {
1281 if (counter <= max_reserved)
1282 counter = max_reserved + 1;
1283 res = counter++;
1284 } while (!test_inode_iunique(sb, res));
1285 spin_unlock(&iunique_lock);
1286 rcu_read_unlock();
1287
1288 return res;
1289 }
1290 EXPORT_SYMBOL(iunique);
1291
1292 struct inode *igrab(struct inode *inode)
1293 {
1294 spin_lock(&inode->i_lock);
1295 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1296 __iget(inode);
1297 spin_unlock(&inode->i_lock);
1298 } else {
1299 spin_unlock(&inode->i_lock);
1300 /*
1301 * Handle the case where s_op->clear_inode is not been
1302 * called yet, and somebody is calling igrab
1303 * while the inode is getting freed.
1304 */
1305 inode = NULL;
1306 }
1307 return inode;
1308 }
1309 EXPORT_SYMBOL(igrab);
1310
1311 /**
1312 * ilookup5_nowait - search for an inode in the inode cache
1313 * @sb: super block of file system to search
1314 * @hashval: hash value (usually inode number) to search for
1315 * @test: callback used for comparisons between inodes
1316 * @data: opaque data pointer to pass to @test
1317 *
1318 * Search for the inode specified by @hashval and @data in the inode cache.
1319 * If the inode is in the cache, the inode is returned with an incremented
1320 * reference count.
1321 *
1322 * Note: I_NEW is not waited upon so you have to be very careful what you do
1323 * with the returned inode. You probably should be using ilookup5() instead.
1324 *
1325 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1326 */
1327 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1328 int (*test)(struct inode *, void *), void *data)
1329 {
1330 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1331 struct inode *inode;
1332
1333 spin_lock(&inode_hash_lock);
1334 inode = find_inode(sb, head, test, data);
1335 spin_unlock(&inode_hash_lock);
1336
1337 return IS_ERR(inode) ? NULL : inode;
1338 }
1339 EXPORT_SYMBOL(ilookup5_nowait);
1340
1341 /**
1342 * ilookup5 - search for an inode in the inode cache
1343 * @sb: super block of file system to search
1344 * @hashval: hash value (usually inode number) to search for
1345 * @test: callback used for comparisons between inodes
1346 * @data: opaque data pointer to pass to @test
1347 *
1348 * Search for the inode specified by @hashval and @data in the inode cache,
1349 * and if the inode is in the cache, return the inode with an incremented
1350 * reference count. Waits on I_NEW before returning the inode.
1351 * returned with an incremented reference count.
1352 *
1353 * This is a generalized version of ilookup() for file systems where the
1354 * inode number is not sufficient for unique identification of an inode.
1355 *
1356 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1357 */
1358 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1359 int (*test)(struct inode *, void *), void *data)
1360 {
1361 struct inode *inode;
1362 again:
1363 inode = ilookup5_nowait(sb, hashval, test, data);
1364 if (inode) {
1365 wait_on_inode(inode);
1366 if (unlikely(inode_unhashed(inode))) {
1367 iput(inode);
1368 goto again;
1369 }
1370 }
1371 return inode;
1372 }
1373 EXPORT_SYMBOL(ilookup5);
1374
1375 /**
1376 * ilookup - search for an inode in the inode cache
1377 * @sb: super block of file system to search
1378 * @ino: inode number to search for
1379 *
1380 * Search for the inode @ino in the inode cache, and if the inode is in the
1381 * cache, the inode is returned with an incremented reference count.
1382 */
1383 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1384 {
1385 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1386 struct inode *inode;
1387 again:
1388 spin_lock(&inode_hash_lock);
1389 inode = find_inode_fast(sb, head, ino);
1390 spin_unlock(&inode_hash_lock);
1391
1392 if (inode) {
1393 if (IS_ERR(inode))
1394 return NULL;
1395 wait_on_inode(inode);
1396 if (unlikely(inode_unhashed(inode))) {
1397 iput(inode);
1398 goto again;
1399 }
1400 }
1401 return inode;
1402 }
1403 EXPORT_SYMBOL(ilookup);
1404
1405 /**
1406 * find_inode_nowait - find an inode in the inode cache
1407 * @sb: super block of file system to search
1408 * @hashval: hash value (usually inode number) to search for
1409 * @match: callback used for comparisons between inodes
1410 * @data: opaque data pointer to pass to @match
1411 *
1412 * Search for the inode specified by @hashval and @data in the inode
1413 * cache, where the helper function @match will return 0 if the inode
1414 * does not match, 1 if the inode does match, and -1 if the search
1415 * should be stopped. The @match function must be responsible for
1416 * taking the i_lock spin_lock and checking i_state for an inode being
1417 * freed or being initialized, and incrementing the reference count
1418 * before returning 1. It also must not sleep, since it is called with
1419 * the inode_hash_lock spinlock held.
1420 *
1421 * This is a even more generalized version of ilookup5() when the
1422 * function must never block --- find_inode() can block in
1423 * __wait_on_freeing_inode() --- or when the caller can not increment
1424 * the reference count because the resulting iput() might cause an
1425 * inode eviction. The tradeoff is that the @match funtion must be
1426 * very carefully implemented.
1427 */
1428 struct inode *find_inode_nowait(struct super_block *sb,
1429 unsigned long hashval,
1430 int (*match)(struct inode *, unsigned long,
1431 void *),
1432 void *data)
1433 {
1434 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1435 struct inode *inode, *ret_inode = NULL;
1436 int mval;
1437
1438 spin_lock(&inode_hash_lock);
1439 hlist_for_each_entry(inode, head, i_hash) {
1440 if (inode->i_sb != sb)
1441 continue;
1442 mval = match(inode, hashval, data);
1443 if (mval == 0)
1444 continue;
1445 if (mval == 1)
1446 ret_inode = inode;
1447 goto out;
1448 }
1449 out:
1450 spin_unlock(&inode_hash_lock);
1451 return ret_inode;
1452 }
1453 EXPORT_SYMBOL(find_inode_nowait);
1454
1455 /**
1456 * find_inode_rcu - find an inode in the inode cache
1457 * @sb: Super block of file system to search
1458 * @hashval: Key to hash
1459 * @test: Function to test match on an inode
1460 * @data: Data for test function
1461 *
1462 * Search for the inode specified by @hashval and @data in the inode cache,
1463 * where the helper function @test will return 0 if the inode does not match
1464 * and 1 if it does. The @test function must be responsible for taking the
1465 * i_lock spin_lock and checking i_state for an inode being freed or being
1466 * initialized.
1467 *
1468 * If successful, this will return the inode for which the @test function
1469 * returned 1 and NULL otherwise.
1470 *
1471 * The @test function is not permitted to take a ref on any inode presented.
1472 * It is also not permitted to sleep.
1473 *
1474 * The caller must hold the RCU read lock.
1475 */
1476 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1477 int (*test)(struct inode *, void *), void *data)
1478 {
1479 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1480 struct inode *inode;
1481
1482 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1483 "suspicious find_inode_rcu() usage");
1484
1485 hlist_for_each_entry_rcu(inode, head, i_hash) {
1486 if (inode->i_sb == sb &&
1487 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1488 test(inode, data))
1489 return inode;
1490 }
1491 return NULL;
1492 }
1493 EXPORT_SYMBOL(find_inode_rcu);
1494
1495 /**
1496 * find_inode_by_rcu - Find an inode in the inode cache
1497 * @sb: Super block of file system to search
1498 * @ino: The inode number to match
1499 *
1500 * Search for the inode specified by @hashval and @data in the inode cache,
1501 * where the helper function @test will return 0 if the inode does not match
1502 * and 1 if it does. The @test function must be responsible for taking the
1503 * i_lock spin_lock and checking i_state for an inode being freed or being
1504 * initialized.
1505 *
1506 * If successful, this will return the inode for which the @test function
1507 * returned 1 and NULL otherwise.
1508 *
1509 * The @test function is not permitted to take a ref on any inode presented.
1510 * It is also not permitted to sleep.
1511 *
1512 * The caller must hold the RCU read lock.
1513 */
1514 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1515 unsigned long ino)
1516 {
1517 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1518 struct inode *inode;
1519
1520 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1521 "suspicious find_inode_by_ino_rcu() usage");
1522
1523 hlist_for_each_entry_rcu(inode, head, i_hash) {
1524 if (inode->i_ino == ino &&
1525 inode->i_sb == sb &&
1526 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1527 return inode;
1528 }
1529 return NULL;
1530 }
1531 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1532
1533 int insert_inode_locked(struct inode *inode)
1534 {
1535 struct super_block *sb = inode->i_sb;
1536 ino_t ino = inode->i_ino;
1537 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1538
1539 while (1) {
1540 struct inode *old = NULL;
1541 spin_lock(&inode_hash_lock);
1542 hlist_for_each_entry(old, head, i_hash) {
1543 if (old->i_ino != ino)
1544 continue;
1545 if (old->i_sb != sb)
1546 continue;
1547 spin_lock(&old->i_lock);
1548 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1549 spin_unlock(&old->i_lock);
1550 continue;
1551 }
1552 break;
1553 }
1554 if (likely(!old)) {
1555 spin_lock(&inode->i_lock);
1556 inode->i_state |= I_NEW | I_CREATING;
1557 hlist_add_head_rcu(&inode->i_hash, head);
1558 spin_unlock(&inode->i_lock);
1559 spin_unlock(&inode_hash_lock);
1560 return 0;
1561 }
1562 if (unlikely(old->i_state & I_CREATING)) {
1563 spin_unlock(&old->i_lock);
1564 spin_unlock(&inode_hash_lock);
1565 return -EBUSY;
1566 }
1567 __iget(old);
1568 spin_unlock(&old->i_lock);
1569 spin_unlock(&inode_hash_lock);
1570 wait_on_inode(old);
1571 if (unlikely(!inode_unhashed(old))) {
1572 iput(old);
1573 return -EBUSY;
1574 }
1575 iput(old);
1576 }
1577 }
1578 EXPORT_SYMBOL(insert_inode_locked);
1579
1580 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1581 int (*test)(struct inode *, void *), void *data)
1582 {
1583 struct inode *old;
1584
1585 inode->i_state |= I_CREATING;
1586 old = inode_insert5(inode, hashval, test, NULL, data);
1587
1588 if (old != inode) {
1589 iput(old);
1590 return -EBUSY;
1591 }
1592 return 0;
1593 }
1594 EXPORT_SYMBOL(insert_inode_locked4);
1595
1596
1597 int generic_delete_inode(struct inode *inode)
1598 {
1599 return 1;
1600 }
1601 EXPORT_SYMBOL(generic_delete_inode);
1602
1603 /*
1604 * Called when we're dropping the last reference
1605 * to an inode.
1606 *
1607 * Call the FS "drop_inode()" function, defaulting to
1608 * the legacy UNIX filesystem behaviour. If it tells
1609 * us to evict inode, do so. Otherwise, retain inode
1610 * in cache if fs is alive, sync and evict if fs is
1611 * shutting down.
1612 */
1613 static void iput_final(struct inode *inode)
1614 {
1615 struct super_block *sb = inode->i_sb;
1616 const struct super_operations *op = inode->i_sb->s_op;
1617 unsigned long state;
1618 int drop;
1619
1620 WARN_ON(inode->i_state & I_NEW);
1621
1622 if (op->drop_inode)
1623 drop = op->drop_inode(inode);
1624 else
1625 drop = generic_drop_inode(inode);
1626
1627 if (!drop &&
1628 !(inode->i_state & I_DONTCACHE) &&
1629 (sb->s_flags & SB_ACTIVE)) {
1630 inode_add_lru(inode);
1631 spin_unlock(&inode->i_lock);
1632 return;
1633 }
1634
1635 state = inode->i_state;
1636 if (!drop) {
1637 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1638 spin_unlock(&inode->i_lock);
1639
1640 write_inode_now(inode, 1);
1641
1642 spin_lock(&inode->i_lock);
1643 state = inode->i_state;
1644 WARN_ON(state & I_NEW);
1645 state &= ~I_WILL_FREE;
1646 }
1647
1648 WRITE_ONCE(inode->i_state, state | I_FREEING);
1649 if (!list_empty(&inode->i_lru))
1650 inode_lru_list_del(inode);
1651 spin_unlock(&inode->i_lock);
1652
1653 evict(inode);
1654 }
1655
1656 /**
1657 * iput - put an inode
1658 * @inode: inode to put
1659 *
1660 * Puts an inode, dropping its usage count. If the inode use count hits
1661 * zero, the inode is then freed and may also be destroyed.
1662 *
1663 * Consequently, iput() can sleep.
1664 */
1665 void iput(struct inode *inode)
1666 {
1667 if (!inode)
1668 return;
1669 BUG_ON(inode->i_state & I_CLEAR);
1670 retry:
1671 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1672 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1673 atomic_inc(&inode->i_count);
1674 spin_unlock(&inode->i_lock);
1675 trace_writeback_lazytime_iput(inode);
1676 mark_inode_dirty_sync(inode);
1677 goto retry;
1678 }
1679 iput_final(inode);
1680 }
1681 }
1682 EXPORT_SYMBOL(iput);
1683
1684 #ifdef CONFIG_BLOCK
1685 /**
1686 * bmap - find a block number in a file
1687 * @inode: inode owning the block number being requested
1688 * @block: pointer containing the block to find
1689 *
1690 * Replaces the value in ``*block`` with the block number on the device holding
1691 * corresponding to the requested block number in the file.
1692 * That is, asked for block 4 of inode 1 the function will replace the
1693 * 4 in ``*block``, with disk block relative to the disk start that holds that
1694 * block of the file.
1695 *
1696 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1697 * hole, returns 0 and ``*block`` is also set to 0.
1698 */
1699 int bmap(struct inode *inode, sector_t *block)
1700 {
1701 if (!inode->i_mapping->a_ops->bmap)
1702 return -EINVAL;
1703
1704 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1705 return 0;
1706 }
1707 EXPORT_SYMBOL(bmap);
1708 #endif
1709
1710 /*
1711 * With relative atime, only update atime if the previous atime is
1712 * earlier than either the ctime or mtime or if at least a day has
1713 * passed since the last atime update.
1714 */
1715 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1716 struct timespec64 now)
1717 {
1718
1719 if (!(mnt->mnt_flags & MNT_RELATIME))
1720 return 1;
1721 /*
1722 * Is mtime younger than atime? If yes, update atime:
1723 */
1724 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1725 return 1;
1726 /*
1727 * Is ctime younger than atime? If yes, update atime:
1728 */
1729 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1730 return 1;
1731
1732 /*
1733 * Is the previous atime value older than a day? If yes,
1734 * update atime:
1735 */
1736 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1737 return 1;
1738 /*
1739 * Good, we can skip the atime update:
1740 */
1741 return 0;
1742 }
1743
1744 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1745 {
1746 int iflags = I_DIRTY_TIME;
1747 bool dirty = false;
1748
1749 if (flags & S_ATIME)
1750 inode->i_atime = *time;
1751 if (flags & S_VERSION)
1752 dirty = inode_maybe_inc_iversion(inode, false);
1753 if (flags & S_CTIME)
1754 inode->i_ctime = *time;
1755 if (flags & S_MTIME)
1756 inode->i_mtime = *time;
1757 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1758 !(inode->i_sb->s_flags & SB_LAZYTIME))
1759 dirty = true;
1760
1761 if (dirty)
1762 iflags |= I_DIRTY_SYNC;
1763 __mark_inode_dirty(inode, iflags);
1764 return 0;
1765 }
1766 EXPORT_SYMBOL(generic_update_time);
1767
1768 /*
1769 * This does the actual work of updating an inodes time or version. Must have
1770 * had called mnt_want_write() before calling this.
1771 */
1772 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1773 {
1774 if (inode->i_op->update_time)
1775 return inode->i_op->update_time(inode, time, flags);
1776 return generic_update_time(inode, time, flags);
1777 }
1778
1779 /**
1780 * touch_atime - update the access time
1781 * @path: the &struct path to update
1782 * @inode: inode to update
1783 *
1784 * Update the accessed time on an inode and mark it for writeback.
1785 * This function automatically handles read only file systems and media,
1786 * as well as the "noatime" flag and inode specific "noatime" markers.
1787 */
1788 bool atime_needs_update(const struct path *path, struct inode *inode)
1789 {
1790 struct vfsmount *mnt = path->mnt;
1791 struct timespec64 now;
1792
1793 if (inode->i_flags & S_NOATIME)
1794 return false;
1795
1796 /* Atime updates will likely cause i_uid and i_gid to be written
1797 * back improprely if their true value is unknown to the vfs.
1798 */
1799 if (HAS_UNMAPPED_ID(inode))
1800 return false;
1801
1802 if (IS_NOATIME(inode))
1803 return false;
1804 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1805 return false;
1806
1807 if (mnt->mnt_flags & MNT_NOATIME)
1808 return false;
1809 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1810 return false;
1811
1812 now = current_time(inode);
1813
1814 if (!relatime_need_update(mnt, inode, now))
1815 return false;
1816
1817 if (timespec64_equal(&inode->i_atime, &now))
1818 return false;
1819
1820 return true;
1821 }
1822
1823 void touch_atime(const struct path *path)
1824 {
1825 struct vfsmount *mnt = path->mnt;
1826 struct inode *inode = d_inode(path->dentry);
1827 struct timespec64 now;
1828
1829 if (!atime_needs_update(path, inode))
1830 return;
1831
1832 if (!sb_start_write_trylock(inode->i_sb))
1833 return;
1834
1835 if (__mnt_want_write(mnt) != 0)
1836 goto skip_update;
1837 /*
1838 * File systems can error out when updating inodes if they need to
1839 * allocate new space to modify an inode (such is the case for
1840 * Btrfs), but since we touch atime while walking down the path we
1841 * really don't care if we failed to update the atime of the file,
1842 * so just ignore the return value.
1843 * We may also fail on filesystems that have the ability to make parts
1844 * of the fs read only, e.g. subvolumes in Btrfs.
1845 */
1846 now = current_time(inode);
1847 update_time(inode, &now, S_ATIME);
1848 __mnt_drop_write(mnt);
1849 skip_update:
1850 sb_end_write(inode->i_sb);
1851 }
1852 EXPORT_SYMBOL(touch_atime);
1853
1854 /*
1855 * The logic we want is
1856 *
1857 * if suid or (sgid and xgrp)
1858 * remove privs
1859 */
1860 int should_remove_suid(struct dentry *dentry)
1861 {
1862 umode_t mode = d_inode(dentry)->i_mode;
1863 int kill = 0;
1864
1865 /* suid always must be killed */
1866 if (unlikely(mode & S_ISUID))
1867 kill = ATTR_KILL_SUID;
1868
1869 /*
1870 * sgid without any exec bits is just a mandatory locking mark; leave
1871 * it alone. If some exec bits are set, it's a real sgid; kill it.
1872 */
1873 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1874 kill |= ATTR_KILL_SGID;
1875
1876 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1877 return kill;
1878
1879 return 0;
1880 }
1881 EXPORT_SYMBOL(should_remove_suid);
1882
1883 /*
1884 * Return mask of changes for notify_change() that need to be done as a
1885 * response to write or truncate. Return 0 if nothing has to be changed.
1886 * Negative value on error (change should be denied).
1887 */
1888 int dentry_needs_remove_privs(struct dentry *dentry)
1889 {
1890 struct inode *inode = d_inode(dentry);
1891 int mask = 0;
1892 int ret;
1893
1894 if (IS_NOSEC(inode))
1895 return 0;
1896
1897 mask = should_remove_suid(dentry);
1898 ret = security_inode_need_killpriv(dentry);
1899 if (ret < 0)
1900 return ret;
1901 if (ret)
1902 mask |= ATTR_KILL_PRIV;
1903 return mask;
1904 }
1905
1906 static int __remove_privs(struct dentry *dentry, int kill)
1907 {
1908 struct iattr newattrs;
1909
1910 newattrs.ia_valid = ATTR_FORCE | kill;
1911 /*
1912 * Note we call this on write, so notify_change will not
1913 * encounter any conflicting delegations:
1914 */
1915 return notify_change(dentry, &newattrs, NULL);
1916 }
1917
1918 /*
1919 * Remove special file priviledges (suid, capabilities) when file is written
1920 * to or truncated.
1921 */
1922 int file_remove_privs(struct file *file)
1923 {
1924 struct dentry *dentry = file_dentry(file);
1925 struct inode *inode = file_inode(file);
1926 int kill;
1927 int error = 0;
1928
1929 /*
1930 * Fast path for nothing security related.
1931 * As well for non-regular files, e.g. blkdev inodes.
1932 * For example, blkdev_write_iter() might get here
1933 * trying to remove privs which it is not allowed to.
1934 */
1935 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1936 return 0;
1937
1938 kill = dentry_needs_remove_privs(dentry);
1939 if (kill < 0)
1940 return kill;
1941 if (kill)
1942 error = __remove_privs(dentry, kill);
1943 if (!error)
1944 inode_has_no_xattr(inode);
1945
1946 return error;
1947 }
1948 EXPORT_SYMBOL(file_remove_privs);
1949
1950 /**
1951 * file_update_time - update mtime and ctime time
1952 * @file: file accessed
1953 *
1954 * Update the mtime and ctime members of an inode and mark the inode
1955 * for writeback. Note that this function is meant exclusively for
1956 * usage in the file write path of filesystems, and filesystems may
1957 * choose to explicitly ignore update via this function with the
1958 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1959 * timestamps are handled by the server. This can return an error for
1960 * file systems who need to allocate space in order to update an inode.
1961 */
1962
1963 int file_update_time(struct file *file)
1964 {
1965 struct inode *inode = file_inode(file);
1966 struct timespec64 now;
1967 int sync_it = 0;
1968 int ret;
1969
1970 /* First try to exhaust all avenues to not sync */
1971 if (IS_NOCMTIME(inode))
1972 return 0;
1973
1974 now = current_time(inode);
1975 if (!timespec64_equal(&inode->i_mtime, &now))
1976 sync_it = S_MTIME;
1977
1978 if (!timespec64_equal(&inode->i_ctime, &now))
1979 sync_it |= S_CTIME;
1980
1981 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1982 sync_it |= S_VERSION;
1983
1984 if (!sync_it)
1985 return 0;
1986
1987 /* Finally allowed to write? Takes lock. */
1988 if (__mnt_want_write_file(file))
1989 return 0;
1990
1991 ret = update_time(inode, &now, sync_it);
1992 __mnt_drop_write_file(file);
1993
1994 return ret;
1995 }
1996 EXPORT_SYMBOL(file_update_time);
1997
1998 /* Caller must hold the file's inode lock */
1999 int file_modified(struct file *file)
2000 {
2001 int err;
2002
2003 /*
2004 * Clear the security bits if the process is not being run by root.
2005 * This keeps people from modifying setuid and setgid binaries.
2006 */
2007 err = file_remove_privs(file);
2008 if (err)
2009 return err;
2010
2011 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2012 return 0;
2013
2014 return file_update_time(file);
2015 }
2016 EXPORT_SYMBOL(file_modified);
2017
2018 int inode_needs_sync(struct inode *inode)
2019 {
2020 if (IS_SYNC(inode))
2021 return 1;
2022 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2023 return 1;
2024 return 0;
2025 }
2026 EXPORT_SYMBOL(inode_needs_sync);
2027
2028 /*
2029 * If we try to find an inode in the inode hash while it is being
2030 * deleted, we have to wait until the filesystem completes its
2031 * deletion before reporting that it isn't found. This function waits
2032 * until the deletion _might_ have completed. Callers are responsible
2033 * to recheck inode state.
2034 *
2035 * It doesn't matter if I_NEW is not set initially, a call to
2036 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2037 * will DTRT.
2038 */
2039 static void __wait_on_freeing_inode(struct inode *inode)
2040 {
2041 wait_queue_head_t *wq;
2042 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2043 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2044 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2045 spin_unlock(&inode->i_lock);
2046 spin_unlock(&inode_hash_lock);
2047 schedule();
2048 finish_wait(wq, &wait.wq_entry);
2049 spin_lock(&inode_hash_lock);
2050 }
2051
2052 static __initdata unsigned long ihash_entries;
2053 static int __init set_ihash_entries(char *str)
2054 {
2055 if (!str)
2056 return 0;
2057 ihash_entries = simple_strtoul(str, &str, 0);
2058 return 1;
2059 }
2060 __setup("ihash_entries=", set_ihash_entries);
2061
2062 /*
2063 * Initialize the waitqueues and inode hash table.
2064 */
2065 void __init inode_init_early(void)
2066 {
2067 /* If hashes are distributed across NUMA nodes, defer
2068 * hash allocation until vmalloc space is available.
2069 */
2070 if (hashdist)
2071 return;
2072
2073 inode_hashtable =
2074 alloc_large_system_hash("Inode-cache",
2075 sizeof(struct hlist_head),
2076 ihash_entries,
2077 14,
2078 HASH_EARLY | HASH_ZERO,
2079 &i_hash_shift,
2080 &i_hash_mask,
2081 0,
2082 0);
2083 }
2084
2085 void __init inode_init(void)
2086 {
2087 /* inode slab cache */
2088 inode_cachep = kmem_cache_create("inode_cache",
2089 sizeof(struct inode),
2090 0,
2091 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2092 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2093 init_once);
2094
2095 /* Hash may have been set up in inode_init_early */
2096 if (!hashdist)
2097 return;
2098
2099 inode_hashtable =
2100 alloc_large_system_hash("Inode-cache",
2101 sizeof(struct hlist_head),
2102 ihash_entries,
2103 14,
2104 HASH_ZERO,
2105 &i_hash_shift,
2106 &i_hash_mask,
2107 0,
2108 0);
2109 }
2110
2111 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2112 {
2113 inode->i_mode = mode;
2114 if (S_ISCHR(mode)) {
2115 inode->i_fop = &def_chr_fops;
2116 inode->i_rdev = rdev;
2117 } else if (S_ISBLK(mode)) {
2118 inode->i_fop = &def_blk_fops;
2119 inode->i_rdev = rdev;
2120 } else if (S_ISFIFO(mode))
2121 inode->i_fop = &pipefifo_fops;
2122 else if (S_ISSOCK(mode))
2123 ; /* leave it no_open_fops */
2124 else
2125 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2126 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2127 inode->i_ino);
2128 }
2129 EXPORT_SYMBOL(init_special_inode);
2130
2131 /**
2132 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2133 * @inode: New inode
2134 * @dir: Directory inode
2135 * @mode: mode of the new inode
2136 */
2137 void inode_init_owner(struct inode *inode, const struct inode *dir,
2138 umode_t mode)
2139 {
2140 inode->i_uid = current_fsuid();
2141 if (dir && dir->i_mode & S_ISGID) {
2142 inode->i_gid = dir->i_gid;
2143
2144 /* Directories are special, and always inherit S_ISGID */
2145 if (S_ISDIR(mode))
2146 mode |= S_ISGID;
2147 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2148 !in_group_p(inode->i_gid) &&
2149 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2150 mode &= ~S_ISGID;
2151 } else
2152 inode->i_gid = current_fsgid();
2153 inode->i_mode = mode;
2154 }
2155 EXPORT_SYMBOL(inode_init_owner);
2156
2157 /**
2158 * inode_owner_or_capable - check current task permissions to inode
2159 * @inode: inode being checked
2160 *
2161 * Return true if current either has CAP_FOWNER in a namespace with the
2162 * inode owner uid mapped, or owns the file.
2163 */
2164 bool inode_owner_or_capable(const struct inode *inode)
2165 {
2166 struct user_namespace *ns;
2167
2168 if (uid_eq(current_fsuid(), inode->i_uid))
2169 return true;
2170
2171 ns = current_user_ns();
2172 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2173 return true;
2174 return false;
2175 }
2176 EXPORT_SYMBOL(inode_owner_or_capable);
2177
2178 /*
2179 * Direct i/o helper functions
2180 */
2181 static void __inode_dio_wait(struct inode *inode)
2182 {
2183 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2184 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2185
2186 do {
2187 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2188 if (atomic_read(&inode->i_dio_count))
2189 schedule();
2190 } while (atomic_read(&inode->i_dio_count));
2191 finish_wait(wq, &q.wq_entry);
2192 }
2193
2194 /**
2195 * inode_dio_wait - wait for outstanding DIO requests to finish
2196 * @inode: inode to wait for
2197 *
2198 * Waits for all pending direct I/O requests to finish so that we can
2199 * proceed with a truncate or equivalent operation.
2200 *
2201 * Must be called under a lock that serializes taking new references
2202 * to i_dio_count, usually by inode->i_mutex.
2203 */
2204 void inode_dio_wait(struct inode *inode)
2205 {
2206 if (atomic_read(&inode->i_dio_count))
2207 __inode_dio_wait(inode);
2208 }
2209 EXPORT_SYMBOL(inode_dio_wait);
2210
2211 /*
2212 * inode_set_flags - atomically set some inode flags
2213 *
2214 * Note: the caller should be holding i_mutex, or else be sure that
2215 * they have exclusive access to the inode structure (i.e., while the
2216 * inode is being instantiated). The reason for the cmpxchg() loop
2217 * --- which wouldn't be necessary if all code paths which modify
2218 * i_flags actually followed this rule, is that there is at least one
2219 * code path which doesn't today so we use cmpxchg() out of an abundance
2220 * of caution.
2221 *
2222 * In the long run, i_mutex is overkill, and we should probably look
2223 * at using the i_lock spinlock to protect i_flags, and then make sure
2224 * it is so documented in include/linux/fs.h and that all code follows
2225 * the locking convention!!
2226 */
2227 void inode_set_flags(struct inode *inode, unsigned int flags,
2228 unsigned int mask)
2229 {
2230 WARN_ON_ONCE(flags & ~mask);
2231 set_mask_bits(&inode->i_flags, mask, flags);
2232 }
2233 EXPORT_SYMBOL(inode_set_flags);
2234
2235 void inode_nohighmem(struct inode *inode)
2236 {
2237 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2238 }
2239 EXPORT_SYMBOL(inode_nohighmem);
2240
2241 /**
2242 * timestamp_truncate - Truncate timespec to a granularity
2243 * @t: Timespec
2244 * @inode: inode being updated
2245 *
2246 * Truncate a timespec to the granularity supported by the fs
2247 * containing the inode. Always rounds down. gran must
2248 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2249 */
2250 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2251 {
2252 struct super_block *sb = inode->i_sb;
2253 unsigned int gran = sb->s_time_gran;
2254
2255 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2256 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2257 t.tv_nsec = 0;
2258
2259 /* Avoid division in the common cases 1 ns and 1 s. */
2260 if (gran == 1)
2261 ; /* nothing */
2262 else if (gran == NSEC_PER_SEC)
2263 t.tv_nsec = 0;
2264 else if (gran > 1 && gran < NSEC_PER_SEC)
2265 t.tv_nsec -= t.tv_nsec % gran;
2266 else
2267 WARN(1, "invalid file time granularity: %u", gran);
2268 return t;
2269 }
2270 EXPORT_SYMBOL(timestamp_truncate);
2271
2272 /**
2273 * current_time - Return FS time
2274 * @inode: inode.
2275 *
2276 * Return the current time truncated to the time granularity supported by
2277 * the fs.
2278 *
2279 * Note that inode and inode->sb cannot be NULL.
2280 * Otherwise, the function warns and returns time without truncation.
2281 */
2282 struct timespec64 current_time(struct inode *inode)
2283 {
2284 struct timespec64 now;
2285
2286 ktime_get_coarse_real_ts64(&now);
2287
2288 if (unlikely(!inode->i_sb)) {
2289 WARN(1, "current_time() called with uninitialized super_block in the inode");
2290 return now;
2291 }
2292
2293 return timestamp_truncate(now, inode);
2294 }
2295 EXPORT_SYMBOL(current_time);
2296
2297 /*
2298 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2299 * configurations.
2300 *
2301 * Note: the caller should be holding i_mutex, or else be sure that they have
2302 * exclusive access to the inode structure.
2303 */
2304 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2305 unsigned int flags)
2306 {
2307 /*
2308 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2309 * the relevant capability.
2310 *
2311 * This test looks nicer. Thanks to Pauline Middelink
2312 */
2313 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2314 !capable(CAP_LINUX_IMMUTABLE))
2315 return -EPERM;
2316
2317 return fscrypt_prepare_setflags(inode, oldflags, flags);
2318 }
2319 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2320
2321 /*
2322 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2323 * configurations.
2324 *
2325 * Note: the caller should be holding i_mutex, or else be sure that they have
2326 * exclusive access to the inode structure.
2327 */
2328 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2329 struct fsxattr *fa)
2330 {
2331 /*
2332 * Can't modify an immutable/append-only file unless we have
2333 * appropriate permission.
2334 */
2335 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2336 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2337 !capable(CAP_LINUX_IMMUTABLE))
2338 return -EPERM;
2339
2340 /*
2341 * Project Quota ID state is only allowed to change from within the init
2342 * namespace. Enforce that restriction only if we are trying to change
2343 * the quota ID state. Everything else is allowed in user namespaces.
2344 */
2345 if (current_user_ns() != &init_user_ns) {
2346 if (old_fa->fsx_projid != fa->fsx_projid)
2347 return -EINVAL;
2348 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2349 FS_XFLAG_PROJINHERIT)
2350 return -EINVAL;
2351 }
2352
2353 /* Check extent size hints. */
2354 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2355 return -EINVAL;
2356
2357 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2358 !S_ISDIR(inode->i_mode))
2359 return -EINVAL;
2360
2361 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2362 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2363 return -EINVAL;
2364
2365 /*
2366 * It is only valid to set the DAX flag on regular files and
2367 * directories on filesystems.
2368 */
2369 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2370 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2371 return -EINVAL;
2372
2373 /* Extent size hints of zero turn off the flags. */
2374 if (fa->fsx_extsize == 0)
2375 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2376 if (fa->fsx_cowextsize == 0)
2377 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2378
2379 return 0;
2380 }
2381 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);