]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/brodo/cpupowerutils
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include "internal.h"
30
31 /*
32 * Inode locking rules:
33 *
34 * inode->i_lock protects:
35 * inode->i_state, inode->i_hash, __iget()
36 * inode->i_sb->s_inode_lru_lock protects:
37 * inode->i_sb->s_inode_lru, inode->i_lru
38 * inode_sb_list_lock protects:
39 * sb->s_inodes, inode->i_sb_list
40 * bdi->wb.list_lock protects:
41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42 * inode_hash_lock protects:
43 * inode_hashtable, inode->i_hash
44 *
45 * Lock ordering:
46 *
47 * inode_sb_list_lock
48 * inode->i_lock
49 * inode->i_sb->s_inode_lru_lock
50 *
51 * bdi->wb.list_lock
52 * inode->i_lock
53 *
54 * inode_hash_lock
55 * inode_sb_list_lock
56 * inode->i_lock
57 *
58 * iunique_lock
59 * inode_hash_lock
60 */
61
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 static struct hlist_head *inode_hashtable __read_mostly;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
66
67 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
68
69 /*
70 * Empty aops. Can be used for the cases where the user does not
71 * define any of the address_space operations.
72 */
73 const struct address_space_operations empty_aops = {
74 };
75 EXPORT_SYMBOL(empty_aops);
76
77 /*
78 * Statistics gathering..
79 */
80 struct inodes_stat_t inodes_stat;
81
82 static DEFINE_PER_CPU(unsigned int, nr_inodes);
83 static DEFINE_PER_CPU(unsigned int, nr_unused);
84
85 static struct kmem_cache *inode_cachep __read_mostly;
86
87 static int get_nr_inodes(void)
88 {
89 int i;
90 int sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_inodes, i);
93 return sum < 0 ? 0 : sum;
94 }
95
96 static inline int get_nr_inodes_unused(void)
97 {
98 int i;
99 int sum = 0;
100 for_each_possible_cpu(i)
101 sum += per_cpu(nr_unused, i);
102 return sum < 0 ? 0 : sum;
103 }
104
105 int get_nr_dirty_inodes(void)
106 {
107 /* not actually dirty inodes, but a wild approximation */
108 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
109 return nr_dirty > 0 ? nr_dirty : 0;
110 }
111
112 /*
113 * Handle nr_inode sysctl
114 */
115 #ifdef CONFIG_SYSCTL
116 int proc_nr_inodes(ctl_table *table, int write,
117 void __user *buffer, size_t *lenp, loff_t *ppos)
118 {
119 inodes_stat.nr_inodes = get_nr_inodes();
120 inodes_stat.nr_unused = get_nr_inodes_unused();
121 return proc_dointvec(table, write, buffer, lenp, ppos);
122 }
123 #endif
124
125 /**
126 * inode_init_always - perform inode structure intialisation
127 * @sb: superblock inode belongs to
128 * @inode: inode to initialise
129 *
130 * These are initializations that need to be done on every inode
131 * allocation as the fields are not initialised by slab allocation.
132 */
133 int inode_init_always(struct super_block *sb, struct inode *inode)
134 {
135 static const struct inode_operations empty_iops;
136 static const struct file_operations empty_fops;
137 struct address_space *const mapping = &inode->i_data;
138
139 inode->i_sb = sb;
140 inode->i_blkbits = sb->s_blocksize_bits;
141 inode->i_flags = 0;
142 atomic_set(&inode->i_count, 1);
143 inode->i_op = &empty_iops;
144 inode->i_fop = &empty_fops;
145 inode->i_nlink = 1;
146 inode->i_uid = 0;
147 inode->i_gid = 0;
148 atomic_set(&inode->i_writecount, 0);
149 inode->i_size = 0;
150 inode->i_blocks = 0;
151 inode->i_bytes = 0;
152 inode->i_generation = 0;
153 #ifdef CONFIG_QUOTA
154 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
155 #endif
156 inode->i_pipe = NULL;
157 inode->i_bdev = NULL;
158 inode->i_cdev = NULL;
159 inode->i_rdev = 0;
160 inode->dirtied_when = 0;
161
162 if (security_inode_alloc(inode))
163 goto out;
164 spin_lock_init(&inode->i_lock);
165 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
166
167 mutex_init(&inode->i_mutex);
168 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
169
170 atomic_set(&inode->i_dio_count, 0);
171
172 mapping->a_ops = &empty_aops;
173 mapping->host = inode;
174 mapping->flags = 0;
175 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
176 mapping->assoc_mapping = NULL;
177 mapping->backing_dev_info = &default_backing_dev_info;
178 mapping->writeback_index = 0;
179
180 /*
181 * If the block_device provides a backing_dev_info for client
182 * inodes then use that. Otherwise the inode share the bdev's
183 * backing_dev_info.
184 */
185 if (sb->s_bdev) {
186 struct backing_dev_info *bdi;
187
188 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
189 mapping->backing_dev_info = bdi;
190 }
191 inode->i_private = NULL;
192 inode->i_mapping = mapping;
193 #ifdef CONFIG_FS_POSIX_ACL
194 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
195 #endif
196
197 #ifdef CONFIG_FSNOTIFY
198 inode->i_fsnotify_mask = 0;
199 #endif
200
201 this_cpu_inc(nr_inodes);
202
203 return 0;
204 out:
205 return -ENOMEM;
206 }
207 EXPORT_SYMBOL(inode_init_always);
208
209 static struct inode *alloc_inode(struct super_block *sb)
210 {
211 struct inode *inode;
212
213 if (sb->s_op->alloc_inode)
214 inode = sb->s_op->alloc_inode(sb);
215 else
216 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
217
218 if (!inode)
219 return NULL;
220
221 if (unlikely(inode_init_always(sb, inode))) {
222 if (inode->i_sb->s_op->destroy_inode)
223 inode->i_sb->s_op->destroy_inode(inode);
224 else
225 kmem_cache_free(inode_cachep, inode);
226 return NULL;
227 }
228
229 return inode;
230 }
231
232 void free_inode_nonrcu(struct inode *inode)
233 {
234 kmem_cache_free(inode_cachep, inode);
235 }
236 EXPORT_SYMBOL(free_inode_nonrcu);
237
238 void __destroy_inode(struct inode *inode)
239 {
240 BUG_ON(inode_has_buffers(inode));
241 security_inode_free(inode);
242 fsnotify_inode_delete(inode);
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
247 posix_acl_release(inode->i_default_acl);
248 #endif
249 this_cpu_dec(nr_inodes);
250 }
251 EXPORT_SYMBOL(__destroy_inode);
252
253 static void i_callback(struct rcu_head *head)
254 {
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 INIT_LIST_HEAD(&inode->i_dentry);
257 kmem_cache_free(inode_cachep, inode);
258 }
259
260 static void destroy_inode(struct inode *inode)
261 {
262 BUG_ON(!list_empty(&inode->i_lru));
263 __destroy_inode(inode);
264 if (inode->i_sb->s_op->destroy_inode)
265 inode->i_sb->s_op->destroy_inode(inode);
266 else
267 call_rcu(&inode->i_rcu, i_callback);
268 }
269
270 void address_space_init_once(struct address_space *mapping)
271 {
272 memset(mapping, 0, sizeof(*mapping));
273 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
274 spin_lock_init(&mapping->tree_lock);
275 mutex_init(&mapping->i_mmap_mutex);
276 INIT_LIST_HEAD(&mapping->private_list);
277 spin_lock_init(&mapping->private_lock);
278 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
279 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
280 }
281 EXPORT_SYMBOL(address_space_init_once);
282
283 /*
284 * These are initializations that only need to be done
285 * once, because the fields are idempotent across use
286 * of the inode, so let the slab aware of that.
287 */
288 void inode_init_once(struct inode *inode)
289 {
290 memset(inode, 0, sizeof(*inode));
291 INIT_HLIST_NODE(&inode->i_hash);
292 INIT_LIST_HEAD(&inode->i_dentry);
293 INIT_LIST_HEAD(&inode->i_devices);
294 INIT_LIST_HEAD(&inode->i_wb_list);
295 INIT_LIST_HEAD(&inode->i_lru);
296 address_space_init_once(&inode->i_data);
297 i_size_ordered_init(inode);
298 #ifdef CONFIG_FSNOTIFY
299 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
300 #endif
301 }
302 EXPORT_SYMBOL(inode_init_once);
303
304 static void init_once(void *foo)
305 {
306 struct inode *inode = (struct inode *) foo;
307
308 inode_init_once(inode);
309 }
310
311 /*
312 * inode->i_lock must be held
313 */
314 void __iget(struct inode *inode)
315 {
316 atomic_inc(&inode->i_count);
317 }
318
319 /*
320 * get additional reference to inode; caller must already hold one.
321 */
322 void ihold(struct inode *inode)
323 {
324 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
325 }
326 EXPORT_SYMBOL(ihold);
327
328 static void inode_lru_list_add(struct inode *inode)
329 {
330 spin_lock(&inode->i_sb->s_inode_lru_lock);
331 if (list_empty(&inode->i_lru)) {
332 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
333 inode->i_sb->s_nr_inodes_unused++;
334 this_cpu_inc(nr_unused);
335 }
336 spin_unlock(&inode->i_sb->s_inode_lru_lock);
337 }
338
339 static void inode_lru_list_del(struct inode *inode)
340 {
341 spin_lock(&inode->i_sb->s_inode_lru_lock);
342 if (!list_empty(&inode->i_lru)) {
343 list_del_init(&inode->i_lru);
344 inode->i_sb->s_nr_inodes_unused--;
345 this_cpu_dec(nr_unused);
346 }
347 spin_unlock(&inode->i_sb->s_inode_lru_lock);
348 }
349
350 /**
351 * inode_sb_list_add - add inode to the superblock list of inodes
352 * @inode: inode to add
353 */
354 void inode_sb_list_add(struct inode *inode)
355 {
356 spin_lock(&inode_sb_list_lock);
357 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
358 spin_unlock(&inode_sb_list_lock);
359 }
360 EXPORT_SYMBOL_GPL(inode_sb_list_add);
361
362 static inline void inode_sb_list_del(struct inode *inode)
363 {
364 if (!list_empty(&inode->i_sb_list)) {
365 spin_lock(&inode_sb_list_lock);
366 list_del_init(&inode->i_sb_list);
367 spin_unlock(&inode_sb_list_lock);
368 }
369 }
370
371 static unsigned long hash(struct super_block *sb, unsigned long hashval)
372 {
373 unsigned long tmp;
374
375 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
376 L1_CACHE_BYTES;
377 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
378 return tmp & i_hash_mask;
379 }
380
381 /**
382 * __insert_inode_hash - hash an inode
383 * @inode: unhashed inode
384 * @hashval: unsigned long value used to locate this object in the
385 * inode_hashtable.
386 *
387 * Add an inode to the inode hash for this superblock.
388 */
389 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
390 {
391 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
392
393 spin_lock(&inode_hash_lock);
394 spin_lock(&inode->i_lock);
395 hlist_add_head(&inode->i_hash, b);
396 spin_unlock(&inode->i_lock);
397 spin_unlock(&inode_hash_lock);
398 }
399 EXPORT_SYMBOL(__insert_inode_hash);
400
401 /**
402 * remove_inode_hash - remove an inode from the hash
403 * @inode: inode to unhash
404 *
405 * Remove an inode from the superblock.
406 */
407 void remove_inode_hash(struct inode *inode)
408 {
409 spin_lock(&inode_hash_lock);
410 spin_lock(&inode->i_lock);
411 hlist_del_init(&inode->i_hash);
412 spin_unlock(&inode->i_lock);
413 spin_unlock(&inode_hash_lock);
414 }
415 EXPORT_SYMBOL(remove_inode_hash);
416
417 void end_writeback(struct inode *inode)
418 {
419 might_sleep();
420 /*
421 * We have to cycle tree_lock here because reclaim can be still in the
422 * process of removing the last page (in __delete_from_page_cache())
423 * and we must not free mapping under it.
424 */
425 spin_lock_irq(&inode->i_data.tree_lock);
426 BUG_ON(inode->i_data.nrpages);
427 spin_unlock_irq(&inode->i_data.tree_lock);
428 BUG_ON(!list_empty(&inode->i_data.private_list));
429 BUG_ON(!(inode->i_state & I_FREEING));
430 BUG_ON(inode->i_state & I_CLEAR);
431 inode_sync_wait(inode);
432 /* don't need i_lock here, no concurrent mods to i_state */
433 inode->i_state = I_FREEING | I_CLEAR;
434 }
435 EXPORT_SYMBOL(end_writeback);
436
437 /*
438 * Free the inode passed in, removing it from the lists it is still connected
439 * to. We remove any pages still attached to the inode and wait for any IO that
440 * is still in progress before finally destroying the inode.
441 *
442 * An inode must already be marked I_FREEING so that we avoid the inode being
443 * moved back onto lists if we race with other code that manipulates the lists
444 * (e.g. writeback_single_inode). The caller is responsible for setting this.
445 *
446 * An inode must already be removed from the LRU list before being evicted from
447 * the cache. This should occur atomically with setting the I_FREEING state
448 * flag, so no inodes here should ever be on the LRU when being evicted.
449 */
450 static void evict(struct inode *inode)
451 {
452 const struct super_operations *op = inode->i_sb->s_op;
453
454 BUG_ON(!(inode->i_state & I_FREEING));
455 BUG_ON(!list_empty(&inode->i_lru));
456
457 inode_wb_list_del(inode);
458 inode_sb_list_del(inode);
459
460 if (op->evict_inode) {
461 op->evict_inode(inode);
462 } else {
463 if (inode->i_data.nrpages)
464 truncate_inode_pages(&inode->i_data, 0);
465 end_writeback(inode);
466 }
467 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
468 bd_forget(inode);
469 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
470 cd_forget(inode);
471
472 remove_inode_hash(inode);
473
474 spin_lock(&inode->i_lock);
475 wake_up_bit(&inode->i_state, __I_NEW);
476 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
477 spin_unlock(&inode->i_lock);
478
479 destroy_inode(inode);
480 }
481
482 /*
483 * dispose_list - dispose of the contents of a local list
484 * @head: the head of the list to free
485 *
486 * Dispose-list gets a local list with local inodes in it, so it doesn't
487 * need to worry about list corruption and SMP locks.
488 */
489 static void dispose_list(struct list_head *head)
490 {
491 while (!list_empty(head)) {
492 struct inode *inode;
493
494 inode = list_first_entry(head, struct inode, i_lru);
495 list_del_init(&inode->i_lru);
496
497 evict(inode);
498 }
499 }
500
501 /**
502 * evict_inodes - evict all evictable inodes for a superblock
503 * @sb: superblock to operate on
504 *
505 * Make sure that no inodes with zero refcount are retained. This is
506 * called by superblock shutdown after having MS_ACTIVE flag removed,
507 * so any inode reaching zero refcount during or after that call will
508 * be immediately evicted.
509 */
510 void evict_inodes(struct super_block *sb)
511 {
512 struct inode *inode, *next;
513 LIST_HEAD(dispose);
514
515 spin_lock(&inode_sb_list_lock);
516 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
517 if (atomic_read(&inode->i_count))
518 continue;
519
520 spin_lock(&inode->i_lock);
521 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
522 spin_unlock(&inode->i_lock);
523 continue;
524 }
525
526 inode->i_state |= I_FREEING;
527 inode_lru_list_del(inode);
528 spin_unlock(&inode->i_lock);
529 list_add(&inode->i_lru, &dispose);
530 }
531 spin_unlock(&inode_sb_list_lock);
532
533 dispose_list(&dispose);
534 }
535
536 /**
537 * invalidate_inodes - attempt to free all inodes on a superblock
538 * @sb: superblock to operate on
539 * @kill_dirty: flag to guide handling of dirty inodes
540 *
541 * Attempts to free all inodes for a given superblock. If there were any
542 * busy inodes return a non-zero value, else zero.
543 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
544 * them as busy.
545 */
546 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
547 {
548 int busy = 0;
549 struct inode *inode, *next;
550 LIST_HEAD(dispose);
551
552 spin_lock(&inode_sb_list_lock);
553 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
554 spin_lock(&inode->i_lock);
555 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
556 spin_unlock(&inode->i_lock);
557 continue;
558 }
559 if (inode->i_state & I_DIRTY && !kill_dirty) {
560 spin_unlock(&inode->i_lock);
561 busy = 1;
562 continue;
563 }
564 if (atomic_read(&inode->i_count)) {
565 spin_unlock(&inode->i_lock);
566 busy = 1;
567 continue;
568 }
569
570 inode->i_state |= I_FREEING;
571 inode_lru_list_del(inode);
572 spin_unlock(&inode->i_lock);
573 list_add(&inode->i_lru, &dispose);
574 }
575 spin_unlock(&inode_sb_list_lock);
576
577 dispose_list(&dispose);
578
579 return busy;
580 }
581
582 static int can_unuse(struct inode *inode)
583 {
584 if (inode->i_state & ~I_REFERENCED)
585 return 0;
586 if (inode_has_buffers(inode))
587 return 0;
588 if (atomic_read(&inode->i_count))
589 return 0;
590 if (inode->i_data.nrpages)
591 return 0;
592 return 1;
593 }
594
595 /*
596 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
597 * This is called from the superblock shrinker function with a number of inodes
598 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
599 * then are freed outside inode_lock by dispose_list().
600 *
601 * Any inodes which are pinned purely because of attached pagecache have their
602 * pagecache removed. If the inode has metadata buffers attached to
603 * mapping->private_list then try to remove them.
604 *
605 * If the inode has the I_REFERENCED flag set, then it means that it has been
606 * used recently - the flag is set in iput_final(). When we encounter such an
607 * inode, clear the flag and move it to the back of the LRU so it gets another
608 * pass through the LRU before it gets reclaimed. This is necessary because of
609 * the fact we are doing lazy LRU updates to minimise lock contention so the
610 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
611 * with this flag set because they are the inodes that are out of order.
612 */
613 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
614 {
615 LIST_HEAD(freeable);
616 int nr_scanned;
617 unsigned long reap = 0;
618
619 spin_lock(&sb->s_inode_lru_lock);
620 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
621 struct inode *inode;
622
623 if (list_empty(&sb->s_inode_lru))
624 break;
625
626 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
627
628 /*
629 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
630 * so use a trylock. If we fail to get the lock, just move the
631 * inode to the back of the list so we don't spin on it.
632 */
633 if (!spin_trylock(&inode->i_lock)) {
634 list_move(&inode->i_lru, &sb->s_inode_lru);
635 continue;
636 }
637
638 /*
639 * Referenced or dirty inodes are still in use. Give them
640 * another pass through the LRU as we canot reclaim them now.
641 */
642 if (atomic_read(&inode->i_count) ||
643 (inode->i_state & ~I_REFERENCED)) {
644 list_del_init(&inode->i_lru);
645 spin_unlock(&inode->i_lock);
646 sb->s_nr_inodes_unused--;
647 this_cpu_dec(nr_unused);
648 continue;
649 }
650
651 /* recently referenced inodes get one more pass */
652 if (inode->i_state & I_REFERENCED) {
653 inode->i_state &= ~I_REFERENCED;
654 list_move(&inode->i_lru, &sb->s_inode_lru);
655 spin_unlock(&inode->i_lock);
656 continue;
657 }
658 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
659 __iget(inode);
660 spin_unlock(&inode->i_lock);
661 spin_unlock(&sb->s_inode_lru_lock);
662 if (remove_inode_buffers(inode))
663 reap += invalidate_mapping_pages(&inode->i_data,
664 0, -1);
665 iput(inode);
666 spin_lock(&sb->s_inode_lru_lock);
667
668 if (inode != list_entry(sb->s_inode_lru.next,
669 struct inode, i_lru))
670 continue; /* wrong inode or list_empty */
671 /* avoid lock inversions with trylock */
672 if (!spin_trylock(&inode->i_lock))
673 continue;
674 if (!can_unuse(inode)) {
675 spin_unlock(&inode->i_lock);
676 continue;
677 }
678 }
679 WARN_ON(inode->i_state & I_NEW);
680 inode->i_state |= I_FREEING;
681 spin_unlock(&inode->i_lock);
682
683 list_move(&inode->i_lru, &freeable);
684 sb->s_nr_inodes_unused--;
685 this_cpu_dec(nr_unused);
686 }
687 if (current_is_kswapd())
688 __count_vm_events(KSWAPD_INODESTEAL, reap);
689 else
690 __count_vm_events(PGINODESTEAL, reap);
691 spin_unlock(&sb->s_inode_lru_lock);
692
693 dispose_list(&freeable);
694 }
695
696 static void __wait_on_freeing_inode(struct inode *inode);
697 /*
698 * Called with the inode lock held.
699 */
700 static struct inode *find_inode(struct super_block *sb,
701 struct hlist_head *head,
702 int (*test)(struct inode *, void *),
703 void *data)
704 {
705 struct hlist_node *node;
706 struct inode *inode = NULL;
707
708 repeat:
709 hlist_for_each_entry(inode, node, head, i_hash) {
710 spin_lock(&inode->i_lock);
711 if (inode->i_sb != sb) {
712 spin_unlock(&inode->i_lock);
713 continue;
714 }
715 if (!test(inode, data)) {
716 spin_unlock(&inode->i_lock);
717 continue;
718 }
719 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
720 __wait_on_freeing_inode(inode);
721 goto repeat;
722 }
723 __iget(inode);
724 spin_unlock(&inode->i_lock);
725 return inode;
726 }
727 return NULL;
728 }
729
730 /*
731 * find_inode_fast is the fast path version of find_inode, see the comment at
732 * iget_locked for details.
733 */
734 static struct inode *find_inode_fast(struct super_block *sb,
735 struct hlist_head *head, unsigned long ino)
736 {
737 struct hlist_node *node;
738 struct inode *inode = NULL;
739
740 repeat:
741 hlist_for_each_entry(inode, node, head, i_hash) {
742 spin_lock(&inode->i_lock);
743 if (inode->i_ino != ino) {
744 spin_unlock(&inode->i_lock);
745 continue;
746 }
747 if (inode->i_sb != sb) {
748 spin_unlock(&inode->i_lock);
749 continue;
750 }
751 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
752 __wait_on_freeing_inode(inode);
753 goto repeat;
754 }
755 __iget(inode);
756 spin_unlock(&inode->i_lock);
757 return inode;
758 }
759 return NULL;
760 }
761
762 /*
763 * Each cpu owns a range of LAST_INO_BATCH numbers.
764 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
765 * to renew the exhausted range.
766 *
767 * This does not significantly increase overflow rate because every CPU can
768 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
769 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
770 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
771 * overflow rate by 2x, which does not seem too significant.
772 *
773 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
774 * error if st_ino won't fit in target struct field. Use 32bit counter
775 * here to attempt to avoid that.
776 */
777 #define LAST_INO_BATCH 1024
778 static DEFINE_PER_CPU(unsigned int, last_ino);
779
780 unsigned int get_next_ino(void)
781 {
782 unsigned int *p = &get_cpu_var(last_ino);
783 unsigned int res = *p;
784
785 #ifdef CONFIG_SMP
786 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
787 static atomic_t shared_last_ino;
788 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
789
790 res = next - LAST_INO_BATCH;
791 }
792 #endif
793
794 *p = ++res;
795 put_cpu_var(last_ino);
796 return res;
797 }
798 EXPORT_SYMBOL(get_next_ino);
799
800 /**
801 * new_inode_pseudo - obtain an inode
802 * @sb: superblock
803 *
804 * Allocates a new inode for given superblock.
805 * Inode wont be chained in superblock s_inodes list
806 * This means :
807 * - fs can't be unmount
808 * - quotas, fsnotify, writeback can't work
809 */
810 struct inode *new_inode_pseudo(struct super_block *sb)
811 {
812 struct inode *inode = alloc_inode(sb);
813
814 if (inode) {
815 spin_lock(&inode->i_lock);
816 inode->i_state = 0;
817 spin_unlock(&inode->i_lock);
818 INIT_LIST_HEAD(&inode->i_sb_list);
819 }
820 return inode;
821 }
822
823 /**
824 * new_inode - obtain an inode
825 * @sb: superblock
826 *
827 * Allocates a new inode for given superblock. The default gfp_mask
828 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
829 * If HIGHMEM pages are unsuitable or it is known that pages allocated
830 * for the page cache are not reclaimable or migratable,
831 * mapping_set_gfp_mask() must be called with suitable flags on the
832 * newly created inode's mapping
833 *
834 */
835 struct inode *new_inode(struct super_block *sb)
836 {
837 struct inode *inode;
838
839 spin_lock_prefetch(&inode_sb_list_lock);
840
841 inode = new_inode_pseudo(sb);
842 if (inode)
843 inode_sb_list_add(inode);
844 return inode;
845 }
846 EXPORT_SYMBOL(new_inode);
847
848 /**
849 * unlock_new_inode - clear the I_NEW state and wake up any waiters
850 * @inode: new inode to unlock
851 *
852 * Called when the inode is fully initialised to clear the new state of the
853 * inode and wake up anyone waiting for the inode to finish initialisation.
854 */
855 void unlock_new_inode(struct inode *inode)
856 {
857 #ifdef CONFIG_DEBUG_LOCK_ALLOC
858 if (S_ISDIR(inode->i_mode)) {
859 struct file_system_type *type = inode->i_sb->s_type;
860
861 /* Set new key only if filesystem hasn't already changed it */
862 if (!lockdep_match_class(&inode->i_mutex,
863 &type->i_mutex_key)) {
864 /*
865 * ensure nobody is actually holding i_mutex
866 */
867 mutex_destroy(&inode->i_mutex);
868 mutex_init(&inode->i_mutex);
869 lockdep_set_class(&inode->i_mutex,
870 &type->i_mutex_dir_key);
871 }
872 }
873 #endif
874 spin_lock(&inode->i_lock);
875 WARN_ON(!(inode->i_state & I_NEW));
876 inode->i_state &= ~I_NEW;
877 wake_up_bit(&inode->i_state, __I_NEW);
878 spin_unlock(&inode->i_lock);
879 }
880 EXPORT_SYMBOL(unlock_new_inode);
881
882 /**
883 * iget5_locked - obtain an inode from a mounted file system
884 * @sb: super block of file system
885 * @hashval: hash value (usually inode number) to get
886 * @test: callback used for comparisons between inodes
887 * @set: callback used to initialize a new struct inode
888 * @data: opaque data pointer to pass to @test and @set
889 *
890 * Search for the inode specified by @hashval and @data in the inode cache,
891 * and if present it is return it with an increased reference count. This is
892 * a generalized version of iget_locked() for file systems where the inode
893 * number is not sufficient for unique identification of an inode.
894 *
895 * If the inode is not in cache, allocate a new inode and return it locked,
896 * hashed, and with the I_NEW flag set. The file system gets to fill it in
897 * before unlocking it via unlock_new_inode().
898 *
899 * Note both @test and @set are called with the inode_hash_lock held, so can't
900 * sleep.
901 */
902 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
903 int (*test)(struct inode *, void *),
904 int (*set)(struct inode *, void *), void *data)
905 {
906 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
907 struct inode *inode;
908
909 spin_lock(&inode_hash_lock);
910 inode = find_inode(sb, head, test, data);
911 spin_unlock(&inode_hash_lock);
912
913 if (inode) {
914 wait_on_inode(inode);
915 return inode;
916 }
917
918 inode = alloc_inode(sb);
919 if (inode) {
920 struct inode *old;
921
922 spin_lock(&inode_hash_lock);
923 /* We released the lock, so.. */
924 old = find_inode(sb, head, test, data);
925 if (!old) {
926 if (set(inode, data))
927 goto set_failed;
928
929 spin_lock(&inode->i_lock);
930 inode->i_state = I_NEW;
931 hlist_add_head(&inode->i_hash, head);
932 spin_unlock(&inode->i_lock);
933 inode_sb_list_add(inode);
934 spin_unlock(&inode_hash_lock);
935
936 /* Return the locked inode with I_NEW set, the
937 * caller is responsible for filling in the contents
938 */
939 return inode;
940 }
941
942 /*
943 * Uhhuh, somebody else created the same inode under
944 * us. Use the old inode instead of the one we just
945 * allocated.
946 */
947 spin_unlock(&inode_hash_lock);
948 destroy_inode(inode);
949 inode = old;
950 wait_on_inode(inode);
951 }
952 return inode;
953
954 set_failed:
955 spin_unlock(&inode_hash_lock);
956 destroy_inode(inode);
957 return NULL;
958 }
959 EXPORT_SYMBOL(iget5_locked);
960
961 /**
962 * iget_locked - obtain an inode from a mounted file system
963 * @sb: super block of file system
964 * @ino: inode number to get
965 *
966 * Search for the inode specified by @ino in the inode cache and if present
967 * return it with an increased reference count. This is for file systems
968 * where the inode number is sufficient for unique identification of an inode.
969 *
970 * If the inode is not in cache, allocate a new inode and return it locked,
971 * hashed, and with the I_NEW flag set. The file system gets to fill it in
972 * before unlocking it via unlock_new_inode().
973 */
974 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
975 {
976 struct hlist_head *head = inode_hashtable + hash(sb, ino);
977 struct inode *inode;
978
979 spin_lock(&inode_hash_lock);
980 inode = find_inode_fast(sb, head, ino);
981 spin_unlock(&inode_hash_lock);
982 if (inode) {
983 wait_on_inode(inode);
984 return inode;
985 }
986
987 inode = alloc_inode(sb);
988 if (inode) {
989 struct inode *old;
990
991 spin_lock(&inode_hash_lock);
992 /* We released the lock, so.. */
993 old = find_inode_fast(sb, head, ino);
994 if (!old) {
995 inode->i_ino = ino;
996 spin_lock(&inode->i_lock);
997 inode->i_state = I_NEW;
998 hlist_add_head(&inode->i_hash, head);
999 spin_unlock(&inode->i_lock);
1000 inode_sb_list_add(inode);
1001 spin_unlock(&inode_hash_lock);
1002
1003 /* Return the locked inode with I_NEW set, the
1004 * caller is responsible for filling in the contents
1005 */
1006 return inode;
1007 }
1008
1009 /*
1010 * Uhhuh, somebody else created the same inode under
1011 * us. Use the old inode instead of the one we just
1012 * allocated.
1013 */
1014 spin_unlock(&inode_hash_lock);
1015 destroy_inode(inode);
1016 inode = old;
1017 wait_on_inode(inode);
1018 }
1019 return inode;
1020 }
1021 EXPORT_SYMBOL(iget_locked);
1022
1023 /*
1024 * search the inode cache for a matching inode number.
1025 * If we find one, then the inode number we are trying to
1026 * allocate is not unique and so we should not use it.
1027 *
1028 * Returns 1 if the inode number is unique, 0 if it is not.
1029 */
1030 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1031 {
1032 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1033 struct hlist_node *node;
1034 struct inode *inode;
1035
1036 spin_lock(&inode_hash_lock);
1037 hlist_for_each_entry(inode, node, b, i_hash) {
1038 if (inode->i_ino == ino && inode->i_sb == sb) {
1039 spin_unlock(&inode_hash_lock);
1040 return 0;
1041 }
1042 }
1043 spin_unlock(&inode_hash_lock);
1044
1045 return 1;
1046 }
1047
1048 /**
1049 * iunique - get a unique inode number
1050 * @sb: superblock
1051 * @max_reserved: highest reserved inode number
1052 *
1053 * Obtain an inode number that is unique on the system for a given
1054 * superblock. This is used by file systems that have no natural
1055 * permanent inode numbering system. An inode number is returned that
1056 * is higher than the reserved limit but unique.
1057 *
1058 * BUGS:
1059 * With a large number of inodes live on the file system this function
1060 * currently becomes quite slow.
1061 */
1062 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1063 {
1064 /*
1065 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1066 * error if st_ino won't fit in target struct field. Use 32bit counter
1067 * here to attempt to avoid that.
1068 */
1069 static DEFINE_SPINLOCK(iunique_lock);
1070 static unsigned int counter;
1071 ino_t res;
1072
1073 spin_lock(&iunique_lock);
1074 do {
1075 if (counter <= max_reserved)
1076 counter = max_reserved + 1;
1077 res = counter++;
1078 } while (!test_inode_iunique(sb, res));
1079 spin_unlock(&iunique_lock);
1080
1081 return res;
1082 }
1083 EXPORT_SYMBOL(iunique);
1084
1085 struct inode *igrab(struct inode *inode)
1086 {
1087 spin_lock(&inode->i_lock);
1088 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1089 __iget(inode);
1090 spin_unlock(&inode->i_lock);
1091 } else {
1092 spin_unlock(&inode->i_lock);
1093 /*
1094 * Handle the case where s_op->clear_inode is not been
1095 * called yet, and somebody is calling igrab
1096 * while the inode is getting freed.
1097 */
1098 inode = NULL;
1099 }
1100 return inode;
1101 }
1102 EXPORT_SYMBOL(igrab);
1103
1104 /**
1105 * ilookup5_nowait - search for an inode in the inode cache
1106 * @sb: super block of file system to search
1107 * @hashval: hash value (usually inode number) to search for
1108 * @test: callback used for comparisons between inodes
1109 * @data: opaque data pointer to pass to @test
1110 *
1111 * Search for the inode specified by @hashval and @data in the inode cache.
1112 * If the inode is in the cache, the inode is returned with an incremented
1113 * reference count.
1114 *
1115 * Note: I_NEW is not waited upon so you have to be very careful what you do
1116 * with the returned inode. You probably should be using ilookup5() instead.
1117 *
1118 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1119 */
1120 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1121 int (*test)(struct inode *, void *), void *data)
1122 {
1123 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1124 struct inode *inode;
1125
1126 spin_lock(&inode_hash_lock);
1127 inode = find_inode(sb, head, test, data);
1128 spin_unlock(&inode_hash_lock);
1129
1130 return inode;
1131 }
1132 EXPORT_SYMBOL(ilookup5_nowait);
1133
1134 /**
1135 * ilookup5 - search for an inode in the inode cache
1136 * @sb: super block of file system to search
1137 * @hashval: hash value (usually inode number) to search for
1138 * @test: callback used for comparisons between inodes
1139 * @data: opaque data pointer to pass to @test
1140 *
1141 * Search for the inode specified by @hashval and @data in the inode cache,
1142 * and if the inode is in the cache, return the inode with an incremented
1143 * reference count. Waits on I_NEW before returning the inode.
1144 * returned with an incremented reference count.
1145 *
1146 * This is a generalized version of ilookup() for file systems where the
1147 * inode number is not sufficient for unique identification of an inode.
1148 *
1149 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1150 */
1151 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1152 int (*test)(struct inode *, void *), void *data)
1153 {
1154 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1155
1156 if (inode)
1157 wait_on_inode(inode);
1158 return inode;
1159 }
1160 EXPORT_SYMBOL(ilookup5);
1161
1162 /**
1163 * ilookup - search for an inode in the inode cache
1164 * @sb: super block of file system to search
1165 * @ino: inode number to search for
1166 *
1167 * Search for the inode @ino in the inode cache, and if the inode is in the
1168 * cache, the inode is returned with an incremented reference count.
1169 */
1170 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1171 {
1172 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1173 struct inode *inode;
1174
1175 spin_lock(&inode_hash_lock);
1176 inode = find_inode_fast(sb, head, ino);
1177 spin_unlock(&inode_hash_lock);
1178
1179 if (inode)
1180 wait_on_inode(inode);
1181 return inode;
1182 }
1183 EXPORT_SYMBOL(ilookup);
1184
1185 int insert_inode_locked(struct inode *inode)
1186 {
1187 struct super_block *sb = inode->i_sb;
1188 ino_t ino = inode->i_ino;
1189 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1190
1191 while (1) {
1192 struct hlist_node *node;
1193 struct inode *old = NULL;
1194 spin_lock(&inode_hash_lock);
1195 hlist_for_each_entry(old, node, head, i_hash) {
1196 if (old->i_ino != ino)
1197 continue;
1198 if (old->i_sb != sb)
1199 continue;
1200 spin_lock(&old->i_lock);
1201 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1202 spin_unlock(&old->i_lock);
1203 continue;
1204 }
1205 break;
1206 }
1207 if (likely(!node)) {
1208 spin_lock(&inode->i_lock);
1209 inode->i_state |= I_NEW;
1210 hlist_add_head(&inode->i_hash, head);
1211 spin_unlock(&inode->i_lock);
1212 spin_unlock(&inode_hash_lock);
1213 return 0;
1214 }
1215 __iget(old);
1216 spin_unlock(&old->i_lock);
1217 spin_unlock(&inode_hash_lock);
1218 wait_on_inode(old);
1219 if (unlikely(!inode_unhashed(old))) {
1220 iput(old);
1221 return -EBUSY;
1222 }
1223 iput(old);
1224 }
1225 }
1226 EXPORT_SYMBOL(insert_inode_locked);
1227
1228 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1229 int (*test)(struct inode *, void *), void *data)
1230 {
1231 struct super_block *sb = inode->i_sb;
1232 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1233
1234 while (1) {
1235 struct hlist_node *node;
1236 struct inode *old = NULL;
1237
1238 spin_lock(&inode_hash_lock);
1239 hlist_for_each_entry(old, node, head, i_hash) {
1240 if (old->i_sb != sb)
1241 continue;
1242 if (!test(old, data))
1243 continue;
1244 spin_lock(&old->i_lock);
1245 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1246 spin_unlock(&old->i_lock);
1247 continue;
1248 }
1249 break;
1250 }
1251 if (likely(!node)) {
1252 spin_lock(&inode->i_lock);
1253 inode->i_state |= I_NEW;
1254 hlist_add_head(&inode->i_hash, head);
1255 spin_unlock(&inode->i_lock);
1256 spin_unlock(&inode_hash_lock);
1257 return 0;
1258 }
1259 __iget(old);
1260 spin_unlock(&old->i_lock);
1261 spin_unlock(&inode_hash_lock);
1262 wait_on_inode(old);
1263 if (unlikely(!inode_unhashed(old))) {
1264 iput(old);
1265 return -EBUSY;
1266 }
1267 iput(old);
1268 }
1269 }
1270 EXPORT_SYMBOL(insert_inode_locked4);
1271
1272
1273 int generic_delete_inode(struct inode *inode)
1274 {
1275 return 1;
1276 }
1277 EXPORT_SYMBOL(generic_delete_inode);
1278
1279 /*
1280 * Normal UNIX filesystem behaviour: delete the
1281 * inode when the usage count drops to zero, and
1282 * i_nlink is zero.
1283 */
1284 int generic_drop_inode(struct inode *inode)
1285 {
1286 return !inode->i_nlink || inode_unhashed(inode);
1287 }
1288 EXPORT_SYMBOL_GPL(generic_drop_inode);
1289
1290 /*
1291 * Called when we're dropping the last reference
1292 * to an inode.
1293 *
1294 * Call the FS "drop_inode()" function, defaulting to
1295 * the legacy UNIX filesystem behaviour. If it tells
1296 * us to evict inode, do so. Otherwise, retain inode
1297 * in cache if fs is alive, sync and evict if fs is
1298 * shutting down.
1299 */
1300 static void iput_final(struct inode *inode)
1301 {
1302 struct super_block *sb = inode->i_sb;
1303 const struct super_operations *op = inode->i_sb->s_op;
1304 int drop;
1305
1306 WARN_ON(inode->i_state & I_NEW);
1307
1308 if (op->drop_inode)
1309 drop = op->drop_inode(inode);
1310 else
1311 drop = generic_drop_inode(inode);
1312
1313 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1314 inode->i_state |= I_REFERENCED;
1315 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1316 inode_lru_list_add(inode);
1317 spin_unlock(&inode->i_lock);
1318 return;
1319 }
1320
1321 if (!drop) {
1322 inode->i_state |= I_WILL_FREE;
1323 spin_unlock(&inode->i_lock);
1324 write_inode_now(inode, 1);
1325 spin_lock(&inode->i_lock);
1326 WARN_ON(inode->i_state & I_NEW);
1327 inode->i_state &= ~I_WILL_FREE;
1328 }
1329
1330 inode->i_state |= I_FREEING;
1331 inode_lru_list_del(inode);
1332 spin_unlock(&inode->i_lock);
1333
1334 evict(inode);
1335 }
1336
1337 /**
1338 * iput - put an inode
1339 * @inode: inode to put
1340 *
1341 * Puts an inode, dropping its usage count. If the inode use count hits
1342 * zero, the inode is then freed and may also be destroyed.
1343 *
1344 * Consequently, iput() can sleep.
1345 */
1346 void iput(struct inode *inode)
1347 {
1348 if (inode) {
1349 BUG_ON(inode->i_state & I_CLEAR);
1350
1351 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1352 iput_final(inode);
1353 }
1354 }
1355 EXPORT_SYMBOL(iput);
1356
1357 /**
1358 * bmap - find a block number in a file
1359 * @inode: inode of file
1360 * @block: block to find
1361 *
1362 * Returns the block number on the device holding the inode that
1363 * is the disk block number for the block of the file requested.
1364 * That is, asked for block 4 of inode 1 the function will return the
1365 * disk block relative to the disk start that holds that block of the
1366 * file.
1367 */
1368 sector_t bmap(struct inode *inode, sector_t block)
1369 {
1370 sector_t res = 0;
1371 if (inode->i_mapping->a_ops->bmap)
1372 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1373 return res;
1374 }
1375 EXPORT_SYMBOL(bmap);
1376
1377 /*
1378 * With relative atime, only update atime if the previous atime is
1379 * earlier than either the ctime or mtime or if at least a day has
1380 * passed since the last atime update.
1381 */
1382 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1383 struct timespec now)
1384 {
1385
1386 if (!(mnt->mnt_flags & MNT_RELATIME))
1387 return 1;
1388 /*
1389 * Is mtime younger than atime? If yes, update atime:
1390 */
1391 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1392 return 1;
1393 /*
1394 * Is ctime younger than atime? If yes, update atime:
1395 */
1396 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1397 return 1;
1398
1399 /*
1400 * Is the previous atime value older than a day? If yes,
1401 * update atime:
1402 */
1403 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1404 return 1;
1405 /*
1406 * Good, we can skip the atime update:
1407 */
1408 return 0;
1409 }
1410
1411 /**
1412 * touch_atime - update the access time
1413 * @mnt: mount the inode is accessed on
1414 * @dentry: dentry accessed
1415 *
1416 * Update the accessed time on an inode and mark it for writeback.
1417 * This function automatically handles read only file systems and media,
1418 * as well as the "noatime" flag and inode specific "noatime" markers.
1419 */
1420 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1421 {
1422 struct inode *inode = dentry->d_inode;
1423 struct timespec now;
1424
1425 if (inode->i_flags & S_NOATIME)
1426 return;
1427 if (IS_NOATIME(inode))
1428 return;
1429 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1430 return;
1431
1432 if (mnt->mnt_flags & MNT_NOATIME)
1433 return;
1434 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1435 return;
1436
1437 now = current_fs_time(inode->i_sb);
1438
1439 if (!relatime_need_update(mnt, inode, now))
1440 return;
1441
1442 if (timespec_equal(&inode->i_atime, &now))
1443 return;
1444
1445 if (mnt_want_write(mnt))
1446 return;
1447
1448 inode->i_atime = now;
1449 mark_inode_dirty_sync(inode);
1450 mnt_drop_write(mnt);
1451 }
1452 EXPORT_SYMBOL(touch_atime);
1453
1454 /**
1455 * file_update_time - update mtime and ctime time
1456 * @file: file accessed
1457 *
1458 * Update the mtime and ctime members of an inode and mark the inode
1459 * for writeback. Note that this function is meant exclusively for
1460 * usage in the file write path of filesystems, and filesystems may
1461 * choose to explicitly ignore update via this function with the
1462 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1463 * timestamps are handled by the server.
1464 */
1465
1466 void file_update_time(struct file *file)
1467 {
1468 struct inode *inode = file->f_path.dentry->d_inode;
1469 struct timespec now;
1470 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1471
1472 /* First try to exhaust all avenues to not sync */
1473 if (IS_NOCMTIME(inode))
1474 return;
1475
1476 now = current_fs_time(inode->i_sb);
1477 if (!timespec_equal(&inode->i_mtime, &now))
1478 sync_it = S_MTIME;
1479
1480 if (!timespec_equal(&inode->i_ctime, &now))
1481 sync_it |= S_CTIME;
1482
1483 if (IS_I_VERSION(inode))
1484 sync_it |= S_VERSION;
1485
1486 if (!sync_it)
1487 return;
1488
1489 /* Finally allowed to write? Takes lock. */
1490 if (mnt_want_write_file(file))
1491 return;
1492
1493 /* Only change inode inside the lock region */
1494 if (sync_it & S_VERSION)
1495 inode_inc_iversion(inode);
1496 if (sync_it & S_CTIME)
1497 inode->i_ctime = now;
1498 if (sync_it & S_MTIME)
1499 inode->i_mtime = now;
1500 mark_inode_dirty_sync(inode);
1501 mnt_drop_write(file->f_path.mnt);
1502 }
1503 EXPORT_SYMBOL(file_update_time);
1504
1505 int inode_needs_sync(struct inode *inode)
1506 {
1507 if (IS_SYNC(inode))
1508 return 1;
1509 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1510 return 1;
1511 return 0;
1512 }
1513 EXPORT_SYMBOL(inode_needs_sync);
1514
1515 int inode_wait(void *word)
1516 {
1517 schedule();
1518 return 0;
1519 }
1520 EXPORT_SYMBOL(inode_wait);
1521
1522 /*
1523 * If we try to find an inode in the inode hash while it is being
1524 * deleted, we have to wait until the filesystem completes its
1525 * deletion before reporting that it isn't found. This function waits
1526 * until the deletion _might_ have completed. Callers are responsible
1527 * to recheck inode state.
1528 *
1529 * It doesn't matter if I_NEW is not set initially, a call to
1530 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1531 * will DTRT.
1532 */
1533 static void __wait_on_freeing_inode(struct inode *inode)
1534 {
1535 wait_queue_head_t *wq;
1536 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1537 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1538 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1539 spin_unlock(&inode->i_lock);
1540 spin_unlock(&inode_hash_lock);
1541 schedule();
1542 finish_wait(wq, &wait.wait);
1543 spin_lock(&inode_hash_lock);
1544 }
1545
1546 static __initdata unsigned long ihash_entries;
1547 static int __init set_ihash_entries(char *str)
1548 {
1549 if (!str)
1550 return 0;
1551 ihash_entries = simple_strtoul(str, &str, 0);
1552 return 1;
1553 }
1554 __setup("ihash_entries=", set_ihash_entries);
1555
1556 /*
1557 * Initialize the waitqueues and inode hash table.
1558 */
1559 void __init inode_init_early(void)
1560 {
1561 int loop;
1562
1563 /* If hashes are distributed across NUMA nodes, defer
1564 * hash allocation until vmalloc space is available.
1565 */
1566 if (hashdist)
1567 return;
1568
1569 inode_hashtable =
1570 alloc_large_system_hash("Inode-cache",
1571 sizeof(struct hlist_head),
1572 ihash_entries,
1573 14,
1574 HASH_EARLY,
1575 &i_hash_shift,
1576 &i_hash_mask,
1577 0);
1578
1579 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1580 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1581 }
1582
1583 void __init inode_init(void)
1584 {
1585 int loop;
1586
1587 /* inode slab cache */
1588 inode_cachep = kmem_cache_create("inode_cache",
1589 sizeof(struct inode),
1590 0,
1591 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1592 SLAB_MEM_SPREAD),
1593 init_once);
1594
1595 /* Hash may have been set up in inode_init_early */
1596 if (!hashdist)
1597 return;
1598
1599 inode_hashtable =
1600 alloc_large_system_hash("Inode-cache",
1601 sizeof(struct hlist_head),
1602 ihash_entries,
1603 14,
1604 0,
1605 &i_hash_shift,
1606 &i_hash_mask,
1607 0);
1608
1609 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1610 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1611 }
1612
1613 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1614 {
1615 inode->i_mode = mode;
1616 if (S_ISCHR(mode)) {
1617 inode->i_fop = &def_chr_fops;
1618 inode->i_rdev = rdev;
1619 } else if (S_ISBLK(mode)) {
1620 inode->i_fop = &def_blk_fops;
1621 inode->i_rdev = rdev;
1622 } else if (S_ISFIFO(mode))
1623 inode->i_fop = &def_fifo_fops;
1624 else if (S_ISSOCK(mode))
1625 inode->i_fop = &bad_sock_fops;
1626 else
1627 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1628 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1629 inode->i_ino);
1630 }
1631 EXPORT_SYMBOL(init_special_inode);
1632
1633 /**
1634 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1635 * @inode: New inode
1636 * @dir: Directory inode
1637 * @mode: mode of the new inode
1638 */
1639 void inode_init_owner(struct inode *inode, const struct inode *dir,
1640 mode_t mode)
1641 {
1642 inode->i_uid = current_fsuid();
1643 if (dir && dir->i_mode & S_ISGID) {
1644 inode->i_gid = dir->i_gid;
1645 if (S_ISDIR(mode))
1646 mode |= S_ISGID;
1647 } else
1648 inode->i_gid = current_fsgid();
1649 inode->i_mode = mode;
1650 }
1651 EXPORT_SYMBOL(inode_init_owner);
1652
1653 /**
1654 * inode_owner_or_capable - check current task permissions to inode
1655 * @inode: inode being checked
1656 *
1657 * Return true if current either has CAP_FOWNER to the inode, or
1658 * owns the file.
1659 */
1660 bool inode_owner_or_capable(const struct inode *inode)
1661 {
1662 struct user_namespace *ns = inode_userns(inode);
1663
1664 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1665 return true;
1666 if (ns_capable(ns, CAP_FOWNER))
1667 return true;
1668 return false;
1669 }
1670 EXPORT_SYMBOL(inode_owner_or_capable);