]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * linux/fs/inode.c
3 *
4 * (C) 1997 Linus Torvalds
5 */
6
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/fsnotify.h>
26 #include <linux/mount.h>
27 #include <linux/async.h>
28 #include <linux/posix_acl.h>
29
30 /*
31 * This is needed for the following functions:
32 * - inode_has_buffers
33 * - invalidate_inode_buffers
34 * - invalidate_bdev
35 *
36 * FIXME: remove all knowledge of the buffer layer from this file
37 */
38 #include <linux/buffer_head.h>
39
40 /*
41 * New inode.c implementation.
42 *
43 * This implementation has the basic premise of trying
44 * to be extremely low-overhead and SMP-safe, yet be
45 * simple enough to be "obviously correct".
46 *
47 * Famous last words.
48 */
49
50 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
51
52 /* #define INODE_PARANOIA 1 */
53 /* #define INODE_DEBUG 1 */
54
55 /*
56 * Inode lookup is no longer as critical as it used to be:
57 * most of the lookups are going to be through the dcache.
58 */
59 #define I_HASHBITS i_hash_shift
60 #define I_HASHMASK i_hash_mask
61
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64
65 /*
66 * Each inode can be on two separate lists. One is
67 * the hash list of the inode, used for lookups. The
68 * other linked list is the "type" list:
69 * "in_use" - valid inode, i_count > 0, i_nlink > 0
70 * "dirty" - as "in_use" but also dirty
71 * "unused" - valid inode, i_count = 0
72 *
73 * A "dirty" list is maintained for each super block,
74 * allowing for low-overhead inode sync() operations.
75 */
76
77 LIST_HEAD(inode_in_use);
78 LIST_HEAD(inode_unused);
79 static struct hlist_head *inode_hashtable __read_mostly;
80
81 /*
82 * A simple spinlock to protect the list manipulations.
83 *
84 * NOTE! You also have to own the lock if you change
85 * the i_state of an inode while it is in use..
86 */
87 DEFINE_SPINLOCK(inode_lock);
88
89 /*
90 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
91 * icache shrinking path, and the umount path. Without this exclusion,
92 * by the time prune_icache calls iput for the inode whose pages it has
93 * been invalidating, or by the time it calls clear_inode & destroy_inode
94 * from its final dispose_list, the struct super_block they refer to
95 * (for inode->i_sb->s_op) may already have been freed and reused.
96 */
97 static DEFINE_MUTEX(iprune_mutex);
98
99 /*
100 * Statistics gathering..
101 */
102 struct inodes_stat_t inodes_stat;
103
104 static struct kmem_cache *inode_cachep __read_mostly;
105
106 static void wake_up_inode(struct inode *inode)
107 {
108 /*
109 * Prevent speculative execution through spin_unlock(&inode_lock);
110 */
111 smp_mb();
112 wake_up_bit(&inode->i_state, __I_LOCK);
113 }
114
115 /**
116 * inode_init_always - perform inode structure intialisation
117 * @sb: superblock inode belongs to
118 * @inode: inode to initialise
119 *
120 * These are initializations that need to be done on every inode
121 * allocation as the fields are not initialised by slab allocation.
122 */
123 int inode_init_always(struct super_block *sb, struct inode *inode)
124 {
125 static const struct address_space_operations empty_aops;
126 static struct inode_operations empty_iops;
127 static const struct file_operations empty_fops;
128 struct address_space *const mapping = &inode->i_data;
129
130 inode->i_sb = sb;
131 inode->i_blkbits = sb->s_blocksize_bits;
132 inode->i_flags = 0;
133 atomic_set(&inode->i_count, 1);
134 inode->i_op = &empty_iops;
135 inode->i_fop = &empty_fops;
136 inode->i_nlink = 1;
137 inode->i_uid = 0;
138 inode->i_gid = 0;
139 atomic_set(&inode->i_writecount, 0);
140 inode->i_size = 0;
141 inode->i_blocks = 0;
142 inode->i_bytes = 0;
143 inode->i_generation = 0;
144 #ifdef CONFIG_QUOTA
145 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
146 #endif
147 inode->i_pipe = NULL;
148 inode->i_bdev = NULL;
149 inode->i_cdev = NULL;
150 inode->i_rdev = 0;
151 inode->dirtied_when = 0;
152
153 if (security_inode_alloc(inode))
154 goto out;
155
156 /* allocate and initialize an i_integrity */
157 if (ima_inode_alloc(inode))
158 goto out_free_security;
159
160 spin_lock_init(&inode->i_lock);
161 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
162
163 mutex_init(&inode->i_mutex);
164 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
165
166 init_rwsem(&inode->i_alloc_sem);
167 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
168
169 mapping->a_ops = &empty_aops;
170 mapping->host = inode;
171 mapping->flags = 0;
172 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
173 mapping->assoc_mapping = NULL;
174 mapping->backing_dev_info = &default_backing_dev_info;
175 mapping->writeback_index = 0;
176
177 /*
178 * If the block_device provides a backing_dev_info for client
179 * inodes then use that. Otherwise the inode share the bdev's
180 * backing_dev_info.
181 */
182 if (sb->s_bdev) {
183 struct backing_dev_info *bdi;
184
185 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
186 mapping->backing_dev_info = bdi;
187 }
188 inode->i_private = NULL;
189 inode->i_mapping = mapping;
190 #ifdef CONFIG_FS_POSIX_ACL
191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193
194 #ifdef CONFIG_FSNOTIFY
195 inode->i_fsnotify_mask = 0;
196 #endif
197
198 return 0;
199
200 out_free_security:
201 security_inode_free(inode);
202 out:
203 return -ENOMEM;
204 }
205 EXPORT_SYMBOL(inode_init_always);
206
207 static struct inode *alloc_inode(struct super_block *sb)
208 {
209 struct inode *inode;
210
211 if (sb->s_op->alloc_inode)
212 inode = sb->s_op->alloc_inode(sb);
213 else
214 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
215
216 if (!inode)
217 return NULL;
218
219 if (unlikely(inode_init_always(sb, inode))) {
220 if (inode->i_sb->s_op->destroy_inode)
221 inode->i_sb->s_op->destroy_inode(inode);
222 else
223 kmem_cache_free(inode_cachep, inode);
224 return NULL;
225 }
226
227 return inode;
228 }
229
230 void __destroy_inode(struct inode *inode)
231 {
232 BUG_ON(inode_has_buffers(inode));
233 ima_inode_free(inode);
234 security_inode_free(inode);
235 fsnotify_inode_delete(inode);
236 #ifdef CONFIG_FS_POSIX_ACL
237 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
238 posix_acl_release(inode->i_acl);
239 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
240 posix_acl_release(inode->i_default_acl);
241 #endif
242 }
243 EXPORT_SYMBOL(__destroy_inode);
244
245 void destroy_inode(struct inode *inode)
246 {
247 __destroy_inode(inode);
248 if (inode->i_sb->s_op->destroy_inode)
249 inode->i_sb->s_op->destroy_inode(inode);
250 else
251 kmem_cache_free(inode_cachep, (inode));
252 }
253
254 /*
255 * These are initializations that only need to be done
256 * once, because the fields are idempotent across use
257 * of the inode, so let the slab aware of that.
258 */
259 void inode_init_once(struct inode *inode)
260 {
261 memset(inode, 0, sizeof(*inode));
262 INIT_HLIST_NODE(&inode->i_hash);
263 INIT_LIST_HEAD(&inode->i_dentry);
264 INIT_LIST_HEAD(&inode->i_devices);
265 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
266 spin_lock_init(&inode->i_data.tree_lock);
267 spin_lock_init(&inode->i_data.i_mmap_lock);
268 INIT_LIST_HEAD(&inode->i_data.private_list);
269 spin_lock_init(&inode->i_data.private_lock);
270 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
271 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
272 i_size_ordered_init(inode);
273 #ifdef CONFIG_INOTIFY
274 INIT_LIST_HEAD(&inode->inotify_watches);
275 mutex_init(&inode->inotify_mutex);
276 #endif
277 #ifdef CONFIG_FSNOTIFY
278 INIT_HLIST_HEAD(&inode->i_fsnotify_mark_entries);
279 #endif
280 }
281 EXPORT_SYMBOL(inode_init_once);
282
283 static void init_once(void *foo)
284 {
285 struct inode *inode = (struct inode *) foo;
286
287 inode_init_once(inode);
288 }
289
290 /*
291 * inode_lock must be held
292 */
293 void __iget(struct inode *inode)
294 {
295 if (atomic_read(&inode->i_count)) {
296 atomic_inc(&inode->i_count);
297 return;
298 }
299 atomic_inc(&inode->i_count);
300 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
301 list_move(&inode->i_list, &inode_in_use);
302 inodes_stat.nr_unused--;
303 }
304
305 /**
306 * clear_inode - clear an inode
307 * @inode: inode to clear
308 *
309 * This is called by the filesystem to tell us
310 * that the inode is no longer useful. We just
311 * terminate it with extreme prejudice.
312 */
313 void clear_inode(struct inode *inode)
314 {
315 might_sleep();
316 invalidate_inode_buffers(inode);
317
318 BUG_ON(inode->i_data.nrpages);
319 BUG_ON(!(inode->i_state & I_FREEING));
320 BUG_ON(inode->i_state & I_CLEAR);
321 inode_sync_wait(inode);
322 vfs_dq_drop(inode);
323 if (inode->i_sb->s_op->clear_inode)
324 inode->i_sb->s_op->clear_inode(inode);
325 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
326 bd_forget(inode);
327 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
328 cd_forget(inode);
329 inode->i_state = I_CLEAR;
330 }
331 EXPORT_SYMBOL(clear_inode);
332
333 /*
334 * dispose_list - dispose of the contents of a local list
335 * @head: the head of the list to free
336 *
337 * Dispose-list gets a local list with local inodes in it, so it doesn't
338 * need to worry about list corruption and SMP locks.
339 */
340 static void dispose_list(struct list_head *head)
341 {
342 int nr_disposed = 0;
343
344 while (!list_empty(head)) {
345 struct inode *inode;
346
347 inode = list_first_entry(head, struct inode, i_list);
348 list_del(&inode->i_list);
349
350 if (inode->i_data.nrpages)
351 truncate_inode_pages(&inode->i_data, 0);
352 clear_inode(inode);
353
354 spin_lock(&inode_lock);
355 hlist_del_init(&inode->i_hash);
356 list_del_init(&inode->i_sb_list);
357 spin_unlock(&inode_lock);
358
359 wake_up_inode(inode);
360 destroy_inode(inode);
361 nr_disposed++;
362 }
363 spin_lock(&inode_lock);
364 inodes_stat.nr_inodes -= nr_disposed;
365 spin_unlock(&inode_lock);
366 }
367
368 /*
369 * Invalidate all inodes for a device.
370 */
371 static int invalidate_list(struct list_head *head, struct list_head *dispose)
372 {
373 struct list_head *next;
374 int busy = 0, count = 0;
375
376 next = head->next;
377 for (;;) {
378 struct list_head *tmp = next;
379 struct inode *inode;
380
381 /*
382 * We can reschedule here without worrying about the list's
383 * consistency because the per-sb list of inodes must not
384 * change during umount anymore, and because iprune_mutex keeps
385 * shrink_icache_memory() away.
386 */
387 cond_resched_lock(&inode_lock);
388
389 next = next->next;
390 if (tmp == head)
391 break;
392 inode = list_entry(tmp, struct inode, i_sb_list);
393 if (inode->i_state & I_NEW)
394 continue;
395 invalidate_inode_buffers(inode);
396 if (!atomic_read(&inode->i_count)) {
397 list_move(&inode->i_list, dispose);
398 WARN_ON(inode->i_state & I_NEW);
399 inode->i_state |= I_FREEING;
400 count++;
401 continue;
402 }
403 busy = 1;
404 }
405 /* only unused inodes may be cached with i_count zero */
406 inodes_stat.nr_unused -= count;
407 return busy;
408 }
409
410 /**
411 * invalidate_inodes - discard the inodes on a device
412 * @sb: superblock
413 *
414 * Discard all of the inodes for a given superblock. If the discard
415 * fails because there are busy inodes then a non zero value is returned.
416 * If the discard is successful all the inodes have been discarded.
417 */
418 int invalidate_inodes(struct super_block *sb)
419 {
420 int busy;
421 LIST_HEAD(throw_away);
422
423 mutex_lock(&iprune_mutex);
424 spin_lock(&inode_lock);
425 inotify_unmount_inodes(&sb->s_inodes);
426 fsnotify_unmount_inodes(&sb->s_inodes);
427 busy = invalidate_list(&sb->s_inodes, &throw_away);
428 spin_unlock(&inode_lock);
429
430 dispose_list(&throw_away);
431 mutex_unlock(&iprune_mutex);
432
433 return busy;
434 }
435 EXPORT_SYMBOL(invalidate_inodes);
436
437 static int can_unuse(struct inode *inode)
438 {
439 if (inode->i_state)
440 return 0;
441 if (inode_has_buffers(inode))
442 return 0;
443 if (atomic_read(&inode->i_count))
444 return 0;
445 if (inode->i_data.nrpages)
446 return 0;
447 return 1;
448 }
449
450 /*
451 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
452 * a temporary list and then are freed outside inode_lock by dispose_list().
453 *
454 * Any inodes which are pinned purely because of attached pagecache have their
455 * pagecache removed. We expect the final iput() on that inode to add it to
456 * the front of the inode_unused list. So look for it there and if the
457 * inode is still freeable, proceed. The right inode is found 99.9% of the
458 * time in testing on a 4-way.
459 *
460 * If the inode has metadata buffers attached to mapping->private_list then
461 * try to remove them.
462 */
463 static void prune_icache(int nr_to_scan)
464 {
465 LIST_HEAD(freeable);
466 int nr_pruned = 0;
467 int nr_scanned;
468 unsigned long reap = 0;
469
470 mutex_lock(&iprune_mutex);
471 spin_lock(&inode_lock);
472 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
473 struct inode *inode;
474
475 if (list_empty(&inode_unused))
476 break;
477
478 inode = list_entry(inode_unused.prev, struct inode, i_list);
479
480 if (inode->i_state || atomic_read(&inode->i_count)) {
481 list_move(&inode->i_list, &inode_unused);
482 continue;
483 }
484 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
485 __iget(inode);
486 spin_unlock(&inode_lock);
487 if (remove_inode_buffers(inode))
488 reap += invalidate_mapping_pages(&inode->i_data,
489 0, -1);
490 iput(inode);
491 spin_lock(&inode_lock);
492
493 if (inode != list_entry(inode_unused.next,
494 struct inode, i_list))
495 continue; /* wrong inode or list_empty */
496 if (!can_unuse(inode))
497 continue;
498 }
499 list_move(&inode->i_list, &freeable);
500 WARN_ON(inode->i_state & I_NEW);
501 inode->i_state |= I_FREEING;
502 nr_pruned++;
503 }
504 inodes_stat.nr_unused -= nr_pruned;
505 if (current_is_kswapd())
506 __count_vm_events(KSWAPD_INODESTEAL, reap);
507 else
508 __count_vm_events(PGINODESTEAL, reap);
509 spin_unlock(&inode_lock);
510
511 dispose_list(&freeable);
512 mutex_unlock(&iprune_mutex);
513 }
514
515 /*
516 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
517 * "unused" means that no dentries are referring to the inodes: the files are
518 * not open and the dcache references to those inodes have already been
519 * reclaimed.
520 *
521 * This function is passed the number of inodes to scan, and it returns the
522 * total number of remaining possibly-reclaimable inodes.
523 */
524 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
525 {
526 if (nr) {
527 /*
528 * Nasty deadlock avoidance. We may hold various FS locks,
529 * and we don't want to recurse into the FS that called us
530 * in clear_inode() and friends..
531 */
532 if (!(gfp_mask & __GFP_FS))
533 return -1;
534 prune_icache(nr);
535 }
536 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
537 }
538
539 static struct shrinker icache_shrinker = {
540 .shrink = shrink_icache_memory,
541 .seeks = DEFAULT_SEEKS,
542 };
543
544 static void __wait_on_freeing_inode(struct inode *inode);
545 /*
546 * Called with the inode lock held.
547 * NOTE: we are not increasing the inode-refcount, you must call __iget()
548 * by hand after calling find_inode now! This simplifies iunique and won't
549 * add any additional branch in the common code.
550 */
551 static struct inode *find_inode(struct super_block *sb,
552 struct hlist_head *head,
553 int (*test)(struct inode *, void *),
554 void *data)
555 {
556 struct hlist_node *node;
557 struct inode *inode = NULL;
558
559 repeat:
560 hlist_for_each_entry(inode, node, head, i_hash) {
561 if (inode->i_sb != sb)
562 continue;
563 if (!test(inode, data))
564 continue;
565 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
566 __wait_on_freeing_inode(inode);
567 goto repeat;
568 }
569 break;
570 }
571 return node ? inode : NULL;
572 }
573
574 /*
575 * find_inode_fast is the fast path version of find_inode, see the comment at
576 * iget_locked for details.
577 */
578 static struct inode *find_inode_fast(struct super_block *sb,
579 struct hlist_head *head, unsigned long ino)
580 {
581 struct hlist_node *node;
582 struct inode *inode = NULL;
583
584 repeat:
585 hlist_for_each_entry(inode, node, head, i_hash) {
586 if (inode->i_ino != ino)
587 continue;
588 if (inode->i_sb != sb)
589 continue;
590 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
591 __wait_on_freeing_inode(inode);
592 goto repeat;
593 }
594 break;
595 }
596 return node ? inode : NULL;
597 }
598
599 static unsigned long hash(struct super_block *sb, unsigned long hashval)
600 {
601 unsigned long tmp;
602
603 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
604 L1_CACHE_BYTES;
605 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
606 return tmp & I_HASHMASK;
607 }
608
609 static inline void
610 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
611 struct inode *inode)
612 {
613 inodes_stat.nr_inodes++;
614 list_add(&inode->i_list, &inode_in_use);
615 list_add(&inode->i_sb_list, &sb->s_inodes);
616 if (head)
617 hlist_add_head(&inode->i_hash, head);
618 }
619
620 /**
621 * inode_add_to_lists - add a new inode to relevant lists
622 * @sb: superblock inode belongs to
623 * @inode: inode to mark in use
624 *
625 * When an inode is allocated it needs to be accounted for, added to the in use
626 * list, the owning superblock and the inode hash. This needs to be done under
627 * the inode_lock, so export a function to do this rather than the inode lock
628 * itself. We calculate the hash list to add to here so it is all internal
629 * which requires the caller to have already set up the inode number in the
630 * inode to add.
631 */
632 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
633 {
634 struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
635
636 spin_lock(&inode_lock);
637 __inode_add_to_lists(sb, head, inode);
638 spin_unlock(&inode_lock);
639 }
640 EXPORT_SYMBOL_GPL(inode_add_to_lists);
641
642 /**
643 * new_inode - obtain an inode
644 * @sb: superblock
645 *
646 * Allocates a new inode for given superblock. The default gfp_mask
647 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
648 * If HIGHMEM pages are unsuitable or it is known that pages allocated
649 * for the page cache are not reclaimable or migratable,
650 * mapping_set_gfp_mask() must be called with suitable flags on the
651 * newly created inode's mapping
652 *
653 */
654 struct inode *new_inode(struct super_block *sb)
655 {
656 /*
657 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
658 * error if st_ino won't fit in target struct field. Use 32bit counter
659 * here to attempt to avoid that.
660 */
661 static unsigned int last_ino;
662 struct inode *inode;
663
664 spin_lock_prefetch(&inode_lock);
665
666 inode = alloc_inode(sb);
667 if (inode) {
668 spin_lock(&inode_lock);
669 __inode_add_to_lists(sb, NULL, inode);
670 inode->i_ino = ++last_ino;
671 inode->i_state = 0;
672 spin_unlock(&inode_lock);
673 }
674 return inode;
675 }
676 EXPORT_SYMBOL(new_inode);
677
678 void unlock_new_inode(struct inode *inode)
679 {
680 #ifdef CONFIG_DEBUG_LOCK_ALLOC
681 if (inode->i_mode & S_IFDIR) {
682 struct file_system_type *type = inode->i_sb->s_type;
683
684 /* Set new key only if filesystem hasn't already changed it */
685 if (!lockdep_match_class(&inode->i_mutex,
686 &type->i_mutex_key)) {
687 /*
688 * ensure nobody is actually holding i_mutex
689 */
690 mutex_destroy(&inode->i_mutex);
691 mutex_init(&inode->i_mutex);
692 lockdep_set_class(&inode->i_mutex,
693 &type->i_mutex_dir_key);
694 }
695 }
696 #endif
697 /*
698 * This is special! We do not need the spinlock
699 * when clearing I_LOCK, because we're guaranteed
700 * that nobody else tries to do anything about the
701 * state of the inode when it is locked, as we
702 * just created it (so there can be no old holders
703 * that haven't tested I_LOCK).
704 */
705 WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
706 inode->i_state &= ~(I_LOCK|I_NEW);
707 wake_up_inode(inode);
708 }
709 EXPORT_SYMBOL(unlock_new_inode);
710
711 /*
712 * This is called without the inode lock held.. Be careful.
713 *
714 * We no longer cache the sb_flags in i_flags - see fs.h
715 * -- rmk@arm.uk.linux.org
716 */
717 static struct inode *get_new_inode(struct super_block *sb,
718 struct hlist_head *head,
719 int (*test)(struct inode *, void *),
720 int (*set)(struct inode *, void *),
721 void *data)
722 {
723 struct inode *inode;
724
725 inode = alloc_inode(sb);
726 if (inode) {
727 struct inode *old;
728
729 spin_lock(&inode_lock);
730 /* We released the lock, so.. */
731 old = find_inode(sb, head, test, data);
732 if (!old) {
733 if (set(inode, data))
734 goto set_failed;
735
736 __inode_add_to_lists(sb, head, inode);
737 inode->i_state = I_LOCK|I_NEW;
738 spin_unlock(&inode_lock);
739
740 /* Return the locked inode with I_NEW set, the
741 * caller is responsible for filling in the contents
742 */
743 return inode;
744 }
745
746 /*
747 * Uhhuh, somebody else created the same inode under
748 * us. Use the old inode instead of the one we just
749 * allocated.
750 */
751 __iget(old);
752 spin_unlock(&inode_lock);
753 destroy_inode(inode);
754 inode = old;
755 wait_on_inode(inode);
756 }
757 return inode;
758
759 set_failed:
760 spin_unlock(&inode_lock);
761 destroy_inode(inode);
762 return NULL;
763 }
764
765 /*
766 * get_new_inode_fast is the fast path version of get_new_inode, see the
767 * comment at iget_locked for details.
768 */
769 static struct inode *get_new_inode_fast(struct super_block *sb,
770 struct hlist_head *head, unsigned long ino)
771 {
772 struct inode *inode;
773
774 inode = alloc_inode(sb);
775 if (inode) {
776 struct inode *old;
777
778 spin_lock(&inode_lock);
779 /* We released the lock, so.. */
780 old = find_inode_fast(sb, head, ino);
781 if (!old) {
782 inode->i_ino = ino;
783 __inode_add_to_lists(sb, head, inode);
784 inode->i_state = I_LOCK|I_NEW;
785 spin_unlock(&inode_lock);
786
787 /* Return the locked inode with I_NEW set, the
788 * caller is responsible for filling in the contents
789 */
790 return inode;
791 }
792
793 /*
794 * Uhhuh, somebody else created the same inode under
795 * us. Use the old inode instead of the one we just
796 * allocated.
797 */
798 __iget(old);
799 spin_unlock(&inode_lock);
800 destroy_inode(inode);
801 inode = old;
802 wait_on_inode(inode);
803 }
804 return inode;
805 }
806
807 /**
808 * iunique - get a unique inode number
809 * @sb: superblock
810 * @max_reserved: highest reserved inode number
811 *
812 * Obtain an inode number that is unique on the system for a given
813 * superblock. This is used by file systems that have no natural
814 * permanent inode numbering system. An inode number is returned that
815 * is higher than the reserved limit but unique.
816 *
817 * BUGS:
818 * With a large number of inodes live on the file system this function
819 * currently becomes quite slow.
820 */
821 ino_t iunique(struct super_block *sb, ino_t max_reserved)
822 {
823 /*
824 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
825 * error if st_ino won't fit in target struct field. Use 32bit counter
826 * here to attempt to avoid that.
827 */
828 static unsigned int counter;
829 struct inode *inode;
830 struct hlist_head *head;
831 ino_t res;
832
833 spin_lock(&inode_lock);
834 do {
835 if (counter <= max_reserved)
836 counter = max_reserved + 1;
837 res = counter++;
838 head = inode_hashtable + hash(sb, res);
839 inode = find_inode_fast(sb, head, res);
840 } while (inode != NULL);
841 spin_unlock(&inode_lock);
842
843 return res;
844 }
845 EXPORT_SYMBOL(iunique);
846
847 struct inode *igrab(struct inode *inode)
848 {
849 spin_lock(&inode_lock);
850 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
851 __iget(inode);
852 else
853 /*
854 * Handle the case where s_op->clear_inode is not been
855 * called yet, and somebody is calling igrab
856 * while the inode is getting freed.
857 */
858 inode = NULL;
859 spin_unlock(&inode_lock);
860 return inode;
861 }
862 EXPORT_SYMBOL(igrab);
863
864 /**
865 * ifind - internal function, you want ilookup5() or iget5().
866 * @sb: super block of file system to search
867 * @head: the head of the list to search
868 * @test: callback used for comparisons between inodes
869 * @data: opaque data pointer to pass to @test
870 * @wait: if true wait for the inode to be unlocked, if false do not
871 *
872 * ifind() searches for the inode specified by @data in the inode
873 * cache. This is a generalized version of ifind_fast() for file systems where
874 * the inode number is not sufficient for unique identification of an inode.
875 *
876 * If the inode is in the cache, the inode is returned with an incremented
877 * reference count.
878 *
879 * Otherwise NULL is returned.
880 *
881 * Note, @test is called with the inode_lock held, so can't sleep.
882 */
883 static struct inode *ifind(struct super_block *sb,
884 struct hlist_head *head, int (*test)(struct inode *, void *),
885 void *data, const int wait)
886 {
887 struct inode *inode;
888
889 spin_lock(&inode_lock);
890 inode = find_inode(sb, head, test, data);
891 if (inode) {
892 __iget(inode);
893 spin_unlock(&inode_lock);
894 if (likely(wait))
895 wait_on_inode(inode);
896 return inode;
897 }
898 spin_unlock(&inode_lock);
899 return NULL;
900 }
901
902 /**
903 * ifind_fast - internal function, you want ilookup() or iget().
904 * @sb: super block of file system to search
905 * @head: head of the list to search
906 * @ino: inode number to search for
907 *
908 * ifind_fast() searches for the inode @ino in the inode cache. This is for
909 * file systems where the inode number is sufficient for unique identification
910 * of an inode.
911 *
912 * If the inode is in the cache, the inode is returned with an incremented
913 * reference count.
914 *
915 * Otherwise NULL is returned.
916 */
917 static struct inode *ifind_fast(struct super_block *sb,
918 struct hlist_head *head, unsigned long ino)
919 {
920 struct inode *inode;
921
922 spin_lock(&inode_lock);
923 inode = find_inode_fast(sb, head, ino);
924 if (inode) {
925 __iget(inode);
926 spin_unlock(&inode_lock);
927 wait_on_inode(inode);
928 return inode;
929 }
930 spin_unlock(&inode_lock);
931 return NULL;
932 }
933
934 /**
935 * ilookup5_nowait - search for an inode in the inode cache
936 * @sb: super block of file system to search
937 * @hashval: hash value (usually inode number) to search for
938 * @test: callback used for comparisons between inodes
939 * @data: opaque data pointer to pass to @test
940 *
941 * ilookup5() uses ifind() to search for the inode specified by @hashval and
942 * @data in the inode cache. This is a generalized version of ilookup() for
943 * file systems where the inode number is not sufficient for unique
944 * identification of an inode.
945 *
946 * If the inode is in the cache, the inode is returned with an incremented
947 * reference count. Note, the inode lock is not waited upon so you have to be
948 * very careful what you do with the returned inode. You probably should be
949 * using ilookup5() instead.
950 *
951 * Otherwise NULL is returned.
952 *
953 * Note, @test is called with the inode_lock held, so can't sleep.
954 */
955 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
956 int (*test)(struct inode *, void *), void *data)
957 {
958 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
959
960 return ifind(sb, head, test, data, 0);
961 }
962 EXPORT_SYMBOL(ilookup5_nowait);
963
964 /**
965 * ilookup5 - search for an inode in the inode cache
966 * @sb: super block of file system to search
967 * @hashval: hash value (usually inode number) to search for
968 * @test: callback used for comparisons between inodes
969 * @data: opaque data pointer to pass to @test
970 *
971 * ilookup5() uses ifind() to search for the inode specified by @hashval and
972 * @data in the inode cache. This is a generalized version of ilookup() for
973 * file systems where the inode number is not sufficient for unique
974 * identification of an inode.
975 *
976 * If the inode is in the cache, the inode lock is waited upon and the inode is
977 * returned with an incremented reference count.
978 *
979 * Otherwise NULL is returned.
980 *
981 * Note, @test is called with the inode_lock held, so can't sleep.
982 */
983 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
984 int (*test)(struct inode *, void *), void *data)
985 {
986 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
987
988 return ifind(sb, head, test, data, 1);
989 }
990 EXPORT_SYMBOL(ilookup5);
991
992 /**
993 * ilookup - search for an inode in the inode cache
994 * @sb: super block of file system to search
995 * @ino: inode number to search for
996 *
997 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
998 * This is for file systems where the inode number is sufficient for unique
999 * identification of an inode.
1000 *
1001 * If the inode is in the cache, the inode is returned with an incremented
1002 * reference count.
1003 *
1004 * Otherwise NULL is returned.
1005 */
1006 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1007 {
1008 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1009
1010 return ifind_fast(sb, head, ino);
1011 }
1012 EXPORT_SYMBOL(ilookup);
1013
1014 /**
1015 * iget5_locked - obtain an inode from a mounted file system
1016 * @sb: super block of file system
1017 * @hashval: hash value (usually inode number) to get
1018 * @test: callback used for comparisons between inodes
1019 * @set: callback used to initialize a new struct inode
1020 * @data: opaque data pointer to pass to @test and @set
1021 *
1022 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1023 * and @data in the inode cache and if present it is returned with an increased
1024 * reference count. This is a generalized version of iget_locked() for file
1025 * systems where the inode number is not sufficient for unique identification
1026 * of an inode.
1027 *
1028 * If the inode is not in cache, get_new_inode() is called to allocate a new
1029 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1030 * file system gets to fill it in before unlocking it via unlock_new_inode().
1031 *
1032 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1033 */
1034 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1035 int (*test)(struct inode *, void *),
1036 int (*set)(struct inode *, void *), void *data)
1037 {
1038 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1039 struct inode *inode;
1040
1041 inode = ifind(sb, head, test, data, 1);
1042 if (inode)
1043 return inode;
1044 /*
1045 * get_new_inode() will do the right thing, re-trying the search
1046 * in case it had to block at any point.
1047 */
1048 return get_new_inode(sb, head, test, set, data);
1049 }
1050 EXPORT_SYMBOL(iget5_locked);
1051
1052 /**
1053 * iget_locked - obtain an inode from a mounted file system
1054 * @sb: super block of file system
1055 * @ino: inode number to get
1056 *
1057 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1058 * the inode cache and if present it is returned with an increased reference
1059 * count. This is for file systems where the inode number is sufficient for
1060 * unique identification of an inode.
1061 *
1062 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1063 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1064 * The file system gets to fill it in before unlocking it via
1065 * unlock_new_inode().
1066 */
1067 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1068 {
1069 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1070 struct inode *inode;
1071
1072 inode = ifind_fast(sb, head, ino);
1073 if (inode)
1074 return inode;
1075 /*
1076 * get_new_inode_fast() will do the right thing, re-trying the search
1077 * in case it had to block at any point.
1078 */
1079 return get_new_inode_fast(sb, head, ino);
1080 }
1081 EXPORT_SYMBOL(iget_locked);
1082
1083 int insert_inode_locked(struct inode *inode)
1084 {
1085 struct super_block *sb = inode->i_sb;
1086 ino_t ino = inode->i_ino;
1087 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1088
1089 inode->i_state |= I_LOCK|I_NEW;
1090 while (1) {
1091 struct hlist_node *node;
1092 struct inode *old = NULL;
1093 spin_lock(&inode_lock);
1094 hlist_for_each_entry(old, node, head, i_hash) {
1095 if (old->i_ino != ino)
1096 continue;
1097 if (old->i_sb != sb)
1098 continue;
1099 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1100 continue;
1101 break;
1102 }
1103 if (likely(!node)) {
1104 hlist_add_head(&inode->i_hash, head);
1105 spin_unlock(&inode_lock);
1106 return 0;
1107 }
1108 __iget(old);
1109 spin_unlock(&inode_lock);
1110 wait_on_inode(old);
1111 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1112 iput(old);
1113 return -EBUSY;
1114 }
1115 iput(old);
1116 }
1117 }
1118 EXPORT_SYMBOL(insert_inode_locked);
1119
1120 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1121 int (*test)(struct inode *, void *), void *data)
1122 {
1123 struct super_block *sb = inode->i_sb;
1124 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1125
1126 inode->i_state |= I_LOCK|I_NEW;
1127
1128 while (1) {
1129 struct hlist_node *node;
1130 struct inode *old = NULL;
1131
1132 spin_lock(&inode_lock);
1133 hlist_for_each_entry(old, node, head, i_hash) {
1134 if (old->i_sb != sb)
1135 continue;
1136 if (!test(old, data))
1137 continue;
1138 if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1139 continue;
1140 break;
1141 }
1142 if (likely(!node)) {
1143 hlist_add_head(&inode->i_hash, head);
1144 spin_unlock(&inode_lock);
1145 return 0;
1146 }
1147 __iget(old);
1148 spin_unlock(&inode_lock);
1149 wait_on_inode(old);
1150 if (unlikely(!hlist_unhashed(&old->i_hash))) {
1151 iput(old);
1152 return -EBUSY;
1153 }
1154 iput(old);
1155 }
1156 }
1157 EXPORT_SYMBOL(insert_inode_locked4);
1158
1159 /**
1160 * __insert_inode_hash - hash an inode
1161 * @inode: unhashed inode
1162 * @hashval: unsigned long value used to locate this object in the
1163 * inode_hashtable.
1164 *
1165 * Add an inode to the inode hash for this superblock.
1166 */
1167 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1168 {
1169 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1170 spin_lock(&inode_lock);
1171 hlist_add_head(&inode->i_hash, head);
1172 spin_unlock(&inode_lock);
1173 }
1174 EXPORT_SYMBOL(__insert_inode_hash);
1175
1176 /**
1177 * remove_inode_hash - remove an inode from the hash
1178 * @inode: inode to unhash
1179 *
1180 * Remove an inode from the superblock.
1181 */
1182 void remove_inode_hash(struct inode *inode)
1183 {
1184 spin_lock(&inode_lock);
1185 hlist_del_init(&inode->i_hash);
1186 spin_unlock(&inode_lock);
1187 }
1188 EXPORT_SYMBOL(remove_inode_hash);
1189
1190 /*
1191 * Tell the filesystem that this inode is no longer of any interest and should
1192 * be completely destroyed.
1193 *
1194 * We leave the inode in the inode hash table until *after* the filesystem's
1195 * ->delete_inode completes. This ensures that an iget (such as nfsd might
1196 * instigate) will always find up-to-date information either in the hash or on
1197 * disk.
1198 *
1199 * I_FREEING is set so that no-one will take a new reference to the inode while
1200 * it is being deleted.
1201 */
1202 void generic_delete_inode(struct inode *inode)
1203 {
1204 const struct super_operations *op = inode->i_sb->s_op;
1205
1206 list_del_init(&inode->i_list);
1207 list_del_init(&inode->i_sb_list);
1208 WARN_ON(inode->i_state & I_NEW);
1209 inode->i_state |= I_FREEING;
1210 inodes_stat.nr_inodes--;
1211 spin_unlock(&inode_lock);
1212
1213 security_inode_delete(inode);
1214
1215 if (op->delete_inode) {
1216 void (*delete)(struct inode *) = op->delete_inode;
1217 if (!is_bad_inode(inode))
1218 vfs_dq_init(inode);
1219 /* Filesystems implementing their own
1220 * s_op->delete_inode are required to call
1221 * truncate_inode_pages and clear_inode()
1222 * internally */
1223 delete(inode);
1224 } else {
1225 truncate_inode_pages(&inode->i_data, 0);
1226 clear_inode(inode);
1227 }
1228 spin_lock(&inode_lock);
1229 hlist_del_init(&inode->i_hash);
1230 spin_unlock(&inode_lock);
1231 wake_up_inode(inode);
1232 BUG_ON(inode->i_state != I_CLEAR);
1233 destroy_inode(inode);
1234 }
1235 EXPORT_SYMBOL(generic_delete_inode);
1236
1237 static void generic_forget_inode(struct inode *inode)
1238 {
1239 struct super_block *sb = inode->i_sb;
1240
1241 if (!hlist_unhashed(&inode->i_hash)) {
1242 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1243 list_move(&inode->i_list, &inode_unused);
1244 inodes_stat.nr_unused++;
1245 if (sb->s_flags & MS_ACTIVE) {
1246 spin_unlock(&inode_lock);
1247 return;
1248 }
1249 WARN_ON(inode->i_state & I_NEW);
1250 inode->i_state |= I_WILL_FREE;
1251 spin_unlock(&inode_lock);
1252 write_inode_now(inode, 1);
1253 spin_lock(&inode_lock);
1254 WARN_ON(inode->i_state & I_NEW);
1255 inode->i_state &= ~I_WILL_FREE;
1256 inodes_stat.nr_unused--;
1257 hlist_del_init(&inode->i_hash);
1258 }
1259 list_del_init(&inode->i_list);
1260 list_del_init(&inode->i_sb_list);
1261 WARN_ON(inode->i_state & I_NEW);
1262 inode->i_state |= I_FREEING;
1263 inodes_stat.nr_inodes--;
1264 spin_unlock(&inode_lock);
1265 if (inode->i_data.nrpages)
1266 truncate_inode_pages(&inode->i_data, 0);
1267 clear_inode(inode);
1268 wake_up_inode(inode);
1269 destroy_inode(inode);
1270 }
1271
1272 /*
1273 * Normal UNIX filesystem behaviour: delete the
1274 * inode when the usage count drops to zero, and
1275 * i_nlink is zero.
1276 */
1277 void generic_drop_inode(struct inode *inode)
1278 {
1279 if (!inode->i_nlink)
1280 generic_delete_inode(inode);
1281 else
1282 generic_forget_inode(inode);
1283 }
1284 EXPORT_SYMBOL_GPL(generic_drop_inode);
1285
1286 /*
1287 * Called when we're dropping the last reference
1288 * to an inode.
1289 *
1290 * Call the FS "drop()" function, defaulting to
1291 * the legacy UNIX filesystem behaviour..
1292 *
1293 * NOTE! NOTE! NOTE! We're called with the inode lock
1294 * held, and the drop function is supposed to release
1295 * the lock!
1296 */
1297 static inline void iput_final(struct inode *inode)
1298 {
1299 const struct super_operations *op = inode->i_sb->s_op;
1300 void (*drop)(struct inode *) = generic_drop_inode;
1301
1302 if (op && op->drop_inode)
1303 drop = op->drop_inode;
1304 drop(inode);
1305 }
1306
1307 /**
1308 * iput - put an inode
1309 * @inode: inode to put
1310 *
1311 * Puts an inode, dropping its usage count. If the inode use count hits
1312 * zero, the inode is then freed and may also be destroyed.
1313 *
1314 * Consequently, iput() can sleep.
1315 */
1316 void iput(struct inode *inode)
1317 {
1318 if (inode) {
1319 BUG_ON(inode->i_state == I_CLEAR);
1320
1321 if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1322 iput_final(inode);
1323 }
1324 }
1325 EXPORT_SYMBOL(iput);
1326
1327 /**
1328 * bmap - find a block number in a file
1329 * @inode: inode of file
1330 * @block: block to find
1331 *
1332 * Returns the block number on the device holding the inode that
1333 * is the disk block number for the block of the file requested.
1334 * That is, asked for block 4 of inode 1 the function will return the
1335 * disk block relative to the disk start that holds that block of the
1336 * file.
1337 */
1338 sector_t bmap(struct inode *inode, sector_t block)
1339 {
1340 sector_t res = 0;
1341 if (inode->i_mapping->a_ops->bmap)
1342 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1343 return res;
1344 }
1345 EXPORT_SYMBOL(bmap);
1346
1347 /*
1348 * With relative atime, only update atime if the previous atime is
1349 * earlier than either the ctime or mtime or if at least a day has
1350 * passed since the last atime update.
1351 */
1352 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1353 struct timespec now)
1354 {
1355
1356 if (!(mnt->mnt_flags & MNT_RELATIME))
1357 return 1;
1358 /*
1359 * Is mtime younger than atime? If yes, update atime:
1360 */
1361 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1362 return 1;
1363 /*
1364 * Is ctime younger than atime? If yes, update atime:
1365 */
1366 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1367 return 1;
1368
1369 /*
1370 * Is the previous atime value older than a day? If yes,
1371 * update atime:
1372 */
1373 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1374 return 1;
1375 /*
1376 * Good, we can skip the atime update:
1377 */
1378 return 0;
1379 }
1380
1381 /**
1382 * touch_atime - update the access time
1383 * @mnt: mount the inode is accessed on
1384 * @dentry: dentry accessed
1385 *
1386 * Update the accessed time on an inode and mark it for writeback.
1387 * This function automatically handles read only file systems and media,
1388 * as well as the "noatime" flag and inode specific "noatime" markers.
1389 */
1390 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1391 {
1392 struct inode *inode = dentry->d_inode;
1393 struct timespec now;
1394
1395 if (mnt_want_write(mnt))
1396 return;
1397 if (inode->i_flags & S_NOATIME)
1398 goto out;
1399 if (IS_NOATIME(inode))
1400 goto out;
1401 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1402 goto out;
1403
1404 if (mnt->mnt_flags & MNT_NOATIME)
1405 goto out;
1406 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1407 goto out;
1408
1409 now = current_fs_time(inode->i_sb);
1410
1411 if (!relatime_need_update(mnt, inode, now))
1412 goto out;
1413
1414 if (timespec_equal(&inode->i_atime, &now))
1415 goto out;
1416
1417 inode->i_atime = now;
1418 mark_inode_dirty_sync(inode);
1419 out:
1420 mnt_drop_write(mnt);
1421 }
1422 EXPORT_SYMBOL(touch_atime);
1423
1424 /**
1425 * file_update_time - update mtime and ctime time
1426 * @file: file accessed
1427 *
1428 * Update the mtime and ctime members of an inode and mark the inode
1429 * for writeback. Note that this function is meant exclusively for
1430 * usage in the file write path of filesystems, and filesystems may
1431 * choose to explicitly ignore update via this function with the
1432 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1433 * timestamps are handled by the server.
1434 */
1435
1436 void file_update_time(struct file *file)
1437 {
1438 struct inode *inode = file->f_path.dentry->d_inode;
1439 struct timespec now;
1440 int sync_it = 0;
1441 int err;
1442
1443 if (IS_NOCMTIME(inode))
1444 return;
1445
1446 err = mnt_want_write_file(file);
1447 if (err)
1448 return;
1449
1450 now = current_fs_time(inode->i_sb);
1451 if (!timespec_equal(&inode->i_mtime, &now)) {
1452 inode->i_mtime = now;
1453 sync_it = 1;
1454 }
1455
1456 if (!timespec_equal(&inode->i_ctime, &now)) {
1457 inode->i_ctime = now;
1458 sync_it = 1;
1459 }
1460
1461 if (IS_I_VERSION(inode)) {
1462 inode_inc_iversion(inode);
1463 sync_it = 1;
1464 }
1465
1466 if (sync_it)
1467 mark_inode_dirty_sync(inode);
1468 mnt_drop_write(file->f_path.mnt);
1469 }
1470 EXPORT_SYMBOL(file_update_time);
1471
1472 int inode_needs_sync(struct inode *inode)
1473 {
1474 if (IS_SYNC(inode))
1475 return 1;
1476 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1477 return 1;
1478 return 0;
1479 }
1480 EXPORT_SYMBOL(inode_needs_sync);
1481
1482 int inode_wait(void *word)
1483 {
1484 schedule();
1485 return 0;
1486 }
1487 EXPORT_SYMBOL(inode_wait);
1488
1489 /*
1490 * If we try to find an inode in the inode hash while it is being
1491 * deleted, we have to wait until the filesystem completes its
1492 * deletion before reporting that it isn't found. This function waits
1493 * until the deletion _might_ have completed. Callers are responsible
1494 * to recheck inode state.
1495 *
1496 * It doesn't matter if I_LOCK is not set initially, a call to
1497 * wake_up_inode() after removing from the hash list will DTRT.
1498 *
1499 * This is called with inode_lock held.
1500 */
1501 static void __wait_on_freeing_inode(struct inode *inode)
1502 {
1503 wait_queue_head_t *wq;
1504 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1505 wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1506 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1507 spin_unlock(&inode_lock);
1508 schedule();
1509 finish_wait(wq, &wait.wait);
1510 spin_lock(&inode_lock);
1511 }
1512
1513 static __initdata unsigned long ihash_entries;
1514 static int __init set_ihash_entries(char *str)
1515 {
1516 if (!str)
1517 return 0;
1518 ihash_entries = simple_strtoul(str, &str, 0);
1519 return 1;
1520 }
1521 __setup("ihash_entries=", set_ihash_entries);
1522
1523 /*
1524 * Initialize the waitqueues and inode hash table.
1525 */
1526 void __init inode_init_early(void)
1527 {
1528 int loop;
1529
1530 /* If hashes are distributed across NUMA nodes, defer
1531 * hash allocation until vmalloc space is available.
1532 */
1533 if (hashdist)
1534 return;
1535
1536 inode_hashtable =
1537 alloc_large_system_hash("Inode-cache",
1538 sizeof(struct hlist_head),
1539 ihash_entries,
1540 14,
1541 HASH_EARLY,
1542 &i_hash_shift,
1543 &i_hash_mask,
1544 0);
1545
1546 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1547 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1548 }
1549
1550 void __init inode_init(void)
1551 {
1552 int loop;
1553
1554 /* inode slab cache */
1555 inode_cachep = kmem_cache_create("inode_cache",
1556 sizeof(struct inode),
1557 0,
1558 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1559 SLAB_MEM_SPREAD),
1560 init_once);
1561 register_shrinker(&icache_shrinker);
1562
1563 /* Hash may have been set up in inode_init_early */
1564 if (!hashdist)
1565 return;
1566
1567 inode_hashtable =
1568 alloc_large_system_hash("Inode-cache",
1569 sizeof(struct hlist_head),
1570 ihash_entries,
1571 14,
1572 0,
1573 &i_hash_shift,
1574 &i_hash_mask,
1575 0);
1576
1577 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1578 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1579 }
1580
1581 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1582 {
1583 inode->i_mode = mode;
1584 if (S_ISCHR(mode)) {
1585 inode->i_fop = &def_chr_fops;
1586 inode->i_rdev = rdev;
1587 } else if (S_ISBLK(mode)) {
1588 inode->i_fop = &def_blk_fops;
1589 inode->i_rdev = rdev;
1590 } else if (S_ISFIFO(mode))
1591 inode->i_fop = &def_fifo_fops;
1592 else if (S_ISSOCK(mode))
1593 inode->i_fop = &bad_sock_fops;
1594 else
1595 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1596 mode);
1597 }
1598 EXPORT_SYMBOL(init_special_inode);