]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - fs/inode.c
fs: convert inode and dentry shrinking to be node aware
[mirror_ubuntu-bionic-kernel.git] / fs / inode.c
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22
23 /*
24 * Inode locking rules:
25 *
26 * inode->i_lock protects:
27 * inode->i_state, inode->i_hash, __iget()
28 * Inode LRU list locks protect:
29 * inode->i_sb->s_inode_lru, inode->i_lru
30 * inode_sb_list_lock protects:
31 * sb->s_inodes, inode->i_sb_list
32 * bdi->wb.list_lock protects:
33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34 * inode_hash_lock protects:
35 * inode_hashtable, inode->i_hash
36 *
37 * Lock ordering:
38 *
39 * inode_sb_list_lock
40 * inode->i_lock
41 * Inode LRU list locks
42 *
43 * bdi->wb.list_lock
44 * inode->i_lock
45 *
46 * inode_hash_lock
47 * inode_sb_list_lock
48 * inode->i_lock
49 *
50 * iunique_lock
51 * inode_hash_lock
52 */
53
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60
61 /*
62 * Empty aops. Can be used for the cases where the user does not
63 * define any of the address_space operations.
64 */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68
69 /*
70 * Statistics gathering..
71 */
72 struct inodes_stat_t inodes_stat;
73
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76
77 static struct kmem_cache *inode_cachep __read_mostly;
78
79 static long get_nr_inodes(void)
80 {
81 int i;
82 long sum = 0;
83 for_each_possible_cpu(i)
84 sum += per_cpu(nr_inodes, i);
85 return sum < 0 ? 0 : sum;
86 }
87
88 static inline long get_nr_inodes_unused(void)
89 {
90 int i;
91 long sum = 0;
92 for_each_possible_cpu(i)
93 sum += per_cpu(nr_unused, i);
94 return sum < 0 ? 0 : sum;
95 }
96
97 long get_nr_dirty_inodes(void)
98 {
99 /* not actually dirty inodes, but a wild approximation */
100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 return nr_dirty > 0 ? nr_dirty : 0;
102 }
103
104 /*
105 * Handle nr_inode sysctl
106 */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(ctl_table *table, int write,
109 void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 inodes_stat.nr_inodes = get_nr_inodes();
112 inodes_stat.nr_unused = get_nr_inodes_unused();
113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116
117 /**
118 * inode_init_always - perform inode structure intialisation
119 * @sb: superblock inode belongs to
120 * @inode: inode to initialise
121 *
122 * These are initializations that need to be done on every inode
123 * allocation as the fields are not initialised by slab allocation.
124 */
125 int inode_init_always(struct super_block *sb, struct inode *inode)
126 {
127 static const struct inode_operations empty_iops;
128 static const struct file_operations empty_fops;
129 struct address_space *const mapping = &inode->i_data;
130
131 inode->i_sb = sb;
132 inode->i_blkbits = sb->s_blocksize_bits;
133 inode->i_flags = 0;
134 atomic_set(&inode->i_count, 1);
135 inode->i_op = &empty_iops;
136 inode->i_fop = &empty_fops;
137 inode->__i_nlink = 1;
138 inode->i_opflags = 0;
139 i_uid_write(inode, 0);
140 i_gid_write(inode, 0);
141 atomic_set(&inode->i_writecount, 0);
142 inode->i_size = 0;
143 inode->i_blocks = 0;
144 inode->i_bytes = 0;
145 inode->i_generation = 0;
146 #ifdef CONFIG_QUOTA
147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
148 #endif
149 inode->i_pipe = NULL;
150 inode->i_bdev = NULL;
151 inode->i_cdev = NULL;
152 inode->i_rdev = 0;
153 inode->dirtied_when = 0;
154
155 if (security_inode_alloc(inode))
156 goto out;
157 spin_lock_init(&inode->i_lock);
158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
159
160 mutex_init(&inode->i_mutex);
161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
162
163 atomic_set(&inode->i_dio_count, 0);
164
165 mapping->a_ops = &empty_aops;
166 mapping->host = inode;
167 mapping->flags = 0;
168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
169 mapping->private_data = NULL;
170 mapping->backing_dev_info = &default_backing_dev_info;
171 mapping->writeback_index = 0;
172
173 /*
174 * If the block_device provides a backing_dev_info for client
175 * inodes then use that. Otherwise the inode share the bdev's
176 * backing_dev_info.
177 */
178 if (sb->s_bdev) {
179 struct backing_dev_info *bdi;
180
181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 mapping->backing_dev_info = bdi;
183 }
184 inode->i_private = NULL;
185 inode->i_mapping = mapping;
186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
187 #ifdef CONFIG_FS_POSIX_ACL
188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
189 #endif
190
191 #ifdef CONFIG_FSNOTIFY
192 inode->i_fsnotify_mask = 0;
193 #endif
194
195 this_cpu_inc(nr_inodes);
196
197 return 0;
198 out:
199 return -ENOMEM;
200 }
201 EXPORT_SYMBOL(inode_init_always);
202
203 static struct inode *alloc_inode(struct super_block *sb)
204 {
205 struct inode *inode;
206
207 if (sb->s_op->alloc_inode)
208 inode = sb->s_op->alloc_inode(sb);
209 else
210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211
212 if (!inode)
213 return NULL;
214
215 if (unlikely(inode_init_always(sb, inode))) {
216 if (inode->i_sb->s_op->destroy_inode)
217 inode->i_sb->s_op->destroy_inode(inode);
218 else
219 kmem_cache_free(inode_cachep, inode);
220 return NULL;
221 }
222
223 return inode;
224 }
225
226 void free_inode_nonrcu(struct inode *inode)
227 {
228 kmem_cache_free(inode_cachep, inode);
229 }
230 EXPORT_SYMBOL(free_inode_nonrcu);
231
232 void __destroy_inode(struct inode *inode)
233 {
234 BUG_ON(inode_has_buffers(inode));
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 if (!inode->i_nlink) {
238 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
239 atomic_long_dec(&inode->i_sb->s_remove_count);
240 }
241
242 #ifdef CONFIG_FS_POSIX_ACL
243 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
244 posix_acl_release(inode->i_acl);
245 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
246 posix_acl_release(inode->i_default_acl);
247 #endif
248 this_cpu_dec(nr_inodes);
249 }
250 EXPORT_SYMBOL(__destroy_inode);
251
252 static void i_callback(struct rcu_head *head)
253 {
254 struct inode *inode = container_of(head, struct inode, i_rcu);
255 kmem_cache_free(inode_cachep, inode);
256 }
257
258 static void destroy_inode(struct inode *inode)
259 {
260 BUG_ON(!list_empty(&inode->i_lru));
261 __destroy_inode(inode);
262 if (inode->i_sb->s_op->destroy_inode)
263 inode->i_sb->s_op->destroy_inode(inode);
264 else
265 call_rcu(&inode->i_rcu, i_callback);
266 }
267
268 /**
269 * drop_nlink - directly drop an inode's link count
270 * @inode: inode
271 *
272 * This is a low-level filesystem helper to replace any
273 * direct filesystem manipulation of i_nlink. In cases
274 * where we are attempting to track writes to the
275 * filesystem, a decrement to zero means an imminent
276 * write when the file is truncated and actually unlinked
277 * on the filesystem.
278 */
279 void drop_nlink(struct inode *inode)
280 {
281 WARN_ON(inode->i_nlink == 0);
282 inode->__i_nlink--;
283 if (!inode->i_nlink)
284 atomic_long_inc(&inode->i_sb->s_remove_count);
285 }
286 EXPORT_SYMBOL(drop_nlink);
287
288 /**
289 * clear_nlink - directly zero an inode's link count
290 * @inode: inode
291 *
292 * This is a low-level filesystem helper to replace any
293 * direct filesystem manipulation of i_nlink. See
294 * drop_nlink() for why we care about i_nlink hitting zero.
295 */
296 void clear_nlink(struct inode *inode)
297 {
298 if (inode->i_nlink) {
299 inode->__i_nlink = 0;
300 atomic_long_inc(&inode->i_sb->s_remove_count);
301 }
302 }
303 EXPORT_SYMBOL(clear_nlink);
304
305 /**
306 * set_nlink - directly set an inode's link count
307 * @inode: inode
308 * @nlink: new nlink (should be non-zero)
309 *
310 * This is a low-level filesystem helper to replace any
311 * direct filesystem manipulation of i_nlink.
312 */
313 void set_nlink(struct inode *inode, unsigned int nlink)
314 {
315 if (!nlink) {
316 clear_nlink(inode);
317 } else {
318 /* Yes, some filesystems do change nlink from zero to one */
319 if (inode->i_nlink == 0)
320 atomic_long_dec(&inode->i_sb->s_remove_count);
321
322 inode->__i_nlink = nlink;
323 }
324 }
325 EXPORT_SYMBOL(set_nlink);
326
327 /**
328 * inc_nlink - directly increment an inode's link count
329 * @inode: inode
330 *
331 * This is a low-level filesystem helper to replace any
332 * direct filesystem manipulation of i_nlink. Currently,
333 * it is only here for parity with dec_nlink().
334 */
335 void inc_nlink(struct inode *inode)
336 {
337 if (unlikely(inode->i_nlink == 0)) {
338 WARN_ON(!(inode->i_state & I_LINKABLE));
339 atomic_long_dec(&inode->i_sb->s_remove_count);
340 }
341
342 inode->__i_nlink++;
343 }
344 EXPORT_SYMBOL(inc_nlink);
345
346 void address_space_init_once(struct address_space *mapping)
347 {
348 memset(mapping, 0, sizeof(*mapping));
349 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
350 spin_lock_init(&mapping->tree_lock);
351 mutex_init(&mapping->i_mmap_mutex);
352 INIT_LIST_HEAD(&mapping->private_list);
353 spin_lock_init(&mapping->private_lock);
354 mapping->i_mmap = RB_ROOT;
355 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
356 }
357 EXPORT_SYMBOL(address_space_init_once);
358
359 /*
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
363 */
364 void inode_init_once(struct inode *inode)
365 {
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_wb_list);
370 INIT_LIST_HEAD(&inode->i_lru);
371 address_space_init_once(&inode->i_data);
372 i_size_ordered_init(inode);
373 #ifdef CONFIG_FSNOTIFY
374 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
375 #endif
376 }
377 EXPORT_SYMBOL(inode_init_once);
378
379 static void init_once(void *foo)
380 {
381 struct inode *inode = (struct inode *) foo;
382
383 inode_init_once(inode);
384 }
385
386 /*
387 * inode->i_lock must be held
388 */
389 void __iget(struct inode *inode)
390 {
391 atomic_inc(&inode->i_count);
392 }
393
394 /*
395 * get additional reference to inode; caller must already hold one.
396 */
397 void ihold(struct inode *inode)
398 {
399 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 this_cpu_inc(nr_unused);
407 }
408
409 /*
410 * Add inode to LRU if needed (inode is unused and clean).
411 *
412 * Needs inode->i_lock held.
413 */
414 void inode_add_lru(struct inode *inode)
415 {
416 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
417 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
418 inode_lru_list_add(inode);
419 }
420
421
422 static void inode_lru_list_del(struct inode *inode)
423 {
424
425 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
426 this_cpu_dec(nr_unused);
427 }
428
429 /**
430 * inode_sb_list_add - add inode to the superblock list of inodes
431 * @inode: inode to add
432 */
433 void inode_sb_list_add(struct inode *inode)
434 {
435 spin_lock(&inode_sb_list_lock);
436 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
437 spin_unlock(&inode_sb_list_lock);
438 }
439 EXPORT_SYMBOL_GPL(inode_sb_list_add);
440
441 static inline void inode_sb_list_del(struct inode *inode)
442 {
443 if (!list_empty(&inode->i_sb_list)) {
444 spin_lock(&inode_sb_list_lock);
445 list_del_init(&inode->i_sb_list);
446 spin_unlock(&inode_sb_list_lock);
447 }
448 }
449
450 static unsigned long hash(struct super_block *sb, unsigned long hashval)
451 {
452 unsigned long tmp;
453
454 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
455 L1_CACHE_BYTES;
456 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
457 return tmp & i_hash_mask;
458 }
459
460 /**
461 * __insert_inode_hash - hash an inode
462 * @inode: unhashed inode
463 * @hashval: unsigned long value used to locate this object in the
464 * inode_hashtable.
465 *
466 * Add an inode to the inode hash for this superblock.
467 */
468 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
469 {
470 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
471
472 spin_lock(&inode_hash_lock);
473 spin_lock(&inode->i_lock);
474 hlist_add_head(&inode->i_hash, b);
475 spin_unlock(&inode->i_lock);
476 spin_unlock(&inode_hash_lock);
477 }
478 EXPORT_SYMBOL(__insert_inode_hash);
479
480 /**
481 * __remove_inode_hash - remove an inode from the hash
482 * @inode: inode to unhash
483 *
484 * Remove an inode from the superblock.
485 */
486 void __remove_inode_hash(struct inode *inode)
487 {
488 spin_lock(&inode_hash_lock);
489 spin_lock(&inode->i_lock);
490 hlist_del_init(&inode->i_hash);
491 spin_unlock(&inode->i_lock);
492 spin_unlock(&inode_hash_lock);
493 }
494 EXPORT_SYMBOL(__remove_inode_hash);
495
496 void clear_inode(struct inode *inode)
497 {
498 might_sleep();
499 /*
500 * We have to cycle tree_lock here because reclaim can be still in the
501 * process of removing the last page (in __delete_from_page_cache())
502 * and we must not free mapping under it.
503 */
504 spin_lock_irq(&inode->i_data.tree_lock);
505 BUG_ON(inode->i_data.nrpages);
506 spin_unlock_irq(&inode->i_data.tree_lock);
507 BUG_ON(!list_empty(&inode->i_data.private_list));
508 BUG_ON(!(inode->i_state & I_FREEING));
509 BUG_ON(inode->i_state & I_CLEAR);
510 /* don't need i_lock here, no concurrent mods to i_state */
511 inode->i_state = I_FREEING | I_CLEAR;
512 }
513 EXPORT_SYMBOL(clear_inode);
514
515 /*
516 * Free the inode passed in, removing it from the lists it is still connected
517 * to. We remove any pages still attached to the inode and wait for any IO that
518 * is still in progress before finally destroying the inode.
519 *
520 * An inode must already be marked I_FREEING so that we avoid the inode being
521 * moved back onto lists if we race with other code that manipulates the lists
522 * (e.g. writeback_single_inode). The caller is responsible for setting this.
523 *
524 * An inode must already be removed from the LRU list before being evicted from
525 * the cache. This should occur atomically with setting the I_FREEING state
526 * flag, so no inodes here should ever be on the LRU when being evicted.
527 */
528 static void evict(struct inode *inode)
529 {
530 const struct super_operations *op = inode->i_sb->s_op;
531
532 BUG_ON(!(inode->i_state & I_FREEING));
533 BUG_ON(!list_empty(&inode->i_lru));
534
535 if (!list_empty(&inode->i_wb_list))
536 inode_wb_list_del(inode);
537
538 inode_sb_list_del(inode);
539
540 /*
541 * Wait for flusher thread to be done with the inode so that filesystem
542 * does not start destroying it while writeback is still running. Since
543 * the inode has I_FREEING set, flusher thread won't start new work on
544 * the inode. We just have to wait for running writeback to finish.
545 */
546 inode_wait_for_writeback(inode);
547
548 if (op->evict_inode) {
549 op->evict_inode(inode);
550 } else {
551 if (inode->i_data.nrpages)
552 truncate_inode_pages(&inode->i_data, 0);
553 clear_inode(inode);
554 }
555 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
556 bd_forget(inode);
557 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
558 cd_forget(inode);
559
560 remove_inode_hash(inode);
561
562 spin_lock(&inode->i_lock);
563 wake_up_bit(&inode->i_state, __I_NEW);
564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
565 spin_unlock(&inode->i_lock);
566
567 destroy_inode(inode);
568 }
569
570 /*
571 * dispose_list - dispose of the contents of a local list
572 * @head: the head of the list to free
573 *
574 * Dispose-list gets a local list with local inodes in it, so it doesn't
575 * need to worry about list corruption and SMP locks.
576 */
577 static void dispose_list(struct list_head *head)
578 {
579 while (!list_empty(head)) {
580 struct inode *inode;
581
582 inode = list_first_entry(head, struct inode, i_lru);
583 list_del_init(&inode->i_lru);
584
585 evict(inode);
586 }
587 }
588
589 /**
590 * evict_inodes - evict all evictable inodes for a superblock
591 * @sb: superblock to operate on
592 *
593 * Make sure that no inodes with zero refcount are retained. This is
594 * called by superblock shutdown after having MS_ACTIVE flag removed,
595 * so any inode reaching zero refcount during or after that call will
596 * be immediately evicted.
597 */
598 void evict_inodes(struct super_block *sb)
599 {
600 struct inode *inode, *next;
601 LIST_HEAD(dispose);
602
603 spin_lock(&inode_sb_list_lock);
604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 if (atomic_read(&inode->i_count))
606 continue;
607
608 spin_lock(&inode->i_lock);
609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 spin_unlock(&inode->i_lock);
611 continue;
612 }
613
614 inode->i_state |= I_FREEING;
615 inode_lru_list_del(inode);
616 spin_unlock(&inode->i_lock);
617 list_add(&inode->i_lru, &dispose);
618 }
619 spin_unlock(&inode_sb_list_lock);
620
621 dispose_list(&dispose);
622 }
623
624 /**
625 * invalidate_inodes - attempt to free all inodes on a superblock
626 * @sb: superblock to operate on
627 * @kill_dirty: flag to guide handling of dirty inodes
628 *
629 * Attempts to free all inodes for a given superblock. If there were any
630 * busy inodes return a non-zero value, else zero.
631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
632 * them as busy.
633 */
634 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
635 {
636 int busy = 0;
637 struct inode *inode, *next;
638 LIST_HEAD(dispose);
639
640 spin_lock(&inode_sb_list_lock);
641 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
642 spin_lock(&inode->i_lock);
643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
644 spin_unlock(&inode->i_lock);
645 continue;
646 }
647 if (inode->i_state & I_DIRTY && !kill_dirty) {
648 spin_unlock(&inode->i_lock);
649 busy = 1;
650 continue;
651 }
652 if (atomic_read(&inode->i_count)) {
653 spin_unlock(&inode->i_lock);
654 busy = 1;
655 continue;
656 }
657
658 inode->i_state |= I_FREEING;
659 inode_lru_list_del(inode);
660 spin_unlock(&inode->i_lock);
661 list_add(&inode->i_lru, &dispose);
662 }
663 spin_unlock(&inode_sb_list_lock);
664
665 dispose_list(&dispose);
666
667 return busy;
668 }
669
670 /*
671 * Isolate the inode from the LRU in preparation for freeing it.
672 *
673 * Any inodes which are pinned purely because of attached pagecache have their
674 * pagecache removed. If the inode has metadata buffers attached to
675 * mapping->private_list then try to remove them.
676 *
677 * If the inode has the I_REFERENCED flag set, then it means that it has been
678 * used recently - the flag is set in iput_final(). When we encounter such an
679 * inode, clear the flag and move it to the back of the LRU so it gets another
680 * pass through the LRU before it gets reclaimed. This is necessary because of
681 * the fact we are doing lazy LRU updates to minimise lock contention so the
682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
683 * with this flag set because they are the inodes that are out of order.
684 */
685 static enum lru_status
686 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
687 {
688 struct list_head *freeable = arg;
689 struct inode *inode = container_of(item, struct inode, i_lru);
690
691 /*
692 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
693 * If we fail to get the lock, just skip it.
694 */
695 if (!spin_trylock(&inode->i_lock))
696 return LRU_SKIP;
697
698 /*
699 * Referenced or dirty inodes are still in use. Give them another pass
700 * through the LRU as we canot reclaim them now.
701 */
702 if (atomic_read(&inode->i_count) ||
703 (inode->i_state & ~I_REFERENCED)) {
704 list_del_init(&inode->i_lru);
705 spin_unlock(&inode->i_lock);
706 this_cpu_dec(nr_unused);
707 return LRU_REMOVED;
708 }
709
710 /* recently referenced inodes get one more pass */
711 if (inode->i_state & I_REFERENCED) {
712 inode->i_state &= ~I_REFERENCED;
713 spin_unlock(&inode->i_lock);
714 return LRU_ROTATE;
715 }
716
717 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
718 __iget(inode);
719 spin_unlock(&inode->i_lock);
720 spin_unlock(lru_lock);
721 if (remove_inode_buffers(inode)) {
722 unsigned long reap;
723 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
724 if (current_is_kswapd())
725 __count_vm_events(KSWAPD_INODESTEAL, reap);
726 else
727 __count_vm_events(PGINODESTEAL, reap);
728 if (current->reclaim_state)
729 current->reclaim_state->reclaimed_slab += reap;
730 }
731 iput(inode);
732 spin_lock(lru_lock);
733 return LRU_RETRY;
734 }
735
736 WARN_ON(inode->i_state & I_NEW);
737 inode->i_state |= I_FREEING;
738 list_move(&inode->i_lru, freeable);
739 spin_unlock(&inode->i_lock);
740
741 this_cpu_dec(nr_unused);
742 return LRU_REMOVED;
743 }
744
745 /*
746 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
747 * This is called from the superblock shrinker function with a number of inodes
748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
749 * then are freed outside inode_lock by dispose_list().
750 */
751 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
752 int nid)
753 {
754 LIST_HEAD(freeable);
755 long freed;
756
757 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
758 &freeable, &nr_to_scan);
759 dispose_list(&freeable);
760 return freed;
761 }
762
763 static void __wait_on_freeing_inode(struct inode *inode);
764 /*
765 * Called with the inode lock held.
766 */
767 static struct inode *find_inode(struct super_block *sb,
768 struct hlist_head *head,
769 int (*test)(struct inode *, void *),
770 void *data)
771 {
772 struct inode *inode = NULL;
773
774 repeat:
775 hlist_for_each_entry(inode, head, i_hash) {
776 spin_lock(&inode->i_lock);
777 if (inode->i_sb != sb) {
778 spin_unlock(&inode->i_lock);
779 continue;
780 }
781 if (!test(inode, data)) {
782 spin_unlock(&inode->i_lock);
783 continue;
784 }
785 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
786 __wait_on_freeing_inode(inode);
787 goto repeat;
788 }
789 __iget(inode);
790 spin_unlock(&inode->i_lock);
791 return inode;
792 }
793 return NULL;
794 }
795
796 /*
797 * find_inode_fast is the fast path version of find_inode, see the comment at
798 * iget_locked for details.
799 */
800 static struct inode *find_inode_fast(struct super_block *sb,
801 struct hlist_head *head, unsigned long ino)
802 {
803 struct inode *inode = NULL;
804
805 repeat:
806 hlist_for_each_entry(inode, head, i_hash) {
807 spin_lock(&inode->i_lock);
808 if (inode->i_ino != ino) {
809 spin_unlock(&inode->i_lock);
810 continue;
811 }
812 if (inode->i_sb != sb) {
813 spin_unlock(&inode->i_lock);
814 continue;
815 }
816 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
817 __wait_on_freeing_inode(inode);
818 goto repeat;
819 }
820 __iget(inode);
821 spin_unlock(&inode->i_lock);
822 return inode;
823 }
824 return NULL;
825 }
826
827 /*
828 * Each cpu owns a range of LAST_INO_BATCH numbers.
829 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
830 * to renew the exhausted range.
831 *
832 * This does not significantly increase overflow rate because every CPU can
833 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
834 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
835 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
836 * overflow rate by 2x, which does not seem too significant.
837 *
838 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
839 * error if st_ino won't fit in target struct field. Use 32bit counter
840 * here to attempt to avoid that.
841 */
842 #define LAST_INO_BATCH 1024
843 static DEFINE_PER_CPU(unsigned int, last_ino);
844
845 unsigned int get_next_ino(void)
846 {
847 unsigned int *p = &get_cpu_var(last_ino);
848 unsigned int res = *p;
849
850 #ifdef CONFIG_SMP
851 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
852 static atomic_t shared_last_ino;
853 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
854
855 res = next - LAST_INO_BATCH;
856 }
857 #endif
858
859 *p = ++res;
860 put_cpu_var(last_ino);
861 return res;
862 }
863 EXPORT_SYMBOL(get_next_ino);
864
865 /**
866 * new_inode_pseudo - obtain an inode
867 * @sb: superblock
868 *
869 * Allocates a new inode for given superblock.
870 * Inode wont be chained in superblock s_inodes list
871 * This means :
872 * - fs can't be unmount
873 * - quotas, fsnotify, writeback can't work
874 */
875 struct inode *new_inode_pseudo(struct super_block *sb)
876 {
877 struct inode *inode = alloc_inode(sb);
878
879 if (inode) {
880 spin_lock(&inode->i_lock);
881 inode->i_state = 0;
882 spin_unlock(&inode->i_lock);
883 INIT_LIST_HEAD(&inode->i_sb_list);
884 }
885 return inode;
886 }
887
888 /**
889 * new_inode - obtain an inode
890 * @sb: superblock
891 *
892 * Allocates a new inode for given superblock. The default gfp_mask
893 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
894 * If HIGHMEM pages are unsuitable or it is known that pages allocated
895 * for the page cache are not reclaimable or migratable,
896 * mapping_set_gfp_mask() must be called with suitable flags on the
897 * newly created inode's mapping
898 *
899 */
900 struct inode *new_inode(struct super_block *sb)
901 {
902 struct inode *inode;
903
904 spin_lock_prefetch(&inode_sb_list_lock);
905
906 inode = new_inode_pseudo(sb);
907 if (inode)
908 inode_sb_list_add(inode);
909 return inode;
910 }
911 EXPORT_SYMBOL(new_inode);
912
913 #ifdef CONFIG_DEBUG_LOCK_ALLOC
914 void lockdep_annotate_inode_mutex_key(struct inode *inode)
915 {
916 if (S_ISDIR(inode->i_mode)) {
917 struct file_system_type *type = inode->i_sb->s_type;
918
919 /* Set new key only if filesystem hasn't already changed it */
920 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
921 /*
922 * ensure nobody is actually holding i_mutex
923 */
924 mutex_destroy(&inode->i_mutex);
925 mutex_init(&inode->i_mutex);
926 lockdep_set_class(&inode->i_mutex,
927 &type->i_mutex_dir_key);
928 }
929 }
930 }
931 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
932 #endif
933
934 /**
935 * unlock_new_inode - clear the I_NEW state and wake up any waiters
936 * @inode: new inode to unlock
937 *
938 * Called when the inode is fully initialised to clear the new state of the
939 * inode and wake up anyone waiting for the inode to finish initialisation.
940 */
941 void unlock_new_inode(struct inode *inode)
942 {
943 lockdep_annotate_inode_mutex_key(inode);
944 spin_lock(&inode->i_lock);
945 WARN_ON(!(inode->i_state & I_NEW));
946 inode->i_state &= ~I_NEW;
947 smp_mb();
948 wake_up_bit(&inode->i_state, __I_NEW);
949 spin_unlock(&inode->i_lock);
950 }
951 EXPORT_SYMBOL(unlock_new_inode);
952
953 /**
954 * iget5_locked - obtain an inode from a mounted file system
955 * @sb: super block of file system
956 * @hashval: hash value (usually inode number) to get
957 * @test: callback used for comparisons between inodes
958 * @set: callback used to initialize a new struct inode
959 * @data: opaque data pointer to pass to @test and @set
960 *
961 * Search for the inode specified by @hashval and @data in the inode cache,
962 * and if present it is return it with an increased reference count. This is
963 * a generalized version of iget_locked() for file systems where the inode
964 * number is not sufficient for unique identification of an inode.
965 *
966 * If the inode is not in cache, allocate a new inode and return it locked,
967 * hashed, and with the I_NEW flag set. The file system gets to fill it in
968 * before unlocking it via unlock_new_inode().
969 *
970 * Note both @test and @set are called with the inode_hash_lock held, so can't
971 * sleep.
972 */
973 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
974 int (*test)(struct inode *, void *),
975 int (*set)(struct inode *, void *), void *data)
976 {
977 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
978 struct inode *inode;
979
980 spin_lock(&inode_hash_lock);
981 inode = find_inode(sb, head, test, data);
982 spin_unlock(&inode_hash_lock);
983
984 if (inode) {
985 wait_on_inode(inode);
986 return inode;
987 }
988
989 inode = alloc_inode(sb);
990 if (inode) {
991 struct inode *old;
992
993 spin_lock(&inode_hash_lock);
994 /* We released the lock, so.. */
995 old = find_inode(sb, head, test, data);
996 if (!old) {
997 if (set(inode, data))
998 goto set_failed;
999
1000 spin_lock(&inode->i_lock);
1001 inode->i_state = I_NEW;
1002 hlist_add_head(&inode->i_hash, head);
1003 spin_unlock(&inode->i_lock);
1004 inode_sb_list_add(inode);
1005 spin_unlock(&inode_hash_lock);
1006
1007 /* Return the locked inode with I_NEW set, the
1008 * caller is responsible for filling in the contents
1009 */
1010 return inode;
1011 }
1012
1013 /*
1014 * Uhhuh, somebody else created the same inode under
1015 * us. Use the old inode instead of the one we just
1016 * allocated.
1017 */
1018 spin_unlock(&inode_hash_lock);
1019 destroy_inode(inode);
1020 inode = old;
1021 wait_on_inode(inode);
1022 }
1023 return inode;
1024
1025 set_failed:
1026 spin_unlock(&inode_hash_lock);
1027 destroy_inode(inode);
1028 return NULL;
1029 }
1030 EXPORT_SYMBOL(iget5_locked);
1031
1032 /**
1033 * iget_locked - obtain an inode from a mounted file system
1034 * @sb: super block of file system
1035 * @ino: inode number to get
1036 *
1037 * Search for the inode specified by @ino in the inode cache and if present
1038 * return it with an increased reference count. This is for file systems
1039 * where the inode number is sufficient for unique identification of an inode.
1040 *
1041 * If the inode is not in cache, allocate a new inode and return it locked,
1042 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1043 * before unlocking it via unlock_new_inode().
1044 */
1045 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1046 {
1047 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1048 struct inode *inode;
1049
1050 spin_lock(&inode_hash_lock);
1051 inode = find_inode_fast(sb, head, ino);
1052 spin_unlock(&inode_hash_lock);
1053 if (inode) {
1054 wait_on_inode(inode);
1055 return inode;
1056 }
1057
1058 inode = alloc_inode(sb);
1059 if (inode) {
1060 struct inode *old;
1061
1062 spin_lock(&inode_hash_lock);
1063 /* We released the lock, so.. */
1064 old = find_inode_fast(sb, head, ino);
1065 if (!old) {
1066 inode->i_ino = ino;
1067 spin_lock(&inode->i_lock);
1068 inode->i_state = I_NEW;
1069 hlist_add_head(&inode->i_hash, head);
1070 spin_unlock(&inode->i_lock);
1071 inode_sb_list_add(inode);
1072 spin_unlock(&inode_hash_lock);
1073
1074 /* Return the locked inode with I_NEW set, the
1075 * caller is responsible for filling in the contents
1076 */
1077 return inode;
1078 }
1079
1080 /*
1081 * Uhhuh, somebody else created the same inode under
1082 * us. Use the old inode instead of the one we just
1083 * allocated.
1084 */
1085 spin_unlock(&inode_hash_lock);
1086 destroy_inode(inode);
1087 inode = old;
1088 wait_on_inode(inode);
1089 }
1090 return inode;
1091 }
1092 EXPORT_SYMBOL(iget_locked);
1093
1094 /*
1095 * search the inode cache for a matching inode number.
1096 * If we find one, then the inode number we are trying to
1097 * allocate is not unique and so we should not use it.
1098 *
1099 * Returns 1 if the inode number is unique, 0 if it is not.
1100 */
1101 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1102 {
1103 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1104 struct inode *inode;
1105
1106 spin_lock(&inode_hash_lock);
1107 hlist_for_each_entry(inode, b, i_hash) {
1108 if (inode->i_ino == ino && inode->i_sb == sb) {
1109 spin_unlock(&inode_hash_lock);
1110 return 0;
1111 }
1112 }
1113 spin_unlock(&inode_hash_lock);
1114
1115 return 1;
1116 }
1117
1118 /**
1119 * iunique - get a unique inode number
1120 * @sb: superblock
1121 * @max_reserved: highest reserved inode number
1122 *
1123 * Obtain an inode number that is unique on the system for a given
1124 * superblock. This is used by file systems that have no natural
1125 * permanent inode numbering system. An inode number is returned that
1126 * is higher than the reserved limit but unique.
1127 *
1128 * BUGS:
1129 * With a large number of inodes live on the file system this function
1130 * currently becomes quite slow.
1131 */
1132 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1133 {
1134 /*
1135 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1136 * error if st_ino won't fit in target struct field. Use 32bit counter
1137 * here to attempt to avoid that.
1138 */
1139 static DEFINE_SPINLOCK(iunique_lock);
1140 static unsigned int counter;
1141 ino_t res;
1142
1143 spin_lock(&iunique_lock);
1144 do {
1145 if (counter <= max_reserved)
1146 counter = max_reserved + 1;
1147 res = counter++;
1148 } while (!test_inode_iunique(sb, res));
1149 spin_unlock(&iunique_lock);
1150
1151 return res;
1152 }
1153 EXPORT_SYMBOL(iunique);
1154
1155 struct inode *igrab(struct inode *inode)
1156 {
1157 spin_lock(&inode->i_lock);
1158 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1159 __iget(inode);
1160 spin_unlock(&inode->i_lock);
1161 } else {
1162 spin_unlock(&inode->i_lock);
1163 /*
1164 * Handle the case where s_op->clear_inode is not been
1165 * called yet, and somebody is calling igrab
1166 * while the inode is getting freed.
1167 */
1168 inode = NULL;
1169 }
1170 return inode;
1171 }
1172 EXPORT_SYMBOL(igrab);
1173
1174 /**
1175 * ilookup5_nowait - search for an inode in the inode cache
1176 * @sb: super block of file system to search
1177 * @hashval: hash value (usually inode number) to search for
1178 * @test: callback used for comparisons between inodes
1179 * @data: opaque data pointer to pass to @test
1180 *
1181 * Search for the inode specified by @hashval and @data in the inode cache.
1182 * If the inode is in the cache, the inode is returned with an incremented
1183 * reference count.
1184 *
1185 * Note: I_NEW is not waited upon so you have to be very careful what you do
1186 * with the returned inode. You probably should be using ilookup5() instead.
1187 *
1188 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1189 */
1190 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1191 int (*test)(struct inode *, void *), void *data)
1192 {
1193 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1194 struct inode *inode;
1195
1196 spin_lock(&inode_hash_lock);
1197 inode = find_inode(sb, head, test, data);
1198 spin_unlock(&inode_hash_lock);
1199
1200 return inode;
1201 }
1202 EXPORT_SYMBOL(ilookup5_nowait);
1203
1204 /**
1205 * ilookup5 - search for an inode in the inode cache
1206 * @sb: super block of file system to search
1207 * @hashval: hash value (usually inode number) to search for
1208 * @test: callback used for comparisons between inodes
1209 * @data: opaque data pointer to pass to @test
1210 *
1211 * Search for the inode specified by @hashval and @data in the inode cache,
1212 * and if the inode is in the cache, return the inode with an incremented
1213 * reference count. Waits on I_NEW before returning the inode.
1214 * returned with an incremented reference count.
1215 *
1216 * This is a generalized version of ilookup() for file systems where the
1217 * inode number is not sufficient for unique identification of an inode.
1218 *
1219 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1220 */
1221 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1222 int (*test)(struct inode *, void *), void *data)
1223 {
1224 struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1225
1226 if (inode)
1227 wait_on_inode(inode);
1228 return inode;
1229 }
1230 EXPORT_SYMBOL(ilookup5);
1231
1232 /**
1233 * ilookup - search for an inode in the inode cache
1234 * @sb: super block of file system to search
1235 * @ino: inode number to search for
1236 *
1237 * Search for the inode @ino in the inode cache, and if the inode is in the
1238 * cache, the inode is returned with an incremented reference count.
1239 */
1240 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1241 {
1242 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1243 struct inode *inode;
1244
1245 spin_lock(&inode_hash_lock);
1246 inode = find_inode_fast(sb, head, ino);
1247 spin_unlock(&inode_hash_lock);
1248
1249 if (inode)
1250 wait_on_inode(inode);
1251 return inode;
1252 }
1253 EXPORT_SYMBOL(ilookup);
1254
1255 int insert_inode_locked(struct inode *inode)
1256 {
1257 struct super_block *sb = inode->i_sb;
1258 ino_t ino = inode->i_ino;
1259 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1260
1261 while (1) {
1262 struct inode *old = NULL;
1263 spin_lock(&inode_hash_lock);
1264 hlist_for_each_entry(old, head, i_hash) {
1265 if (old->i_ino != ino)
1266 continue;
1267 if (old->i_sb != sb)
1268 continue;
1269 spin_lock(&old->i_lock);
1270 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1271 spin_unlock(&old->i_lock);
1272 continue;
1273 }
1274 break;
1275 }
1276 if (likely(!old)) {
1277 spin_lock(&inode->i_lock);
1278 inode->i_state |= I_NEW;
1279 hlist_add_head(&inode->i_hash, head);
1280 spin_unlock(&inode->i_lock);
1281 spin_unlock(&inode_hash_lock);
1282 return 0;
1283 }
1284 __iget(old);
1285 spin_unlock(&old->i_lock);
1286 spin_unlock(&inode_hash_lock);
1287 wait_on_inode(old);
1288 if (unlikely(!inode_unhashed(old))) {
1289 iput(old);
1290 return -EBUSY;
1291 }
1292 iput(old);
1293 }
1294 }
1295 EXPORT_SYMBOL(insert_inode_locked);
1296
1297 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1298 int (*test)(struct inode *, void *), void *data)
1299 {
1300 struct super_block *sb = inode->i_sb;
1301 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1302
1303 while (1) {
1304 struct inode *old = NULL;
1305
1306 spin_lock(&inode_hash_lock);
1307 hlist_for_each_entry(old, head, i_hash) {
1308 if (old->i_sb != sb)
1309 continue;
1310 if (!test(old, data))
1311 continue;
1312 spin_lock(&old->i_lock);
1313 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1314 spin_unlock(&old->i_lock);
1315 continue;
1316 }
1317 break;
1318 }
1319 if (likely(!old)) {
1320 spin_lock(&inode->i_lock);
1321 inode->i_state |= I_NEW;
1322 hlist_add_head(&inode->i_hash, head);
1323 spin_unlock(&inode->i_lock);
1324 spin_unlock(&inode_hash_lock);
1325 return 0;
1326 }
1327 __iget(old);
1328 spin_unlock(&old->i_lock);
1329 spin_unlock(&inode_hash_lock);
1330 wait_on_inode(old);
1331 if (unlikely(!inode_unhashed(old))) {
1332 iput(old);
1333 return -EBUSY;
1334 }
1335 iput(old);
1336 }
1337 }
1338 EXPORT_SYMBOL(insert_inode_locked4);
1339
1340
1341 int generic_delete_inode(struct inode *inode)
1342 {
1343 return 1;
1344 }
1345 EXPORT_SYMBOL(generic_delete_inode);
1346
1347 /*
1348 * Called when we're dropping the last reference
1349 * to an inode.
1350 *
1351 * Call the FS "drop_inode()" function, defaulting to
1352 * the legacy UNIX filesystem behaviour. If it tells
1353 * us to evict inode, do so. Otherwise, retain inode
1354 * in cache if fs is alive, sync and evict if fs is
1355 * shutting down.
1356 */
1357 static void iput_final(struct inode *inode)
1358 {
1359 struct super_block *sb = inode->i_sb;
1360 const struct super_operations *op = inode->i_sb->s_op;
1361 int drop;
1362
1363 WARN_ON(inode->i_state & I_NEW);
1364
1365 if (op->drop_inode)
1366 drop = op->drop_inode(inode);
1367 else
1368 drop = generic_drop_inode(inode);
1369
1370 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1371 inode->i_state |= I_REFERENCED;
1372 inode_add_lru(inode);
1373 spin_unlock(&inode->i_lock);
1374 return;
1375 }
1376
1377 if (!drop) {
1378 inode->i_state |= I_WILL_FREE;
1379 spin_unlock(&inode->i_lock);
1380 write_inode_now(inode, 1);
1381 spin_lock(&inode->i_lock);
1382 WARN_ON(inode->i_state & I_NEW);
1383 inode->i_state &= ~I_WILL_FREE;
1384 }
1385
1386 inode->i_state |= I_FREEING;
1387 if (!list_empty(&inode->i_lru))
1388 inode_lru_list_del(inode);
1389 spin_unlock(&inode->i_lock);
1390
1391 evict(inode);
1392 }
1393
1394 /**
1395 * iput - put an inode
1396 * @inode: inode to put
1397 *
1398 * Puts an inode, dropping its usage count. If the inode use count hits
1399 * zero, the inode is then freed and may also be destroyed.
1400 *
1401 * Consequently, iput() can sleep.
1402 */
1403 void iput(struct inode *inode)
1404 {
1405 if (inode) {
1406 BUG_ON(inode->i_state & I_CLEAR);
1407
1408 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1409 iput_final(inode);
1410 }
1411 }
1412 EXPORT_SYMBOL(iput);
1413
1414 /**
1415 * bmap - find a block number in a file
1416 * @inode: inode of file
1417 * @block: block to find
1418 *
1419 * Returns the block number on the device holding the inode that
1420 * is the disk block number for the block of the file requested.
1421 * That is, asked for block 4 of inode 1 the function will return the
1422 * disk block relative to the disk start that holds that block of the
1423 * file.
1424 */
1425 sector_t bmap(struct inode *inode, sector_t block)
1426 {
1427 sector_t res = 0;
1428 if (inode->i_mapping->a_ops->bmap)
1429 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1430 return res;
1431 }
1432 EXPORT_SYMBOL(bmap);
1433
1434 /*
1435 * With relative atime, only update atime if the previous atime is
1436 * earlier than either the ctime or mtime or if at least a day has
1437 * passed since the last atime update.
1438 */
1439 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1440 struct timespec now)
1441 {
1442
1443 if (!(mnt->mnt_flags & MNT_RELATIME))
1444 return 1;
1445 /*
1446 * Is mtime younger than atime? If yes, update atime:
1447 */
1448 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1449 return 1;
1450 /*
1451 * Is ctime younger than atime? If yes, update atime:
1452 */
1453 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1454 return 1;
1455
1456 /*
1457 * Is the previous atime value older than a day? If yes,
1458 * update atime:
1459 */
1460 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1461 return 1;
1462 /*
1463 * Good, we can skip the atime update:
1464 */
1465 return 0;
1466 }
1467
1468 /*
1469 * This does the actual work of updating an inodes time or version. Must have
1470 * had called mnt_want_write() before calling this.
1471 */
1472 static int update_time(struct inode *inode, struct timespec *time, int flags)
1473 {
1474 if (inode->i_op->update_time)
1475 return inode->i_op->update_time(inode, time, flags);
1476
1477 if (flags & S_ATIME)
1478 inode->i_atime = *time;
1479 if (flags & S_VERSION)
1480 inode_inc_iversion(inode);
1481 if (flags & S_CTIME)
1482 inode->i_ctime = *time;
1483 if (flags & S_MTIME)
1484 inode->i_mtime = *time;
1485 mark_inode_dirty_sync(inode);
1486 return 0;
1487 }
1488
1489 /**
1490 * touch_atime - update the access time
1491 * @path: the &struct path to update
1492 *
1493 * Update the accessed time on an inode and mark it for writeback.
1494 * This function automatically handles read only file systems and media,
1495 * as well as the "noatime" flag and inode specific "noatime" markers.
1496 */
1497 void touch_atime(const struct path *path)
1498 {
1499 struct vfsmount *mnt = path->mnt;
1500 struct inode *inode = path->dentry->d_inode;
1501 struct timespec now;
1502
1503 if (inode->i_flags & S_NOATIME)
1504 return;
1505 if (IS_NOATIME(inode))
1506 return;
1507 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1508 return;
1509
1510 if (mnt->mnt_flags & MNT_NOATIME)
1511 return;
1512 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1513 return;
1514
1515 now = current_fs_time(inode->i_sb);
1516
1517 if (!relatime_need_update(mnt, inode, now))
1518 return;
1519
1520 if (timespec_equal(&inode->i_atime, &now))
1521 return;
1522
1523 if (!sb_start_write_trylock(inode->i_sb))
1524 return;
1525
1526 if (__mnt_want_write(mnt))
1527 goto skip_update;
1528 /*
1529 * File systems can error out when updating inodes if they need to
1530 * allocate new space to modify an inode (such is the case for
1531 * Btrfs), but since we touch atime while walking down the path we
1532 * really don't care if we failed to update the atime of the file,
1533 * so just ignore the return value.
1534 * We may also fail on filesystems that have the ability to make parts
1535 * of the fs read only, e.g. subvolumes in Btrfs.
1536 */
1537 update_time(inode, &now, S_ATIME);
1538 __mnt_drop_write(mnt);
1539 skip_update:
1540 sb_end_write(inode->i_sb);
1541 }
1542 EXPORT_SYMBOL(touch_atime);
1543
1544 /*
1545 * The logic we want is
1546 *
1547 * if suid or (sgid and xgrp)
1548 * remove privs
1549 */
1550 int should_remove_suid(struct dentry *dentry)
1551 {
1552 umode_t mode = dentry->d_inode->i_mode;
1553 int kill = 0;
1554
1555 /* suid always must be killed */
1556 if (unlikely(mode & S_ISUID))
1557 kill = ATTR_KILL_SUID;
1558
1559 /*
1560 * sgid without any exec bits is just a mandatory locking mark; leave
1561 * it alone. If some exec bits are set, it's a real sgid; kill it.
1562 */
1563 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1564 kill |= ATTR_KILL_SGID;
1565
1566 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1567 return kill;
1568
1569 return 0;
1570 }
1571 EXPORT_SYMBOL(should_remove_suid);
1572
1573 static int __remove_suid(struct dentry *dentry, int kill)
1574 {
1575 struct iattr newattrs;
1576
1577 newattrs.ia_valid = ATTR_FORCE | kill;
1578 return notify_change(dentry, &newattrs);
1579 }
1580
1581 int file_remove_suid(struct file *file)
1582 {
1583 struct dentry *dentry = file->f_path.dentry;
1584 struct inode *inode = dentry->d_inode;
1585 int killsuid;
1586 int killpriv;
1587 int error = 0;
1588
1589 /* Fast path for nothing security related */
1590 if (IS_NOSEC(inode))
1591 return 0;
1592
1593 killsuid = should_remove_suid(dentry);
1594 killpriv = security_inode_need_killpriv(dentry);
1595
1596 if (killpriv < 0)
1597 return killpriv;
1598 if (killpriv)
1599 error = security_inode_killpriv(dentry);
1600 if (!error && killsuid)
1601 error = __remove_suid(dentry, killsuid);
1602 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1603 inode->i_flags |= S_NOSEC;
1604
1605 return error;
1606 }
1607 EXPORT_SYMBOL(file_remove_suid);
1608
1609 /**
1610 * file_update_time - update mtime and ctime time
1611 * @file: file accessed
1612 *
1613 * Update the mtime and ctime members of an inode and mark the inode
1614 * for writeback. Note that this function is meant exclusively for
1615 * usage in the file write path of filesystems, and filesystems may
1616 * choose to explicitly ignore update via this function with the
1617 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1618 * timestamps are handled by the server. This can return an error for
1619 * file systems who need to allocate space in order to update an inode.
1620 */
1621
1622 int file_update_time(struct file *file)
1623 {
1624 struct inode *inode = file_inode(file);
1625 struct timespec now;
1626 int sync_it = 0;
1627 int ret;
1628
1629 /* First try to exhaust all avenues to not sync */
1630 if (IS_NOCMTIME(inode))
1631 return 0;
1632
1633 now = current_fs_time(inode->i_sb);
1634 if (!timespec_equal(&inode->i_mtime, &now))
1635 sync_it = S_MTIME;
1636
1637 if (!timespec_equal(&inode->i_ctime, &now))
1638 sync_it |= S_CTIME;
1639
1640 if (IS_I_VERSION(inode))
1641 sync_it |= S_VERSION;
1642
1643 if (!sync_it)
1644 return 0;
1645
1646 /* Finally allowed to write? Takes lock. */
1647 if (__mnt_want_write_file(file))
1648 return 0;
1649
1650 ret = update_time(inode, &now, sync_it);
1651 __mnt_drop_write_file(file);
1652
1653 return ret;
1654 }
1655 EXPORT_SYMBOL(file_update_time);
1656
1657 int inode_needs_sync(struct inode *inode)
1658 {
1659 if (IS_SYNC(inode))
1660 return 1;
1661 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1662 return 1;
1663 return 0;
1664 }
1665 EXPORT_SYMBOL(inode_needs_sync);
1666
1667 int inode_wait(void *word)
1668 {
1669 schedule();
1670 return 0;
1671 }
1672 EXPORT_SYMBOL(inode_wait);
1673
1674 /*
1675 * If we try to find an inode in the inode hash while it is being
1676 * deleted, we have to wait until the filesystem completes its
1677 * deletion before reporting that it isn't found. This function waits
1678 * until the deletion _might_ have completed. Callers are responsible
1679 * to recheck inode state.
1680 *
1681 * It doesn't matter if I_NEW is not set initially, a call to
1682 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1683 * will DTRT.
1684 */
1685 static void __wait_on_freeing_inode(struct inode *inode)
1686 {
1687 wait_queue_head_t *wq;
1688 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1689 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1690 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1691 spin_unlock(&inode->i_lock);
1692 spin_unlock(&inode_hash_lock);
1693 schedule();
1694 finish_wait(wq, &wait.wait);
1695 spin_lock(&inode_hash_lock);
1696 }
1697
1698 static __initdata unsigned long ihash_entries;
1699 static int __init set_ihash_entries(char *str)
1700 {
1701 if (!str)
1702 return 0;
1703 ihash_entries = simple_strtoul(str, &str, 0);
1704 return 1;
1705 }
1706 __setup("ihash_entries=", set_ihash_entries);
1707
1708 /*
1709 * Initialize the waitqueues and inode hash table.
1710 */
1711 void __init inode_init_early(void)
1712 {
1713 unsigned int loop;
1714
1715 /* If hashes are distributed across NUMA nodes, defer
1716 * hash allocation until vmalloc space is available.
1717 */
1718 if (hashdist)
1719 return;
1720
1721 inode_hashtable =
1722 alloc_large_system_hash("Inode-cache",
1723 sizeof(struct hlist_head),
1724 ihash_entries,
1725 14,
1726 HASH_EARLY,
1727 &i_hash_shift,
1728 &i_hash_mask,
1729 0,
1730 0);
1731
1732 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1733 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1734 }
1735
1736 void __init inode_init(void)
1737 {
1738 unsigned int loop;
1739
1740 /* inode slab cache */
1741 inode_cachep = kmem_cache_create("inode_cache",
1742 sizeof(struct inode),
1743 0,
1744 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1745 SLAB_MEM_SPREAD),
1746 init_once);
1747
1748 /* Hash may have been set up in inode_init_early */
1749 if (!hashdist)
1750 return;
1751
1752 inode_hashtable =
1753 alloc_large_system_hash("Inode-cache",
1754 sizeof(struct hlist_head),
1755 ihash_entries,
1756 14,
1757 0,
1758 &i_hash_shift,
1759 &i_hash_mask,
1760 0,
1761 0);
1762
1763 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1764 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1765 }
1766
1767 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1768 {
1769 inode->i_mode = mode;
1770 if (S_ISCHR(mode)) {
1771 inode->i_fop = &def_chr_fops;
1772 inode->i_rdev = rdev;
1773 } else if (S_ISBLK(mode)) {
1774 inode->i_fop = &def_blk_fops;
1775 inode->i_rdev = rdev;
1776 } else if (S_ISFIFO(mode))
1777 inode->i_fop = &pipefifo_fops;
1778 else if (S_ISSOCK(mode))
1779 inode->i_fop = &bad_sock_fops;
1780 else
1781 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1782 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1783 inode->i_ino);
1784 }
1785 EXPORT_SYMBOL(init_special_inode);
1786
1787 /**
1788 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1789 * @inode: New inode
1790 * @dir: Directory inode
1791 * @mode: mode of the new inode
1792 */
1793 void inode_init_owner(struct inode *inode, const struct inode *dir,
1794 umode_t mode)
1795 {
1796 inode->i_uid = current_fsuid();
1797 if (dir && dir->i_mode & S_ISGID) {
1798 inode->i_gid = dir->i_gid;
1799 if (S_ISDIR(mode))
1800 mode |= S_ISGID;
1801 } else
1802 inode->i_gid = current_fsgid();
1803 inode->i_mode = mode;
1804 }
1805 EXPORT_SYMBOL(inode_init_owner);
1806
1807 /**
1808 * inode_owner_or_capable - check current task permissions to inode
1809 * @inode: inode being checked
1810 *
1811 * Return true if current either has CAP_FOWNER to the inode, or
1812 * owns the file.
1813 */
1814 bool inode_owner_or_capable(const struct inode *inode)
1815 {
1816 if (uid_eq(current_fsuid(), inode->i_uid))
1817 return true;
1818 if (inode_capable(inode, CAP_FOWNER))
1819 return true;
1820 return false;
1821 }
1822 EXPORT_SYMBOL(inode_owner_or_capable);
1823
1824 /*
1825 * Direct i/o helper functions
1826 */
1827 static void __inode_dio_wait(struct inode *inode)
1828 {
1829 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1830 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1831
1832 do {
1833 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1834 if (atomic_read(&inode->i_dio_count))
1835 schedule();
1836 } while (atomic_read(&inode->i_dio_count));
1837 finish_wait(wq, &q.wait);
1838 }
1839
1840 /**
1841 * inode_dio_wait - wait for outstanding DIO requests to finish
1842 * @inode: inode to wait for
1843 *
1844 * Waits for all pending direct I/O requests to finish so that we can
1845 * proceed with a truncate or equivalent operation.
1846 *
1847 * Must be called under a lock that serializes taking new references
1848 * to i_dio_count, usually by inode->i_mutex.
1849 */
1850 void inode_dio_wait(struct inode *inode)
1851 {
1852 if (atomic_read(&inode->i_dio_count))
1853 __inode_dio_wait(inode);
1854 }
1855 EXPORT_SYMBOL(inode_dio_wait);
1856
1857 /*
1858 * inode_dio_done - signal finish of a direct I/O requests
1859 * @inode: inode the direct I/O happens on
1860 *
1861 * This is called once we've finished processing a direct I/O request,
1862 * and is used to wake up callers waiting for direct I/O to be quiesced.
1863 */
1864 void inode_dio_done(struct inode *inode)
1865 {
1866 if (atomic_dec_and_test(&inode->i_dio_count))
1867 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1868 }
1869 EXPORT_SYMBOL(inode_dio_done);