]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
KVM: VMX: Set EDX at INIT with CPUID.0x1, Family-Model-Stepping
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
84
85 #include <uapi/linux/io_uring.h>
86
87 #include "internal.h"
88 #include "io-wq.h"
89
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
92 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
93
94 /*
95 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 */
97 #define IORING_FILE_TABLE_SHIFT 9
98 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
99 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
100 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
101 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
102 IORING_REGISTER_LAST + IORING_OP_LAST)
103
104 #define IO_RSRC_TAG_TABLE_SHIFT 9
105 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
106 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
107
108 #define IORING_MAX_REG_BUFFERS (1U << 14)
109
110 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
111 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
112 IOSQE_BUFFER_SELECT)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
115
116 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
117
118 struct io_uring {
119 u32 head ____cacheline_aligned_in_smp;
120 u32 tail ____cacheline_aligned_in_smp;
121 };
122
123 /*
124 * This data is shared with the application through the mmap at offsets
125 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
126 *
127 * The offsets to the member fields are published through struct
128 * io_sqring_offsets when calling io_uring_setup.
129 */
130 struct io_rings {
131 /*
132 * Head and tail offsets into the ring; the offsets need to be
133 * masked to get valid indices.
134 *
135 * The kernel controls head of the sq ring and the tail of the cq ring,
136 * and the application controls tail of the sq ring and the head of the
137 * cq ring.
138 */
139 struct io_uring sq, cq;
140 /*
141 * Bitmasks to apply to head and tail offsets (constant, equals
142 * ring_entries - 1)
143 */
144 u32 sq_ring_mask, cq_ring_mask;
145 /* Ring sizes (constant, power of 2) */
146 u32 sq_ring_entries, cq_ring_entries;
147 /*
148 * Number of invalid entries dropped by the kernel due to
149 * invalid index stored in array
150 *
151 * Written by the kernel, shouldn't be modified by the
152 * application (i.e. get number of "new events" by comparing to
153 * cached value).
154 *
155 * After a new SQ head value was read by the application this
156 * counter includes all submissions that were dropped reaching
157 * the new SQ head (and possibly more).
158 */
159 u32 sq_dropped;
160 /*
161 * Runtime SQ flags
162 *
163 * Written by the kernel, shouldn't be modified by the
164 * application.
165 *
166 * The application needs a full memory barrier before checking
167 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
168 */
169 u32 sq_flags;
170 /*
171 * Runtime CQ flags
172 *
173 * Written by the application, shouldn't be modified by the
174 * kernel.
175 */
176 u32 cq_flags;
177 /*
178 * Number of completion events lost because the queue was full;
179 * this should be avoided by the application by making sure
180 * there are not more requests pending than there is space in
181 * the completion queue.
182 *
183 * Written by the kernel, shouldn't be modified by the
184 * application (i.e. get number of "new events" by comparing to
185 * cached value).
186 *
187 * As completion events come in out of order this counter is not
188 * ordered with any other data.
189 */
190 u32 cq_overflow;
191 /*
192 * Ring buffer of completion events.
193 *
194 * The kernel writes completion events fresh every time they are
195 * produced, so the application is allowed to modify pending
196 * entries.
197 */
198 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
199 };
200
201 enum io_uring_cmd_flags {
202 IO_URING_F_NONBLOCK = 1,
203 IO_URING_F_COMPLETE_DEFER = 2,
204 };
205
206 struct io_mapped_ubuf {
207 u64 ubuf;
208 u64 ubuf_end;
209 unsigned int nr_bvecs;
210 unsigned long acct_pages;
211 struct bio_vec bvec[];
212 };
213
214 struct io_ring_ctx;
215
216 struct io_overflow_cqe {
217 struct io_uring_cqe cqe;
218 struct list_head list;
219 };
220
221 struct io_fixed_file {
222 /* file * with additional FFS_* flags */
223 unsigned long file_ptr;
224 };
225
226 struct io_rsrc_put {
227 struct list_head list;
228 u64 tag;
229 union {
230 void *rsrc;
231 struct file *file;
232 struct io_mapped_ubuf *buf;
233 };
234 };
235
236 struct io_file_table {
237 /* two level table */
238 struct io_fixed_file **files;
239 };
240
241 struct io_rsrc_node {
242 struct percpu_ref refs;
243 struct list_head node;
244 struct list_head rsrc_list;
245 struct io_rsrc_data *rsrc_data;
246 struct llist_node llist;
247 bool done;
248 };
249
250 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
251
252 struct io_rsrc_data {
253 struct io_ring_ctx *ctx;
254
255 u64 **tags;
256 unsigned int nr;
257 rsrc_put_fn *do_put;
258 atomic_t refs;
259 struct completion done;
260 bool quiesce;
261 };
262
263 struct io_buffer {
264 struct list_head list;
265 __u64 addr;
266 __u32 len;
267 __u16 bid;
268 };
269
270 struct io_restriction {
271 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
272 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
273 u8 sqe_flags_allowed;
274 u8 sqe_flags_required;
275 bool registered;
276 };
277
278 enum {
279 IO_SQ_THREAD_SHOULD_STOP = 0,
280 IO_SQ_THREAD_SHOULD_PARK,
281 };
282
283 struct io_sq_data {
284 refcount_t refs;
285 atomic_t park_pending;
286 struct mutex lock;
287
288 /* ctx's that are using this sqd */
289 struct list_head ctx_list;
290
291 struct task_struct *thread;
292 struct wait_queue_head wait;
293
294 unsigned sq_thread_idle;
295 int sq_cpu;
296 pid_t task_pid;
297 pid_t task_tgid;
298
299 unsigned long state;
300 struct completion exited;
301 };
302
303 #define IO_IOPOLL_BATCH 8
304 #define IO_COMPL_BATCH 32
305 #define IO_REQ_CACHE_SIZE 32
306 #define IO_REQ_ALLOC_BATCH 8
307
308 struct io_comp_state {
309 struct io_kiocb *reqs[IO_COMPL_BATCH];
310 unsigned int nr;
311 /* inline/task_work completion list, under ->uring_lock */
312 struct list_head free_list;
313 };
314
315 struct io_submit_link {
316 struct io_kiocb *head;
317 struct io_kiocb *last;
318 };
319
320 struct io_submit_state {
321 struct blk_plug plug;
322 struct io_submit_link link;
323
324 /*
325 * io_kiocb alloc cache
326 */
327 void *reqs[IO_REQ_CACHE_SIZE];
328 unsigned int free_reqs;
329
330 bool plug_started;
331
332 /*
333 * Batch completion logic
334 */
335 struct io_comp_state comp;
336
337 /*
338 * File reference cache
339 */
340 struct file *file;
341 unsigned int fd;
342 unsigned int file_refs;
343 unsigned int ios_left;
344 };
345
346 struct io_ring_ctx {
347 /* const or read-mostly hot data */
348 struct {
349 struct percpu_ref refs;
350
351 struct io_rings *rings;
352 unsigned int flags;
353 unsigned int compat: 1;
354 unsigned int drain_next: 1;
355 unsigned int eventfd_async: 1;
356 unsigned int restricted: 1;
357 unsigned int off_timeout_used: 1;
358 unsigned int drain_active: 1;
359 } ____cacheline_aligned_in_smp;
360
361 /* submission data */
362 struct {
363 struct mutex uring_lock;
364
365 /*
366 * Ring buffer of indices into array of io_uring_sqe, which is
367 * mmapped by the application using the IORING_OFF_SQES offset.
368 *
369 * This indirection could e.g. be used to assign fixed
370 * io_uring_sqe entries to operations and only submit them to
371 * the queue when needed.
372 *
373 * The kernel modifies neither the indices array nor the entries
374 * array.
375 */
376 u32 *sq_array;
377 struct io_uring_sqe *sq_sqes;
378 unsigned cached_sq_head;
379 unsigned sq_entries;
380 struct list_head defer_list;
381
382 /*
383 * Fixed resources fast path, should be accessed only under
384 * uring_lock, and updated through io_uring_register(2)
385 */
386 struct io_rsrc_node *rsrc_node;
387 struct io_file_table file_table;
388 unsigned nr_user_files;
389 unsigned nr_user_bufs;
390 struct io_mapped_ubuf **user_bufs;
391
392 struct io_submit_state submit_state;
393 struct list_head timeout_list;
394 struct list_head cq_overflow_list;
395 struct xarray io_buffers;
396 struct xarray personalities;
397 u32 pers_next;
398 unsigned sq_thread_idle;
399 } ____cacheline_aligned_in_smp;
400
401 /* IRQ completion list, under ->completion_lock */
402 struct list_head locked_free_list;
403 unsigned int locked_free_nr;
404
405 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
406 struct io_sq_data *sq_data; /* if using sq thread polling */
407
408 struct wait_queue_head sqo_sq_wait;
409 struct list_head sqd_list;
410
411 unsigned long check_cq_overflow;
412
413 struct {
414 unsigned cached_cq_tail;
415 unsigned cq_entries;
416 struct eventfd_ctx *cq_ev_fd;
417 struct wait_queue_head poll_wait;
418 struct wait_queue_head cq_wait;
419 unsigned cq_extra;
420 atomic_t cq_timeouts;
421 struct fasync_struct *cq_fasync;
422 unsigned cq_last_tm_flush;
423 } ____cacheline_aligned_in_smp;
424
425 struct {
426 spinlock_t completion_lock;
427
428 /*
429 * ->iopoll_list is protected by the ctx->uring_lock for
430 * io_uring instances that don't use IORING_SETUP_SQPOLL.
431 * For SQPOLL, only the single threaded io_sq_thread() will
432 * manipulate the list, hence no extra locking is needed there.
433 */
434 struct list_head iopoll_list;
435 struct hlist_head *cancel_hash;
436 unsigned cancel_hash_bits;
437 bool poll_multi_queue;
438 } ____cacheline_aligned_in_smp;
439
440 struct io_restriction restrictions;
441
442 /* slow path rsrc auxilary data, used by update/register */
443 struct {
444 struct io_rsrc_node *rsrc_backup_node;
445 struct io_mapped_ubuf *dummy_ubuf;
446 struct io_rsrc_data *file_data;
447 struct io_rsrc_data *buf_data;
448
449 struct delayed_work rsrc_put_work;
450 struct llist_head rsrc_put_llist;
451 struct list_head rsrc_ref_list;
452 spinlock_t rsrc_ref_lock;
453 };
454
455 /* Keep this last, we don't need it for the fast path */
456 struct {
457 #if defined(CONFIG_UNIX)
458 struct socket *ring_sock;
459 #endif
460 /* hashed buffered write serialization */
461 struct io_wq_hash *hash_map;
462
463 /* Only used for accounting purposes */
464 struct user_struct *user;
465 struct mm_struct *mm_account;
466
467 /* ctx exit and cancelation */
468 struct llist_head fallback_llist;
469 struct delayed_work fallback_work;
470 struct work_struct exit_work;
471 struct list_head tctx_list;
472 struct completion ref_comp;
473 };
474 };
475
476 struct io_uring_task {
477 /* submission side */
478 int cached_refs;
479 struct xarray xa;
480 struct wait_queue_head wait;
481 const struct io_ring_ctx *last;
482 struct io_wq *io_wq;
483 struct percpu_counter inflight;
484 atomic_t inflight_tracked;
485 atomic_t in_idle;
486
487 spinlock_t task_lock;
488 struct io_wq_work_list task_list;
489 unsigned long task_state;
490 struct callback_head task_work;
491 };
492
493 /*
494 * First field must be the file pointer in all the
495 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
496 */
497 struct io_poll_iocb {
498 struct file *file;
499 struct wait_queue_head *head;
500 __poll_t events;
501 bool done;
502 bool canceled;
503 struct wait_queue_entry wait;
504 };
505
506 struct io_poll_update {
507 struct file *file;
508 u64 old_user_data;
509 u64 new_user_data;
510 __poll_t events;
511 bool update_events;
512 bool update_user_data;
513 };
514
515 struct io_close {
516 struct file *file;
517 int fd;
518 };
519
520 struct io_timeout_data {
521 struct io_kiocb *req;
522 struct hrtimer timer;
523 struct timespec64 ts;
524 enum hrtimer_mode mode;
525 };
526
527 struct io_accept {
528 struct file *file;
529 struct sockaddr __user *addr;
530 int __user *addr_len;
531 int flags;
532 unsigned long nofile;
533 };
534
535 struct io_sync {
536 struct file *file;
537 loff_t len;
538 loff_t off;
539 int flags;
540 int mode;
541 };
542
543 struct io_cancel {
544 struct file *file;
545 u64 addr;
546 };
547
548 struct io_timeout {
549 struct file *file;
550 u32 off;
551 u32 target_seq;
552 struct list_head list;
553 /* head of the link, used by linked timeouts only */
554 struct io_kiocb *head;
555 };
556
557 struct io_timeout_rem {
558 struct file *file;
559 u64 addr;
560
561 /* timeout update */
562 struct timespec64 ts;
563 u32 flags;
564 };
565
566 struct io_rw {
567 /* NOTE: kiocb has the file as the first member, so don't do it here */
568 struct kiocb kiocb;
569 u64 addr;
570 u64 len;
571 };
572
573 struct io_connect {
574 struct file *file;
575 struct sockaddr __user *addr;
576 int addr_len;
577 };
578
579 struct io_sr_msg {
580 struct file *file;
581 union {
582 struct compat_msghdr __user *umsg_compat;
583 struct user_msghdr __user *umsg;
584 void __user *buf;
585 };
586 int msg_flags;
587 int bgid;
588 size_t len;
589 struct io_buffer *kbuf;
590 };
591
592 struct io_open {
593 struct file *file;
594 int dfd;
595 struct filename *filename;
596 struct open_how how;
597 unsigned long nofile;
598 };
599
600 struct io_rsrc_update {
601 struct file *file;
602 u64 arg;
603 u32 nr_args;
604 u32 offset;
605 };
606
607 struct io_fadvise {
608 struct file *file;
609 u64 offset;
610 u32 len;
611 u32 advice;
612 };
613
614 struct io_madvise {
615 struct file *file;
616 u64 addr;
617 u32 len;
618 u32 advice;
619 };
620
621 struct io_epoll {
622 struct file *file;
623 int epfd;
624 int op;
625 int fd;
626 struct epoll_event event;
627 };
628
629 struct io_splice {
630 struct file *file_out;
631 struct file *file_in;
632 loff_t off_out;
633 loff_t off_in;
634 u64 len;
635 unsigned int flags;
636 };
637
638 struct io_provide_buf {
639 struct file *file;
640 __u64 addr;
641 __u32 len;
642 __u32 bgid;
643 __u16 nbufs;
644 __u16 bid;
645 };
646
647 struct io_statx {
648 struct file *file;
649 int dfd;
650 unsigned int mask;
651 unsigned int flags;
652 const char __user *filename;
653 struct statx __user *buffer;
654 };
655
656 struct io_shutdown {
657 struct file *file;
658 int how;
659 };
660
661 struct io_rename {
662 struct file *file;
663 int old_dfd;
664 int new_dfd;
665 struct filename *oldpath;
666 struct filename *newpath;
667 int flags;
668 };
669
670 struct io_unlink {
671 struct file *file;
672 int dfd;
673 int flags;
674 struct filename *filename;
675 };
676
677 struct io_completion {
678 struct file *file;
679 struct list_head list;
680 u32 cflags;
681 };
682
683 struct io_async_connect {
684 struct sockaddr_storage address;
685 };
686
687 struct io_async_msghdr {
688 struct iovec fast_iov[UIO_FASTIOV];
689 /* points to an allocated iov, if NULL we use fast_iov instead */
690 struct iovec *free_iov;
691 struct sockaddr __user *uaddr;
692 struct msghdr msg;
693 struct sockaddr_storage addr;
694 };
695
696 struct io_async_rw {
697 struct iovec fast_iov[UIO_FASTIOV];
698 const struct iovec *free_iovec;
699 struct iov_iter iter;
700 size_t bytes_done;
701 struct wait_page_queue wpq;
702 };
703
704 enum {
705 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
706 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
707 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
708 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
709 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
710 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
711
712 /* first byte is taken by user flags, shift it to not overlap */
713 REQ_F_FAIL_BIT = 8,
714 REQ_F_INFLIGHT_BIT,
715 REQ_F_CUR_POS_BIT,
716 REQ_F_NOWAIT_BIT,
717 REQ_F_LINK_TIMEOUT_BIT,
718 REQ_F_NEED_CLEANUP_BIT,
719 REQ_F_POLLED_BIT,
720 REQ_F_BUFFER_SELECTED_BIT,
721 REQ_F_LTIMEOUT_ACTIVE_BIT,
722 REQ_F_COMPLETE_INLINE_BIT,
723 REQ_F_REISSUE_BIT,
724 REQ_F_DONT_REISSUE_BIT,
725 REQ_F_CREDS_BIT,
726 /* keep async read/write and isreg together and in order */
727 REQ_F_ASYNC_READ_BIT,
728 REQ_F_ASYNC_WRITE_BIT,
729 REQ_F_ISREG_BIT,
730
731 /* not a real bit, just to check we're not overflowing the space */
732 __REQ_F_LAST_BIT,
733 };
734
735 enum {
736 /* ctx owns file */
737 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
738 /* drain existing IO first */
739 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
740 /* linked sqes */
741 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
742 /* doesn't sever on completion < 0 */
743 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
744 /* IOSQE_ASYNC */
745 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
746 /* IOSQE_BUFFER_SELECT */
747 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
748
749 /* fail rest of links */
750 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
751 /* on inflight list, should be cancelled and waited on exit reliably */
752 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
753 /* read/write uses file position */
754 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
755 /* must not punt to workers */
756 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
757 /* has or had linked timeout */
758 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
759 /* needs cleanup */
760 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
761 /* already went through poll handler */
762 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
763 /* buffer already selected */
764 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
765 /* linked timeout is active, i.e. prepared by link's head */
766 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
767 /* completion is deferred through io_comp_state */
768 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
769 /* caller should reissue async */
770 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
771 /* don't attempt request reissue, see io_rw_reissue() */
772 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
773 /* supports async reads */
774 REQ_F_ASYNC_READ = BIT(REQ_F_ASYNC_READ_BIT),
775 /* supports async writes */
776 REQ_F_ASYNC_WRITE = BIT(REQ_F_ASYNC_WRITE_BIT),
777 /* regular file */
778 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
779 /* has creds assigned */
780 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
781 };
782
783 struct async_poll {
784 struct io_poll_iocb poll;
785 struct io_poll_iocb *double_poll;
786 };
787
788 typedef void (*io_req_tw_func_t)(struct io_kiocb *req);
789
790 struct io_task_work {
791 union {
792 struct io_wq_work_node node;
793 struct llist_node fallback_node;
794 };
795 io_req_tw_func_t func;
796 };
797
798 enum {
799 IORING_RSRC_FILE = 0,
800 IORING_RSRC_BUFFER = 1,
801 };
802
803 /*
804 * NOTE! Each of the iocb union members has the file pointer
805 * as the first entry in their struct definition. So you can
806 * access the file pointer through any of the sub-structs,
807 * or directly as just 'ki_filp' in this struct.
808 */
809 struct io_kiocb {
810 union {
811 struct file *file;
812 struct io_rw rw;
813 struct io_poll_iocb poll;
814 struct io_poll_update poll_update;
815 struct io_accept accept;
816 struct io_sync sync;
817 struct io_cancel cancel;
818 struct io_timeout timeout;
819 struct io_timeout_rem timeout_rem;
820 struct io_connect connect;
821 struct io_sr_msg sr_msg;
822 struct io_open open;
823 struct io_close close;
824 struct io_rsrc_update rsrc_update;
825 struct io_fadvise fadvise;
826 struct io_madvise madvise;
827 struct io_epoll epoll;
828 struct io_splice splice;
829 struct io_provide_buf pbuf;
830 struct io_statx statx;
831 struct io_shutdown shutdown;
832 struct io_rename rename;
833 struct io_unlink unlink;
834 /* use only after cleaning per-op data, see io_clean_op() */
835 struct io_completion compl;
836 };
837
838 /* opcode allocated if it needs to store data for async defer */
839 void *async_data;
840 u8 opcode;
841 /* polled IO has completed */
842 u8 iopoll_completed;
843
844 u16 buf_index;
845 u32 result;
846
847 struct io_ring_ctx *ctx;
848 unsigned int flags;
849 atomic_t refs;
850 struct task_struct *task;
851 u64 user_data;
852
853 struct io_kiocb *link;
854 struct percpu_ref *fixed_rsrc_refs;
855
856 /* used with ctx->iopoll_list with reads/writes */
857 struct list_head inflight_entry;
858 struct io_task_work io_task_work;
859 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
860 struct hlist_node hash_node;
861 struct async_poll *apoll;
862 struct io_wq_work work;
863 const struct cred *creds;
864
865 /* store used ubuf, so we can prevent reloading */
866 struct io_mapped_ubuf *imu;
867 };
868
869 struct io_tctx_node {
870 struct list_head ctx_node;
871 struct task_struct *task;
872 struct io_ring_ctx *ctx;
873 };
874
875 struct io_defer_entry {
876 struct list_head list;
877 struct io_kiocb *req;
878 u32 seq;
879 };
880
881 struct io_op_def {
882 /* needs req->file assigned */
883 unsigned needs_file : 1;
884 /* hash wq insertion if file is a regular file */
885 unsigned hash_reg_file : 1;
886 /* unbound wq insertion if file is a non-regular file */
887 unsigned unbound_nonreg_file : 1;
888 /* opcode is not supported by this kernel */
889 unsigned not_supported : 1;
890 /* set if opcode supports polled "wait" */
891 unsigned pollin : 1;
892 unsigned pollout : 1;
893 /* op supports buffer selection */
894 unsigned buffer_select : 1;
895 /* do prep async if is going to be punted */
896 unsigned needs_async_setup : 1;
897 /* should block plug */
898 unsigned plug : 1;
899 /* size of async data needed, if any */
900 unsigned short async_size;
901 };
902
903 static const struct io_op_def io_op_defs[] = {
904 [IORING_OP_NOP] = {},
905 [IORING_OP_READV] = {
906 .needs_file = 1,
907 .unbound_nonreg_file = 1,
908 .pollin = 1,
909 .buffer_select = 1,
910 .needs_async_setup = 1,
911 .plug = 1,
912 .async_size = sizeof(struct io_async_rw),
913 },
914 [IORING_OP_WRITEV] = {
915 .needs_file = 1,
916 .hash_reg_file = 1,
917 .unbound_nonreg_file = 1,
918 .pollout = 1,
919 .needs_async_setup = 1,
920 .plug = 1,
921 .async_size = sizeof(struct io_async_rw),
922 },
923 [IORING_OP_FSYNC] = {
924 .needs_file = 1,
925 },
926 [IORING_OP_READ_FIXED] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .plug = 1,
931 .async_size = sizeof(struct io_async_rw),
932 },
933 [IORING_OP_WRITE_FIXED] = {
934 .needs_file = 1,
935 .hash_reg_file = 1,
936 .unbound_nonreg_file = 1,
937 .pollout = 1,
938 .plug = 1,
939 .async_size = sizeof(struct io_async_rw),
940 },
941 [IORING_OP_POLL_ADD] = {
942 .needs_file = 1,
943 .unbound_nonreg_file = 1,
944 },
945 [IORING_OP_POLL_REMOVE] = {},
946 [IORING_OP_SYNC_FILE_RANGE] = {
947 .needs_file = 1,
948 },
949 [IORING_OP_SENDMSG] = {
950 .needs_file = 1,
951 .unbound_nonreg_file = 1,
952 .pollout = 1,
953 .needs_async_setup = 1,
954 .async_size = sizeof(struct io_async_msghdr),
955 },
956 [IORING_OP_RECVMSG] = {
957 .needs_file = 1,
958 .unbound_nonreg_file = 1,
959 .pollin = 1,
960 .buffer_select = 1,
961 .needs_async_setup = 1,
962 .async_size = sizeof(struct io_async_msghdr),
963 },
964 [IORING_OP_TIMEOUT] = {
965 .async_size = sizeof(struct io_timeout_data),
966 },
967 [IORING_OP_TIMEOUT_REMOVE] = {
968 /* used by timeout updates' prep() */
969 },
970 [IORING_OP_ACCEPT] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollin = 1,
974 },
975 [IORING_OP_ASYNC_CANCEL] = {},
976 [IORING_OP_LINK_TIMEOUT] = {
977 .async_size = sizeof(struct io_timeout_data),
978 },
979 [IORING_OP_CONNECT] = {
980 .needs_file = 1,
981 .unbound_nonreg_file = 1,
982 .pollout = 1,
983 .needs_async_setup = 1,
984 .async_size = sizeof(struct io_async_connect),
985 },
986 [IORING_OP_FALLOCATE] = {
987 .needs_file = 1,
988 },
989 [IORING_OP_OPENAT] = {},
990 [IORING_OP_CLOSE] = {},
991 [IORING_OP_FILES_UPDATE] = {},
992 [IORING_OP_STATX] = {},
993 [IORING_OP_READ] = {
994 .needs_file = 1,
995 .unbound_nonreg_file = 1,
996 .pollin = 1,
997 .buffer_select = 1,
998 .plug = 1,
999 .async_size = sizeof(struct io_async_rw),
1000 },
1001 [IORING_OP_WRITE] = {
1002 .needs_file = 1,
1003 .unbound_nonreg_file = 1,
1004 .pollout = 1,
1005 .plug = 1,
1006 .async_size = sizeof(struct io_async_rw),
1007 },
1008 [IORING_OP_FADVISE] = {
1009 .needs_file = 1,
1010 },
1011 [IORING_OP_MADVISE] = {},
1012 [IORING_OP_SEND] = {
1013 .needs_file = 1,
1014 .unbound_nonreg_file = 1,
1015 .pollout = 1,
1016 },
1017 [IORING_OP_RECV] = {
1018 .needs_file = 1,
1019 .unbound_nonreg_file = 1,
1020 .pollin = 1,
1021 .buffer_select = 1,
1022 },
1023 [IORING_OP_OPENAT2] = {
1024 },
1025 [IORING_OP_EPOLL_CTL] = {
1026 .unbound_nonreg_file = 1,
1027 },
1028 [IORING_OP_SPLICE] = {
1029 .needs_file = 1,
1030 .hash_reg_file = 1,
1031 .unbound_nonreg_file = 1,
1032 },
1033 [IORING_OP_PROVIDE_BUFFERS] = {},
1034 [IORING_OP_REMOVE_BUFFERS] = {},
1035 [IORING_OP_TEE] = {
1036 .needs_file = 1,
1037 .hash_reg_file = 1,
1038 .unbound_nonreg_file = 1,
1039 },
1040 [IORING_OP_SHUTDOWN] = {
1041 .needs_file = 1,
1042 },
1043 [IORING_OP_RENAMEAT] = {},
1044 [IORING_OP_UNLINKAT] = {},
1045 };
1046
1047 static bool io_disarm_next(struct io_kiocb *req);
1048 static void io_uring_del_tctx_node(unsigned long index);
1049 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1050 struct task_struct *task,
1051 bool cancel_all);
1052 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1053 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1054
1055 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1056 long res, unsigned int cflags);
1057 static void io_put_req(struct io_kiocb *req);
1058 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1059 static void io_dismantle_req(struct io_kiocb *req);
1060 static void io_put_task(struct task_struct *task, int nr);
1061 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1062 static void io_queue_linked_timeout(struct io_kiocb *req);
1063 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1064 struct io_uring_rsrc_update2 *up,
1065 unsigned nr_args);
1066 static void io_clean_op(struct io_kiocb *req);
1067 static struct file *io_file_get(struct io_submit_state *state,
1068 struct io_kiocb *req, int fd, bool fixed);
1069 static void __io_queue_sqe(struct io_kiocb *req);
1070 static void io_rsrc_put_work(struct work_struct *work);
1071
1072 static void io_req_task_queue(struct io_kiocb *req);
1073 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1074 static bool io_poll_remove_waitqs(struct io_kiocb *req);
1075 static int io_req_prep_async(struct io_kiocb *req);
1076
1077 static void io_fallback_req_func(struct work_struct *unused);
1078
1079 static struct kmem_cache *req_cachep;
1080
1081 static const struct file_operations io_uring_fops;
1082
1083 struct sock *io_uring_get_socket(struct file *file)
1084 {
1085 #if defined(CONFIG_UNIX)
1086 if (file->f_op == &io_uring_fops) {
1087 struct io_ring_ctx *ctx = file->private_data;
1088
1089 return ctx->ring_sock->sk;
1090 }
1091 #endif
1092 return NULL;
1093 }
1094 EXPORT_SYMBOL(io_uring_get_socket);
1095
1096 #define io_for_each_link(pos, head) \
1097 for (pos = (head); pos; pos = pos->link)
1098
1099 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1100 {
1101 struct io_ring_ctx *ctx = req->ctx;
1102
1103 if (!req->fixed_rsrc_refs) {
1104 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1105 percpu_ref_get(req->fixed_rsrc_refs);
1106 }
1107 }
1108
1109 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1110 {
1111 bool got = percpu_ref_tryget(ref);
1112
1113 /* already at zero, wait for ->release() */
1114 if (!got)
1115 wait_for_completion(compl);
1116 percpu_ref_resurrect(ref);
1117 if (got)
1118 percpu_ref_put(ref);
1119 }
1120
1121 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1122 bool cancel_all)
1123 {
1124 struct io_kiocb *req;
1125
1126 if (task && head->task != task)
1127 return false;
1128 if (cancel_all)
1129 return true;
1130
1131 io_for_each_link(req, head) {
1132 if (req->flags & REQ_F_INFLIGHT)
1133 return true;
1134 }
1135 return false;
1136 }
1137
1138 static inline void req_set_fail(struct io_kiocb *req)
1139 {
1140 req->flags |= REQ_F_FAIL;
1141 }
1142
1143 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1144 {
1145 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1146
1147 complete(&ctx->ref_comp);
1148 }
1149
1150 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1151 {
1152 return !req->timeout.off;
1153 }
1154
1155 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1156 {
1157 struct io_ring_ctx *ctx;
1158 int hash_bits;
1159
1160 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1161 if (!ctx)
1162 return NULL;
1163
1164 /*
1165 * Use 5 bits less than the max cq entries, that should give us around
1166 * 32 entries per hash list if totally full and uniformly spread.
1167 */
1168 hash_bits = ilog2(p->cq_entries);
1169 hash_bits -= 5;
1170 if (hash_bits <= 0)
1171 hash_bits = 1;
1172 ctx->cancel_hash_bits = hash_bits;
1173 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1174 GFP_KERNEL);
1175 if (!ctx->cancel_hash)
1176 goto err;
1177 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1178
1179 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1180 if (!ctx->dummy_ubuf)
1181 goto err;
1182 /* set invalid range, so io_import_fixed() fails meeting it */
1183 ctx->dummy_ubuf->ubuf = -1UL;
1184
1185 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1186 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1187 goto err;
1188
1189 ctx->flags = p->flags;
1190 init_waitqueue_head(&ctx->sqo_sq_wait);
1191 INIT_LIST_HEAD(&ctx->sqd_list);
1192 init_waitqueue_head(&ctx->poll_wait);
1193 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1194 init_completion(&ctx->ref_comp);
1195 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1196 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1197 mutex_init(&ctx->uring_lock);
1198 init_waitqueue_head(&ctx->cq_wait);
1199 spin_lock_init(&ctx->completion_lock);
1200 INIT_LIST_HEAD(&ctx->iopoll_list);
1201 INIT_LIST_HEAD(&ctx->defer_list);
1202 INIT_LIST_HEAD(&ctx->timeout_list);
1203 spin_lock_init(&ctx->rsrc_ref_lock);
1204 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1205 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1206 init_llist_head(&ctx->rsrc_put_llist);
1207 INIT_LIST_HEAD(&ctx->tctx_list);
1208 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1209 INIT_LIST_HEAD(&ctx->locked_free_list);
1210 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1211 return ctx;
1212 err:
1213 kfree(ctx->dummy_ubuf);
1214 kfree(ctx->cancel_hash);
1215 kfree(ctx);
1216 return NULL;
1217 }
1218
1219 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1220 {
1221 struct io_rings *r = ctx->rings;
1222
1223 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1224 ctx->cq_extra--;
1225 }
1226
1227 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1228 {
1229 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1230 struct io_ring_ctx *ctx = req->ctx;
1231
1232 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1233 }
1234
1235 return false;
1236 }
1237
1238 static void io_req_track_inflight(struct io_kiocb *req)
1239 {
1240 if (!(req->flags & REQ_F_INFLIGHT)) {
1241 req->flags |= REQ_F_INFLIGHT;
1242 atomic_inc(&current->io_uring->inflight_tracked);
1243 }
1244 }
1245
1246 static void io_prep_async_work(struct io_kiocb *req)
1247 {
1248 const struct io_op_def *def = &io_op_defs[req->opcode];
1249 struct io_ring_ctx *ctx = req->ctx;
1250
1251 if (!(req->flags & REQ_F_CREDS)) {
1252 req->flags |= REQ_F_CREDS;
1253 req->creds = get_current_cred();
1254 }
1255
1256 req->work.list.next = NULL;
1257 req->work.flags = 0;
1258 if (req->flags & REQ_F_FORCE_ASYNC)
1259 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1260
1261 if (req->flags & REQ_F_ISREG) {
1262 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1263 io_wq_hash_work(&req->work, file_inode(req->file));
1264 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1265 if (def->unbound_nonreg_file)
1266 req->work.flags |= IO_WQ_WORK_UNBOUND;
1267 }
1268
1269 switch (req->opcode) {
1270 case IORING_OP_SPLICE:
1271 case IORING_OP_TEE:
1272 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1273 req->work.flags |= IO_WQ_WORK_UNBOUND;
1274 break;
1275 }
1276 }
1277
1278 static void io_prep_async_link(struct io_kiocb *req)
1279 {
1280 struct io_kiocb *cur;
1281
1282 io_for_each_link(cur, req)
1283 io_prep_async_work(cur);
1284 }
1285
1286 static void io_queue_async_work(struct io_kiocb *req)
1287 {
1288 struct io_ring_ctx *ctx = req->ctx;
1289 struct io_kiocb *link = io_prep_linked_timeout(req);
1290 struct io_uring_task *tctx = req->task->io_uring;
1291
1292 BUG_ON(!tctx);
1293 BUG_ON(!tctx->io_wq);
1294
1295 /* init ->work of the whole link before punting */
1296 io_prep_async_link(req);
1297 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1298 &req->work, req->flags);
1299 io_wq_enqueue(tctx->io_wq, &req->work);
1300 if (link)
1301 io_queue_linked_timeout(link);
1302 }
1303
1304 static void io_kill_timeout(struct io_kiocb *req, int status)
1305 __must_hold(&req->ctx->completion_lock)
1306 {
1307 struct io_timeout_data *io = req->async_data;
1308
1309 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1310 atomic_set(&req->ctx->cq_timeouts,
1311 atomic_read(&req->ctx->cq_timeouts) + 1);
1312 list_del_init(&req->timeout.list);
1313 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1314 io_put_req_deferred(req, 1);
1315 }
1316 }
1317
1318 static void io_queue_deferred(struct io_ring_ctx *ctx)
1319 {
1320 while (!list_empty(&ctx->defer_list)) {
1321 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1322 struct io_defer_entry, list);
1323
1324 if (req_need_defer(de->req, de->seq))
1325 break;
1326 list_del_init(&de->list);
1327 io_req_task_queue(de->req);
1328 kfree(de);
1329 }
1330 }
1331
1332 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1333 {
1334 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1335
1336 while (!list_empty(&ctx->timeout_list)) {
1337 u32 events_needed, events_got;
1338 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1339 struct io_kiocb, timeout.list);
1340
1341 if (io_is_timeout_noseq(req))
1342 break;
1343
1344 /*
1345 * Since seq can easily wrap around over time, subtract
1346 * the last seq at which timeouts were flushed before comparing.
1347 * Assuming not more than 2^31-1 events have happened since,
1348 * these subtractions won't have wrapped, so we can check if
1349 * target is in [last_seq, current_seq] by comparing the two.
1350 */
1351 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1352 events_got = seq - ctx->cq_last_tm_flush;
1353 if (events_got < events_needed)
1354 break;
1355
1356 list_del_init(&req->timeout.list);
1357 io_kill_timeout(req, 0);
1358 }
1359 ctx->cq_last_tm_flush = seq;
1360 }
1361
1362 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1363 {
1364 if (ctx->off_timeout_used)
1365 io_flush_timeouts(ctx);
1366 if (ctx->drain_active)
1367 io_queue_deferred(ctx);
1368 }
1369
1370 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1371 {
1372 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1373 __io_commit_cqring_flush(ctx);
1374 /* order cqe stores with ring update */
1375 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1376 }
1377
1378 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1379 {
1380 struct io_rings *r = ctx->rings;
1381
1382 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1383 }
1384
1385 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1386 {
1387 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1388 }
1389
1390 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1391 {
1392 struct io_rings *rings = ctx->rings;
1393 unsigned tail, mask = ctx->cq_entries - 1;
1394
1395 /*
1396 * writes to the cq entry need to come after reading head; the
1397 * control dependency is enough as we're using WRITE_ONCE to
1398 * fill the cq entry
1399 */
1400 if (__io_cqring_events(ctx) == ctx->cq_entries)
1401 return NULL;
1402
1403 tail = ctx->cached_cq_tail++;
1404 return &rings->cqes[tail & mask];
1405 }
1406
1407 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1408 {
1409 if (likely(!ctx->cq_ev_fd))
1410 return false;
1411 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1412 return false;
1413 return !ctx->eventfd_async || io_wq_current_is_worker();
1414 }
1415
1416 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1417 {
1418 /* see waitqueue_active() comment */
1419 smp_mb();
1420
1421 if (waitqueue_active(&ctx->cq_wait))
1422 wake_up(&ctx->cq_wait);
1423 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1424 wake_up(&ctx->sq_data->wait);
1425 if (io_should_trigger_evfd(ctx))
1426 eventfd_signal(ctx->cq_ev_fd, 1);
1427 if (waitqueue_active(&ctx->poll_wait)) {
1428 wake_up_interruptible(&ctx->poll_wait);
1429 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1430 }
1431 }
1432
1433 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1434 {
1435 /* see waitqueue_active() comment */
1436 smp_mb();
1437
1438 if (ctx->flags & IORING_SETUP_SQPOLL) {
1439 if (waitqueue_active(&ctx->cq_wait))
1440 wake_up(&ctx->cq_wait);
1441 }
1442 if (io_should_trigger_evfd(ctx))
1443 eventfd_signal(ctx->cq_ev_fd, 1);
1444 if (waitqueue_active(&ctx->poll_wait)) {
1445 wake_up_interruptible(&ctx->poll_wait);
1446 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1447 }
1448 }
1449
1450 /* Returns true if there are no backlogged entries after the flush */
1451 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1452 {
1453 unsigned long flags;
1454 bool all_flushed, posted;
1455
1456 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1457 return false;
1458
1459 posted = false;
1460 spin_lock_irqsave(&ctx->completion_lock, flags);
1461 while (!list_empty(&ctx->cq_overflow_list)) {
1462 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1463 struct io_overflow_cqe *ocqe;
1464
1465 if (!cqe && !force)
1466 break;
1467 ocqe = list_first_entry(&ctx->cq_overflow_list,
1468 struct io_overflow_cqe, list);
1469 if (cqe)
1470 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1471 else
1472 io_account_cq_overflow(ctx);
1473
1474 posted = true;
1475 list_del(&ocqe->list);
1476 kfree(ocqe);
1477 }
1478
1479 all_flushed = list_empty(&ctx->cq_overflow_list);
1480 if (all_flushed) {
1481 clear_bit(0, &ctx->check_cq_overflow);
1482 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1483 }
1484
1485 if (posted)
1486 io_commit_cqring(ctx);
1487 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1488 if (posted)
1489 io_cqring_ev_posted(ctx);
1490 return all_flushed;
1491 }
1492
1493 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1494 {
1495 bool ret = true;
1496
1497 if (test_bit(0, &ctx->check_cq_overflow)) {
1498 /* iopoll syncs against uring_lock, not completion_lock */
1499 if (ctx->flags & IORING_SETUP_IOPOLL)
1500 mutex_lock(&ctx->uring_lock);
1501 ret = __io_cqring_overflow_flush(ctx, force);
1502 if (ctx->flags & IORING_SETUP_IOPOLL)
1503 mutex_unlock(&ctx->uring_lock);
1504 }
1505
1506 return ret;
1507 }
1508
1509 /*
1510 * Shamelessly stolen from the mm implementation of page reference checking,
1511 * see commit f958d7b528b1 for details.
1512 */
1513 #define req_ref_zero_or_close_to_overflow(req) \
1514 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1515
1516 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1517 {
1518 return atomic_inc_not_zero(&req->refs);
1519 }
1520
1521 static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1522 {
1523 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1524 return atomic_sub_and_test(refs, &req->refs);
1525 }
1526
1527 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1528 {
1529 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1530 return atomic_dec_and_test(&req->refs);
1531 }
1532
1533 static inline void req_ref_put(struct io_kiocb *req)
1534 {
1535 WARN_ON_ONCE(req_ref_put_and_test(req));
1536 }
1537
1538 static inline void req_ref_get(struct io_kiocb *req)
1539 {
1540 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1541 atomic_inc(&req->refs);
1542 }
1543
1544 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1545 long res, unsigned int cflags)
1546 {
1547 struct io_overflow_cqe *ocqe;
1548
1549 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1550 if (!ocqe) {
1551 /*
1552 * If we're in ring overflow flush mode, or in task cancel mode,
1553 * or cannot allocate an overflow entry, then we need to drop it
1554 * on the floor.
1555 */
1556 io_account_cq_overflow(ctx);
1557 return false;
1558 }
1559 if (list_empty(&ctx->cq_overflow_list)) {
1560 set_bit(0, &ctx->check_cq_overflow);
1561 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1562 }
1563 ocqe->cqe.user_data = user_data;
1564 ocqe->cqe.res = res;
1565 ocqe->cqe.flags = cflags;
1566 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1567 return true;
1568 }
1569
1570 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1571 long res, unsigned int cflags)
1572 {
1573 struct io_uring_cqe *cqe;
1574
1575 trace_io_uring_complete(ctx, user_data, res, cflags);
1576
1577 /*
1578 * If we can't get a cq entry, userspace overflowed the
1579 * submission (by quite a lot). Increment the overflow count in
1580 * the ring.
1581 */
1582 cqe = io_get_cqe(ctx);
1583 if (likely(cqe)) {
1584 WRITE_ONCE(cqe->user_data, user_data);
1585 WRITE_ONCE(cqe->res, res);
1586 WRITE_ONCE(cqe->flags, cflags);
1587 return true;
1588 }
1589 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1590 }
1591
1592 /* not as hot to bloat with inlining */
1593 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1594 long res, unsigned int cflags)
1595 {
1596 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1597 }
1598
1599 static void io_req_complete_post(struct io_kiocb *req, long res,
1600 unsigned int cflags)
1601 {
1602 struct io_ring_ctx *ctx = req->ctx;
1603 unsigned long flags;
1604
1605 spin_lock_irqsave(&ctx->completion_lock, flags);
1606 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1607 /*
1608 * If we're the last reference to this request, add to our locked
1609 * free_list cache.
1610 */
1611 if (req_ref_put_and_test(req)) {
1612 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1613 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL))
1614 io_disarm_next(req);
1615 if (req->link) {
1616 io_req_task_queue(req->link);
1617 req->link = NULL;
1618 }
1619 }
1620 io_dismantle_req(req);
1621 io_put_task(req->task, 1);
1622 list_add(&req->compl.list, &ctx->locked_free_list);
1623 ctx->locked_free_nr++;
1624 } else {
1625 if (!percpu_ref_tryget(&ctx->refs))
1626 req = NULL;
1627 }
1628 io_commit_cqring(ctx);
1629 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1630
1631 if (req) {
1632 io_cqring_ev_posted(ctx);
1633 percpu_ref_put(&ctx->refs);
1634 }
1635 }
1636
1637 static inline bool io_req_needs_clean(struct io_kiocb *req)
1638 {
1639 return req->flags & IO_REQ_CLEAN_FLAGS;
1640 }
1641
1642 static void io_req_complete_state(struct io_kiocb *req, long res,
1643 unsigned int cflags)
1644 {
1645 if (io_req_needs_clean(req))
1646 io_clean_op(req);
1647 req->result = res;
1648 req->compl.cflags = cflags;
1649 req->flags |= REQ_F_COMPLETE_INLINE;
1650 }
1651
1652 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1653 long res, unsigned cflags)
1654 {
1655 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1656 io_req_complete_state(req, res, cflags);
1657 else
1658 io_req_complete_post(req, res, cflags);
1659 }
1660
1661 static inline void io_req_complete(struct io_kiocb *req, long res)
1662 {
1663 __io_req_complete(req, 0, res, 0);
1664 }
1665
1666 static void io_req_complete_failed(struct io_kiocb *req, long res)
1667 {
1668 req_set_fail(req);
1669 io_put_req(req);
1670 io_req_complete_post(req, res, 0);
1671 }
1672
1673 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1674 struct io_comp_state *cs)
1675 {
1676 spin_lock_irq(&ctx->completion_lock);
1677 list_splice_init(&ctx->locked_free_list, &cs->free_list);
1678 ctx->locked_free_nr = 0;
1679 spin_unlock_irq(&ctx->completion_lock);
1680 }
1681
1682 /* Returns true IFF there are requests in the cache */
1683 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1684 {
1685 struct io_submit_state *state = &ctx->submit_state;
1686 struct io_comp_state *cs = &state->comp;
1687 int nr;
1688
1689 /*
1690 * If we have more than a batch's worth of requests in our IRQ side
1691 * locked cache, grab the lock and move them over to our submission
1692 * side cache.
1693 */
1694 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1695 io_flush_cached_locked_reqs(ctx, cs);
1696
1697 nr = state->free_reqs;
1698 while (!list_empty(&cs->free_list)) {
1699 struct io_kiocb *req = list_first_entry(&cs->free_list,
1700 struct io_kiocb, compl.list);
1701
1702 list_del(&req->compl.list);
1703 state->reqs[nr++] = req;
1704 if (nr == ARRAY_SIZE(state->reqs))
1705 break;
1706 }
1707
1708 state->free_reqs = nr;
1709 return nr != 0;
1710 }
1711
1712 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1713 {
1714 struct io_submit_state *state = &ctx->submit_state;
1715
1716 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1717
1718 if (!state->free_reqs) {
1719 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1720 int ret, i;
1721
1722 if (io_flush_cached_reqs(ctx))
1723 goto got_req;
1724
1725 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1726 state->reqs);
1727
1728 /*
1729 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1730 * retry single alloc to be on the safe side.
1731 */
1732 if (unlikely(ret <= 0)) {
1733 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1734 if (!state->reqs[0])
1735 return NULL;
1736 ret = 1;
1737 }
1738
1739 /*
1740 * Don't initialise the fields below on every allocation, but
1741 * do that in advance and keep valid on free.
1742 */
1743 for (i = 0; i < ret; i++) {
1744 struct io_kiocb *req = state->reqs[i];
1745
1746 req->ctx = ctx;
1747 req->link = NULL;
1748 req->async_data = NULL;
1749 /* not necessary, but safer to zero */
1750 req->result = 0;
1751 }
1752 state->free_reqs = ret;
1753 }
1754 got_req:
1755 state->free_reqs--;
1756 return state->reqs[state->free_reqs];
1757 }
1758
1759 static inline void io_put_file(struct file *file)
1760 {
1761 if (file)
1762 fput(file);
1763 }
1764
1765 static void io_dismantle_req(struct io_kiocb *req)
1766 {
1767 unsigned int flags = req->flags;
1768
1769 if (io_req_needs_clean(req))
1770 io_clean_op(req);
1771 if (!(flags & REQ_F_FIXED_FILE))
1772 io_put_file(req->file);
1773 if (req->fixed_rsrc_refs)
1774 percpu_ref_put(req->fixed_rsrc_refs);
1775 if (req->async_data) {
1776 kfree(req->async_data);
1777 req->async_data = NULL;
1778 }
1779 }
1780
1781 /* must to be called somewhat shortly after putting a request */
1782 static inline void io_put_task(struct task_struct *task, int nr)
1783 {
1784 struct io_uring_task *tctx = task->io_uring;
1785
1786 percpu_counter_sub(&tctx->inflight, nr);
1787 if (unlikely(atomic_read(&tctx->in_idle)))
1788 wake_up(&tctx->wait);
1789 put_task_struct_many(task, nr);
1790 }
1791
1792 static void __io_free_req(struct io_kiocb *req)
1793 {
1794 struct io_ring_ctx *ctx = req->ctx;
1795
1796 io_dismantle_req(req);
1797 io_put_task(req->task, 1);
1798
1799 kmem_cache_free(req_cachep, req);
1800 percpu_ref_put(&ctx->refs);
1801 }
1802
1803 static inline void io_remove_next_linked(struct io_kiocb *req)
1804 {
1805 struct io_kiocb *nxt = req->link;
1806
1807 req->link = nxt->link;
1808 nxt->link = NULL;
1809 }
1810
1811 static bool io_kill_linked_timeout(struct io_kiocb *req)
1812 __must_hold(&req->ctx->completion_lock)
1813 {
1814 struct io_kiocb *link = req->link;
1815
1816 /*
1817 * Can happen if a linked timeout fired and link had been like
1818 * req -> link t-out -> link t-out [-> ...]
1819 */
1820 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1821 struct io_timeout_data *io = link->async_data;
1822
1823 io_remove_next_linked(req);
1824 link->timeout.head = NULL;
1825 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1826 io_cqring_fill_event(link->ctx, link->user_data,
1827 -ECANCELED, 0);
1828 io_put_req_deferred(link, 1);
1829 return true;
1830 }
1831 }
1832 return false;
1833 }
1834
1835 static void io_fail_links(struct io_kiocb *req)
1836 __must_hold(&req->ctx->completion_lock)
1837 {
1838 struct io_kiocb *nxt, *link = req->link;
1839
1840 req->link = NULL;
1841 while (link) {
1842 nxt = link->link;
1843 link->link = NULL;
1844
1845 trace_io_uring_fail_link(req, link);
1846 io_cqring_fill_event(link->ctx, link->user_data, -ECANCELED, 0);
1847 io_put_req_deferred(link, 2);
1848 link = nxt;
1849 }
1850 }
1851
1852 static bool io_disarm_next(struct io_kiocb *req)
1853 __must_hold(&req->ctx->completion_lock)
1854 {
1855 bool posted = false;
1856
1857 if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1858 posted = io_kill_linked_timeout(req);
1859 if (unlikely((req->flags & REQ_F_FAIL) &&
1860 !(req->flags & REQ_F_HARDLINK))) {
1861 posted |= (req->link != NULL);
1862 io_fail_links(req);
1863 }
1864 return posted;
1865 }
1866
1867 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1868 {
1869 struct io_kiocb *nxt;
1870
1871 /*
1872 * If LINK is set, we have dependent requests in this chain. If we
1873 * didn't fail this request, queue the first one up, moving any other
1874 * dependencies to the next request. In case of failure, fail the rest
1875 * of the chain.
1876 */
1877 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL)) {
1878 struct io_ring_ctx *ctx = req->ctx;
1879 unsigned long flags;
1880 bool posted;
1881
1882 spin_lock_irqsave(&ctx->completion_lock, flags);
1883 posted = io_disarm_next(req);
1884 if (posted)
1885 io_commit_cqring(req->ctx);
1886 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1887 if (posted)
1888 io_cqring_ev_posted(ctx);
1889 }
1890 nxt = req->link;
1891 req->link = NULL;
1892 return nxt;
1893 }
1894
1895 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1896 {
1897 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1898 return NULL;
1899 return __io_req_find_next(req);
1900 }
1901
1902 static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1903 {
1904 if (!ctx)
1905 return;
1906 if (ctx->submit_state.comp.nr) {
1907 mutex_lock(&ctx->uring_lock);
1908 io_submit_flush_completions(ctx);
1909 mutex_unlock(&ctx->uring_lock);
1910 }
1911 percpu_ref_put(&ctx->refs);
1912 }
1913
1914 static void tctx_task_work(struct callback_head *cb)
1915 {
1916 struct io_ring_ctx *ctx = NULL;
1917 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1918 task_work);
1919
1920 while (1) {
1921 struct io_wq_work_node *node;
1922
1923 spin_lock_irq(&tctx->task_lock);
1924 node = tctx->task_list.first;
1925 INIT_WQ_LIST(&tctx->task_list);
1926 spin_unlock_irq(&tctx->task_lock);
1927
1928 while (node) {
1929 struct io_wq_work_node *next = node->next;
1930 struct io_kiocb *req = container_of(node, struct io_kiocb,
1931 io_task_work.node);
1932
1933 if (req->ctx != ctx) {
1934 ctx_flush_and_put(ctx);
1935 ctx = req->ctx;
1936 percpu_ref_get(&ctx->refs);
1937 }
1938 req->io_task_work.func(req);
1939 node = next;
1940 }
1941 if (wq_list_empty(&tctx->task_list)) {
1942 clear_bit(0, &tctx->task_state);
1943 if (wq_list_empty(&tctx->task_list))
1944 break;
1945 /* another tctx_task_work() is enqueued, yield */
1946 if (test_and_set_bit(0, &tctx->task_state))
1947 break;
1948 }
1949 cond_resched();
1950 }
1951
1952 ctx_flush_and_put(ctx);
1953 }
1954
1955 static void io_req_task_work_add(struct io_kiocb *req)
1956 {
1957 struct task_struct *tsk = req->task;
1958 struct io_uring_task *tctx = tsk->io_uring;
1959 enum task_work_notify_mode notify;
1960 struct io_wq_work_node *node;
1961 unsigned long flags;
1962
1963 WARN_ON_ONCE(!tctx);
1964
1965 spin_lock_irqsave(&tctx->task_lock, flags);
1966 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1967 spin_unlock_irqrestore(&tctx->task_lock, flags);
1968
1969 /* task_work already pending, we're done */
1970 if (test_bit(0, &tctx->task_state) ||
1971 test_and_set_bit(0, &tctx->task_state))
1972 return;
1973 if (unlikely(tsk->flags & PF_EXITING))
1974 goto fail;
1975
1976 /*
1977 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1978 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1979 * processing task_work. There's no reliable way to tell if TWA_RESUME
1980 * will do the job.
1981 */
1982 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
1983 if (!task_work_add(tsk, &tctx->task_work, notify)) {
1984 wake_up_process(tsk);
1985 return;
1986 }
1987 fail:
1988 clear_bit(0, &tctx->task_state);
1989 spin_lock_irqsave(&tctx->task_lock, flags);
1990 node = tctx->task_list.first;
1991 INIT_WQ_LIST(&tctx->task_list);
1992 spin_unlock_irqrestore(&tctx->task_lock, flags);
1993
1994 while (node) {
1995 req = container_of(node, struct io_kiocb, io_task_work.node);
1996 node = node->next;
1997 if (llist_add(&req->io_task_work.fallback_node,
1998 &req->ctx->fallback_llist))
1999 schedule_delayed_work(&req->ctx->fallback_work, 1);
2000 }
2001 }
2002
2003 static void io_req_task_cancel(struct io_kiocb *req)
2004 {
2005 struct io_ring_ctx *ctx = req->ctx;
2006
2007 /* ctx is guaranteed to stay alive while we hold uring_lock */
2008 mutex_lock(&ctx->uring_lock);
2009 io_req_complete_failed(req, req->result);
2010 mutex_unlock(&ctx->uring_lock);
2011 }
2012
2013 static void io_req_task_submit(struct io_kiocb *req)
2014 {
2015 struct io_ring_ctx *ctx = req->ctx;
2016
2017 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2018 mutex_lock(&ctx->uring_lock);
2019 if (!(req->task->flags & PF_EXITING) && !req->task->in_execve)
2020 __io_queue_sqe(req);
2021 else
2022 io_req_complete_failed(req, -EFAULT);
2023 mutex_unlock(&ctx->uring_lock);
2024 }
2025
2026 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2027 {
2028 req->result = ret;
2029 req->io_task_work.func = io_req_task_cancel;
2030 io_req_task_work_add(req);
2031 }
2032
2033 static void io_req_task_queue(struct io_kiocb *req)
2034 {
2035 req->io_task_work.func = io_req_task_submit;
2036 io_req_task_work_add(req);
2037 }
2038
2039 static inline void io_queue_next(struct io_kiocb *req)
2040 {
2041 struct io_kiocb *nxt = io_req_find_next(req);
2042
2043 if (nxt)
2044 io_req_task_queue(nxt);
2045 }
2046
2047 static void io_free_req(struct io_kiocb *req)
2048 {
2049 io_queue_next(req);
2050 __io_free_req(req);
2051 }
2052
2053 struct req_batch {
2054 struct task_struct *task;
2055 int task_refs;
2056 int ctx_refs;
2057 };
2058
2059 static inline void io_init_req_batch(struct req_batch *rb)
2060 {
2061 rb->task_refs = 0;
2062 rb->ctx_refs = 0;
2063 rb->task = NULL;
2064 }
2065
2066 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2067 struct req_batch *rb)
2068 {
2069 if (rb->task)
2070 io_put_task(rb->task, rb->task_refs);
2071 if (rb->ctx_refs)
2072 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2073 }
2074
2075 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2076 struct io_submit_state *state)
2077 {
2078 io_queue_next(req);
2079 io_dismantle_req(req);
2080
2081 if (req->task != rb->task) {
2082 if (rb->task)
2083 io_put_task(rb->task, rb->task_refs);
2084 rb->task = req->task;
2085 rb->task_refs = 0;
2086 }
2087 rb->task_refs++;
2088 rb->ctx_refs++;
2089
2090 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2091 state->reqs[state->free_reqs++] = req;
2092 else
2093 list_add(&req->compl.list, &state->comp.free_list);
2094 }
2095
2096 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2097 {
2098 struct io_comp_state *cs = &ctx->submit_state.comp;
2099 int i, nr = cs->nr;
2100 struct req_batch rb;
2101
2102 spin_lock_irq(&ctx->completion_lock);
2103 for (i = 0; i < nr; i++) {
2104 struct io_kiocb *req = cs->reqs[i];
2105
2106 __io_cqring_fill_event(ctx, req->user_data, req->result,
2107 req->compl.cflags);
2108 }
2109 io_commit_cqring(ctx);
2110 spin_unlock_irq(&ctx->completion_lock);
2111 io_cqring_ev_posted(ctx);
2112
2113 io_init_req_batch(&rb);
2114 for (i = 0; i < nr; i++) {
2115 struct io_kiocb *req = cs->reqs[i];
2116
2117 /* submission and completion refs */
2118 if (req_ref_sub_and_test(req, 2))
2119 io_req_free_batch(&rb, req, &ctx->submit_state);
2120 }
2121
2122 io_req_free_batch_finish(ctx, &rb);
2123 cs->nr = 0;
2124 }
2125
2126 /*
2127 * Drop reference to request, return next in chain (if there is one) if this
2128 * was the last reference to this request.
2129 */
2130 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2131 {
2132 struct io_kiocb *nxt = NULL;
2133
2134 if (req_ref_put_and_test(req)) {
2135 nxt = io_req_find_next(req);
2136 __io_free_req(req);
2137 }
2138 return nxt;
2139 }
2140
2141 static inline void io_put_req(struct io_kiocb *req)
2142 {
2143 if (req_ref_put_and_test(req))
2144 io_free_req(req);
2145 }
2146
2147 static void io_free_req_deferred(struct io_kiocb *req)
2148 {
2149 req->io_task_work.func = io_free_req;
2150 io_req_task_work_add(req);
2151 }
2152
2153 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2154 {
2155 if (req_ref_sub_and_test(req, refs))
2156 io_free_req_deferred(req);
2157 }
2158
2159 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2160 {
2161 /* See comment at the top of this file */
2162 smp_rmb();
2163 return __io_cqring_events(ctx);
2164 }
2165
2166 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2167 {
2168 struct io_rings *rings = ctx->rings;
2169
2170 /* make sure SQ entry isn't read before tail */
2171 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2172 }
2173
2174 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2175 {
2176 unsigned int cflags;
2177
2178 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2179 cflags |= IORING_CQE_F_BUFFER;
2180 req->flags &= ~REQ_F_BUFFER_SELECTED;
2181 kfree(kbuf);
2182 return cflags;
2183 }
2184
2185 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2186 {
2187 struct io_buffer *kbuf;
2188
2189 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2190 return io_put_kbuf(req, kbuf);
2191 }
2192
2193 static inline bool io_run_task_work(void)
2194 {
2195 if (current->task_works) {
2196 __set_current_state(TASK_RUNNING);
2197 task_work_run();
2198 return true;
2199 }
2200
2201 return false;
2202 }
2203
2204 /*
2205 * Find and free completed poll iocbs
2206 */
2207 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2208 struct list_head *done)
2209 {
2210 struct req_batch rb;
2211 struct io_kiocb *req;
2212
2213 /* order with ->result store in io_complete_rw_iopoll() */
2214 smp_rmb();
2215
2216 io_init_req_batch(&rb);
2217 while (!list_empty(done)) {
2218 int cflags = 0;
2219
2220 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2221 list_del(&req->inflight_entry);
2222
2223 if (READ_ONCE(req->result) == -EAGAIN &&
2224 !(req->flags & REQ_F_DONT_REISSUE)) {
2225 req->iopoll_completed = 0;
2226 req_ref_get(req);
2227 io_queue_async_work(req);
2228 continue;
2229 }
2230
2231 if (req->flags & REQ_F_BUFFER_SELECTED)
2232 cflags = io_put_rw_kbuf(req);
2233
2234 __io_cqring_fill_event(ctx, req->user_data, req->result, cflags);
2235 (*nr_events)++;
2236
2237 if (req_ref_put_and_test(req))
2238 io_req_free_batch(&rb, req, &ctx->submit_state);
2239 }
2240
2241 io_commit_cqring(ctx);
2242 io_cqring_ev_posted_iopoll(ctx);
2243 io_req_free_batch_finish(ctx, &rb);
2244 }
2245
2246 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2247 long min)
2248 {
2249 struct io_kiocb *req, *tmp;
2250 LIST_HEAD(done);
2251 bool spin;
2252 int ret;
2253
2254 /*
2255 * Only spin for completions if we don't have multiple devices hanging
2256 * off our complete list, and we're under the requested amount.
2257 */
2258 spin = !ctx->poll_multi_queue && *nr_events < min;
2259
2260 ret = 0;
2261 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2262 struct kiocb *kiocb = &req->rw.kiocb;
2263
2264 /*
2265 * Move completed and retryable entries to our local lists.
2266 * If we find a request that requires polling, break out
2267 * and complete those lists first, if we have entries there.
2268 */
2269 if (READ_ONCE(req->iopoll_completed)) {
2270 list_move_tail(&req->inflight_entry, &done);
2271 continue;
2272 }
2273 if (!list_empty(&done))
2274 break;
2275
2276 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2277 if (ret < 0)
2278 break;
2279
2280 /* iopoll may have completed current req */
2281 if (READ_ONCE(req->iopoll_completed))
2282 list_move_tail(&req->inflight_entry, &done);
2283
2284 if (ret && spin)
2285 spin = false;
2286 ret = 0;
2287 }
2288
2289 if (!list_empty(&done))
2290 io_iopoll_complete(ctx, nr_events, &done);
2291
2292 return ret;
2293 }
2294
2295 /*
2296 * We can't just wait for polled events to come to us, we have to actively
2297 * find and complete them.
2298 */
2299 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2300 {
2301 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2302 return;
2303
2304 mutex_lock(&ctx->uring_lock);
2305 while (!list_empty(&ctx->iopoll_list)) {
2306 unsigned int nr_events = 0;
2307
2308 io_do_iopoll(ctx, &nr_events, 0);
2309
2310 /* let it sleep and repeat later if can't complete a request */
2311 if (nr_events == 0)
2312 break;
2313 /*
2314 * Ensure we allow local-to-the-cpu processing to take place,
2315 * in this case we need to ensure that we reap all events.
2316 * Also let task_work, etc. to progress by releasing the mutex
2317 */
2318 if (need_resched()) {
2319 mutex_unlock(&ctx->uring_lock);
2320 cond_resched();
2321 mutex_lock(&ctx->uring_lock);
2322 }
2323 }
2324 mutex_unlock(&ctx->uring_lock);
2325 }
2326
2327 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2328 {
2329 unsigned int nr_events = 0;
2330 int ret = 0;
2331
2332 /*
2333 * We disallow the app entering submit/complete with polling, but we
2334 * still need to lock the ring to prevent racing with polled issue
2335 * that got punted to a workqueue.
2336 */
2337 mutex_lock(&ctx->uring_lock);
2338 /*
2339 * Don't enter poll loop if we already have events pending.
2340 * If we do, we can potentially be spinning for commands that
2341 * already triggered a CQE (eg in error).
2342 */
2343 if (test_bit(0, &ctx->check_cq_overflow))
2344 __io_cqring_overflow_flush(ctx, false);
2345 if (io_cqring_events(ctx))
2346 goto out;
2347 do {
2348 /*
2349 * If a submit got punted to a workqueue, we can have the
2350 * application entering polling for a command before it gets
2351 * issued. That app will hold the uring_lock for the duration
2352 * of the poll right here, so we need to take a breather every
2353 * now and then to ensure that the issue has a chance to add
2354 * the poll to the issued list. Otherwise we can spin here
2355 * forever, while the workqueue is stuck trying to acquire the
2356 * very same mutex.
2357 */
2358 if (list_empty(&ctx->iopoll_list)) {
2359 u32 tail = ctx->cached_cq_tail;
2360
2361 mutex_unlock(&ctx->uring_lock);
2362 io_run_task_work();
2363 mutex_lock(&ctx->uring_lock);
2364
2365 /* some requests don't go through iopoll_list */
2366 if (tail != ctx->cached_cq_tail ||
2367 list_empty(&ctx->iopoll_list))
2368 break;
2369 }
2370 ret = io_do_iopoll(ctx, &nr_events, min);
2371 } while (!ret && nr_events < min && !need_resched());
2372 out:
2373 mutex_unlock(&ctx->uring_lock);
2374 return ret;
2375 }
2376
2377 static void kiocb_end_write(struct io_kiocb *req)
2378 {
2379 /*
2380 * Tell lockdep we inherited freeze protection from submission
2381 * thread.
2382 */
2383 if (req->flags & REQ_F_ISREG) {
2384 struct super_block *sb = file_inode(req->file)->i_sb;
2385
2386 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2387 sb_end_write(sb);
2388 }
2389 }
2390
2391 #ifdef CONFIG_BLOCK
2392 static bool io_resubmit_prep(struct io_kiocb *req)
2393 {
2394 struct io_async_rw *rw = req->async_data;
2395
2396 if (!rw)
2397 return !io_req_prep_async(req);
2398 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2399 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2400 return true;
2401 }
2402
2403 static bool io_rw_should_reissue(struct io_kiocb *req)
2404 {
2405 umode_t mode = file_inode(req->file)->i_mode;
2406 struct io_ring_ctx *ctx = req->ctx;
2407
2408 if (!S_ISBLK(mode) && !S_ISREG(mode))
2409 return false;
2410 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2411 !(ctx->flags & IORING_SETUP_IOPOLL)))
2412 return false;
2413 /*
2414 * If ref is dying, we might be running poll reap from the exit work.
2415 * Don't attempt to reissue from that path, just let it fail with
2416 * -EAGAIN.
2417 */
2418 if (percpu_ref_is_dying(&ctx->refs))
2419 return false;
2420 return true;
2421 }
2422 #else
2423 static bool io_resubmit_prep(struct io_kiocb *req)
2424 {
2425 return false;
2426 }
2427 static bool io_rw_should_reissue(struct io_kiocb *req)
2428 {
2429 return false;
2430 }
2431 #endif
2432
2433 static void io_fallback_req_func(struct work_struct *work)
2434 {
2435 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
2436 fallback_work.work);
2437 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
2438 struct io_kiocb *req, *tmp;
2439
2440 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
2441 req->io_task_work.func(req);
2442 }
2443
2444 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2445 unsigned int issue_flags)
2446 {
2447 int cflags = 0;
2448
2449 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2450 kiocb_end_write(req);
2451 if (res != req->result) {
2452 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2453 io_rw_should_reissue(req)) {
2454 req->flags |= REQ_F_REISSUE;
2455 return;
2456 }
2457 req_set_fail(req);
2458 }
2459 if (req->flags & REQ_F_BUFFER_SELECTED)
2460 cflags = io_put_rw_kbuf(req);
2461 __io_req_complete(req, issue_flags, res, cflags);
2462 }
2463
2464 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2465 {
2466 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2467
2468 __io_complete_rw(req, res, res2, 0);
2469 }
2470
2471 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2472 {
2473 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2474
2475 if (kiocb->ki_flags & IOCB_WRITE)
2476 kiocb_end_write(req);
2477 if (unlikely(res != req->result)) {
2478 if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2479 io_resubmit_prep(req))) {
2480 req_set_fail(req);
2481 req->flags |= REQ_F_DONT_REISSUE;
2482 }
2483 }
2484
2485 WRITE_ONCE(req->result, res);
2486 /* order with io_iopoll_complete() checking ->result */
2487 smp_wmb();
2488 WRITE_ONCE(req->iopoll_completed, 1);
2489 }
2490
2491 /*
2492 * After the iocb has been issued, it's safe to be found on the poll list.
2493 * Adding the kiocb to the list AFTER submission ensures that we don't
2494 * find it from a io_do_iopoll() thread before the issuer is done
2495 * accessing the kiocb cookie.
2496 */
2497 static void io_iopoll_req_issued(struct io_kiocb *req)
2498 {
2499 struct io_ring_ctx *ctx = req->ctx;
2500 const bool in_async = io_wq_current_is_worker();
2501
2502 /* workqueue context doesn't hold uring_lock, grab it now */
2503 if (unlikely(in_async))
2504 mutex_lock(&ctx->uring_lock);
2505
2506 /*
2507 * Track whether we have multiple files in our lists. This will impact
2508 * how we do polling eventually, not spinning if we're on potentially
2509 * different devices.
2510 */
2511 if (list_empty(&ctx->iopoll_list)) {
2512 ctx->poll_multi_queue = false;
2513 } else if (!ctx->poll_multi_queue) {
2514 struct io_kiocb *list_req;
2515 unsigned int queue_num0, queue_num1;
2516
2517 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2518 inflight_entry);
2519
2520 if (list_req->file != req->file) {
2521 ctx->poll_multi_queue = true;
2522 } else {
2523 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2524 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2525 if (queue_num0 != queue_num1)
2526 ctx->poll_multi_queue = true;
2527 }
2528 }
2529
2530 /*
2531 * For fast devices, IO may have already completed. If it has, add
2532 * it to the front so we find it first.
2533 */
2534 if (READ_ONCE(req->iopoll_completed))
2535 list_add(&req->inflight_entry, &ctx->iopoll_list);
2536 else
2537 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2538
2539 if (unlikely(in_async)) {
2540 /*
2541 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2542 * in sq thread task context or in io worker task context. If
2543 * current task context is sq thread, we don't need to check
2544 * whether should wake up sq thread.
2545 */
2546 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2547 wq_has_sleeper(&ctx->sq_data->wait))
2548 wake_up(&ctx->sq_data->wait);
2549
2550 mutex_unlock(&ctx->uring_lock);
2551 }
2552 }
2553
2554 static inline void io_state_file_put(struct io_submit_state *state)
2555 {
2556 if (state->file_refs) {
2557 fput_many(state->file, state->file_refs);
2558 state->file_refs = 0;
2559 }
2560 }
2561
2562 /*
2563 * Get as many references to a file as we have IOs left in this submission,
2564 * assuming most submissions are for one file, or at least that each file
2565 * has more than one submission.
2566 */
2567 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2568 {
2569 if (!state)
2570 return fget(fd);
2571
2572 if (state->file_refs) {
2573 if (state->fd == fd) {
2574 state->file_refs--;
2575 return state->file;
2576 }
2577 io_state_file_put(state);
2578 }
2579 state->file = fget_many(fd, state->ios_left);
2580 if (unlikely(!state->file))
2581 return NULL;
2582
2583 state->fd = fd;
2584 state->file_refs = state->ios_left - 1;
2585 return state->file;
2586 }
2587
2588 static bool io_bdev_nowait(struct block_device *bdev)
2589 {
2590 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2591 }
2592
2593 /*
2594 * If we tracked the file through the SCM inflight mechanism, we could support
2595 * any file. For now, just ensure that anything potentially problematic is done
2596 * inline.
2597 */
2598 static bool __io_file_supports_async(struct file *file, int rw)
2599 {
2600 umode_t mode = file_inode(file)->i_mode;
2601
2602 if (S_ISBLK(mode)) {
2603 if (IS_ENABLED(CONFIG_BLOCK) &&
2604 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2605 return true;
2606 return false;
2607 }
2608 if (S_ISSOCK(mode))
2609 return true;
2610 if (S_ISREG(mode)) {
2611 if (IS_ENABLED(CONFIG_BLOCK) &&
2612 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2613 file->f_op != &io_uring_fops)
2614 return true;
2615 return false;
2616 }
2617
2618 /* any ->read/write should understand O_NONBLOCK */
2619 if (file->f_flags & O_NONBLOCK)
2620 return true;
2621
2622 if (!(file->f_mode & FMODE_NOWAIT))
2623 return false;
2624
2625 if (rw == READ)
2626 return file->f_op->read_iter != NULL;
2627
2628 return file->f_op->write_iter != NULL;
2629 }
2630
2631 static bool io_file_supports_async(struct io_kiocb *req, int rw)
2632 {
2633 if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2634 return true;
2635 else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2636 return true;
2637
2638 return __io_file_supports_async(req->file, rw);
2639 }
2640
2641 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2642 {
2643 struct io_ring_ctx *ctx = req->ctx;
2644 struct kiocb *kiocb = &req->rw.kiocb;
2645 struct file *file = req->file;
2646 unsigned ioprio;
2647 int ret;
2648
2649 if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2650 req->flags |= REQ_F_ISREG;
2651
2652 kiocb->ki_pos = READ_ONCE(sqe->off);
2653 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2654 req->flags |= REQ_F_CUR_POS;
2655 kiocb->ki_pos = file->f_pos;
2656 }
2657 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2658 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2659 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2660 if (unlikely(ret))
2661 return ret;
2662
2663 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2664 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2665 req->flags |= REQ_F_NOWAIT;
2666
2667 ioprio = READ_ONCE(sqe->ioprio);
2668 if (ioprio) {
2669 ret = ioprio_check_cap(ioprio);
2670 if (ret)
2671 return ret;
2672
2673 kiocb->ki_ioprio = ioprio;
2674 } else
2675 kiocb->ki_ioprio = get_current_ioprio();
2676
2677 if (ctx->flags & IORING_SETUP_IOPOLL) {
2678 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2679 !kiocb->ki_filp->f_op->iopoll)
2680 return -EOPNOTSUPP;
2681
2682 kiocb->ki_flags |= IOCB_HIPRI;
2683 kiocb->ki_complete = io_complete_rw_iopoll;
2684 req->iopoll_completed = 0;
2685 } else {
2686 if (kiocb->ki_flags & IOCB_HIPRI)
2687 return -EINVAL;
2688 kiocb->ki_complete = io_complete_rw;
2689 }
2690
2691 if (req->opcode == IORING_OP_READ_FIXED ||
2692 req->opcode == IORING_OP_WRITE_FIXED) {
2693 req->imu = NULL;
2694 io_req_set_rsrc_node(req);
2695 }
2696
2697 req->rw.addr = READ_ONCE(sqe->addr);
2698 req->rw.len = READ_ONCE(sqe->len);
2699 req->buf_index = READ_ONCE(sqe->buf_index);
2700 return 0;
2701 }
2702
2703 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2704 {
2705 switch (ret) {
2706 case -EIOCBQUEUED:
2707 break;
2708 case -ERESTARTSYS:
2709 case -ERESTARTNOINTR:
2710 case -ERESTARTNOHAND:
2711 case -ERESTART_RESTARTBLOCK:
2712 /*
2713 * We can't just restart the syscall, since previously
2714 * submitted sqes may already be in progress. Just fail this
2715 * IO with EINTR.
2716 */
2717 ret = -EINTR;
2718 fallthrough;
2719 default:
2720 kiocb->ki_complete(kiocb, ret, 0);
2721 }
2722 }
2723
2724 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2725 unsigned int issue_flags)
2726 {
2727 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2728 struct io_async_rw *io = req->async_data;
2729 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2730
2731 /* add previously done IO, if any */
2732 if (io && io->bytes_done > 0) {
2733 if (ret < 0)
2734 ret = io->bytes_done;
2735 else
2736 ret += io->bytes_done;
2737 }
2738
2739 if (req->flags & REQ_F_CUR_POS)
2740 req->file->f_pos = kiocb->ki_pos;
2741 if (ret >= 0 && check_reissue)
2742 __io_complete_rw(req, ret, 0, issue_flags);
2743 else
2744 io_rw_done(kiocb, ret);
2745
2746 if (check_reissue && (req->flags & REQ_F_REISSUE)) {
2747 req->flags &= ~REQ_F_REISSUE;
2748 if (io_resubmit_prep(req)) {
2749 req_ref_get(req);
2750 io_queue_async_work(req);
2751 } else {
2752 int cflags = 0;
2753
2754 req_set_fail(req);
2755 if (req->flags & REQ_F_BUFFER_SELECTED)
2756 cflags = io_put_rw_kbuf(req);
2757 __io_req_complete(req, issue_flags, ret, cflags);
2758 }
2759 }
2760 }
2761
2762 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2763 struct io_mapped_ubuf *imu)
2764 {
2765 size_t len = req->rw.len;
2766 u64 buf_end, buf_addr = req->rw.addr;
2767 size_t offset;
2768
2769 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2770 return -EFAULT;
2771 /* not inside the mapped region */
2772 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2773 return -EFAULT;
2774
2775 /*
2776 * May not be a start of buffer, set size appropriately
2777 * and advance us to the beginning.
2778 */
2779 offset = buf_addr - imu->ubuf;
2780 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2781
2782 if (offset) {
2783 /*
2784 * Don't use iov_iter_advance() here, as it's really slow for
2785 * using the latter parts of a big fixed buffer - it iterates
2786 * over each segment manually. We can cheat a bit here, because
2787 * we know that:
2788 *
2789 * 1) it's a BVEC iter, we set it up
2790 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2791 * first and last bvec
2792 *
2793 * So just find our index, and adjust the iterator afterwards.
2794 * If the offset is within the first bvec (or the whole first
2795 * bvec, just use iov_iter_advance(). This makes it easier
2796 * since we can just skip the first segment, which may not
2797 * be PAGE_SIZE aligned.
2798 */
2799 const struct bio_vec *bvec = imu->bvec;
2800
2801 if (offset <= bvec->bv_len) {
2802 iov_iter_advance(iter, offset);
2803 } else {
2804 unsigned long seg_skip;
2805
2806 /* skip first vec */
2807 offset -= bvec->bv_len;
2808 seg_skip = 1 + (offset >> PAGE_SHIFT);
2809
2810 iter->bvec = bvec + seg_skip;
2811 iter->nr_segs -= seg_skip;
2812 iter->count -= bvec->bv_len + offset;
2813 iter->iov_offset = offset & ~PAGE_MASK;
2814 }
2815 }
2816
2817 return 0;
2818 }
2819
2820 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2821 {
2822 struct io_ring_ctx *ctx = req->ctx;
2823 struct io_mapped_ubuf *imu = req->imu;
2824 u16 index, buf_index = req->buf_index;
2825
2826 if (likely(!imu)) {
2827 if (unlikely(buf_index >= ctx->nr_user_bufs))
2828 return -EFAULT;
2829 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2830 imu = READ_ONCE(ctx->user_bufs[index]);
2831 req->imu = imu;
2832 }
2833 return __io_import_fixed(req, rw, iter, imu);
2834 }
2835
2836 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2837 {
2838 if (needs_lock)
2839 mutex_unlock(&ctx->uring_lock);
2840 }
2841
2842 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2843 {
2844 /*
2845 * "Normal" inline submissions always hold the uring_lock, since we
2846 * grab it from the system call. Same is true for the SQPOLL offload.
2847 * The only exception is when we've detached the request and issue it
2848 * from an async worker thread, grab the lock for that case.
2849 */
2850 if (needs_lock)
2851 mutex_lock(&ctx->uring_lock);
2852 }
2853
2854 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2855 int bgid, struct io_buffer *kbuf,
2856 bool needs_lock)
2857 {
2858 struct io_buffer *head;
2859
2860 if (req->flags & REQ_F_BUFFER_SELECTED)
2861 return kbuf;
2862
2863 io_ring_submit_lock(req->ctx, needs_lock);
2864
2865 lockdep_assert_held(&req->ctx->uring_lock);
2866
2867 head = xa_load(&req->ctx->io_buffers, bgid);
2868 if (head) {
2869 if (!list_empty(&head->list)) {
2870 kbuf = list_last_entry(&head->list, struct io_buffer,
2871 list);
2872 list_del(&kbuf->list);
2873 } else {
2874 kbuf = head;
2875 xa_erase(&req->ctx->io_buffers, bgid);
2876 }
2877 if (*len > kbuf->len)
2878 *len = kbuf->len;
2879 } else {
2880 kbuf = ERR_PTR(-ENOBUFS);
2881 }
2882
2883 io_ring_submit_unlock(req->ctx, needs_lock);
2884
2885 return kbuf;
2886 }
2887
2888 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2889 bool needs_lock)
2890 {
2891 struct io_buffer *kbuf;
2892 u16 bgid;
2893
2894 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2895 bgid = req->buf_index;
2896 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2897 if (IS_ERR(kbuf))
2898 return kbuf;
2899 req->rw.addr = (u64) (unsigned long) kbuf;
2900 req->flags |= REQ_F_BUFFER_SELECTED;
2901 return u64_to_user_ptr(kbuf->addr);
2902 }
2903
2904 #ifdef CONFIG_COMPAT
2905 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2906 bool needs_lock)
2907 {
2908 struct compat_iovec __user *uiov;
2909 compat_ssize_t clen;
2910 void __user *buf;
2911 ssize_t len;
2912
2913 uiov = u64_to_user_ptr(req->rw.addr);
2914 if (!access_ok(uiov, sizeof(*uiov)))
2915 return -EFAULT;
2916 if (__get_user(clen, &uiov->iov_len))
2917 return -EFAULT;
2918 if (clen < 0)
2919 return -EINVAL;
2920
2921 len = clen;
2922 buf = io_rw_buffer_select(req, &len, needs_lock);
2923 if (IS_ERR(buf))
2924 return PTR_ERR(buf);
2925 iov[0].iov_base = buf;
2926 iov[0].iov_len = (compat_size_t) len;
2927 return 0;
2928 }
2929 #endif
2930
2931 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2932 bool needs_lock)
2933 {
2934 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2935 void __user *buf;
2936 ssize_t len;
2937
2938 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2939 return -EFAULT;
2940
2941 len = iov[0].iov_len;
2942 if (len < 0)
2943 return -EINVAL;
2944 buf = io_rw_buffer_select(req, &len, needs_lock);
2945 if (IS_ERR(buf))
2946 return PTR_ERR(buf);
2947 iov[0].iov_base = buf;
2948 iov[0].iov_len = len;
2949 return 0;
2950 }
2951
2952 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2953 bool needs_lock)
2954 {
2955 if (req->flags & REQ_F_BUFFER_SELECTED) {
2956 struct io_buffer *kbuf;
2957
2958 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2959 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2960 iov[0].iov_len = kbuf->len;
2961 return 0;
2962 }
2963 if (req->rw.len != 1)
2964 return -EINVAL;
2965
2966 #ifdef CONFIG_COMPAT
2967 if (req->ctx->compat)
2968 return io_compat_import(req, iov, needs_lock);
2969 #endif
2970
2971 return __io_iov_buffer_select(req, iov, needs_lock);
2972 }
2973
2974 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
2975 struct iov_iter *iter, bool needs_lock)
2976 {
2977 void __user *buf = u64_to_user_ptr(req->rw.addr);
2978 size_t sqe_len = req->rw.len;
2979 u8 opcode = req->opcode;
2980 ssize_t ret;
2981
2982 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2983 *iovec = NULL;
2984 return io_import_fixed(req, rw, iter);
2985 }
2986
2987 /* buffer index only valid with fixed read/write, or buffer select */
2988 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
2989 return -EINVAL;
2990
2991 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2992 if (req->flags & REQ_F_BUFFER_SELECT) {
2993 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
2994 if (IS_ERR(buf))
2995 return PTR_ERR(buf);
2996 req->rw.len = sqe_len;
2997 }
2998
2999 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3000 *iovec = NULL;
3001 return ret;
3002 }
3003
3004 if (req->flags & REQ_F_BUFFER_SELECT) {
3005 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3006 if (!ret)
3007 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3008 *iovec = NULL;
3009 return ret;
3010 }
3011
3012 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3013 req->ctx->compat);
3014 }
3015
3016 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3017 {
3018 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3019 }
3020
3021 /*
3022 * For files that don't have ->read_iter() and ->write_iter(), handle them
3023 * by looping over ->read() or ->write() manually.
3024 */
3025 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3026 {
3027 struct kiocb *kiocb = &req->rw.kiocb;
3028 struct file *file = req->file;
3029 ssize_t ret = 0;
3030
3031 /*
3032 * Don't support polled IO through this interface, and we can't
3033 * support non-blocking either. For the latter, this just causes
3034 * the kiocb to be handled from an async context.
3035 */
3036 if (kiocb->ki_flags & IOCB_HIPRI)
3037 return -EOPNOTSUPP;
3038 if (kiocb->ki_flags & IOCB_NOWAIT)
3039 return -EAGAIN;
3040
3041 while (iov_iter_count(iter)) {
3042 struct iovec iovec;
3043 ssize_t nr;
3044
3045 if (!iov_iter_is_bvec(iter)) {
3046 iovec = iov_iter_iovec(iter);
3047 } else {
3048 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3049 iovec.iov_len = req->rw.len;
3050 }
3051
3052 if (rw == READ) {
3053 nr = file->f_op->read(file, iovec.iov_base,
3054 iovec.iov_len, io_kiocb_ppos(kiocb));
3055 } else {
3056 nr = file->f_op->write(file, iovec.iov_base,
3057 iovec.iov_len, io_kiocb_ppos(kiocb));
3058 }
3059
3060 if (nr < 0) {
3061 if (!ret)
3062 ret = nr;
3063 break;
3064 }
3065 ret += nr;
3066 if (nr != iovec.iov_len)
3067 break;
3068 req->rw.len -= nr;
3069 req->rw.addr += nr;
3070 iov_iter_advance(iter, nr);
3071 }
3072
3073 return ret;
3074 }
3075
3076 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3077 const struct iovec *fast_iov, struct iov_iter *iter)
3078 {
3079 struct io_async_rw *rw = req->async_data;
3080
3081 memcpy(&rw->iter, iter, sizeof(*iter));
3082 rw->free_iovec = iovec;
3083 rw->bytes_done = 0;
3084 /* can only be fixed buffers, no need to do anything */
3085 if (iov_iter_is_bvec(iter))
3086 return;
3087 if (!iovec) {
3088 unsigned iov_off = 0;
3089
3090 rw->iter.iov = rw->fast_iov;
3091 if (iter->iov != fast_iov) {
3092 iov_off = iter->iov - fast_iov;
3093 rw->iter.iov += iov_off;
3094 }
3095 if (rw->fast_iov != fast_iov)
3096 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3097 sizeof(struct iovec) * iter->nr_segs);
3098 } else {
3099 req->flags |= REQ_F_NEED_CLEANUP;
3100 }
3101 }
3102
3103 static inline int io_alloc_async_data(struct io_kiocb *req)
3104 {
3105 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3106 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3107 return req->async_data == NULL;
3108 }
3109
3110 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3111 const struct iovec *fast_iov,
3112 struct iov_iter *iter, bool force)
3113 {
3114 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3115 return 0;
3116 if (!req->async_data) {
3117 if (io_alloc_async_data(req)) {
3118 kfree(iovec);
3119 return -ENOMEM;
3120 }
3121
3122 io_req_map_rw(req, iovec, fast_iov, iter);
3123 }
3124 return 0;
3125 }
3126
3127 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3128 {
3129 struct io_async_rw *iorw = req->async_data;
3130 struct iovec *iov = iorw->fast_iov;
3131 int ret;
3132
3133 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3134 if (unlikely(ret < 0))
3135 return ret;
3136
3137 iorw->bytes_done = 0;
3138 iorw->free_iovec = iov;
3139 if (iov)
3140 req->flags |= REQ_F_NEED_CLEANUP;
3141 return 0;
3142 }
3143
3144 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3145 {
3146 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3147 return -EBADF;
3148 return io_prep_rw(req, sqe);
3149 }
3150
3151 /*
3152 * This is our waitqueue callback handler, registered through lock_page_async()
3153 * when we initially tried to do the IO with the iocb armed our waitqueue.
3154 * This gets called when the page is unlocked, and we generally expect that to
3155 * happen when the page IO is completed and the page is now uptodate. This will
3156 * queue a task_work based retry of the operation, attempting to copy the data
3157 * again. If the latter fails because the page was NOT uptodate, then we will
3158 * do a thread based blocking retry of the operation. That's the unexpected
3159 * slow path.
3160 */
3161 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3162 int sync, void *arg)
3163 {
3164 struct wait_page_queue *wpq;
3165 struct io_kiocb *req = wait->private;
3166 struct wait_page_key *key = arg;
3167
3168 wpq = container_of(wait, struct wait_page_queue, wait);
3169
3170 if (!wake_page_match(wpq, key))
3171 return 0;
3172
3173 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3174 list_del_init(&wait->entry);
3175
3176 /* submit ref gets dropped, acquire a new one */
3177 req_ref_get(req);
3178 io_req_task_queue(req);
3179 return 1;
3180 }
3181
3182 /*
3183 * This controls whether a given IO request should be armed for async page
3184 * based retry. If we return false here, the request is handed to the async
3185 * worker threads for retry. If we're doing buffered reads on a regular file,
3186 * we prepare a private wait_page_queue entry and retry the operation. This
3187 * will either succeed because the page is now uptodate and unlocked, or it
3188 * will register a callback when the page is unlocked at IO completion. Through
3189 * that callback, io_uring uses task_work to setup a retry of the operation.
3190 * That retry will attempt the buffered read again. The retry will generally
3191 * succeed, or in rare cases where it fails, we then fall back to using the
3192 * async worker threads for a blocking retry.
3193 */
3194 static bool io_rw_should_retry(struct io_kiocb *req)
3195 {
3196 struct io_async_rw *rw = req->async_data;
3197 struct wait_page_queue *wait = &rw->wpq;
3198 struct kiocb *kiocb = &req->rw.kiocb;
3199
3200 /* never retry for NOWAIT, we just complete with -EAGAIN */
3201 if (req->flags & REQ_F_NOWAIT)
3202 return false;
3203
3204 /* Only for buffered IO */
3205 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3206 return false;
3207
3208 /*
3209 * just use poll if we can, and don't attempt if the fs doesn't
3210 * support callback based unlocks
3211 */
3212 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3213 return false;
3214
3215 wait->wait.func = io_async_buf_func;
3216 wait->wait.private = req;
3217 wait->wait.flags = 0;
3218 INIT_LIST_HEAD(&wait->wait.entry);
3219 kiocb->ki_flags |= IOCB_WAITQ;
3220 kiocb->ki_flags &= ~IOCB_NOWAIT;
3221 kiocb->ki_waitq = wait;
3222 return true;
3223 }
3224
3225 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3226 {
3227 if (req->file->f_op->read_iter)
3228 return call_read_iter(req->file, &req->rw.kiocb, iter);
3229 else if (req->file->f_op->read)
3230 return loop_rw_iter(READ, req, iter);
3231 else
3232 return -EINVAL;
3233 }
3234
3235 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3236 {
3237 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3238 struct kiocb *kiocb = &req->rw.kiocb;
3239 struct iov_iter __iter, *iter = &__iter;
3240 struct io_async_rw *rw = req->async_data;
3241 ssize_t io_size, ret, ret2;
3242 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3243
3244 if (rw) {
3245 iter = &rw->iter;
3246 iovec = NULL;
3247 } else {
3248 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3249 if (ret < 0)
3250 return ret;
3251 }
3252 io_size = iov_iter_count(iter);
3253 req->result = io_size;
3254
3255 /* Ensure we clear previously set non-block flag */
3256 if (!force_nonblock)
3257 kiocb->ki_flags &= ~IOCB_NOWAIT;
3258 else
3259 kiocb->ki_flags |= IOCB_NOWAIT;
3260
3261 /* If the file doesn't support async, just async punt */
3262 if (force_nonblock && !io_file_supports_async(req, READ)) {
3263 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3264 return ret ?: -EAGAIN;
3265 }
3266
3267 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3268 if (unlikely(ret)) {
3269 kfree(iovec);
3270 return ret;
3271 }
3272
3273 ret = io_iter_do_read(req, iter);
3274
3275 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3276 req->flags &= ~REQ_F_REISSUE;
3277 /* IOPOLL retry should happen for io-wq threads */
3278 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3279 goto done;
3280 /* no retry on NONBLOCK nor RWF_NOWAIT */
3281 if (req->flags & REQ_F_NOWAIT)
3282 goto done;
3283 /* some cases will consume bytes even on error returns */
3284 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3285 ret = 0;
3286 } else if (ret == -EIOCBQUEUED) {
3287 goto out_free;
3288 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3289 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3290 /* read all, failed, already did sync or don't want to retry */
3291 goto done;
3292 }
3293
3294 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3295 if (ret2)
3296 return ret2;
3297
3298 iovec = NULL;
3299 rw = req->async_data;
3300 /* now use our persistent iterator, if we aren't already */
3301 iter = &rw->iter;
3302
3303 do {
3304 io_size -= ret;
3305 rw->bytes_done += ret;
3306 /* if we can retry, do so with the callbacks armed */
3307 if (!io_rw_should_retry(req)) {
3308 kiocb->ki_flags &= ~IOCB_WAITQ;
3309 return -EAGAIN;
3310 }
3311
3312 /*
3313 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3314 * we get -EIOCBQUEUED, then we'll get a notification when the
3315 * desired page gets unlocked. We can also get a partial read
3316 * here, and if we do, then just retry at the new offset.
3317 */
3318 ret = io_iter_do_read(req, iter);
3319 if (ret == -EIOCBQUEUED)
3320 return 0;
3321 /* we got some bytes, but not all. retry. */
3322 kiocb->ki_flags &= ~IOCB_WAITQ;
3323 } while (ret > 0 && ret < io_size);
3324 done:
3325 kiocb_done(kiocb, ret, issue_flags);
3326 out_free:
3327 /* it's faster to check here then delegate to kfree */
3328 if (iovec)
3329 kfree(iovec);
3330 return 0;
3331 }
3332
3333 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3334 {
3335 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3336 return -EBADF;
3337 return io_prep_rw(req, sqe);
3338 }
3339
3340 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3341 {
3342 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3343 struct kiocb *kiocb = &req->rw.kiocb;
3344 struct iov_iter __iter, *iter = &__iter;
3345 struct io_async_rw *rw = req->async_data;
3346 ssize_t ret, ret2, io_size;
3347 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3348
3349 if (rw) {
3350 iter = &rw->iter;
3351 iovec = NULL;
3352 } else {
3353 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3354 if (ret < 0)
3355 return ret;
3356 }
3357 io_size = iov_iter_count(iter);
3358 req->result = io_size;
3359
3360 /* Ensure we clear previously set non-block flag */
3361 if (!force_nonblock)
3362 kiocb->ki_flags &= ~IOCB_NOWAIT;
3363 else
3364 kiocb->ki_flags |= IOCB_NOWAIT;
3365
3366 /* If the file doesn't support async, just async punt */
3367 if (force_nonblock && !io_file_supports_async(req, WRITE))
3368 goto copy_iov;
3369
3370 /* file path doesn't support NOWAIT for non-direct_IO */
3371 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3372 (req->flags & REQ_F_ISREG))
3373 goto copy_iov;
3374
3375 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3376 if (unlikely(ret))
3377 goto out_free;
3378
3379 /*
3380 * Open-code file_start_write here to grab freeze protection,
3381 * which will be released by another thread in
3382 * io_complete_rw(). Fool lockdep by telling it the lock got
3383 * released so that it doesn't complain about the held lock when
3384 * we return to userspace.
3385 */
3386 if (req->flags & REQ_F_ISREG) {
3387 sb_start_write(file_inode(req->file)->i_sb);
3388 __sb_writers_release(file_inode(req->file)->i_sb,
3389 SB_FREEZE_WRITE);
3390 }
3391 kiocb->ki_flags |= IOCB_WRITE;
3392
3393 if (req->file->f_op->write_iter)
3394 ret2 = call_write_iter(req->file, kiocb, iter);
3395 else if (req->file->f_op->write)
3396 ret2 = loop_rw_iter(WRITE, req, iter);
3397 else
3398 ret2 = -EINVAL;
3399
3400 if (req->flags & REQ_F_REISSUE) {
3401 req->flags &= ~REQ_F_REISSUE;
3402 ret2 = -EAGAIN;
3403 }
3404
3405 /*
3406 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3407 * retry them without IOCB_NOWAIT.
3408 */
3409 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3410 ret2 = -EAGAIN;
3411 /* no retry on NONBLOCK nor RWF_NOWAIT */
3412 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3413 goto done;
3414 if (!force_nonblock || ret2 != -EAGAIN) {
3415 /* IOPOLL retry should happen for io-wq threads */
3416 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3417 goto copy_iov;
3418 done:
3419 kiocb_done(kiocb, ret2, issue_flags);
3420 } else {
3421 copy_iov:
3422 /* some cases will consume bytes even on error returns */
3423 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3424 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3425 return ret ?: -EAGAIN;
3426 }
3427 out_free:
3428 /* it's reportedly faster than delegating the null check to kfree() */
3429 if (iovec)
3430 kfree(iovec);
3431 return ret;
3432 }
3433
3434 static int io_renameat_prep(struct io_kiocb *req,
3435 const struct io_uring_sqe *sqe)
3436 {
3437 struct io_rename *ren = &req->rename;
3438 const char __user *oldf, *newf;
3439
3440 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3441 return -EINVAL;
3442 if (sqe->ioprio || sqe->buf_index)
3443 return -EINVAL;
3444 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3445 return -EBADF;
3446
3447 ren->old_dfd = READ_ONCE(sqe->fd);
3448 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3449 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3450 ren->new_dfd = READ_ONCE(sqe->len);
3451 ren->flags = READ_ONCE(sqe->rename_flags);
3452
3453 ren->oldpath = getname(oldf);
3454 if (IS_ERR(ren->oldpath))
3455 return PTR_ERR(ren->oldpath);
3456
3457 ren->newpath = getname(newf);
3458 if (IS_ERR(ren->newpath)) {
3459 putname(ren->oldpath);
3460 return PTR_ERR(ren->newpath);
3461 }
3462
3463 req->flags |= REQ_F_NEED_CLEANUP;
3464 return 0;
3465 }
3466
3467 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3468 {
3469 struct io_rename *ren = &req->rename;
3470 int ret;
3471
3472 if (issue_flags & IO_URING_F_NONBLOCK)
3473 return -EAGAIN;
3474
3475 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3476 ren->newpath, ren->flags);
3477
3478 req->flags &= ~REQ_F_NEED_CLEANUP;
3479 if (ret < 0)
3480 req_set_fail(req);
3481 io_req_complete(req, ret);
3482 return 0;
3483 }
3484
3485 static int io_unlinkat_prep(struct io_kiocb *req,
3486 const struct io_uring_sqe *sqe)
3487 {
3488 struct io_unlink *un = &req->unlink;
3489 const char __user *fname;
3490
3491 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3492 return -EINVAL;
3493 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
3494 return -EINVAL;
3495 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3496 return -EBADF;
3497
3498 un->dfd = READ_ONCE(sqe->fd);
3499
3500 un->flags = READ_ONCE(sqe->unlink_flags);
3501 if (un->flags & ~AT_REMOVEDIR)
3502 return -EINVAL;
3503
3504 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3505 un->filename = getname(fname);
3506 if (IS_ERR(un->filename))
3507 return PTR_ERR(un->filename);
3508
3509 req->flags |= REQ_F_NEED_CLEANUP;
3510 return 0;
3511 }
3512
3513 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3514 {
3515 struct io_unlink *un = &req->unlink;
3516 int ret;
3517
3518 if (issue_flags & IO_URING_F_NONBLOCK)
3519 return -EAGAIN;
3520
3521 if (un->flags & AT_REMOVEDIR)
3522 ret = do_rmdir(un->dfd, un->filename);
3523 else
3524 ret = do_unlinkat(un->dfd, un->filename);
3525
3526 req->flags &= ~REQ_F_NEED_CLEANUP;
3527 if (ret < 0)
3528 req_set_fail(req);
3529 io_req_complete(req, ret);
3530 return 0;
3531 }
3532
3533 static int io_shutdown_prep(struct io_kiocb *req,
3534 const struct io_uring_sqe *sqe)
3535 {
3536 #if defined(CONFIG_NET)
3537 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3538 return -EINVAL;
3539 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3540 sqe->buf_index)
3541 return -EINVAL;
3542
3543 req->shutdown.how = READ_ONCE(sqe->len);
3544 return 0;
3545 #else
3546 return -EOPNOTSUPP;
3547 #endif
3548 }
3549
3550 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3551 {
3552 #if defined(CONFIG_NET)
3553 struct socket *sock;
3554 int ret;
3555
3556 if (issue_flags & IO_URING_F_NONBLOCK)
3557 return -EAGAIN;
3558
3559 sock = sock_from_file(req->file);
3560 if (unlikely(!sock))
3561 return -ENOTSOCK;
3562
3563 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3564 if (ret < 0)
3565 req_set_fail(req);
3566 io_req_complete(req, ret);
3567 return 0;
3568 #else
3569 return -EOPNOTSUPP;
3570 #endif
3571 }
3572
3573 static int __io_splice_prep(struct io_kiocb *req,
3574 const struct io_uring_sqe *sqe)
3575 {
3576 struct io_splice *sp = &req->splice;
3577 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3578
3579 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3580 return -EINVAL;
3581
3582 sp->file_in = NULL;
3583 sp->len = READ_ONCE(sqe->len);
3584 sp->flags = READ_ONCE(sqe->splice_flags);
3585
3586 if (unlikely(sp->flags & ~valid_flags))
3587 return -EINVAL;
3588
3589 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3590 (sp->flags & SPLICE_F_FD_IN_FIXED));
3591 if (!sp->file_in)
3592 return -EBADF;
3593 req->flags |= REQ_F_NEED_CLEANUP;
3594 return 0;
3595 }
3596
3597 static int io_tee_prep(struct io_kiocb *req,
3598 const struct io_uring_sqe *sqe)
3599 {
3600 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3601 return -EINVAL;
3602 return __io_splice_prep(req, sqe);
3603 }
3604
3605 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3606 {
3607 struct io_splice *sp = &req->splice;
3608 struct file *in = sp->file_in;
3609 struct file *out = sp->file_out;
3610 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3611 long ret = 0;
3612
3613 if (issue_flags & IO_URING_F_NONBLOCK)
3614 return -EAGAIN;
3615 if (sp->len)
3616 ret = do_tee(in, out, sp->len, flags);
3617
3618 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3619 io_put_file(in);
3620 req->flags &= ~REQ_F_NEED_CLEANUP;
3621
3622 if (ret != sp->len)
3623 req_set_fail(req);
3624 io_req_complete(req, ret);
3625 return 0;
3626 }
3627
3628 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3629 {
3630 struct io_splice *sp = &req->splice;
3631
3632 sp->off_in = READ_ONCE(sqe->splice_off_in);
3633 sp->off_out = READ_ONCE(sqe->off);
3634 return __io_splice_prep(req, sqe);
3635 }
3636
3637 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3638 {
3639 struct io_splice *sp = &req->splice;
3640 struct file *in = sp->file_in;
3641 struct file *out = sp->file_out;
3642 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3643 loff_t *poff_in, *poff_out;
3644 long ret = 0;
3645
3646 if (issue_flags & IO_URING_F_NONBLOCK)
3647 return -EAGAIN;
3648
3649 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3650 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3651
3652 if (sp->len)
3653 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3654
3655 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3656 io_put_file(in);
3657 req->flags &= ~REQ_F_NEED_CLEANUP;
3658
3659 if (ret != sp->len)
3660 req_set_fail(req);
3661 io_req_complete(req, ret);
3662 return 0;
3663 }
3664
3665 /*
3666 * IORING_OP_NOP just posts a completion event, nothing else.
3667 */
3668 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3669 {
3670 struct io_ring_ctx *ctx = req->ctx;
3671
3672 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3673 return -EINVAL;
3674
3675 __io_req_complete(req, issue_flags, 0, 0);
3676 return 0;
3677 }
3678
3679 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3680 {
3681 struct io_ring_ctx *ctx = req->ctx;
3682
3683 if (!req->file)
3684 return -EBADF;
3685
3686 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3687 return -EINVAL;
3688 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3689 return -EINVAL;
3690
3691 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3692 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3693 return -EINVAL;
3694
3695 req->sync.off = READ_ONCE(sqe->off);
3696 req->sync.len = READ_ONCE(sqe->len);
3697 return 0;
3698 }
3699
3700 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3701 {
3702 loff_t end = req->sync.off + req->sync.len;
3703 int ret;
3704
3705 /* fsync always requires a blocking context */
3706 if (issue_flags & IO_URING_F_NONBLOCK)
3707 return -EAGAIN;
3708
3709 ret = vfs_fsync_range(req->file, req->sync.off,
3710 end > 0 ? end : LLONG_MAX,
3711 req->sync.flags & IORING_FSYNC_DATASYNC);
3712 if (ret < 0)
3713 req_set_fail(req);
3714 io_req_complete(req, ret);
3715 return 0;
3716 }
3717
3718 static int io_fallocate_prep(struct io_kiocb *req,
3719 const struct io_uring_sqe *sqe)
3720 {
3721 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3722 return -EINVAL;
3723 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3724 return -EINVAL;
3725
3726 req->sync.off = READ_ONCE(sqe->off);
3727 req->sync.len = READ_ONCE(sqe->addr);
3728 req->sync.mode = READ_ONCE(sqe->len);
3729 return 0;
3730 }
3731
3732 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3733 {
3734 int ret;
3735
3736 /* fallocate always requiring blocking context */
3737 if (issue_flags & IO_URING_F_NONBLOCK)
3738 return -EAGAIN;
3739 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3740 req->sync.len);
3741 if (ret < 0)
3742 req_set_fail(req);
3743 io_req_complete(req, ret);
3744 return 0;
3745 }
3746
3747 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3748 {
3749 const char __user *fname;
3750 int ret;
3751
3752 if (unlikely(sqe->ioprio || sqe->buf_index))
3753 return -EINVAL;
3754 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3755 return -EBADF;
3756
3757 /* open.how should be already initialised */
3758 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3759 req->open.how.flags |= O_LARGEFILE;
3760
3761 req->open.dfd = READ_ONCE(sqe->fd);
3762 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3763 req->open.filename = getname(fname);
3764 if (IS_ERR(req->open.filename)) {
3765 ret = PTR_ERR(req->open.filename);
3766 req->open.filename = NULL;
3767 return ret;
3768 }
3769 req->open.nofile = rlimit(RLIMIT_NOFILE);
3770 req->flags |= REQ_F_NEED_CLEANUP;
3771 return 0;
3772 }
3773
3774 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3775 {
3776 u64 flags, mode;
3777
3778 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3779 return -EINVAL;
3780 mode = READ_ONCE(sqe->len);
3781 flags = READ_ONCE(sqe->open_flags);
3782 req->open.how = build_open_how(flags, mode);
3783 return __io_openat_prep(req, sqe);
3784 }
3785
3786 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3787 {
3788 struct open_how __user *how;
3789 size_t len;
3790 int ret;
3791
3792 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3793 return -EINVAL;
3794 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3795 len = READ_ONCE(sqe->len);
3796 if (len < OPEN_HOW_SIZE_VER0)
3797 return -EINVAL;
3798
3799 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3800 len);
3801 if (ret)
3802 return ret;
3803
3804 return __io_openat_prep(req, sqe);
3805 }
3806
3807 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3808 {
3809 struct open_flags op;
3810 struct file *file;
3811 bool nonblock_set;
3812 bool resolve_nonblock;
3813 int ret;
3814
3815 ret = build_open_flags(&req->open.how, &op);
3816 if (ret)
3817 goto err;
3818 nonblock_set = op.open_flag & O_NONBLOCK;
3819 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3820 if (issue_flags & IO_URING_F_NONBLOCK) {
3821 /*
3822 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3823 * it'll always -EAGAIN
3824 */
3825 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3826 return -EAGAIN;
3827 op.lookup_flags |= LOOKUP_CACHED;
3828 op.open_flag |= O_NONBLOCK;
3829 }
3830
3831 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3832 if (ret < 0)
3833 goto err;
3834
3835 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3836 if (IS_ERR(file)) {
3837 /*
3838 * We could hang on to this 'fd' on retrying, but seems like
3839 * marginal gain for something that is now known to be a slower
3840 * path. So just put it, and we'll get a new one when we retry.
3841 */
3842 put_unused_fd(ret);
3843
3844 ret = PTR_ERR(file);
3845 /* only retry if RESOLVE_CACHED wasn't already set by application */
3846 if (ret == -EAGAIN &&
3847 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
3848 return -EAGAIN;
3849 goto err;
3850 }
3851
3852 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3853 file->f_flags &= ~O_NONBLOCK;
3854 fsnotify_open(file);
3855 fd_install(ret, file);
3856 err:
3857 putname(req->open.filename);
3858 req->flags &= ~REQ_F_NEED_CLEANUP;
3859 if (ret < 0)
3860 req_set_fail(req);
3861 __io_req_complete(req, issue_flags, ret, 0);
3862 return 0;
3863 }
3864
3865 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3866 {
3867 return io_openat2(req, issue_flags);
3868 }
3869
3870 static int io_remove_buffers_prep(struct io_kiocb *req,
3871 const struct io_uring_sqe *sqe)
3872 {
3873 struct io_provide_buf *p = &req->pbuf;
3874 u64 tmp;
3875
3876 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3877 return -EINVAL;
3878
3879 tmp = READ_ONCE(sqe->fd);
3880 if (!tmp || tmp > USHRT_MAX)
3881 return -EINVAL;
3882
3883 memset(p, 0, sizeof(*p));
3884 p->nbufs = tmp;
3885 p->bgid = READ_ONCE(sqe->buf_group);
3886 return 0;
3887 }
3888
3889 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3890 int bgid, unsigned nbufs)
3891 {
3892 unsigned i = 0;
3893
3894 /* shouldn't happen */
3895 if (!nbufs)
3896 return 0;
3897
3898 /* the head kbuf is the list itself */
3899 while (!list_empty(&buf->list)) {
3900 struct io_buffer *nxt;
3901
3902 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3903 list_del(&nxt->list);
3904 kfree(nxt);
3905 if (++i == nbufs)
3906 return i;
3907 }
3908 i++;
3909 kfree(buf);
3910 xa_erase(&ctx->io_buffers, bgid);
3911
3912 return i;
3913 }
3914
3915 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3916 {
3917 struct io_provide_buf *p = &req->pbuf;
3918 struct io_ring_ctx *ctx = req->ctx;
3919 struct io_buffer *head;
3920 int ret = 0;
3921 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3922
3923 io_ring_submit_lock(ctx, !force_nonblock);
3924
3925 lockdep_assert_held(&ctx->uring_lock);
3926
3927 ret = -ENOENT;
3928 head = xa_load(&ctx->io_buffers, p->bgid);
3929 if (head)
3930 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3931 if (ret < 0)
3932 req_set_fail(req);
3933
3934 /* complete before unlock, IOPOLL may need the lock */
3935 __io_req_complete(req, issue_flags, ret, 0);
3936 io_ring_submit_unlock(ctx, !force_nonblock);
3937 return 0;
3938 }
3939
3940 static int io_provide_buffers_prep(struct io_kiocb *req,
3941 const struct io_uring_sqe *sqe)
3942 {
3943 unsigned long size, tmp_check;
3944 struct io_provide_buf *p = &req->pbuf;
3945 u64 tmp;
3946
3947 if (sqe->ioprio || sqe->rw_flags)
3948 return -EINVAL;
3949
3950 tmp = READ_ONCE(sqe->fd);
3951 if (!tmp || tmp > USHRT_MAX)
3952 return -E2BIG;
3953 p->nbufs = tmp;
3954 p->addr = READ_ONCE(sqe->addr);
3955 p->len = READ_ONCE(sqe->len);
3956
3957 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
3958 &size))
3959 return -EOVERFLOW;
3960 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
3961 return -EOVERFLOW;
3962
3963 size = (unsigned long)p->len * p->nbufs;
3964 if (!access_ok(u64_to_user_ptr(p->addr), size))
3965 return -EFAULT;
3966
3967 p->bgid = READ_ONCE(sqe->buf_group);
3968 tmp = READ_ONCE(sqe->off);
3969 if (tmp > USHRT_MAX)
3970 return -E2BIG;
3971 p->bid = tmp;
3972 return 0;
3973 }
3974
3975 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3976 {
3977 struct io_buffer *buf;
3978 u64 addr = pbuf->addr;
3979 int i, bid = pbuf->bid;
3980
3981 for (i = 0; i < pbuf->nbufs; i++) {
3982 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3983 if (!buf)
3984 break;
3985
3986 buf->addr = addr;
3987 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
3988 buf->bid = bid;
3989 addr += pbuf->len;
3990 bid++;
3991 if (!*head) {
3992 INIT_LIST_HEAD(&buf->list);
3993 *head = buf;
3994 } else {
3995 list_add_tail(&buf->list, &(*head)->list);
3996 }
3997 }
3998
3999 return i ? i : -ENOMEM;
4000 }
4001
4002 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4003 {
4004 struct io_provide_buf *p = &req->pbuf;
4005 struct io_ring_ctx *ctx = req->ctx;
4006 struct io_buffer *head, *list;
4007 int ret = 0;
4008 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4009
4010 io_ring_submit_lock(ctx, !force_nonblock);
4011
4012 lockdep_assert_held(&ctx->uring_lock);
4013
4014 list = head = xa_load(&ctx->io_buffers, p->bgid);
4015
4016 ret = io_add_buffers(p, &head);
4017 if (ret >= 0 && !list) {
4018 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4019 if (ret < 0)
4020 __io_remove_buffers(ctx, head, p->bgid, -1U);
4021 }
4022 if (ret < 0)
4023 req_set_fail(req);
4024 /* complete before unlock, IOPOLL may need the lock */
4025 __io_req_complete(req, issue_flags, ret, 0);
4026 io_ring_submit_unlock(ctx, !force_nonblock);
4027 return 0;
4028 }
4029
4030 static int io_epoll_ctl_prep(struct io_kiocb *req,
4031 const struct io_uring_sqe *sqe)
4032 {
4033 #if defined(CONFIG_EPOLL)
4034 if (sqe->ioprio || sqe->buf_index)
4035 return -EINVAL;
4036 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4037 return -EINVAL;
4038
4039 req->epoll.epfd = READ_ONCE(sqe->fd);
4040 req->epoll.op = READ_ONCE(sqe->len);
4041 req->epoll.fd = READ_ONCE(sqe->off);
4042
4043 if (ep_op_has_event(req->epoll.op)) {
4044 struct epoll_event __user *ev;
4045
4046 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4047 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4048 return -EFAULT;
4049 }
4050
4051 return 0;
4052 #else
4053 return -EOPNOTSUPP;
4054 #endif
4055 }
4056
4057 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4058 {
4059 #if defined(CONFIG_EPOLL)
4060 struct io_epoll *ie = &req->epoll;
4061 int ret;
4062 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4063
4064 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4065 if (force_nonblock && ret == -EAGAIN)
4066 return -EAGAIN;
4067
4068 if (ret < 0)
4069 req_set_fail(req);
4070 __io_req_complete(req, issue_flags, ret, 0);
4071 return 0;
4072 #else
4073 return -EOPNOTSUPP;
4074 #endif
4075 }
4076
4077 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4078 {
4079 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4080 if (sqe->ioprio || sqe->buf_index || sqe->off)
4081 return -EINVAL;
4082 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4083 return -EINVAL;
4084
4085 req->madvise.addr = READ_ONCE(sqe->addr);
4086 req->madvise.len = READ_ONCE(sqe->len);
4087 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4088 return 0;
4089 #else
4090 return -EOPNOTSUPP;
4091 #endif
4092 }
4093
4094 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4095 {
4096 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4097 struct io_madvise *ma = &req->madvise;
4098 int ret;
4099
4100 if (issue_flags & IO_URING_F_NONBLOCK)
4101 return -EAGAIN;
4102
4103 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4104 if (ret < 0)
4105 req_set_fail(req);
4106 io_req_complete(req, ret);
4107 return 0;
4108 #else
4109 return -EOPNOTSUPP;
4110 #endif
4111 }
4112
4113 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4114 {
4115 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4116 return -EINVAL;
4117 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4118 return -EINVAL;
4119
4120 req->fadvise.offset = READ_ONCE(sqe->off);
4121 req->fadvise.len = READ_ONCE(sqe->len);
4122 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4123 return 0;
4124 }
4125
4126 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4127 {
4128 struct io_fadvise *fa = &req->fadvise;
4129 int ret;
4130
4131 if (issue_flags & IO_URING_F_NONBLOCK) {
4132 switch (fa->advice) {
4133 case POSIX_FADV_NORMAL:
4134 case POSIX_FADV_RANDOM:
4135 case POSIX_FADV_SEQUENTIAL:
4136 break;
4137 default:
4138 return -EAGAIN;
4139 }
4140 }
4141
4142 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4143 if (ret < 0)
4144 req_set_fail(req);
4145 __io_req_complete(req, issue_flags, ret, 0);
4146 return 0;
4147 }
4148
4149 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4150 {
4151 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4152 return -EINVAL;
4153 if (sqe->ioprio || sqe->buf_index)
4154 return -EINVAL;
4155 if (req->flags & REQ_F_FIXED_FILE)
4156 return -EBADF;
4157
4158 req->statx.dfd = READ_ONCE(sqe->fd);
4159 req->statx.mask = READ_ONCE(sqe->len);
4160 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4161 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4162 req->statx.flags = READ_ONCE(sqe->statx_flags);
4163
4164 return 0;
4165 }
4166
4167 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4168 {
4169 struct io_statx *ctx = &req->statx;
4170 int ret;
4171
4172 if (issue_flags & IO_URING_F_NONBLOCK)
4173 return -EAGAIN;
4174
4175 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4176 ctx->buffer);
4177
4178 if (ret < 0)
4179 req_set_fail(req);
4180 io_req_complete(req, ret);
4181 return 0;
4182 }
4183
4184 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4185 {
4186 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4187 return -EINVAL;
4188 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4189 sqe->rw_flags || sqe->buf_index)
4190 return -EINVAL;
4191 if (req->flags & REQ_F_FIXED_FILE)
4192 return -EBADF;
4193
4194 req->close.fd = READ_ONCE(sqe->fd);
4195 return 0;
4196 }
4197
4198 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4199 {
4200 struct files_struct *files = current->files;
4201 struct io_close *close = &req->close;
4202 struct fdtable *fdt;
4203 struct file *file = NULL;
4204 int ret = -EBADF;
4205
4206 spin_lock(&files->file_lock);
4207 fdt = files_fdtable(files);
4208 if (close->fd >= fdt->max_fds) {
4209 spin_unlock(&files->file_lock);
4210 goto err;
4211 }
4212 file = fdt->fd[close->fd];
4213 if (!file || file->f_op == &io_uring_fops) {
4214 spin_unlock(&files->file_lock);
4215 file = NULL;
4216 goto err;
4217 }
4218
4219 /* if the file has a flush method, be safe and punt to async */
4220 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4221 spin_unlock(&files->file_lock);
4222 return -EAGAIN;
4223 }
4224
4225 ret = __close_fd_get_file(close->fd, &file);
4226 spin_unlock(&files->file_lock);
4227 if (ret < 0) {
4228 if (ret == -ENOENT)
4229 ret = -EBADF;
4230 goto err;
4231 }
4232
4233 /* No ->flush() or already async, safely close from here */
4234 ret = filp_close(file, current->files);
4235 err:
4236 if (ret < 0)
4237 req_set_fail(req);
4238 if (file)
4239 fput(file);
4240 __io_req_complete(req, issue_flags, ret, 0);
4241 return 0;
4242 }
4243
4244 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4245 {
4246 struct io_ring_ctx *ctx = req->ctx;
4247
4248 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4249 return -EINVAL;
4250 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4251 return -EINVAL;
4252
4253 req->sync.off = READ_ONCE(sqe->off);
4254 req->sync.len = READ_ONCE(sqe->len);
4255 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4256 return 0;
4257 }
4258
4259 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4260 {
4261 int ret;
4262
4263 /* sync_file_range always requires a blocking context */
4264 if (issue_flags & IO_URING_F_NONBLOCK)
4265 return -EAGAIN;
4266
4267 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4268 req->sync.flags);
4269 if (ret < 0)
4270 req_set_fail(req);
4271 io_req_complete(req, ret);
4272 return 0;
4273 }
4274
4275 #if defined(CONFIG_NET)
4276 static int io_setup_async_msg(struct io_kiocb *req,
4277 struct io_async_msghdr *kmsg)
4278 {
4279 struct io_async_msghdr *async_msg = req->async_data;
4280
4281 if (async_msg)
4282 return -EAGAIN;
4283 if (io_alloc_async_data(req)) {
4284 kfree(kmsg->free_iov);
4285 return -ENOMEM;
4286 }
4287 async_msg = req->async_data;
4288 req->flags |= REQ_F_NEED_CLEANUP;
4289 memcpy(async_msg, kmsg, sizeof(*kmsg));
4290 async_msg->msg.msg_name = &async_msg->addr;
4291 /* if were using fast_iov, set it to the new one */
4292 if (!async_msg->free_iov)
4293 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4294
4295 return -EAGAIN;
4296 }
4297
4298 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4299 struct io_async_msghdr *iomsg)
4300 {
4301 iomsg->msg.msg_name = &iomsg->addr;
4302 iomsg->free_iov = iomsg->fast_iov;
4303 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4304 req->sr_msg.msg_flags, &iomsg->free_iov);
4305 }
4306
4307 static int io_sendmsg_prep_async(struct io_kiocb *req)
4308 {
4309 int ret;
4310
4311 ret = io_sendmsg_copy_hdr(req, req->async_data);
4312 if (!ret)
4313 req->flags |= REQ_F_NEED_CLEANUP;
4314 return ret;
4315 }
4316
4317 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4318 {
4319 struct io_sr_msg *sr = &req->sr_msg;
4320
4321 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4322 return -EINVAL;
4323
4324 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4325 sr->len = READ_ONCE(sqe->len);
4326 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4327 if (sr->msg_flags & MSG_DONTWAIT)
4328 req->flags |= REQ_F_NOWAIT;
4329
4330 #ifdef CONFIG_COMPAT
4331 if (req->ctx->compat)
4332 sr->msg_flags |= MSG_CMSG_COMPAT;
4333 #endif
4334 return 0;
4335 }
4336
4337 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4338 {
4339 struct io_async_msghdr iomsg, *kmsg;
4340 struct socket *sock;
4341 unsigned flags;
4342 int min_ret = 0;
4343 int ret;
4344
4345 sock = sock_from_file(req->file);
4346 if (unlikely(!sock))
4347 return -ENOTSOCK;
4348
4349 kmsg = req->async_data;
4350 if (!kmsg) {
4351 ret = io_sendmsg_copy_hdr(req, &iomsg);
4352 if (ret)
4353 return ret;
4354 kmsg = &iomsg;
4355 }
4356
4357 flags = req->sr_msg.msg_flags;
4358 if (issue_flags & IO_URING_F_NONBLOCK)
4359 flags |= MSG_DONTWAIT;
4360 if (flags & MSG_WAITALL)
4361 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4362
4363 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4364 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4365 return io_setup_async_msg(req, kmsg);
4366 if (ret == -ERESTARTSYS)
4367 ret = -EINTR;
4368
4369 /* fast path, check for non-NULL to avoid function call */
4370 if (kmsg->free_iov)
4371 kfree(kmsg->free_iov);
4372 req->flags &= ~REQ_F_NEED_CLEANUP;
4373 if (ret < min_ret)
4374 req_set_fail(req);
4375 __io_req_complete(req, issue_flags, ret, 0);
4376 return 0;
4377 }
4378
4379 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4380 {
4381 struct io_sr_msg *sr = &req->sr_msg;
4382 struct msghdr msg;
4383 struct iovec iov;
4384 struct socket *sock;
4385 unsigned flags;
4386 int min_ret = 0;
4387 int ret;
4388
4389 sock = sock_from_file(req->file);
4390 if (unlikely(!sock))
4391 return -ENOTSOCK;
4392
4393 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4394 if (unlikely(ret))
4395 return ret;
4396
4397 msg.msg_name = NULL;
4398 msg.msg_control = NULL;
4399 msg.msg_controllen = 0;
4400 msg.msg_namelen = 0;
4401
4402 flags = req->sr_msg.msg_flags;
4403 if (issue_flags & IO_URING_F_NONBLOCK)
4404 flags |= MSG_DONTWAIT;
4405 if (flags & MSG_WAITALL)
4406 min_ret = iov_iter_count(&msg.msg_iter);
4407
4408 msg.msg_flags = flags;
4409 ret = sock_sendmsg(sock, &msg);
4410 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4411 return -EAGAIN;
4412 if (ret == -ERESTARTSYS)
4413 ret = -EINTR;
4414
4415 if (ret < min_ret)
4416 req_set_fail(req);
4417 __io_req_complete(req, issue_flags, ret, 0);
4418 return 0;
4419 }
4420
4421 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4422 struct io_async_msghdr *iomsg)
4423 {
4424 struct io_sr_msg *sr = &req->sr_msg;
4425 struct iovec __user *uiov;
4426 size_t iov_len;
4427 int ret;
4428
4429 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4430 &iomsg->uaddr, &uiov, &iov_len);
4431 if (ret)
4432 return ret;
4433
4434 if (req->flags & REQ_F_BUFFER_SELECT) {
4435 if (iov_len > 1)
4436 return -EINVAL;
4437 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4438 return -EFAULT;
4439 sr->len = iomsg->fast_iov[0].iov_len;
4440 iomsg->free_iov = NULL;
4441 } else {
4442 iomsg->free_iov = iomsg->fast_iov;
4443 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4444 &iomsg->free_iov, &iomsg->msg.msg_iter,
4445 false);
4446 if (ret > 0)
4447 ret = 0;
4448 }
4449
4450 return ret;
4451 }
4452
4453 #ifdef CONFIG_COMPAT
4454 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4455 struct io_async_msghdr *iomsg)
4456 {
4457 struct io_sr_msg *sr = &req->sr_msg;
4458 struct compat_iovec __user *uiov;
4459 compat_uptr_t ptr;
4460 compat_size_t len;
4461 int ret;
4462
4463 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4464 &ptr, &len);
4465 if (ret)
4466 return ret;
4467
4468 uiov = compat_ptr(ptr);
4469 if (req->flags & REQ_F_BUFFER_SELECT) {
4470 compat_ssize_t clen;
4471
4472 if (len > 1)
4473 return -EINVAL;
4474 if (!access_ok(uiov, sizeof(*uiov)))
4475 return -EFAULT;
4476 if (__get_user(clen, &uiov->iov_len))
4477 return -EFAULT;
4478 if (clen < 0)
4479 return -EINVAL;
4480 sr->len = clen;
4481 iomsg->free_iov = NULL;
4482 } else {
4483 iomsg->free_iov = iomsg->fast_iov;
4484 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4485 UIO_FASTIOV, &iomsg->free_iov,
4486 &iomsg->msg.msg_iter, true);
4487 if (ret < 0)
4488 return ret;
4489 }
4490
4491 return 0;
4492 }
4493 #endif
4494
4495 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4496 struct io_async_msghdr *iomsg)
4497 {
4498 iomsg->msg.msg_name = &iomsg->addr;
4499
4500 #ifdef CONFIG_COMPAT
4501 if (req->ctx->compat)
4502 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4503 #endif
4504
4505 return __io_recvmsg_copy_hdr(req, iomsg);
4506 }
4507
4508 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4509 bool needs_lock)
4510 {
4511 struct io_sr_msg *sr = &req->sr_msg;
4512 struct io_buffer *kbuf;
4513
4514 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4515 if (IS_ERR(kbuf))
4516 return kbuf;
4517
4518 sr->kbuf = kbuf;
4519 req->flags |= REQ_F_BUFFER_SELECTED;
4520 return kbuf;
4521 }
4522
4523 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4524 {
4525 return io_put_kbuf(req, req->sr_msg.kbuf);
4526 }
4527
4528 static int io_recvmsg_prep_async(struct io_kiocb *req)
4529 {
4530 int ret;
4531
4532 ret = io_recvmsg_copy_hdr(req, req->async_data);
4533 if (!ret)
4534 req->flags |= REQ_F_NEED_CLEANUP;
4535 return ret;
4536 }
4537
4538 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4539 {
4540 struct io_sr_msg *sr = &req->sr_msg;
4541
4542 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4543 return -EINVAL;
4544
4545 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4546 sr->len = READ_ONCE(sqe->len);
4547 sr->bgid = READ_ONCE(sqe->buf_group);
4548 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4549 if (sr->msg_flags & MSG_DONTWAIT)
4550 req->flags |= REQ_F_NOWAIT;
4551
4552 #ifdef CONFIG_COMPAT
4553 if (req->ctx->compat)
4554 sr->msg_flags |= MSG_CMSG_COMPAT;
4555 #endif
4556 return 0;
4557 }
4558
4559 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4560 {
4561 struct io_async_msghdr iomsg, *kmsg;
4562 struct socket *sock;
4563 struct io_buffer *kbuf;
4564 unsigned flags;
4565 int min_ret = 0;
4566 int ret, cflags = 0;
4567 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4568
4569 sock = sock_from_file(req->file);
4570 if (unlikely(!sock))
4571 return -ENOTSOCK;
4572
4573 kmsg = req->async_data;
4574 if (!kmsg) {
4575 ret = io_recvmsg_copy_hdr(req, &iomsg);
4576 if (ret)
4577 return ret;
4578 kmsg = &iomsg;
4579 }
4580
4581 if (req->flags & REQ_F_BUFFER_SELECT) {
4582 kbuf = io_recv_buffer_select(req, !force_nonblock);
4583 if (IS_ERR(kbuf))
4584 return PTR_ERR(kbuf);
4585 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4586 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4587 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4588 1, req->sr_msg.len);
4589 }
4590
4591 flags = req->sr_msg.msg_flags;
4592 if (force_nonblock)
4593 flags |= MSG_DONTWAIT;
4594 if (flags & MSG_WAITALL)
4595 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4596
4597 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4598 kmsg->uaddr, flags);
4599 if (force_nonblock && ret == -EAGAIN)
4600 return io_setup_async_msg(req, kmsg);
4601 if (ret == -ERESTARTSYS)
4602 ret = -EINTR;
4603
4604 if (req->flags & REQ_F_BUFFER_SELECTED)
4605 cflags = io_put_recv_kbuf(req);
4606 /* fast path, check for non-NULL to avoid function call */
4607 if (kmsg->free_iov)
4608 kfree(kmsg->free_iov);
4609 req->flags &= ~REQ_F_NEED_CLEANUP;
4610 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4611 req_set_fail(req);
4612 __io_req_complete(req, issue_flags, ret, cflags);
4613 return 0;
4614 }
4615
4616 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4617 {
4618 struct io_buffer *kbuf;
4619 struct io_sr_msg *sr = &req->sr_msg;
4620 struct msghdr msg;
4621 void __user *buf = sr->buf;
4622 struct socket *sock;
4623 struct iovec iov;
4624 unsigned flags;
4625 int min_ret = 0;
4626 int ret, cflags = 0;
4627 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4628
4629 sock = sock_from_file(req->file);
4630 if (unlikely(!sock))
4631 return -ENOTSOCK;
4632
4633 if (req->flags & REQ_F_BUFFER_SELECT) {
4634 kbuf = io_recv_buffer_select(req, !force_nonblock);
4635 if (IS_ERR(kbuf))
4636 return PTR_ERR(kbuf);
4637 buf = u64_to_user_ptr(kbuf->addr);
4638 }
4639
4640 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4641 if (unlikely(ret))
4642 goto out_free;
4643
4644 msg.msg_name = NULL;
4645 msg.msg_control = NULL;
4646 msg.msg_controllen = 0;
4647 msg.msg_namelen = 0;
4648 msg.msg_iocb = NULL;
4649 msg.msg_flags = 0;
4650
4651 flags = req->sr_msg.msg_flags;
4652 if (force_nonblock)
4653 flags |= MSG_DONTWAIT;
4654 if (flags & MSG_WAITALL)
4655 min_ret = iov_iter_count(&msg.msg_iter);
4656
4657 ret = sock_recvmsg(sock, &msg, flags);
4658 if (force_nonblock && ret == -EAGAIN)
4659 return -EAGAIN;
4660 if (ret == -ERESTARTSYS)
4661 ret = -EINTR;
4662 out_free:
4663 if (req->flags & REQ_F_BUFFER_SELECTED)
4664 cflags = io_put_recv_kbuf(req);
4665 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4666 req_set_fail(req);
4667 __io_req_complete(req, issue_flags, ret, cflags);
4668 return 0;
4669 }
4670
4671 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4672 {
4673 struct io_accept *accept = &req->accept;
4674
4675 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4676 return -EINVAL;
4677 if (sqe->ioprio || sqe->len || sqe->buf_index)
4678 return -EINVAL;
4679
4680 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4681 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4682 accept->flags = READ_ONCE(sqe->accept_flags);
4683 accept->nofile = rlimit(RLIMIT_NOFILE);
4684 return 0;
4685 }
4686
4687 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4688 {
4689 struct io_accept *accept = &req->accept;
4690 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4691 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4692 int ret;
4693
4694 if (req->file->f_flags & O_NONBLOCK)
4695 req->flags |= REQ_F_NOWAIT;
4696
4697 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4698 accept->addr_len, accept->flags,
4699 accept->nofile);
4700 if (ret == -EAGAIN && force_nonblock)
4701 return -EAGAIN;
4702 if (ret < 0) {
4703 if (ret == -ERESTARTSYS)
4704 ret = -EINTR;
4705 req_set_fail(req);
4706 }
4707 __io_req_complete(req, issue_flags, ret, 0);
4708 return 0;
4709 }
4710
4711 static int io_connect_prep_async(struct io_kiocb *req)
4712 {
4713 struct io_async_connect *io = req->async_data;
4714 struct io_connect *conn = &req->connect;
4715
4716 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4717 }
4718
4719 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4720 {
4721 struct io_connect *conn = &req->connect;
4722
4723 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4724 return -EINVAL;
4725 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4726 return -EINVAL;
4727
4728 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4729 conn->addr_len = READ_ONCE(sqe->addr2);
4730 return 0;
4731 }
4732
4733 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4734 {
4735 struct io_async_connect __io, *io;
4736 unsigned file_flags;
4737 int ret;
4738 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4739
4740 if (req->async_data) {
4741 io = req->async_data;
4742 } else {
4743 ret = move_addr_to_kernel(req->connect.addr,
4744 req->connect.addr_len,
4745 &__io.address);
4746 if (ret)
4747 goto out;
4748 io = &__io;
4749 }
4750
4751 file_flags = force_nonblock ? O_NONBLOCK : 0;
4752
4753 ret = __sys_connect_file(req->file, &io->address,
4754 req->connect.addr_len, file_flags);
4755 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4756 if (req->async_data)
4757 return -EAGAIN;
4758 if (io_alloc_async_data(req)) {
4759 ret = -ENOMEM;
4760 goto out;
4761 }
4762 memcpy(req->async_data, &__io, sizeof(__io));
4763 return -EAGAIN;
4764 }
4765 if (ret == -ERESTARTSYS)
4766 ret = -EINTR;
4767 out:
4768 if (ret < 0)
4769 req_set_fail(req);
4770 __io_req_complete(req, issue_flags, ret, 0);
4771 return 0;
4772 }
4773 #else /* !CONFIG_NET */
4774 #define IO_NETOP_FN(op) \
4775 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
4776 { \
4777 return -EOPNOTSUPP; \
4778 }
4779
4780 #define IO_NETOP_PREP(op) \
4781 IO_NETOP_FN(op) \
4782 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4783 { \
4784 return -EOPNOTSUPP; \
4785 } \
4786
4787 #define IO_NETOP_PREP_ASYNC(op) \
4788 IO_NETOP_PREP(op) \
4789 static int io_##op##_prep_async(struct io_kiocb *req) \
4790 { \
4791 return -EOPNOTSUPP; \
4792 }
4793
4794 IO_NETOP_PREP_ASYNC(sendmsg);
4795 IO_NETOP_PREP_ASYNC(recvmsg);
4796 IO_NETOP_PREP_ASYNC(connect);
4797 IO_NETOP_PREP(accept);
4798 IO_NETOP_FN(send);
4799 IO_NETOP_FN(recv);
4800 #endif /* CONFIG_NET */
4801
4802 struct io_poll_table {
4803 struct poll_table_struct pt;
4804 struct io_kiocb *req;
4805 int error;
4806 };
4807
4808 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4809 __poll_t mask, io_req_tw_func_t func)
4810 {
4811 /* for instances that support it check for an event match first: */
4812 if (mask && !(mask & poll->events))
4813 return 0;
4814
4815 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4816
4817 list_del_init(&poll->wait.entry);
4818
4819 req->result = mask;
4820 req->io_task_work.func = func;
4821
4822 /*
4823 * If this fails, then the task is exiting. When a task exits, the
4824 * work gets canceled, so just cancel this request as well instead
4825 * of executing it. We can't safely execute it anyway, as we may not
4826 * have the needed state needed for it anyway.
4827 */
4828 io_req_task_work_add(req);
4829 return 1;
4830 }
4831
4832 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4833 __acquires(&req->ctx->completion_lock)
4834 {
4835 struct io_ring_ctx *ctx = req->ctx;
4836
4837 if (unlikely(req->task->flags & PF_EXITING))
4838 WRITE_ONCE(poll->canceled, true);
4839
4840 if (!req->result && !READ_ONCE(poll->canceled)) {
4841 struct poll_table_struct pt = { ._key = poll->events };
4842
4843 req->result = vfs_poll(req->file, &pt) & poll->events;
4844 }
4845
4846 spin_lock_irq(&ctx->completion_lock);
4847 if (!req->result && !READ_ONCE(poll->canceled)) {
4848 add_wait_queue(poll->head, &poll->wait);
4849 return true;
4850 }
4851
4852 return false;
4853 }
4854
4855 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4856 {
4857 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4858 if (req->opcode == IORING_OP_POLL_ADD)
4859 return req->async_data;
4860 return req->apoll->double_poll;
4861 }
4862
4863 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4864 {
4865 if (req->opcode == IORING_OP_POLL_ADD)
4866 return &req->poll;
4867 return &req->apoll->poll;
4868 }
4869
4870 static void io_poll_remove_double(struct io_kiocb *req)
4871 __must_hold(&req->ctx->completion_lock)
4872 {
4873 struct io_poll_iocb *poll = io_poll_get_double(req);
4874
4875 lockdep_assert_held(&req->ctx->completion_lock);
4876
4877 if (poll && poll->head) {
4878 struct wait_queue_head *head = poll->head;
4879
4880 spin_lock(&head->lock);
4881 list_del_init(&poll->wait.entry);
4882 if (poll->wait.private)
4883 req_ref_put(req);
4884 poll->head = NULL;
4885 spin_unlock(&head->lock);
4886 }
4887 }
4888
4889 static bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
4890 __must_hold(&req->ctx->completion_lock)
4891 {
4892 struct io_ring_ctx *ctx = req->ctx;
4893 unsigned flags = IORING_CQE_F_MORE;
4894 int error;
4895
4896 if (READ_ONCE(req->poll.canceled)) {
4897 error = -ECANCELED;
4898 req->poll.events |= EPOLLONESHOT;
4899 } else {
4900 error = mangle_poll(mask);
4901 }
4902 if (req->poll.events & EPOLLONESHOT)
4903 flags = 0;
4904 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
4905 io_poll_remove_waitqs(req);
4906 req->poll.done = true;
4907 flags = 0;
4908 }
4909 if (flags & IORING_CQE_F_MORE)
4910 ctx->cq_extra++;
4911
4912 io_commit_cqring(ctx);
4913 return !(flags & IORING_CQE_F_MORE);
4914 }
4915
4916 static void io_poll_task_func(struct io_kiocb *req)
4917 {
4918 struct io_ring_ctx *ctx = req->ctx;
4919 struct io_kiocb *nxt;
4920
4921 if (io_poll_rewait(req, &req->poll)) {
4922 spin_unlock_irq(&ctx->completion_lock);
4923 } else {
4924 bool done;
4925
4926 done = io_poll_complete(req, req->result);
4927 if (done) {
4928 hash_del(&req->hash_node);
4929 } else {
4930 req->result = 0;
4931 add_wait_queue(req->poll.head, &req->poll.wait);
4932 }
4933 spin_unlock_irq(&ctx->completion_lock);
4934 io_cqring_ev_posted(ctx);
4935
4936 if (done) {
4937 nxt = io_put_req_find_next(req);
4938 if (nxt)
4939 io_req_task_submit(nxt);
4940 }
4941 }
4942 }
4943
4944 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4945 int sync, void *key)
4946 {
4947 struct io_kiocb *req = wait->private;
4948 struct io_poll_iocb *poll = io_poll_get_single(req);
4949 __poll_t mask = key_to_poll(key);
4950
4951 /* for instances that support it check for an event match first: */
4952 if (mask && !(mask & poll->events))
4953 return 0;
4954 if (!(poll->events & EPOLLONESHOT))
4955 return poll->wait.func(&poll->wait, mode, sync, key);
4956
4957 list_del_init(&wait->entry);
4958
4959 if (poll->head) {
4960 bool done;
4961
4962 spin_lock(&poll->head->lock);
4963 done = list_empty(&poll->wait.entry);
4964 if (!done)
4965 list_del_init(&poll->wait.entry);
4966 /* make sure double remove sees this as being gone */
4967 wait->private = NULL;
4968 spin_unlock(&poll->head->lock);
4969 if (!done) {
4970 /* use wait func handler, so it matches the rq type */
4971 poll->wait.func(&poll->wait, mode, sync, key);
4972 }
4973 }
4974 req_ref_put(req);
4975 return 1;
4976 }
4977
4978 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4979 wait_queue_func_t wake_func)
4980 {
4981 poll->head = NULL;
4982 poll->done = false;
4983 poll->canceled = false;
4984 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
4985 /* mask in events that we always want/need */
4986 poll->events = events | IO_POLL_UNMASK;
4987 INIT_LIST_HEAD(&poll->wait.entry);
4988 init_waitqueue_func_entry(&poll->wait, wake_func);
4989 }
4990
4991 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4992 struct wait_queue_head *head,
4993 struct io_poll_iocb **poll_ptr)
4994 {
4995 struct io_kiocb *req = pt->req;
4996
4997 /*
4998 * If poll->head is already set, it's because the file being polled
4999 * uses multiple waitqueues for poll handling (eg one for read, one
5000 * for write). Setup a separate io_poll_iocb if this happens.
5001 */
5002 if (unlikely(poll->head)) {
5003 struct io_poll_iocb *poll_one = poll;
5004
5005 /* already have a 2nd entry, fail a third attempt */
5006 if (*poll_ptr) {
5007 pt->error = -EINVAL;
5008 return;
5009 }
5010 /*
5011 * Can't handle multishot for double wait for now, turn it
5012 * into one-shot mode.
5013 */
5014 if (!(poll_one->events & EPOLLONESHOT))
5015 poll_one->events |= EPOLLONESHOT;
5016 /* double add on the same waitqueue head, ignore */
5017 if (poll_one->head == head)
5018 return;
5019 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5020 if (!poll) {
5021 pt->error = -ENOMEM;
5022 return;
5023 }
5024 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5025 req_ref_get(req);
5026 poll->wait.private = req;
5027 *poll_ptr = poll;
5028 }
5029
5030 pt->error = 0;
5031 poll->head = head;
5032
5033 if (poll->events & EPOLLEXCLUSIVE)
5034 add_wait_queue_exclusive(head, &poll->wait);
5035 else
5036 add_wait_queue(head, &poll->wait);
5037 }
5038
5039 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5040 struct poll_table_struct *p)
5041 {
5042 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5043 struct async_poll *apoll = pt->req->apoll;
5044
5045 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5046 }
5047
5048 static void io_async_task_func(struct io_kiocb *req)
5049 {
5050 struct async_poll *apoll = req->apoll;
5051 struct io_ring_ctx *ctx = req->ctx;
5052
5053 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5054
5055 if (io_poll_rewait(req, &apoll->poll)) {
5056 spin_unlock_irq(&ctx->completion_lock);
5057 return;
5058 }
5059
5060 hash_del(&req->hash_node);
5061 io_poll_remove_double(req);
5062 spin_unlock_irq(&ctx->completion_lock);
5063
5064 if (!READ_ONCE(apoll->poll.canceled))
5065 io_req_task_submit(req);
5066 else
5067 io_req_complete_failed(req, -ECANCELED);
5068 }
5069
5070 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5071 void *key)
5072 {
5073 struct io_kiocb *req = wait->private;
5074 struct io_poll_iocb *poll = &req->apoll->poll;
5075
5076 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5077 key_to_poll(key));
5078
5079 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5080 }
5081
5082 static void io_poll_req_insert(struct io_kiocb *req)
5083 {
5084 struct io_ring_ctx *ctx = req->ctx;
5085 struct hlist_head *list;
5086
5087 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5088 hlist_add_head(&req->hash_node, list);
5089 }
5090
5091 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5092 struct io_poll_iocb *poll,
5093 struct io_poll_table *ipt, __poll_t mask,
5094 wait_queue_func_t wake_func)
5095 __acquires(&ctx->completion_lock)
5096 {
5097 struct io_ring_ctx *ctx = req->ctx;
5098 bool cancel = false;
5099
5100 INIT_HLIST_NODE(&req->hash_node);
5101 io_init_poll_iocb(poll, mask, wake_func);
5102 poll->file = req->file;
5103 poll->wait.private = req;
5104
5105 ipt->pt._key = mask;
5106 ipt->req = req;
5107 ipt->error = -EINVAL;
5108
5109 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5110
5111 spin_lock_irq(&ctx->completion_lock);
5112 if (likely(poll->head)) {
5113 spin_lock(&poll->head->lock);
5114 if (unlikely(list_empty(&poll->wait.entry))) {
5115 if (ipt->error)
5116 cancel = true;
5117 ipt->error = 0;
5118 mask = 0;
5119 }
5120 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5121 list_del_init(&poll->wait.entry);
5122 else if (cancel)
5123 WRITE_ONCE(poll->canceled, true);
5124 else if (!poll->done) /* actually waiting for an event */
5125 io_poll_req_insert(req);
5126 spin_unlock(&poll->head->lock);
5127 }
5128
5129 return mask;
5130 }
5131
5132 enum {
5133 IO_APOLL_OK,
5134 IO_APOLL_ABORTED,
5135 IO_APOLL_READY
5136 };
5137
5138 static int io_arm_poll_handler(struct io_kiocb *req)
5139 {
5140 const struct io_op_def *def = &io_op_defs[req->opcode];
5141 struct io_ring_ctx *ctx = req->ctx;
5142 struct async_poll *apoll;
5143 struct io_poll_table ipt;
5144 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5145 int rw;
5146
5147 if (!req->file || !file_can_poll(req->file))
5148 return IO_APOLL_ABORTED;
5149 if (req->flags & REQ_F_POLLED)
5150 return IO_APOLL_ABORTED;
5151 if (!def->pollin && !def->pollout)
5152 return IO_APOLL_ABORTED;
5153
5154 if (def->pollin) {
5155 rw = READ;
5156 mask |= POLLIN | POLLRDNORM;
5157
5158 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5159 if ((req->opcode == IORING_OP_RECVMSG) &&
5160 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5161 mask &= ~POLLIN;
5162 } else {
5163 rw = WRITE;
5164 mask |= POLLOUT | POLLWRNORM;
5165 }
5166
5167 /* if we can't nonblock try, then no point in arming a poll handler */
5168 if (!io_file_supports_async(req, rw))
5169 return IO_APOLL_ABORTED;
5170
5171 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5172 if (unlikely(!apoll))
5173 return IO_APOLL_ABORTED;
5174 apoll->double_poll = NULL;
5175 req->apoll = apoll;
5176 req->flags |= REQ_F_POLLED;
5177 ipt.pt._qproc = io_async_queue_proc;
5178
5179 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5180 io_async_wake);
5181 if (ret || ipt.error) {
5182 io_poll_remove_double(req);
5183 spin_unlock_irq(&ctx->completion_lock);
5184 if (ret)
5185 return IO_APOLL_READY;
5186 return IO_APOLL_ABORTED;
5187 }
5188 spin_unlock_irq(&ctx->completion_lock);
5189 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5190 mask, apoll->poll.events);
5191 return IO_APOLL_OK;
5192 }
5193
5194 static bool __io_poll_remove_one(struct io_kiocb *req,
5195 struct io_poll_iocb *poll, bool do_cancel)
5196 __must_hold(&req->ctx->completion_lock)
5197 {
5198 bool do_complete = false;
5199
5200 if (!poll->head)
5201 return false;
5202 spin_lock(&poll->head->lock);
5203 if (do_cancel)
5204 WRITE_ONCE(poll->canceled, true);
5205 if (!list_empty(&poll->wait.entry)) {
5206 list_del_init(&poll->wait.entry);
5207 do_complete = true;
5208 }
5209 spin_unlock(&poll->head->lock);
5210 hash_del(&req->hash_node);
5211 return do_complete;
5212 }
5213
5214 static bool io_poll_remove_waitqs(struct io_kiocb *req)
5215 __must_hold(&req->ctx->completion_lock)
5216 {
5217 bool do_complete;
5218
5219 io_poll_remove_double(req);
5220 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5221
5222 if (req->opcode != IORING_OP_POLL_ADD && do_complete) {
5223 /* non-poll requests have submit ref still */
5224 req_ref_put(req);
5225 }
5226 return do_complete;
5227 }
5228
5229 static bool io_poll_remove_one(struct io_kiocb *req)
5230 __must_hold(&req->ctx->completion_lock)
5231 {
5232 bool do_complete;
5233
5234 do_complete = io_poll_remove_waitqs(req);
5235 if (do_complete) {
5236 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5237 io_commit_cqring(req->ctx);
5238 req_set_fail(req);
5239 io_put_req_deferred(req, 1);
5240 }
5241
5242 return do_complete;
5243 }
5244
5245 /*
5246 * Returns true if we found and killed one or more poll requests
5247 */
5248 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5249 bool cancel_all)
5250 {
5251 struct hlist_node *tmp;
5252 struct io_kiocb *req;
5253 int posted = 0, i;
5254
5255 spin_lock_irq(&ctx->completion_lock);
5256 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5257 struct hlist_head *list;
5258
5259 list = &ctx->cancel_hash[i];
5260 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5261 if (io_match_task(req, tsk, cancel_all))
5262 posted += io_poll_remove_one(req);
5263 }
5264 }
5265 spin_unlock_irq(&ctx->completion_lock);
5266
5267 if (posted)
5268 io_cqring_ev_posted(ctx);
5269
5270 return posted != 0;
5271 }
5272
5273 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5274 bool poll_only)
5275 __must_hold(&ctx->completion_lock)
5276 {
5277 struct hlist_head *list;
5278 struct io_kiocb *req;
5279
5280 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5281 hlist_for_each_entry(req, list, hash_node) {
5282 if (sqe_addr != req->user_data)
5283 continue;
5284 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5285 continue;
5286 return req;
5287 }
5288 return NULL;
5289 }
5290
5291 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5292 bool poll_only)
5293 __must_hold(&ctx->completion_lock)
5294 {
5295 struct io_kiocb *req;
5296
5297 req = io_poll_find(ctx, sqe_addr, poll_only);
5298 if (!req)
5299 return -ENOENT;
5300 if (io_poll_remove_one(req))
5301 return 0;
5302
5303 return -EALREADY;
5304 }
5305
5306 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5307 unsigned int flags)
5308 {
5309 u32 events;
5310
5311 events = READ_ONCE(sqe->poll32_events);
5312 #ifdef __BIG_ENDIAN
5313 events = swahw32(events);
5314 #endif
5315 if (!(flags & IORING_POLL_ADD_MULTI))
5316 events |= EPOLLONESHOT;
5317 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5318 }
5319
5320 static int io_poll_update_prep(struct io_kiocb *req,
5321 const struct io_uring_sqe *sqe)
5322 {
5323 struct io_poll_update *upd = &req->poll_update;
5324 u32 flags;
5325
5326 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5327 return -EINVAL;
5328 if (sqe->ioprio || sqe->buf_index)
5329 return -EINVAL;
5330 flags = READ_ONCE(sqe->len);
5331 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5332 IORING_POLL_ADD_MULTI))
5333 return -EINVAL;
5334 /* meaningless without update */
5335 if (flags == IORING_POLL_ADD_MULTI)
5336 return -EINVAL;
5337
5338 upd->old_user_data = READ_ONCE(sqe->addr);
5339 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5340 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5341
5342 upd->new_user_data = READ_ONCE(sqe->off);
5343 if (!upd->update_user_data && upd->new_user_data)
5344 return -EINVAL;
5345 if (upd->update_events)
5346 upd->events = io_poll_parse_events(sqe, flags);
5347 else if (sqe->poll32_events)
5348 return -EINVAL;
5349
5350 return 0;
5351 }
5352
5353 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5354 void *key)
5355 {
5356 struct io_kiocb *req = wait->private;
5357 struct io_poll_iocb *poll = &req->poll;
5358
5359 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5360 }
5361
5362 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5363 struct poll_table_struct *p)
5364 {
5365 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5366
5367 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5368 }
5369
5370 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5371 {
5372 struct io_poll_iocb *poll = &req->poll;
5373 u32 flags;
5374
5375 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5376 return -EINVAL;
5377 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5378 return -EINVAL;
5379 flags = READ_ONCE(sqe->len);
5380 if (flags & ~IORING_POLL_ADD_MULTI)
5381 return -EINVAL;
5382
5383 poll->events = io_poll_parse_events(sqe, flags);
5384 return 0;
5385 }
5386
5387 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5388 {
5389 struct io_poll_iocb *poll = &req->poll;
5390 struct io_ring_ctx *ctx = req->ctx;
5391 struct io_poll_table ipt;
5392 __poll_t mask;
5393
5394 ipt.pt._qproc = io_poll_queue_proc;
5395
5396 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5397 io_poll_wake);
5398
5399 if (mask) { /* no async, we'd stolen it */
5400 ipt.error = 0;
5401 io_poll_complete(req, mask);
5402 }
5403 spin_unlock_irq(&ctx->completion_lock);
5404
5405 if (mask) {
5406 io_cqring_ev_posted(ctx);
5407 if (poll->events & EPOLLONESHOT)
5408 io_put_req(req);
5409 }
5410 return ipt.error;
5411 }
5412
5413 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5414 {
5415 struct io_ring_ctx *ctx = req->ctx;
5416 struct io_kiocb *preq;
5417 bool completing;
5418 int ret;
5419
5420 spin_lock_irq(&ctx->completion_lock);
5421 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5422 if (!preq) {
5423 ret = -ENOENT;
5424 goto err;
5425 }
5426
5427 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5428 completing = true;
5429 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5430 goto err;
5431 }
5432
5433 /*
5434 * Don't allow racy completion with singleshot, as we cannot safely
5435 * update those. For multishot, if we're racing with completion, just
5436 * let completion re-add it.
5437 */
5438 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5439 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5440 ret = -EALREADY;
5441 goto err;
5442 }
5443 /* we now have a detached poll request. reissue. */
5444 ret = 0;
5445 err:
5446 if (ret < 0) {
5447 spin_unlock_irq(&ctx->completion_lock);
5448 req_set_fail(req);
5449 io_req_complete(req, ret);
5450 return 0;
5451 }
5452 /* only mask one event flags, keep behavior flags */
5453 if (req->poll_update.update_events) {
5454 preq->poll.events &= ~0xffff;
5455 preq->poll.events |= req->poll_update.events & 0xffff;
5456 preq->poll.events |= IO_POLL_UNMASK;
5457 }
5458 if (req->poll_update.update_user_data)
5459 preq->user_data = req->poll_update.new_user_data;
5460 spin_unlock_irq(&ctx->completion_lock);
5461
5462 /* complete update request, we're done with it */
5463 io_req_complete(req, ret);
5464
5465 if (!completing) {
5466 ret = io_poll_add(preq, issue_flags);
5467 if (ret < 0) {
5468 req_set_fail(preq);
5469 io_req_complete(preq, ret);
5470 }
5471 }
5472 return 0;
5473 }
5474
5475 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5476 {
5477 struct io_timeout_data *data = container_of(timer,
5478 struct io_timeout_data, timer);
5479 struct io_kiocb *req = data->req;
5480 struct io_ring_ctx *ctx = req->ctx;
5481 unsigned long flags;
5482
5483 spin_lock_irqsave(&ctx->completion_lock, flags);
5484 list_del_init(&req->timeout.list);
5485 atomic_set(&req->ctx->cq_timeouts,
5486 atomic_read(&req->ctx->cq_timeouts) + 1);
5487
5488 io_cqring_fill_event(ctx, req->user_data, -ETIME, 0);
5489 io_commit_cqring(ctx);
5490 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5491
5492 io_cqring_ev_posted(ctx);
5493 req_set_fail(req);
5494 io_put_req(req);
5495 return HRTIMER_NORESTART;
5496 }
5497
5498 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5499 __u64 user_data)
5500 __must_hold(&ctx->completion_lock)
5501 {
5502 struct io_timeout_data *io;
5503 struct io_kiocb *req;
5504 bool found = false;
5505
5506 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5507 found = user_data == req->user_data;
5508 if (found)
5509 break;
5510 }
5511 if (!found)
5512 return ERR_PTR(-ENOENT);
5513
5514 io = req->async_data;
5515 if (hrtimer_try_to_cancel(&io->timer) == -1)
5516 return ERR_PTR(-EALREADY);
5517 list_del_init(&req->timeout.list);
5518 return req;
5519 }
5520
5521 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5522 __must_hold(&ctx->completion_lock)
5523 {
5524 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5525
5526 if (IS_ERR(req))
5527 return PTR_ERR(req);
5528
5529 req_set_fail(req);
5530 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5531 io_put_req_deferred(req, 1);
5532 return 0;
5533 }
5534
5535 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5536 struct timespec64 *ts, enum hrtimer_mode mode)
5537 __must_hold(&ctx->completion_lock)
5538 {
5539 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5540 struct io_timeout_data *data;
5541
5542 if (IS_ERR(req))
5543 return PTR_ERR(req);
5544
5545 req->timeout.off = 0; /* noseq */
5546 data = req->async_data;
5547 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5548 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5549 data->timer.function = io_timeout_fn;
5550 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5551 return 0;
5552 }
5553
5554 static int io_timeout_remove_prep(struct io_kiocb *req,
5555 const struct io_uring_sqe *sqe)
5556 {
5557 struct io_timeout_rem *tr = &req->timeout_rem;
5558
5559 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5560 return -EINVAL;
5561 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5562 return -EINVAL;
5563 if (sqe->ioprio || sqe->buf_index || sqe->len)
5564 return -EINVAL;
5565
5566 tr->addr = READ_ONCE(sqe->addr);
5567 tr->flags = READ_ONCE(sqe->timeout_flags);
5568 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5569 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5570 return -EINVAL;
5571 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5572 return -EFAULT;
5573 } else if (tr->flags) {
5574 /* timeout removal doesn't support flags */
5575 return -EINVAL;
5576 }
5577
5578 return 0;
5579 }
5580
5581 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5582 {
5583 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5584 : HRTIMER_MODE_REL;
5585 }
5586
5587 /*
5588 * Remove or update an existing timeout command
5589 */
5590 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5591 {
5592 struct io_timeout_rem *tr = &req->timeout_rem;
5593 struct io_ring_ctx *ctx = req->ctx;
5594 int ret;
5595
5596 spin_lock_irq(&ctx->completion_lock);
5597 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5598 ret = io_timeout_cancel(ctx, tr->addr);
5599 else
5600 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5601 io_translate_timeout_mode(tr->flags));
5602
5603 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5604 io_commit_cqring(ctx);
5605 spin_unlock_irq(&ctx->completion_lock);
5606 io_cqring_ev_posted(ctx);
5607 if (ret < 0)
5608 req_set_fail(req);
5609 io_put_req(req);
5610 return 0;
5611 }
5612
5613 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5614 bool is_timeout_link)
5615 {
5616 struct io_timeout_data *data;
5617 unsigned flags;
5618 u32 off = READ_ONCE(sqe->off);
5619
5620 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5621 return -EINVAL;
5622 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5623 return -EINVAL;
5624 if (off && is_timeout_link)
5625 return -EINVAL;
5626 flags = READ_ONCE(sqe->timeout_flags);
5627 if (flags & ~IORING_TIMEOUT_ABS)
5628 return -EINVAL;
5629
5630 req->timeout.off = off;
5631 if (unlikely(off && !req->ctx->off_timeout_used))
5632 req->ctx->off_timeout_used = true;
5633
5634 if (!req->async_data && io_alloc_async_data(req))
5635 return -ENOMEM;
5636
5637 data = req->async_data;
5638 data->req = req;
5639
5640 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5641 return -EFAULT;
5642
5643 data->mode = io_translate_timeout_mode(flags);
5644 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5645 if (is_timeout_link)
5646 io_req_track_inflight(req);
5647 return 0;
5648 }
5649
5650 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5651 {
5652 struct io_ring_ctx *ctx = req->ctx;
5653 struct io_timeout_data *data = req->async_data;
5654 struct list_head *entry;
5655 u32 tail, off = req->timeout.off;
5656
5657 spin_lock_irq(&ctx->completion_lock);
5658
5659 /*
5660 * sqe->off holds how many events that need to occur for this
5661 * timeout event to be satisfied. If it isn't set, then this is
5662 * a pure timeout request, sequence isn't used.
5663 */
5664 if (io_is_timeout_noseq(req)) {
5665 entry = ctx->timeout_list.prev;
5666 goto add;
5667 }
5668
5669 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5670 req->timeout.target_seq = tail + off;
5671
5672 /* Update the last seq here in case io_flush_timeouts() hasn't.
5673 * This is safe because ->completion_lock is held, and submissions
5674 * and completions are never mixed in the same ->completion_lock section.
5675 */
5676 ctx->cq_last_tm_flush = tail;
5677
5678 /*
5679 * Insertion sort, ensuring the first entry in the list is always
5680 * the one we need first.
5681 */
5682 list_for_each_prev(entry, &ctx->timeout_list) {
5683 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5684 timeout.list);
5685
5686 if (io_is_timeout_noseq(nxt))
5687 continue;
5688 /* nxt.seq is behind @tail, otherwise would've been completed */
5689 if (off >= nxt->timeout.target_seq - tail)
5690 break;
5691 }
5692 add:
5693 list_add(&req->timeout.list, entry);
5694 data->timer.function = io_timeout_fn;
5695 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5696 spin_unlock_irq(&ctx->completion_lock);
5697 return 0;
5698 }
5699
5700 struct io_cancel_data {
5701 struct io_ring_ctx *ctx;
5702 u64 user_data;
5703 };
5704
5705 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5706 {
5707 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5708 struct io_cancel_data *cd = data;
5709
5710 return req->ctx == cd->ctx && req->user_data == cd->user_data;
5711 }
5712
5713 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5714 struct io_ring_ctx *ctx)
5715 {
5716 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5717 enum io_wq_cancel cancel_ret;
5718 int ret = 0;
5719
5720 if (!tctx || !tctx->io_wq)
5721 return -ENOENT;
5722
5723 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5724 switch (cancel_ret) {
5725 case IO_WQ_CANCEL_OK:
5726 ret = 0;
5727 break;
5728 case IO_WQ_CANCEL_RUNNING:
5729 ret = -EALREADY;
5730 break;
5731 case IO_WQ_CANCEL_NOTFOUND:
5732 ret = -ENOENT;
5733 break;
5734 }
5735
5736 return ret;
5737 }
5738
5739 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5740 struct io_kiocb *req, __u64 sqe_addr,
5741 int success_ret)
5742 {
5743 unsigned long flags;
5744 int ret;
5745
5746 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5747 spin_lock_irqsave(&ctx->completion_lock, flags);
5748 if (ret != -ENOENT)
5749 goto done;
5750 ret = io_timeout_cancel(ctx, sqe_addr);
5751 if (ret != -ENOENT)
5752 goto done;
5753 ret = io_poll_cancel(ctx, sqe_addr, false);
5754 done:
5755 if (!ret)
5756 ret = success_ret;
5757 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5758 io_commit_cqring(ctx);
5759 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5760 io_cqring_ev_posted(ctx);
5761
5762 if (ret < 0)
5763 req_set_fail(req);
5764 }
5765
5766 static int io_async_cancel_prep(struct io_kiocb *req,
5767 const struct io_uring_sqe *sqe)
5768 {
5769 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5770 return -EINVAL;
5771 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5772 return -EINVAL;
5773 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5774 return -EINVAL;
5775
5776 req->cancel.addr = READ_ONCE(sqe->addr);
5777 return 0;
5778 }
5779
5780 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5781 {
5782 struct io_ring_ctx *ctx = req->ctx;
5783 u64 sqe_addr = req->cancel.addr;
5784 struct io_tctx_node *node;
5785 int ret;
5786
5787 /* tasks should wait for their io-wq threads, so safe w/o sync */
5788 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5789 spin_lock_irq(&ctx->completion_lock);
5790 if (ret != -ENOENT)
5791 goto done;
5792 ret = io_timeout_cancel(ctx, sqe_addr);
5793 if (ret != -ENOENT)
5794 goto done;
5795 ret = io_poll_cancel(ctx, sqe_addr, false);
5796 if (ret != -ENOENT)
5797 goto done;
5798 spin_unlock_irq(&ctx->completion_lock);
5799
5800 /* slow path, try all io-wq's */
5801 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5802 ret = -ENOENT;
5803 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5804 struct io_uring_task *tctx = node->task->io_uring;
5805
5806 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5807 if (ret != -ENOENT)
5808 break;
5809 }
5810 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5811
5812 spin_lock_irq(&ctx->completion_lock);
5813 done:
5814 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5815 io_commit_cqring(ctx);
5816 spin_unlock_irq(&ctx->completion_lock);
5817 io_cqring_ev_posted(ctx);
5818
5819 if (ret < 0)
5820 req_set_fail(req);
5821 io_put_req(req);
5822 return 0;
5823 }
5824
5825 static int io_rsrc_update_prep(struct io_kiocb *req,
5826 const struct io_uring_sqe *sqe)
5827 {
5828 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5829 return -EINVAL;
5830 if (sqe->ioprio || sqe->rw_flags)
5831 return -EINVAL;
5832
5833 req->rsrc_update.offset = READ_ONCE(sqe->off);
5834 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5835 if (!req->rsrc_update.nr_args)
5836 return -EINVAL;
5837 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5838 return 0;
5839 }
5840
5841 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5842 {
5843 struct io_ring_ctx *ctx = req->ctx;
5844 struct io_uring_rsrc_update2 up;
5845 int ret;
5846
5847 if (issue_flags & IO_URING_F_NONBLOCK)
5848 return -EAGAIN;
5849
5850 up.offset = req->rsrc_update.offset;
5851 up.data = req->rsrc_update.arg;
5852 up.nr = 0;
5853 up.tags = 0;
5854 up.resv = 0;
5855
5856 mutex_lock(&ctx->uring_lock);
5857 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
5858 &up, req->rsrc_update.nr_args);
5859 mutex_unlock(&ctx->uring_lock);
5860
5861 if (ret < 0)
5862 req_set_fail(req);
5863 __io_req_complete(req, issue_flags, ret, 0);
5864 return 0;
5865 }
5866
5867 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5868 {
5869 switch (req->opcode) {
5870 case IORING_OP_NOP:
5871 return 0;
5872 case IORING_OP_READV:
5873 case IORING_OP_READ_FIXED:
5874 case IORING_OP_READ:
5875 return io_read_prep(req, sqe);
5876 case IORING_OP_WRITEV:
5877 case IORING_OP_WRITE_FIXED:
5878 case IORING_OP_WRITE:
5879 return io_write_prep(req, sqe);
5880 case IORING_OP_POLL_ADD:
5881 return io_poll_add_prep(req, sqe);
5882 case IORING_OP_POLL_REMOVE:
5883 return io_poll_update_prep(req, sqe);
5884 case IORING_OP_FSYNC:
5885 return io_fsync_prep(req, sqe);
5886 case IORING_OP_SYNC_FILE_RANGE:
5887 return io_sfr_prep(req, sqe);
5888 case IORING_OP_SENDMSG:
5889 case IORING_OP_SEND:
5890 return io_sendmsg_prep(req, sqe);
5891 case IORING_OP_RECVMSG:
5892 case IORING_OP_RECV:
5893 return io_recvmsg_prep(req, sqe);
5894 case IORING_OP_CONNECT:
5895 return io_connect_prep(req, sqe);
5896 case IORING_OP_TIMEOUT:
5897 return io_timeout_prep(req, sqe, false);
5898 case IORING_OP_TIMEOUT_REMOVE:
5899 return io_timeout_remove_prep(req, sqe);
5900 case IORING_OP_ASYNC_CANCEL:
5901 return io_async_cancel_prep(req, sqe);
5902 case IORING_OP_LINK_TIMEOUT:
5903 return io_timeout_prep(req, sqe, true);
5904 case IORING_OP_ACCEPT:
5905 return io_accept_prep(req, sqe);
5906 case IORING_OP_FALLOCATE:
5907 return io_fallocate_prep(req, sqe);
5908 case IORING_OP_OPENAT:
5909 return io_openat_prep(req, sqe);
5910 case IORING_OP_CLOSE:
5911 return io_close_prep(req, sqe);
5912 case IORING_OP_FILES_UPDATE:
5913 return io_rsrc_update_prep(req, sqe);
5914 case IORING_OP_STATX:
5915 return io_statx_prep(req, sqe);
5916 case IORING_OP_FADVISE:
5917 return io_fadvise_prep(req, sqe);
5918 case IORING_OP_MADVISE:
5919 return io_madvise_prep(req, sqe);
5920 case IORING_OP_OPENAT2:
5921 return io_openat2_prep(req, sqe);
5922 case IORING_OP_EPOLL_CTL:
5923 return io_epoll_ctl_prep(req, sqe);
5924 case IORING_OP_SPLICE:
5925 return io_splice_prep(req, sqe);
5926 case IORING_OP_PROVIDE_BUFFERS:
5927 return io_provide_buffers_prep(req, sqe);
5928 case IORING_OP_REMOVE_BUFFERS:
5929 return io_remove_buffers_prep(req, sqe);
5930 case IORING_OP_TEE:
5931 return io_tee_prep(req, sqe);
5932 case IORING_OP_SHUTDOWN:
5933 return io_shutdown_prep(req, sqe);
5934 case IORING_OP_RENAMEAT:
5935 return io_renameat_prep(req, sqe);
5936 case IORING_OP_UNLINKAT:
5937 return io_unlinkat_prep(req, sqe);
5938 }
5939
5940 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5941 req->opcode);
5942 return -EINVAL;
5943 }
5944
5945 static int io_req_prep_async(struct io_kiocb *req)
5946 {
5947 if (!io_op_defs[req->opcode].needs_async_setup)
5948 return 0;
5949 if (WARN_ON_ONCE(req->async_data))
5950 return -EFAULT;
5951 if (io_alloc_async_data(req))
5952 return -EAGAIN;
5953
5954 switch (req->opcode) {
5955 case IORING_OP_READV:
5956 return io_rw_prep_async(req, READ);
5957 case IORING_OP_WRITEV:
5958 return io_rw_prep_async(req, WRITE);
5959 case IORING_OP_SENDMSG:
5960 return io_sendmsg_prep_async(req);
5961 case IORING_OP_RECVMSG:
5962 return io_recvmsg_prep_async(req);
5963 case IORING_OP_CONNECT:
5964 return io_connect_prep_async(req);
5965 }
5966 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
5967 req->opcode);
5968 return -EFAULT;
5969 }
5970
5971 static u32 io_get_sequence(struct io_kiocb *req)
5972 {
5973 u32 seq = req->ctx->cached_sq_head;
5974
5975 /* need original cached_sq_head, but it was increased for each req */
5976 io_for_each_link(req, req)
5977 seq--;
5978 return seq;
5979 }
5980
5981 static bool io_drain_req(struct io_kiocb *req)
5982 {
5983 struct io_kiocb *pos;
5984 struct io_ring_ctx *ctx = req->ctx;
5985 struct io_defer_entry *de;
5986 int ret;
5987 u32 seq;
5988
5989 /*
5990 * If we need to drain a request in the middle of a link, drain the
5991 * head request and the next request/link after the current link.
5992 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
5993 * maintained for every request of our link.
5994 */
5995 if (ctx->drain_next) {
5996 req->flags |= REQ_F_IO_DRAIN;
5997 ctx->drain_next = false;
5998 }
5999 /* not interested in head, start from the first linked */
6000 io_for_each_link(pos, req->link) {
6001 if (pos->flags & REQ_F_IO_DRAIN) {
6002 ctx->drain_next = true;
6003 req->flags |= REQ_F_IO_DRAIN;
6004 break;
6005 }
6006 }
6007
6008 /* Still need defer if there is pending req in defer list. */
6009 if (likely(list_empty_careful(&ctx->defer_list) &&
6010 !(req->flags & REQ_F_IO_DRAIN))) {
6011 ctx->drain_active = false;
6012 return false;
6013 }
6014
6015 seq = io_get_sequence(req);
6016 /* Still a chance to pass the sequence check */
6017 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6018 return false;
6019
6020 ret = io_req_prep_async(req);
6021 if (ret)
6022 goto fail;
6023 io_prep_async_link(req);
6024 de = kmalloc(sizeof(*de), GFP_KERNEL);
6025 if (!de) {
6026 ret = -ENOMEM;
6027 fail:
6028 io_req_complete_failed(req, ret);
6029 return true;
6030 }
6031
6032 spin_lock_irq(&ctx->completion_lock);
6033 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6034 spin_unlock_irq(&ctx->completion_lock);
6035 kfree(de);
6036 io_queue_async_work(req);
6037 return true;
6038 }
6039
6040 trace_io_uring_defer(ctx, req, req->user_data);
6041 de->req = req;
6042 de->seq = seq;
6043 list_add_tail(&de->list, &ctx->defer_list);
6044 spin_unlock_irq(&ctx->completion_lock);
6045 return true;
6046 }
6047
6048 static void io_clean_op(struct io_kiocb *req)
6049 {
6050 if (req->flags & REQ_F_BUFFER_SELECTED) {
6051 switch (req->opcode) {
6052 case IORING_OP_READV:
6053 case IORING_OP_READ_FIXED:
6054 case IORING_OP_READ:
6055 kfree((void *)(unsigned long)req->rw.addr);
6056 break;
6057 case IORING_OP_RECVMSG:
6058 case IORING_OP_RECV:
6059 kfree(req->sr_msg.kbuf);
6060 break;
6061 }
6062 }
6063
6064 if (req->flags & REQ_F_NEED_CLEANUP) {
6065 switch (req->opcode) {
6066 case IORING_OP_READV:
6067 case IORING_OP_READ_FIXED:
6068 case IORING_OP_READ:
6069 case IORING_OP_WRITEV:
6070 case IORING_OP_WRITE_FIXED:
6071 case IORING_OP_WRITE: {
6072 struct io_async_rw *io = req->async_data;
6073
6074 kfree(io->free_iovec);
6075 break;
6076 }
6077 case IORING_OP_RECVMSG:
6078 case IORING_OP_SENDMSG: {
6079 struct io_async_msghdr *io = req->async_data;
6080
6081 kfree(io->free_iov);
6082 break;
6083 }
6084 case IORING_OP_SPLICE:
6085 case IORING_OP_TEE:
6086 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6087 io_put_file(req->splice.file_in);
6088 break;
6089 case IORING_OP_OPENAT:
6090 case IORING_OP_OPENAT2:
6091 if (req->open.filename)
6092 putname(req->open.filename);
6093 break;
6094 case IORING_OP_RENAMEAT:
6095 putname(req->rename.oldpath);
6096 putname(req->rename.newpath);
6097 break;
6098 case IORING_OP_UNLINKAT:
6099 putname(req->unlink.filename);
6100 break;
6101 }
6102 }
6103 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6104 kfree(req->apoll->double_poll);
6105 kfree(req->apoll);
6106 req->apoll = NULL;
6107 }
6108 if (req->flags & REQ_F_INFLIGHT) {
6109 struct io_uring_task *tctx = req->task->io_uring;
6110
6111 atomic_dec(&tctx->inflight_tracked);
6112 }
6113 if (req->flags & REQ_F_CREDS)
6114 put_cred(req->creds);
6115
6116 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6117 }
6118
6119 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6120 {
6121 struct io_ring_ctx *ctx = req->ctx;
6122 const struct cred *creds = NULL;
6123 int ret;
6124
6125 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6126 creds = override_creds(req->creds);
6127
6128 switch (req->opcode) {
6129 case IORING_OP_NOP:
6130 ret = io_nop(req, issue_flags);
6131 break;
6132 case IORING_OP_READV:
6133 case IORING_OP_READ_FIXED:
6134 case IORING_OP_READ:
6135 ret = io_read(req, issue_flags);
6136 break;
6137 case IORING_OP_WRITEV:
6138 case IORING_OP_WRITE_FIXED:
6139 case IORING_OP_WRITE:
6140 ret = io_write(req, issue_flags);
6141 break;
6142 case IORING_OP_FSYNC:
6143 ret = io_fsync(req, issue_flags);
6144 break;
6145 case IORING_OP_POLL_ADD:
6146 ret = io_poll_add(req, issue_flags);
6147 break;
6148 case IORING_OP_POLL_REMOVE:
6149 ret = io_poll_update(req, issue_flags);
6150 break;
6151 case IORING_OP_SYNC_FILE_RANGE:
6152 ret = io_sync_file_range(req, issue_flags);
6153 break;
6154 case IORING_OP_SENDMSG:
6155 ret = io_sendmsg(req, issue_flags);
6156 break;
6157 case IORING_OP_SEND:
6158 ret = io_send(req, issue_flags);
6159 break;
6160 case IORING_OP_RECVMSG:
6161 ret = io_recvmsg(req, issue_flags);
6162 break;
6163 case IORING_OP_RECV:
6164 ret = io_recv(req, issue_flags);
6165 break;
6166 case IORING_OP_TIMEOUT:
6167 ret = io_timeout(req, issue_flags);
6168 break;
6169 case IORING_OP_TIMEOUT_REMOVE:
6170 ret = io_timeout_remove(req, issue_flags);
6171 break;
6172 case IORING_OP_ACCEPT:
6173 ret = io_accept(req, issue_flags);
6174 break;
6175 case IORING_OP_CONNECT:
6176 ret = io_connect(req, issue_flags);
6177 break;
6178 case IORING_OP_ASYNC_CANCEL:
6179 ret = io_async_cancel(req, issue_flags);
6180 break;
6181 case IORING_OP_FALLOCATE:
6182 ret = io_fallocate(req, issue_flags);
6183 break;
6184 case IORING_OP_OPENAT:
6185 ret = io_openat(req, issue_flags);
6186 break;
6187 case IORING_OP_CLOSE:
6188 ret = io_close(req, issue_flags);
6189 break;
6190 case IORING_OP_FILES_UPDATE:
6191 ret = io_files_update(req, issue_flags);
6192 break;
6193 case IORING_OP_STATX:
6194 ret = io_statx(req, issue_flags);
6195 break;
6196 case IORING_OP_FADVISE:
6197 ret = io_fadvise(req, issue_flags);
6198 break;
6199 case IORING_OP_MADVISE:
6200 ret = io_madvise(req, issue_flags);
6201 break;
6202 case IORING_OP_OPENAT2:
6203 ret = io_openat2(req, issue_flags);
6204 break;
6205 case IORING_OP_EPOLL_CTL:
6206 ret = io_epoll_ctl(req, issue_flags);
6207 break;
6208 case IORING_OP_SPLICE:
6209 ret = io_splice(req, issue_flags);
6210 break;
6211 case IORING_OP_PROVIDE_BUFFERS:
6212 ret = io_provide_buffers(req, issue_flags);
6213 break;
6214 case IORING_OP_REMOVE_BUFFERS:
6215 ret = io_remove_buffers(req, issue_flags);
6216 break;
6217 case IORING_OP_TEE:
6218 ret = io_tee(req, issue_flags);
6219 break;
6220 case IORING_OP_SHUTDOWN:
6221 ret = io_shutdown(req, issue_flags);
6222 break;
6223 case IORING_OP_RENAMEAT:
6224 ret = io_renameat(req, issue_flags);
6225 break;
6226 case IORING_OP_UNLINKAT:
6227 ret = io_unlinkat(req, issue_flags);
6228 break;
6229 default:
6230 ret = -EINVAL;
6231 break;
6232 }
6233
6234 if (creds)
6235 revert_creds(creds);
6236 if (ret)
6237 return ret;
6238 /* If the op doesn't have a file, we're not polling for it */
6239 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6240 io_iopoll_req_issued(req);
6241
6242 return 0;
6243 }
6244
6245 static void io_wq_submit_work(struct io_wq_work *work)
6246 {
6247 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6248 struct io_kiocb *timeout;
6249 int ret = 0;
6250
6251 timeout = io_prep_linked_timeout(req);
6252 if (timeout)
6253 io_queue_linked_timeout(timeout);
6254
6255 if (work->flags & IO_WQ_WORK_CANCEL)
6256 ret = -ECANCELED;
6257
6258 if (!ret) {
6259 do {
6260 ret = io_issue_sqe(req, 0);
6261 /*
6262 * We can get EAGAIN for polled IO even though we're
6263 * forcing a sync submission from here, since we can't
6264 * wait for request slots on the block side.
6265 */
6266 if (ret != -EAGAIN)
6267 break;
6268 cond_resched();
6269 } while (1);
6270 }
6271
6272 /* avoid locking problems by failing it from a clean context */
6273 if (ret) {
6274 /* io-wq is going to take one down */
6275 req_ref_get(req);
6276 io_req_task_queue_fail(req, ret);
6277 }
6278 }
6279
6280 #define FFS_ASYNC_READ 0x1UL
6281 #define FFS_ASYNC_WRITE 0x2UL
6282 #ifdef CONFIG_64BIT
6283 #define FFS_ISREG 0x4UL
6284 #else
6285 #define FFS_ISREG 0x0UL
6286 #endif
6287 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6288
6289 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6290 unsigned i)
6291 {
6292 struct io_fixed_file *table_l2;
6293
6294 table_l2 = table->files[i >> IORING_FILE_TABLE_SHIFT];
6295 return &table_l2[i & IORING_FILE_TABLE_MASK];
6296 }
6297
6298 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6299 int index)
6300 {
6301 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6302
6303 return (struct file *) (slot->file_ptr & FFS_MASK);
6304 }
6305
6306 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6307 {
6308 unsigned long file_ptr = (unsigned long) file;
6309
6310 if (__io_file_supports_async(file, READ))
6311 file_ptr |= FFS_ASYNC_READ;
6312 if (__io_file_supports_async(file, WRITE))
6313 file_ptr |= FFS_ASYNC_WRITE;
6314 if (S_ISREG(file_inode(file)->i_mode))
6315 file_ptr |= FFS_ISREG;
6316 file_slot->file_ptr = file_ptr;
6317 }
6318
6319 static struct file *io_file_get(struct io_submit_state *state,
6320 struct io_kiocb *req, int fd, bool fixed)
6321 {
6322 struct io_ring_ctx *ctx = req->ctx;
6323 struct file *file;
6324
6325 if (fixed) {
6326 unsigned long file_ptr;
6327
6328 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6329 return NULL;
6330 fd = array_index_nospec(fd, ctx->nr_user_files);
6331 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6332 file = (struct file *) (file_ptr & FFS_MASK);
6333 file_ptr &= ~FFS_MASK;
6334 /* mask in overlapping REQ_F and FFS bits */
6335 req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6336 io_req_set_rsrc_node(req);
6337 } else {
6338 trace_io_uring_file_get(ctx, fd);
6339 file = __io_file_get(state, fd);
6340
6341 /* we don't allow fixed io_uring files */
6342 if (file && unlikely(file->f_op == &io_uring_fops))
6343 io_req_track_inflight(req);
6344 }
6345
6346 return file;
6347 }
6348
6349 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6350 {
6351 struct io_timeout_data *data = container_of(timer,
6352 struct io_timeout_data, timer);
6353 struct io_kiocb *prev, *req = data->req;
6354 struct io_ring_ctx *ctx = req->ctx;
6355 unsigned long flags;
6356
6357 spin_lock_irqsave(&ctx->completion_lock, flags);
6358 prev = req->timeout.head;
6359 req->timeout.head = NULL;
6360
6361 /*
6362 * We don't expect the list to be empty, that will only happen if we
6363 * race with the completion of the linked work.
6364 */
6365 if (prev) {
6366 io_remove_next_linked(prev);
6367 if (!req_ref_inc_not_zero(prev))
6368 prev = NULL;
6369 }
6370 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6371
6372 if (prev) {
6373 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6374 io_put_req_deferred(prev, 1);
6375 io_put_req_deferred(req, 1);
6376 } else {
6377 io_req_complete_post(req, -ETIME, 0);
6378 }
6379 return HRTIMER_NORESTART;
6380 }
6381
6382 static void io_queue_linked_timeout(struct io_kiocb *req)
6383 {
6384 struct io_ring_ctx *ctx = req->ctx;
6385
6386 spin_lock_irq(&ctx->completion_lock);
6387 /*
6388 * If the back reference is NULL, then our linked request finished
6389 * before we got a chance to setup the timer
6390 */
6391 if (req->timeout.head) {
6392 struct io_timeout_data *data = req->async_data;
6393
6394 data->timer.function = io_link_timeout_fn;
6395 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6396 data->mode);
6397 }
6398 spin_unlock_irq(&ctx->completion_lock);
6399 /* drop submission reference */
6400 io_put_req(req);
6401 }
6402
6403 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6404 {
6405 struct io_kiocb *nxt = req->link;
6406
6407 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6408 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6409 return NULL;
6410
6411 nxt->timeout.head = req;
6412 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6413 req->flags |= REQ_F_LINK_TIMEOUT;
6414 return nxt;
6415 }
6416
6417 static void __io_queue_sqe(struct io_kiocb *req)
6418 {
6419 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6420 int ret;
6421
6422 issue_sqe:
6423 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6424
6425 /*
6426 * We async punt it if the file wasn't marked NOWAIT, or if the file
6427 * doesn't support non-blocking read/write attempts
6428 */
6429 if (likely(!ret)) {
6430 /* drop submission reference */
6431 if (req->flags & REQ_F_COMPLETE_INLINE) {
6432 struct io_ring_ctx *ctx = req->ctx;
6433 struct io_comp_state *cs = &ctx->submit_state.comp;
6434
6435 cs->reqs[cs->nr++] = req;
6436 if (cs->nr == ARRAY_SIZE(cs->reqs))
6437 io_submit_flush_completions(ctx);
6438 } else {
6439 io_put_req(req);
6440 }
6441 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6442 switch (io_arm_poll_handler(req)) {
6443 case IO_APOLL_READY:
6444 goto issue_sqe;
6445 case IO_APOLL_ABORTED:
6446 /*
6447 * Queued up for async execution, worker will release
6448 * submit reference when the iocb is actually submitted.
6449 */
6450 io_queue_async_work(req);
6451 break;
6452 }
6453 } else {
6454 io_req_complete_failed(req, ret);
6455 }
6456 if (linked_timeout)
6457 io_queue_linked_timeout(linked_timeout);
6458 }
6459
6460 static inline void io_queue_sqe(struct io_kiocb *req)
6461 {
6462 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
6463 return;
6464
6465 if (likely(!(req->flags & REQ_F_FORCE_ASYNC))) {
6466 __io_queue_sqe(req);
6467 } else {
6468 int ret = io_req_prep_async(req);
6469
6470 if (unlikely(ret))
6471 io_req_complete_failed(req, ret);
6472 else
6473 io_queue_async_work(req);
6474 }
6475 }
6476
6477 /*
6478 * Check SQE restrictions (opcode and flags).
6479 *
6480 * Returns 'true' if SQE is allowed, 'false' otherwise.
6481 */
6482 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6483 struct io_kiocb *req,
6484 unsigned int sqe_flags)
6485 {
6486 if (likely(!ctx->restricted))
6487 return true;
6488
6489 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6490 return false;
6491
6492 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6493 ctx->restrictions.sqe_flags_required)
6494 return false;
6495
6496 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6497 ctx->restrictions.sqe_flags_required))
6498 return false;
6499
6500 return true;
6501 }
6502
6503 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6504 const struct io_uring_sqe *sqe)
6505 {
6506 struct io_submit_state *state;
6507 unsigned int sqe_flags;
6508 int personality, ret = 0;
6509
6510 req->opcode = READ_ONCE(sqe->opcode);
6511 /* same numerical values with corresponding REQ_F_*, safe to copy */
6512 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6513 req->user_data = READ_ONCE(sqe->user_data);
6514 req->file = NULL;
6515 req->fixed_rsrc_refs = NULL;
6516 /* one is dropped after submission, the other at completion */
6517 atomic_set(&req->refs, 2);
6518 req->task = current;
6519
6520 /* enforce forwards compatibility on users */
6521 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6522 return -EINVAL;
6523 if (unlikely(req->opcode >= IORING_OP_LAST))
6524 return -EINVAL;
6525 if (!io_check_restriction(ctx, req, sqe_flags))
6526 return -EACCES;
6527
6528 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6529 !io_op_defs[req->opcode].buffer_select)
6530 return -EOPNOTSUPP;
6531 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
6532 ctx->drain_active = true;
6533
6534 personality = READ_ONCE(sqe->personality);
6535 if (personality) {
6536 req->creds = xa_load(&ctx->personalities, personality);
6537 if (!req->creds)
6538 return -EINVAL;
6539 get_cred(req->creds);
6540 req->flags |= REQ_F_CREDS;
6541 }
6542 state = &ctx->submit_state;
6543
6544 /*
6545 * Plug now if we have more than 1 IO left after this, and the target
6546 * is potentially a read/write to block based storage.
6547 */
6548 if (!state->plug_started && state->ios_left > 1 &&
6549 io_op_defs[req->opcode].plug) {
6550 blk_start_plug(&state->plug);
6551 state->plug_started = true;
6552 }
6553
6554 if (io_op_defs[req->opcode].needs_file) {
6555 bool fixed = req->flags & REQ_F_FIXED_FILE;
6556
6557 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6558 if (unlikely(!req->file))
6559 ret = -EBADF;
6560 }
6561
6562 state->ios_left--;
6563 return ret;
6564 }
6565
6566 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6567 const struct io_uring_sqe *sqe)
6568 {
6569 struct io_submit_link *link = &ctx->submit_state.link;
6570 int ret;
6571
6572 ret = io_init_req(ctx, req, sqe);
6573 if (unlikely(ret)) {
6574 fail_req:
6575 if (link->head) {
6576 /* fail even hard links since we don't submit */
6577 req_set_fail(link->head);
6578 io_req_complete_failed(link->head, -ECANCELED);
6579 link->head = NULL;
6580 }
6581 io_req_complete_failed(req, ret);
6582 return ret;
6583 }
6584
6585 ret = io_req_prep(req, sqe);
6586 if (unlikely(ret))
6587 goto fail_req;
6588
6589 /* don't need @sqe from now on */
6590 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
6591 req->flags, true,
6592 ctx->flags & IORING_SETUP_SQPOLL);
6593
6594 /*
6595 * If we already have a head request, queue this one for async
6596 * submittal once the head completes. If we don't have a head but
6597 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6598 * submitted sync once the chain is complete. If none of those
6599 * conditions are true (normal request), then just queue it.
6600 */
6601 if (link->head) {
6602 struct io_kiocb *head = link->head;
6603
6604 ret = io_req_prep_async(req);
6605 if (unlikely(ret))
6606 goto fail_req;
6607 trace_io_uring_link(ctx, req, head);
6608 link->last->link = req;
6609 link->last = req;
6610
6611 /* last request of a link, enqueue the link */
6612 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6613 link->head = NULL;
6614 io_queue_sqe(head);
6615 }
6616 } else {
6617 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6618 link->head = req;
6619 link->last = req;
6620 } else {
6621 io_queue_sqe(req);
6622 }
6623 }
6624
6625 return 0;
6626 }
6627
6628 /*
6629 * Batched submission is done, ensure local IO is flushed out.
6630 */
6631 static void io_submit_state_end(struct io_submit_state *state,
6632 struct io_ring_ctx *ctx)
6633 {
6634 if (state->link.head)
6635 io_queue_sqe(state->link.head);
6636 if (state->comp.nr)
6637 io_submit_flush_completions(ctx);
6638 if (state->plug_started)
6639 blk_finish_plug(&state->plug);
6640 io_state_file_put(state);
6641 }
6642
6643 /*
6644 * Start submission side cache.
6645 */
6646 static void io_submit_state_start(struct io_submit_state *state,
6647 unsigned int max_ios)
6648 {
6649 state->plug_started = false;
6650 state->ios_left = max_ios;
6651 /* set only head, no need to init link_last in advance */
6652 state->link.head = NULL;
6653 }
6654
6655 static void io_commit_sqring(struct io_ring_ctx *ctx)
6656 {
6657 struct io_rings *rings = ctx->rings;
6658
6659 /*
6660 * Ensure any loads from the SQEs are done at this point,
6661 * since once we write the new head, the application could
6662 * write new data to them.
6663 */
6664 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6665 }
6666
6667 /*
6668 * Fetch an sqe, if one is available. Note this returns a pointer to memory
6669 * that is mapped by userspace. This means that care needs to be taken to
6670 * ensure that reads are stable, as we cannot rely on userspace always
6671 * being a good citizen. If members of the sqe are validated and then later
6672 * used, it's important that those reads are done through READ_ONCE() to
6673 * prevent a re-load down the line.
6674 */
6675 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6676 {
6677 unsigned head, mask = ctx->sq_entries - 1;
6678 unsigned sq_idx = ctx->cached_sq_head++ & mask;
6679
6680 /*
6681 * The cached sq head (or cq tail) serves two purposes:
6682 *
6683 * 1) allows us to batch the cost of updating the user visible
6684 * head updates.
6685 * 2) allows the kernel side to track the head on its own, even
6686 * though the application is the one updating it.
6687 */
6688 head = READ_ONCE(ctx->sq_array[sq_idx]);
6689 if (likely(head < ctx->sq_entries))
6690 return &ctx->sq_sqes[head];
6691
6692 /* drop invalid entries */
6693 ctx->cq_extra--;
6694 WRITE_ONCE(ctx->rings->sq_dropped,
6695 READ_ONCE(ctx->rings->sq_dropped) + 1);
6696 return NULL;
6697 }
6698
6699 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6700 {
6701 struct io_uring_task *tctx;
6702 int submitted = 0;
6703
6704 /* make sure SQ entry isn't read before tail */
6705 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6706 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6707 return -EAGAIN;
6708
6709 tctx = current->io_uring;
6710 tctx->cached_refs -= nr;
6711 if (unlikely(tctx->cached_refs < 0)) {
6712 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
6713
6714 percpu_counter_add(&tctx->inflight, refill);
6715 refcount_add(refill, &current->usage);
6716 tctx->cached_refs += refill;
6717 }
6718 io_submit_state_start(&ctx->submit_state, nr);
6719
6720 while (submitted < nr) {
6721 const struct io_uring_sqe *sqe;
6722 struct io_kiocb *req;
6723
6724 req = io_alloc_req(ctx);
6725 if (unlikely(!req)) {
6726 if (!submitted)
6727 submitted = -EAGAIN;
6728 break;
6729 }
6730 sqe = io_get_sqe(ctx);
6731 if (unlikely(!sqe)) {
6732 kmem_cache_free(req_cachep, req);
6733 break;
6734 }
6735 /* will complete beyond this point, count as submitted */
6736 submitted++;
6737 if (io_submit_sqe(ctx, req, sqe))
6738 break;
6739 }
6740
6741 if (unlikely(submitted != nr)) {
6742 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6743 int unused = nr - ref_used;
6744
6745 current->io_uring->cached_refs += unused;
6746 percpu_ref_put_many(&ctx->refs, unused);
6747 }
6748
6749 io_submit_state_end(&ctx->submit_state, ctx);
6750 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6751 io_commit_sqring(ctx);
6752
6753 return submitted;
6754 }
6755
6756 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
6757 {
6758 return READ_ONCE(sqd->state);
6759 }
6760
6761 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6762 {
6763 /* Tell userspace we may need a wakeup call */
6764 spin_lock_irq(&ctx->completion_lock);
6765 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6766 spin_unlock_irq(&ctx->completion_lock);
6767 }
6768
6769 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6770 {
6771 spin_lock_irq(&ctx->completion_lock);
6772 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6773 spin_unlock_irq(&ctx->completion_lock);
6774 }
6775
6776 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6777 {
6778 unsigned int to_submit;
6779 int ret = 0;
6780
6781 to_submit = io_sqring_entries(ctx);
6782 /* if we're handling multiple rings, cap submit size for fairness */
6783 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
6784 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
6785
6786 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6787 unsigned nr_events = 0;
6788 const struct cred *creds = NULL;
6789
6790 if (ctx->sq_creds != current_cred())
6791 creds = override_creds(ctx->sq_creds);
6792
6793 mutex_lock(&ctx->uring_lock);
6794 if (!list_empty(&ctx->iopoll_list))
6795 io_do_iopoll(ctx, &nr_events, 0);
6796
6797 /*
6798 * Don't submit if refs are dying, good for io_uring_register(),
6799 * but also it is relied upon by io_ring_exit_work()
6800 */
6801 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6802 !(ctx->flags & IORING_SETUP_R_DISABLED))
6803 ret = io_submit_sqes(ctx, to_submit);
6804 mutex_unlock(&ctx->uring_lock);
6805
6806 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
6807 wake_up(&ctx->sqo_sq_wait);
6808 if (creds)
6809 revert_creds(creds);
6810 }
6811
6812 return ret;
6813 }
6814
6815 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6816 {
6817 struct io_ring_ctx *ctx;
6818 unsigned sq_thread_idle = 0;
6819
6820 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6821 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6822 sqd->sq_thread_idle = sq_thread_idle;
6823 }
6824
6825 static bool io_sqd_handle_event(struct io_sq_data *sqd)
6826 {
6827 bool did_sig = false;
6828 struct ksignal ksig;
6829
6830 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6831 signal_pending(current)) {
6832 mutex_unlock(&sqd->lock);
6833 if (signal_pending(current))
6834 did_sig = get_signal(&ksig);
6835 cond_resched();
6836 mutex_lock(&sqd->lock);
6837 }
6838 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
6839 }
6840
6841 static int io_sq_thread(void *data)
6842 {
6843 struct io_sq_data *sqd = data;
6844 struct io_ring_ctx *ctx;
6845 unsigned long timeout = 0;
6846 char buf[TASK_COMM_LEN];
6847 DEFINE_WAIT(wait);
6848
6849 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6850 set_task_comm(current, buf);
6851
6852 if (sqd->sq_cpu != -1)
6853 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6854 else
6855 set_cpus_allowed_ptr(current, cpu_online_mask);
6856 current->flags |= PF_NO_SETAFFINITY;
6857
6858 mutex_lock(&sqd->lock);
6859 while (1) {
6860 bool cap_entries, sqt_spin = false;
6861
6862 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
6863 if (io_sqd_handle_event(sqd))
6864 break;
6865 timeout = jiffies + sqd->sq_thread_idle;
6866 }
6867
6868 cap_entries = !list_is_singular(&sqd->ctx_list);
6869 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6870 int ret = __io_sq_thread(ctx, cap_entries);
6871
6872 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6873 sqt_spin = true;
6874 }
6875 if (io_run_task_work())
6876 sqt_spin = true;
6877
6878 if (sqt_spin || !time_after(jiffies, timeout)) {
6879 cond_resched();
6880 if (sqt_spin)
6881 timeout = jiffies + sqd->sq_thread_idle;
6882 continue;
6883 }
6884
6885 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6886 if (!io_sqd_events_pending(sqd) && !current->task_works) {
6887 bool needs_sched = true;
6888
6889 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6890 io_ring_set_wakeup_flag(ctx);
6891
6892 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6893 !list_empty_careful(&ctx->iopoll_list)) {
6894 needs_sched = false;
6895 break;
6896 }
6897 if (io_sqring_entries(ctx)) {
6898 needs_sched = false;
6899 break;
6900 }
6901 }
6902
6903 if (needs_sched) {
6904 mutex_unlock(&sqd->lock);
6905 schedule();
6906 mutex_lock(&sqd->lock);
6907 }
6908 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6909 io_ring_clear_wakeup_flag(ctx);
6910 }
6911
6912 finish_wait(&sqd->wait, &wait);
6913 timeout = jiffies + sqd->sq_thread_idle;
6914 }
6915
6916 io_uring_cancel_generic(true, sqd);
6917 sqd->thread = NULL;
6918 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6919 io_ring_set_wakeup_flag(ctx);
6920 io_run_task_work();
6921 mutex_unlock(&sqd->lock);
6922
6923 complete(&sqd->exited);
6924 do_exit(0);
6925 }
6926
6927 struct io_wait_queue {
6928 struct wait_queue_entry wq;
6929 struct io_ring_ctx *ctx;
6930 unsigned to_wait;
6931 unsigned nr_timeouts;
6932 };
6933
6934 static inline bool io_should_wake(struct io_wait_queue *iowq)
6935 {
6936 struct io_ring_ctx *ctx = iowq->ctx;
6937
6938 /*
6939 * Wake up if we have enough events, or if a timeout occurred since we
6940 * started waiting. For timeouts, we always want to return to userspace,
6941 * regardless of event count.
6942 */
6943 return io_cqring_events(ctx) >= iowq->to_wait ||
6944 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6945 }
6946
6947 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6948 int wake_flags, void *key)
6949 {
6950 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6951 wq);
6952
6953 /*
6954 * Cannot safely flush overflowed CQEs from here, ensure we wake up
6955 * the task, and the next invocation will do it.
6956 */
6957 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
6958 return autoremove_wake_function(curr, mode, wake_flags, key);
6959 return -1;
6960 }
6961
6962 static int io_run_task_work_sig(void)
6963 {
6964 if (io_run_task_work())
6965 return 1;
6966 if (!signal_pending(current))
6967 return 0;
6968 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
6969 return -ERESTARTSYS;
6970 return -EINTR;
6971 }
6972
6973 /* when returns >0, the caller should retry */
6974 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
6975 struct io_wait_queue *iowq,
6976 signed long *timeout)
6977 {
6978 int ret;
6979
6980 /* make sure we run task_work before checking for signals */
6981 ret = io_run_task_work_sig();
6982 if (ret || io_should_wake(iowq))
6983 return ret;
6984 /* let the caller flush overflows, retry */
6985 if (test_bit(0, &ctx->check_cq_overflow))
6986 return 1;
6987
6988 *timeout = schedule_timeout(*timeout);
6989 return !*timeout ? -ETIME : 1;
6990 }
6991
6992 /*
6993 * Wait until events become available, if we don't already have some. The
6994 * application must reap them itself, as they reside on the shared cq ring.
6995 */
6996 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6997 const sigset_t __user *sig, size_t sigsz,
6998 struct __kernel_timespec __user *uts)
6999 {
7000 struct io_wait_queue iowq = {
7001 .wq = {
7002 .private = current,
7003 .func = io_wake_function,
7004 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7005 },
7006 .ctx = ctx,
7007 .to_wait = min_events,
7008 };
7009 struct io_rings *rings = ctx->rings;
7010 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7011 int ret;
7012
7013 do {
7014 io_cqring_overflow_flush(ctx, false);
7015 if (io_cqring_events(ctx) >= min_events)
7016 return 0;
7017 if (!io_run_task_work())
7018 break;
7019 } while (1);
7020
7021 if (sig) {
7022 #ifdef CONFIG_COMPAT
7023 if (in_compat_syscall())
7024 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7025 sigsz);
7026 else
7027 #endif
7028 ret = set_user_sigmask(sig, sigsz);
7029
7030 if (ret)
7031 return ret;
7032 }
7033
7034 if (uts) {
7035 struct timespec64 ts;
7036
7037 if (get_timespec64(&ts, uts))
7038 return -EFAULT;
7039 timeout = timespec64_to_jiffies(&ts);
7040 }
7041
7042 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7043 trace_io_uring_cqring_wait(ctx, min_events);
7044 do {
7045 /* if we can't even flush overflow, don't wait for more */
7046 if (!io_cqring_overflow_flush(ctx, false)) {
7047 ret = -EBUSY;
7048 break;
7049 }
7050 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7051 TASK_INTERRUPTIBLE);
7052 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7053 finish_wait(&ctx->cq_wait, &iowq.wq);
7054 cond_resched();
7055 } while (ret > 0);
7056
7057 restore_saved_sigmask_unless(ret == -EINTR);
7058
7059 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7060 }
7061
7062 static void io_free_page_table(void **table, size_t size)
7063 {
7064 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7065
7066 for (i = 0; i < nr_tables; i++)
7067 kfree(table[i]);
7068 kfree(table);
7069 }
7070
7071 static void **io_alloc_page_table(size_t size)
7072 {
7073 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7074 size_t init_size = size;
7075 void **table;
7076
7077 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL);
7078 if (!table)
7079 return NULL;
7080
7081 for (i = 0; i < nr_tables; i++) {
7082 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7083
7084 table[i] = kzalloc(this_size, GFP_KERNEL);
7085 if (!table[i]) {
7086 io_free_page_table(table, init_size);
7087 return NULL;
7088 }
7089 size -= this_size;
7090 }
7091 return table;
7092 }
7093
7094 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7095 {
7096 spin_lock_bh(&ctx->rsrc_ref_lock);
7097 }
7098
7099 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7100 {
7101 spin_unlock_bh(&ctx->rsrc_ref_lock);
7102 }
7103
7104 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7105 {
7106 percpu_ref_exit(&ref_node->refs);
7107 kfree(ref_node);
7108 }
7109
7110 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7111 struct io_rsrc_data *data_to_kill)
7112 {
7113 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7114 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7115
7116 if (data_to_kill) {
7117 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7118
7119 rsrc_node->rsrc_data = data_to_kill;
7120 io_rsrc_ref_lock(ctx);
7121 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7122 io_rsrc_ref_unlock(ctx);
7123
7124 atomic_inc(&data_to_kill->refs);
7125 percpu_ref_kill(&rsrc_node->refs);
7126 ctx->rsrc_node = NULL;
7127 }
7128
7129 if (!ctx->rsrc_node) {
7130 ctx->rsrc_node = ctx->rsrc_backup_node;
7131 ctx->rsrc_backup_node = NULL;
7132 }
7133 }
7134
7135 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7136 {
7137 if (ctx->rsrc_backup_node)
7138 return 0;
7139 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7140 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7141 }
7142
7143 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7144 {
7145 int ret;
7146
7147 /* As we may drop ->uring_lock, other task may have started quiesce */
7148 if (data->quiesce)
7149 return -ENXIO;
7150
7151 data->quiesce = true;
7152 do {
7153 ret = io_rsrc_node_switch_start(ctx);
7154 if (ret)
7155 break;
7156 io_rsrc_node_switch(ctx, data);
7157
7158 /* kill initial ref, already quiesced if zero */
7159 if (atomic_dec_and_test(&data->refs))
7160 break;
7161 flush_delayed_work(&ctx->rsrc_put_work);
7162 ret = wait_for_completion_interruptible(&data->done);
7163 if (!ret)
7164 break;
7165
7166 atomic_inc(&data->refs);
7167 /* wait for all works potentially completing data->done */
7168 flush_delayed_work(&ctx->rsrc_put_work);
7169 reinit_completion(&data->done);
7170
7171 mutex_unlock(&ctx->uring_lock);
7172 ret = io_run_task_work_sig();
7173 mutex_lock(&ctx->uring_lock);
7174 } while (ret >= 0);
7175 data->quiesce = false;
7176
7177 return ret;
7178 }
7179
7180 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7181 {
7182 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7183 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7184
7185 return &data->tags[table_idx][off];
7186 }
7187
7188 static void io_rsrc_data_free(struct io_rsrc_data *data)
7189 {
7190 size_t size = data->nr * sizeof(data->tags[0][0]);
7191
7192 if (data->tags)
7193 io_free_page_table((void **)data->tags, size);
7194 kfree(data);
7195 }
7196
7197 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7198 u64 __user *utags, unsigned nr,
7199 struct io_rsrc_data **pdata)
7200 {
7201 struct io_rsrc_data *data;
7202 int ret = -ENOMEM;
7203 unsigned i;
7204
7205 data = kzalloc(sizeof(*data), GFP_KERNEL);
7206 if (!data)
7207 return -ENOMEM;
7208 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7209 if (!data->tags) {
7210 kfree(data);
7211 return -ENOMEM;
7212 }
7213
7214 data->nr = nr;
7215 data->ctx = ctx;
7216 data->do_put = do_put;
7217 if (utags) {
7218 ret = -EFAULT;
7219 for (i = 0; i < nr; i++) {
7220 u64 *tag_slot = io_get_tag_slot(data, i);
7221
7222 if (copy_from_user(tag_slot, &utags[i],
7223 sizeof(*tag_slot)))
7224 goto fail;
7225 }
7226 }
7227
7228 atomic_set(&data->refs, 1);
7229 init_completion(&data->done);
7230 *pdata = data;
7231 return 0;
7232 fail:
7233 io_rsrc_data_free(data);
7234 return ret;
7235 }
7236
7237 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7238 {
7239 size_t size = nr_files * sizeof(struct io_fixed_file);
7240
7241 table->files = (struct io_fixed_file **)io_alloc_page_table(size);
7242 return !!table->files;
7243 }
7244
7245 static void io_free_file_tables(struct io_file_table *table, unsigned nr_files)
7246 {
7247 size_t size = nr_files * sizeof(struct io_fixed_file);
7248
7249 io_free_page_table((void **)table->files, size);
7250 table->files = NULL;
7251 }
7252
7253 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7254 {
7255 #if defined(CONFIG_UNIX)
7256 if (ctx->ring_sock) {
7257 struct sock *sock = ctx->ring_sock->sk;
7258 struct sk_buff *skb;
7259
7260 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7261 kfree_skb(skb);
7262 }
7263 #else
7264 int i;
7265
7266 for (i = 0; i < ctx->nr_user_files; i++) {
7267 struct file *file;
7268
7269 file = io_file_from_index(ctx, i);
7270 if (file)
7271 fput(file);
7272 }
7273 #endif
7274 io_free_file_tables(&ctx->file_table, ctx->nr_user_files);
7275 io_rsrc_data_free(ctx->file_data);
7276 ctx->file_data = NULL;
7277 ctx->nr_user_files = 0;
7278 }
7279
7280 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7281 {
7282 int ret;
7283
7284 if (!ctx->file_data)
7285 return -ENXIO;
7286 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7287 if (!ret)
7288 __io_sqe_files_unregister(ctx);
7289 return ret;
7290 }
7291
7292 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7293 __releases(&sqd->lock)
7294 {
7295 WARN_ON_ONCE(sqd->thread == current);
7296
7297 /*
7298 * Do the dance but not conditional clear_bit() because it'd race with
7299 * other threads incrementing park_pending and setting the bit.
7300 */
7301 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7302 if (atomic_dec_return(&sqd->park_pending))
7303 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7304 mutex_unlock(&sqd->lock);
7305 }
7306
7307 static void io_sq_thread_park(struct io_sq_data *sqd)
7308 __acquires(&sqd->lock)
7309 {
7310 WARN_ON_ONCE(sqd->thread == current);
7311
7312 atomic_inc(&sqd->park_pending);
7313 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7314 mutex_lock(&sqd->lock);
7315 if (sqd->thread)
7316 wake_up_process(sqd->thread);
7317 }
7318
7319 static void io_sq_thread_stop(struct io_sq_data *sqd)
7320 {
7321 WARN_ON_ONCE(sqd->thread == current);
7322 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7323
7324 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7325 mutex_lock(&sqd->lock);
7326 if (sqd->thread)
7327 wake_up_process(sqd->thread);
7328 mutex_unlock(&sqd->lock);
7329 wait_for_completion(&sqd->exited);
7330 }
7331
7332 static void io_put_sq_data(struct io_sq_data *sqd)
7333 {
7334 if (refcount_dec_and_test(&sqd->refs)) {
7335 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7336
7337 io_sq_thread_stop(sqd);
7338 kfree(sqd);
7339 }
7340 }
7341
7342 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7343 {
7344 struct io_sq_data *sqd = ctx->sq_data;
7345
7346 if (sqd) {
7347 io_sq_thread_park(sqd);
7348 list_del_init(&ctx->sqd_list);
7349 io_sqd_update_thread_idle(sqd);
7350 io_sq_thread_unpark(sqd);
7351
7352 io_put_sq_data(sqd);
7353 ctx->sq_data = NULL;
7354 }
7355 }
7356
7357 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7358 {
7359 struct io_ring_ctx *ctx_attach;
7360 struct io_sq_data *sqd;
7361 struct fd f;
7362
7363 f = fdget(p->wq_fd);
7364 if (!f.file)
7365 return ERR_PTR(-ENXIO);
7366 if (f.file->f_op != &io_uring_fops) {
7367 fdput(f);
7368 return ERR_PTR(-EINVAL);
7369 }
7370
7371 ctx_attach = f.file->private_data;
7372 sqd = ctx_attach->sq_data;
7373 if (!sqd) {
7374 fdput(f);
7375 return ERR_PTR(-EINVAL);
7376 }
7377 if (sqd->task_tgid != current->tgid) {
7378 fdput(f);
7379 return ERR_PTR(-EPERM);
7380 }
7381
7382 refcount_inc(&sqd->refs);
7383 fdput(f);
7384 return sqd;
7385 }
7386
7387 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7388 bool *attached)
7389 {
7390 struct io_sq_data *sqd;
7391
7392 *attached = false;
7393 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7394 sqd = io_attach_sq_data(p);
7395 if (!IS_ERR(sqd)) {
7396 *attached = true;
7397 return sqd;
7398 }
7399 /* fall through for EPERM case, setup new sqd/task */
7400 if (PTR_ERR(sqd) != -EPERM)
7401 return sqd;
7402 }
7403
7404 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7405 if (!sqd)
7406 return ERR_PTR(-ENOMEM);
7407
7408 atomic_set(&sqd->park_pending, 0);
7409 refcount_set(&sqd->refs, 1);
7410 INIT_LIST_HEAD(&sqd->ctx_list);
7411 mutex_init(&sqd->lock);
7412 init_waitqueue_head(&sqd->wait);
7413 init_completion(&sqd->exited);
7414 return sqd;
7415 }
7416
7417 #if defined(CONFIG_UNIX)
7418 /*
7419 * Ensure the UNIX gc is aware of our file set, so we are certain that
7420 * the io_uring can be safely unregistered on process exit, even if we have
7421 * loops in the file referencing.
7422 */
7423 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7424 {
7425 struct sock *sk = ctx->ring_sock->sk;
7426 struct scm_fp_list *fpl;
7427 struct sk_buff *skb;
7428 int i, nr_files;
7429
7430 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7431 if (!fpl)
7432 return -ENOMEM;
7433
7434 skb = alloc_skb(0, GFP_KERNEL);
7435 if (!skb) {
7436 kfree(fpl);
7437 return -ENOMEM;
7438 }
7439
7440 skb->sk = sk;
7441
7442 nr_files = 0;
7443 fpl->user = get_uid(current_user());
7444 for (i = 0; i < nr; i++) {
7445 struct file *file = io_file_from_index(ctx, i + offset);
7446
7447 if (!file)
7448 continue;
7449 fpl->fp[nr_files] = get_file(file);
7450 unix_inflight(fpl->user, fpl->fp[nr_files]);
7451 nr_files++;
7452 }
7453
7454 if (nr_files) {
7455 fpl->max = SCM_MAX_FD;
7456 fpl->count = nr_files;
7457 UNIXCB(skb).fp = fpl;
7458 skb->destructor = unix_destruct_scm;
7459 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7460 skb_queue_head(&sk->sk_receive_queue, skb);
7461
7462 for (i = 0; i < nr_files; i++)
7463 fput(fpl->fp[i]);
7464 } else {
7465 kfree_skb(skb);
7466 kfree(fpl);
7467 }
7468
7469 return 0;
7470 }
7471
7472 /*
7473 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7474 * causes regular reference counting to break down. We rely on the UNIX
7475 * garbage collection to take care of this problem for us.
7476 */
7477 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7478 {
7479 unsigned left, total;
7480 int ret = 0;
7481
7482 total = 0;
7483 left = ctx->nr_user_files;
7484 while (left) {
7485 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7486
7487 ret = __io_sqe_files_scm(ctx, this_files, total);
7488 if (ret)
7489 break;
7490 left -= this_files;
7491 total += this_files;
7492 }
7493
7494 if (!ret)
7495 return 0;
7496
7497 while (total < ctx->nr_user_files) {
7498 struct file *file = io_file_from_index(ctx, total);
7499
7500 if (file)
7501 fput(file);
7502 total++;
7503 }
7504
7505 return ret;
7506 }
7507 #else
7508 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7509 {
7510 return 0;
7511 }
7512 #endif
7513
7514 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7515 {
7516 struct file *file = prsrc->file;
7517 #if defined(CONFIG_UNIX)
7518 struct sock *sock = ctx->ring_sock->sk;
7519 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7520 struct sk_buff *skb;
7521 int i;
7522
7523 __skb_queue_head_init(&list);
7524
7525 /*
7526 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7527 * remove this entry and rearrange the file array.
7528 */
7529 skb = skb_dequeue(head);
7530 while (skb) {
7531 struct scm_fp_list *fp;
7532
7533 fp = UNIXCB(skb).fp;
7534 for (i = 0; i < fp->count; i++) {
7535 int left;
7536
7537 if (fp->fp[i] != file)
7538 continue;
7539
7540 unix_notinflight(fp->user, fp->fp[i]);
7541 left = fp->count - 1 - i;
7542 if (left) {
7543 memmove(&fp->fp[i], &fp->fp[i + 1],
7544 left * sizeof(struct file *));
7545 }
7546 fp->count--;
7547 if (!fp->count) {
7548 kfree_skb(skb);
7549 skb = NULL;
7550 } else {
7551 __skb_queue_tail(&list, skb);
7552 }
7553 fput(file);
7554 file = NULL;
7555 break;
7556 }
7557
7558 if (!file)
7559 break;
7560
7561 __skb_queue_tail(&list, skb);
7562
7563 skb = skb_dequeue(head);
7564 }
7565
7566 if (skb_peek(&list)) {
7567 spin_lock_irq(&head->lock);
7568 while ((skb = __skb_dequeue(&list)) != NULL)
7569 __skb_queue_tail(head, skb);
7570 spin_unlock_irq(&head->lock);
7571 }
7572 #else
7573 fput(file);
7574 #endif
7575 }
7576
7577 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7578 {
7579 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7580 struct io_ring_ctx *ctx = rsrc_data->ctx;
7581 struct io_rsrc_put *prsrc, *tmp;
7582
7583 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7584 list_del(&prsrc->list);
7585
7586 if (prsrc->tag) {
7587 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
7588
7589 io_ring_submit_lock(ctx, lock_ring);
7590 spin_lock_irq(&ctx->completion_lock);
7591 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
7592 ctx->cq_extra++;
7593 io_commit_cqring(ctx);
7594 spin_unlock_irq(&ctx->completion_lock);
7595 io_cqring_ev_posted(ctx);
7596 io_ring_submit_unlock(ctx, lock_ring);
7597 }
7598
7599 rsrc_data->do_put(ctx, prsrc);
7600 kfree(prsrc);
7601 }
7602
7603 io_rsrc_node_destroy(ref_node);
7604 if (atomic_dec_and_test(&rsrc_data->refs))
7605 complete(&rsrc_data->done);
7606 }
7607
7608 static void io_rsrc_put_work(struct work_struct *work)
7609 {
7610 struct io_ring_ctx *ctx;
7611 struct llist_node *node;
7612
7613 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7614 node = llist_del_all(&ctx->rsrc_put_llist);
7615
7616 while (node) {
7617 struct io_rsrc_node *ref_node;
7618 struct llist_node *next = node->next;
7619
7620 ref_node = llist_entry(node, struct io_rsrc_node, llist);
7621 __io_rsrc_put_work(ref_node);
7622 node = next;
7623 }
7624 }
7625
7626 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7627 {
7628 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7629 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7630 bool first_add = false;
7631
7632 io_rsrc_ref_lock(ctx);
7633 node->done = true;
7634
7635 while (!list_empty(&ctx->rsrc_ref_list)) {
7636 node = list_first_entry(&ctx->rsrc_ref_list,
7637 struct io_rsrc_node, node);
7638 /* recycle ref nodes in order */
7639 if (!node->done)
7640 break;
7641 list_del(&node->node);
7642 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7643 }
7644 io_rsrc_ref_unlock(ctx);
7645
7646 if (first_add)
7647 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7648 }
7649
7650 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7651 {
7652 struct io_rsrc_node *ref_node;
7653
7654 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7655 if (!ref_node)
7656 return NULL;
7657
7658 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7659 0, GFP_KERNEL)) {
7660 kfree(ref_node);
7661 return NULL;
7662 }
7663 INIT_LIST_HEAD(&ref_node->node);
7664 INIT_LIST_HEAD(&ref_node->rsrc_list);
7665 ref_node->done = false;
7666 return ref_node;
7667 }
7668
7669 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7670 unsigned nr_args, u64 __user *tags)
7671 {
7672 __s32 __user *fds = (__s32 __user *) arg;
7673 struct file *file;
7674 int fd, ret;
7675 unsigned i;
7676
7677 if (ctx->file_data)
7678 return -EBUSY;
7679 if (!nr_args)
7680 return -EINVAL;
7681 if (nr_args > IORING_MAX_FIXED_FILES)
7682 return -EMFILE;
7683 ret = io_rsrc_node_switch_start(ctx);
7684 if (ret)
7685 return ret;
7686 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
7687 &ctx->file_data);
7688 if (ret)
7689 return ret;
7690
7691 ret = -ENOMEM;
7692 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
7693 goto out_free;
7694
7695 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7696 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7697 ret = -EFAULT;
7698 goto out_fput;
7699 }
7700 /* allow sparse sets */
7701 if (fd == -1) {
7702 ret = -EINVAL;
7703 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
7704 goto out_fput;
7705 continue;
7706 }
7707
7708 file = fget(fd);
7709 ret = -EBADF;
7710 if (unlikely(!file))
7711 goto out_fput;
7712
7713 /*
7714 * Don't allow io_uring instances to be registered. If UNIX
7715 * isn't enabled, then this causes a reference cycle and this
7716 * instance can never get freed. If UNIX is enabled we'll
7717 * handle it just fine, but there's still no point in allowing
7718 * a ring fd as it doesn't support regular read/write anyway.
7719 */
7720 if (file->f_op == &io_uring_fops) {
7721 fput(file);
7722 goto out_fput;
7723 }
7724 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
7725 }
7726
7727 ret = io_sqe_files_scm(ctx);
7728 if (ret) {
7729 __io_sqe_files_unregister(ctx);
7730 return ret;
7731 }
7732
7733 io_rsrc_node_switch(ctx, NULL);
7734 return ret;
7735 out_fput:
7736 for (i = 0; i < ctx->nr_user_files; i++) {
7737 file = io_file_from_index(ctx, i);
7738 if (file)
7739 fput(file);
7740 }
7741 io_free_file_tables(&ctx->file_table, nr_args);
7742 ctx->nr_user_files = 0;
7743 out_free:
7744 io_rsrc_data_free(ctx->file_data);
7745 ctx->file_data = NULL;
7746 return ret;
7747 }
7748
7749 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7750 int index)
7751 {
7752 #if defined(CONFIG_UNIX)
7753 struct sock *sock = ctx->ring_sock->sk;
7754 struct sk_buff_head *head = &sock->sk_receive_queue;
7755 struct sk_buff *skb;
7756
7757 /*
7758 * See if we can merge this file into an existing skb SCM_RIGHTS
7759 * file set. If there's no room, fall back to allocating a new skb
7760 * and filling it in.
7761 */
7762 spin_lock_irq(&head->lock);
7763 skb = skb_peek(head);
7764 if (skb) {
7765 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7766
7767 if (fpl->count < SCM_MAX_FD) {
7768 __skb_unlink(skb, head);
7769 spin_unlock_irq(&head->lock);
7770 fpl->fp[fpl->count] = get_file(file);
7771 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7772 fpl->count++;
7773 spin_lock_irq(&head->lock);
7774 __skb_queue_head(head, skb);
7775 } else {
7776 skb = NULL;
7777 }
7778 }
7779 spin_unlock_irq(&head->lock);
7780
7781 if (skb) {
7782 fput(file);
7783 return 0;
7784 }
7785
7786 return __io_sqe_files_scm(ctx, 1, index);
7787 #else
7788 return 0;
7789 #endif
7790 }
7791
7792 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
7793 struct io_rsrc_node *node, void *rsrc)
7794 {
7795 struct io_rsrc_put *prsrc;
7796
7797 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7798 if (!prsrc)
7799 return -ENOMEM;
7800
7801 prsrc->tag = *io_get_tag_slot(data, idx);
7802 prsrc->rsrc = rsrc;
7803 list_add(&prsrc->list, &node->rsrc_list);
7804 return 0;
7805 }
7806
7807 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7808 struct io_uring_rsrc_update2 *up,
7809 unsigned nr_args)
7810 {
7811 u64 __user *tags = u64_to_user_ptr(up->tags);
7812 __s32 __user *fds = u64_to_user_ptr(up->data);
7813 struct io_rsrc_data *data = ctx->file_data;
7814 struct io_fixed_file *file_slot;
7815 struct file *file;
7816 int fd, i, err = 0;
7817 unsigned int done;
7818 bool needs_switch = false;
7819
7820 if (!ctx->file_data)
7821 return -ENXIO;
7822 if (up->offset + nr_args > ctx->nr_user_files)
7823 return -EINVAL;
7824
7825 for (done = 0; done < nr_args; done++) {
7826 u64 tag = 0;
7827
7828 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
7829 copy_from_user(&fd, &fds[done], sizeof(fd))) {
7830 err = -EFAULT;
7831 break;
7832 }
7833 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
7834 err = -EINVAL;
7835 break;
7836 }
7837 if (fd == IORING_REGISTER_FILES_SKIP)
7838 continue;
7839
7840 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7841 file_slot = io_fixed_file_slot(&ctx->file_table, i);
7842
7843 if (file_slot->file_ptr) {
7844 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
7845 err = io_queue_rsrc_removal(data, up->offset + done,
7846 ctx->rsrc_node, file);
7847 if (err)
7848 break;
7849 file_slot->file_ptr = 0;
7850 needs_switch = true;
7851 }
7852 if (fd != -1) {
7853 file = fget(fd);
7854 if (!file) {
7855 err = -EBADF;
7856 break;
7857 }
7858 /*
7859 * Don't allow io_uring instances to be registered. If
7860 * UNIX isn't enabled, then this causes a reference
7861 * cycle and this instance can never get freed. If UNIX
7862 * is enabled we'll handle it just fine, but there's
7863 * still no point in allowing a ring fd as it doesn't
7864 * support regular read/write anyway.
7865 */
7866 if (file->f_op == &io_uring_fops) {
7867 fput(file);
7868 err = -EBADF;
7869 break;
7870 }
7871 *io_get_tag_slot(data, up->offset + done) = tag;
7872 io_fixed_file_set(file_slot, file);
7873 err = io_sqe_file_register(ctx, file, i);
7874 if (err) {
7875 file_slot->file_ptr = 0;
7876 fput(file);
7877 break;
7878 }
7879 }
7880 }
7881
7882 if (needs_switch)
7883 io_rsrc_node_switch(ctx, data);
7884 return done ? done : err;
7885 }
7886
7887 static struct io_wq_work *io_free_work(struct io_wq_work *work)
7888 {
7889 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7890
7891 req = io_put_req_find_next(req);
7892 return req ? &req->work : NULL;
7893 }
7894
7895 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7896 struct task_struct *task)
7897 {
7898 struct io_wq_hash *hash;
7899 struct io_wq_data data;
7900 unsigned int concurrency;
7901
7902 hash = ctx->hash_map;
7903 if (!hash) {
7904 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7905 if (!hash)
7906 return ERR_PTR(-ENOMEM);
7907 refcount_set(&hash->refs, 1);
7908 init_waitqueue_head(&hash->wait);
7909 ctx->hash_map = hash;
7910 }
7911
7912 data.hash = hash;
7913 data.task = task;
7914 data.free_work = io_free_work;
7915 data.do_work = io_wq_submit_work;
7916
7917 /* Do QD, or 4 * CPUS, whatever is smallest */
7918 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7919
7920 return io_wq_create(concurrency, &data);
7921 }
7922
7923 static int io_uring_alloc_task_context(struct task_struct *task,
7924 struct io_ring_ctx *ctx)
7925 {
7926 struct io_uring_task *tctx;
7927 int ret;
7928
7929 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
7930 if (unlikely(!tctx))
7931 return -ENOMEM;
7932
7933 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7934 if (unlikely(ret)) {
7935 kfree(tctx);
7936 return ret;
7937 }
7938
7939 tctx->io_wq = io_init_wq_offload(ctx, task);
7940 if (IS_ERR(tctx->io_wq)) {
7941 ret = PTR_ERR(tctx->io_wq);
7942 percpu_counter_destroy(&tctx->inflight);
7943 kfree(tctx);
7944 return ret;
7945 }
7946
7947 xa_init(&tctx->xa);
7948 init_waitqueue_head(&tctx->wait);
7949 atomic_set(&tctx->in_idle, 0);
7950 atomic_set(&tctx->inflight_tracked, 0);
7951 task->io_uring = tctx;
7952 spin_lock_init(&tctx->task_lock);
7953 INIT_WQ_LIST(&tctx->task_list);
7954 init_task_work(&tctx->task_work, tctx_task_work);
7955 return 0;
7956 }
7957
7958 void __io_uring_free(struct task_struct *tsk)
7959 {
7960 struct io_uring_task *tctx = tsk->io_uring;
7961
7962 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7963 WARN_ON_ONCE(tctx->io_wq);
7964 WARN_ON_ONCE(tctx->cached_refs);
7965
7966 percpu_counter_destroy(&tctx->inflight);
7967 kfree(tctx);
7968 tsk->io_uring = NULL;
7969 }
7970
7971 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7972 struct io_uring_params *p)
7973 {
7974 int ret;
7975
7976 /* Retain compatibility with failing for an invalid attach attempt */
7977 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
7978 IORING_SETUP_ATTACH_WQ) {
7979 struct fd f;
7980
7981 f = fdget(p->wq_fd);
7982 if (!f.file)
7983 return -ENXIO;
7984 fdput(f);
7985 if (f.file->f_op != &io_uring_fops)
7986 return -EINVAL;
7987 }
7988 if (ctx->flags & IORING_SETUP_SQPOLL) {
7989 struct task_struct *tsk;
7990 struct io_sq_data *sqd;
7991 bool attached;
7992
7993 sqd = io_get_sq_data(p, &attached);
7994 if (IS_ERR(sqd)) {
7995 ret = PTR_ERR(sqd);
7996 goto err;
7997 }
7998
7999 ctx->sq_creds = get_current_cred();
8000 ctx->sq_data = sqd;
8001 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8002 if (!ctx->sq_thread_idle)
8003 ctx->sq_thread_idle = HZ;
8004
8005 io_sq_thread_park(sqd);
8006 list_add(&ctx->sqd_list, &sqd->ctx_list);
8007 io_sqd_update_thread_idle(sqd);
8008 /* don't attach to a dying SQPOLL thread, would be racy */
8009 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8010 io_sq_thread_unpark(sqd);
8011
8012 if (ret < 0)
8013 goto err;
8014 if (attached)
8015 return 0;
8016
8017 if (p->flags & IORING_SETUP_SQ_AFF) {
8018 int cpu = p->sq_thread_cpu;
8019
8020 ret = -EINVAL;
8021 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8022 goto err_sqpoll;
8023 sqd->sq_cpu = cpu;
8024 } else {
8025 sqd->sq_cpu = -1;
8026 }
8027
8028 sqd->task_pid = current->pid;
8029 sqd->task_tgid = current->tgid;
8030 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8031 if (IS_ERR(tsk)) {
8032 ret = PTR_ERR(tsk);
8033 goto err_sqpoll;
8034 }
8035
8036 sqd->thread = tsk;
8037 ret = io_uring_alloc_task_context(tsk, ctx);
8038 wake_up_new_task(tsk);
8039 if (ret)
8040 goto err;
8041 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8042 /* Can't have SQ_AFF without SQPOLL */
8043 ret = -EINVAL;
8044 goto err;
8045 }
8046
8047 return 0;
8048 err_sqpoll:
8049 complete(&ctx->sq_data->exited);
8050 err:
8051 io_sq_thread_finish(ctx);
8052 return ret;
8053 }
8054
8055 static inline void __io_unaccount_mem(struct user_struct *user,
8056 unsigned long nr_pages)
8057 {
8058 atomic_long_sub(nr_pages, &user->locked_vm);
8059 }
8060
8061 static inline int __io_account_mem(struct user_struct *user,
8062 unsigned long nr_pages)
8063 {
8064 unsigned long page_limit, cur_pages, new_pages;
8065
8066 /* Don't allow more pages than we can safely lock */
8067 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8068
8069 do {
8070 cur_pages = atomic_long_read(&user->locked_vm);
8071 new_pages = cur_pages + nr_pages;
8072 if (new_pages > page_limit)
8073 return -ENOMEM;
8074 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8075 new_pages) != cur_pages);
8076
8077 return 0;
8078 }
8079
8080 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8081 {
8082 if (ctx->user)
8083 __io_unaccount_mem(ctx->user, nr_pages);
8084
8085 if (ctx->mm_account)
8086 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8087 }
8088
8089 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8090 {
8091 int ret;
8092
8093 if (ctx->user) {
8094 ret = __io_account_mem(ctx->user, nr_pages);
8095 if (ret)
8096 return ret;
8097 }
8098
8099 if (ctx->mm_account)
8100 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8101
8102 return 0;
8103 }
8104
8105 static void io_mem_free(void *ptr)
8106 {
8107 struct page *page;
8108
8109 if (!ptr)
8110 return;
8111
8112 page = virt_to_head_page(ptr);
8113 if (put_page_testzero(page))
8114 free_compound_page(page);
8115 }
8116
8117 static void *io_mem_alloc(size_t size)
8118 {
8119 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8120 __GFP_NORETRY | __GFP_ACCOUNT;
8121
8122 return (void *) __get_free_pages(gfp_flags, get_order(size));
8123 }
8124
8125 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8126 size_t *sq_offset)
8127 {
8128 struct io_rings *rings;
8129 size_t off, sq_array_size;
8130
8131 off = struct_size(rings, cqes, cq_entries);
8132 if (off == SIZE_MAX)
8133 return SIZE_MAX;
8134
8135 #ifdef CONFIG_SMP
8136 off = ALIGN(off, SMP_CACHE_BYTES);
8137 if (off == 0)
8138 return SIZE_MAX;
8139 #endif
8140
8141 if (sq_offset)
8142 *sq_offset = off;
8143
8144 sq_array_size = array_size(sizeof(u32), sq_entries);
8145 if (sq_array_size == SIZE_MAX)
8146 return SIZE_MAX;
8147
8148 if (check_add_overflow(off, sq_array_size, &off))
8149 return SIZE_MAX;
8150
8151 return off;
8152 }
8153
8154 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8155 {
8156 struct io_mapped_ubuf *imu = *slot;
8157 unsigned int i;
8158
8159 if (imu != ctx->dummy_ubuf) {
8160 for (i = 0; i < imu->nr_bvecs; i++)
8161 unpin_user_page(imu->bvec[i].bv_page);
8162 if (imu->acct_pages)
8163 io_unaccount_mem(ctx, imu->acct_pages);
8164 kvfree(imu);
8165 }
8166 *slot = NULL;
8167 }
8168
8169 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8170 {
8171 io_buffer_unmap(ctx, &prsrc->buf);
8172 prsrc->buf = NULL;
8173 }
8174
8175 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8176 {
8177 unsigned int i;
8178
8179 for (i = 0; i < ctx->nr_user_bufs; i++)
8180 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8181 kfree(ctx->user_bufs);
8182 io_rsrc_data_free(ctx->buf_data);
8183 ctx->user_bufs = NULL;
8184 ctx->buf_data = NULL;
8185 ctx->nr_user_bufs = 0;
8186 }
8187
8188 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8189 {
8190 int ret;
8191
8192 if (!ctx->buf_data)
8193 return -ENXIO;
8194
8195 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8196 if (!ret)
8197 __io_sqe_buffers_unregister(ctx);
8198 return ret;
8199 }
8200
8201 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8202 void __user *arg, unsigned index)
8203 {
8204 struct iovec __user *src;
8205
8206 #ifdef CONFIG_COMPAT
8207 if (ctx->compat) {
8208 struct compat_iovec __user *ciovs;
8209 struct compat_iovec ciov;
8210
8211 ciovs = (struct compat_iovec __user *) arg;
8212 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8213 return -EFAULT;
8214
8215 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8216 dst->iov_len = ciov.iov_len;
8217 return 0;
8218 }
8219 #endif
8220 src = (struct iovec __user *) arg;
8221 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8222 return -EFAULT;
8223 return 0;
8224 }
8225
8226 /*
8227 * Not super efficient, but this is just a registration time. And we do cache
8228 * the last compound head, so generally we'll only do a full search if we don't
8229 * match that one.
8230 *
8231 * We check if the given compound head page has already been accounted, to
8232 * avoid double accounting it. This allows us to account the full size of the
8233 * page, not just the constituent pages of a huge page.
8234 */
8235 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8236 int nr_pages, struct page *hpage)
8237 {
8238 int i, j;
8239
8240 /* check current page array */
8241 for (i = 0; i < nr_pages; i++) {
8242 if (!PageCompound(pages[i]))
8243 continue;
8244 if (compound_head(pages[i]) == hpage)
8245 return true;
8246 }
8247
8248 /* check previously registered pages */
8249 for (i = 0; i < ctx->nr_user_bufs; i++) {
8250 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8251
8252 for (j = 0; j < imu->nr_bvecs; j++) {
8253 if (!PageCompound(imu->bvec[j].bv_page))
8254 continue;
8255 if (compound_head(imu->bvec[j].bv_page) == hpage)
8256 return true;
8257 }
8258 }
8259
8260 return false;
8261 }
8262
8263 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8264 int nr_pages, struct io_mapped_ubuf *imu,
8265 struct page **last_hpage)
8266 {
8267 int i, ret;
8268
8269 imu->acct_pages = 0;
8270 for (i = 0; i < nr_pages; i++) {
8271 if (!PageCompound(pages[i])) {
8272 imu->acct_pages++;
8273 } else {
8274 struct page *hpage;
8275
8276 hpage = compound_head(pages[i]);
8277 if (hpage == *last_hpage)
8278 continue;
8279 *last_hpage = hpage;
8280 if (headpage_already_acct(ctx, pages, i, hpage))
8281 continue;
8282 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8283 }
8284 }
8285
8286 if (!imu->acct_pages)
8287 return 0;
8288
8289 ret = io_account_mem(ctx, imu->acct_pages);
8290 if (ret)
8291 imu->acct_pages = 0;
8292 return ret;
8293 }
8294
8295 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8296 struct io_mapped_ubuf **pimu,
8297 struct page **last_hpage)
8298 {
8299 struct io_mapped_ubuf *imu = NULL;
8300 struct vm_area_struct **vmas = NULL;
8301 struct page **pages = NULL;
8302 unsigned long off, start, end, ubuf;
8303 size_t size;
8304 int ret, pret, nr_pages, i;
8305
8306 if (!iov->iov_base) {
8307 *pimu = ctx->dummy_ubuf;
8308 return 0;
8309 }
8310
8311 ubuf = (unsigned long) iov->iov_base;
8312 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8313 start = ubuf >> PAGE_SHIFT;
8314 nr_pages = end - start;
8315
8316 *pimu = NULL;
8317 ret = -ENOMEM;
8318
8319 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8320 if (!pages)
8321 goto done;
8322
8323 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8324 GFP_KERNEL);
8325 if (!vmas)
8326 goto done;
8327
8328 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8329 if (!imu)
8330 goto done;
8331
8332 ret = 0;
8333 mmap_read_lock(current->mm);
8334 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8335 pages, vmas);
8336 if (pret == nr_pages) {
8337 /* don't support file backed memory */
8338 for (i = 0; i < nr_pages; i++) {
8339 struct vm_area_struct *vma = vmas[i];
8340
8341 if (vma_is_shmem(vma))
8342 continue;
8343 if (vma->vm_file &&
8344 !is_file_hugepages(vma->vm_file)) {
8345 ret = -EOPNOTSUPP;
8346 break;
8347 }
8348 }
8349 } else {
8350 ret = pret < 0 ? pret : -EFAULT;
8351 }
8352 mmap_read_unlock(current->mm);
8353 if (ret) {
8354 /*
8355 * if we did partial map, or found file backed vmas,
8356 * release any pages we did get
8357 */
8358 if (pret > 0)
8359 unpin_user_pages(pages, pret);
8360 goto done;
8361 }
8362
8363 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8364 if (ret) {
8365 unpin_user_pages(pages, pret);
8366 goto done;
8367 }
8368
8369 off = ubuf & ~PAGE_MASK;
8370 size = iov->iov_len;
8371 for (i = 0; i < nr_pages; i++) {
8372 size_t vec_len;
8373
8374 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8375 imu->bvec[i].bv_page = pages[i];
8376 imu->bvec[i].bv_len = vec_len;
8377 imu->bvec[i].bv_offset = off;
8378 off = 0;
8379 size -= vec_len;
8380 }
8381 /* store original address for later verification */
8382 imu->ubuf = ubuf;
8383 imu->ubuf_end = ubuf + iov->iov_len;
8384 imu->nr_bvecs = nr_pages;
8385 *pimu = imu;
8386 ret = 0;
8387 done:
8388 if (ret)
8389 kvfree(imu);
8390 kvfree(pages);
8391 kvfree(vmas);
8392 return ret;
8393 }
8394
8395 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8396 {
8397 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8398 return ctx->user_bufs ? 0 : -ENOMEM;
8399 }
8400
8401 static int io_buffer_validate(struct iovec *iov)
8402 {
8403 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8404
8405 /*
8406 * Don't impose further limits on the size and buffer
8407 * constraints here, we'll -EINVAL later when IO is
8408 * submitted if they are wrong.
8409 */
8410 if (!iov->iov_base)
8411 return iov->iov_len ? -EFAULT : 0;
8412 if (!iov->iov_len)
8413 return -EFAULT;
8414
8415 /* arbitrary limit, but we need something */
8416 if (iov->iov_len > SZ_1G)
8417 return -EFAULT;
8418
8419 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8420 return -EOVERFLOW;
8421
8422 return 0;
8423 }
8424
8425 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8426 unsigned int nr_args, u64 __user *tags)
8427 {
8428 struct page *last_hpage = NULL;
8429 struct io_rsrc_data *data;
8430 int i, ret;
8431 struct iovec iov;
8432
8433 if (ctx->user_bufs)
8434 return -EBUSY;
8435 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
8436 return -EINVAL;
8437 ret = io_rsrc_node_switch_start(ctx);
8438 if (ret)
8439 return ret;
8440 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
8441 if (ret)
8442 return ret;
8443 ret = io_buffers_map_alloc(ctx, nr_args);
8444 if (ret) {
8445 io_rsrc_data_free(data);
8446 return ret;
8447 }
8448
8449 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8450 ret = io_copy_iov(ctx, &iov, arg, i);
8451 if (ret)
8452 break;
8453 ret = io_buffer_validate(&iov);
8454 if (ret)
8455 break;
8456 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
8457 ret = -EINVAL;
8458 break;
8459 }
8460
8461 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8462 &last_hpage);
8463 if (ret)
8464 break;
8465 }
8466
8467 WARN_ON_ONCE(ctx->buf_data);
8468
8469 ctx->buf_data = data;
8470 if (ret)
8471 __io_sqe_buffers_unregister(ctx);
8472 else
8473 io_rsrc_node_switch(ctx, NULL);
8474 return ret;
8475 }
8476
8477 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
8478 struct io_uring_rsrc_update2 *up,
8479 unsigned int nr_args)
8480 {
8481 u64 __user *tags = u64_to_user_ptr(up->tags);
8482 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
8483 struct page *last_hpage = NULL;
8484 bool needs_switch = false;
8485 __u32 done;
8486 int i, err;
8487
8488 if (!ctx->buf_data)
8489 return -ENXIO;
8490 if (up->offset + nr_args > ctx->nr_user_bufs)
8491 return -EINVAL;
8492
8493 for (done = 0; done < nr_args; done++) {
8494 struct io_mapped_ubuf *imu;
8495 int offset = up->offset + done;
8496 u64 tag = 0;
8497
8498 err = io_copy_iov(ctx, &iov, iovs, done);
8499 if (err)
8500 break;
8501 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
8502 err = -EFAULT;
8503 break;
8504 }
8505 err = io_buffer_validate(&iov);
8506 if (err)
8507 break;
8508 if (!iov.iov_base && tag) {
8509 err = -EINVAL;
8510 break;
8511 }
8512 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
8513 if (err)
8514 break;
8515
8516 i = array_index_nospec(offset, ctx->nr_user_bufs);
8517 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
8518 err = io_queue_rsrc_removal(ctx->buf_data, offset,
8519 ctx->rsrc_node, ctx->user_bufs[i]);
8520 if (unlikely(err)) {
8521 io_buffer_unmap(ctx, &imu);
8522 break;
8523 }
8524 ctx->user_bufs[i] = NULL;
8525 needs_switch = true;
8526 }
8527
8528 ctx->user_bufs[i] = imu;
8529 *io_get_tag_slot(ctx->buf_data, offset) = tag;
8530 }
8531
8532 if (needs_switch)
8533 io_rsrc_node_switch(ctx, ctx->buf_data);
8534 return done ? done : err;
8535 }
8536
8537 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8538 {
8539 __s32 __user *fds = arg;
8540 int fd;
8541
8542 if (ctx->cq_ev_fd)
8543 return -EBUSY;
8544
8545 if (copy_from_user(&fd, fds, sizeof(*fds)))
8546 return -EFAULT;
8547
8548 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8549 if (IS_ERR(ctx->cq_ev_fd)) {
8550 int ret = PTR_ERR(ctx->cq_ev_fd);
8551
8552 ctx->cq_ev_fd = NULL;
8553 return ret;
8554 }
8555
8556 return 0;
8557 }
8558
8559 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8560 {
8561 if (ctx->cq_ev_fd) {
8562 eventfd_ctx_put(ctx->cq_ev_fd);
8563 ctx->cq_ev_fd = NULL;
8564 return 0;
8565 }
8566
8567 return -ENXIO;
8568 }
8569
8570 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8571 {
8572 struct io_buffer *buf;
8573 unsigned long index;
8574
8575 xa_for_each(&ctx->io_buffers, index, buf)
8576 __io_remove_buffers(ctx, buf, index, -1U);
8577 }
8578
8579 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8580 {
8581 struct io_kiocb *req, *nxt;
8582
8583 list_for_each_entry_safe(req, nxt, list, compl.list) {
8584 if (tsk && req->task != tsk)
8585 continue;
8586 list_del(&req->compl.list);
8587 kmem_cache_free(req_cachep, req);
8588 }
8589 }
8590
8591 static void io_req_caches_free(struct io_ring_ctx *ctx)
8592 {
8593 struct io_submit_state *submit_state = &ctx->submit_state;
8594 struct io_comp_state *cs = &ctx->submit_state.comp;
8595
8596 mutex_lock(&ctx->uring_lock);
8597
8598 if (submit_state->free_reqs) {
8599 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8600 submit_state->reqs);
8601 submit_state->free_reqs = 0;
8602 }
8603
8604 io_flush_cached_locked_reqs(ctx, cs);
8605 io_req_cache_free(&cs->free_list, NULL);
8606 mutex_unlock(&ctx->uring_lock);
8607 }
8608
8609 static bool io_wait_rsrc_data(struct io_rsrc_data *data)
8610 {
8611 if (!data)
8612 return false;
8613 if (!atomic_dec_and_test(&data->refs))
8614 wait_for_completion(&data->done);
8615 return true;
8616 }
8617
8618 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8619 {
8620 io_sq_thread_finish(ctx);
8621
8622 if (ctx->mm_account) {
8623 mmdrop(ctx->mm_account);
8624 ctx->mm_account = NULL;
8625 }
8626
8627 mutex_lock(&ctx->uring_lock);
8628 if (io_wait_rsrc_data(ctx->buf_data))
8629 __io_sqe_buffers_unregister(ctx);
8630 if (io_wait_rsrc_data(ctx->file_data))
8631 __io_sqe_files_unregister(ctx);
8632 if (ctx->rings)
8633 __io_cqring_overflow_flush(ctx, true);
8634 mutex_unlock(&ctx->uring_lock);
8635 io_eventfd_unregister(ctx);
8636 io_destroy_buffers(ctx);
8637 if (ctx->sq_creds)
8638 put_cred(ctx->sq_creds);
8639
8640 /* there are no registered resources left, nobody uses it */
8641 if (ctx->rsrc_node)
8642 io_rsrc_node_destroy(ctx->rsrc_node);
8643 if (ctx->rsrc_backup_node)
8644 io_rsrc_node_destroy(ctx->rsrc_backup_node);
8645 flush_delayed_work(&ctx->rsrc_put_work);
8646
8647 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
8648 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
8649
8650 #if defined(CONFIG_UNIX)
8651 if (ctx->ring_sock) {
8652 ctx->ring_sock->file = NULL; /* so that iput() is called */
8653 sock_release(ctx->ring_sock);
8654 }
8655 #endif
8656
8657 io_mem_free(ctx->rings);
8658 io_mem_free(ctx->sq_sqes);
8659
8660 percpu_ref_exit(&ctx->refs);
8661 free_uid(ctx->user);
8662 io_req_caches_free(ctx);
8663 if (ctx->hash_map)
8664 io_wq_put_hash(ctx->hash_map);
8665 kfree(ctx->cancel_hash);
8666 kfree(ctx->dummy_ubuf);
8667 kfree(ctx);
8668 }
8669
8670 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8671 {
8672 struct io_ring_ctx *ctx = file->private_data;
8673 __poll_t mask = 0;
8674
8675 poll_wait(file, &ctx->poll_wait, wait);
8676 /*
8677 * synchronizes with barrier from wq_has_sleeper call in
8678 * io_commit_cqring
8679 */
8680 smp_rmb();
8681 if (!io_sqring_full(ctx))
8682 mask |= EPOLLOUT | EPOLLWRNORM;
8683
8684 /*
8685 * Don't flush cqring overflow list here, just do a simple check.
8686 * Otherwise there could possible be ABBA deadlock:
8687 * CPU0 CPU1
8688 * ---- ----
8689 * lock(&ctx->uring_lock);
8690 * lock(&ep->mtx);
8691 * lock(&ctx->uring_lock);
8692 * lock(&ep->mtx);
8693 *
8694 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8695 * pushs them to do the flush.
8696 */
8697 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
8698 mask |= EPOLLIN | EPOLLRDNORM;
8699
8700 return mask;
8701 }
8702
8703 static int io_uring_fasync(int fd, struct file *file, int on)
8704 {
8705 struct io_ring_ctx *ctx = file->private_data;
8706
8707 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8708 }
8709
8710 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8711 {
8712 const struct cred *creds;
8713
8714 creds = xa_erase(&ctx->personalities, id);
8715 if (creds) {
8716 put_cred(creds);
8717 return 0;
8718 }
8719
8720 return -EINVAL;
8721 }
8722
8723 struct io_tctx_exit {
8724 struct callback_head task_work;
8725 struct completion completion;
8726 struct io_ring_ctx *ctx;
8727 };
8728
8729 static void io_tctx_exit_cb(struct callback_head *cb)
8730 {
8731 struct io_uring_task *tctx = current->io_uring;
8732 struct io_tctx_exit *work;
8733
8734 work = container_of(cb, struct io_tctx_exit, task_work);
8735 /*
8736 * When @in_idle, we're in cancellation and it's racy to remove the
8737 * node. It'll be removed by the end of cancellation, just ignore it.
8738 */
8739 if (!atomic_read(&tctx->in_idle))
8740 io_uring_del_tctx_node((unsigned long)work->ctx);
8741 complete(&work->completion);
8742 }
8743
8744 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8745 {
8746 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8747
8748 return req->ctx == data;
8749 }
8750
8751 static void io_ring_exit_work(struct work_struct *work)
8752 {
8753 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8754 unsigned long timeout = jiffies + HZ * 60 * 5;
8755 struct io_tctx_exit exit;
8756 struct io_tctx_node *node;
8757 int ret;
8758
8759 /*
8760 * If we're doing polled IO and end up having requests being
8761 * submitted async (out-of-line), then completions can come in while
8762 * we're waiting for refs to drop. We need to reap these manually,
8763 * as nobody else will be looking for them.
8764 */
8765 do {
8766 io_uring_try_cancel_requests(ctx, NULL, true);
8767 if (ctx->sq_data) {
8768 struct io_sq_data *sqd = ctx->sq_data;
8769 struct task_struct *tsk;
8770
8771 io_sq_thread_park(sqd);
8772 tsk = sqd->thread;
8773 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
8774 io_wq_cancel_cb(tsk->io_uring->io_wq,
8775 io_cancel_ctx_cb, ctx, true);
8776 io_sq_thread_unpark(sqd);
8777 }
8778
8779 WARN_ON_ONCE(time_after(jiffies, timeout));
8780 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8781
8782 init_completion(&exit.completion);
8783 init_task_work(&exit.task_work, io_tctx_exit_cb);
8784 exit.ctx = ctx;
8785 /*
8786 * Some may use context even when all refs and requests have been put,
8787 * and they are free to do so while still holding uring_lock or
8788 * completion_lock, see io_req_task_submit(). Apart from other work,
8789 * this lock/unlock section also waits them to finish.
8790 */
8791 mutex_lock(&ctx->uring_lock);
8792 while (!list_empty(&ctx->tctx_list)) {
8793 WARN_ON_ONCE(time_after(jiffies, timeout));
8794
8795 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8796 ctx_node);
8797 /* don't spin on a single task if cancellation failed */
8798 list_rotate_left(&ctx->tctx_list);
8799 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8800 if (WARN_ON_ONCE(ret))
8801 continue;
8802 wake_up_process(node->task);
8803
8804 mutex_unlock(&ctx->uring_lock);
8805 wait_for_completion(&exit.completion);
8806 mutex_lock(&ctx->uring_lock);
8807 }
8808 mutex_unlock(&ctx->uring_lock);
8809 spin_lock_irq(&ctx->completion_lock);
8810 spin_unlock_irq(&ctx->completion_lock);
8811
8812 io_ring_ctx_free(ctx);
8813 }
8814
8815 /* Returns true if we found and killed one or more timeouts */
8816 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8817 bool cancel_all)
8818 {
8819 struct io_kiocb *req, *tmp;
8820 int canceled = 0;
8821
8822 spin_lock_irq(&ctx->completion_lock);
8823 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8824 if (io_match_task(req, tsk, cancel_all)) {
8825 io_kill_timeout(req, -ECANCELED);
8826 canceled++;
8827 }
8828 }
8829 if (canceled != 0)
8830 io_commit_cqring(ctx);
8831 spin_unlock_irq(&ctx->completion_lock);
8832 if (canceled != 0)
8833 io_cqring_ev_posted(ctx);
8834 return canceled != 0;
8835 }
8836
8837 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8838 {
8839 unsigned long index;
8840 struct creds *creds;
8841
8842 mutex_lock(&ctx->uring_lock);
8843 percpu_ref_kill(&ctx->refs);
8844 if (ctx->rings)
8845 __io_cqring_overflow_flush(ctx, true);
8846 xa_for_each(&ctx->personalities, index, creds)
8847 io_unregister_personality(ctx, index);
8848 mutex_unlock(&ctx->uring_lock);
8849
8850 io_kill_timeouts(ctx, NULL, true);
8851 io_poll_remove_all(ctx, NULL, true);
8852
8853 /* if we failed setting up the ctx, we might not have any rings */
8854 io_iopoll_try_reap_events(ctx);
8855
8856 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8857 /*
8858 * Use system_unbound_wq to avoid spawning tons of event kworkers
8859 * if we're exiting a ton of rings at the same time. It just adds
8860 * noise and overhead, there's no discernable change in runtime
8861 * over using system_wq.
8862 */
8863 queue_work(system_unbound_wq, &ctx->exit_work);
8864 }
8865
8866 static int io_uring_release(struct inode *inode, struct file *file)
8867 {
8868 struct io_ring_ctx *ctx = file->private_data;
8869
8870 file->private_data = NULL;
8871 io_ring_ctx_wait_and_kill(ctx);
8872 return 0;
8873 }
8874
8875 struct io_task_cancel {
8876 struct task_struct *task;
8877 bool all;
8878 };
8879
8880 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8881 {
8882 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8883 struct io_task_cancel *cancel = data;
8884 bool ret;
8885
8886 if (!cancel->all && (req->flags & REQ_F_LINK_TIMEOUT)) {
8887 unsigned long flags;
8888 struct io_ring_ctx *ctx = req->ctx;
8889
8890 /* protect against races with linked timeouts */
8891 spin_lock_irqsave(&ctx->completion_lock, flags);
8892 ret = io_match_task(req, cancel->task, cancel->all);
8893 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8894 } else {
8895 ret = io_match_task(req, cancel->task, cancel->all);
8896 }
8897 return ret;
8898 }
8899
8900 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8901 struct task_struct *task, bool cancel_all)
8902 {
8903 struct io_defer_entry *de;
8904 LIST_HEAD(list);
8905
8906 spin_lock_irq(&ctx->completion_lock);
8907 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8908 if (io_match_task(de->req, task, cancel_all)) {
8909 list_cut_position(&list, &ctx->defer_list, &de->list);
8910 break;
8911 }
8912 }
8913 spin_unlock_irq(&ctx->completion_lock);
8914 if (list_empty(&list))
8915 return false;
8916
8917 while (!list_empty(&list)) {
8918 de = list_first_entry(&list, struct io_defer_entry, list);
8919 list_del_init(&de->list);
8920 io_req_complete_failed(de->req, -ECANCELED);
8921 kfree(de);
8922 }
8923 return true;
8924 }
8925
8926 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8927 {
8928 struct io_tctx_node *node;
8929 enum io_wq_cancel cret;
8930 bool ret = false;
8931
8932 mutex_lock(&ctx->uring_lock);
8933 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8934 struct io_uring_task *tctx = node->task->io_uring;
8935
8936 /*
8937 * io_wq will stay alive while we hold uring_lock, because it's
8938 * killed after ctx nodes, which requires to take the lock.
8939 */
8940 if (!tctx || !tctx->io_wq)
8941 continue;
8942 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8943 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8944 }
8945 mutex_unlock(&ctx->uring_lock);
8946
8947 return ret;
8948 }
8949
8950 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8951 struct task_struct *task,
8952 bool cancel_all)
8953 {
8954 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
8955 struct io_uring_task *tctx = task ? task->io_uring : NULL;
8956
8957 while (1) {
8958 enum io_wq_cancel cret;
8959 bool ret = false;
8960
8961 if (!task) {
8962 ret |= io_uring_try_cancel_iowq(ctx);
8963 } else if (tctx && tctx->io_wq) {
8964 /*
8965 * Cancels requests of all rings, not only @ctx, but
8966 * it's fine as the task is in exit/exec.
8967 */
8968 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
8969 &cancel, true);
8970 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8971 }
8972
8973 /* SQPOLL thread does its own polling */
8974 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
8975 (ctx->sq_data && ctx->sq_data->thread == current)) {
8976 while (!list_empty_careful(&ctx->iopoll_list)) {
8977 io_iopoll_try_reap_events(ctx);
8978 ret = true;
8979 }
8980 }
8981
8982 ret |= io_cancel_defer_files(ctx, task, cancel_all);
8983 ret |= io_poll_remove_all(ctx, task, cancel_all);
8984 ret |= io_kill_timeouts(ctx, task, cancel_all);
8985 if (task)
8986 ret |= io_run_task_work();
8987 if (!ret)
8988 break;
8989 cond_resched();
8990 }
8991 }
8992
8993 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
8994 {
8995 struct io_uring_task *tctx = current->io_uring;
8996 struct io_tctx_node *node;
8997 int ret;
8998
8999 if (unlikely(!tctx)) {
9000 ret = io_uring_alloc_task_context(current, ctx);
9001 if (unlikely(ret))
9002 return ret;
9003 tctx = current->io_uring;
9004 }
9005 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9006 node = kmalloc(sizeof(*node), GFP_KERNEL);
9007 if (!node)
9008 return -ENOMEM;
9009 node->ctx = ctx;
9010 node->task = current;
9011
9012 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9013 node, GFP_KERNEL));
9014 if (ret) {
9015 kfree(node);
9016 return ret;
9017 }
9018
9019 mutex_lock(&ctx->uring_lock);
9020 list_add(&node->ctx_node, &ctx->tctx_list);
9021 mutex_unlock(&ctx->uring_lock);
9022 }
9023 tctx->last = ctx;
9024 return 0;
9025 }
9026
9027 /*
9028 * Note that this task has used io_uring. We use it for cancelation purposes.
9029 */
9030 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9031 {
9032 struct io_uring_task *tctx = current->io_uring;
9033
9034 if (likely(tctx && tctx->last == ctx))
9035 return 0;
9036 return __io_uring_add_tctx_node(ctx);
9037 }
9038
9039 /*
9040 * Remove this io_uring_file -> task mapping.
9041 */
9042 static void io_uring_del_tctx_node(unsigned long index)
9043 {
9044 struct io_uring_task *tctx = current->io_uring;
9045 struct io_tctx_node *node;
9046
9047 if (!tctx)
9048 return;
9049 node = xa_erase(&tctx->xa, index);
9050 if (!node)
9051 return;
9052
9053 WARN_ON_ONCE(current != node->task);
9054 WARN_ON_ONCE(list_empty(&node->ctx_node));
9055
9056 mutex_lock(&node->ctx->uring_lock);
9057 list_del(&node->ctx_node);
9058 mutex_unlock(&node->ctx->uring_lock);
9059
9060 if (tctx->last == node->ctx)
9061 tctx->last = NULL;
9062 kfree(node);
9063 }
9064
9065 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9066 {
9067 struct io_wq *wq = tctx->io_wq;
9068 struct io_tctx_node *node;
9069 unsigned long index;
9070
9071 xa_for_each(&tctx->xa, index, node)
9072 io_uring_del_tctx_node(index);
9073 if (wq) {
9074 /*
9075 * Must be after io_uring_del_task_file() (removes nodes under
9076 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9077 */
9078 tctx->io_wq = NULL;
9079 io_wq_put_and_exit(wq);
9080 }
9081 }
9082
9083 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9084 {
9085 if (tracked)
9086 return atomic_read(&tctx->inflight_tracked);
9087 return percpu_counter_sum(&tctx->inflight);
9088 }
9089
9090 static void io_uring_drop_tctx_refs(struct task_struct *task)
9091 {
9092 struct io_uring_task *tctx = task->io_uring;
9093 unsigned int refs = tctx->cached_refs;
9094
9095 tctx->cached_refs = 0;
9096 percpu_counter_sub(&tctx->inflight, refs);
9097 put_task_struct_many(task, refs);
9098 }
9099
9100 /*
9101 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9102 * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9103 */
9104 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9105 {
9106 struct io_uring_task *tctx = current->io_uring;
9107 struct io_ring_ctx *ctx;
9108 s64 inflight;
9109 DEFINE_WAIT(wait);
9110
9111 WARN_ON_ONCE(sqd && sqd->thread != current);
9112
9113 if (!current->io_uring)
9114 return;
9115 if (tctx->io_wq)
9116 io_wq_exit_start(tctx->io_wq);
9117
9118 io_uring_drop_tctx_refs(current);
9119 atomic_inc(&tctx->in_idle);
9120 do {
9121 /* read completions before cancelations */
9122 inflight = tctx_inflight(tctx, !cancel_all);
9123 if (!inflight)
9124 break;
9125
9126 if (!sqd) {
9127 struct io_tctx_node *node;
9128 unsigned long index;
9129
9130 xa_for_each(&tctx->xa, index, node) {
9131 /* sqpoll task will cancel all its requests */
9132 if (node->ctx->sq_data)
9133 continue;
9134 io_uring_try_cancel_requests(node->ctx, current,
9135 cancel_all);
9136 }
9137 } else {
9138 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9139 io_uring_try_cancel_requests(ctx, current,
9140 cancel_all);
9141 }
9142
9143 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9144 /*
9145 * If we've seen completions, retry without waiting. This
9146 * avoids a race where a completion comes in before we did
9147 * prepare_to_wait().
9148 */
9149 if (inflight == tctx_inflight(tctx, !cancel_all))
9150 schedule();
9151 finish_wait(&tctx->wait, &wait);
9152 } while (1);
9153 atomic_dec(&tctx->in_idle);
9154
9155 io_uring_clean_tctx(tctx);
9156 if (cancel_all) {
9157 /* for exec all current's requests should be gone, kill tctx */
9158 __io_uring_free(current);
9159 }
9160 }
9161
9162 void __io_uring_cancel(struct files_struct *files)
9163 {
9164 io_uring_cancel_generic(!files, NULL);
9165 }
9166
9167 static void *io_uring_validate_mmap_request(struct file *file,
9168 loff_t pgoff, size_t sz)
9169 {
9170 struct io_ring_ctx *ctx = file->private_data;
9171 loff_t offset = pgoff << PAGE_SHIFT;
9172 struct page *page;
9173 void *ptr;
9174
9175 switch (offset) {
9176 case IORING_OFF_SQ_RING:
9177 case IORING_OFF_CQ_RING:
9178 ptr = ctx->rings;
9179 break;
9180 case IORING_OFF_SQES:
9181 ptr = ctx->sq_sqes;
9182 break;
9183 default:
9184 return ERR_PTR(-EINVAL);
9185 }
9186
9187 page = virt_to_head_page(ptr);
9188 if (sz > page_size(page))
9189 return ERR_PTR(-EINVAL);
9190
9191 return ptr;
9192 }
9193
9194 #ifdef CONFIG_MMU
9195
9196 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9197 {
9198 size_t sz = vma->vm_end - vma->vm_start;
9199 unsigned long pfn;
9200 void *ptr;
9201
9202 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9203 if (IS_ERR(ptr))
9204 return PTR_ERR(ptr);
9205
9206 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9207 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9208 }
9209
9210 #else /* !CONFIG_MMU */
9211
9212 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9213 {
9214 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9215 }
9216
9217 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9218 {
9219 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9220 }
9221
9222 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9223 unsigned long addr, unsigned long len,
9224 unsigned long pgoff, unsigned long flags)
9225 {
9226 void *ptr;
9227
9228 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9229 if (IS_ERR(ptr))
9230 return PTR_ERR(ptr);
9231
9232 return (unsigned long) ptr;
9233 }
9234
9235 #endif /* !CONFIG_MMU */
9236
9237 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9238 {
9239 DEFINE_WAIT(wait);
9240
9241 do {
9242 if (!io_sqring_full(ctx))
9243 break;
9244 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9245
9246 if (!io_sqring_full(ctx))
9247 break;
9248 schedule();
9249 } while (!signal_pending(current));
9250
9251 finish_wait(&ctx->sqo_sq_wait, &wait);
9252 return 0;
9253 }
9254
9255 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9256 struct __kernel_timespec __user **ts,
9257 const sigset_t __user **sig)
9258 {
9259 struct io_uring_getevents_arg arg;
9260
9261 /*
9262 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9263 * is just a pointer to the sigset_t.
9264 */
9265 if (!(flags & IORING_ENTER_EXT_ARG)) {
9266 *sig = (const sigset_t __user *) argp;
9267 *ts = NULL;
9268 return 0;
9269 }
9270
9271 /*
9272 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9273 * timespec and sigset_t pointers if good.
9274 */
9275 if (*argsz != sizeof(arg))
9276 return -EINVAL;
9277 if (copy_from_user(&arg, argp, sizeof(arg)))
9278 return -EFAULT;
9279 *sig = u64_to_user_ptr(arg.sigmask);
9280 *argsz = arg.sigmask_sz;
9281 *ts = u64_to_user_ptr(arg.ts);
9282 return 0;
9283 }
9284
9285 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9286 u32, min_complete, u32, flags, const void __user *, argp,
9287 size_t, argsz)
9288 {
9289 struct io_ring_ctx *ctx;
9290 int submitted = 0;
9291 struct fd f;
9292 long ret;
9293
9294 io_run_task_work();
9295
9296 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9297 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9298 return -EINVAL;
9299
9300 f = fdget(fd);
9301 if (unlikely(!f.file))
9302 return -EBADF;
9303
9304 ret = -EOPNOTSUPP;
9305 if (unlikely(f.file->f_op != &io_uring_fops))
9306 goto out_fput;
9307
9308 ret = -ENXIO;
9309 ctx = f.file->private_data;
9310 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9311 goto out_fput;
9312
9313 ret = -EBADFD;
9314 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9315 goto out;
9316
9317 /*
9318 * For SQ polling, the thread will do all submissions and completions.
9319 * Just return the requested submit count, and wake the thread if
9320 * we were asked to.
9321 */
9322 ret = 0;
9323 if (ctx->flags & IORING_SETUP_SQPOLL) {
9324 io_cqring_overflow_flush(ctx, false);
9325
9326 ret = -EOWNERDEAD;
9327 if (unlikely(ctx->sq_data->thread == NULL))
9328 goto out;
9329 if (flags & IORING_ENTER_SQ_WAKEUP)
9330 wake_up(&ctx->sq_data->wait);
9331 if (flags & IORING_ENTER_SQ_WAIT) {
9332 ret = io_sqpoll_wait_sq(ctx);
9333 if (ret)
9334 goto out;
9335 }
9336 submitted = to_submit;
9337 } else if (to_submit) {
9338 ret = io_uring_add_tctx_node(ctx);
9339 if (unlikely(ret))
9340 goto out;
9341 mutex_lock(&ctx->uring_lock);
9342 submitted = io_submit_sqes(ctx, to_submit);
9343 mutex_unlock(&ctx->uring_lock);
9344
9345 if (submitted != to_submit)
9346 goto out;
9347 }
9348 if (flags & IORING_ENTER_GETEVENTS) {
9349 const sigset_t __user *sig;
9350 struct __kernel_timespec __user *ts;
9351
9352 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9353 if (unlikely(ret))
9354 goto out;
9355
9356 min_complete = min(min_complete, ctx->cq_entries);
9357
9358 /*
9359 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9360 * space applications don't need to do io completion events
9361 * polling again, they can rely on io_sq_thread to do polling
9362 * work, which can reduce cpu usage and uring_lock contention.
9363 */
9364 if (ctx->flags & IORING_SETUP_IOPOLL &&
9365 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9366 ret = io_iopoll_check(ctx, min_complete);
9367 } else {
9368 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9369 }
9370 }
9371
9372 out:
9373 percpu_ref_put(&ctx->refs);
9374 out_fput:
9375 fdput(f);
9376 return submitted ? submitted : ret;
9377 }
9378
9379 #ifdef CONFIG_PROC_FS
9380 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9381 const struct cred *cred)
9382 {
9383 struct user_namespace *uns = seq_user_ns(m);
9384 struct group_info *gi;
9385 kernel_cap_t cap;
9386 unsigned __capi;
9387 int g;
9388
9389 seq_printf(m, "%5d\n", id);
9390 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9391 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9392 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9393 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9394 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9395 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9396 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9397 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9398 seq_puts(m, "\n\tGroups:\t");
9399 gi = cred->group_info;
9400 for (g = 0; g < gi->ngroups; g++) {
9401 seq_put_decimal_ull(m, g ? " " : "",
9402 from_kgid_munged(uns, gi->gid[g]));
9403 }
9404 seq_puts(m, "\n\tCapEff:\t");
9405 cap = cred->cap_effective;
9406 CAP_FOR_EACH_U32(__capi)
9407 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9408 seq_putc(m, '\n');
9409 return 0;
9410 }
9411
9412 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9413 {
9414 struct io_sq_data *sq = NULL;
9415 bool has_lock;
9416 int i;
9417
9418 /*
9419 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9420 * since fdinfo case grabs it in the opposite direction of normal use
9421 * cases. If we fail to get the lock, we just don't iterate any
9422 * structures that could be going away outside the io_uring mutex.
9423 */
9424 has_lock = mutex_trylock(&ctx->uring_lock);
9425
9426 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9427 sq = ctx->sq_data;
9428 if (!sq->thread)
9429 sq = NULL;
9430 }
9431
9432 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9433 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9434 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9435 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9436 struct file *f = io_file_from_index(ctx, i);
9437
9438 if (f)
9439 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9440 else
9441 seq_printf(m, "%5u: <none>\n", i);
9442 }
9443 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9444 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9445 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9446 unsigned int len = buf->ubuf_end - buf->ubuf;
9447
9448 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9449 }
9450 if (has_lock && !xa_empty(&ctx->personalities)) {
9451 unsigned long index;
9452 const struct cred *cred;
9453
9454 seq_printf(m, "Personalities:\n");
9455 xa_for_each(&ctx->personalities, index, cred)
9456 io_uring_show_cred(m, index, cred);
9457 }
9458 seq_printf(m, "PollList:\n");
9459 spin_lock_irq(&ctx->completion_lock);
9460 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9461 struct hlist_head *list = &ctx->cancel_hash[i];
9462 struct io_kiocb *req;
9463
9464 hlist_for_each_entry(req, list, hash_node)
9465 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9466 req->task->task_works != NULL);
9467 }
9468 spin_unlock_irq(&ctx->completion_lock);
9469 if (has_lock)
9470 mutex_unlock(&ctx->uring_lock);
9471 }
9472
9473 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9474 {
9475 struct io_ring_ctx *ctx = f->private_data;
9476
9477 if (percpu_ref_tryget(&ctx->refs)) {
9478 __io_uring_show_fdinfo(ctx, m);
9479 percpu_ref_put(&ctx->refs);
9480 }
9481 }
9482 #endif
9483
9484 static const struct file_operations io_uring_fops = {
9485 .release = io_uring_release,
9486 .mmap = io_uring_mmap,
9487 #ifndef CONFIG_MMU
9488 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9489 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9490 #endif
9491 .poll = io_uring_poll,
9492 .fasync = io_uring_fasync,
9493 #ifdef CONFIG_PROC_FS
9494 .show_fdinfo = io_uring_show_fdinfo,
9495 #endif
9496 };
9497
9498 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9499 struct io_uring_params *p)
9500 {
9501 struct io_rings *rings;
9502 size_t size, sq_array_offset;
9503
9504 /* make sure these are sane, as we already accounted them */
9505 ctx->sq_entries = p->sq_entries;
9506 ctx->cq_entries = p->cq_entries;
9507
9508 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9509 if (size == SIZE_MAX)
9510 return -EOVERFLOW;
9511
9512 rings = io_mem_alloc(size);
9513 if (!rings)
9514 return -ENOMEM;
9515
9516 ctx->rings = rings;
9517 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9518 rings->sq_ring_mask = p->sq_entries - 1;
9519 rings->cq_ring_mask = p->cq_entries - 1;
9520 rings->sq_ring_entries = p->sq_entries;
9521 rings->cq_ring_entries = p->cq_entries;
9522
9523 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9524 if (size == SIZE_MAX) {
9525 io_mem_free(ctx->rings);
9526 ctx->rings = NULL;
9527 return -EOVERFLOW;
9528 }
9529
9530 ctx->sq_sqes = io_mem_alloc(size);
9531 if (!ctx->sq_sqes) {
9532 io_mem_free(ctx->rings);
9533 ctx->rings = NULL;
9534 return -ENOMEM;
9535 }
9536
9537 return 0;
9538 }
9539
9540 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9541 {
9542 int ret, fd;
9543
9544 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9545 if (fd < 0)
9546 return fd;
9547
9548 ret = io_uring_add_tctx_node(ctx);
9549 if (ret) {
9550 put_unused_fd(fd);
9551 return ret;
9552 }
9553 fd_install(fd, file);
9554 return fd;
9555 }
9556
9557 /*
9558 * Allocate an anonymous fd, this is what constitutes the application
9559 * visible backing of an io_uring instance. The application mmaps this
9560 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9561 * we have to tie this fd to a socket for file garbage collection purposes.
9562 */
9563 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9564 {
9565 struct file *file;
9566 #if defined(CONFIG_UNIX)
9567 int ret;
9568
9569 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9570 &ctx->ring_sock);
9571 if (ret)
9572 return ERR_PTR(ret);
9573 #endif
9574
9575 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9576 O_RDWR | O_CLOEXEC);
9577 #if defined(CONFIG_UNIX)
9578 if (IS_ERR(file)) {
9579 sock_release(ctx->ring_sock);
9580 ctx->ring_sock = NULL;
9581 } else {
9582 ctx->ring_sock->file = file;
9583 }
9584 #endif
9585 return file;
9586 }
9587
9588 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9589 struct io_uring_params __user *params)
9590 {
9591 struct io_ring_ctx *ctx;
9592 struct file *file;
9593 int ret;
9594
9595 if (!entries)
9596 return -EINVAL;
9597 if (entries > IORING_MAX_ENTRIES) {
9598 if (!(p->flags & IORING_SETUP_CLAMP))
9599 return -EINVAL;
9600 entries = IORING_MAX_ENTRIES;
9601 }
9602
9603 /*
9604 * Use twice as many entries for the CQ ring. It's possible for the
9605 * application to drive a higher depth than the size of the SQ ring,
9606 * since the sqes are only used at submission time. This allows for
9607 * some flexibility in overcommitting a bit. If the application has
9608 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9609 * of CQ ring entries manually.
9610 */
9611 p->sq_entries = roundup_pow_of_two(entries);
9612 if (p->flags & IORING_SETUP_CQSIZE) {
9613 /*
9614 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9615 * to a power-of-two, if it isn't already. We do NOT impose
9616 * any cq vs sq ring sizing.
9617 */
9618 if (!p->cq_entries)
9619 return -EINVAL;
9620 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9621 if (!(p->flags & IORING_SETUP_CLAMP))
9622 return -EINVAL;
9623 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9624 }
9625 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9626 if (p->cq_entries < p->sq_entries)
9627 return -EINVAL;
9628 } else {
9629 p->cq_entries = 2 * p->sq_entries;
9630 }
9631
9632 ctx = io_ring_ctx_alloc(p);
9633 if (!ctx)
9634 return -ENOMEM;
9635 ctx->compat = in_compat_syscall();
9636 if (!capable(CAP_IPC_LOCK))
9637 ctx->user = get_uid(current_user());
9638
9639 /*
9640 * This is just grabbed for accounting purposes. When a process exits,
9641 * the mm is exited and dropped before the files, hence we need to hang
9642 * on to this mm purely for the purposes of being able to unaccount
9643 * memory (locked/pinned vm). It's not used for anything else.
9644 */
9645 mmgrab(current->mm);
9646 ctx->mm_account = current->mm;
9647
9648 ret = io_allocate_scq_urings(ctx, p);
9649 if (ret)
9650 goto err;
9651
9652 ret = io_sq_offload_create(ctx, p);
9653 if (ret)
9654 goto err;
9655 /* always set a rsrc node */
9656 ret = io_rsrc_node_switch_start(ctx);
9657 if (ret)
9658 goto err;
9659 io_rsrc_node_switch(ctx, NULL);
9660
9661 memset(&p->sq_off, 0, sizeof(p->sq_off));
9662 p->sq_off.head = offsetof(struct io_rings, sq.head);
9663 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9664 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9665 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9666 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9667 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9668 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9669
9670 memset(&p->cq_off, 0, sizeof(p->cq_off));
9671 p->cq_off.head = offsetof(struct io_rings, cq.head);
9672 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9673 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9674 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9675 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9676 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9677 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9678
9679 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9680 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9681 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9682 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9683 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
9684 IORING_FEAT_RSRC_TAGS;
9685
9686 if (copy_to_user(params, p, sizeof(*p))) {
9687 ret = -EFAULT;
9688 goto err;
9689 }
9690
9691 file = io_uring_get_file(ctx);
9692 if (IS_ERR(file)) {
9693 ret = PTR_ERR(file);
9694 goto err;
9695 }
9696
9697 /*
9698 * Install ring fd as the very last thing, so we don't risk someone
9699 * having closed it before we finish setup
9700 */
9701 ret = io_uring_install_fd(ctx, file);
9702 if (ret < 0) {
9703 /* fput will clean it up */
9704 fput(file);
9705 return ret;
9706 }
9707
9708 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9709 return ret;
9710 err:
9711 io_ring_ctx_wait_and_kill(ctx);
9712 return ret;
9713 }
9714
9715 /*
9716 * Sets up an aio uring context, and returns the fd. Applications asks for a
9717 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9718 * params structure passed in.
9719 */
9720 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9721 {
9722 struct io_uring_params p;
9723 int i;
9724
9725 if (copy_from_user(&p, params, sizeof(p)))
9726 return -EFAULT;
9727 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9728 if (p.resv[i])
9729 return -EINVAL;
9730 }
9731
9732 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9733 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9734 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9735 IORING_SETUP_R_DISABLED))
9736 return -EINVAL;
9737
9738 return io_uring_create(entries, &p, params);
9739 }
9740
9741 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9742 struct io_uring_params __user *, params)
9743 {
9744 return io_uring_setup(entries, params);
9745 }
9746
9747 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9748 {
9749 struct io_uring_probe *p;
9750 size_t size;
9751 int i, ret;
9752
9753 size = struct_size(p, ops, nr_args);
9754 if (size == SIZE_MAX)
9755 return -EOVERFLOW;
9756 p = kzalloc(size, GFP_KERNEL);
9757 if (!p)
9758 return -ENOMEM;
9759
9760 ret = -EFAULT;
9761 if (copy_from_user(p, arg, size))
9762 goto out;
9763 ret = -EINVAL;
9764 if (memchr_inv(p, 0, size))
9765 goto out;
9766
9767 p->last_op = IORING_OP_LAST - 1;
9768 if (nr_args > IORING_OP_LAST)
9769 nr_args = IORING_OP_LAST;
9770
9771 for (i = 0; i < nr_args; i++) {
9772 p->ops[i].op = i;
9773 if (!io_op_defs[i].not_supported)
9774 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9775 }
9776 p->ops_len = i;
9777
9778 ret = 0;
9779 if (copy_to_user(arg, p, size))
9780 ret = -EFAULT;
9781 out:
9782 kfree(p);
9783 return ret;
9784 }
9785
9786 static int io_register_personality(struct io_ring_ctx *ctx)
9787 {
9788 const struct cred *creds;
9789 u32 id;
9790 int ret;
9791
9792 creds = get_current_cred();
9793
9794 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9795 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9796 if (!ret)
9797 return id;
9798 put_cred(creds);
9799 return ret;
9800 }
9801
9802 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9803 unsigned int nr_args)
9804 {
9805 struct io_uring_restriction *res;
9806 size_t size;
9807 int i, ret;
9808
9809 /* Restrictions allowed only if rings started disabled */
9810 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9811 return -EBADFD;
9812
9813 /* We allow only a single restrictions registration */
9814 if (ctx->restrictions.registered)
9815 return -EBUSY;
9816
9817 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9818 return -EINVAL;
9819
9820 size = array_size(nr_args, sizeof(*res));
9821 if (size == SIZE_MAX)
9822 return -EOVERFLOW;
9823
9824 res = memdup_user(arg, size);
9825 if (IS_ERR(res))
9826 return PTR_ERR(res);
9827
9828 ret = 0;
9829
9830 for (i = 0; i < nr_args; i++) {
9831 switch (res[i].opcode) {
9832 case IORING_RESTRICTION_REGISTER_OP:
9833 if (res[i].register_op >= IORING_REGISTER_LAST) {
9834 ret = -EINVAL;
9835 goto out;
9836 }
9837
9838 __set_bit(res[i].register_op,
9839 ctx->restrictions.register_op);
9840 break;
9841 case IORING_RESTRICTION_SQE_OP:
9842 if (res[i].sqe_op >= IORING_OP_LAST) {
9843 ret = -EINVAL;
9844 goto out;
9845 }
9846
9847 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9848 break;
9849 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9850 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9851 break;
9852 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9853 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9854 break;
9855 default:
9856 ret = -EINVAL;
9857 goto out;
9858 }
9859 }
9860
9861 out:
9862 /* Reset all restrictions if an error happened */
9863 if (ret != 0)
9864 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9865 else
9866 ctx->restrictions.registered = true;
9867
9868 kfree(res);
9869 return ret;
9870 }
9871
9872 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9873 {
9874 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9875 return -EBADFD;
9876
9877 if (ctx->restrictions.registered)
9878 ctx->restricted = 1;
9879
9880 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9881 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9882 wake_up(&ctx->sq_data->wait);
9883 return 0;
9884 }
9885
9886 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
9887 struct io_uring_rsrc_update2 *up,
9888 unsigned nr_args)
9889 {
9890 __u32 tmp;
9891 int err;
9892
9893 if (up->resv)
9894 return -EINVAL;
9895 if (check_add_overflow(up->offset, nr_args, &tmp))
9896 return -EOVERFLOW;
9897 err = io_rsrc_node_switch_start(ctx);
9898 if (err)
9899 return err;
9900
9901 switch (type) {
9902 case IORING_RSRC_FILE:
9903 return __io_sqe_files_update(ctx, up, nr_args);
9904 case IORING_RSRC_BUFFER:
9905 return __io_sqe_buffers_update(ctx, up, nr_args);
9906 }
9907 return -EINVAL;
9908 }
9909
9910 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
9911 unsigned nr_args)
9912 {
9913 struct io_uring_rsrc_update2 up;
9914
9915 if (!nr_args)
9916 return -EINVAL;
9917 memset(&up, 0, sizeof(up));
9918 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
9919 return -EFAULT;
9920 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
9921 }
9922
9923 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
9924 unsigned size, unsigned type)
9925 {
9926 struct io_uring_rsrc_update2 up;
9927
9928 if (size != sizeof(up))
9929 return -EINVAL;
9930 if (copy_from_user(&up, arg, sizeof(up)))
9931 return -EFAULT;
9932 if (!up.nr || up.resv)
9933 return -EINVAL;
9934 return __io_register_rsrc_update(ctx, type, &up, up.nr);
9935 }
9936
9937 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
9938 unsigned int size, unsigned int type)
9939 {
9940 struct io_uring_rsrc_register rr;
9941
9942 /* keep it extendible */
9943 if (size != sizeof(rr))
9944 return -EINVAL;
9945
9946 memset(&rr, 0, sizeof(rr));
9947 if (copy_from_user(&rr, arg, size))
9948 return -EFAULT;
9949 if (!rr.nr || rr.resv || rr.resv2)
9950 return -EINVAL;
9951
9952 switch (type) {
9953 case IORING_RSRC_FILE:
9954 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
9955 rr.nr, u64_to_user_ptr(rr.tags));
9956 case IORING_RSRC_BUFFER:
9957 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
9958 rr.nr, u64_to_user_ptr(rr.tags));
9959 }
9960 return -EINVAL;
9961 }
9962
9963 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
9964 unsigned len)
9965 {
9966 struct io_uring_task *tctx = current->io_uring;
9967 cpumask_var_t new_mask;
9968 int ret;
9969
9970 if (!tctx || !tctx->io_wq)
9971 return -EINVAL;
9972
9973 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
9974 return -ENOMEM;
9975
9976 cpumask_clear(new_mask);
9977 if (len > cpumask_size())
9978 len = cpumask_size();
9979
9980 if (copy_from_user(new_mask, arg, len)) {
9981 free_cpumask_var(new_mask);
9982 return -EFAULT;
9983 }
9984
9985 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
9986 free_cpumask_var(new_mask);
9987 return ret;
9988 }
9989
9990 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
9991 {
9992 struct io_uring_task *tctx = current->io_uring;
9993
9994 if (!tctx || !tctx->io_wq)
9995 return -EINVAL;
9996
9997 return io_wq_cpu_affinity(tctx->io_wq, NULL);
9998 }
9999
10000 static bool io_register_op_must_quiesce(int op)
10001 {
10002 switch (op) {
10003 case IORING_REGISTER_BUFFERS:
10004 case IORING_UNREGISTER_BUFFERS:
10005 case IORING_REGISTER_FILES:
10006 case IORING_UNREGISTER_FILES:
10007 case IORING_REGISTER_FILES_UPDATE:
10008 case IORING_REGISTER_PROBE:
10009 case IORING_REGISTER_PERSONALITY:
10010 case IORING_UNREGISTER_PERSONALITY:
10011 case IORING_REGISTER_FILES2:
10012 case IORING_REGISTER_FILES_UPDATE2:
10013 case IORING_REGISTER_BUFFERS2:
10014 case IORING_REGISTER_BUFFERS_UPDATE:
10015 case IORING_REGISTER_IOWQ_AFF:
10016 case IORING_UNREGISTER_IOWQ_AFF:
10017 return false;
10018 default:
10019 return true;
10020 }
10021 }
10022
10023 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10024 void __user *arg, unsigned nr_args)
10025 __releases(ctx->uring_lock)
10026 __acquires(ctx->uring_lock)
10027 {
10028 int ret;
10029
10030 /*
10031 * We're inside the ring mutex, if the ref is already dying, then
10032 * someone else killed the ctx or is already going through
10033 * io_uring_register().
10034 */
10035 if (percpu_ref_is_dying(&ctx->refs))
10036 return -ENXIO;
10037
10038 if (ctx->restricted) {
10039 if (opcode >= IORING_REGISTER_LAST)
10040 return -EINVAL;
10041 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10042 if (!test_bit(opcode, ctx->restrictions.register_op))
10043 return -EACCES;
10044 }
10045
10046 if (io_register_op_must_quiesce(opcode)) {
10047 percpu_ref_kill(&ctx->refs);
10048
10049 /*
10050 * Drop uring mutex before waiting for references to exit. If
10051 * another thread is currently inside io_uring_enter() it might
10052 * need to grab the uring_lock to make progress. If we hold it
10053 * here across the drain wait, then we can deadlock. It's safe
10054 * to drop the mutex here, since no new references will come in
10055 * after we've killed the percpu ref.
10056 */
10057 mutex_unlock(&ctx->uring_lock);
10058 do {
10059 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10060 if (!ret)
10061 break;
10062 ret = io_run_task_work_sig();
10063 if (ret < 0)
10064 break;
10065 } while (1);
10066 mutex_lock(&ctx->uring_lock);
10067
10068 if (ret) {
10069 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10070 return ret;
10071 }
10072 }
10073
10074 switch (opcode) {
10075 case IORING_REGISTER_BUFFERS:
10076 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10077 break;
10078 case IORING_UNREGISTER_BUFFERS:
10079 ret = -EINVAL;
10080 if (arg || nr_args)
10081 break;
10082 ret = io_sqe_buffers_unregister(ctx);
10083 break;
10084 case IORING_REGISTER_FILES:
10085 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10086 break;
10087 case IORING_UNREGISTER_FILES:
10088 ret = -EINVAL;
10089 if (arg || nr_args)
10090 break;
10091 ret = io_sqe_files_unregister(ctx);
10092 break;
10093 case IORING_REGISTER_FILES_UPDATE:
10094 ret = io_register_files_update(ctx, arg, nr_args);
10095 break;
10096 case IORING_REGISTER_EVENTFD:
10097 case IORING_REGISTER_EVENTFD_ASYNC:
10098 ret = -EINVAL;
10099 if (nr_args != 1)
10100 break;
10101 ret = io_eventfd_register(ctx, arg);
10102 if (ret)
10103 break;
10104 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10105 ctx->eventfd_async = 1;
10106 else
10107 ctx->eventfd_async = 0;
10108 break;
10109 case IORING_UNREGISTER_EVENTFD:
10110 ret = -EINVAL;
10111 if (arg || nr_args)
10112 break;
10113 ret = io_eventfd_unregister(ctx);
10114 break;
10115 case IORING_REGISTER_PROBE:
10116 ret = -EINVAL;
10117 if (!arg || nr_args > 256)
10118 break;
10119 ret = io_probe(ctx, arg, nr_args);
10120 break;
10121 case IORING_REGISTER_PERSONALITY:
10122 ret = -EINVAL;
10123 if (arg || nr_args)
10124 break;
10125 ret = io_register_personality(ctx);
10126 break;
10127 case IORING_UNREGISTER_PERSONALITY:
10128 ret = -EINVAL;
10129 if (arg)
10130 break;
10131 ret = io_unregister_personality(ctx, nr_args);
10132 break;
10133 case IORING_REGISTER_ENABLE_RINGS:
10134 ret = -EINVAL;
10135 if (arg || nr_args)
10136 break;
10137 ret = io_register_enable_rings(ctx);
10138 break;
10139 case IORING_REGISTER_RESTRICTIONS:
10140 ret = io_register_restrictions(ctx, arg, nr_args);
10141 break;
10142 case IORING_REGISTER_FILES2:
10143 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10144 break;
10145 case IORING_REGISTER_FILES_UPDATE2:
10146 ret = io_register_rsrc_update(ctx, arg, nr_args,
10147 IORING_RSRC_FILE);
10148 break;
10149 case IORING_REGISTER_BUFFERS2:
10150 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10151 break;
10152 case IORING_REGISTER_BUFFERS_UPDATE:
10153 ret = io_register_rsrc_update(ctx, arg, nr_args,
10154 IORING_RSRC_BUFFER);
10155 break;
10156 case IORING_REGISTER_IOWQ_AFF:
10157 ret = -EINVAL;
10158 if (!arg || !nr_args)
10159 break;
10160 ret = io_register_iowq_aff(ctx, arg, nr_args);
10161 break;
10162 case IORING_UNREGISTER_IOWQ_AFF:
10163 ret = -EINVAL;
10164 if (arg || nr_args)
10165 break;
10166 ret = io_unregister_iowq_aff(ctx);
10167 break;
10168 default:
10169 ret = -EINVAL;
10170 break;
10171 }
10172
10173 if (io_register_op_must_quiesce(opcode)) {
10174 /* bring the ctx back to life */
10175 percpu_ref_reinit(&ctx->refs);
10176 reinit_completion(&ctx->ref_comp);
10177 }
10178 return ret;
10179 }
10180
10181 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10182 void __user *, arg, unsigned int, nr_args)
10183 {
10184 struct io_ring_ctx *ctx;
10185 long ret = -EBADF;
10186 struct fd f;
10187
10188 f = fdget(fd);
10189 if (!f.file)
10190 return -EBADF;
10191
10192 ret = -EOPNOTSUPP;
10193 if (f.file->f_op != &io_uring_fops)
10194 goto out_fput;
10195
10196 ctx = f.file->private_data;
10197
10198 io_run_task_work();
10199
10200 mutex_lock(&ctx->uring_lock);
10201 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10202 mutex_unlock(&ctx->uring_lock);
10203 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10204 ctx->cq_ev_fd != NULL, ret);
10205 out_fput:
10206 fdput(f);
10207 return ret;
10208 }
10209
10210 static int __init io_uring_init(void)
10211 {
10212 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10213 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10214 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10215 } while (0)
10216
10217 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10218 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10219 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10220 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10221 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10222 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10223 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10224 BUILD_BUG_SQE_ELEM(8, __u64, off);
10225 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10226 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10227 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10228 BUILD_BUG_SQE_ELEM(24, __u32, len);
10229 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10230 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10231 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10232 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10233 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10234 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10235 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10236 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10237 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10238 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10239 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10240 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10241 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10242 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10243 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10244 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10245 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10246 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
10247 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10248 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10249
10250 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10251 sizeof(struct io_uring_rsrc_update));
10252 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10253 sizeof(struct io_uring_rsrc_update2));
10254 /* should fit into one byte */
10255 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10256
10257 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10258 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10259
10260 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10261 SLAB_ACCOUNT);
10262 return 0;
10263 };
10264 __initcall(io_uring_init);