]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'efi-urgent-2020-03-15' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/mmu_context.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/io_uring.h>
82
83 #include <uapi/linux/io_uring.h>
84
85 #include "internal.h"
86 #include "io-wq.h"
87
88 #define IORING_MAX_ENTRIES 32768
89 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
90
91 /*
92 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
93 */
94 #define IORING_FILE_TABLE_SHIFT 9
95 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
96 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
97 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
98
99 struct io_uring {
100 u32 head ____cacheline_aligned_in_smp;
101 u32 tail ____cacheline_aligned_in_smp;
102 };
103
104 /*
105 * This data is shared with the application through the mmap at offsets
106 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
107 *
108 * The offsets to the member fields are published through struct
109 * io_sqring_offsets when calling io_uring_setup.
110 */
111 struct io_rings {
112 /*
113 * Head and tail offsets into the ring; the offsets need to be
114 * masked to get valid indices.
115 *
116 * The kernel controls head of the sq ring and the tail of the cq ring,
117 * and the application controls tail of the sq ring and the head of the
118 * cq ring.
119 */
120 struct io_uring sq, cq;
121 /*
122 * Bitmasks to apply to head and tail offsets (constant, equals
123 * ring_entries - 1)
124 */
125 u32 sq_ring_mask, cq_ring_mask;
126 /* Ring sizes (constant, power of 2) */
127 u32 sq_ring_entries, cq_ring_entries;
128 /*
129 * Number of invalid entries dropped by the kernel due to
130 * invalid index stored in array
131 *
132 * Written by the kernel, shouldn't be modified by the
133 * application (i.e. get number of "new events" by comparing to
134 * cached value).
135 *
136 * After a new SQ head value was read by the application this
137 * counter includes all submissions that were dropped reaching
138 * the new SQ head (and possibly more).
139 */
140 u32 sq_dropped;
141 /*
142 * Runtime flags
143 *
144 * Written by the kernel, shouldn't be modified by the
145 * application.
146 *
147 * The application needs a full memory barrier before checking
148 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
149 */
150 u32 sq_flags;
151 /*
152 * Number of completion events lost because the queue was full;
153 * this should be avoided by the application by making sure
154 * there are not more requests pending than there is space in
155 * the completion queue.
156 *
157 * Written by the kernel, shouldn't be modified by the
158 * application (i.e. get number of "new events" by comparing to
159 * cached value).
160 *
161 * As completion events come in out of order this counter is not
162 * ordered with any other data.
163 */
164 u32 cq_overflow;
165 /*
166 * Ring buffer of completion events.
167 *
168 * The kernel writes completion events fresh every time they are
169 * produced, so the application is allowed to modify pending
170 * entries.
171 */
172 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
173 };
174
175 struct io_mapped_ubuf {
176 u64 ubuf;
177 size_t len;
178 struct bio_vec *bvec;
179 unsigned int nr_bvecs;
180 };
181
182 struct fixed_file_table {
183 struct file **files;
184 };
185
186 struct fixed_file_data {
187 struct fixed_file_table *table;
188 struct io_ring_ctx *ctx;
189
190 struct percpu_ref refs;
191 struct llist_head put_llist;
192 struct work_struct ref_work;
193 struct completion done;
194 };
195
196 struct io_ring_ctx {
197 struct {
198 struct percpu_ref refs;
199 } ____cacheline_aligned_in_smp;
200
201 struct {
202 unsigned int flags;
203 unsigned int compat: 1;
204 unsigned int account_mem: 1;
205 unsigned int cq_overflow_flushed: 1;
206 unsigned int drain_next: 1;
207 unsigned int eventfd_async: 1;
208
209 /*
210 * Ring buffer of indices into array of io_uring_sqe, which is
211 * mmapped by the application using the IORING_OFF_SQES offset.
212 *
213 * This indirection could e.g. be used to assign fixed
214 * io_uring_sqe entries to operations and only submit them to
215 * the queue when needed.
216 *
217 * The kernel modifies neither the indices array nor the entries
218 * array.
219 */
220 u32 *sq_array;
221 unsigned cached_sq_head;
222 unsigned sq_entries;
223 unsigned sq_mask;
224 unsigned sq_thread_idle;
225 unsigned cached_sq_dropped;
226 atomic_t cached_cq_overflow;
227 unsigned long sq_check_overflow;
228
229 struct list_head defer_list;
230 struct list_head timeout_list;
231 struct list_head cq_overflow_list;
232
233 wait_queue_head_t inflight_wait;
234 struct io_uring_sqe *sq_sqes;
235 } ____cacheline_aligned_in_smp;
236
237 struct io_rings *rings;
238
239 /* IO offload */
240 struct io_wq *io_wq;
241 struct task_struct *sqo_thread; /* if using sq thread polling */
242 struct mm_struct *sqo_mm;
243 wait_queue_head_t sqo_wait;
244
245 /*
246 * If used, fixed file set. Writers must ensure that ->refs is dead,
247 * readers must ensure that ->refs is alive as long as the file* is
248 * used. Only updated through io_uring_register(2).
249 */
250 struct fixed_file_data *file_data;
251 unsigned nr_user_files;
252 int ring_fd;
253 struct file *ring_file;
254
255 /* if used, fixed mapped user buffers */
256 unsigned nr_user_bufs;
257 struct io_mapped_ubuf *user_bufs;
258
259 struct user_struct *user;
260
261 const struct cred *creds;
262
263 /* 0 is for ctx quiesce/reinit/free, 1 is for sqo_thread started */
264 struct completion *completions;
265
266 /* if all else fails... */
267 struct io_kiocb *fallback_req;
268
269 #if defined(CONFIG_UNIX)
270 struct socket *ring_sock;
271 #endif
272
273 struct idr personality_idr;
274
275 struct {
276 unsigned cached_cq_tail;
277 unsigned cq_entries;
278 unsigned cq_mask;
279 atomic_t cq_timeouts;
280 unsigned long cq_check_overflow;
281 struct wait_queue_head cq_wait;
282 struct fasync_struct *cq_fasync;
283 struct eventfd_ctx *cq_ev_fd;
284 } ____cacheline_aligned_in_smp;
285
286 struct {
287 struct mutex uring_lock;
288 wait_queue_head_t wait;
289 } ____cacheline_aligned_in_smp;
290
291 struct {
292 spinlock_t completion_lock;
293 struct llist_head poll_llist;
294
295 /*
296 * ->poll_list is protected by the ctx->uring_lock for
297 * io_uring instances that don't use IORING_SETUP_SQPOLL.
298 * For SQPOLL, only the single threaded io_sq_thread() will
299 * manipulate the list, hence no extra locking is needed there.
300 */
301 struct list_head poll_list;
302 struct hlist_head *cancel_hash;
303 unsigned cancel_hash_bits;
304 bool poll_multi_file;
305
306 spinlock_t inflight_lock;
307 struct list_head inflight_list;
308 } ____cacheline_aligned_in_smp;
309 };
310
311 /*
312 * First field must be the file pointer in all the
313 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
314 */
315 struct io_poll_iocb {
316 struct file *file;
317 union {
318 struct wait_queue_head *head;
319 u64 addr;
320 };
321 __poll_t events;
322 bool done;
323 bool canceled;
324 struct wait_queue_entry wait;
325 };
326
327 struct io_close {
328 struct file *file;
329 struct file *put_file;
330 int fd;
331 };
332
333 struct io_timeout_data {
334 struct io_kiocb *req;
335 struct hrtimer timer;
336 struct timespec64 ts;
337 enum hrtimer_mode mode;
338 u32 seq_offset;
339 };
340
341 struct io_accept {
342 struct file *file;
343 struct sockaddr __user *addr;
344 int __user *addr_len;
345 int flags;
346 };
347
348 struct io_sync {
349 struct file *file;
350 loff_t len;
351 loff_t off;
352 int flags;
353 int mode;
354 };
355
356 struct io_cancel {
357 struct file *file;
358 u64 addr;
359 };
360
361 struct io_timeout {
362 struct file *file;
363 u64 addr;
364 int flags;
365 unsigned count;
366 };
367
368 struct io_rw {
369 /* NOTE: kiocb has the file as the first member, so don't do it here */
370 struct kiocb kiocb;
371 u64 addr;
372 u64 len;
373 };
374
375 struct io_connect {
376 struct file *file;
377 struct sockaddr __user *addr;
378 int addr_len;
379 };
380
381 struct io_sr_msg {
382 struct file *file;
383 union {
384 struct user_msghdr __user *msg;
385 void __user *buf;
386 };
387 int msg_flags;
388 size_t len;
389 };
390
391 struct io_open {
392 struct file *file;
393 int dfd;
394 union {
395 unsigned mask;
396 };
397 struct filename *filename;
398 struct statx __user *buffer;
399 struct open_how how;
400 };
401
402 struct io_files_update {
403 struct file *file;
404 u64 arg;
405 u32 nr_args;
406 u32 offset;
407 };
408
409 struct io_fadvise {
410 struct file *file;
411 u64 offset;
412 u32 len;
413 u32 advice;
414 };
415
416 struct io_madvise {
417 struct file *file;
418 u64 addr;
419 u32 len;
420 u32 advice;
421 };
422
423 struct io_epoll {
424 struct file *file;
425 int epfd;
426 int op;
427 int fd;
428 struct epoll_event event;
429 };
430
431 struct io_async_connect {
432 struct sockaddr_storage address;
433 };
434
435 struct io_async_msghdr {
436 struct iovec fast_iov[UIO_FASTIOV];
437 struct iovec *iov;
438 struct sockaddr __user *uaddr;
439 struct msghdr msg;
440 struct sockaddr_storage addr;
441 };
442
443 struct io_async_rw {
444 struct iovec fast_iov[UIO_FASTIOV];
445 struct iovec *iov;
446 ssize_t nr_segs;
447 ssize_t size;
448 };
449
450 struct io_async_ctx {
451 union {
452 struct io_async_rw rw;
453 struct io_async_msghdr msg;
454 struct io_async_connect connect;
455 struct io_timeout_data timeout;
456 };
457 };
458
459 enum {
460 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
461 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
462 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
463 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
464 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
465
466 REQ_F_LINK_NEXT_BIT,
467 REQ_F_FAIL_LINK_BIT,
468 REQ_F_INFLIGHT_BIT,
469 REQ_F_CUR_POS_BIT,
470 REQ_F_NOWAIT_BIT,
471 REQ_F_IOPOLL_COMPLETED_BIT,
472 REQ_F_LINK_TIMEOUT_BIT,
473 REQ_F_TIMEOUT_BIT,
474 REQ_F_ISREG_BIT,
475 REQ_F_MUST_PUNT_BIT,
476 REQ_F_TIMEOUT_NOSEQ_BIT,
477 REQ_F_COMP_LOCKED_BIT,
478 REQ_F_NEED_CLEANUP_BIT,
479 REQ_F_OVERFLOW_BIT,
480 };
481
482 enum {
483 /* ctx owns file */
484 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
485 /* drain existing IO first */
486 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
487 /* linked sqes */
488 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
489 /* doesn't sever on completion < 0 */
490 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
491 /* IOSQE_ASYNC */
492 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
493
494 /* already grabbed next link */
495 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
496 /* fail rest of links */
497 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
498 /* on inflight list */
499 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
500 /* read/write uses file position */
501 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
502 /* must not punt to workers */
503 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
504 /* polled IO has completed */
505 REQ_F_IOPOLL_COMPLETED = BIT(REQ_F_IOPOLL_COMPLETED_BIT),
506 /* has linked timeout */
507 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
508 /* timeout request */
509 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
510 /* regular file */
511 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
512 /* must be punted even for NONBLOCK */
513 REQ_F_MUST_PUNT = BIT(REQ_F_MUST_PUNT_BIT),
514 /* no timeout sequence */
515 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
516 /* completion under lock */
517 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
518 /* needs cleanup */
519 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
520 /* in overflow list */
521 REQ_F_OVERFLOW = BIT(REQ_F_OVERFLOW_BIT),
522 };
523
524 /*
525 * NOTE! Each of the iocb union members has the file pointer
526 * as the first entry in their struct definition. So you can
527 * access the file pointer through any of the sub-structs,
528 * or directly as just 'ki_filp' in this struct.
529 */
530 struct io_kiocb {
531 union {
532 struct file *file;
533 struct io_rw rw;
534 struct io_poll_iocb poll;
535 struct io_accept accept;
536 struct io_sync sync;
537 struct io_cancel cancel;
538 struct io_timeout timeout;
539 struct io_connect connect;
540 struct io_sr_msg sr_msg;
541 struct io_open open;
542 struct io_close close;
543 struct io_files_update files_update;
544 struct io_fadvise fadvise;
545 struct io_madvise madvise;
546 struct io_epoll epoll;
547 };
548
549 struct io_async_ctx *io;
550 /*
551 * llist_node is only used for poll deferred completions
552 */
553 struct llist_node llist_node;
554 bool in_async;
555 bool needs_fixed_file;
556 u8 opcode;
557
558 struct io_ring_ctx *ctx;
559 union {
560 struct list_head list;
561 struct hlist_node hash_node;
562 };
563 struct list_head link_list;
564 unsigned int flags;
565 refcount_t refs;
566 u64 user_data;
567 u32 result;
568 u32 sequence;
569
570 struct list_head inflight_entry;
571
572 struct io_wq_work work;
573 };
574
575 #define IO_PLUG_THRESHOLD 2
576 #define IO_IOPOLL_BATCH 8
577
578 struct io_submit_state {
579 struct blk_plug plug;
580
581 /*
582 * io_kiocb alloc cache
583 */
584 void *reqs[IO_IOPOLL_BATCH];
585 unsigned int free_reqs;
586
587 /*
588 * File reference cache
589 */
590 struct file *file;
591 unsigned int fd;
592 unsigned int has_refs;
593 unsigned int used_refs;
594 unsigned int ios_left;
595 };
596
597 struct io_op_def {
598 /* needs req->io allocated for deferral/async */
599 unsigned async_ctx : 1;
600 /* needs current->mm setup, does mm access */
601 unsigned needs_mm : 1;
602 /* needs req->file assigned */
603 unsigned needs_file : 1;
604 /* needs req->file assigned IFF fd is >= 0 */
605 unsigned fd_non_neg : 1;
606 /* hash wq insertion if file is a regular file */
607 unsigned hash_reg_file : 1;
608 /* unbound wq insertion if file is a non-regular file */
609 unsigned unbound_nonreg_file : 1;
610 /* opcode is not supported by this kernel */
611 unsigned not_supported : 1;
612 /* needs file table */
613 unsigned file_table : 1;
614 /* needs ->fs */
615 unsigned needs_fs : 1;
616 };
617
618 static const struct io_op_def io_op_defs[] = {
619 [IORING_OP_NOP] = {},
620 [IORING_OP_READV] = {
621 .async_ctx = 1,
622 .needs_mm = 1,
623 .needs_file = 1,
624 .unbound_nonreg_file = 1,
625 },
626 [IORING_OP_WRITEV] = {
627 .async_ctx = 1,
628 .needs_mm = 1,
629 .needs_file = 1,
630 .hash_reg_file = 1,
631 .unbound_nonreg_file = 1,
632 },
633 [IORING_OP_FSYNC] = {
634 .needs_file = 1,
635 },
636 [IORING_OP_READ_FIXED] = {
637 .needs_file = 1,
638 .unbound_nonreg_file = 1,
639 },
640 [IORING_OP_WRITE_FIXED] = {
641 .needs_file = 1,
642 .hash_reg_file = 1,
643 .unbound_nonreg_file = 1,
644 },
645 [IORING_OP_POLL_ADD] = {
646 .needs_file = 1,
647 .unbound_nonreg_file = 1,
648 },
649 [IORING_OP_POLL_REMOVE] = {},
650 [IORING_OP_SYNC_FILE_RANGE] = {
651 .needs_file = 1,
652 },
653 [IORING_OP_SENDMSG] = {
654 .async_ctx = 1,
655 .needs_mm = 1,
656 .needs_file = 1,
657 .unbound_nonreg_file = 1,
658 .needs_fs = 1,
659 },
660 [IORING_OP_RECVMSG] = {
661 .async_ctx = 1,
662 .needs_mm = 1,
663 .needs_file = 1,
664 .unbound_nonreg_file = 1,
665 .needs_fs = 1,
666 },
667 [IORING_OP_TIMEOUT] = {
668 .async_ctx = 1,
669 .needs_mm = 1,
670 },
671 [IORING_OP_TIMEOUT_REMOVE] = {},
672 [IORING_OP_ACCEPT] = {
673 .needs_mm = 1,
674 .needs_file = 1,
675 .unbound_nonreg_file = 1,
676 .file_table = 1,
677 },
678 [IORING_OP_ASYNC_CANCEL] = {},
679 [IORING_OP_LINK_TIMEOUT] = {
680 .async_ctx = 1,
681 .needs_mm = 1,
682 },
683 [IORING_OP_CONNECT] = {
684 .async_ctx = 1,
685 .needs_mm = 1,
686 .needs_file = 1,
687 .unbound_nonreg_file = 1,
688 },
689 [IORING_OP_FALLOCATE] = {
690 .needs_file = 1,
691 },
692 [IORING_OP_OPENAT] = {
693 .needs_file = 1,
694 .fd_non_neg = 1,
695 .file_table = 1,
696 .needs_fs = 1,
697 },
698 [IORING_OP_CLOSE] = {
699 .needs_file = 1,
700 .file_table = 1,
701 },
702 [IORING_OP_FILES_UPDATE] = {
703 .needs_mm = 1,
704 .file_table = 1,
705 },
706 [IORING_OP_STATX] = {
707 .needs_mm = 1,
708 .needs_file = 1,
709 .fd_non_neg = 1,
710 .needs_fs = 1,
711 },
712 [IORING_OP_READ] = {
713 .needs_mm = 1,
714 .needs_file = 1,
715 .unbound_nonreg_file = 1,
716 },
717 [IORING_OP_WRITE] = {
718 .needs_mm = 1,
719 .needs_file = 1,
720 .unbound_nonreg_file = 1,
721 },
722 [IORING_OP_FADVISE] = {
723 .needs_file = 1,
724 },
725 [IORING_OP_MADVISE] = {
726 .needs_mm = 1,
727 },
728 [IORING_OP_SEND] = {
729 .needs_mm = 1,
730 .needs_file = 1,
731 .unbound_nonreg_file = 1,
732 },
733 [IORING_OP_RECV] = {
734 .needs_mm = 1,
735 .needs_file = 1,
736 .unbound_nonreg_file = 1,
737 },
738 [IORING_OP_OPENAT2] = {
739 .needs_file = 1,
740 .fd_non_neg = 1,
741 .file_table = 1,
742 .needs_fs = 1,
743 },
744 [IORING_OP_EPOLL_CTL] = {
745 .unbound_nonreg_file = 1,
746 .file_table = 1,
747 },
748 };
749
750 static void io_wq_submit_work(struct io_wq_work **workptr);
751 static void io_cqring_fill_event(struct io_kiocb *req, long res);
752 static void io_put_req(struct io_kiocb *req);
753 static void __io_double_put_req(struct io_kiocb *req);
754 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
755 static void io_queue_linked_timeout(struct io_kiocb *req);
756 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
757 struct io_uring_files_update *ip,
758 unsigned nr_args);
759 static int io_grab_files(struct io_kiocb *req);
760 static void io_ring_file_ref_flush(struct fixed_file_data *data);
761 static void io_cleanup_req(struct io_kiocb *req);
762
763 static struct kmem_cache *req_cachep;
764
765 static const struct file_operations io_uring_fops;
766
767 struct sock *io_uring_get_socket(struct file *file)
768 {
769 #if defined(CONFIG_UNIX)
770 if (file->f_op == &io_uring_fops) {
771 struct io_ring_ctx *ctx = file->private_data;
772
773 return ctx->ring_sock->sk;
774 }
775 #endif
776 return NULL;
777 }
778 EXPORT_SYMBOL(io_uring_get_socket);
779
780 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
781 {
782 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
783
784 complete(&ctx->completions[0]);
785 }
786
787 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
788 {
789 struct io_ring_ctx *ctx;
790 int hash_bits;
791
792 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
793 if (!ctx)
794 return NULL;
795
796 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
797 if (!ctx->fallback_req)
798 goto err;
799
800 ctx->completions = kmalloc(2 * sizeof(struct completion), GFP_KERNEL);
801 if (!ctx->completions)
802 goto err;
803
804 /*
805 * Use 5 bits less than the max cq entries, that should give us around
806 * 32 entries per hash list if totally full and uniformly spread.
807 */
808 hash_bits = ilog2(p->cq_entries);
809 hash_bits -= 5;
810 if (hash_bits <= 0)
811 hash_bits = 1;
812 ctx->cancel_hash_bits = hash_bits;
813 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
814 GFP_KERNEL);
815 if (!ctx->cancel_hash)
816 goto err;
817 __hash_init(ctx->cancel_hash, 1U << hash_bits);
818
819 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
820 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
821 goto err;
822
823 ctx->flags = p->flags;
824 init_waitqueue_head(&ctx->cq_wait);
825 INIT_LIST_HEAD(&ctx->cq_overflow_list);
826 init_completion(&ctx->completions[0]);
827 init_completion(&ctx->completions[1]);
828 idr_init(&ctx->personality_idr);
829 mutex_init(&ctx->uring_lock);
830 init_waitqueue_head(&ctx->wait);
831 spin_lock_init(&ctx->completion_lock);
832 init_llist_head(&ctx->poll_llist);
833 INIT_LIST_HEAD(&ctx->poll_list);
834 INIT_LIST_HEAD(&ctx->defer_list);
835 INIT_LIST_HEAD(&ctx->timeout_list);
836 init_waitqueue_head(&ctx->inflight_wait);
837 spin_lock_init(&ctx->inflight_lock);
838 INIT_LIST_HEAD(&ctx->inflight_list);
839 return ctx;
840 err:
841 if (ctx->fallback_req)
842 kmem_cache_free(req_cachep, ctx->fallback_req);
843 kfree(ctx->completions);
844 kfree(ctx->cancel_hash);
845 kfree(ctx);
846 return NULL;
847 }
848
849 static inline bool __req_need_defer(struct io_kiocb *req)
850 {
851 struct io_ring_ctx *ctx = req->ctx;
852
853 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
854 + atomic_read(&ctx->cached_cq_overflow);
855 }
856
857 static inline bool req_need_defer(struct io_kiocb *req)
858 {
859 if (unlikely(req->flags & REQ_F_IO_DRAIN))
860 return __req_need_defer(req);
861
862 return false;
863 }
864
865 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
866 {
867 struct io_kiocb *req;
868
869 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
870 if (req && !req_need_defer(req)) {
871 list_del_init(&req->list);
872 return req;
873 }
874
875 return NULL;
876 }
877
878 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
879 {
880 struct io_kiocb *req;
881
882 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
883 if (req) {
884 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
885 return NULL;
886 if (!__req_need_defer(req)) {
887 list_del_init(&req->list);
888 return req;
889 }
890 }
891
892 return NULL;
893 }
894
895 static void __io_commit_cqring(struct io_ring_ctx *ctx)
896 {
897 struct io_rings *rings = ctx->rings;
898
899 /* order cqe stores with ring update */
900 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
901
902 if (wq_has_sleeper(&ctx->cq_wait)) {
903 wake_up_interruptible(&ctx->cq_wait);
904 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
905 }
906 }
907
908 static inline void io_req_work_grab_env(struct io_kiocb *req,
909 const struct io_op_def *def)
910 {
911 if (!req->work.mm && def->needs_mm) {
912 mmgrab(current->mm);
913 req->work.mm = current->mm;
914 }
915 if (!req->work.creds)
916 req->work.creds = get_current_cred();
917 if (!req->work.fs && def->needs_fs) {
918 spin_lock(&current->fs->lock);
919 if (!current->fs->in_exec) {
920 req->work.fs = current->fs;
921 req->work.fs->users++;
922 } else {
923 req->work.flags |= IO_WQ_WORK_CANCEL;
924 }
925 spin_unlock(&current->fs->lock);
926 }
927 if (!req->work.task_pid)
928 req->work.task_pid = task_pid_vnr(current);
929 }
930
931 static inline void io_req_work_drop_env(struct io_kiocb *req)
932 {
933 if (req->work.mm) {
934 mmdrop(req->work.mm);
935 req->work.mm = NULL;
936 }
937 if (req->work.creds) {
938 put_cred(req->work.creds);
939 req->work.creds = NULL;
940 }
941 if (req->work.fs) {
942 struct fs_struct *fs = req->work.fs;
943
944 spin_lock(&req->work.fs->lock);
945 if (--fs->users)
946 fs = NULL;
947 spin_unlock(&req->work.fs->lock);
948 if (fs)
949 free_fs_struct(fs);
950 }
951 }
952
953 static inline bool io_prep_async_work(struct io_kiocb *req,
954 struct io_kiocb **link)
955 {
956 const struct io_op_def *def = &io_op_defs[req->opcode];
957 bool do_hashed = false;
958
959 if (req->flags & REQ_F_ISREG) {
960 if (def->hash_reg_file)
961 do_hashed = true;
962 } else {
963 if (def->unbound_nonreg_file)
964 req->work.flags |= IO_WQ_WORK_UNBOUND;
965 }
966
967 io_req_work_grab_env(req, def);
968
969 *link = io_prep_linked_timeout(req);
970 return do_hashed;
971 }
972
973 static inline void io_queue_async_work(struct io_kiocb *req)
974 {
975 struct io_ring_ctx *ctx = req->ctx;
976 struct io_kiocb *link;
977 bool do_hashed;
978
979 do_hashed = io_prep_async_work(req, &link);
980
981 trace_io_uring_queue_async_work(ctx, do_hashed, req, &req->work,
982 req->flags);
983 if (!do_hashed) {
984 io_wq_enqueue(ctx->io_wq, &req->work);
985 } else {
986 io_wq_enqueue_hashed(ctx->io_wq, &req->work,
987 file_inode(req->file));
988 }
989
990 if (link)
991 io_queue_linked_timeout(link);
992 }
993
994 static void io_kill_timeout(struct io_kiocb *req)
995 {
996 int ret;
997
998 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
999 if (ret != -1) {
1000 atomic_inc(&req->ctx->cq_timeouts);
1001 list_del_init(&req->list);
1002 req->flags |= REQ_F_COMP_LOCKED;
1003 io_cqring_fill_event(req, 0);
1004 io_put_req(req);
1005 }
1006 }
1007
1008 static void io_kill_timeouts(struct io_ring_ctx *ctx)
1009 {
1010 struct io_kiocb *req, *tmp;
1011
1012 spin_lock_irq(&ctx->completion_lock);
1013 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
1014 io_kill_timeout(req);
1015 spin_unlock_irq(&ctx->completion_lock);
1016 }
1017
1018 static void io_commit_cqring(struct io_ring_ctx *ctx)
1019 {
1020 struct io_kiocb *req;
1021
1022 while ((req = io_get_timeout_req(ctx)) != NULL)
1023 io_kill_timeout(req);
1024
1025 __io_commit_cqring(ctx);
1026
1027 while ((req = io_get_deferred_req(ctx)) != NULL)
1028 io_queue_async_work(req);
1029 }
1030
1031 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1032 {
1033 struct io_rings *rings = ctx->rings;
1034 unsigned tail;
1035
1036 tail = ctx->cached_cq_tail;
1037 /*
1038 * writes to the cq entry need to come after reading head; the
1039 * control dependency is enough as we're using WRITE_ONCE to
1040 * fill the cq entry
1041 */
1042 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1043 return NULL;
1044
1045 ctx->cached_cq_tail++;
1046 return &rings->cqes[tail & ctx->cq_mask];
1047 }
1048
1049 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1050 {
1051 if (!ctx->cq_ev_fd)
1052 return false;
1053 if (!ctx->eventfd_async)
1054 return true;
1055 return io_wq_current_is_worker() || in_interrupt();
1056 }
1057
1058 static void __io_cqring_ev_posted(struct io_ring_ctx *ctx, bool trigger_ev)
1059 {
1060 if (waitqueue_active(&ctx->wait))
1061 wake_up(&ctx->wait);
1062 if (waitqueue_active(&ctx->sqo_wait))
1063 wake_up(&ctx->sqo_wait);
1064 if (trigger_ev)
1065 eventfd_signal(ctx->cq_ev_fd, 1);
1066 }
1067
1068 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1069 {
1070 __io_cqring_ev_posted(ctx, io_should_trigger_evfd(ctx));
1071 }
1072
1073 /* Returns true if there are no backlogged entries after the flush */
1074 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1075 {
1076 struct io_rings *rings = ctx->rings;
1077 struct io_uring_cqe *cqe;
1078 struct io_kiocb *req;
1079 unsigned long flags;
1080 LIST_HEAD(list);
1081
1082 if (!force) {
1083 if (list_empty_careful(&ctx->cq_overflow_list))
1084 return true;
1085 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1086 rings->cq_ring_entries))
1087 return false;
1088 }
1089
1090 spin_lock_irqsave(&ctx->completion_lock, flags);
1091
1092 /* if force is set, the ring is going away. always drop after that */
1093 if (force)
1094 ctx->cq_overflow_flushed = 1;
1095
1096 cqe = NULL;
1097 while (!list_empty(&ctx->cq_overflow_list)) {
1098 cqe = io_get_cqring(ctx);
1099 if (!cqe && !force)
1100 break;
1101
1102 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1103 list);
1104 list_move(&req->list, &list);
1105 req->flags &= ~REQ_F_OVERFLOW;
1106 if (cqe) {
1107 WRITE_ONCE(cqe->user_data, req->user_data);
1108 WRITE_ONCE(cqe->res, req->result);
1109 WRITE_ONCE(cqe->flags, 0);
1110 } else {
1111 WRITE_ONCE(ctx->rings->cq_overflow,
1112 atomic_inc_return(&ctx->cached_cq_overflow));
1113 }
1114 }
1115
1116 io_commit_cqring(ctx);
1117 if (cqe) {
1118 clear_bit(0, &ctx->sq_check_overflow);
1119 clear_bit(0, &ctx->cq_check_overflow);
1120 }
1121 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1122 io_cqring_ev_posted(ctx);
1123
1124 while (!list_empty(&list)) {
1125 req = list_first_entry(&list, struct io_kiocb, list);
1126 list_del(&req->list);
1127 io_put_req(req);
1128 }
1129
1130 return cqe != NULL;
1131 }
1132
1133 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1134 {
1135 struct io_ring_ctx *ctx = req->ctx;
1136 struct io_uring_cqe *cqe;
1137
1138 trace_io_uring_complete(ctx, req->user_data, res);
1139
1140 /*
1141 * If we can't get a cq entry, userspace overflowed the
1142 * submission (by quite a lot). Increment the overflow count in
1143 * the ring.
1144 */
1145 cqe = io_get_cqring(ctx);
1146 if (likely(cqe)) {
1147 WRITE_ONCE(cqe->user_data, req->user_data);
1148 WRITE_ONCE(cqe->res, res);
1149 WRITE_ONCE(cqe->flags, 0);
1150 } else if (ctx->cq_overflow_flushed) {
1151 WRITE_ONCE(ctx->rings->cq_overflow,
1152 atomic_inc_return(&ctx->cached_cq_overflow));
1153 } else {
1154 if (list_empty(&ctx->cq_overflow_list)) {
1155 set_bit(0, &ctx->sq_check_overflow);
1156 set_bit(0, &ctx->cq_check_overflow);
1157 }
1158 req->flags |= REQ_F_OVERFLOW;
1159 refcount_inc(&req->refs);
1160 req->result = res;
1161 list_add_tail(&req->list, &ctx->cq_overflow_list);
1162 }
1163 }
1164
1165 static void io_cqring_add_event(struct io_kiocb *req, long res)
1166 {
1167 struct io_ring_ctx *ctx = req->ctx;
1168 unsigned long flags;
1169
1170 spin_lock_irqsave(&ctx->completion_lock, flags);
1171 io_cqring_fill_event(req, res);
1172 io_commit_cqring(ctx);
1173 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1174
1175 io_cqring_ev_posted(ctx);
1176 }
1177
1178 static inline bool io_is_fallback_req(struct io_kiocb *req)
1179 {
1180 return req == (struct io_kiocb *)
1181 ((unsigned long) req->ctx->fallback_req & ~1UL);
1182 }
1183
1184 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1185 {
1186 struct io_kiocb *req;
1187
1188 req = ctx->fallback_req;
1189 if (!test_and_set_bit_lock(0, (unsigned long *) ctx->fallback_req))
1190 return req;
1191
1192 return NULL;
1193 }
1194
1195 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
1196 struct io_submit_state *state)
1197 {
1198 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1199 struct io_kiocb *req;
1200
1201 if (!state) {
1202 req = kmem_cache_alloc(req_cachep, gfp);
1203 if (unlikely(!req))
1204 goto fallback;
1205 } else if (!state->free_reqs) {
1206 size_t sz;
1207 int ret;
1208
1209 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1210 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1211
1212 /*
1213 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1214 * retry single alloc to be on the safe side.
1215 */
1216 if (unlikely(ret <= 0)) {
1217 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1218 if (!state->reqs[0])
1219 goto fallback;
1220 ret = 1;
1221 }
1222 state->free_reqs = ret - 1;
1223 req = state->reqs[ret - 1];
1224 } else {
1225 state->free_reqs--;
1226 req = state->reqs[state->free_reqs];
1227 }
1228
1229 got_it:
1230 req->io = NULL;
1231 req->file = NULL;
1232 req->ctx = ctx;
1233 req->flags = 0;
1234 /* one is dropped after submission, the other at completion */
1235 refcount_set(&req->refs, 2);
1236 req->result = 0;
1237 INIT_IO_WORK(&req->work, io_wq_submit_work);
1238 return req;
1239 fallback:
1240 req = io_get_fallback_req(ctx);
1241 if (req)
1242 goto got_it;
1243 percpu_ref_put(&ctx->refs);
1244 return NULL;
1245 }
1246
1247 static void __io_req_do_free(struct io_kiocb *req)
1248 {
1249 if (likely(!io_is_fallback_req(req)))
1250 kmem_cache_free(req_cachep, req);
1251 else
1252 clear_bit_unlock(0, (unsigned long *) req->ctx->fallback_req);
1253 }
1254
1255 static void __io_req_aux_free(struct io_kiocb *req)
1256 {
1257 struct io_ring_ctx *ctx = req->ctx;
1258
1259 if (req->flags & REQ_F_NEED_CLEANUP)
1260 io_cleanup_req(req);
1261
1262 kfree(req->io);
1263 if (req->file) {
1264 if (req->flags & REQ_F_FIXED_FILE)
1265 percpu_ref_put(&ctx->file_data->refs);
1266 else
1267 fput(req->file);
1268 }
1269
1270 io_req_work_drop_env(req);
1271 }
1272
1273 static void __io_free_req(struct io_kiocb *req)
1274 {
1275 __io_req_aux_free(req);
1276
1277 if (req->flags & REQ_F_INFLIGHT) {
1278 struct io_ring_ctx *ctx = req->ctx;
1279 unsigned long flags;
1280
1281 spin_lock_irqsave(&ctx->inflight_lock, flags);
1282 list_del(&req->inflight_entry);
1283 if (waitqueue_active(&ctx->inflight_wait))
1284 wake_up(&ctx->inflight_wait);
1285 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1286 }
1287
1288 percpu_ref_put(&req->ctx->refs);
1289 __io_req_do_free(req);
1290 }
1291
1292 struct req_batch {
1293 void *reqs[IO_IOPOLL_BATCH];
1294 int to_free;
1295 int need_iter;
1296 };
1297
1298 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1299 {
1300 int fixed_refs = rb->to_free;
1301
1302 if (!rb->to_free)
1303 return;
1304 if (rb->need_iter) {
1305 int i, inflight = 0;
1306 unsigned long flags;
1307
1308 fixed_refs = 0;
1309 for (i = 0; i < rb->to_free; i++) {
1310 struct io_kiocb *req = rb->reqs[i];
1311
1312 if (req->flags & REQ_F_FIXED_FILE) {
1313 req->file = NULL;
1314 fixed_refs++;
1315 }
1316 if (req->flags & REQ_F_INFLIGHT)
1317 inflight++;
1318 __io_req_aux_free(req);
1319 }
1320 if (!inflight)
1321 goto do_free;
1322
1323 spin_lock_irqsave(&ctx->inflight_lock, flags);
1324 for (i = 0; i < rb->to_free; i++) {
1325 struct io_kiocb *req = rb->reqs[i];
1326
1327 if (req->flags & REQ_F_INFLIGHT) {
1328 list_del(&req->inflight_entry);
1329 if (!--inflight)
1330 break;
1331 }
1332 }
1333 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1334
1335 if (waitqueue_active(&ctx->inflight_wait))
1336 wake_up(&ctx->inflight_wait);
1337 }
1338 do_free:
1339 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1340 if (fixed_refs)
1341 percpu_ref_put_many(&ctx->file_data->refs, fixed_refs);
1342 percpu_ref_put_many(&ctx->refs, rb->to_free);
1343 rb->to_free = rb->need_iter = 0;
1344 }
1345
1346 static bool io_link_cancel_timeout(struct io_kiocb *req)
1347 {
1348 struct io_ring_ctx *ctx = req->ctx;
1349 int ret;
1350
1351 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1352 if (ret != -1) {
1353 io_cqring_fill_event(req, -ECANCELED);
1354 io_commit_cqring(ctx);
1355 req->flags &= ~REQ_F_LINK;
1356 io_put_req(req);
1357 return true;
1358 }
1359
1360 return false;
1361 }
1362
1363 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1364 {
1365 struct io_ring_ctx *ctx = req->ctx;
1366 bool wake_ev = false;
1367
1368 /* Already got next link */
1369 if (req->flags & REQ_F_LINK_NEXT)
1370 return;
1371
1372 /*
1373 * The list should never be empty when we are called here. But could
1374 * potentially happen if the chain is messed up, check to be on the
1375 * safe side.
1376 */
1377 while (!list_empty(&req->link_list)) {
1378 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1379 struct io_kiocb, link_list);
1380
1381 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1382 (nxt->flags & REQ_F_TIMEOUT))) {
1383 list_del_init(&nxt->link_list);
1384 wake_ev |= io_link_cancel_timeout(nxt);
1385 req->flags &= ~REQ_F_LINK_TIMEOUT;
1386 continue;
1387 }
1388
1389 list_del_init(&req->link_list);
1390 if (!list_empty(&nxt->link_list))
1391 nxt->flags |= REQ_F_LINK;
1392 *nxtptr = nxt;
1393 break;
1394 }
1395
1396 req->flags |= REQ_F_LINK_NEXT;
1397 if (wake_ev)
1398 io_cqring_ev_posted(ctx);
1399 }
1400
1401 /*
1402 * Called if REQ_F_LINK is set, and we fail the head request
1403 */
1404 static void io_fail_links(struct io_kiocb *req)
1405 {
1406 struct io_ring_ctx *ctx = req->ctx;
1407 unsigned long flags;
1408
1409 spin_lock_irqsave(&ctx->completion_lock, flags);
1410
1411 while (!list_empty(&req->link_list)) {
1412 struct io_kiocb *link = list_first_entry(&req->link_list,
1413 struct io_kiocb, link_list);
1414
1415 list_del_init(&link->link_list);
1416 trace_io_uring_fail_link(req, link);
1417
1418 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1419 link->opcode == IORING_OP_LINK_TIMEOUT) {
1420 io_link_cancel_timeout(link);
1421 } else {
1422 io_cqring_fill_event(link, -ECANCELED);
1423 __io_double_put_req(link);
1424 }
1425 req->flags &= ~REQ_F_LINK_TIMEOUT;
1426 }
1427
1428 io_commit_cqring(ctx);
1429 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1430 io_cqring_ev_posted(ctx);
1431 }
1432
1433 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1434 {
1435 if (likely(!(req->flags & REQ_F_LINK)))
1436 return;
1437
1438 /*
1439 * If LINK is set, we have dependent requests in this chain. If we
1440 * didn't fail this request, queue the first one up, moving any other
1441 * dependencies to the next request. In case of failure, fail the rest
1442 * of the chain.
1443 */
1444 if (req->flags & REQ_F_FAIL_LINK) {
1445 io_fail_links(req);
1446 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1447 REQ_F_LINK_TIMEOUT) {
1448 struct io_ring_ctx *ctx = req->ctx;
1449 unsigned long flags;
1450
1451 /*
1452 * If this is a timeout link, we could be racing with the
1453 * timeout timer. Grab the completion lock for this case to
1454 * protect against that.
1455 */
1456 spin_lock_irqsave(&ctx->completion_lock, flags);
1457 io_req_link_next(req, nxt);
1458 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1459 } else {
1460 io_req_link_next(req, nxt);
1461 }
1462 }
1463
1464 static void io_free_req(struct io_kiocb *req)
1465 {
1466 struct io_kiocb *nxt = NULL;
1467
1468 io_req_find_next(req, &nxt);
1469 __io_free_req(req);
1470
1471 if (nxt)
1472 io_queue_async_work(nxt);
1473 }
1474
1475 /*
1476 * Drop reference to request, return next in chain (if there is one) if this
1477 * was the last reference to this request.
1478 */
1479 __attribute__((nonnull))
1480 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1481 {
1482 if (refcount_dec_and_test(&req->refs)) {
1483 io_req_find_next(req, nxtptr);
1484 __io_free_req(req);
1485 }
1486 }
1487
1488 static void io_put_req(struct io_kiocb *req)
1489 {
1490 if (refcount_dec_and_test(&req->refs))
1491 io_free_req(req);
1492 }
1493
1494 /*
1495 * Must only be used if we don't need to care about links, usually from
1496 * within the completion handling itself.
1497 */
1498 static void __io_double_put_req(struct io_kiocb *req)
1499 {
1500 /* drop both submit and complete references */
1501 if (refcount_sub_and_test(2, &req->refs))
1502 __io_free_req(req);
1503 }
1504
1505 static void io_double_put_req(struct io_kiocb *req)
1506 {
1507 /* drop both submit and complete references */
1508 if (refcount_sub_and_test(2, &req->refs))
1509 io_free_req(req);
1510 }
1511
1512 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1513 {
1514 struct io_rings *rings = ctx->rings;
1515
1516 if (test_bit(0, &ctx->cq_check_overflow)) {
1517 /*
1518 * noflush == true is from the waitqueue handler, just ensure
1519 * we wake up the task, and the next invocation will flush the
1520 * entries. We cannot safely to it from here.
1521 */
1522 if (noflush && !list_empty(&ctx->cq_overflow_list))
1523 return -1U;
1524
1525 io_cqring_overflow_flush(ctx, false);
1526 }
1527
1528 /* See comment at the top of this file */
1529 smp_rmb();
1530 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1531 }
1532
1533 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1534 {
1535 struct io_rings *rings = ctx->rings;
1536
1537 /* make sure SQ entry isn't read before tail */
1538 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1539 }
1540
1541 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1542 {
1543 if ((req->flags & REQ_F_LINK) || io_is_fallback_req(req))
1544 return false;
1545
1546 if (!(req->flags & REQ_F_FIXED_FILE) || req->io)
1547 rb->need_iter++;
1548
1549 rb->reqs[rb->to_free++] = req;
1550 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1551 io_free_req_many(req->ctx, rb);
1552 return true;
1553 }
1554
1555 /*
1556 * Find and free completed poll iocbs
1557 */
1558 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1559 struct list_head *done)
1560 {
1561 struct req_batch rb;
1562 struct io_kiocb *req;
1563
1564 rb.to_free = rb.need_iter = 0;
1565 while (!list_empty(done)) {
1566 req = list_first_entry(done, struct io_kiocb, list);
1567 list_del(&req->list);
1568
1569 io_cqring_fill_event(req, req->result);
1570 (*nr_events)++;
1571
1572 if (refcount_dec_and_test(&req->refs) &&
1573 !io_req_multi_free(&rb, req))
1574 io_free_req(req);
1575 }
1576
1577 io_commit_cqring(ctx);
1578 io_free_req_many(ctx, &rb);
1579 }
1580
1581 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1582 long min)
1583 {
1584 struct io_kiocb *req, *tmp;
1585 LIST_HEAD(done);
1586 bool spin;
1587 int ret;
1588
1589 /*
1590 * Only spin for completions if we don't have multiple devices hanging
1591 * off our complete list, and we're under the requested amount.
1592 */
1593 spin = !ctx->poll_multi_file && *nr_events < min;
1594
1595 ret = 0;
1596 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1597 struct kiocb *kiocb = &req->rw.kiocb;
1598
1599 /*
1600 * Move completed entries to our local list. If we find a
1601 * request that requires polling, break out and complete
1602 * the done list first, if we have entries there.
1603 */
1604 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
1605 list_move_tail(&req->list, &done);
1606 continue;
1607 }
1608 if (!list_empty(&done))
1609 break;
1610
1611 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1612 if (ret < 0)
1613 break;
1614
1615 if (ret && spin)
1616 spin = false;
1617 ret = 0;
1618 }
1619
1620 if (!list_empty(&done))
1621 io_iopoll_complete(ctx, nr_events, &done);
1622
1623 return ret;
1624 }
1625
1626 /*
1627 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1628 * non-spinning poll check - we'll still enter the driver poll loop, but only
1629 * as a non-spinning completion check.
1630 */
1631 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1632 long min)
1633 {
1634 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1635 int ret;
1636
1637 ret = io_do_iopoll(ctx, nr_events, min);
1638 if (ret < 0)
1639 return ret;
1640 if (!min || *nr_events >= min)
1641 return 0;
1642 }
1643
1644 return 1;
1645 }
1646
1647 /*
1648 * We can't just wait for polled events to come to us, we have to actively
1649 * find and complete them.
1650 */
1651 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1652 {
1653 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1654 return;
1655
1656 mutex_lock(&ctx->uring_lock);
1657 while (!list_empty(&ctx->poll_list)) {
1658 unsigned int nr_events = 0;
1659
1660 io_iopoll_getevents(ctx, &nr_events, 1);
1661
1662 /*
1663 * Ensure we allow local-to-the-cpu processing to take place,
1664 * in this case we need to ensure that we reap all events.
1665 */
1666 cond_resched();
1667 }
1668 mutex_unlock(&ctx->uring_lock);
1669 }
1670
1671 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1672 long min)
1673 {
1674 int iters = 0, ret = 0;
1675
1676 /*
1677 * We disallow the app entering submit/complete with polling, but we
1678 * still need to lock the ring to prevent racing with polled issue
1679 * that got punted to a workqueue.
1680 */
1681 mutex_lock(&ctx->uring_lock);
1682 do {
1683 int tmin = 0;
1684
1685 /*
1686 * Don't enter poll loop if we already have events pending.
1687 * If we do, we can potentially be spinning for commands that
1688 * already triggered a CQE (eg in error).
1689 */
1690 if (io_cqring_events(ctx, false))
1691 break;
1692
1693 /*
1694 * If a submit got punted to a workqueue, we can have the
1695 * application entering polling for a command before it gets
1696 * issued. That app will hold the uring_lock for the duration
1697 * of the poll right here, so we need to take a breather every
1698 * now and then to ensure that the issue has a chance to add
1699 * the poll to the issued list. Otherwise we can spin here
1700 * forever, while the workqueue is stuck trying to acquire the
1701 * very same mutex.
1702 */
1703 if (!(++iters & 7)) {
1704 mutex_unlock(&ctx->uring_lock);
1705 mutex_lock(&ctx->uring_lock);
1706 }
1707
1708 if (*nr_events < min)
1709 tmin = min - *nr_events;
1710
1711 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1712 if (ret <= 0)
1713 break;
1714 ret = 0;
1715 } while (min && !*nr_events && !need_resched());
1716
1717 mutex_unlock(&ctx->uring_lock);
1718 return ret;
1719 }
1720
1721 static void kiocb_end_write(struct io_kiocb *req)
1722 {
1723 /*
1724 * Tell lockdep we inherited freeze protection from submission
1725 * thread.
1726 */
1727 if (req->flags & REQ_F_ISREG) {
1728 struct inode *inode = file_inode(req->file);
1729
1730 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1731 }
1732 file_end_write(req->file);
1733 }
1734
1735 static inline void req_set_fail_links(struct io_kiocb *req)
1736 {
1737 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1738 req->flags |= REQ_F_FAIL_LINK;
1739 }
1740
1741 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1742 {
1743 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1744
1745 if (kiocb->ki_flags & IOCB_WRITE)
1746 kiocb_end_write(req);
1747
1748 if (res != req->result)
1749 req_set_fail_links(req);
1750 io_cqring_add_event(req, res);
1751 }
1752
1753 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1754 {
1755 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1756
1757 io_complete_rw_common(kiocb, res);
1758 io_put_req(req);
1759 }
1760
1761 static struct io_kiocb *__io_complete_rw(struct kiocb *kiocb, long res)
1762 {
1763 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1764 struct io_kiocb *nxt = NULL;
1765
1766 io_complete_rw_common(kiocb, res);
1767 io_put_req_find_next(req, &nxt);
1768
1769 return nxt;
1770 }
1771
1772 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1773 {
1774 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1775
1776 if (kiocb->ki_flags & IOCB_WRITE)
1777 kiocb_end_write(req);
1778
1779 if (res != req->result)
1780 req_set_fail_links(req);
1781 req->result = res;
1782 if (res != -EAGAIN)
1783 req->flags |= REQ_F_IOPOLL_COMPLETED;
1784 }
1785
1786 /*
1787 * After the iocb has been issued, it's safe to be found on the poll list.
1788 * Adding the kiocb to the list AFTER submission ensures that we don't
1789 * find it from a io_iopoll_getevents() thread before the issuer is done
1790 * accessing the kiocb cookie.
1791 */
1792 static void io_iopoll_req_issued(struct io_kiocb *req)
1793 {
1794 struct io_ring_ctx *ctx = req->ctx;
1795
1796 /*
1797 * Track whether we have multiple files in our lists. This will impact
1798 * how we do polling eventually, not spinning if we're on potentially
1799 * different devices.
1800 */
1801 if (list_empty(&ctx->poll_list)) {
1802 ctx->poll_multi_file = false;
1803 } else if (!ctx->poll_multi_file) {
1804 struct io_kiocb *list_req;
1805
1806 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1807 list);
1808 if (list_req->file != req->file)
1809 ctx->poll_multi_file = true;
1810 }
1811
1812 /*
1813 * For fast devices, IO may have already completed. If it has, add
1814 * it to the front so we find it first.
1815 */
1816 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1817 list_add(&req->list, &ctx->poll_list);
1818 else
1819 list_add_tail(&req->list, &ctx->poll_list);
1820
1821 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1822 wq_has_sleeper(&ctx->sqo_wait))
1823 wake_up(&ctx->sqo_wait);
1824 }
1825
1826 static void io_file_put(struct io_submit_state *state)
1827 {
1828 if (state->file) {
1829 int diff = state->has_refs - state->used_refs;
1830
1831 if (diff)
1832 fput_many(state->file, diff);
1833 state->file = NULL;
1834 }
1835 }
1836
1837 /*
1838 * Get as many references to a file as we have IOs left in this submission,
1839 * assuming most submissions are for one file, or at least that each file
1840 * has more than one submission.
1841 */
1842 static struct file *io_file_get(struct io_submit_state *state, int fd)
1843 {
1844 if (!state)
1845 return fget(fd);
1846
1847 if (state->file) {
1848 if (state->fd == fd) {
1849 state->used_refs++;
1850 state->ios_left--;
1851 return state->file;
1852 }
1853 io_file_put(state);
1854 }
1855 state->file = fget_many(fd, state->ios_left);
1856 if (!state->file)
1857 return NULL;
1858
1859 state->fd = fd;
1860 state->has_refs = state->ios_left;
1861 state->used_refs = 1;
1862 state->ios_left--;
1863 return state->file;
1864 }
1865
1866 /*
1867 * If we tracked the file through the SCM inflight mechanism, we could support
1868 * any file. For now, just ensure that anything potentially problematic is done
1869 * inline.
1870 */
1871 static bool io_file_supports_async(struct file *file)
1872 {
1873 umode_t mode = file_inode(file)->i_mode;
1874
1875 if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISSOCK(mode))
1876 return true;
1877 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1878 return true;
1879
1880 return false;
1881 }
1882
1883 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1884 bool force_nonblock)
1885 {
1886 struct io_ring_ctx *ctx = req->ctx;
1887 struct kiocb *kiocb = &req->rw.kiocb;
1888 unsigned ioprio;
1889 int ret;
1890
1891 if (S_ISREG(file_inode(req->file)->i_mode))
1892 req->flags |= REQ_F_ISREG;
1893
1894 kiocb->ki_pos = READ_ONCE(sqe->off);
1895 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
1896 req->flags |= REQ_F_CUR_POS;
1897 kiocb->ki_pos = req->file->f_pos;
1898 }
1899 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1900 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1901 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1902 if (unlikely(ret))
1903 return ret;
1904
1905 ioprio = READ_ONCE(sqe->ioprio);
1906 if (ioprio) {
1907 ret = ioprio_check_cap(ioprio);
1908 if (ret)
1909 return ret;
1910
1911 kiocb->ki_ioprio = ioprio;
1912 } else
1913 kiocb->ki_ioprio = get_current_ioprio();
1914
1915 /* don't allow async punt if RWF_NOWAIT was requested */
1916 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1917 (req->file->f_flags & O_NONBLOCK))
1918 req->flags |= REQ_F_NOWAIT;
1919
1920 if (force_nonblock)
1921 kiocb->ki_flags |= IOCB_NOWAIT;
1922
1923 if (ctx->flags & IORING_SETUP_IOPOLL) {
1924 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1925 !kiocb->ki_filp->f_op->iopoll)
1926 return -EOPNOTSUPP;
1927
1928 kiocb->ki_flags |= IOCB_HIPRI;
1929 kiocb->ki_complete = io_complete_rw_iopoll;
1930 req->result = 0;
1931 } else {
1932 if (kiocb->ki_flags & IOCB_HIPRI)
1933 return -EINVAL;
1934 kiocb->ki_complete = io_complete_rw;
1935 }
1936
1937 req->rw.addr = READ_ONCE(sqe->addr);
1938 req->rw.len = READ_ONCE(sqe->len);
1939 /* we own ->private, reuse it for the buffer index */
1940 req->rw.kiocb.private = (void *) (unsigned long)
1941 READ_ONCE(sqe->buf_index);
1942 return 0;
1943 }
1944
1945 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1946 {
1947 switch (ret) {
1948 case -EIOCBQUEUED:
1949 break;
1950 case -ERESTARTSYS:
1951 case -ERESTARTNOINTR:
1952 case -ERESTARTNOHAND:
1953 case -ERESTART_RESTARTBLOCK:
1954 /*
1955 * We can't just restart the syscall, since previously
1956 * submitted sqes may already be in progress. Just fail this
1957 * IO with EINTR.
1958 */
1959 ret = -EINTR;
1960 /* fall through */
1961 default:
1962 kiocb->ki_complete(kiocb, ret, 0);
1963 }
1964 }
1965
1966 static void kiocb_done(struct kiocb *kiocb, ssize_t ret, struct io_kiocb **nxt,
1967 bool in_async)
1968 {
1969 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1970
1971 if (req->flags & REQ_F_CUR_POS)
1972 req->file->f_pos = kiocb->ki_pos;
1973 if (in_async && ret >= 0 && kiocb->ki_complete == io_complete_rw)
1974 *nxt = __io_complete_rw(kiocb, ret);
1975 else
1976 io_rw_done(kiocb, ret);
1977 }
1978
1979 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
1980 struct iov_iter *iter)
1981 {
1982 struct io_ring_ctx *ctx = req->ctx;
1983 size_t len = req->rw.len;
1984 struct io_mapped_ubuf *imu;
1985 unsigned index, buf_index;
1986 size_t offset;
1987 u64 buf_addr;
1988
1989 /* attempt to use fixed buffers without having provided iovecs */
1990 if (unlikely(!ctx->user_bufs))
1991 return -EFAULT;
1992
1993 buf_index = (unsigned long) req->rw.kiocb.private;
1994 if (unlikely(buf_index >= ctx->nr_user_bufs))
1995 return -EFAULT;
1996
1997 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1998 imu = &ctx->user_bufs[index];
1999 buf_addr = req->rw.addr;
2000
2001 /* overflow */
2002 if (buf_addr + len < buf_addr)
2003 return -EFAULT;
2004 /* not inside the mapped region */
2005 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2006 return -EFAULT;
2007
2008 /*
2009 * May not be a start of buffer, set size appropriately
2010 * and advance us to the beginning.
2011 */
2012 offset = buf_addr - imu->ubuf;
2013 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2014
2015 if (offset) {
2016 /*
2017 * Don't use iov_iter_advance() here, as it's really slow for
2018 * using the latter parts of a big fixed buffer - it iterates
2019 * over each segment manually. We can cheat a bit here, because
2020 * we know that:
2021 *
2022 * 1) it's a BVEC iter, we set it up
2023 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2024 * first and last bvec
2025 *
2026 * So just find our index, and adjust the iterator afterwards.
2027 * If the offset is within the first bvec (or the whole first
2028 * bvec, just use iov_iter_advance(). This makes it easier
2029 * since we can just skip the first segment, which may not
2030 * be PAGE_SIZE aligned.
2031 */
2032 const struct bio_vec *bvec = imu->bvec;
2033
2034 if (offset <= bvec->bv_len) {
2035 iov_iter_advance(iter, offset);
2036 } else {
2037 unsigned long seg_skip;
2038
2039 /* skip first vec */
2040 offset -= bvec->bv_len;
2041 seg_skip = 1 + (offset >> PAGE_SHIFT);
2042
2043 iter->bvec = bvec + seg_skip;
2044 iter->nr_segs -= seg_skip;
2045 iter->count -= bvec->bv_len + offset;
2046 iter->iov_offset = offset & ~PAGE_MASK;
2047 }
2048 }
2049
2050 return len;
2051 }
2052
2053 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2054 struct iovec **iovec, struct iov_iter *iter)
2055 {
2056 void __user *buf = u64_to_user_ptr(req->rw.addr);
2057 size_t sqe_len = req->rw.len;
2058 u8 opcode;
2059
2060 opcode = req->opcode;
2061 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2062 *iovec = NULL;
2063 return io_import_fixed(req, rw, iter);
2064 }
2065
2066 /* buffer index only valid with fixed read/write */
2067 if (req->rw.kiocb.private)
2068 return -EINVAL;
2069
2070 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2071 ssize_t ret;
2072 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2073 *iovec = NULL;
2074 return ret < 0 ? ret : sqe_len;
2075 }
2076
2077 if (req->io) {
2078 struct io_async_rw *iorw = &req->io->rw;
2079
2080 *iovec = iorw->iov;
2081 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2082 if (iorw->iov == iorw->fast_iov)
2083 *iovec = NULL;
2084 return iorw->size;
2085 }
2086
2087 #ifdef CONFIG_COMPAT
2088 if (req->ctx->compat)
2089 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2090 iovec, iter);
2091 #endif
2092
2093 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2094 }
2095
2096 /*
2097 * For files that don't have ->read_iter() and ->write_iter(), handle them
2098 * by looping over ->read() or ->write() manually.
2099 */
2100 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2101 struct iov_iter *iter)
2102 {
2103 ssize_t ret = 0;
2104
2105 /*
2106 * Don't support polled IO through this interface, and we can't
2107 * support non-blocking either. For the latter, this just causes
2108 * the kiocb to be handled from an async context.
2109 */
2110 if (kiocb->ki_flags & IOCB_HIPRI)
2111 return -EOPNOTSUPP;
2112 if (kiocb->ki_flags & IOCB_NOWAIT)
2113 return -EAGAIN;
2114
2115 while (iov_iter_count(iter)) {
2116 struct iovec iovec;
2117 ssize_t nr;
2118
2119 if (!iov_iter_is_bvec(iter)) {
2120 iovec = iov_iter_iovec(iter);
2121 } else {
2122 /* fixed buffers import bvec */
2123 iovec.iov_base = kmap(iter->bvec->bv_page)
2124 + iter->iov_offset;
2125 iovec.iov_len = min(iter->count,
2126 iter->bvec->bv_len - iter->iov_offset);
2127 }
2128
2129 if (rw == READ) {
2130 nr = file->f_op->read(file, iovec.iov_base,
2131 iovec.iov_len, &kiocb->ki_pos);
2132 } else {
2133 nr = file->f_op->write(file, iovec.iov_base,
2134 iovec.iov_len, &kiocb->ki_pos);
2135 }
2136
2137 if (iov_iter_is_bvec(iter))
2138 kunmap(iter->bvec->bv_page);
2139
2140 if (nr < 0) {
2141 if (!ret)
2142 ret = nr;
2143 break;
2144 }
2145 ret += nr;
2146 if (nr != iovec.iov_len)
2147 break;
2148 iov_iter_advance(iter, nr);
2149 }
2150
2151 return ret;
2152 }
2153
2154 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2155 struct iovec *iovec, struct iovec *fast_iov,
2156 struct iov_iter *iter)
2157 {
2158 req->io->rw.nr_segs = iter->nr_segs;
2159 req->io->rw.size = io_size;
2160 req->io->rw.iov = iovec;
2161 if (!req->io->rw.iov) {
2162 req->io->rw.iov = req->io->rw.fast_iov;
2163 memcpy(req->io->rw.iov, fast_iov,
2164 sizeof(struct iovec) * iter->nr_segs);
2165 } else {
2166 req->flags |= REQ_F_NEED_CLEANUP;
2167 }
2168 }
2169
2170 static int io_alloc_async_ctx(struct io_kiocb *req)
2171 {
2172 if (!io_op_defs[req->opcode].async_ctx)
2173 return 0;
2174 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2175 return req->io == NULL;
2176 }
2177
2178 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2179 struct iovec *iovec, struct iovec *fast_iov,
2180 struct iov_iter *iter)
2181 {
2182 if (!io_op_defs[req->opcode].async_ctx)
2183 return 0;
2184 if (!req->io) {
2185 if (io_alloc_async_ctx(req))
2186 return -ENOMEM;
2187
2188 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2189 }
2190 return 0;
2191 }
2192
2193 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2194 bool force_nonblock)
2195 {
2196 struct io_async_ctx *io;
2197 struct iov_iter iter;
2198 ssize_t ret;
2199
2200 ret = io_prep_rw(req, sqe, force_nonblock);
2201 if (ret)
2202 return ret;
2203
2204 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2205 return -EBADF;
2206
2207 /* either don't need iovec imported or already have it */
2208 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2209 return 0;
2210
2211 io = req->io;
2212 io->rw.iov = io->rw.fast_iov;
2213 req->io = NULL;
2214 ret = io_import_iovec(READ, req, &io->rw.iov, &iter);
2215 req->io = io;
2216 if (ret < 0)
2217 return ret;
2218
2219 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2220 return 0;
2221 }
2222
2223 static int io_read(struct io_kiocb *req, struct io_kiocb **nxt,
2224 bool force_nonblock)
2225 {
2226 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2227 struct kiocb *kiocb = &req->rw.kiocb;
2228 struct iov_iter iter;
2229 size_t iov_count;
2230 ssize_t io_size, ret;
2231
2232 ret = io_import_iovec(READ, req, &iovec, &iter);
2233 if (ret < 0)
2234 return ret;
2235
2236 /* Ensure we clear previously set non-block flag */
2237 if (!force_nonblock)
2238 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2239
2240 req->result = 0;
2241 io_size = ret;
2242 if (req->flags & REQ_F_LINK)
2243 req->result = io_size;
2244
2245 /*
2246 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2247 * we know to async punt it even if it was opened O_NONBLOCK
2248 */
2249 if (force_nonblock && !io_file_supports_async(req->file)) {
2250 req->flags |= REQ_F_MUST_PUNT;
2251 goto copy_iov;
2252 }
2253
2254 iov_count = iov_iter_count(&iter);
2255 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2256 if (!ret) {
2257 ssize_t ret2;
2258
2259 if (req->file->f_op->read_iter)
2260 ret2 = call_read_iter(req->file, kiocb, &iter);
2261 else
2262 ret2 = loop_rw_iter(READ, req->file, kiocb, &iter);
2263
2264 /* Catch -EAGAIN return for forced non-blocking submission */
2265 if (!force_nonblock || ret2 != -EAGAIN) {
2266 kiocb_done(kiocb, ret2, nxt, req->in_async);
2267 } else {
2268 copy_iov:
2269 ret = io_setup_async_rw(req, io_size, iovec,
2270 inline_vecs, &iter);
2271 if (ret)
2272 goto out_free;
2273 return -EAGAIN;
2274 }
2275 }
2276 out_free:
2277 kfree(iovec);
2278 req->flags &= ~REQ_F_NEED_CLEANUP;
2279 return ret;
2280 }
2281
2282 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2283 bool force_nonblock)
2284 {
2285 struct io_async_ctx *io;
2286 struct iov_iter iter;
2287 ssize_t ret;
2288
2289 ret = io_prep_rw(req, sqe, force_nonblock);
2290 if (ret)
2291 return ret;
2292
2293 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2294 return -EBADF;
2295
2296 /* either don't need iovec imported or already have it */
2297 if (!req->io || req->flags & REQ_F_NEED_CLEANUP)
2298 return 0;
2299
2300 io = req->io;
2301 io->rw.iov = io->rw.fast_iov;
2302 req->io = NULL;
2303 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter);
2304 req->io = io;
2305 if (ret < 0)
2306 return ret;
2307
2308 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2309 return 0;
2310 }
2311
2312 static int io_write(struct io_kiocb *req, struct io_kiocb **nxt,
2313 bool force_nonblock)
2314 {
2315 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2316 struct kiocb *kiocb = &req->rw.kiocb;
2317 struct iov_iter iter;
2318 size_t iov_count;
2319 ssize_t ret, io_size;
2320
2321 ret = io_import_iovec(WRITE, req, &iovec, &iter);
2322 if (ret < 0)
2323 return ret;
2324
2325 /* Ensure we clear previously set non-block flag */
2326 if (!force_nonblock)
2327 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2328
2329 req->result = 0;
2330 io_size = ret;
2331 if (req->flags & REQ_F_LINK)
2332 req->result = io_size;
2333
2334 /*
2335 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2336 * we know to async punt it even if it was opened O_NONBLOCK
2337 */
2338 if (force_nonblock && !io_file_supports_async(req->file)) {
2339 req->flags |= REQ_F_MUST_PUNT;
2340 goto copy_iov;
2341 }
2342
2343 /* file path doesn't support NOWAIT for non-direct_IO */
2344 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2345 (req->flags & REQ_F_ISREG))
2346 goto copy_iov;
2347
2348 iov_count = iov_iter_count(&iter);
2349 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
2350 if (!ret) {
2351 ssize_t ret2;
2352
2353 /*
2354 * Open-code file_start_write here to grab freeze protection,
2355 * which will be released by another thread in
2356 * io_complete_rw(). Fool lockdep by telling it the lock got
2357 * released so that it doesn't complain about the held lock when
2358 * we return to userspace.
2359 */
2360 if (req->flags & REQ_F_ISREG) {
2361 __sb_start_write(file_inode(req->file)->i_sb,
2362 SB_FREEZE_WRITE, true);
2363 __sb_writers_release(file_inode(req->file)->i_sb,
2364 SB_FREEZE_WRITE);
2365 }
2366 kiocb->ki_flags |= IOCB_WRITE;
2367
2368 if (req->file->f_op->write_iter)
2369 ret2 = call_write_iter(req->file, kiocb, &iter);
2370 else
2371 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
2372 /*
2373 * Raw bdev writes will -EOPNOTSUPP for IOCB_NOWAIT. Just
2374 * retry them without IOCB_NOWAIT.
2375 */
2376 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
2377 ret2 = -EAGAIN;
2378 if (!force_nonblock || ret2 != -EAGAIN) {
2379 kiocb_done(kiocb, ret2, nxt, req->in_async);
2380 } else {
2381 copy_iov:
2382 ret = io_setup_async_rw(req, io_size, iovec,
2383 inline_vecs, &iter);
2384 if (ret)
2385 goto out_free;
2386 return -EAGAIN;
2387 }
2388 }
2389 out_free:
2390 req->flags &= ~REQ_F_NEED_CLEANUP;
2391 kfree(iovec);
2392 return ret;
2393 }
2394
2395 /*
2396 * IORING_OP_NOP just posts a completion event, nothing else.
2397 */
2398 static int io_nop(struct io_kiocb *req)
2399 {
2400 struct io_ring_ctx *ctx = req->ctx;
2401
2402 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2403 return -EINVAL;
2404
2405 io_cqring_add_event(req, 0);
2406 io_put_req(req);
2407 return 0;
2408 }
2409
2410 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2411 {
2412 struct io_ring_ctx *ctx = req->ctx;
2413
2414 if (!req->file)
2415 return -EBADF;
2416
2417 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2418 return -EINVAL;
2419 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2420 return -EINVAL;
2421
2422 req->sync.flags = READ_ONCE(sqe->fsync_flags);
2423 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
2424 return -EINVAL;
2425
2426 req->sync.off = READ_ONCE(sqe->off);
2427 req->sync.len = READ_ONCE(sqe->len);
2428 return 0;
2429 }
2430
2431 static bool io_req_cancelled(struct io_kiocb *req)
2432 {
2433 if (req->work.flags & IO_WQ_WORK_CANCEL) {
2434 req_set_fail_links(req);
2435 io_cqring_add_event(req, -ECANCELED);
2436 io_put_req(req);
2437 return true;
2438 }
2439
2440 return false;
2441 }
2442
2443 static void io_link_work_cb(struct io_wq_work **workptr)
2444 {
2445 struct io_wq_work *work = *workptr;
2446 struct io_kiocb *link = work->data;
2447
2448 io_queue_linked_timeout(link);
2449 work->func = io_wq_submit_work;
2450 }
2451
2452 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
2453 {
2454 struct io_kiocb *link;
2455
2456 io_prep_async_work(nxt, &link);
2457 *workptr = &nxt->work;
2458 if (link) {
2459 nxt->work.flags |= IO_WQ_WORK_CB;
2460 nxt->work.func = io_link_work_cb;
2461 nxt->work.data = link;
2462 }
2463 }
2464
2465 static void io_fsync_finish(struct io_wq_work **workptr)
2466 {
2467 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2468 loff_t end = req->sync.off + req->sync.len;
2469 struct io_kiocb *nxt = NULL;
2470 int ret;
2471
2472 if (io_req_cancelled(req))
2473 return;
2474
2475 ret = vfs_fsync_range(req->file, req->sync.off,
2476 end > 0 ? end : LLONG_MAX,
2477 req->sync.flags & IORING_FSYNC_DATASYNC);
2478 if (ret < 0)
2479 req_set_fail_links(req);
2480 io_cqring_add_event(req, ret);
2481 io_put_req_find_next(req, &nxt);
2482 if (nxt)
2483 io_wq_assign_next(workptr, nxt);
2484 }
2485
2486 static int io_fsync(struct io_kiocb *req, struct io_kiocb **nxt,
2487 bool force_nonblock)
2488 {
2489 struct io_wq_work *work, *old_work;
2490
2491 /* fsync always requires a blocking context */
2492 if (force_nonblock) {
2493 io_put_req(req);
2494 req->work.func = io_fsync_finish;
2495 return -EAGAIN;
2496 }
2497
2498 work = old_work = &req->work;
2499 io_fsync_finish(&work);
2500 if (work && work != old_work)
2501 *nxt = container_of(work, struct io_kiocb, work);
2502 return 0;
2503 }
2504
2505 static void io_fallocate_finish(struct io_wq_work **workptr)
2506 {
2507 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2508 struct io_kiocb *nxt = NULL;
2509 int ret;
2510
2511 if (io_req_cancelled(req))
2512 return;
2513
2514 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
2515 req->sync.len);
2516 if (ret < 0)
2517 req_set_fail_links(req);
2518 io_cqring_add_event(req, ret);
2519 io_put_req_find_next(req, &nxt);
2520 if (nxt)
2521 io_wq_assign_next(workptr, nxt);
2522 }
2523
2524 static int io_fallocate_prep(struct io_kiocb *req,
2525 const struct io_uring_sqe *sqe)
2526 {
2527 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
2528 return -EINVAL;
2529
2530 req->sync.off = READ_ONCE(sqe->off);
2531 req->sync.len = READ_ONCE(sqe->addr);
2532 req->sync.mode = READ_ONCE(sqe->len);
2533 return 0;
2534 }
2535
2536 static int io_fallocate(struct io_kiocb *req, struct io_kiocb **nxt,
2537 bool force_nonblock)
2538 {
2539 struct io_wq_work *work, *old_work;
2540
2541 /* fallocate always requiring blocking context */
2542 if (force_nonblock) {
2543 io_put_req(req);
2544 req->work.func = io_fallocate_finish;
2545 return -EAGAIN;
2546 }
2547
2548 work = old_work = &req->work;
2549 io_fallocate_finish(&work);
2550 if (work && work != old_work)
2551 *nxt = container_of(work, struct io_kiocb, work);
2552
2553 return 0;
2554 }
2555
2556 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2557 {
2558 const char __user *fname;
2559 int ret;
2560
2561 if (sqe->ioprio || sqe->buf_index)
2562 return -EINVAL;
2563 if (sqe->flags & IOSQE_FIXED_FILE)
2564 return -EBADF;
2565 if (req->flags & REQ_F_NEED_CLEANUP)
2566 return 0;
2567
2568 req->open.dfd = READ_ONCE(sqe->fd);
2569 req->open.how.mode = READ_ONCE(sqe->len);
2570 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2571 req->open.how.flags = READ_ONCE(sqe->open_flags);
2572
2573 req->open.filename = getname(fname);
2574 if (IS_ERR(req->open.filename)) {
2575 ret = PTR_ERR(req->open.filename);
2576 req->open.filename = NULL;
2577 return ret;
2578 }
2579
2580 req->flags |= REQ_F_NEED_CLEANUP;
2581 return 0;
2582 }
2583
2584 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2585 {
2586 struct open_how __user *how;
2587 const char __user *fname;
2588 size_t len;
2589 int ret;
2590
2591 if (sqe->ioprio || sqe->buf_index)
2592 return -EINVAL;
2593 if (sqe->flags & IOSQE_FIXED_FILE)
2594 return -EBADF;
2595 if (req->flags & REQ_F_NEED_CLEANUP)
2596 return 0;
2597
2598 req->open.dfd = READ_ONCE(sqe->fd);
2599 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2600 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2601 len = READ_ONCE(sqe->len);
2602
2603 if (len < OPEN_HOW_SIZE_VER0)
2604 return -EINVAL;
2605
2606 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
2607 len);
2608 if (ret)
2609 return ret;
2610
2611 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
2612 req->open.how.flags |= O_LARGEFILE;
2613
2614 req->open.filename = getname(fname);
2615 if (IS_ERR(req->open.filename)) {
2616 ret = PTR_ERR(req->open.filename);
2617 req->open.filename = NULL;
2618 return ret;
2619 }
2620
2621 req->flags |= REQ_F_NEED_CLEANUP;
2622 return 0;
2623 }
2624
2625 static int io_openat2(struct io_kiocb *req, struct io_kiocb **nxt,
2626 bool force_nonblock)
2627 {
2628 struct open_flags op;
2629 struct file *file;
2630 int ret;
2631
2632 if (force_nonblock)
2633 return -EAGAIN;
2634
2635 ret = build_open_flags(&req->open.how, &op);
2636 if (ret)
2637 goto err;
2638
2639 ret = get_unused_fd_flags(req->open.how.flags);
2640 if (ret < 0)
2641 goto err;
2642
2643 file = do_filp_open(req->open.dfd, req->open.filename, &op);
2644 if (IS_ERR(file)) {
2645 put_unused_fd(ret);
2646 ret = PTR_ERR(file);
2647 } else {
2648 fsnotify_open(file);
2649 fd_install(ret, file);
2650 }
2651 err:
2652 putname(req->open.filename);
2653 req->flags &= ~REQ_F_NEED_CLEANUP;
2654 if (ret < 0)
2655 req_set_fail_links(req);
2656 io_cqring_add_event(req, ret);
2657 io_put_req_find_next(req, nxt);
2658 return 0;
2659 }
2660
2661 static int io_openat(struct io_kiocb *req, struct io_kiocb **nxt,
2662 bool force_nonblock)
2663 {
2664 req->open.how = build_open_how(req->open.how.flags, req->open.how.mode);
2665 return io_openat2(req, nxt, force_nonblock);
2666 }
2667
2668 static int io_epoll_ctl_prep(struct io_kiocb *req,
2669 const struct io_uring_sqe *sqe)
2670 {
2671 #if defined(CONFIG_EPOLL)
2672 if (sqe->ioprio || sqe->buf_index)
2673 return -EINVAL;
2674
2675 req->epoll.epfd = READ_ONCE(sqe->fd);
2676 req->epoll.op = READ_ONCE(sqe->len);
2677 req->epoll.fd = READ_ONCE(sqe->off);
2678
2679 if (ep_op_has_event(req->epoll.op)) {
2680 struct epoll_event __user *ev;
2681
2682 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
2683 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
2684 return -EFAULT;
2685 }
2686
2687 return 0;
2688 #else
2689 return -EOPNOTSUPP;
2690 #endif
2691 }
2692
2693 static int io_epoll_ctl(struct io_kiocb *req, struct io_kiocb **nxt,
2694 bool force_nonblock)
2695 {
2696 #if defined(CONFIG_EPOLL)
2697 struct io_epoll *ie = &req->epoll;
2698 int ret;
2699
2700 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
2701 if (force_nonblock && ret == -EAGAIN)
2702 return -EAGAIN;
2703
2704 if (ret < 0)
2705 req_set_fail_links(req);
2706 io_cqring_add_event(req, ret);
2707 io_put_req_find_next(req, nxt);
2708 return 0;
2709 #else
2710 return -EOPNOTSUPP;
2711 #endif
2712 }
2713
2714 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2715 {
2716 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
2717 if (sqe->ioprio || sqe->buf_index || sqe->off)
2718 return -EINVAL;
2719
2720 req->madvise.addr = READ_ONCE(sqe->addr);
2721 req->madvise.len = READ_ONCE(sqe->len);
2722 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
2723 return 0;
2724 #else
2725 return -EOPNOTSUPP;
2726 #endif
2727 }
2728
2729 static int io_madvise(struct io_kiocb *req, struct io_kiocb **nxt,
2730 bool force_nonblock)
2731 {
2732 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
2733 struct io_madvise *ma = &req->madvise;
2734 int ret;
2735
2736 if (force_nonblock)
2737 return -EAGAIN;
2738
2739 ret = do_madvise(ma->addr, ma->len, ma->advice);
2740 if (ret < 0)
2741 req_set_fail_links(req);
2742 io_cqring_add_event(req, ret);
2743 io_put_req_find_next(req, nxt);
2744 return 0;
2745 #else
2746 return -EOPNOTSUPP;
2747 #endif
2748 }
2749
2750 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2751 {
2752 if (sqe->ioprio || sqe->buf_index || sqe->addr)
2753 return -EINVAL;
2754
2755 req->fadvise.offset = READ_ONCE(sqe->off);
2756 req->fadvise.len = READ_ONCE(sqe->len);
2757 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
2758 return 0;
2759 }
2760
2761 static int io_fadvise(struct io_kiocb *req, struct io_kiocb **nxt,
2762 bool force_nonblock)
2763 {
2764 struct io_fadvise *fa = &req->fadvise;
2765 int ret;
2766
2767 if (force_nonblock) {
2768 switch (fa->advice) {
2769 case POSIX_FADV_NORMAL:
2770 case POSIX_FADV_RANDOM:
2771 case POSIX_FADV_SEQUENTIAL:
2772 break;
2773 default:
2774 return -EAGAIN;
2775 }
2776 }
2777
2778 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
2779 if (ret < 0)
2780 req_set_fail_links(req);
2781 io_cqring_add_event(req, ret);
2782 io_put_req_find_next(req, nxt);
2783 return 0;
2784 }
2785
2786 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2787 {
2788 const char __user *fname;
2789 unsigned lookup_flags;
2790 int ret;
2791
2792 if (sqe->ioprio || sqe->buf_index)
2793 return -EINVAL;
2794 if (sqe->flags & IOSQE_FIXED_FILE)
2795 return -EBADF;
2796 if (req->flags & REQ_F_NEED_CLEANUP)
2797 return 0;
2798
2799 req->open.dfd = READ_ONCE(sqe->fd);
2800 req->open.mask = READ_ONCE(sqe->len);
2801 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2802 req->open.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2803 req->open.how.flags = READ_ONCE(sqe->statx_flags);
2804
2805 if (vfs_stat_set_lookup_flags(&lookup_flags, req->open.how.flags))
2806 return -EINVAL;
2807
2808 req->open.filename = getname_flags(fname, lookup_flags, NULL);
2809 if (IS_ERR(req->open.filename)) {
2810 ret = PTR_ERR(req->open.filename);
2811 req->open.filename = NULL;
2812 return ret;
2813 }
2814
2815 req->flags |= REQ_F_NEED_CLEANUP;
2816 return 0;
2817 }
2818
2819 static int io_statx(struct io_kiocb *req, struct io_kiocb **nxt,
2820 bool force_nonblock)
2821 {
2822 struct io_open *ctx = &req->open;
2823 unsigned lookup_flags;
2824 struct path path;
2825 struct kstat stat;
2826 int ret;
2827
2828 if (force_nonblock)
2829 return -EAGAIN;
2830
2831 if (vfs_stat_set_lookup_flags(&lookup_flags, ctx->how.flags))
2832 return -EINVAL;
2833
2834 retry:
2835 /* filename_lookup() drops it, keep a reference */
2836 ctx->filename->refcnt++;
2837
2838 ret = filename_lookup(ctx->dfd, ctx->filename, lookup_flags, &path,
2839 NULL);
2840 if (ret)
2841 goto err;
2842
2843 ret = vfs_getattr(&path, &stat, ctx->mask, ctx->how.flags);
2844 path_put(&path);
2845 if (retry_estale(ret, lookup_flags)) {
2846 lookup_flags |= LOOKUP_REVAL;
2847 goto retry;
2848 }
2849 if (!ret)
2850 ret = cp_statx(&stat, ctx->buffer);
2851 err:
2852 putname(ctx->filename);
2853 req->flags &= ~REQ_F_NEED_CLEANUP;
2854 if (ret < 0)
2855 req_set_fail_links(req);
2856 io_cqring_add_event(req, ret);
2857 io_put_req_find_next(req, nxt);
2858 return 0;
2859 }
2860
2861 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2862 {
2863 /*
2864 * If we queue this for async, it must not be cancellable. That would
2865 * leave the 'file' in an undeterminate state.
2866 */
2867 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
2868
2869 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
2870 sqe->rw_flags || sqe->buf_index)
2871 return -EINVAL;
2872 if (sqe->flags & IOSQE_FIXED_FILE)
2873 return -EBADF;
2874
2875 req->close.fd = READ_ONCE(sqe->fd);
2876 if (req->file->f_op == &io_uring_fops ||
2877 req->close.fd == req->ctx->ring_fd)
2878 return -EBADF;
2879
2880 return 0;
2881 }
2882
2883 /* only called when __close_fd_get_file() is done */
2884 static void __io_close_finish(struct io_kiocb *req, struct io_kiocb **nxt)
2885 {
2886 int ret;
2887
2888 ret = filp_close(req->close.put_file, req->work.files);
2889 if (ret < 0)
2890 req_set_fail_links(req);
2891 io_cqring_add_event(req, ret);
2892 fput(req->close.put_file);
2893 io_put_req_find_next(req, nxt);
2894 }
2895
2896 static void io_close_finish(struct io_wq_work **workptr)
2897 {
2898 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2899 struct io_kiocb *nxt = NULL;
2900
2901 /* not cancellable, don't do io_req_cancelled() */
2902 __io_close_finish(req, &nxt);
2903 if (nxt)
2904 io_wq_assign_next(workptr, nxt);
2905 }
2906
2907 static int io_close(struct io_kiocb *req, struct io_kiocb **nxt,
2908 bool force_nonblock)
2909 {
2910 int ret;
2911
2912 req->close.put_file = NULL;
2913 ret = __close_fd_get_file(req->close.fd, &req->close.put_file);
2914 if (ret < 0)
2915 return ret;
2916
2917 /* if the file has a flush method, be safe and punt to async */
2918 if (req->close.put_file->f_op->flush && !io_wq_current_is_worker())
2919 goto eagain;
2920
2921 /*
2922 * No ->flush(), safely close from here and just punt the
2923 * fput() to async context.
2924 */
2925 __io_close_finish(req, nxt);
2926 return 0;
2927 eagain:
2928 req->work.func = io_close_finish;
2929 /*
2930 * Do manual async queue here to avoid grabbing files - we don't
2931 * need the files, and it'll cause io_close_finish() to close
2932 * the file again and cause a double CQE entry for this request
2933 */
2934 io_queue_async_work(req);
2935 return 0;
2936 }
2937
2938 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2939 {
2940 struct io_ring_ctx *ctx = req->ctx;
2941
2942 if (!req->file)
2943 return -EBADF;
2944
2945 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2946 return -EINVAL;
2947 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2948 return -EINVAL;
2949
2950 req->sync.off = READ_ONCE(sqe->off);
2951 req->sync.len = READ_ONCE(sqe->len);
2952 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
2953 return 0;
2954 }
2955
2956 static void io_sync_file_range_finish(struct io_wq_work **workptr)
2957 {
2958 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2959 struct io_kiocb *nxt = NULL;
2960 int ret;
2961
2962 if (io_req_cancelled(req))
2963 return;
2964
2965 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
2966 req->sync.flags);
2967 if (ret < 0)
2968 req_set_fail_links(req);
2969 io_cqring_add_event(req, ret);
2970 io_put_req_find_next(req, &nxt);
2971 if (nxt)
2972 io_wq_assign_next(workptr, nxt);
2973 }
2974
2975 static int io_sync_file_range(struct io_kiocb *req, struct io_kiocb **nxt,
2976 bool force_nonblock)
2977 {
2978 struct io_wq_work *work, *old_work;
2979
2980 /* sync_file_range always requires a blocking context */
2981 if (force_nonblock) {
2982 io_put_req(req);
2983 req->work.func = io_sync_file_range_finish;
2984 return -EAGAIN;
2985 }
2986
2987 work = old_work = &req->work;
2988 io_sync_file_range_finish(&work);
2989 if (work && work != old_work)
2990 *nxt = container_of(work, struct io_kiocb, work);
2991 return 0;
2992 }
2993
2994 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2995 {
2996 #if defined(CONFIG_NET)
2997 struct io_sr_msg *sr = &req->sr_msg;
2998 struct io_async_ctx *io = req->io;
2999 int ret;
3000
3001 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3002 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3003 sr->len = READ_ONCE(sqe->len);
3004
3005 #ifdef CONFIG_COMPAT
3006 if (req->ctx->compat)
3007 sr->msg_flags |= MSG_CMSG_COMPAT;
3008 #endif
3009
3010 if (!io || req->opcode == IORING_OP_SEND)
3011 return 0;
3012 /* iovec is already imported */
3013 if (req->flags & REQ_F_NEED_CLEANUP)
3014 return 0;
3015
3016 io->msg.iov = io->msg.fast_iov;
3017 ret = sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3018 &io->msg.iov);
3019 if (!ret)
3020 req->flags |= REQ_F_NEED_CLEANUP;
3021 return ret;
3022 #else
3023 return -EOPNOTSUPP;
3024 #endif
3025 }
3026
3027 static int io_sendmsg(struct io_kiocb *req, struct io_kiocb **nxt,
3028 bool force_nonblock)
3029 {
3030 #if defined(CONFIG_NET)
3031 struct io_async_msghdr *kmsg = NULL;
3032 struct socket *sock;
3033 int ret;
3034
3035 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3036 return -EINVAL;
3037
3038 sock = sock_from_file(req->file, &ret);
3039 if (sock) {
3040 struct io_async_ctx io;
3041 unsigned flags;
3042
3043 if (req->io) {
3044 kmsg = &req->io->msg;
3045 kmsg->msg.msg_name = &req->io->msg.addr;
3046 /* if iov is set, it's allocated already */
3047 if (!kmsg->iov)
3048 kmsg->iov = kmsg->fast_iov;
3049 kmsg->msg.msg_iter.iov = kmsg->iov;
3050 } else {
3051 struct io_sr_msg *sr = &req->sr_msg;
3052
3053 kmsg = &io.msg;
3054 kmsg->msg.msg_name = &io.msg.addr;
3055
3056 io.msg.iov = io.msg.fast_iov;
3057 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3058 sr->msg_flags, &io.msg.iov);
3059 if (ret)
3060 return ret;
3061 }
3062
3063 flags = req->sr_msg.msg_flags;
3064 if (flags & MSG_DONTWAIT)
3065 req->flags |= REQ_F_NOWAIT;
3066 else if (force_nonblock)
3067 flags |= MSG_DONTWAIT;
3068
3069 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3070 if (force_nonblock && ret == -EAGAIN) {
3071 if (req->io)
3072 return -EAGAIN;
3073 if (io_alloc_async_ctx(req)) {
3074 if (kmsg->iov != kmsg->fast_iov)
3075 kfree(kmsg->iov);
3076 return -ENOMEM;
3077 }
3078 req->flags |= REQ_F_NEED_CLEANUP;
3079 memcpy(&req->io->msg, &io.msg, sizeof(io.msg));
3080 return -EAGAIN;
3081 }
3082 if (ret == -ERESTARTSYS)
3083 ret = -EINTR;
3084 }
3085
3086 if (kmsg && kmsg->iov != kmsg->fast_iov)
3087 kfree(kmsg->iov);
3088 req->flags &= ~REQ_F_NEED_CLEANUP;
3089 io_cqring_add_event(req, ret);
3090 if (ret < 0)
3091 req_set_fail_links(req);
3092 io_put_req_find_next(req, nxt);
3093 return 0;
3094 #else
3095 return -EOPNOTSUPP;
3096 #endif
3097 }
3098
3099 static int io_send(struct io_kiocb *req, struct io_kiocb **nxt,
3100 bool force_nonblock)
3101 {
3102 #if defined(CONFIG_NET)
3103 struct socket *sock;
3104 int ret;
3105
3106 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3107 return -EINVAL;
3108
3109 sock = sock_from_file(req->file, &ret);
3110 if (sock) {
3111 struct io_sr_msg *sr = &req->sr_msg;
3112 struct msghdr msg;
3113 struct iovec iov;
3114 unsigned flags;
3115
3116 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3117 &msg.msg_iter);
3118 if (ret)
3119 return ret;
3120
3121 msg.msg_name = NULL;
3122 msg.msg_control = NULL;
3123 msg.msg_controllen = 0;
3124 msg.msg_namelen = 0;
3125
3126 flags = req->sr_msg.msg_flags;
3127 if (flags & MSG_DONTWAIT)
3128 req->flags |= REQ_F_NOWAIT;
3129 else if (force_nonblock)
3130 flags |= MSG_DONTWAIT;
3131
3132 msg.msg_flags = flags;
3133 ret = sock_sendmsg(sock, &msg);
3134 if (force_nonblock && ret == -EAGAIN)
3135 return -EAGAIN;
3136 if (ret == -ERESTARTSYS)
3137 ret = -EINTR;
3138 }
3139
3140 io_cqring_add_event(req, ret);
3141 if (ret < 0)
3142 req_set_fail_links(req);
3143 io_put_req_find_next(req, nxt);
3144 return 0;
3145 #else
3146 return -EOPNOTSUPP;
3147 #endif
3148 }
3149
3150 static int io_recvmsg_prep(struct io_kiocb *req,
3151 const struct io_uring_sqe *sqe)
3152 {
3153 #if defined(CONFIG_NET)
3154 struct io_sr_msg *sr = &req->sr_msg;
3155 struct io_async_ctx *io = req->io;
3156 int ret;
3157
3158 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3159 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3160 sr->len = READ_ONCE(sqe->len);
3161
3162 #ifdef CONFIG_COMPAT
3163 if (req->ctx->compat)
3164 sr->msg_flags |= MSG_CMSG_COMPAT;
3165 #endif
3166
3167 if (!io || req->opcode == IORING_OP_RECV)
3168 return 0;
3169 /* iovec is already imported */
3170 if (req->flags & REQ_F_NEED_CLEANUP)
3171 return 0;
3172
3173 io->msg.iov = io->msg.fast_iov;
3174 ret = recvmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3175 &io->msg.uaddr, &io->msg.iov);
3176 if (!ret)
3177 req->flags |= REQ_F_NEED_CLEANUP;
3178 return ret;
3179 #else
3180 return -EOPNOTSUPP;
3181 #endif
3182 }
3183
3184 static int io_recvmsg(struct io_kiocb *req, struct io_kiocb **nxt,
3185 bool force_nonblock)
3186 {
3187 #if defined(CONFIG_NET)
3188 struct io_async_msghdr *kmsg = NULL;
3189 struct socket *sock;
3190 int ret;
3191
3192 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3193 return -EINVAL;
3194
3195 sock = sock_from_file(req->file, &ret);
3196 if (sock) {
3197 struct io_async_ctx io;
3198 unsigned flags;
3199
3200 if (req->io) {
3201 kmsg = &req->io->msg;
3202 kmsg->msg.msg_name = &req->io->msg.addr;
3203 /* if iov is set, it's allocated already */
3204 if (!kmsg->iov)
3205 kmsg->iov = kmsg->fast_iov;
3206 kmsg->msg.msg_iter.iov = kmsg->iov;
3207 } else {
3208 struct io_sr_msg *sr = &req->sr_msg;
3209
3210 kmsg = &io.msg;
3211 kmsg->msg.msg_name = &io.msg.addr;
3212
3213 io.msg.iov = io.msg.fast_iov;
3214 ret = recvmsg_copy_msghdr(&io.msg.msg, sr->msg,
3215 sr->msg_flags, &io.msg.uaddr,
3216 &io.msg.iov);
3217 if (ret)
3218 return ret;
3219 }
3220
3221 flags = req->sr_msg.msg_flags;
3222 if (flags & MSG_DONTWAIT)
3223 req->flags |= REQ_F_NOWAIT;
3224 else if (force_nonblock)
3225 flags |= MSG_DONTWAIT;
3226
3227 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
3228 kmsg->uaddr, flags);
3229 if (force_nonblock && ret == -EAGAIN) {
3230 if (req->io)
3231 return -EAGAIN;
3232 if (io_alloc_async_ctx(req)) {
3233 if (kmsg->iov != kmsg->fast_iov)
3234 kfree(kmsg->iov);
3235 return -ENOMEM;
3236 }
3237 memcpy(&req->io->msg, &io.msg, sizeof(io.msg));
3238 req->flags |= REQ_F_NEED_CLEANUP;
3239 return -EAGAIN;
3240 }
3241 if (ret == -ERESTARTSYS)
3242 ret = -EINTR;
3243 }
3244
3245 if (kmsg && kmsg->iov != kmsg->fast_iov)
3246 kfree(kmsg->iov);
3247 req->flags &= ~REQ_F_NEED_CLEANUP;
3248 io_cqring_add_event(req, ret);
3249 if (ret < 0)
3250 req_set_fail_links(req);
3251 io_put_req_find_next(req, nxt);
3252 return 0;
3253 #else
3254 return -EOPNOTSUPP;
3255 #endif
3256 }
3257
3258 static int io_recv(struct io_kiocb *req, struct io_kiocb **nxt,
3259 bool force_nonblock)
3260 {
3261 #if defined(CONFIG_NET)
3262 struct socket *sock;
3263 int ret;
3264
3265 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3266 return -EINVAL;
3267
3268 sock = sock_from_file(req->file, &ret);
3269 if (sock) {
3270 struct io_sr_msg *sr = &req->sr_msg;
3271 struct msghdr msg;
3272 struct iovec iov;
3273 unsigned flags;
3274
3275 ret = import_single_range(READ, sr->buf, sr->len, &iov,
3276 &msg.msg_iter);
3277 if (ret)
3278 return ret;
3279
3280 msg.msg_name = NULL;
3281 msg.msg_control = NULL;
3282 msg.msg_controllen = 0;
3283 msg.msg_namelen = 0;
3284 msg.msg_iocb = NULL;
3285 msg.msg_flags = 0;
3286
3287 flags = req->sr_msg.msg_flags;
3288 if (flags & MSG_DONTWAIT)
3289 req->flags |= REQ_F_NOWAIT;
3290 else if (force_nonblock)
3291 flags |= MSG_DONTWAIT;
3292
3293 ret = sock_recvmsg(sock, &msg, flags);
3294 if (force_nonblock && ret == -EAGAIN)
3295 return -EAGAIN;
3296 if (ret == -ERESTARTSYS)
3297 ret = -EINTR;
3298 }
3299
3300 io_cqring_add_event(req, ret);
3301 if (ret < 0)
3302 req_set_fail_links(req);
3303 io_put_req_find_next(req, nxt);
3304 return 0;
3305 #else
3306 return -EOPNOTSUPP;
3307 #endif
3308 }
3309
3310
3311 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3312 {
3313 #if defined(CONFIG_NET)
3314 struct io_accept *accept = &req->accept;
3315
3316 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3317 return -EINVAL;
3318 if (sqe->ioprio || sqe->len || sqe->buf_index)
3319 return -EINVAL;
3320
3321 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3322 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3323 accept->flags = READ_ONCE(sqe->accept_flags);
3324 return 0;
3325 #else
3326 return -EOPNOTSUPP;
3327 #endif
3328 }
3329
3330 #if defined(CONFIG_NET)
3331 static int __io_accept(struct io_kiocb *req, struct io_kiocb **nxt,
3332 bool force_nonblock)
3333 {
3334 struct io_accept *accept = &req->accept;
3335 unsigned file_flags;
3336 int ret;
3337
3338 file_flags = force_nonblock ? O_NONBLOCK : 0;
3339 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
3340 accept->addr_len, accept->flags);
3341 if (ret == -EAGAIN && force_nonblock)
3342 return -EAGAIN;
3343 if (ret == -ERESTARTSYS)
3344 ret = -EINTR;
3345 if (ret < 0)
3346 req_set_fail_links(req);
3347 io_cqring_add_event(req, ret);
3348 io_put_req_find_next(req, nxt);
3349 return 0;
3350 }
3351
3352 static void io_accept_finish(struct io_wq_work **workptr)
3353 {
3354 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3355 struct io_kiocb *nxt = NULL;
3356
3357 if (io_req_cancelled(req))
3358 return;
3359 __io_accept(req, &nxt, false);
3360 if (nxt)
3361 io_wq_assign_next(workptr, nxt);
3362 }
3363 #endif
3364
3365 static int io_accept(struct io_kiocb *req, struct io_kiocb **nxt,
3366 bool force_nonblock)
3367 {
3368 #if defined(CONFIG_NET)
3369 int ret;
3370
3371 ret = __io_accept(req, nxt, force_nonblock);
3372 if (ret == -EAGAIN && force_nonblock) {
3373 req->work.func = io_accept_finish;
3374 io_put_req(req);
3375 return -EAGAIN;
3376 }
3377 return 0;
3378 #else
3379 return -EOPNOTSUPP;
3380 #endif
3381 }
3382
3383 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3384 {
3385 #if defined(CONFIG_NET)
3386 struct io_connect *conn = &req->connect;
3387 struct io_async_ctx *io = req->io;
3388
3389 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3390 return -EINVAL;
3391 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
3392 return -EINVAL;
3393
3394 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3395 conn->addr_len = READ_ONCE(sqe->addr2);
3396
3397 if (!io)
3398 return 0;
3399
3400 return move_addr_to_kernel(conn->addr, conn->addr_len,
3401 &io->connect.address);
3402 #else
3403 return -EOPNOTSUPP;
3404 #endif
3405 }
3406
3407 static int io_connect(struct io_kiocb *req, struct io_kiocb **nxt,
3408 bool force_nonblock)
3409 {
3410 #if defined(CONFIG_NET)
3411 struct io_async_ctx __io, *io;
3412 unsigned file_flags;
3413 int ret;
3414
3415 if (req->io) {
3416 io = req->io;
3417 } else {
3418 ret = move_addr_to_kernel(req->connect.addr,
3419 req->connect.addr_len,
3420 &__io.connect.address);
3421 if (ret)
3422 goto out;
3423 io = &__io;
3424 }
3425
3426 file_flags = force_nonblock ? O_NONBLOCK : 0;
3427
3428 ret = __sys_connect_file(req->file, &io->connect.address,
3429 req->connect.addr_len, file_flags);
3430 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
3431 if (req->io)
3432 return -EAGAIN;
3433 if (io_alloc_async_ctx(req)) {
3434 ret = -ENOMEM;
3435 goto out;
3436 }
3437 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
3438 return -EAGAIN;
3439 }
3440 if (ret == -ERESTARTSYS)
3441 ret = -EINTR;
3442 out:
3443 if (ret < 0)
3444 req_set_fail_links(req);
3445 io_cqring_add_event(req, ret);
3446 io_put_req_find_next(req, nxt);
3447 return 0;
3448 #else
3449 return -EOPNOTSUPP;
3450 #endif
3451 }
3452
3453 static void io_poll_remove_one(struct io_kiocb *req)
3454 {
3455 struct io_poll_iocb *poll = &req->poll;
3456
3457 spin_lock(&poll->head->lock);
3458 WRITE_ONCE(poll->canceled, true);
3459 if (!list_empty(&poll->wait.entry)) {
3460 list_del_init(&poll->wait.entry);
3461 io_queue_async_work(req);
3462 }
3463 spin_unlock(&poll->head->lock);
3464 hash_del(&req->hash_node);
3465 }
3466
3467 static void io_poll_remove_all(struct io_ring_ctx *ctx)
3468 {
3469 struct hlist_node *tmp;
3470 struct io_kiocb *req;
3471 int i;
3472
3473 spin_lock_irq(&ctx->completion_lock);
3474 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
3475 struct hlist_head *list;
3476
3477 list = &ctx->cancel_hash[i];
3478 hlist_for_each_entry_safe(req, tmp, list, hash_node)
3479 io_poll_remove_one(req);
3480 }
3481 spin_unlock_irq(&ctx->completion_lock);
3482 }
3483
3484 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
3485 {
3486 struct hlist_head *list;
3487 struct io_kiocb *req;
3488
3489 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
3490 hlist_for_each_entry(req, list, hash_node) {
3491 if (sqe_addr == req->user_data) {
3492 io_poll_remove_one(req);
3493 return 0;
3494 }
3495 }
3496
3497 return -ENOENT;
3498 }
3499
3500 static int io_poll_remove_prep(struct io_kiocb *req,
3501 const struct io_uring_sqe *sqe)
3502 {
3503 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3504 return -EINVAL;
3505 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3506 sqe->poll_events)
3507 return -EINVAL;
3508
3509 req->poll.addr = READ_ONCE(sqe->addr);
3510 return 0;
3511 }
3512
3513 /*
3514 * Find a running poll command that matches one specified in sqe->addr,
3515 * and remove it if found.
3516 */
3517 static int io_poll_remove(struct io_kiocb *req)
3518 {
3519 struct io_ring_ctx *ctx = req->ctx;
3520 u64 addr;
3521 int ret;
3522
3523 addr = req->poll.addr;
3524 spin_lock_irq(&ctx->completion_lock);
3525 ret = io_poll_cancel(ctx, addr);
3526 spin_unlock_irq(&ctx->completion_lock);
3527
3528 io_cqring_add_event(req, ret);
3529 if (ret < 0)
3530 req_set_fail_links(req);
3531 io_put_req(req);
3532 return 0;
3533 }
3534
3535 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
3536 {
3537 struct io_ring_ctx *ctx = req->ctx;
3538
3539 req->poll.done = true;
3540 if (error)
3541 io_cqring_fill_event(req, error);
3542 else
3543 io_cqring_fill_event(req, mangle_poll(mask));
3544 io_commit_cqring(ctx);
3545 }
3546
3547 static void io_poll_complete_work(struct io_wq_work **workptr)
3548 {
3549 struct io_wq_work *work = *workptr;
3550 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3551 struct io_poll_iocb *poll = &req->poll;
3552 struct poll_table_struct pt = { ._key = poll->events };
3553 struct io_ring_ctx *ctx = req->ctx;
3554 struct io_kiocb *nxt = NULL;
3555 __poll_t mask = 0;
3556 int ret = 0;
3557
3558 if (work->flags & IO_WQ_WORK_CANCEL) {
3559 WRITE_ONCE(poll->canceled, true);
3560 ret = -ECANCELED;
3561 } else if (READ_ONCE(poll->canceled)) {
3562 ret = -ECANCELED;
3563 }
3564
3565 if (ret != -ECANCELED)
3566 mask = vfs_poll(poll->file, &pt) & poll->events;
3567
3568 /*
3569 * Note that ->ki_cancel callers also delete iocb from active_reqs after
3570 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
3571 * synchronize with them. In the cancellation case the list_del_init
3572 * itself is not actually needed, but harmless so we keep it in to
3573 * avoid further branches in the fast path.
3574 */
3575 spin_lock_irq(&ctx->completion_lock);
3576 if (!mask && ret != -ECANCELED) {
3577 add_wait_queue(poll->head, &poll->wait);
3578 spin_unlock_irq(&ctx->completion_lock);
3579 return;
3580 }
3581 hash_del(&req->hash_node);
3582 io_poll_complete(req, mask, ret);
3583 spin_unlock_irq(&ctx->completion_lock);
3584
3585 io_cqring_ev_posted(ctx);
3586
3587 if (ret < 0)
3588 req_set_fail_links(req);
3589 io_put_req_find_next(req, &nxt);
3590 if (nxt)
3591 io_wq_assign_next(workptr, nxt);
3592 }
3593
3594 static void __io_poll_flush(struct io_ring_ctx *ctx, struct llist_node *nodes)
3595 {
3596 struct io_kiocb *req, *tmp;
3597 struct req_batch rb;
3598
3599 rb.to_free = rb.need_iter = 0;
3600 spin_lock_irq(&ctx->completion_lock);
3601 llist_for_each_entry_safe(req, tmp, nodes, llist_node) {
3602 hash_del(&req->hash_node);
3603 io_poll_complete(req, req->result, 0);
3604
3605 if (refcount_dec_and_test(&req->refs) &&
3606 !io_req_multi_free(&rb, req)) {
3607 req->flags |= REQ_F_COMP_LOCKED;
3608 io_free_req(req);
3609 }
3610 }
3611 spin_unlock_irq(&ctx->completion_lock);
3612
3613 io_cqring_ev_posted(ctx);
3614 io_free_req_many(ctx, &rb);
3615 }
3616
3617 static void io_poll_flush(struct io_wq_work **workptr)
3618 {
3619 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3620 struct llist_node *nodes;
3621
3622 nodes = llist_del_all(&req->ctx->poll_llist);
3623 if (nodes)
3624 __io_poll_flush(req->ctx, nodes);
3625 }
3626
3627 static void io_poll_trigger_evfd(struct io_wq_work **workptr)
3628 {
3629 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3630
3631 eventfd_signal(req->ctx->cq_ev_fd, 1);
3632 io_put_req(req);
3633 }
3634
3635 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
3636 void *key)
3637 {
3638 struct io_poll_iocb *poll = wait->private;
3639 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
3640 struct io_ring_ctx *ctx = req->ctx;
3641 __poll_t mask = key_to_poll(key);
3642
3643 /* for instances that support it check for an event match first: */
3644 if (mask && !(mask & poll->events))
3645 return 0;
3646
3647 list_del_init(&poll->wait.entry);
3648
3649 /*
3650 * Run completion inline if we can. We're using trylock here because
3651 * we are violating the completion_lock -> poll wq lock ordering.
3652 * If we have a link timeout we're going to need the completion_lock
3653 * for finalizing the request, mark us as having grabbed that already.
3654 */
3655 if (mask) {
3656 unsigned long flags;
3657
3658 if (llist_empty(&ctx->poll_llist) &&
3659 spin_trylock_irqsave(&ctx->completion_lock, flags)) {
3660 bool trigger_ev;
3661
3662 hash_del(&req->hash_node);
3663 io_poll_complete(req, mask, 0);
3664
3665 trigger_ev = io_should_trigger_evfd(ctx);
3666 if (trigger_ev && eventfd_signal_count()) {
3667 trigger_ev = false;
3668 req->work.func = io_poll_trigger_evfd;
3669 } else {
3670 req->flags |= REQ_F_COMP_LOCKED;
3671 io_put_req(req);
3672 req = NULL;
3673 }
3674 spin_unlock_irqrestore(&ctx->completion_lock, flags);
3675 __io_cqring_ev_posted(ctx, trigger_ev);
3676 } else {
3677 req->result = mask;
3678 req->llist_node.next = NULL;
3679 /* if the list wasn't empty, we're done */
3680 if (!llist_add(&req->llist_node, &ctx->poll_llist))
3681 req = NULL;
3682 else
3683 req->work.func = io_poll_flush;
3684 }
3685 }
3686 if (req)
3687 io_queue_async_work(req);
3688
3689 return 1;
3690 }
3691
3692 struct io_poll_table {
3693 struct poll_table_struct pt;
3694 struct io_kiocb *req;
3695 int error;
3696 };
3697
3698 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
3699 struct poll_table_struct *p)
3700 {
3701 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
3702
3703 if (unlikely(pt->req->poll.head)) {
3704 pt->error = -EINVAL;
3705 return;
3706 }
3707
3708 pt->error = 0;
3709 pt->req->poll.head = head;
3710 add_wait_queue(head, &pt->req->poll.wait);
3711 }
3712
3713 static void io_poll_req_insert(struct io_kiocb *req)
3714 {
3715 struct io_ring_ctx *ctx = req->ctx;
3716 struct hlist_head *list;
3717
3718 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
3719 hlist_add_head(&req->hash_node, list);
3720 }
3721
3722 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3723 {
3724 struct io_poll_iocb *poll = &req->poll;
3725 u16 events;
3726
3727 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3728 return -EINVAL;
3729 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
3730 return -EINVAL;
3731 if (!poll->file)
3732 return -EBADF;
3733
3734 events = READ_ONCE(sqe->poll_events);
3735 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
3736 return 0;
3737 }
3738
3739 static int io_poll_add(struct io_kiocb *req, struct io_kiocb **nxt)
3740 {
3741 struct io_poll_iocb *poll = &req->poll;
3742 struct io_ring_ctx *ctx = req->ctx;
3743 struct io_poll_table ipt;
3744 bool cancel = false;
3745 __poll_t mask;
3746
3747 INIT_IO_WORK(&req->work, io_poll_complete_work);
3748 INIT_HLIST_NODE(&req->hash_node);
3749
3750 poll->head = NULL;
3751 poll->done = false;
3752 poll->canceled = false;
3753
3754 ipt.pt._qproc = io_poll_queue_proc;
3755 ipt.pt._key = poll->events;
3756 ipt.req = req;
3757 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
3758
3759 /* initialized the list so that we can do list_empty checks */
3760 INIT_LIST_HEAD(&poll->wait.entry);
3761 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
3762 poll->wait.private = poll;
3763
3764 INIT_LIST_HEAD(&req->list);
3765
3766 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
3767
3768 spin_lock_irq(&ctx->completion_lock);
3769 if (likely(poll->head)) {
3770 spin_lock(&poll->head->lock);
3771 if (unlikely(list_empty(&poll->wait.entry))) {
3772 if (ipt.error)
3773 cancel = true;
3774 ipt.error = 0;
3775 mask = 0;
3776 }
3777 if (mask || ipt.error)
3778 list_del_init(&poll->wait.entry);
3779 else if (cancel)
3780 WRITE_ONCE(poll->canceled, true);
3781 else if (!poll->done) /* actually waiting for an event */
3782 io_poll_req_insert(req);
3783 spin_unlock(&poll->head->lock);
3784 }
3785 if (mask) { /* no async, we'd stolen it */
3786 ipt.error = 0;
3787 io_poll_complete(req, mask, 0);
3788 }
3789 spin_unlock_irq(&ctx->completion_lock);
3790
3791 if (mask) {
3792 io_cqring_ev_posted(ctx);
3793 io_put_req_find_next(req, nxt);
3794 }
3795 return ipt.error;
3796 }
3797
3798 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
3799 {
3800 struct io_timeout_data *data = container_of(timer,
3801 struct io_timeout_data, timer);
3802 struct io_kiocb *req = data->req;
3803 struct io_ring_ctx *ctx = req->ctx;
3804 unsigned long flags;
3805
3806 atomic_inc(&ctx->cq_timeouts);
3807
3808 spin_lock_irqsave(&ctx->completion_lock, flags);
3809 /*
3810 * We could be racing with timeout deletion. If the list is empty,
3811 * then timeout lookup already found it and will be handling it.
3812 */
3813 if (!list_empty(&req->list)) {
3814 struct io_kiocb *prev;
3815
3816 /*
3817 * Adjust the reqs sequence before the current one because it
3818 * will consume a slot in the cq_ring and the cq_tail
3819 * pointer will be increased, otherwise other timeout reqs may
3820 * return in advance without waiting for enough wait_nr.
3821 */
3822 prev = req;
3823 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
3824 prev->sequence++;
3825 list_del_init(&req->list);
3826 }
3827
3828 io_cqring_fill_event(req, -ETIME);
3829 io_commit_cqring(ctx);
3830 spin_unlock_irqrestore(&ctx->completion_lock, flags);
3831
3832 io_cqring_ev_posted(ctx);
3833 req_set_fail_links(req);
3834 io_put_req(req);
3835 return HRTIMER_NORESTART;
3836 }
3837
3838 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
3839 {
3840 struct io_kiocb *req;
3841 int ret = -ENOENT;
3842
3843 list_for_each_entry(req, &ctx->timeout_list, list) {
3844 if (user_data == req->user_data) {
3845 list_del_init(&req->list);
3846 ret = 0;
3847 break;
3848 }
3849 }
3850
3851 if (ret == -ENOENT)
3852 return ret;
3853
3854 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
3855 if (ret == -1)
3856 return -EALREADY;
3857
3858 req_set_fail_links(req);
3859 io_cqring_fill_event(req, -ECANCELED);
3860 io_put_req(req);
3861 return 0;
3862 }
3863
3864 static int io_timeout_remove_prep(struct io_kiocb *req,
3865 const struct io_uring_sqe *sqe)
3866 {
3867 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3868 return -EINVAL;
3869 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
3870 return -EINVAL;
3871
3872 req->timeout.addr = READ_ONCE(sqe->addr);
3873 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
3874 if (req->timeout.flags)
3875 return -EINVAL;
3876
3877 return 0;
3878 }
3879
3880 /*
3881 * Remove or update an existing timeout command
3882 */
3883 static int io_timeout_remove(struct io_kiocb *req)
3884 {
3885 struct io_ring_ctx *ctx = req->ctx;
3886 int ret;
3887
3888 spin_lock_irq(&ctx->completion_lock);
3889 ret = io_timeout_cancel(ctx, req->timeout.addr);
3890
3891 io_cqring_fill_event(req, ret);
3892 io_commit_cqring(ctx);
3893 spin_unlock_irq(&ctx->completion_lock);
3894 io_cqring_ev_posted(ctx);
3895 if (ret < 0)
3896 req_set_fail_links(req);
3897 io_put_req(req);
3898 return 0;
3899 }
3900
3901 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
3902 bool is_timeout_link)
3903 {
3904 struct io_timeout_data *data;
3905 unsigned flags;
3906
3907 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3908 return -EINVAL;
3909 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
3910 return -EINVAL;
3911 if (sqe->off && is_timeout_link)
3912 return -EINVAL;
3913 flags = READ_ONCE(sqe->timeout_flags);
3914 if (flags & ~IORING_TIMEOUT_ABS)
3915 return -EINVAL;
3916
3917 req->timeout.count = READ_ONCE(sqe->off);
3918
3919 if (!req->io && io_alloc_async_ctx(req))
3920 return -ENOMEM;
3921
3922 data = &req->io->timeout;
3923 data->req = req;
3924 req->flags |= REQ_F_TIMEOUT;
3925
3926 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
3927 return -EFAULT;
3928
3929 if (flags & IORING_TIMEOUT_ABS)
3930 data->mode = HRTIMER_MODE_ABS;
3931 else
3932 data->mode = HRTIMER_MODE_REL;
3933
3934 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
3935 return 0;
3936 }
3937
3938 static int io_timeout(struct io_kiocb *req)
3939 {
3940 unsigned count;
3941 struct io_ring_ctx *ctx = req->ctx;
3942 struct io_timeout_data *data;
3943 struct list_head *entry;
3944 unsigned span = 0;
3945
3946 data = &req->io->timeout;
3947
3948 /*
3949 * sqe->off holds how many events that need to occur for this
3950 * timeout event to be satisfied. If it isn't set, then this is
3951 * a pure timeout request, sequence isn't used.
3952 */
3953 count = req->timeout.count;
3954 if (!count) {
3955 req->flags |= REQ_F_TIMEOUT_NOSEQ;
3956 spin_lock_irq(&ctx->completion_lock);
3957 entry = ctx->timeout_list.prev;
3958 goto add;
3959 }
3960
3961 req->sequence = ctx->cached_sq_head + count - 1;
3962 data->seq_offset = count;
3963
3964 /*
3965 * Insertion sort, ensuring the first entry in the list is always
3966 * the one we need first.
3967 */
3968 spin_lock_irq(&ctx->completion_lock);
3969 list_for_each_prev(entry, &ctx->timeout_list) {
3970 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
3971 unsigned nxt_sq_head;
3972 long long tmp, tmp_nxt;
3973 u32 nxt_offset = nxt->io->timeout.seq_offset;
3974
3975 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
3976 continue;
3977
3978 /*
3979 * Since cached_sq_head + count - 1 can overflow, use type long
3980 * long to store it.
3981 */
3982 tmp = (long long)ctx->cached_sq_head + count - 1;
3983 nxt_sq_head = nxt->sequence - nxt_offset + 1;
3984 tmp_nxt = (long long)nxt_sq_head + nxt_offset - 1;
3985
3986 /*
3987 * cached_sq_head may overflow, and it will never overflow twice
3988 * once there is some timeout req still be valid.
3989 */
3990 if (ctx->cached_sq_head < nxt_sq_head)
3991 tmp += UINT_MAX;
3992
3993 if (tmp > tmp_nxt)
3994 break;
3995
3996 /*
3997 * Sequence of reqs after the insert one and itself should
3998 * be adjusted because each timeout req consumes a slot.
3999 */
4000 span++;
4001 nxt->sequence++;
4002 }
4003 req->sequence -= span;
4004 add:
4005 list_add(&req->list, entry);
4006 data->timer.function = io_timeout_fn;
4007 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
4008 spin_unlock_irq(&ctx->completion_lock);
4009 return 0;
4010 }
4011
4012 static bool io_cancel_cb(struct io_wq_work *work, void *data)
4013 {
4014 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4015
4016 return req->user_data == (unsigned long) data;
4017 }
4018
4019 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
4020 {
4021 enum io_wq_cancel cancel_ret;
4022 int ret = 0;
4023
4024 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr);
4025 switch (cancel_ret) {
4026 case IO_WQ_CANCEL_OK:
4027 ret = 0;
4028 break;
4029 case IO_WQ_CANCEL_RUNNING:
4030 ret = -EALREADY;
4031 break;
4032 case IO_WQ_CANCEL_NOTFOUND:
4033 ret = -ENOENT;
4034 break;
4035 }
4036
4037 return ret;
4038 }
4039
4040 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
4041 struct io_kiocb *req, __u64 sqe_addr,
4042 struct io_kiocb **nxt, int success_ret)
4043 {
4044 unsigned long flags;
4045 int ret;
4046
4047 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
4048 if (ret != -ENOENT) {
4049 spin_lock_irqsave(&ctx->completion_lock, flags);
4050 goto done;
4051 }
4052
4053 spin_lock_irqsave(&ctx->completion_lock, flags);
4054 ret = io_timeout_cancel(ctx, sqe_addr);
4055 if (ret != -ENOENT)
4056 goto done;
4057 ret = io_poll_cancel(ctx, sqe_addr);
4058 done:
4059 if (!ret)
4060 ret = success_ret;
4061 io_cqring_fill_event(req, ret);
4062 io_commit_cqring(ctx);
4063 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4064 io_cqring_ev_posted(ctx);
4065
4066 if (ret < 0)
4067 req_set_fail_links(req);
4068 io_put_req_find_next(req, nxt);
4069 }
4070
4071 static int io_async_cancel_prep(struct io_kiocb *req,
4072 const struct io_uring_sqe *sqe)
4073 {
4074 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4075 return -EINVAL;
4076 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
4077 sqe->cancel_flags)
4078 return -EINVAL;
4079
4080 req->cancel.addr = READ_ONCE(sqe->addr);
4081 return 0;
4082 }
4083
4084 static int io_async_cancel(struct io_kiocb *req, struct io_kiocb **nxt)
4085 {
4086 struct io_ring_ctx *ctx = req->ctx;
4087
4088 io_async_find_and_cancel(ctx, req, req->cancel.addr, nxt, 0);
4089 return 0;
4090 }
4091
4092 static int io_files_update_prep(struct io_kiocb *req,
4093 const struct io_uring_sqe *sqe)
4094 {
4095 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
4096 return -EINVAL;
4097
4098 req->files_update.offset = READ_ONCE(sqe->off);
4099 req->files_update.nr_args = READ_ONCE(sqe->len);
4100 if (!req->files_update.nr_args)
4101 return -EINVAL;
4102 req->files_update.arg = READ_ONCE(sqe->addr);
4103 return 0;
4104 }
4105
4106 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
4107 {
4108 struct io_ring_ctx *ctx = req->ctx;
4109 struct io_uring_files_update up;
4110 int ret;
4111
4112 if (force_nonblock)
4113 return -EAGAIN;
4114
4115 up.offset = req->files_update.offset;
4116 up.fds = req->files_update.arg;
4117
4118 mutex_lock(&ctx->uring_lock);
4119 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
4120 mutex_unlock(&ctx->uring_lock);
4121
4122 if (ret < 0)
4123 req_set_fail_links(req);
4124 io_cqring_add_event(req, ret);
4125 io_put_req(req);
4126 return 0;
4127 }
4128
4129 static int io_req_defer_prep(struct io_kiocb *req,
4130 const struct io_uring_sqe *sqe)
4131 {
4132 ssize_t ret = 0;
4133
4134 if (io_op_defs[req->opcode].file_table) {
4135 ret = io_grab_files(req);
4136 if (unlikely(ret))
4137 return ret;
4138 }
4139
4140 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
4141
4142 switch (req->opcode) {
4143 case IORING_OP_NOP:
4144 break;
4145 case IORING_OP_READV:
4146 case IORING_OP_READ_FIXED:
4147 case IORING_OP_READ:
4148 ret = io_read_prep(req, sqe, true);
4149 break;
4150 case IORING_OP_WRITEV:
4151 case IORING_OP_WRITE_FIXED:
4152 case IORING_OP_WRITE:
4153 ret = io_write_prep(req, sqe, true);
4154 break;
4155 case IORING_OP_POLL_ADD:
4156 ret = io_poll_add_prep(req, sqe);
4157 break;
4158 case IORING_OP_POLL_REMOVE:
4159 ret = io_poll_remove_prep(req, sqe);
4160 break;
4161 case IORING_OP_FSYNC:
4162 ret = io_prep_fsync(req, sqe);
4163 break;
4164 case IORING_OP_SYNC_FILE_RANGE:
4165 ret = io_prep_sfr(req, sqe);
4166 break;
4167 case IORING_OP_SENDMSG:
4168 case IORING_OP_SEND:
4169 ret = io_sendmsg_prep(req, sqe);
4170 break;
4171 case IORING_OP_RECVMSG:
4172 case IORING_OP_RECV:
4173 ret = io_recvmsg_prep(req, sqe);
4174 break;
4175 case IORING_OP_CONNECT:
4176 ret = io_connect_prep(req, sqe);
4177 break;
4178 case IORING_OP_TIMEOUT:
4179 ret = io_timeout_prep(req, sqe, false);
4180 break;
4181 case IORING_OP_TIMEOUT_REMOVE:
4182 ret = io_timeout_remove_prep(req, sqe);
4183 break;
4184 case IORING_OP_ASYNC_CANCEL:
4185 ret = io_async_cancel_prep(req, sqe);
4186 break;
4187 case IORING_OP_LINK_TIMEOUT:
4188 ret = io_timeout_prep(req, sqe, true);
4189 break;
4190 case IORING_OP_ACCEPT:
4191 ret = io_accept_prep(req, sqe);
4192 break;
4193 case IORING_OP_FALLOCATE:
4194 ret = io_fallocate_prep(req, sqe);
4195 break;
4196 case IORING_OP_OPENAT:
4197 ret = io_openat_prep(req, sqe);
4198 break;
4199 case IORING_OP_CLOSE:
4200 ret = io_close_prep(req, sqe);
4201 break;
4202 case IORING_OP_FILES_UPDATE:
4203 ret = io_files_update_prep(req, sqe);
4204 break;
4205 case IORING_OP_STATX:
4206 ret = io_statx_prep(req, sqe);
4207 break;
4208 case IORING_OP_FADVISE:
4209 ret = io_fadvise_prep(req, sqe);
4210 break;
4211 case IORING_OP_MADVISE:
4212 ret = io_madvise_prep(req, sqe);
4213 break;
4214 case IORING_OP_OPENAT2:
4215 ret = io_openat2_prep(req, sqe);
4216 break;
4217 case IORING_OP_EPOLL_CTL:
4218 ret = io_epoll_ctl_prep(req, sqe);
4219 break;
4220 default:
4221 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
4222 req->opcode);
4223 ret = -EINVAL;
4224 break;
4225 }
4226
4227 return ret;
4228 }
4229
4230 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4231 {
4232 struct io_ring_ctx *ctx = req->ctx;
4233 int ret;
4234
4235 /* Still need defer if there is pending req in defer list. */
4236 if (!req_need_defer(req) && list_empty(&ctx->defer_list))
4237 return 0;
4238
4239 if (!req->io && io_alloc_async_ctx(req))
4240 return -EAGAIN;
4241
4242 ret = io_req_defer_prep(req, sqe);
4243 if (ret < 0)
4244 return ret;
4245
4246 spin_lock_irq(&ctx->completion_lock);
4247 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
4248 spin_unlock_irq(&ctx->completion_lock);
4249 return 0;
4250 }
4251
4252 trace_io_uring_defer(ctx, req, req->user_data);
4253 list_add_tail(&req->list, &ctx->defer_list);
4254 spin_unlock_irq(&ctx->completion_lock);
4255 return -EIOCBQUEUED;
4256 }
4257
4258 static void io_cleanup_req(struct io_kiocb *req)
4259 {
4260 struct io_async_ctx *io = req->io;
4261
4262 switch (req->opcode) {
4263 case IORING_OP_READV:
4264 case IORING_OP_READ_FIXED:
4265 case IORING_OP_READ:
4266 case IORING_OP_WRITEV:
4267 case IORING_OP_WRITE_FIXED:
4268 case IORING_OP_WRITE:
4269 if (io->rw.iov != io->rw.fast_iov)
4270 kfree(io->rw.iov);
4271 break;
4272 case IORING_OP_SENDMSG:
4273 case IORING_OP_RECVMSG:
4274 if (io->msg.iov != io->msg.fast_iov)
4275 kfree(io->msg.iov);
4276 break;
4277 case IORING_OP_OPENAT:
4278 case IORING_OP_OPENAT2:
4279 case IORING_OP_STATX:
4280 putname(req->open.filename);
4281 break;
4282 }
4283
4284 req->flags &= ~REQ_F_NEED_CLEANUP;
4285 }
4286
4287 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4288 struct io_kiocb **nxt, bool force_nonblock)
4289 {
4290 struct io_ring_ctx *ctx = req->ctx;
4291 int ret;
4292
4293 switch (req->opcode) {
4294 case IORING_OP_NOP:
4295 ret = io_nop(req);
4296 break;
4297 case IORING_OP_READV:
4298 case IORING_OP_READ_FIXED:
4299 case IORING_OP_READ:
4300 if (sqe) {
4301 ret = io_read_prep(req, sqe, force_nonblock);
4302 if (ret < 0)
4303 break;
4304 }
4305 ret = io_read(req, nxt, force_nonblock);
4306 break;
4307 case IORING_OP_WRITEV:
4308 case IORING_OP_WRITE_FIXED:
4309 case IORING_OP_WRITE:
4310 if (sqe) {
4311 ret = io_write_prep(req, sqe, force_nonblock);
4312 if (ret < 0)
4313 break;
4314 }
4315 ret = io_write(req, nxt, force_nonblock);
4316 break;
4317 case IORING_OP_FSYNC:
4318 if (sqe) {
4319 ret = io_prep_fsync(req, sqe);
4320 if (ret < 0)
4321 break;
4322 }
4323 ret = io_fsync(req, nxt, force_nonblock);
4324 break;
4325 case IORING_OP_POLL_ADD:
4326 if (sqe) {
4327 ret = io_poll_add_prep(req, sqe);
4328 if (ret)
4329 break;
4330 }
4331 ret = io_poll_add(req, nxt);
4332 break;
4333 case IORING_OP_POLL_REMOVE:
4334 if (sqe) {
4335 ret = io_poll_remove_prep(req, sqe);
4336 if (ret < 0)
4337 break;
4338 }
4339 ret = io_poll_remove(req);
4340 break;
4341 case IORING_OP_SYNC_FILE_RANGE:
4342 if (sqe) {
4343 ret = io_prep_sfr(req, sqe);
4344 if (ret < 0)
4345 break;
4346 }
4347 ret = io_sync_file_range(req, nxt, force_nonblock);
4348 break;
4349 case IORING_OP_SENDMSG:
4350 case IORING_OP_SEND:
4351 if (sqe) {
4352 ret = io_sendmsg_prep(req, sqe);
4353 if (ret < 0)
4354 break;
4355 }
4356 if (req->opcode == IORING_OP_SENDMSG)
4357 ret = io_sendmsg(req, nxt, force_nonblock);
4358 else
4359 ret = io_send(req, nxt, force_nonblock);
4360 break;
4361 case IORING_OP_RECVMSG:
4362 case IORING_OP_RECV:
4363 if (sqe) {
4364 ret = io_recvmsg_prep(req, sqe);
4365 if (ret)
4366 break;
4367 }
4368 if (req->opcode == IORING_OP_RECVMSG)
4369 ret = io_recvmsg(req, nxt, force_nonblock);
4370 else
4371 ret = io_recv(req, nxt, force_nonblock);
4372 break;
4373 case IORING_OP_TIMEOUT:
4374 if (sqe) {
4375 ret = io_timeout_prep(req, sqe, false);
4376 if (ret)
4377 break;
4378 }
4379 ret = io_timeout(req);
4380 break;
4381 case IORING_OP_TIMEOUT_REMOVE:
4382 if (sqe) {
4383 ret = io_timeout_remove_prep(req, sqe);
4384 if (ret)
4385 break;
4386 }
4387 ret = io_timeout_remove(req);
4388 break;
4389 case IORING_OP_ACCEPT:
4390 if (sqe) {
4391 ret = io_accept_prep(req, sqe);
4392 if (ret)
4393 break;
4394 }
4395 ret = io_accept(req, nxt, force_nonblock);
4396 break;
4397 case IORING_OP_CONNECT:
4398 if (sqe) {
4399 ret = io_connect_prep(req, sqe);
4400 if (ret)
4401 break;
4402 }
4403 ret = io_connect(req, nxt, force_nonblock);
4404 break;
4405 case IORING_OP_ASYNC_CANCEL:
4406 if (sqe) {
4407 ret = io_async_cancel_prep(req, sqe);
4408 if (ret)
4409 break;
4410 }
4411 ret = io_async_cancel(req, nxt);
4412 break;
4413 case IORING_OP_FALLOCATE:
4414 if (sqe) {
4415 ret = io_fallocate_prep(req, sqe);
4416 if (ret)
4417 break;
4418 }
4419 ret = io_fallocate(req, nxt, force_nonblock);
4420 break;
4421 case IORING_OP_OPENAT:
4422 if (sqe) {
4423 ret = io_openat_prep(req, sqe);
4424 if (ret)
4425 break;
4426 }
4427 ret = io_openat(req, nxt, force_nonblock);
4428 break;
4429 case IORING_OP_CLOSE:
4430 if (sqe) {
4431 ret = io_close_prep(req, sqe);
4432 if (ret)
4433 break;
4434 }
4435 ret = io_close(req, nxt, force_nonblock);
4436 break;
4437 case IORING_OP_FILES_UPDATE:
4438 if (sqe) {
4439 ret = io_files_update_prep(req, sqe);
4440 if (ret)
4441 break;
4442 }
4443 ret = io_files_update(req, force_nonblock);
4444 break;
4445 case IORING_OP_STATX:
4446 if (sqe) {
4447 ret = io_statx_prep(req, sqe);
4448 if (ret)
4449 break;
4450 }
4451 ret = io_statx(req, nxt, force_nonblock);
4452 break;
4453 case IORING_OP_FADVISE:
4454 if (sqe) {
4455 ret = io_fadvise_prep(req, sqe);
4456 if (ret)
4457 break;
4458 }
4459 ret = io_fadvise(req, nxt, force_nonblock);
4460 break;
4461 case IORING_OP_MADVISE:
4462 if (sqe) {
4463 ret = io_madvise_prep(req, sqe);
4464 if (ret)
4465 break;
4466 }
4467 ret = io_madvise(req, nxt, force_nonblock);
4468 break;
4469 case IORING_OP_OPENAT2:
4470 if (sqe) {
4471 ret = io_openat2_prep(req, sqe);
4472 if (ret)
4473 break;
4474 }
4475 ret = io_openat2(req, nxt, force_nonblock);
4476 break;
4477 case IORING_OP_EPOLL_CTL:
4478 if (sqe) {
4479 ret = io_epoll_ctl_prep(req, sqe);
4480 if (ret)
4481 break;
4482 }
4483 ret = io_epoll_ctl(req, nxt, force_nonblock);
4484 break;
4485 default:
4486 ret = -EINVAL;
4487 break;
4488 }
4489
4490 if (ret)
4491 return ret;
4492
4493 if (ctx->flags & IORING_SETUP_IOPOLL) {
4494 const bool in_async = io_wq_current_is_worker();
4495
4496 if (req->result == -EAGAIN)
4497 return -EAGAIN;
4498
4499 /* workqueue context doesn't hold uring_lock, grab it now */
4500 if (in_async)
4501 mutex_lock(&ctx->uring_lock);
4502
4503 io_iopoll_req_issued(req);
4504
4505 if (in_async)
4506 mutex_unlock(&ctx->uring_lock);
4507 }
4508
4509 return 0;
4510 }
4511
4512 static void io_wq_submit_work(struct io_wq_work **workptr)
4513 {
4514 struct io_wq_work *work = *workptr;
4515 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4516 struct io_kiocb *nxt = NULL;
4517 int ret = 0;
4518
4519 /* if NO_CANCEL is set, we must still run the work */
4520 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
4521 IO_WQ_WORK_CANCEL) {
4522 ret = -ECANCELED;
4523 }
4524
4525 if (!ret) {
4526 req->in_async = true;
4527 do {
4528 ret = io_issue_sqe(req, NULL, &nxt, false);
4529 /*
4530 * We can get EAGAIN for polled IO even though we're
4531 * forcing a sync submission from here, since we can't
4532 * wait for request slots on the block side.
4533 */
4534 if (ret != -EAGAIN)
4535 break;
4536 cond_resched();
4537 } while (1);
4538 }
4539
4540 /* drop submission reference */
4541 io_put_req(req);
4542
4543 if (ret) {
4544 req_set_fail_links(req);
4545 io_cqring_add_event(req, ret);
4546 io_put_req(req);
4547 }
4548
4549 /* if a dependent link is ready, pass it back */
4550 if (!ret && nxt)
4551 io_wq_assign_next(workptr, nxt);
4552 }
4553
4554 static int io_req_needs_file(struct io_kiocb *req, int fd)
4555 {
4556 if (!io_op_defs[req->opcode].needs_file)
4557 return 0;
4558 if ((fd == -1 || fd == AT_FDCWD) && io_op_defs[req->opcode].fd_non_neg)
4559 return 0;
4560 return 1;
4561 }
4562
4563 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
4564 int index)
4565 {
4566 struct fixed_file_table *table;
4567
4568 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
4569 return table->files[index & IORING_FILE_TABLE_MASK];;
4570 }
4571
4572 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
4573 const struct io_uring_sqe *sqe)
4574 {
4575 struct io_ring_ctx *ctx = req->ctx;
4576 unsigned flags;
4577 int fd;
4578
4579 flags = READ_ONCE(sqe->flags);
4580 fd = READ_ONCE(sqe->fd);
4581
4582 if (!io_req_needs_file(req, fd))
4583 return 0;
4584
4585 if (flags & IOSQE_FIXED_FILE) {
4586 if (unlikely(!ctx->file_data ||
4587 (unsigned) fd >= ctx->nr_user_files))
4588 return -EBADF;
4589 fd = array_index_nospec(fd, ctx->nr_user_files);
4590 req->file = io_file_from_index(ctx, fd);
4591 if (!req->file)
4592 return -EBADF;
4593 req->flags |= REQ_F_FIXED_FILE;
4594 percpu_ref_get(&ctx->file_data->refs);
4595 } else {
4596 if (req->needs_fixed_file)
4597 return -EBADF;
4598 trace_io_uring_file_get(ctx, fd);
4599 req->file = io_file_get(state, fd);
4600 if (unlikely(!req->file))
4601 return -EBADF;
4602 }
4603
4604 return 0;
4605 }
4606
4607 static int io_grab_files(struct io_kiocb *req)
4608 {
4609 int ret = -EBADF;
4610 struct io_ring_ctx *ctx = req->ctx;
4611
4612 if (req->work.files)
4613 return 0;
4614 if (!ctx->ring_file)
4615 return -EBADF;
4616
4617 rcu_read_lock();
4618 spin_lock_irq(&ctx->inflight_lock);
4619 /*
4620 * We use the f_ops->flush() handler to ensure that we can flush
4621 * out work accessing these files if the fd is closed. Check if
4622 * the fd has changed since we started down this path, and disallow
4623 * this operation if it has.
4624 */
4625 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
4626 list_add(&req->inflight_entry, &ctx->inflight_list);
4627 req->flags |= REQ_F_INFLIGHT;
4628 req->work.files = current->files;
4629 ret = 0;
4630 }
4631 spin_unlock_irq(&ctx->inflight_lock);
4632 rcu_read_unlock();
4633
4634 return ret;
4635 }
4636
4637 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
4638 {
4639 struct io_timeout_data *data = container_of(timer,
4640 struct io_timeout_data, timer);
4641 struct io_kiocb *req = data->req;
4642 struct io_ring_ctx *ctx = req->ctx;
4643 struct io_kiocb *prev = NULL;
4644 unsigned long flags;
4645
4646 spin_lock_irqsave(&ctx->completion_lock, flags);
4647
4648 /*
4649 * We don't expect the list to be empty, that will only happen if we
4650 * race with the completion of the linked work.
4651 */
4652 if (!list_empty(&req->link_list)) {
4653 prev = list_entry(req->link_list.prev, struct io_kiocb,
4654 link_list);
4655 if (refcount_inc_not_zero(&prev->refs)) {
4656 list_del_init(&req->link_list);
4657 prev->flags &= ~REQ_F_LINK_TIMEOUT;
4658 } else
4659 prev = NULL;
4660 }
4661
4662 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4663
4664 if (prev) {
4665 req_set_fail_links(prev);
4666 io_async_find_and_cancel(ctx, req, prev->user_data, NULL,
4667 -ETIME);
4668 io_put_req(prev);
4669 } else {
4670 io_cqring_add_event(req, -ETIME);
4671 io_put_req(req);
4672 }
4673 return HRTIMER_NORESTART;
4674 }
4675
4676 static void io_queue_linked_timeout(struct io_kiocb *req)
4677 {
4678 struct io_ring_ctx *ctx = req->ctx;
4679
4680 /*
4681 * If the list is now empty, then our linked request finished before
4682 * we got a chance to setup the timer
4683 */
4684 spin_lock_irq(&ctx->completion_lock);
4685 if (!list_empty(&req->link_list)) {
4686 struct io_timeout_data *data = &req->io->timeout;
4687
4688 data->timer.function = io_link_timeout_fn;
4689 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
4690 data->mode);
4691 }
4692 spin_unlock_irq(&ctx->completion_lock);
4693
4694 /* drop submission reference */
4695 io_put_req(req);
4696 }
4697
4698 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
4699 {
4700 struct io_kiocb *nxt;
4701
4702 if (!(req->flags & REQ_F_LINK))
4703 return NULL;
4704
4705 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
4706 link_list);
4707 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
4708 return NULL;
4709
4710 req->flags |= REQ_F_LINK_TIMEOUT;
4711 return nxt;
4712 }
4713
4714 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4715 {
4716 struct io_kiocb *linked_timeout;
4717 struct io_kiocb *nxt = NULL;
4718 const struct cred *old_creds = NULL;
4719 int ret;
4720
4721 again:
4722 linked_timeout = io_prep_linked_timeout(req);
4723
4724 if (req->work.creds && req->work.creds != current_cred()) {
4725 if (old_creds)
4726 revert_creds(old_creds);
4727 if (old_creds == req->work.creds)
4728 old_creds = NULL; /* restored original creds */
4729 else
4730 old_creds = override_creds(req->work.creds);
4731 }
4732
4733 ret = io_issue_sqe(req, sqe, &nxt, true);
4734
4735 /*
4736 * We async punt it if the file wasn't marked NOWAIT, or if the file
4737 * doesn't support non-blocking read/write attempts
4738 */
4739 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
4740 (req->flags & REQ_F_MUST_PUNT))) {
4741 punt:
4742 if (io_op_defs[req->opcode].file_table) {
4743 ret = io_grab_files(req);
4744 if (ret)
4745 goto err;
4746 }
4747
4748 /*
4749 * Queued up for async execution, worker will release
4750 * submit reference when the iocb is actually submitted.
4751 */
4752 io_queue_async_work(req);
4753 goto done_req;
4754 }
4755
4756 err:
4757 /* drop submission reference */
4758 io_put_req_find_next(req, &nxt);
4759
4760 if (linked_timeout) {
4761 if (!ret)
4762 io_queue_linked_timeout(linked_timeout);
4763 else
4764 io_put_req(linked_timeout);
4765 }
4766
4767 /* and drop final reference, if we failed */
4768 if (ret) {
4769 io_cqring_add_event(req, ret);
4770 req_set_fail_links(req);
4771 io_put_req(req);
4772 }
4773 done_req:
4774 if (nxt) {
4775 req = nxt;
4776 nxt = NULL;
4777
4778 if (req->flags & REQ_F_FORCE_ASYNC)
4779 goto punt;
4780 goto again;
4781 }
4782 if (old_creds)
4783 revert_creds(old_creds);
4784 }
4785
4786 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4787 {
4788 int ret;
4789
4790 ret = io_req_defer(req, sqe);
4791 if (ret) {
4792 if (ret != -EIOCBQUEUED) {
4793 fail_req:
4794 io_cqring_add_event(req, ret);
4795 req_set_fail_links(req);
4796 io_double_put_req(req);
4797 }
4798 } else if (req->flags & REQ_F_FORCE_ASYNC) {
4799 ret = io_req_defer_prep(req, sqe);
4800 if (unlikely(ret < 0))
4801 goto fail_req;
4802 /*
4803 * Never try inline submit of IOSQE_ASYNC is set, go straight
4804 * to async execution.
4805 */
4806 req->work.flags |= IO_WQ_WORK_CONCURRENT;
4807 io_queue_async_work(req);
4808 } else {
4809 __io_queue_sqe(req, sqe);
4810 }
4811 }
4812
4813 static inline void io_queue_link_head(struct io_kiocb *req)
4814 {
4815 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
4816 io_cqring_add_event(req, -ECANCELED);
4817 io_double_put_req(req);
4818 } else
4819 io_queue_sqe(req, NULL);
4820 }
4821
4822 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
4823 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
4824
4825 static bool io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4826 struct io_submit_state *state, struct io_kiocb **link)
4827 {
4828 struct io_ring_ctx *ctx = req->ctx;
4829 unsigned int sqe_flags;
4830 int ret, id;
4831
4832 sqe_flags = READ_ONCE(sqe->flags);
4833
4834 /* enforce forwards compatibility on users */
4835 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
4836 ret = -EINVAL;
4837 goto err_req;
4838 }
4839
4840 id = READ_ONCE(sqe->personality);
4841 if (id) {
4842 req->work.creds = idr_find(&ctx->personality_idr, id);
4843 if (unlikely(!req->work.creds)) {
4844 ret = -EINVAL;
4845 goto err_req;
4846 }
4847 get_cred(req->work.creds);
4848 }
4849
4850 /* same numerical values with corresponding REQ_F_*, safe to copy */
4851 req->flags |= sqe_flags & (IOSQE_IO_DRAIN|IOSQE_IO_HARDLINK|
4852 IOSQE_ASYNC);
4853
4854 ret = io_req_set_file(state, req, sqe);
4855 if (unlikely(ret)) {
4856 err_req:
4857 io_cqring_add_event(req, ret);
4858 io_double_put_req(req);
4859 return false;
4860 }
4861
4862 /*
4863 * If we already have a head request, queue this one for async
4864 * submittal once the head completes. If we don't have a head but
4865 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
4866 * submitted sync once the chain is complete. If none of those
4867 * conditions are true (normal request), then just queue it.
4868 */
4869 if (*link) {
4870 struct io_kiocb *head = *link;
4871
4872 /*
4873 * Taking sequential execution of a link, draining both sides
4874 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
4875 * requests in the link. So, it drains the head and the
4876 * next after the link request. The last one is done via
4877 * drain_next flag to persist the effect across calls.
4878 */
4879 if (sqe_flags & IOSQE_IO_DRAIN) {
4880 head->flags |= REQ_F_IO_DRAIN;
4881 ctx->drain_next = 1;
4882 }
4883 if (io_alloc_async_ctx(req)) {
4884 ret = -EAGAIN;
4885 goto err_req;
4886 }
4887
4888 ret = io_req_defer_prep(req, sqe);
4889 if (ret) {
4890 /* fail even hard links since we don't submit */
4891 head->flags |= REQ_F_FAIL_LINK;
4892 goto err_req;
4893 }
4894 trace_io_uring_link(ctx, req, head);
4895 list_add_tail(&req->link_list, &head->link_list);
4896
4897 /* last request of a link, enqueue the link */
4898 if (!(sqe_flags & (IOSQE_IO_LINK|IOSQE_IO_HARDLINK))) {
4899 io_queue_link_head(head);
4900 *link = NULL;
4901 }
4902 } else {
4903 if (unlikely(ctx->drain_next)) {
4904 req->flags |= REQ_F_IO_DRAIN;
4905 req->ctx->drain_next = 0;
4906 }
4907 if (sqe_flags & (IOSQE_IO_LINK|IOSQE_IO_HARDLINK)) {
4908 req->flags |= REQ_F_LINK;
4909 INIT_LIST_HEAD(&req->link_list);
4910 ret = io_req_defer_prep(req, sqe);
4911 if (ret)
4912 req->flags |= REQ_F_FAIL_LINK;
4913 *link = req;
4914 } else {
4915 io_queue_sqe(req, sqe);
4916 }
4917 }
4918
4919 return true;
4920 }
4921
4922 /*
4923 * Batched submission is done, ensure local IO is flushed out.
4924 */
4925 static void io_submit_state_end(struct io_submit_state *state)
4926 {
4927 blk_finish_plug(&state->plug);
4928 io_file_put(state);
4929 if (state->free_reqs)
4930 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
4931 }
4932
4933 /*
4934 * Start submission side cache.
4935 */
4936 static void io_submit_state_start(struct io_submit_state *state,
4937 unsigned int max_ios)
4938 {
4939 blk_start_plug(&state->plug);
4940 state->free_reqs = 0;
4941 state->file = NULL;
4942 state->ios_left = max_ios;
4943 }
4944
4945 static void io_commit_sqring(struct io_ring_ctx *ctx)
4946 {
4947 struct io_rings *rings = ctx->rings;
4948
4949 /*
4950 * Ensure any loads from the SQEs are done at this point,
4951 * since once we write the new head, the application could
4952 * write new data to them.
4953 */
4954 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
4955 }
4956
4957 /*
4958 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
4959 * that is mapped by userspace. This means that care needs to be taken to
4960 * ensure that reads are stable, as we cannot rely on userspace always
4961 * being a good citizen. If members of the sqe are validated and then later
4962 * used, it's important that those reads are done through READ_ONCE() to
4963 * prevent a re-load down the line.
4964 */
4965 static bool io_get_sqring(struct io_ring_ctx *ctx, struct io_kiocb *req,
4966 const struct io_uring_sqe **sqe_ptr)
4967 {
4968 u32 *sq_array = ctx->sq_array;
4969 unsigned head;
4970
4971 /*
4972 * The cached sq head (or cq tail) serves two purposes:
4973 *
4974 * 1) allows us to batch the cost of updating the user visible
4975 * head updates.
4976 * 2) allows the kernel side to track the head on its own, even
4977 * though the application is the one updating it.
4978 */
4979 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
4980 if (likely(head < ctx->sq_entries)) {
4981 /*
4982 * All io need record the previous position, if LINK vs DARIN,
4983 * it can be used to mark the position of the first IO in the
4984 * link list.
4985 */
4986 req->sequence = ctx->cached_sq_head;
4987 *sqe_ptr = &ctx->sq_sqes[head];
4988 req->opcode = READ_ONCE((*sqe_ptr)->opcode);
4989 req->user_data = READ_ONCE((*sqe_ptr)->user_data);
4990 ctx->cached_sq_head++;
4991 return true;
4992 }
4993
4994 /* drop invalid entries */
4995 ctx->cached_sq_head++;
4996 ctx->cached_sq_dropped++;
4997 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
4998 return false;
4999 }
5000
5001 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
5002 struct file *ring_file, int ring_fd,
5003 struct mm_struct **mm, bool async)
5004 {
5005 struct io_submit_state state, *statep = NULL;
5006 struct io_kiocb *link = NULL;
5007 int i, submitted = 0;
5008 bool mm_fault = false;
5009
5010 /* if we have a backlog and couldn't flush it all, return BUSY */
5011 if (test_bit(0, &ctx->sq_check_overflow)) {
5012 if (!list_empty(&ctx->cq_overflow_list) &&
5013 !io_cqring_overflow_flush(ctx, false))
5014 return -EBUSY;
5015 }
5016
5017 /* make sure SQ entry isn't read before tail */
5018 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
5019
5020 if (!percpu_ref_tryget_many(&ctx->refs, nr))
5021 return -EAGAIN;
5022
5023 if (nr > IO_PLUG_THRESHOLD) {
5024 io_submit_state_start(&state, nr);
5025 statep = &state;
5026 }
5027
5028 ctx->ring_fd = ring_fd;
5029 ctx->ring_file = ring_file;
5030
5031 for (i = 0; i < nr; i++) {
5032 const struct io_uring_sqe *sqe;
5033 struct io_kiocb *req;
5034 int err;
5035
5036 req = io_get_req(ctx, statep);
5037 if (unlikely(!req)) {
5038 if (!submitted)
5039 submitted = -EAGAIN;
5040 break;
5041 }
5042 if (!io_get_sqring(ctx, req, &sqe)) {
5043 __io_req_do_free(req);
5044 break;
5045 }
5046
5047 /* will complete beyond this point, count as submitted */
5048 submitted++;
5049
5050 if (unlikely(req->opcode >= IORING_OP_LAST)) {
5051 err = -EINVAL;
5052 fail_req:
5053 io_cqring_add_event(req, err);
5054 io_double_put_req(req);
5055 break;
5056 }
5057
5058 if (io_op_defs[req->opcode].needs_mm && !*mm) {
5059 mm_fault = mm_fault || !mmget_not_zero(ctx->sqo_mm);
5060 if (unlikely(mm_fault)) {
5061 err = -EFAULT;
5062 goto fail_req;
5063 }
5064 use_mm(ctx->sqo_mm);
5065 *mm = ctx->sqo_mm;
5066 }
5067
5068 req->in_async = async;
5069 req->needs_fixed_file = async;
5070 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
5071 true, async);
5072 if (!io_submit_sqe(req, sqe, statep, &link))
5073 break;
5074 }
5075
5076 if (unlikely(submitted != nr)) {
5077 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
5078
5079 percpu_ref_put_many(&ctx->refs, nr - ref_used);
5080 }
5081 if (link)
5082 io_queue_link_head(link);
5083 if (statep)
5084 io_submit_state_end(&state);
5085
5086 /* Commit SQ ring head once we've consumed and submitted all SQEs */
5087 io_commit_sqring(ctx);
5088
5089 return submitted;
5090 }
5091
5092 static int io_sq_thread(void *data)
5093 {
5094 struct io_ring_ctx *ctx = data;
5095 struct mm_struct *cur_mm = NULL;
5096 const struct cred *old_cred;
5097 mm_segment_t old_fs;
5098 DEFINE_WAIT(wait);
5099 unsigned long timeout;
5100 int ret = 0;
5101
5102 complete(&ctx->completions[1]);
5103
5104 old_fs = get_fs();
5105 set_fs(USER_DS);
5106 old_cred = override_creds(ctx->creds);
5107
5108 timeout = jiffies + ctx->sq_thread_idle;
5109 while (!kthread_should_park()) {
5110 unsigned int to_submit;
5111
5112 if (!list_empty(&ctx->poll_list)) {
5113 unsigned nr_events = 0;
5114
5115 mutex_lock(&ctx->uring_lock);
5116 if (!list_empty(&ctx->poll_list))
5117 io_iopoll_getevents(ctx, &nr_events, 0);
5118 else
5119 timeout = jiffies + ctx->sq_thread_idle;
5120 mutex_unlock(&ctx->uring_lock);
5121 }
5122
5123 to_submit = io_sqring_entries(ctx);
5124
5125 /*
5126 * If submit got -EBUSY, flag us as needing the application
5127 * to enter the kernel to reap and flush events.
5128 */
5129 if (!to_submit || ret == -EBUSY) {
5130 /*
5131 * Drop cur_mm before scheduling, we can't hold it for
5132 * long periods (or over schedule()). Do this before
5133 * adding ourselves to the waitqueue, as the unuse/drop
5134 * may sleep.
5135 */
5136 if (cur_mm) {
5137 unuse_mm(cur_mm);
5138 mmput(cur_mm);
5139 cur_mm = NULL;
5140 }
5141
5142 /*
5143 * We're polling. If we're within the defined idle
5144 * period, then let us spin without work before going
5145 * to sleep. The exception is if we got EBUSY doing
5146 * more IO, we should wait for the application to
5147 * reap events and wake us up.
5148 */
5149 if (!list_empty(&ctx->poll_list) ||
5150 (!time_after(jiffies, timeout) && ret != -EBUSY &&
5151 !percpu_ref_is_dying(&ctx->refs))) {
5152 cond_resched();
5153 continue;
5154 }
5155
5156 prepare_to_wait(&ctx->sqo_wait, &wait,
5157 TASK_INTERRUPTIBLE);
5158
5159 /*
5160 * While doing polled IO, before going to sleep, we need
5161 * to check if there are new reqs added to poll_list, it
5162 * is because reqs may have been punted to io worker and
5163 * will be added to poll_list later, hence check the
5164 * poll_list again.
5165 */
5166 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
5167 !list_empty_careful(&ctx->poll_list)) {
5168 finish_wait(&ctx->sqo_wait, &wait);
5169 continue;
5170 }
5171
5172 /* Tell userspace we may need a wakeup call */
5173 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
5174 /* make sure to read SQ tail after writing flags */
5175 smp_mb();
5176
5177 to_submit = io_sqring_entries(ctx);
5178 if (!to_submit || ret == -EBUSY) {
5179 if (kthread_should_park()) {
5180 finish_wait(&ctx->sqo_wait, &wait);
5181 break;
5182 }
5183 if (signal_pending(current))
5184 flush_signals(current);
5185 schedule();
5186 finish_wait(&ctx->sqo_wait, &wait);
5187
5188 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
5189 continue;
5190 }
5191 finish_wait(&ctx->sqo_wait, &wait);
5192
5193 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
5194 }
5195
5196 mutex_lock(&ctx->uring_lock);
5197 ret = io_submit_sqes(ctx, to_submit, NULL, -1, &cur_mm, true);
5198 mutex_unlock(&ctx->uring_lock);
5199 timeout = jiffies + ctx->sq_thread_idle;
5200 }
5201
5202 set_fs(old_fs);
5203 if (cur_mm) {
5204 unuse_mm(cur_mm);
5205 mmput(cur_mm);
5206 }
5207 revert_creds(old_cred);
5208
5209 kthread_parkme();
5210
5211 return 0;
5212 }
5213
5214 struct io_wait_queue {
5215 struct wait_queue_entry wq;
5216 struct io_ring_ctx *ctx;
5217 unsigned to_wait;
5218 unsigned nr_timeouts;
5219 };
5220
5221 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
5222 {
5223 struct io_ring_ctx *ctx = iowq->ctx;
5224
5225 /*
5226 * Wake up if we have enough events, or if a timeout occurred since we
5227 * started waiting. For timeouts, we always want to return to userspace,
5228 * regardless of event count.
5229 */
5230 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
5231 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
5232 }
5233
5234 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
5235 int wake_flags, void *key)
5236 {
5237 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
5238 wq);
5239
5240 /* use noflush == true, as we can't safely rely on locking context */
5241 if (!io_should_wake(iowq, true))
5242 return -1;
5243
5244 return autoremove_wake_function(curr, mode, wake_flags, key);
5245 }
5246
5247 /*
5248 * Wait until events become available, if we don't already have some. The
5249 * application must reap them itself, as they reside on the shared cq ring.
5250 */
5251 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
5252 const sigset_t __user *sig, size_t sigsz)
5253 {
5254 struct io_wait_queue iowq = {
5255 .wq = {
5256 .private = current,
5257 .func = io_wake_function,
5258 .entry = LIST_HEAD_INIT(iowq.wq.entry),
5259 },
5260 .ctx = ctx,
5261 .to_wait = min_events,
5262 };
5263 struct io_rings *rings = ctx->rings;
5264 int ret = 0;
5265
5266 if (io_cqring_events(ctx, false) >= min_events)
5267 return 0;
5268
5269 if (sig) {
5270 #ifdef CONFIG_COMPAT
5271 if (in_compat_syscall())
5272 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
5273 sigsz);
5274 else
5275 #endif
5276 ret = set_user_sigmask(sig, sigsz);
5277
5278 if (ret)
5279 return ret;
5280 }
5281
5282 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
5283 trace_io_uring_cqring_wait(ctx, min_events);
5284 do {
5285 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
5286 TASK_INTERRUPTIBLE);
5287 if (io_should_wake(&iowq, false))
5288 break;
5289 schedule();
5290 if (signal_pending(current)) {
5291 ret = -EINTR;
5292 break;
5293 }
5294 } while (1);
5295 finish_wait(&ctx->wait, &iowq.wq);
5296
5297 restore_saved_sigmask_unless(ret == -EINTR);
5298
5299 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
5300 }
5301
5302 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
5303 {
5304 #if defined(CONFIG_UNIX)
5305 if (ctx->ring_sock) {
5306 struct sock *sock = ctx->ring_sock->sk;
5307 struct sk_buff *skb;
5308
5309 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
5310 kfree_skb(skb);
5311 }
5312 #else
5313 int i;
5314
5315 for (i = 0; i < ctx->nr_user_files; i++) {
5316 struct file *file;
5317
5318 file = io_file_from_index(ctx, i);
5319 if (file)
5320 fput(file);
5321 }
5322 #endif
5323 }
5324
5325 static void io_file_ref_kill(struct percpu_ref *ref)
5326 {
5327 struct fixed_file_data *data;
5328
5329 data = container_of(ref, struct fixed_file_data, refs);
5330 complete(&data->done);
5331 }
5332
5333 static void io_file_ref_exit_and_free(struct work_struct *work)
5334 {
5335 struct fixed_file_data *data;
5336
5337 data = container_of(work, struct fixed_file_data, ref_work);
5338
5339 /*
5340 * Ensure any percpu-ref atomic switch callback has run, it could have
5341 * been in progress when the files were being unregistered. Once
5342 * that's done, we can safely exit and free the ref and containing
5343 * data structure.
5344 */
5345 rcu_barrier();
5346 percpu_ref_exit(&data->refs);
5347 kfree(data);
5348 }
5349
5350 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
5351 {
5352 struct fixed_file_data *data = ctx->file_data;
5353 unsigned nr_tables, i;
5354
5355 if (!data)
5356 return -ENXIO;
5357
5358 percpu_ref_kill_and_confirm(&data->refs, io_file_ref_kill);
5359 flush_work(&data->ref_work);
5360 wait_for_completion(&data->done);
5361 io_ring_file_ref_flush(data);
5362
5363 __io_sqe_files_unregister(ctx);
5364 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
5365 for (i = 0; i < nr_tables; i++)
5366 kfree(data->table[i].files);
5367 kfree(data->table);
5368 INIT_WORK(&data->ref_work, io_file_ref_exit_and_free);
5369 queue_work(system_wq, &data->ref_work);
5370 ctx->file_data = NULL;
5371 ctx->nr_user_files = 0;
5372 return 0;
5373 }
5374
5375 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
5376 {
5377 if (ctx->sqo_thread) {
5378 wait_for_completion(&ctx->completions[1]);
5379 /*
5380 * The park is a bit of a work-around, without it we get
5381 * warning spews on shutdown with SQPOLL set and affinity
5382 * set to a single CPU.
5383 */
5384 kthread_park(ctx->sqo_thread);
5385 kthread_stop(ctx->sqo_thread);
5386 ctx->sqo_thread = NULL;
5387 }
5388 }
5389
5390 static void io_finish_async(struct io_ring_ctx *ctx)
5391 {
5392 io_sq_thread_stop(ctx);
5393
5394 if (ctx->io_wq) {
5395 io_wq_destroy(ctx->io_wq);
5396 ctx->io_wq = NULL;
5397 }
5398 }
5399
5400 #if defined(CONFIG_UNIX)
5401 /*
5402 * Ensure the UNIX gc is aware of our file set, so we are certain that
5403 * the io_uring can be safely unregistered on process exit, even if we have
5404 * loops in the file referencing.
5405 */
5406 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
5407 {
5408 struct sock *sk = ctx->ring_sock->sk;
5409 struct scm_fp_list *fpl;
5410 struct sk_buff *skb;
5411 int i, nr_files;
5412
5413 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
5414 unsigned long inflight = ctx->user->unix_inflight + nr;
5415
5416 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
5417 return -EMFILE;
5418 }
5419
5420 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
5421 if (!fpl)
5422 return -ENOMEM;
5423
5424 skb = alloc_skb(0, GFP_KERNEL);
5425 if (!skb) {
5426 kfree(fpl);
5427 return -ENOMEM;
5428 }
5429
5430 skb->sk = sk;
5431
5432 nr_files = 0;
5433 fpl->user = get_uid(ctx->user);
5434 for (i = 0; i < nr; i++) {
5435 struct file *file = io_file_from_index(ctx, i + offset);
5436
5437 if (!file)
5438 continue;
5439 fpl->fp[nr_files] = get_file(file);
5440 unix_inflight(fpl->user, fpl->fp[nr_files]);
5441 nr_files++;
5442 }
5443
5444 if (nr_files) {
5445 fpl->max = SCM_MAX_FD;
5446 fpl->count = nr_files;
5447 UNIXCB(skb).fp = fpl;
5448 skb->destructor = unix_destruct_scm;
5449 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
5450 skb_queue_head(&sk->sk_receive_queue, skb);
5451
5452 for (i = 0; i < nr_files; i++)
5453 fput(fpl->fp[i]);
5454 } else {
5455 kfree_skb(skb);
5456 kfree(fpl);
5457 }
5458
5459 return 0;
5460 }
5461
5462 /*
5463 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
5464 * causes regular reference counting to break down. We rely on the UNIX
5465 * garbage collection to take care of this problem for us.
5466 */
5467 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
5468 {
5469 unsigned left, total;
5470 int ret = 0;
5471
5472 total = 0;
5473 left = ctx->nr_user_files;
5474 while (left) {
5475 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
5476
5477 ret = __io_sqe_files_scm(ctx, this_files, total);
5478 if (ret)
5479 break;
5480 left -= this_files;
5481 total += this_files;
5482 }
5483
5484 if (!ret)
5485 return 0;
5486
5487 while (total < ctx->nr_user_files) {
5488 struct file *file = io_file_from_index(ctx, total);
5489
5490 if (file)
5491 fput(file);
5492 total++;
5493 }
5494
5495 return ret;
5496 }
5497 #else
5498 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
5499 {
5500 return 0;
5501 }
5502 #endif
5503
5504 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
5505 unsigned nr_files)
5506 {
5507 int i;
5508
5509 for (i = 0; i < nr_tables; i++) {
5510 struct fixed_file_table *table = &ctx->file_data->table[i];
5511 unsigned this_files;
5512
5513 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
5514 table->files = kcalloc(this_files, sizeof(struct file *),
5515 GFP_KERNEL);
5516 if (!table->files)
5517 break;
5518 nr_files -= this_files;
5519 }
5520
5521 if (i == nr_tables)
5522 return 0;
5523
5524 for (i = 0; i < nr_tables; i++) {
5525 struct fixed_file_table *table = &ctx->file_data->table[i];
5526 kfree(table->files);
5527 }
5528 return 1;
5529 }
5530
5531 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
5532 {
5533 #if defined(CONFIG_UNIX)
5534 struct sock *sock = ctx->ring_sock->sk;
5535 struct sk_buff_head list, *head = &sock->sk_receive_queue;
5536 struct sk_buff *skb;
5537 int i;
5538
5539 __skb_queue_head_init(&list);
5540
5541 /*
5542 * Find the skb that holds this file in its SCM_RIGHTS. When found,
5543 * remove this entry and rearrange the file array.
5544 */
5545 skb = skb_dequeue(head);
5546 while (skb) {
5547 struct scm_fp_list *fp;
5548
5549 fp = UNIXCB(skb).fp;
5550 for (i = 0; i < fp->count; i++) {
5551 int left;
5552
5553 if (fp->fp[i] != file)
5554 continue;
5555
5556 unix_notinflight(fp->user, fp->fp[i]);
5557 left = fp->count - 1 - i;
5558 if (left) {
5559 memmove(&fp->fp[i], &fp->fp[i + 1],
5560 left * sizeof(struct file *));
5561 }
5562 fp->count--;
5563 if (!fp->count) {
5564 kfree_skb(skb);
5565 skb = NULL;
5566 } else {
5567 __skb_queue_tail(&list, skb);
5568 }
5569 fput(file);
5570 file = NULL;
5571 break;
5572 }
5573
5574 if (!file)
5575 break;
5576
5577 __skb_queue_tail(&list, skb);
5578
5579 skb = skb_dequeue(head);
5580 }
5581
5582 if (skb_peek(&list)) {
5583 spin_lock_irq(&head->lock);
5584 while ((skb = __skb_dequeue(&list)) != NULL)
5585 __skb_queue_tail(head, skb);
5586 spin_unlock_irq(&head->lock);
5587 }
5588 #else
5589 fput(file);
5590 #endif
5591 }
5592
5593 struct io_file_put {
5594 struct llist_node llist;
5595 struct file *file;
5596 struct completion *done;
5597 };
5598
5599 static void io_ring_file_ref_flush(struct fixed_file_data *data)
5600 {
5601 struct io_file_put *pfile, *tmp;
5602 struct llist_node *node;
5603
5604 while ((node = llist_del_all(&data->put_llist)) != NULL) {
5605 llist_for_each_entry_safe(pfile, tmp, node, llist) {
5606 io_ring_file_put(data->ctx, pfile->file);
5607 if (pfile->done)
5608 complete(pfile->done);
5609 else
5610 kfree(pfile);
5611 }
5612 }
5613 }
5614
5615 static void io_ring_file_ref_switch(struct work_struct *work)
5616 {
5617 struct fixed_file_data *data;
5618
5619 data = container_of(work, struct fixed_file_data, ref_work);
5620 io_ring_file_ref_flush(data);
5621 percpu_ref_switch_to_percpu(&data->refs);
5622 }
5623
5624 static void io_file_data_ref_zero(struct percpu_ref *ref)
5625 {
5626 struct fixed_file_data *data;
5627
5628 data = container_of(ref, struct fixed_file_data, refs);
5629
5630 /*
5631 * We can't safely switch from inside this context, punt to wq. If
5632 * the table ref is going away, the table is being unregistered.
5633 * Don't queue up the async work for that case, the caller will
5634 * handle it.
5635 */
5636 if (!percpu_ref_is_dying(&data->refs))
5637 queue_work(system_wq, &data->ref_work);
5638 }
5639
5640 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
5641 unsigned nr_args)
5642 {
5643 __s32 __user *fds = (__s32 __user *) arg;
5644 unsigned nr_tables;
5645 struct file *file;
5646 int fd, ret = 0;
5647 unsigned i;
5648
5649 if (ctx->file_data)
5650 return -EBUSY;
5651 if (!nr_args)
5652 return -EINVAL;
5653 if (nr_args > IORING_MAX_FIXED_FILES)
5654 return -EMFILE;
5655
5656 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
5657 if (!ctx->file_data)
5658 return -ENOMEM;
5659 ctx->file_data->ctx = ctx;
5660 init_completion(&ctx->file_data->done);
5661
5662 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
5663 ctx->file_data->table = kcalloc(nr_tables,
5664 sizeof(struct fixed_file_table),
5665 GFP_KERNEL);
5666 if (!ctx->file_data->table) {
5667 kfree(ctx->file_data);
5668 ctx->file_data = NULL;
5669 return -ENOMEM;
5670 }
5671
5672 if (percpu_ref_init(&ctx->file_data->refs, io_file_data_ref_zero,
5673 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
5674 kfree(ctx->file_data->table);
5675 kfree(ctx->file_data);
5676 ctx->file_data = NULL;
5677 return -ENOMEM;
5678 }
5679 ctx->file_data->put_llist.first = NULL;
5680 INIT_WORK(&ctx->file_data->ref_work, io_ring_file_ref_switch);
5681
5682 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
5683 percpu_ref_exit(&ctx->file_data->refs);
5684 kfree(ctx->file_data->table);
5685 kfree(ctx->file_data);
5686 ctx->file_data = NULL;
5687 return -ENOMEM;
5688 }
5689
5690 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
5691 struct fixed_file_table *table;
5692 unsigned index;
5693
5694 ret = -EFAULT;
5695 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
5696 break;
5697 /* allow sparse sets */
5698 if (fd == -1) {
5699 ret = 0;
5700 continue;
5701 }
5702
5703 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
5704 index = i & IORING_FILE_TABLE_MASK;
5705 file = fget(fd);
5706
5707 ret = -EBADF;
5708 if (!file)
5709 break;
5710
5711 /*
5712 * Don't allow io_uring instances to be registered. If UNIX
5713 * isn't enabled, then this causes a reference cycle and this
5714 * instance can never get freed. If UNIX is enabled we'll
5715 * handle it just fine, but there's still no point in allowing
5716 * a ring fd as it doesn't support regular read/write anyway.
5717 */
5718 if (file->f_op == &io_uring_fops) {
5719 fput(file);
5720 break;
5721 }
5722 ret = 0;
5723 table->files[index] = file;
5724 }
5725
5726 if (ret) {
5727 for (i = 0; i < ctx->nr_user_files; i++) {
5728 file = io_file_from_index(ctx, i);
5729 if (file)
5730 fput(file);
5731 }
5732 for (i = 0; i < nr_tables; i++)
5733 kfree(ctx->file_data->table[i].files);
5734
5735 kfree(ctx->file_data->table);
5736 kfree(ctx->file_data);
5737 ctx->file_data = NULL;
5738 ctx->nr_user_files = 0;
5739 return ret;
5740 }
5741
5742 ret = io_sqe_files_scm(ctx);
5743 if (ret)
5744 io_sqe_files_unregister(ctx);
5745
5746 return ret;
5747 }
5748
5749 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
5750 int index)
5751 {
5752 #if defined(CONFIG_UNIX)
5753 struct sock *sock = ctx->ring_sock->sk;
5754 struct sk_buff_head *head = &sock->sk_receive_queue;
5755 struct sk_buff *skb;
5756
5757 /*
5758 * See if we can merge this file into an existing skb SCM_RIGHTS
5759 * file set. If there's no room, fall back to allocating a new skb
5760 * and filling it in.
5761 */
5762 spin_lock_irq(&head->lock);
5763 skb = skb_peek(head);
5764 if (skb) {
5765 struct scm_fp_list *fpl = UNIXCB(skb).fp;
5766
5767 if (fpl->count < SCM_MAX_FD) {
5768 __skb_unlink(skb, head);
5769 spin_unlock_irq(&head->lock);
5770 fpl->fp[fpl->count] = get_file(file);
5771 unix_inflight(fpl->user, fpl->fp[fpl->count]);
5772 fpl->count++;
5773 spin_lock_irq(&head->lock);
5774 __skb_queue_head(head, skb);
5775 } else {
5776 skb = NULL;
5777 }
5778 }
5779 spin_unlock_irq(&head->lock);
5780
5781 if (skb) {
5782 fput(file);
5783 return 0;
5784 }
5785
5786 return __io_sqe_files_scm(ctx, 1, index);
5787 #else
5788 return 0;
5789 #endif
5790 }
5791
5792 static void io_atomic_switch(struct percpu_ref *ref)
5793 {
5794 struct fixed_file_data *data;
5795
5796 /*
5797 * Juggle reference to ensure we hit zero, if needed, so we can
5798 * switch back to percpu mode
5799 */
5800 data = container_of(ref, struct fixed_file_data, refs);
5801 percpu_ref_put(&data->refs);
5802 percpu_ref_get(&data->refs);
5803 }
5804
5805 static bool io_queue_file_removal(struct fixed_file_data *data,
5806 struct file *file)
5807 {
5808 struct io_file_put *pfile, pfile_stack;
5809 DECLARE_COMPLETION_ONSTACK(done);
5810
5811 /*
5812 * If we fail allocating the struct we need for doing async reomval
5813 * of this file, just punt to sync and wait for it.
5814 */
5815 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
5816 if (!pfile) {
5817 pfile = &pfile_stack;
5818 pfile->done = &done;
5819 }
5820
5821 pfile->file = file;
5822 llist_add(&pfile->llist, &data->put_llist);
5823
5824 if (pfile == &pfile_stack) {
5825 percpu_ref_switch_to_atomic(&data->refs, io_atomic_switch);
5826 wait_for_completion(&done);
5827 flush_work(&data->ref_work);
5828 return false;
5829 }
5830
5831 return true;
5832 }
5833
5834 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
5835 struct io_uring_files_update *up,
5836 unsigned nr_args)
5837 {
5838 struct fixed_file_data *data = ctx->file_data;
5839 bool ref_switch = false;
5840 struct file *file;
5841 __s32 __user *fds;
5842 int fd, i, err;
5843 __u32 done;
5844
5845 if (check_add_overflow(up->offset, nr_args, &done))
5846 return -EOVERFLOW;
5847 if (done > ctx->nr_user_files)
5848 return -EINVAL;
5849
5850 done = 0;
5851 fds = u64_to_user_ptr(up->fds);
5852 while (nr_args) {
5853 struct fixed_file_table *table;
5854 unsigned index;
5855
5856 err = 0;
5857 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
5858 err = -EFAULT;
5859 break;
5860 }
5861 i = array_index_nospec(up->offset, ctx->nr_user_files);
5862 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
5863 index = i & IORING_FILE_TABLE_MASK;
5864 if (table->files[index]) {
5865 file = io_file_from_index(ctx, index);
5866 table->files[index] = NULL;
5867 if (io_queue_file_removal(data, file))
5868 ref_switch = true;
5869 }
5870 if (fd != -1) {
5871 file = fget(fd);
5872 if (!file) {
5873 err = -EBADF;
5874 break;
5875 }
5876 /*
5877 * Don't allow io_uring instances to be registered. If
5878 * UNIX isn't enabled, then this causes a reference
5879 * cycle and this instance can never get freed. If UNIX
5880 * is enabled we'll handle it just fine, but there's
5881 * still no point in allowing a ring fd as it doesn't
5882 * support regular read/write anyway.
5883 */
5884 if (file->f_op == &io_uring_fops) {
5885 fput(file);
5886 err = -EBADF;
5887 break;
5888 }
5889 table->files[index] = file;
5890 err = io_sqe_file_register(ctx, file, i);
5891 if (err)
5892 break;
5893 }
5894 nr_args--;
5895 done++;
5896 up->offset++;
5897 }
5898
5899 if (ref_switch)
5900 percpu_ref_switch_to_atomic(&data->refs, io_atomic_switch);
5901
5902 return done ? done : err;
5903 }
5904 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
5905 unsigned nr_args)
5906 {
5907 struct io_uring_files_update up;
5908
5909 if (!ctx->file_data)
5910 return -ENXIO;
5911 if (!nr_args)
5912 return -EINVAL;
5913 if (copy_from_user(&up, arg, sizeof(up)))
5914 return -EFAULT;
5915 if (up.resv)
5916 return -EINVAL;
5917
5918 return __io_sqe_files_update(ctx, &up, nr_args);
5919 }
5920
5921 static void io_put_work(struct io_wq_work *work)
5922 {
5923 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5924
5925 io_put_req(req);
5926 }
5927
5928 static void io_get_work(struct io_wq_work *work)
5929 {
5930 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5931
5932 refcount_inc(&req->refs);
5933 }
5934
5935 static int io_init_wq_offload(struct io_ring_ctx *ctx,
5936 struct io_uring_params *p)
5937 {
5938 struct io_wq_data data;
5939 struct fd f;
5940 struct io_ring_ctx *ctx_attach;
5941 unsigned int concurrency;
5942 int ret = 0;
5943
5944 data.user = ctx->user;
5945 data.get_work = io_get_work;
5946 data.put_work = io_put_work;
5947
5948 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
5949 /* Do QD, or 4 * CPUS, whatever is smallest */
5950 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
5951
5952 ctx->io_wq = io_wq_create(concurrency, &data);
5953 if (IS_ERR(ctx->io_wq)) {
5954 ret = PTR_ERR(ctx->io_wq);
5955 ctx->io_wq = NULL;
5956 }
5957 return ret;
5958 }
5959
5960 f = fdget(p->wq_fd);
5961 if (!f.file)
5962 return -EBADF;
5963
5964 if (f.file->f_op != &io_uring_fops) {
5965 ret = -EINVAL;
5966 goto out_fput;
5967 }
5968
5969 ctx_attach = f.file->private_data;
5970 /* @io_wq is protected by holding the fd */
5971 if (!io_wq_get(ctx_attach->io_wq, &data)) {
5972 ret = -EINVAL;
5973 goto out_fput;
5974 }
5975
5976 ctx->io_wq = ctx_attach->io_wq;
5977 out_fput:
5978 fdput(f);
5979 return ret;
5980 }
5981
5982 static int io_sq_offload_start(struct io_ring_ctx *ctx,
5983 struct io_uring_params *p)
5984 {
5985 int ret;
5986
5987 init_waitqueue_head(&ctx->sqo_wait);
5988 mmgrab(current->mm);
5989 ctx->sqo_mm = current->mm;
5990
5991 if (ctx->flags & IORING_SETUP_SQPOLL) {
5992 ret = -EPERM;
5993 if (!capable(CAP_SYS_ADMIN))
5994 goto err;
5995
5996 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
5997 if (!ctx->sq_thread_idle)
5998 ctx->sq_thread_idle = HZ;
5999
6000 if (p->flags & IORING_SETUP_SQ_AFF) {
6001 int cpu = p->sq_thread_cpu;
6002
6003 ret = -EINVAL;
6004 if (cpu >= nr_cpu_ids)
6005 goto err;
6006 if (!cpu_online(cpu))
6007 goto err;
6008
6009 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
6010 ctx, cpu,
6011 "io_uring-sq");
6012 } else {
6013 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
6014 "io_uring-sq");
6015 }
6016 if (IS_ERR(ctx->sqo_thread)) {
6017 ret = PTR_ERR(ctx->sqo_thread);
6018 ctx->sqo_thread = NULL;
6019 goto err;
6020 }
6021 wake_up_process(ctx->sqo_thread);
6022 } else if (p->flags & IORING_SETUP_SQ_AFF) {
6023 /* Can't have SQ_AFF without SQPOLL */
6024 ret = -EINVAL;
6025 goto err;
6026 }
6027
6028 ret = io_init_wq_offload(ctx, p);
6029 if (ret)
6030 goto err;
6031
6032 return 0;
6033 err:
6034 io_finish_async(ctx);
6035 mmdrop(ctx->sqo_mm);
6036 ctx->sqo_mm = NULL;
6037 return ret;
6038 }
6039
6040 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
6041 {
6042 atomic_long_sub(nr_pages, &user->locked_vm);
6043 }
6044
6045 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
6046 {
6047 unsigned long page_limit, cur_pages, new_pages;
6048
6049 /* Don't allow more pages than we can safely lock */
6050 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
6051
6052 do {
6053 cur_pages = atomic_long_read(&user->locked_vm);
6054 new_pages = cur_pages + nr_pages;
6055 if (new_pages > page_limit)
6056 return -ENOMEM;
6057 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
6058 new_pages) != cur_pages);
6059
6060 return 0;
6061 }
6062
6063 static void io_mem_free(void *ptr)
6064 {
6065 struct page *page;
6066
6067 if (!ptr)
6068 return;
6069
6070 page = virt_to_head_page(ptr);
6071 if (put_page_testzero(page))
6072 free_compound_page(page);
6073 }
6074
6075 static void *io_mem_alloc(size_t size)
6076 {
6077 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
6078 __GFP_NORETRY;
6079
6080 return (void *) __get_free_pages(gfp_flags, get_order(size));
6081 }
6082
6083 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
6084 size_t *sq_offset)
6085 {
6086 struct io_rings *rings;
6087 size_t off, sq_array_size;
6088
6089 off = struct_size(rings, cqes, cq_entries);
6090 if (off == SIZE_MAX)
6091 return SIZE_MAX;
6092
6093 #ifdef CONFIG_SMP
6094 off = ALIGN(off, SMP_CACHE_BYTES);
6095 if (off == 0)
6096 return SIZE_MAX;
6097 #endif
6098
6099 sq_array_size = array_size(sizeof(u32), sq_entries);
6100 if (sq_array_size == SIZE_MAX)
6101 return SIZE_MAX;
6102
6103 if (check_add_overflow(off, sq_array_size, &off))
6104 return SIZE_MAX;
6105
6106 if (sq_offset)
6107 *sq_offset = off;
6108
6109 return off;
6110 }
6111
6112 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
6113 {
6114 size_t pages;
6115
6116 pages = (size_t)1 << get_order(
6117 rings_size(sq_entries, cq_entries, NULL));
6118 pages += (size_t)1 << get_order(
6119 array_size(sizeof(struct io_uring_sqe), sq_entries));
6120
6121 return pages;
6122 }
6123
6124 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
6125 {
6126 int i, j;
6127
6128 if (!ctx->user_bufs)
6129 return -ENXIO;
6130
6131 for (i = 0; i < ctx->nr_user_bufs; i++) {
6132 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6133
6134 for (j = 0; j < imu->nr_bvecs; j++)
6135 unpin_user_page(imu->bvec[j].bv_page);
6136
6137 if (ctx->account_mem)
6138 io_unaccount_mem(ctx->user, imu->nr_bvecs);
6139 kvfree(imu->bvec);
6140 imu->nr_bvecs = 0;
6141 }
6142
6143 kfree(ctx->user_bufs);
6144 ctx->user_bufs = NULL;
6145 ctx->nr_user_bufs = 0;
6146 return 0;
6147 }
6148
6149 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
6150 void __user *arg, unsigned index)
6151 {
6152 struct iovec __user *src;
6153
6154 #ifdef CONFIG_COMPAT
6155 if (ctx->compat) {
6156 struct compat_iovec __user *ciovs;
6157 struct compat_iovec ciov;
6158
6159 ciovs = (struct compat_iovec __user *) arg;
6160 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
6161 return -EFAULT;
6162
6163 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
6164 dst->iov_len = ciov.iov_len;
6165 return 0;
6166 }
6167 #endif
6168 src = (struct iovec __user *) arg;
6169 if (copy_from_user(dst, &src[index], sizeof(*dst)))
6170 return -EFAULT;
6171 return 0;
6172 }
6173
6174 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
6175 unsigned nr_args)
6176 {
6177 struct vm_area_struct **vmas = NULL;
6178 struct page **pages = NULL;
6179 int i, j, got_pages = 0;
6180 int ret = -EINVAL;
6181
6182 if (ctx->user_bufs)
6183 return -EBUSY;
6184 if (!nr_args || nr_args > UIO_MAXIOV)
6185 return -EINVAL;
6186
6187 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
6188 GFP_KERNEL);
6189 if (!ctx->user_bufs)
6190 return -ENOMEM;
6191
6192 for (i = 0; i < nr_args; i++) {
6193 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6194 unsigned long off, start, end, ubuf;
6195 int pret, nr_pages;
6196 struct iovec iov;
6197 size_t size;
6198
6199 ret = io_copy_iov(ctx, &iov, arg, i);
6200 if (ret)
6201 goto err;
6202
6203 /*
6204 * Don't impose further limits on the size and buffer
6205 * constraints here, we'll -EINVAL later when IO is
6206 * submitted if they are wrong.
6207 */
6208 ret = -EFAULT;
6209 if (!iov.iov_base || !iov.iov_len)
6210 goto err;
6211
6212 /* arbitrary limit, but we need something */
6213 if (iov.iov_len > SZ_1G)
6214 goto err;
6215
6216 ubuf = (unsigned long) iov.iov_base;
6217 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
6218 start = ubuf >> PAGE_SHIFT;
6219 nr_pages = end - start;
6220
6221 if (ctx->account_mem) {
6222 ret = io_account_mem(ctx->user, nr_pages);
6223 if (ret)
6224 goto err;
6225 }
6226
6227 ret = 0;
6228 if (!pages || nr_pages > got_pages) {
6229 kfree(vmas);
6230 kfree(pages);
6231 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
6232 GFP_KERNEL);
6233 vmas = kvmalloc_array(nr_pages,
6234 sizeof(struct vm_area_struct *),
6235 GFP_KERNEL);
6236 if (!pages || !vmas) {
6237 ret = -ENOMEM;
6238 if (ctx->account_mem)
6239 io_unaccount_mem(ctx->user, nr_pages);
6240 goto err;
6241 }
6242 got_pages = nr_pages;
6243 }
6244
6245 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
6246 GFP_KERNEL);
6247 ret = -ENOMEM;
6248 if (!imu->bvec) {
6249 if (ctx->account_mem)
6250 io_unaccount_mem(ctx->user, nr_pages);
6251 goto err;
6252 }
6253
6254 ret = 0;
6255 down_read(&current->mm->mmap_sem);
6256 pret = pin_user_pages(ubuf, nr_pages,
6257 FOLL_WRITE | FOLL_LONGTERM,
6258 pages, vmas);
6259 if (pret == nr_pages) {
6260 /* don't support file backed memory */
6261 for (j = 0; j < nr_pages; j++) {
6262 struct vm_area_struct *vma = vmas[j];
6263
6264 if (vma->vm_file &&
6265 !is_file_hugepages(vma->vm_file)) {
6266 ret = -EOPNOTSUPP;
6267 break;
6268 }
6269 }
6270 } else {
6271 ret = pret < 0 ? pret : -EFAULT;
6272 }
6273 up_read(&current->mm->mmap_sem);
6274 if (ret) {
6275 /*
6276 * if we did partial map, or found file backed vmas,
6277 * release any pages we did get
6278 */
6279 if (pret > 0)
6280 unpin_user_pages(pages, pret);
6281 if (ctx->account_mem)
6282 io_unaccount_mem(ctx->user, nr_pages);
6283 kvfree(imu->bvec);
6284 goto err;
6285 }
6286
6287 off = ubuf & ~PAGE_MASK;
6288 size = iov.iov_len;
6289 for (j = 0; j < nr_pages; j++) {
6290 size_t vec_len;
6291
6292 vec_len = min_t(size_t, size, PAGE_SIZE - off);
6293 imu->bvec[j].bv_page = pages[j];
6294 imu->bvec[j].bv_len = vec_len;
6295 imu->bvec[j].bv_offset = off;
6296 off = 0;
6297 size -= vec_len;
6298 }
6299 /* store original address for later verification */
6300 imu->ubuf = ubuf;
6301 imu->len = iov.iov_len;
6302 imu->nr_bvecs = nr_pages;
6303
6304 ctx->nr_user_bufs++;
6305 }
6306 kvfree(pages);
6307 kvfree(vmas);
6308 return 0;
6309 err:
6310 kvfree(pages);
6311 kvfree(vmas);
6312 io_sqe_buffer_unregister(ctx);
6313 return ret;
6314 }
6315
6316 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
6317 {
6318 __s32 __user *fds = arg;
6319 int fd;
6320
6321 if (ctx->cq_ev_fd)
6322 return -EBUSY;
6323
6324 if (copy_from_user(&fd, fds, sizeof(*fds)))
6325 return -EFAULT;
6326
6327 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
6328 if (IS_ERR(ctx->cq_ev_fd)) {
6329 int ret = PTR_ERR(ctx->cq_ev_fd);
6330 ctx->cq_ev_fd = NULL;
6331 return ret;
6332 }
6333
6334 return 0;
6335 }
6336
6337 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
6338 {
6339 if (ctx->cq_ev_fd) {
6340 eventfd_ctx_put(ctx->cq_ev_fd);
6341 ctx->cq_ev_fd = NULL;
6342 return 0;
6343 }
6344
6345 return -ENXIO;
6346 }
6347
6348 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
6349 {
6350 io_finish_async(ctx);
6351 if (ctx->sqo_mm)
6352 mmdrop(ctx->sqo_mm);
6353
6354 io_iopoll_reap_events(ctx);
6355 io_sqe_buffer_unregister(ctx);
6356 io_sqe_files_unregister(ctx);
6357 io_eventfd_unregister(ctx);
6358 idr_destroy(&ctx->personality_idr);
6359
6360 #if defined(CONFIG_UNIX)
6361 if (ctx->ring_sock) {
6362 ctx->ring_sock->file = NULL; /* so that iput() is called */
6363 sock_release(ctx->ring_sock);
6364 }
6365 #endif
6366
6367 io_mem_free(ctx->rings);
6368 io_mem_free(ctx->sq_sqes);
6369
6370 percpu_ref_exit(&ctx->refs);
6371 if (ctx->account_mem)
6372 io_unaccount_mem(ctx->user,
6373 ring_pages(ctx->sq_entries, ctx->cq_entries));
6374 free_uid(ctx->user);
6375 put_cred(ctx->creds);
6376 kfree(ctx->completions);
6377 kfree(ctx->cancel_hash);
6378 kmem_cache_free(req_cachep, ctx->fallback_req);
6379 kfree(ctx);
6380 }
6381
6382 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
6383 {
6384 struct io_ring_ctx *ctx = file->private_data;
6385 __poll_t mask = 0;
6386
6387 poll_wait(file, &ctx->cq_wait, wait);
6388 /*
6389 * synchronizes with barrier from wq_has_sleeper call in
6390 * io_commit_cqring
6391 */
6392 smp_rmb();
6393 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
6394 ctx->rings->sq_ring_entries)
6395 mask |= EPOLLOUT | EPOLLWRNORM;
6396 if (io_cqring_events(ctx, false))
6397 mask |= EPOLLIN | EPOLLRDNORM;
6398
6399 return mask;
6400 }
6401
6402 static int io_uring_fasync(int fd, struct file *file, int on)
6403 {
6404 struct io_ring_ctx *ctx = file->private_data;
6405
6406 return fasync_helper(fd, file, on, &ctx->cq_fasync);
6407 }
6408
6409 static int io_remove_personalities(int id, void *p, void *data)
6410 {
6411 struct io_ring_ctx *ctx = data;
6412 const struct cred *cred;
6413
6414 cred = idr_remove(&ctx->personality_idr, id);
6415 if (cred)
6416 put_cred(cred);
6417 return 0;
6418 }
6419
6420 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
6421 {
6422 mutex_lock(&ctx->uring_lock);
6423 percpu_ref_kill(&ctx->refs);
6424 mutex_unlock(&ctx->uring_lock);
6425
6426 /*
6427 * Wait for sq thread to idle, if we have one. It won't spin on new
6428 * work after we've killed the ctx ref above. This is important to do
6429 * before we cancel existing commands, as the thread could otherwise
6430 * be queueing new work post that. If that's work we need to cancel,
6431 * it could cause shutdown to hang.
6432 */
6433 while (ctx->sqo_thread && !wq_has_sleeper(&ctx->sqo_wait))
6434 cpu_relax();
6435
6436 io_kill_timeouts(ctx);
6437 io_poll_remove_all(ctx);
6438
6439 if (ctx->io_wq)
6440 io_wq_cancel_all(ctx->io_wq);
6441
6442 io_iopoll_reap_events(ctx);
6443 /* if we failed setting up the ctx, we might not have any rings */
6444 if (ctx->rings)
6445 io_cqring_overflow_flush(ctx, true);
6446 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
6447 wait_for_completion(&ctx->completions[0]);
6448 io_ring_ctx_free(ctx);
6449 }
6450
6451 static int io_uring_release(struct inode *inode, struct file *file)
6452 {
6453 struct io_ring_ctx *ctx = file->private_data;
6454
6455 file->private_data = NULL;
6456 io_ring_ctx_wait_and_kill(ctx);
6457 return 0;
6458 }
6459
6460 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
6461 struct files_struct *files)
6462 {
6463 struct io_kiocb *req;
6464 DEFINE_WAIT(wait);
6465
6466 while (!list_empty_careful(&ctx->inflight_list)) {
6467 struct io_kiocb *cancel_req = NULL;
6468
6469 spin_lock_irq(&ctx->inflight_lock);
6470 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
6471 if (req->work.files != files)
6472 continue;
6473 /* req is being completed, ignore */
6474 if (!refcount_inc_not_zero(&req->refs))
6475 continue;
6476 cancel_req = req;
6477 break;
6478 }
6479 if (cancel_req)
6480 prepare_to_wait(&ctx->inflight_wait, &wait,
6481 TASK_UNINTERRUPTIBLE);
6482 spin_unlock_irq(&ctx->inflight_lock);
6483
6484 /* We need to keep going until we don't find a matching req */
6485 if (!cancel_req)
6486 break;
6487
6488 if (cancel_req->flags & REQ_F_OVERFLOW) {
6489 spin_lock_irq(&ctx->completion_lock);
6490 list_del(&cancel_req->list);
6491 cancel_req->flags &= ~REQ_F_OVERFLOW;
6492 if (list_empty(&ctx->cq_overflow_list)) {
6493 clear_bit(0, &ctx->sq_check_overflow);
6494 clear_bit(0, &ctx->cq_check_overflow);
6495 }
6496 spin_unlock_irq(&ctx->completion_lock);
6497
6498 WRITE_ONCE(ctx->rings->cq_overflow,
6499 atomic_inc_return(&ctx->cached_cq_overflow));
6500
6501 /*
6502 * Put inflight ref and overflow ref. If that's
6503 * all we had, then we're done with this request.
6504 */
6505 if (refcount_sub_and_test(2, &cancel_req->refs)) {
6506 io_put_req(cancel_req);
6507 continue;
6508 }
6509 }
6510
6511 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
6512 io_put_req(cancel_req);
6513 schedule();
6514 }
6515 finish_wait(&ctx->inflight_wait, &wait);
6516 }
6517
6518 static int io_uring_flush(struct file *file, void *data)
6519 {
6520 struct io_ring_ctx *ctx = file->private_data;
6521
6522 io_uring_cancel_files(ctx, data);
6523
6524 /*
6525 * If the task is going away, cancel work it may have pending
6526 */
6527 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
6528 io_wq_cancel_pid(ctx->io_wq, task_pid_vnr(current));
6529
6530 return 0;
6531 }
6532
6533 static void *io_uring_validate_mmap_request(struct file *file,
6534 loff_t pgoff, size_t sz)
6535 {
6536 struct io_ring_ctx *ctx = file->private_data;
6537 loff_t offset = pgoff << PAGE_SHIFT;
6538 struct page *page;
6539 void *ptr;
6540
6541 switch (offset) {
6542 case IORING_OFF_SQ_RING:
6543 case IORING_OFF_CQ_RING:
6544 ptr = ctx->rings;
6545 break;
6546 case IORING_OFF_SQES:
6547 ptr = ctx->sq_sqes;
6548 break;
6549 default:
6550 return ERR_PTR(-EINVAL);
6551 }
6552
6553 page = virt_to_head_page(ptr);
6554 if (sz > page_size(page))
6555 return ERR_PTR(-EINVAL);
6556
6557 return ptr;
6558 }
6559
6560 #ifdef CONFIG_MMU
6561
6562 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
6563 {
6564 size_t sz = vma->vm_end - vma->vm_start;
6565 unsigned long pfn;
6566 void *ptr;
6567
6568 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
6569 if (IS_ERR(ptr))
6570 return PTR_ERR(ptr);
6571
6572 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
6573 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
6574 }
6575
6576 #else /* !CONFIG_MMU */
6577
6578 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
6579 {
6580 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
6581 }
6582
6583 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
6584 {
6585 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
6586 }
6587
6588 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
6589 unsigned long addr, unsigned long len,
6590 unsigned long pgoff, unsigned long flags)
6591 {
6592 void *ptr;
6593
6594 ptr = io_uring_validate_mmap_request(file, pgoff, len);
6595 if (IS_ERR(ptr))
6596 return PTR_ERR(ptr);
6597
6598 return (unsigned long) ptr;
6599 }
6600
6601 #endif /* !CONFIG_MMU */
6602
6603 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
6604 u32, min_complete, u32, flags, const sigset_t __user *, sig,
6605 size_t, sigsz)
6606 {
6607 struct io_ring_ctx *ctx;
6608 long ret = -EBADF;
6609 int submitted = 0;
6610 struct fd f;
6611
6612 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
6613 return -EINVAL;
6614
6615 f = fdget(fd);
6616 if (!f.file)
6617 return -EBADF;
6618
6619 ret = -EOPNOTSUPP;
6620 if (f.file->f_op != &io_uring_fops)
6621 goto out_fput;
6622
6623 ret = -ENXIO;
6624 ctx = f.file->private_data;
6625 if (!percpu_ref_tryget(&ctx->refs))
6626 goto out_fput;
6627
6628 /*
6629 * For SQ polling, the thread will do all submissions and completions.
6630 * Just return the requested submit count, and wake the thread if
6631 * we were asked to.
6632 */
6633 ret = 0;
6634 if (ctx->flags & IORING_SETUP_SQPOLL) {
6635 if (!list_empty_careful(&ctx->cq_overflow_list))
6636 io_cqring_overflow_flush(ctx, false);
6637 if (flags & IORING_ENTER_SQ_WAKEUP)
6638 wake_up(&ctx->sqo_wait);
6639 submitted = to_submit;
6640 } else if (to_submit) {
6641 struct mm_struct *cur_mm;
6642
6643 mutex_lock(&ctx->uring_lock);
6644 /* already have mm, so io_submit_sqes() won't try to grab it */
6645 cur_mm = ctx->sqo_mm;
6646 submitted = io_submit_sqes(ctx, to_submit, f.file, fd,
6647 &cur_mm, false);
6648 mutex_unlock(&ctx->uring_lock);
6649
6650 if (submitted != to_submit)
6651 goto out;
6652 }
6653 if (flags & IORING_ENTER_GETEVENTS) {
6654 unsigned nr_events = 0;
6655
6656 min_complete = min(min_complete, ctx->cq_entries);
6657
6658 if (ctx->flags & IORING_SETUP_IOPOLL) {
6659 ret = io_iopoll_check(ctx, &nr_events, min_complete);
6660 } else {
6661 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
6662 }
6663 }
6664
6665 out:
6666 percpu_ref_put(&ctx->refs);
6667 out_fput:
6668 fdput(f);
6669 return submitted ? submitted : ret;
6670 }
6671
6672 #ifdef CONFIG_PROC_FS
6673 static int io_uring_show_cred(int id, void *p, void *data)
6674 {
6675 const struct cred *cred = p;
6676 struct seq_file *m = data;
6677 struct user_namespace *uns = seq_user_ns(m);
6678 struct group_info *gi;
6679 kernel_cap_t cap;
6680 unsigned __capi;
6681 int g;
6682
6683 seq_printf(m, "%5d\n", id);
6684 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
6685 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
6686 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
6687 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
6688 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
6689 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
6690 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
6691 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
6692 seq_puts(m, "\n\tGroups:\t");
6693 gi = cred->group_info;
6694 for (g = 0; g < gi->ngroups; g++) {
6695 seq_put_decimal_ull(m, g ? " " : "",
6696 from_kgid_munged(uns, gi->gid[g]));
6697 }
6698 seq_puts(m, "\n\tCapEff:\t");
6699 cap = cred->cap_effective;
6700 CAP_FOR_EACH_U32(__capi)
6701 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
6702 seq_putc(m, '\n');
6703 return 0;
6704 }
6705
6706 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
6707 {
6708 int i;
6709
6710 mutex_lock(&ctx->uring_lock);
6711 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
6712 for (i = 0; i < ctx->nr_user_files; i++) {
6713 struct fixed_file_table *table;
6714 struct file *f;
6715
6716 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6717 f = table->files[i & IORING_FILE_TABLE_MASK];
6718 if (f)
6719 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
6720 else
6721 seq_printf(m, "%5u: <none>\n", i);
6722 }
6723 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
6724 for (i = 0; i < ctx->nr_user_bufs; i++) {
6725 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
6726
6727 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
6728 (unsigned int) buf->len);
6729 }
6730 if (!idr_is_empty(&ctx->personality_idr)) {
6731 seq_printf(m, "Personalities:\n");
6732 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
6733 }
6734 mutex_unlock(&ctx->uring_lock);
6735 }
6736
6737 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
6738 {
6739 struct io_ring_ctx *ctx = f->private_data;
6740
6741 if (percpu_ref_tryget(&ctx->refs)) {
6742 __io_uring_show_fdinfo(ctx, m);
6743 percpu_ref_put(&ctx->refs);
6744 }
6745 }
6746 #endif
6747
6748 static const struct file_operations io_uring_fops = {
6749 .release = io_uring_release,
6750 .flush = io_uring_flush,
6751 .mmap = io_uring_mmap,
6752 #ifndef CONFIG_MMU
6753 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
6754 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
6755 #endif
6756 .poll = io_uring_poll,
6757 .fasync = io_uring_fasync,
6758 #ifdef CONFIG_PROC_FS
6759 .show_fdinfo = io_uring_show_fdinfo,
6760 #endif
6761 };
6762
6763 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
6764 struct io_uring_params *p)
6765 {
6766 struct io_rings *rings;
6767 size_t size, sq_array_offset;
6768
6769 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
6770 if (size == SIZE_MAX)
6771 return -EOVERFLOW;
6772
6773 rings = io_mem_alloc(size);
6774 if (!rings)
6775 return -ENOMEM;
6776
6777 ctx->rings = rings;
6778 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
6779 rings->sq_ring_mask = p->sq_entries - 1;
6780 rings->cq_ring_mask = p->cq_entries - 1;
6781 rings->sq_ring_entries = p->sq_entries;
6782 rings->cq_ring_entries = p->cq_entries;
6783 ctx->sq_mask = rings->sq_ring_mask;
6784 ctx->cq_mask = rings->cq_ring_mask;
6785 ctx->sq_entries = rings->sq_ring_entries;
6786 ctx->cq_entries = rings->cq_ring_entries;
6787
6788 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
6789 if (size == SIZE_MAX) {
6790 io_mem_free(ctx->rings);
6791 ctx->rings = NULL;
6792 return -EOVERFLOW;
6793 }
6794
6795 ctx->sq_sqes = io_mem_alloc(size);
6796 if (!ctx->sq_sqes) {
6797 io_mem_free(ctx->rings);
6798 ctx->rings = NULL;
6799 return -ENOMEM;
6800 }
6801
6802 return 0;
6803 }
6804
6805 /*
6806 * Allocate an anonymous fd, this is what constitutes the application
6807 * visible backing of an io_uring instance. The application mmaps this
6808 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
6809 * we have to tie this fd to a socket for file garbage collection purposes.
6810 */
6811 static int io_uring_get_fd(struct io_ring_ctx *ctx)
6812 {
6813 struct file *file;
6814 int ret;
6815
6816 #if defined(CONFIG_UNIX)
6817 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
6818 &ctx->ring_sock);
6819 if (ret)
6820 return ret;
6821 #endif
6822
6823 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
6824 if (ret < 0)
6825 goto err;
6826
6827 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
6828 O_RDWR | O_CLOEXEC);
6829 if (IS_ERR(file)) {
6830 put_unused_fd(ret);
6831 ret = PTR_ERR(file);
6832 goto err;
6833 }
6834
6835 #if defined(CONFIG_UNIX)
6836 ctx->ring_sock->file = file;
6837 #endif
6838 fd_install(ret, file);
6839 return ret;
6840 err:
6841 #if defined(CONFIG_UNIX)
6842 sock_release(ctx->ring_sock);
6843 ctx->ring_sock = NULL;
6844 #endif
6845 return ret;
6846 }
6847
6848 static int io_uring_create(unsigned entries, struct io_uring_params *p)
6849 {
6850 struct user_struct *user = NULL;
6851 struct io_ring_ctx *ctx;
6852 bool account_mem;
6853 int ret;
6854
6855 if (!entries)
6856 return -EINVAL;
6857 if (entries > IORING_MAX_ENTRIES) {
6858 if (!(p->flags & IORING_SETUP_CLAMP))
6859 return -EINVAL;
6860 entries = IORING_MAX_ENTRIES;
6861 }
6862
6863 /*
6864 * Use twice as many entries for the CQ ring. It's possible for the
6865 * application to drive a higher depth than the size of the SQ ring,
6866 * since the sqes are only used at submission time. This allows for
6867 * some flexibility in overcommitting a bit. If the application has
6868 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
6869 * of CQ ring entries manually.
6870 */
6871 p->sq_entries = roundup_pow_of_two(entries);
6872 if (p->flags & IORING_SETUP_CQSIZE) {
6873 /*
6874 * If IORING_SETUP_CQSIZE is set, we do the same roundup
6875 * to a power-of-two, if it isn't already. We do NOT impose
6876 * any cq vs sq ring sizing.
6877 */
6878 if (p->cq_entries < p->sq_entries)
6879 return -EINVAL;
6880 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
6881 if (!(p->flags & IORING_SETUP_CLAMP))
6882 return -EINVAL;
6883 p->cq_entries = IORING_MAX_CQ_ENTRIES;
6884 }
6885 p->cq_entries = roundup_pow_of_two(p->cq_entries);
6886 } else {
6887 p->cq_entries = 2 * p->sq_entries;
6888 }
6889
6890 user = get_uid(current_user());
6891 account_mem = !capable(CAP_IPC_LOCK);
6892
6893 if (account_mem) {
6894 ret = io_account_mem(user,
6895 ring_pages(p->sq_entries, p->cq_entries));
6896 if (ret) {
6897 free_uid(user);
6898 return ret;
6899 }
6900 }
6901
6902 ctx = io_ring_ctx_alloc(p);
6903 if (!ctx) {
6904 if (account_mem)
6905 io_unaccount_mem(user, ring_pages(p->sq_entries,
6906 p->cq_entries));
6907 free_uid(user);
6908 return -ENOMEM;
6909 }
6910 ctx->compat = in_compat_syscall();
6911 ctx->account_mem = account_mem;
6912 ctx->user = user;
6913 ctx->creds = get_current_cred();
6914
6915 ret = io_allocate_scq_urings(ctx, p);
6916 if (ret)
6917 goto err;
6918
6919 ret = io_sq_offload_start(ctx, p);
6920 if (ret)
6921 goto err;
6922
6923 memset(&p->sq_off, 0, sizeof(p->sq_off));
6924 p->sq_off.head = offsetof(struct io_rings, sq.head);
6925 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
6926 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
6927 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
6928 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
6929 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
6930 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
6931
6932 memset(&p->cq_off, 0, sizeof(p->cq_off));
6933 p->cq_off.head = offsetof(struct io_rings, cq.head);
6934 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
6935 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
6936 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
6937 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
6938 p->cq_off.cqes = offsetof(struct io_rings, cqes);
6939
6940 /*
6941 * Install ring fd as the very last thing, so we don't risk someone
6942 * having closed it before we finish setup
6943 */
6944 ret = io_uring_get_fd(ctx);
6945 if (ret < 0)
6946 goto err;
6947
6948 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
6949 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
6950 IORING_FEAT_CUR_PERSONALITY;
6951 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
6952 return ret;
6953 err:
6954 io_ring_ctx_wait_and_kill(ctx);
6955 return ret;
6956 }
6957
6958 /*
6959 * Sets up an aio uring context, and returns the fd. Applications asks for a
6960 * ring size, we return the actual sq/cq ring sizes (among other things) in the
6961 * params structure passed in.
6962 */
6963 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
6964 {
6965 struct io_uring_params p;
6966 long ret;
6967 int i;
6968
6969 if (copy_from_user(&p, params, sizeof(p)))
6970 return -EFAULT;
6971 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
6972 if (p.resv[i])
6973 return -EINVAL;
6974 }
6975
6976 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
6977 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
6978 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
6979 return -EINVAL;
6980
6981 ret = io_uring_create(entries, &p);
6982 if (ret < 0)
6983 return ret;
6984
6985 if (copy_to_user(params, &p, sizeof(p)))
6986 return -EFAULT;
6987
6988 return ret;
6989 }
6990
6991 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
6992 struct io_uring_params __user *, params)
6993 {
6994 return io_uring_setup(entries, params);
6995 }
6996
6997 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
6998 {
6999 struct io_uring_probe *p;
7000 size_t size;
7001 int i, ret;
7002
7003 size = struct_size(p, ops, nr_args);
7004 if (size == SIZE_MAX)
7005 return -EOVERFLOW;
7006 p = kzalloc(size, GFP_KERNEL);
7007 if (!p)
7008 return -ENOMEM;
7009
7010 ret = -EFAULT;
7011 if (copy_from_user(p, arg, size))
7012 goto out;
7013 ret = -EINVAL;
7014 if (memchr_inv(p, 0, size))
7015 goto out;
7016
7017 p->last_op = IORING_OP_LAST - 1;
7018 if (nr_args > IORING_OP_LAST)
7019 nr_args = IORING_OP_LAST;
7020
7021 for (i = 0; i < nr_args; i++) {
7022 p->ops[i].op = i;
7023 if (!io_op_defs[i].not_supported)
7024 p->ops[i].flags = IO_URING_OP_SUPPORTED;
7025 }
7026 p->ops_len = i;
7027
7028 ret = 0;
7029 if (copy_to_user(arg, p, size))
7030 ret = -EFAULT;
7031 out:
7032 kfree(p);
7033 return ret;
7034 }
7035
7036 static int io_register_personality(struct io_ring_ctx *ctx)
7037 {
7038 const struct cred *creds = get_current_cred();
7039 int id;
7040
7041 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
7042 USHRT_MAX, GFP_KERNEL);
7043 if (id < 0)
7044 put_cred(creds);
7045 return id;
7046 }
7047
7048 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
7049 {
7050 const struct cred *old_creds;
7051
7052 old_creds = idr_remove(&ctx->personality_idr, id);
7053 if (old_creds) {
7054 put_cred(old_creds);
7055 return 0;
7056 }
7057
7058 return -EINVAL;
7059 }
7060
7061 static bool io_register_op_must_quiesce(int op)
7062 {
7063 switch (op) {
7064 case IORING_UNREGISTER_FILES:
7065 case IORING_REGISTER_FILES_UPDATE:
7066 case IORING_REGISTER_PROBE:
7067 case IORING_REGISTER_PERSONALITY:
7068 case IORING_UNREGISTER_PERSONALITY:
7069 return false;
7070 default:
7071 return true;
7072 }
7073 }
7074
7075 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
7076 void __user *arg, unsigned nr_args)
7077 __releases(ctx->uring_lock)
7078 __acquires(ctx->uring_lock)
7079 {
7080 int ret;
7081
7082 /*
7083 * We're inside the ring mutex, if the ref is already dying, then
7084 * someone else killed the ctx or is already going through
7085 * io_uring_register().
7086 */
7087 if (percpu_ref_is_dying(&ctx->refs))
7088 return -ENXIO;
7089
7090 if (io_register_op_must_quiesce(opcode)) {
7091 percpu_ref_kill(&ctx->refs);
7092
7093 /*
7094 * Drop uring mutex before waiting for references to exit. If
7095 * another thread is currently inside io_uring_enter() it might
7096 * need to grab the uring_lock to make progress. If we hold it
7097 * here across the drain wait, then we can deadlock. It's safe
7098 * to drop the mutex here, since no new references will come in
7099 * after we've killed the percpu ref.
7100 */
7101 mutex_unlock(&ctx->uring_lock);
7102 ret = wait_for_completion_interruptible(&ctx->completions[0]);
7103 mutex_lock(&ctx->uring_lock);
7104 if (ret) {
7105 percpu_ref_resurrect(&ctx->refs);
7106 ret = -EINTR;
7107 goto out;
7108 }
7109 }
7110
7111 switch (opcode) {
7112 case IORING_REGISTER_BUFFERS:
7113 ret = io_sqe_buffer_register(ctx, arg, nr_args);
7114 break;
7115 case IORING_UNREGISTER_BUFFERS:
7116 ret = -EINVAL;
7117 if (arg || nr_args)
7118 break;
7119 ret = io_sqe_buffer_unregister(ctx);
7120 break;
7121 case IORING_REGISTER_FILES:
7122 ret = io_sqe_files_register(ctx, arg, nr_args);
7123 break;
7124 case IORING_UNREGISTER_FILES:
7125 ret = -EINVAL;
7126 if (arg || nr_args)
7127 break;
7128 ret = io_sqe_files_unregister(ctx);
7129 break;
7130 case IORING_REGISTER_FILES_UPDATE:
7131 ret = io_sqe_files_update(ctx, arg, nr_args);
7132 break;
7133 case IORING_REGISTER_EVENTFD:
7134 case IORING_REGISTER_EVENTFD_ASYNC:
7135 ret = -EINVAL;
7136 if (nr_args != 1)
7137 break;
7138 ret = io_eventfd_register(ctx, arg);
7139 if (ret)
7140 break;
7141 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
7142 ctx->eventfd_async = 1;
7143 else
7144 ctx->eventfd_async = 0;
7145 break;
7146 case IORING_UNREGISTER_EVENTFD:
7147 ret = -EINVAL;
7148 if (arg || nr_args)
7149 break;
7150 ret = io_eventfd_unregister(ctx);
7151 break;
7152 case IORING_REGISTER_PROBE:
7153 ret = -EINVAL;
7154 if (!arg || nr_args > 256)
7155 break;
7156 ret = io_probe(ctx, arg, nr_args);
7157 break;
7158 case IORING_REGISTER_PERSONALITY:
7159 ret = -EINVAL;
7160 if (arg || nr_args)
7161 break;
7162 ret = io_register_personality(ctx);
7163 break;
7164 case IORING_UNREGISTER_PERSONALITY:
7165 ret = -EINVAL;
7166 if (arg)
7167 break;
7168 ret = io_unregister_personality(ctx, nr_args);
7169 break;
7170 default:
7171 ret = -EINVAL;
7172 break;
7173 }
7174
7175 if (io_register_op_must_quiesce(opcode)) {
7176 /* bring the ctx back to life */
7177 percpu_ref_reinit(&ctx->refs);
7178 out:
7179 reinit_completion(&ctx->completions[0]);
7180 }
7181 return ret;
7182 }
7183
7184 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
7185 void __user *, arg, unsigned int, nr_args)
7186 {
7187 struct io_ring_ctx *ctx;
7188 long ret = -EBADF;
7189 struct fd f;
7190
7191 f = fdget(fd);
7192 if (!f.file)
7193 return -EBADF;
7194
7195 ret = -EOPNOTSUPP;
7196 if (f.file->f_op != &io_uring_fops)
7197 goto out_fput;
7198
7199 ctx = f.file->private_data;
7200
7201 mutex_lock(&ctx->uring_lock);
7202 ret = __io_uring_register(ctx, opcode, arg, nr_args);
7203 mutex_unlock(&ctx->uring_lock);
7204 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
7205 ctx->cq_ev_fd != NULL, ret);
7206 out_fput:
7207 fdput(f);
7208 return ret;
7209 }
7210
7211 static int __init io_uring_init(void)
7212 {
7213 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
7214 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
7215 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
7216 } while (0)
7217
7218 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
7219 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
7220 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
7221 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
7222 BUILD_BUG_SQE_ELEM(1, __u8, flags);
7223 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
7224 BUILD_BUG_SQE_ELEM(4, __s32, fd);
7225 BUILD_BUG_SQE_ELEM(8, __u64, off);
7226 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
7227 BUILD_BUG_SQE_ELEM(16, __u64, addr);
7228 BUILD_BUG_SQE_ELEM(24, __u32, len);
7229 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
7230 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
7231 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
7232 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
7233 BUILD_BUG_SQE_ELEM(28, __u16, poll_events);
7234 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
7235 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
7236 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
7237 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
7238 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
7239 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
7240 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
7241 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
7242 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
7243 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
7244 BUILD_BUG_SQE_ELEM(42, __u16, personality);
7245
7246 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
7247 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
7248 return 0;
7249 };
7250 __initcall(io_uring_init);