]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
mtd: rawnand: marvell: add missing clk_disable_unprepare() on error in marvell_nfc_re...
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __u32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
266
267 /*
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
270 *
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
274 *
275 * The kernel modifies neither the indices array nor the entries
276 * array.
277 */
278 u32 *sq_array;
279 unsigned cached_sq_head;
280 unsigned sq_entries;
281 unsigned sq_mask;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
286
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
290
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct idr io_buffer_idr;
349
350 struct idr personality_idr;
351
352 struct {
353 unsigned cached_cq_tail;
354 unsigned cq_entries;
355 unsigned cq_mask;
356 atomic_t cq_timeouts;
357 unsigned cq_last_tm_flush;
358 unsigned long cq_check_overflow;
359 struct wait_queue_head cq_wait;
360 struct fasync_struct *cq_fasync;
361 struct eventfd_ctx *cq_ev_fd;
362 } ____cacheline_aligned_in_smp;
363
364 struct {
365 struct mutex uring_lock;
366 wait_queue_head_t wait;
367 } ____cacheline_aligned_in_smp;
368
369 struct {
370 spinlock_t completion_lock;
371
372 /*
373 * ->iopoll_list is protected by the ctx->uring_lock for
374 * io_uring instances that don't use IORING_SETUP_SQPOLL.
375 * For SQPOLL, only the single threaded io_sq_thread() will
376 * manipulate the list, hence no extra locking is needed there.
377 */
378 struct list_head iopoll_list;
379 struct hlist_head *cancel_hash;
380 unsigned cancel_hash_bits;
381 bool poll_multi_file;
382
383 spinlock_t inflight_lock;
384 struct list_head inflight_list;
385 } ____cacheline_aligned_in_smp;
386
387 struct delayed_work file_put_work;
388 struct llist_head file_put_llist;
389
390 struct work_struct exit_work;
391 struct io_restriction restrictions;
392 };
393
394 /*
395 * First field must be the file pointer in all the
396 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
397 */
398 struct io_poll_iocb {
399 struct file *file;
400 struct wait_queue_head *head;
401 __poll_t events;
402 bool done;
403 bool canceled;
404 struct wait_queue_entry wait;
405 };
406
407 struct io_poll_remove {
408 struct file *file;
409 u64 addr;
410 };
411
412 struct io_close {
413 struct file *file;
414 int fd;
415 };
416
417 struct io_timeout_data {
418 struct io_kiocb *req;
419 struct hrtimer timer;
420 struct timespec64 ts;
421 enum hrtimer_mode mode;
422 };
423
424 struct io_accept {
425 struct file *file;
426 struct sockaddr __user *addr;
427 int __user *addr_len;
428 int flags;
429 unsigned long nofile;
430 };
431
432 struct io_sync {
433 struct file *file;
434 loff_t len;
435 loff_t off;
436 int flags;
437 int mode;
438 };
439
440 struct io_cancel {
441 struct file *file;
442 u64 addr;
443 };
444
445 struct io_timeout {
446 struct file *file;
447 u32 off;
448 u32 target_seq;
449 struct list_head list;
450 /* head of the link, used by linked timeouts only */
451 struct io_kiocb *head;
452 };
453
454 struct io_timeout_rem {
455 struct file *file;
456 u64 addr;
457
458 /* timeout update */
459 struct timespec64 ts;
460 u32 flags;
461 };
462
463 struct io_rw {
464 /* NOTE: kiocb has the file as the first member, so don't do it here */
465 struct kiocb kiocb;
466 u64 addr;
467 u64 len;
468 };
469
470 struct io_connect {
471 struct file *file;
472 struct sockaddr __user *addr;
473 int addr_len;
474 };
475
476 struct io_sr_msg {
477 struct file *file;
478 union {
479 struct user_msghdr __user *umsg;
480 void __user *buf;
481 };
482 int msg_flags;
483 int bgid;
484 size_t len;
485 struct io_buffer *kbuf;
486 };
487
488 struct io_open {
489 struct file *file;
490 int dfd;
491 bool ignore_nonblock;
492 struct filename *filename;
493 struct open_how how;
494 unsigned long nofile;
495 };
496
497 struct io_files_update {
498 struct file *file;
499 u64 arg;
500 u32 nr_args;
501 u32 offset;
502 };
503
504 struct io_fadvise {
505 struct file *file;
506 u64 offset;
507 u32 len;
508 u32 advice;
509 };
510
511 struct io_madvise {
512 struct file *file;
513 u64 addr;
514 u32 len;
515 u32 advice;
516 };
517
518 struct io_epoll {
519 struct file *file;
520 int epfd;
521 int op;
522 int fd;
523 struct epoll_event event;
524 };
525
526 struct io_splice {
527 struct file *file_out;
528 struct file *file_in;
529 loff_t off_out;
530 loff_t off_in;
531 u64 len;
532 unsigned int flags;
533 };
534
535 struct io_provide_buf {
536 struct file *file;
537 __u64 addr;
538 __u32 len;
539 __u32 bgid;
540 __u16 nbufs;
541 __u16 bid;
542 };
543
544 struct io_statx {
545 struct file *file;
546 int dfd;
547 unsigned int mask;
548 unsigned int flags;
549 const char __user *filename;
550 struct statx __user *buffer;
551 };
552
553 struct io_shutdown {
554 struct file *file;
555 int how;
556 };
557
558 struct io_rename {
559 struct file *file;
560 int old_dfd;
561 int new_dfd;
562 struct filename *oldpath;
563 struct filename *newpath;
564 int flags;
565 };
566
567 struct io_unlink {
568 struct file *file;
569 int dfd;
570 int flags;
571 struct filename *filename;
572 };
573
574 struct io_completion {
575 struct file *file;
576 struct list_head list;
577 u32 cflags;
578 };
579
580 struct io_async_connect {
581 struct sockaddr_storage address;
582 };
583
584 struct io_async_msghdr {
585 struct iovec fast_iov[UIO_FASTIOV];
586 struct iovec *iov;
587 struct sockaddr __user *uaddr;
588 struct msghdr msg;
589 struct sockaddr_storage addr;
590 };
591
592 struct io_async_rw {
593 struct iovec fast_iov[UIO_FASTIOV];
594 const struct iovec *free_iovec;
595 struct iov_iter iter;
596 size_t bytes_done;
597 struct wait_page_queue wpq;
598 };
599
600 enum {
601 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
602 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
603 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
604 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
605 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
606 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
607
608 REQ_F_FAIL_LINK_BIT,
609 REQ_F_INFLIGHT_BIT,
610 REQ_F_CUR_POS_BIT,
611 REQ_F_NOWAIT_BIT,
612 REQ_F_LINK_TIMEOUT_BIT,
613 REQ_F_ISREG_BIT,
614 REQ_F_NEED_CLEANUP_BIT,
615 REQ_F_POLLED_BIT,
616 REQ_F_BUFFER_SELECTED_BIT,
617 REQ_F_NO_FILE_TABLE_BIT,
618 REQ_F_WORK_INITIALIZED_BIT,
619 REQ_F_LTIMEOUT_ACTIVE_BIT,
620
621 /* not a real bit, just to check we're not overflowing the space */
622 __REQ_F_LAST_BIT,
623 };
624
625 enum {
626 /* ctx owns file */
627 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
628 /* drain existing IO first */
629 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
630 /* linked sqes */
631 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
632 /* doesn't sever on completion < 0 */
633 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
634 /* IOSQE_ASYNC */
635 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
636 /* IOSQE_BUFFER_SELECT */
637 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
638
639 /* fail rest of links */
640 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
641 /* on inflight list */
642 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
643 /* read/write uses file position */
644 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
645 /* must not punt to workers */
646 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
647 /* has or had linked timeout */
648 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
649 /* regular file */
650 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
651 /* needs cleanup */
652 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
653 /* already went through poll handler */
654 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
655 /* buffer already selected */
656 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
657 /* doesn't need file table for this request */
658 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
659 /* io_wq_work is initialized */
660 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
661 /* linked timeout is active, i.e. prepared by link's head */
662 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
663 };
664
665 struct async_poll {
666 struct io_poll_iocb poll;
667 struct io_poll_iocb *double_poll;
668 };
669
670 /*
671 * NOTE! Each of the iocb union members has the file pointer
672 * as the first entry in their struct definition. So you can
673 * access the file pointer through any of the sub-structs,
674 * or directly as just 'ki_filp' in this struct.
675 */
676 struct io_kiocb {
677 union {
678 struct file *file;
679 struct io_rw rw;
680 struct io_poll_iocb poll;
681 struct io_poll_remove poll_remove;
682 struct io_accept accept;
683 struct io_sync sync;
684 struct io_cancel cancel;
685 struct io_timeout timeout;
686 struct io_timeout_rem timeout_rem;
687 struct io_connect connect;
688 struct io_sr_msg sr_msg;
689 struct io_open open;
690 struct io_close close;
691 struct io_files_update files_update;
692 struct io_fadvise fadvise;
693 struct io_madvise madvise;
694 struct io_epoll epoll;
695 struct io_splice splice;
696 struct io_provide_buf pbuf;
697 struct io_statx statx;
698 struct io_shutdown shutdown;
699 struct io_rename rename;
700 struct io_unlink unlink;
701 /* use only after cleaning per-op data, see io_clean_op() */
702 struct io_completion compl;
703 };
704
705 /* opcode allocated if it needs to store data for async defer */
706 void *async_data;
707 u8 opcode;
708 /* polled IO has completed */
709 u8 iopoll_completed;
710
711 u16 buf_index;
712 u32 result;
713
714 struct io_ring_ctx *ctx;
715 unsigned int flags;
716 refcount_t refs;
717 struct task_struct *task;
718 u64 user_data;
719
720 struct io_kiocb *link;
721 struct percpu_ref *fixed_file_refs;
722
723 /*
724 * 1. used with ctx->iopoll_list with reads/writes
725 * 2. to track reqs with ->files (see io_op_def::file_table)
726 */
727 struct list_head inflight_entry;
728 struct callback_head task_work;
729 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
730 struct hlist_node hash_node;
731 struct async_poll *apoll;
732 struct io_wq_work work;
733 };
734
735 struct io_defer_entry {
736 struct list_head list;
737 struct io_kiocb *req;
738 u32 seq;
739 };
740
741 #define IO_IOPOLL_BATCH 8
742
743 struct io_comp_state {
744 unsigned int nr;
745 struct list_head list;
746 struct io_ring_ctx *ctx;
747 };
748
749 struct io_submit_state {
750 struct blk_plug plug;
751
752 /*
753 * io_kiocb alloc cache
754 */
755 void *reqs[IO_IOPOLL_BATCH];
756 unsigned int free_reqs;
757
758 bool plug_started;
759
760 /*
761 * Batch completion logic
762 */
763 struct io_comp_state comp;
764
765 /*
766 * File reference cache
767 */
768 struct file *file;
769 unsigned int fd;
770 unsigned int file_refs;
771 unsigned int ios_left;
772 };
773
774 struct io_op_def {
775 /* needs req->file assigned */
776 unsigned needs_file : 1;
777 /* don't fail if file grab fails */
778 unsigned needs_file_no_error : 1;
779 /* hash wq insertion if file is a regular file */
780 unsigned hash_reg_file : 1;
781 /* unbound wq insertion if file is a non-regular file */
782 unsigned unbound_nonreg_file : 1;
783 /* opcode is not supported by this kernel */
784 unsigned not_supported : 1;
785 /* set if opcode supports polled "wait" */
786 unsigned pollin : 1;
787 unsigned pollout : 1;
788 /* op supports buffer selection */
789 unsigned buffer_select : 1;
790 /* must always have async data allocated */
791 unsigned needs_async_data : 1;
792 /* should block plug */
793 unsigned plug : 1;
794 /* size of async data needed, if any */
795 unsigned short async_size;
796 unsigned work_flags;
797 };
798
799 static const struct io_op_def io_op_defs[] = {
800 [IORING_OP_NOP] = {},
801 [IORING_OP_READV] = {
802 .needs_file = 1,
803 .unbound_nonreg_file = 1,
804 .pollin = 1,
805 .buffer_select = 1,
806 .needs_async_data = 1,
807 .plug = 1,
808 .async_size = sizeof(struct io_async_rw),
809 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
810 },
811 [IORING_OP_WRITEV] = {
812 .needs_file = 1,
813 .hash_reg_file = 1,
814 .unbound_nonreg_file = 1,
815 .pollout = 1,
816 .needs_async_data = 1,
817 .plug = 1,
818 .async_size = sizeof(struct io_async_rw),
819 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
820 IO_WQ_WORK_FSIZE,
821 },
822 [IORING_OP_FSYNC] = {
823 .needs_file = 1,
824 .work_flags = IO_WQ_WORK_BLKCG,
825 },
826 [IORING_OP_READ_FIXED] = {
827 .needs_file = 1,
828 .unbound_nonreg_file = 1,
829 .pollin = 1,
830 .plug = 1,
831 .async_size = sizeof(struct io_async_rw),
832 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
833 },
834 [IORING_OP_WRITE_FIXED] = {
835 .needs_file = 1,
836 .hash_reg_file = 1,
837 .unbound_nonreg_file = 1,
838 .pollout = 1,
839 .plug = 1,
840 .async_size = sizeof(struct io_async_rw),
841 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
842 IO_WQ_WORK_MM,
843 },
844 [IORING_OP_POLL_ADD] = {
845 .needs_file = 1,
846 .unbound_nonreg_file = 1,
847 },
848 [IORING_OP_POLL_REMOVE] = {},
849 [IORING_OP_SYNC_FILE_RANGE] = {
850 .needs_file = 1,
851 .work_flags = IO_WQ_WORK_BLKCG,
852 },
853 [IORING_OP_SENDMSG] = {
854 .needs_file = 1,
855 .unbound_nonreg_file = 1,
856 .pollout = 1,
857 .needs_async_data = 1,
858 .async_size = sizeof(struct io_async_msghdr),
859 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
860 IO_WQ_WORK_FS,
861 },
862 [IORING_OP_RECVMSG] = {
863 .needs_file = 1,
864 .unbound_nonreg_file = 1,
865 .pollin = 1,
866 .buffer_select = 1,
867 .needs_async_data = 1,
868 .async_size = sizeof(struct io_async_msghdr),
869 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
870 IO_WQ_WORK_FS,
871 },
872 [IORING_OP_TIMEOUT] = {
873 .needs_async_data = 1,
874 .async_size = sizeof(struct io_timeout_data),
875 .work_flags = IO_WQ_WORK_MM,
876 },
877 [IORING_OP_TIMEOUT_REMOVE] = {
878 /* used by timeout updates' prep() */
879 .work_flags = IO_WQ_WORK_MM,
880 },
881 [IORING_OP_ACCEPT] = {
882 .needs_file = 1,
883 .unbound_nonreg_file = 1,
884 .pollin = 1,
885 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
886 },
887 [IORING_OP_ASYNC_CANCEL] = {},
888 [IORING_OP_LINK_TIMEOUT] = {
889 .needs_async_data = 1,
890 .async_size = sizeof(struct io_timeout_data),
891 .work_flags = IO_WQ_WORK_MM,
892 },
893 [IORING_OP_CONNECT] = {
894 .needs_file = 1,
895 .unbound_nonreg_file = 1,
896 .pollout = 1,
897 .needs_async_data = 1,
898 .async_size = sizeof(struct io_async_connect),
899 .work_flags = IO_WQ_WORK_MM,
900 },
901 [IORING_OP_FALLOCATE] = {
902 .needs_file = 1,
903 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
904 },
905 [IORING_OP_OPENAT] = {
906 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
907 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
908 },
909 [IORING_OP_CLOSE] = {
910 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
911 },
912 [IORING_OP_FILES_UPDATE] = {
913 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
914 },
915 [IORING_OP_STATX] = {
916 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
917 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
918 },
919 [IORING_OP_READ] = {
920 .needs_file = 1,
921 .unbound_nonreg_file = 1,
922 .pollin = 1,
923 .buffer_select = 1,
924 .plug = 1,
925 .async_size = sizeof(struct io_async_rw),
926 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
927 },
928 [IORING_OP_WRITE] = {
929 .needs_file = 1,
930 .unbound_nonreg_file = 1,
931 .pollout = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
935 IO_WQ_WORK_FSIZE,
936 },
937 [IORING_OP_FADVISE] = {
938 .needs_file = 1,
939 .work_flags = IO_WQ_WORK_BLKCG,
940 },
941 [IORING_OP_MADVISE] = {
942 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
943 },
944 [IORING_OP_SEND] = {
945 .needs_file = 1,
946 .unbound_nonreg_file = 1,
947 .pollout = 1,
948 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
949 },
950 [IORING_OP_RECV] = {
951 .needs_file = 1,
952 .unbound_nonreg_file = 1,
953 .pollin = 1,
954 .buffer_select = 1,
955 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
956 },
957 [IORING_OP_OPENAT2] = {
958 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
959 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
960 },
961 [IORING_OP_EPOLL_CTL] = {
962 .unbound_nonreg_file = 1,
963 .work_flags = IO_WQ_WORK_FILES,
964 },
965 [IORING_OP_SPLICE] = {
966 .needs_file = 1,
967 .hash_reg_file = 1,
968 .unbound_nonreg_file = 1,
969 .work_flags = IO_WQ_WORK_BLKCG,
970 },
971 [IORING_OP_PROVIDE_BUFFERS] = {},
972 [IORING_OP_REMOVE_BUFFERS] = {},
973 [IORING_OP_TEE] = {
974 .needs_file = 1,
975 .hash_reg_file = 1,
976 .unbound_nonreg_file = 1,
977 },
978 [IORING_OP_SHUTDOWN] = {
979 .needs_file = 1,
980 },
981 [IORING_OP_RENAMEAT] = {
982 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
983 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
984 },
985 [IORING_OP_UNLINKAT] = {
986 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
987 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
988 },
989 };
990
991 enum io_mem_account {
992 ACCT_LOCKED,
993 ACCT_PINNED,
994 };
995
996 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
997 struct task_struct *task,
998 struct files_struct *files);
999 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1000 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1001 struct io_ring_ctx *ctx);
1002
1003 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1004 struct io_comp_state *cs);
1005 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1006 static void io_put_req(struct io_kiocb *req);
1007 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1008 static void io_double_put_req(struct io_kiocb *req);
1009 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1010 static void __io_queue_linked_timeout(struct io_kiocb *req);
1011 static void io_queue_linked_timeout(struct io_kiocb *req);
1012 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1013 struct io_uring_files_update *ip,
1014 unsigned nr_args);
1015 static void __io_clean_op(struct io_kiocb *req);
1016 static struct file *io_file_get(struct io_submit_state *state,
1017 struct io_kiocb *req, int fd, bool fixed);
1018 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1019 static void io_file_put_work(struct work_struct *work);
1020
1021 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1022 struct iovec **iovec, struct iov_iter *iter,
1023 bool needs_lock);
1024 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1025 const struct iovec *fast_iov,
1026 struct iov_iter *iter, bool force);
1027 static void io_req_drop_files(struct io_kiocb *req);
1028 static void io_req_task_queue(struct io_kiocb *req);
1029
1030 static struct kmem_cache *req_cachep;
1031
1032 static const struct file_operations io_uring_fops;
1033
1034 struct sock *io_uring_get_socket(struct file *file)
1035 {
1036 #if defined(CONFIG_UNIX)
1037 if (file->f_op == &io_uring_fops) {
1038 struct io_ring_ctx *ctx = file->private_data;
1039
1040 return ctx->ring_sock->sk;
1041 }
1042 #endif
1043 return NULL;
1044 }
1045 EXPORT_SYMBOL(io_uring_get_socket);
1046
1047 #define io_for_each_link(pos, head) \
1048 for (pos = (head); pos; pos = pos->link)
1049
1050 static inline void io_clean_op(struct io_kiocb *req)
1051 {
1052 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1053 __io_clean_op(req);
1054 }
1055
1056 static inline void io_set_resource_node(struct io_kiocb *req)
1057 {
1058 struct io_ring_ctx *ctx = req->ctx;
1059
1060 if (!req->fixed_file_refs) {
1061 req->fixed_file_refs = &ctx->file_data->node->refs;
1062 percpu_ref_get(req->fixed_file_refs);
1063 }
1064 }
1065
1066 static bool io_match_task(struct io_kiocb *head,
1067 struct task_struct *task,
1068 struct files_struct *files)
1069 {
1070 struct io_kiocb *req;
1071
1072 if (task && head->task != task) {
1073 /* in terms of cancelation, always match if req task is dead */
1074 if (head->task->flags & PF_EXITING)
1075 return true;
1076 return false;
1077 }
1078 if (!files)
1079 return true;
1080
1081 io_for_each_link(req, head) {
1082 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1083 continue;
1084 if (req->file && req->file->f_op == &io_uring_fops)
1085 return true;
1086 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1087 req->work.identity->files == files)
1088 return true;
1089 }
1090 return false;
1091 }
1092
1093 static void io_sq_thread_drop_mm_files(void)
1094 {
1095 struct files_struct *files = current->files;
1096 struct mm_struct *mm = current->mm;
1097
1098 if (mm) {
1099 kthread_unuse_mm(mm);
1100 mmput(mm);
1101 current->mm = NULL;
1102 }
1103 if (files) {
1104 struct nsproxy *nsproxy = current->nsproxy;
1105
1106 task_lock(current);
1107 current->files = NULL;
1108 current->nsproxy = NULL;
1109 task_unlock(current);
1110 put_files_struct(files);
1111 put_nsproxy(nsproxy);
1112 }
1113 }
1114
1115 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1116 {
1117 if (current->flags & PF_EXITING)
1118 return -EFAULT;
1119
1120 if (!current->files) {
1121 struct files_struct *files;
1122 struct nsproxy *nsproxy;
1123
1124 task_lock(ctx->sqo_task);
1125 files = ctx->sqo_task->files;
1126 if (!files) {
1127 task_unlock(ctx->sqo_task);
1128 return -EOWNERDEAD;
1129 }
1130 atomic_inc(&files->count);
1131 get_nsproxy(ctx->sqo_task->nsproxy);
1132 nsproxy = ctx->sqo_task->nsproxy;
1133 task_unlock(ctx->sqo_task);
1134
1135 task_lock(current);
1136 current->files = files;
1137 current->nsproxy = nsproxy;
1138 task_unlock(current);
1139 }
1140 return 0;
1141 }
1142
1143 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1144 {
1145 struct mm_struct *mm;
1146
1147 if (current->flags & PF_EXITING)
1148 return -EFAULT;
1149 if (current->mm)
1150 return 0;
1151
1152 /* Should never happen */
1153 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1154 return -EFAULT;
1155
1156 task_lock(ctx->sqo_task);
1157 mm = ctx->sqo_task->mm;
1158 if (unlikely(!mm || !mmget_not_zero(mm)))
1159 mm = NULL;
1160 task_unlock(ctx->sqo_task);
1161
1162 if (mm) {
1163 kthread_use_mm(mm);
1164 return 0;
1165 }
1166
1167 return -EFAULT;
1168 }
1169
1170 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1171 struct io_kiocb *req)
1172 {
1173 const struct io_op_def *def = &io_op_defs[req->opcode];
1174 int ret;
1175
1176 if (def->work_flags & IO_WQ_WORK_MM) {
1177 ret = __io_sq_thread_acquire_mm(ctx);
1178 if (unlikely(ret))
1179 return ret;
1180 }
1181
1182 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1183 ret = __io_sq_thread_acquire_files(ctx);
1184 if (unlikely(ret))
1185 return ret;
1186 }
1187
1188 return 0;
1189 }
1190
1191 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1192 struct cgroup_subsys_state **cur_css)
1193
1194 {
1195 #ifdef CONFIG_BLK_CGROUP
1196 /* puts the old one when swapping */
1197 if (*cur_css != ctx->sqo_blkcg_css) {
1198 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1199 *cur_css = ctx->sqo_blkcg_css;
1200 }
1201 #endif
1202 }
1203
1204 static void io_sq_thread_unassociate_blkcg(void)
1205 {
1206 #ifdef CONFIG_BLK_CGROUP
1207 kthread_associate_blkcg(NULL);
1208 #endif
1209 }
1210
1211 static inline void req_set_fail_links(struct io_kiocb *req)
1212 {
1213 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1214 req->flags |= REQ_F_FAIL_LINK;
1215 }
1216
1217 /*
1218 * None of these are dereferenced, they are simply used to check if any of
1219 * them have changed. If we're under current and check they are still the
1220 * same, we're fine to grab references to them for actual out-of-line use.
1221 */
1222 static void io_init_identity(struct io_identity *id)
1223 {
1224 id->files = current->files;
1225 id->mm = current->mm;
1226 #ifdef CONFIG_BLK_CGROUP
1227 rcu_read_lock();
1228 id->blkcg_css = blkcg_css();
1229 rcu_read_unlock();
1230 #endif
1231 id->creds = current_cred();
1232 id->nsproxy = current->nsproxy;
1233 id->fs = current->fs;
1234 id->fsize = rlimit(RLIMIT_FSIZE);
1235 #ifdef CONFIG_AUDIT
1236 id->loginuid = current->loginuid;
1237 id->sessionid = current->sessionid;
1238 #endif
1239 refcount_set(&id->count, 1);
1240 }
1241
1242 static inline void __io_req_init_async(struct io_kiocb *req)
1243 {
1244 memset(&req->work, 0, sizeof(req->work));
1245 req->flags |= REQ_F_WORK_INITIALIZED;
1246 }
1247
1248 /*
1249 * Note: must call io_req_init_async() for the first time you
1250 * touch any members of io_wq_work.
1251 */
1252 static inline void io_req_init_async(struct io_kiocb *req)
1253 {
1254 struct io_uring_task *tctx = current->io_uring;
1255
1256 if (req->flags & REQ_F_WORK_INITIALIZED)
1257 return;
1258
1259 __io_req_init_async(req);
1260
1261 /* Grab a ref if this isn't our static identity */
1262 req->work.identity = tctx->identity;
1263 if (tctx->identity != &tctx->__identity)
1264 refcount_inc(&req->work.identity->count);
1265 }
1266
1267 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1268 {
1269 return ctx->flags & IORING_SETUP_SQPOLL;
1270 }
1271
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1273 {
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1275
1276 complete(&ctx->ref_comp);
1277 }
1278
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1280 {
1281 return !req->timeout.off;
1282 }
1283
1284 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1285 {
1286 struct io_ring_ctx *ctx;
1287 int hash_bits;
1288
1289 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1290 if (!ctx)
1291 return NULL;
1292
1293 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1294 if (!ctx->fallback_req)
1295 goto err;
1296
1297 /*
1298 * Use 5 bits less than the max cq entries, that should give us around
1299 * 32 entries per hash list if totally full and uniformly spread.
1300 */
1301 hash_bits = ilog2(p->cq_entries);
1302 hash_bits -= 5;
1303 if (hash_bits <= 0)
1304 hash_bits = 1;
1305 ctx->cancel_hash_bits = hash_bits;
1306 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1307 GFP_KERNEL);
1308 if (!ctx->cancel_hash)
1309 goto err;
1310 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1311
1312 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1313 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1314 goto err;
1315
1316 ctx->flags = p->flags;
1317 init_waitqueue_head(&ctx->sqo_sq_wait);
1318 INIT_LIST_HEAD(&ctx->sqd_list);
1319 init_waitqueue_head(&ctx->cq_wait);
1320 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1321 init_completion(&ctx->ref_comp);
1322 init_completion(&ctx->sq_thread_comp);
1323 idr_init(&ctx->io_buffer_idr);
1324 idr_init(&ctx->personality_idr);
1325 mutex_init(&ctx->uring_lock);
1326 init_waitqueue_head(&ctx->wait);
1327 spin_lock_init(&ctx->completion_lock);
1328 INIT_LIST_HEAD(&ctx->iopoll_list);
1329 INIT_LIST_HEAD(&ctx->defer_list);
1330 INIT_LIST_HEAD(&ctx->timeout_list);
1331 spin_lock_init(&ctx->inflight_lock);
1332 INIT_LIST_HEAD(&ctx->inflight_list);
1333 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1334 init_llist_head(&ctx->file_put_llist);
1335 return ctx;
1336 err:
1337 if (ctx->fallback_req)
1338 kmem_cache_free(req_cachep, ctx->fallback_req);
1339 kfree(ctx->cancel_hash);
1340 kfree(ctx);
1341 return NULL;
1342 }
1343
1344 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1345 {
1346 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1347 struct io_ring_ctx *ctx = req->ctx;
1348
1349 return seq != ctx->cached_cq_tail
1350 + READ_ONCE(ctx->cached_cq_overflow);
1351 }
1352
1353 return false;
1354 }
1355
1356 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1357 {
1358 struct io_rings *rings = ctx->rings;
1359
1360 /* order cqe stores with ring update */
1361 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1362 }
1363
1364 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1365 {
1366 if (req->work.identity == &tctx->__identity)
1367 return;
1368 if (refcount_dec_and_test(&req->work.identity->count))
1369 kfree(req->work.identity);
1370 }
1371
1372 static void io_req_clean_work(struct io_kiocb *req)
1373 {
1374 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1375 return;
1376
1377 req->flags &= ~REQ_F_WORK_INITIALIZED;
1378
1379 if (req->work.flags & IO_WQ_WORK_MM) {
1380 mmdrop(req->work.identity->mm);
1381 req->work.flags &= ~IO_WQ_WORK_MM;
1382 }
1383 #ifdef CONFIG_BLK_CGROUP
1384 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1385 css_put(req->work.identity->blkcg_css);
1386 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1387 }
1388 #endif
1389 if (req->work.flags & IO_WQ_WORK_CREDS) {
1390 put_cred(req->work.identity->creds);
1391 req->work.flags &= ~IO_WQ_WORK_CREDS;
1392 }
1393 if (req->work.flags & IO_WQ_WORK_FS) {
1394 struct fs_struct *fs = req->work.identity->fs;
1395
1396 spin_lock(&req->work.identity->fs->lock);
1397 if (--fs->users)
1398 fs = NULL;
1399 spin_unlock(&req->work.identity->fs->lock);
1400 if (fs)
1401 free_fs_struct(fs);
1402 req->work.flags &= ~IO_WQ_WORK_FS;
1403 }
1404 if (req->flags & REQ_F_INFLIGHT)
1405 io_req_drop_files(req);
1406
1407 io_put_identity(req->task->io_uring, req);
1408 }
1409
1410 /*
1411 * Create a private copy of io_identity, since some fields don't match
1412 * the current context.
1413 */
1414 static bool io_identity_cow(struct io_kiocb *req)
1415 {
1416 struct io_uring_task *tctx = current->io_uring;
1417 const struct cred *creds = NULL;
1418 struct io_identity *id;
1419
1420 if (req->work.flags & IO_WQ_WORK_CREDS)
1421 creds = req->work.identity->creds;
1422
1423 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1424 if (unlikely(!id)) {
1425 req->work.flags |= IO_WQ_WORK_CANCEL;
1426 return false;
1427 }
1428
1429 /*
1430 * We can safely just re-init the creds we copied Either the field
1431 * matches the current one, or we haven't grabbed it yet. The only
1432 * exception is ->creds, through registered personalities, so handle
1433 * that one separately.
1434 */
1435 io_init_identity(id);
1436 if (creds)
1437 id->creds = creds;
1438
1439 /* add one for this request */
1440 refcount_inc(&id->count);
1441
1442 /* drop tctx and req identity references, if needed */
1443 if (tctx->identity != &tctx->__identity &&
1444 refcount_dec_and_test(&tctx->identity->count))
1445 kfree(tctx->identity);
1446 if (req->work.identity != &tctx->__identity &&
1447 refcount_dec_and_test(&req->work.identity->count))
1448 kfree(req->work.identity);
1449
1450 req->work.identity = id;
1451 tctx->identity = id;
1452 return true;
1453 }
1454
1455 static bool io_grab_identity(struct io_kiocb *req)
1456 {
1457 const struct io_op_def *def = &io_op_defs[req->opcode];
1458 struct io_identity *id = req->work.identity;
1459 struct io_ring_ctx *ctx = req->ctx;
1460
1461 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1462 if (id->fsize != rlimit(RLIMIT_FSIZE))
1463 return false;
1464 req->work.flags |= IO_WQ_WORK_FSIZE;
1465 }
1466 #ifdef CONFIG_BLK_CGROUP
1467 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1468 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1469 rcu_read_lock();
1470 if (id->blkcg_css != blkcg_css()) {
1471 rcu_read_unlock();
1472 return false;
1473 }
1474 /*
1475 * This should be rare, either the cgroup is dying or the task
1476 * is moving cgroups. Just punt to root for the handful of ios.
1477 */
1478 if (css_tryget_online(id->blkcg_css))
1479 req->work.flags |= IO_WQ_WORK_BLKCG;
1480 rcu_read_unlock();
1481 }
1482 #endif
1483 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1484 if (id->creds != current_cred())
1485 return false;
1486 get_cred(id->creds);
1487 req->work.flags |= IO_WQ_WORK_CREDS;
1488 }
1489 #ifdef CONFIG_AUDIT
1490 if (!uid_eq(current->loginuid, id->loginuid) ||
1491 current->sessionid != id->sessionid)
1492 return false;
1493 #endif
1494 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1495 (def->work_flags & IO_WQ_WORK_FS)) {
1496 if (current->fs != id->fs)
1497 return false;
1498 spin_lock(&id->fs->lock);
1499 if (!id->fs->in_exec) {
1500 id->fs->users++;
1501 req->work.flags |= IO_WQ_WORK_FS;
1502 } else {
1503 req->work.flags |= IO_WQ_WORK_CANCEL;
1504 }
1505 spin_unlock(&current->fs->lock);
1506 }
1507 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1508 (def->work_flags & IO_WQ_WORK_FILES) &&
1509 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1510 if (id->files != current->files ||
1511 id->nsproxy != current->nsproxy)
1512 return false;
1513 atomic_inc(&id->files->count);
1514 get_nsproxy(id->nsproxy);
1515
1516 if (!(req->flags & REQ_F_INFLIGHT)) {
1517 req->flags |= REQ_F_INFLIGHT;
1518
1519 spin_lock_irq(&ctx->inflight_lock);
1520 list_add(&req->inflight_entry, &ctx->inflight_list);
1521 spin_unlock_irq(&ctx->inflight_lock);
1522 }
1523 req->work.flags |= IO_WQ_WORK_FILES;
1524 }
1525 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1526 (def->work_flags & IO_WQ_WORK_MM)) {
1527 if (id->mm != current->mm)
1528 return false;
1529 mmgrab(id->mm);
1530 req->work.flags |= IO_WQ_WORK_MM;
1531 }
1532
1533 return true;
1534 }
1535
1536 static void io_prep_async_work(struct io_kiocb *req)
1537 {
1538 const struct io_op_def *def = &io_op_defs[req->opcode];
1539 struct io_ring_ctx *ctx = req->ctx;
1540
1541 io_req_init_async(req);
1542
1543 if (req->flags & REQ_F_FORCE_ASYNC)
1544 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1545
1546 if (req->flags & REQ_F_ISREG) {
1547 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1548 io_wq_hash_work(&req->work, file_inode(req->file));
1549 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1550 if (def->unbound_nonreg_file)
1551 req->work.flags |= IO_WQ_WORK_UNBOUND;
1552 }
1553
1554 /* if we fail grabbing identity, we must COW, regrab, and retry */
1555 if (io_grab_identity(req))
1556 return;
1557
1558 if (!io_identity_cow(req))
1559 return;
1560
1561 /* can't fail at this point */
1562 if (!io_grab_identity(req))
1563 WARN_ON(1);
1564 }
1565
1566 static void io_prep_async_link(struct io_kiocb *req)
1567 {
1568 struct io_kiocb *cur;
1569
1570 io_for_each_link(cur, req)
1571 io_prep_async_work(cur);
1572 }
1573
1574 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1575 {
1576 struct io_ring_ctx *ctx = req->ctx;
1577 struct io_kiocb *link = io_prep_linked_timeout(req);
1578
1579 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1580 &req->work, req->flags);
1581 io_wq_enqueue(ctx->io_wq, &req->work);
1582 return link;
1583 }
1584
1585 static void io_queue_async_work(struct io_kiocb *req)
1586 {
1587 struct io_kiocb *link;
1588
1589 /* init ->work of the whole link before punting */
1590 io_prep_async_link(req);
1591 link = __io_queue_async_work(req);
1592
1593 if (link)
1594 io_queue_linked_timeout(link);
1595 }
1596
1597 static void io_kill_timeout(struct io_kiocb *req, int status)
1598 {
1599 struct io_timeout_data *io = req->async_data;
1600 int ret;
1601
1602 ret = hrtimer_try_to_cancel(&io->timer);
1603 if (ret != -1) {
1604 atomic_set(&req->ctx->cq_timeouts,
1605 atomic_read(&req->ctx->cq_timeouts) + 1);
1606 list_del_init(&req->timeout.list);
1607 io_cqring_fill_event(req, status);
1608 io_put_req_deferred(req, 1);
1609 }
1610 }
1611
1612 /*
1613 * Returns true if we found and killed one or more timeouts
1614 */
1615 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1616 struct files_struct *files)
1617 {
1618 struct io_kiocb *req, *tmp;
1619 int canceled = 0;
1620
1621 spin_lock_irq(&ctx->completion_lock);
1622 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1623 if (io_match_task(req, tsk, files)) {
1624 io_kill_timeout(req, -ECANCELED);
1625 canceled++;
1626 }
1627 }
1628 spin_unlock_irq(&ctx->completion_lock);
1629 return canceled != 0;
1630 }
1631
1632 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1633 {
1634 do {
1635 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1636 struct io_defer_entry, list);
1637
1638 if (req_need_defer(de->req, de->seq))
1639 break;
1640 list_del_init(&de->list);
1641 io_req_task_queue(de->req);
1642 kfree(de);
1643 } while (!list_empty(&ctx->defer_list));
1644 }
1645
1646 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1647 {
1648 u32 seq;
1649
1650 if (list_empty(&ctx->timeout_list))
1651 return;
1652
1653 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1654
1655 do {
1656 u32 events_needed, events_got;
1657 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1658 struct io_kiocb, timeout.list);
1659
1660 if (io_is_timeout_noseq(req))
1661 break;
1662
1663 /*
1664 * Since seq can easily wrap around over time, subtract
1665 * the last seq at which timeouts were flushed before comparing.
1666 * Assuming not more than 2^31-1 events have happened since,
1667 * these subtractions won't have wrapped, so we can check if
1668 * target is in [last_seq, current_seq] by comparing the two.
1669 */
1670 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1671 events_got = seq - ctx->cq_last_tm_flush;
1672 if (events_got < events_needed)
1673 break;
1674
1675 list_del_init(&req->timeout.list);
1676 io_kill_timeout(req, 0);
1677 } while (!list_empty(&ctx->timeout_list));
1678
1679 ctx->cq_last_tm_flush = seq;
1680 }
1681
1682 static void io_commit_cqring(struct io_ring_ctx *ctx)
1683 {
1684 io_flush_timeouts(ctx);
1685 __io_commit_cqring(ctx);
1686
1687 if (unlikely(!list_empty(&ctx->defer_list)))
1688 __io_queue_deferred(ctx);
1689 }
1690
1691 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1692 {
1693 struct io_rings *r = ctx->rings;
1694
1695 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1696 }
1697
1698 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1699 {
1700 struct io_rings *rings = ctx->rings;
1701 unsigned tail;
1702
1703 tail = ctx->cached_cq_tail;
1704 /*
1705 * writes to the cq entry need to come after reading head; the
1706 * control dependency is enough as we're using WRITE_ONCE to
1707 * fill the cq entry
1708 */
1709 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1710 return NULL;
1711
1712 ctx->cached_cq_tail++;
1713 return &rings->cqes[tail & ctx->cq_mask];
1714 }
1715
1716 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1717 {
1718 if (!ctx->cq_ev_fd)
1719 return false;
1720 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1721 return false;
1722 if (!ctx->eventfd_async)
1723 return true;
1724 return io_wq_current_is_worker();
1725 }
1726
1727 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1728 {
1729 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1730 }
1731
1732 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1733 {
1734 /* see waitqueue_active() comment */
1735 smp_mb();
1736
1737 if (waitqueue_active(&ctx->wait))
1738 wake_up(&ctx->wait);
1739 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1740 wake_up(&ctx->sq_data->wait);
1741 if (io_should_trigger_evfd(ctx))
1742 eventfd_signal(ctx->cq_ev_fd, 1);
1743 if (waitqueue_active(&ctx->cq_wait)) {
1744 wake_up_interruptible(&ctx->cq_wait);
1745 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1746 }
1747 }
1748
1749 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1750 {
1751 /* see waitqueue_active() comment */
1752 smp_mb();
1753
1754 if (ctx->flags & IORING_SETUP_SQPOLL) {
1755 if (waitqueue_active(&ctx->wait))
1756 wake_up(&ctx->wait);
1757 }
1758 if (io_should_trigger_evfd(ctx))
1759 eventfd_signal(ctx->cq_ev_fd, 1);
1760 if (waitqueue_active(&ctx->cq_wait)) {
1761 wake_up_interruptible(&ctx->cq_wait);
1762 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1763 }
1764 }
1765
1766 /* Returns true if there are no backlogged entries after the flush */
1767 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1768 struct task_struct *tsk,
1769 struct files_struct *files)
1770 {
1771 struct io_rings *rings = ctx->rings;
1772 struct io_kiocb *req, *tmp;
1773 struct io_uring_cqe *cqe;
1774 unsigned long flags;
1775 bool all_flushed, posted;
1776 LIST_HEAD(list);
1777
1778 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1779 return false;
1780
1781 posted = false;
1782 spin_lock_irqsave(&ctx->completion_lock, flags);
1783 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1784 if (!io_match_task(req, tsk, files))
1785 continue;
1786
1787 cqe = io_get_cqring(ctx);
1788 if (!cqe && !force)
1789 break;
1790
1791 list_move(&req->compl.list, &list);
1792 if (cqe) {
1793 WRITE_ONCE(cqe->user_data, req->user_data);
1794 WRITE_ONCE(cqe->res, req->result);
1795 WRITE_ONCE(cqe->flags, req->compl.cflags);
1796 } else {
1797 ctx->cached_cq_overflow++;
1798 WRITE_ONCE(ctx->rings->cq_overflow,
1799 ctx->cached_cq_overflow);
1800 }
1801 posted = true;
1802 }
1803
1804 all_flushed = list_empty(&ctx->cq_overflow_list);
1805 if (all_flushed) {
1806 clear_bit(0, &ctx->sq_check_overflow);
1807 clear_bit(0, &ctx->cq_check_overflow);
1808 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1809 }
1810
1811 if (posted)
1812 io_commit_cqring(ctx);
1813 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1814 if (posted)
1815 io_cqring_ev_posted(ctx);
1816
1817 while (!list_empty(&list)) {
1818 req = list_first_entry(&list, struct io_kiocb, compl.list);
1819 list_del(&req->compl.list);
1820 io_put_req(req);
1821 }
1822
1823 return all_flushed;
1824 }
1825
1826 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1827 struct task_struct *tsk,
1828 struct files_struct *files)
1829 {
1830 bool ret = true;
1831
1832 if (test_bit(0, &ctx->cq_check_overflow)) {
1833 /* iopoll syncs against uring_lock, not completion_lock */
1834 if (ctx->flags & IORING_SETUP_IOPOLL)
1835 mutex_lock(&ctx->uring_lock);
1836 ret = __io_cqring_overflow_flush(ctx, force, tsk, files);
1837 if (ctx->flags & IORING_SETUP_IOPOLL)
1838 mutex_unlock(&ctx->uring_lock);
1839 }
1840
1841 return ret;
1842 }
1843
1844 static void __io_cqring_fill_event(struct io_kiocb *req, long res,
1845 unsigned int cflags)
1846 {
1847 struct io_ring_ctx *ctx = req->ctx;
1848 struct io_uring_cqe *cqe;
1849
1850 trace_io_uring_complete(ctx, req->user_data, res);
1851
1852 /*
1853 * If we can't get a cq entry, userspace overflowed the
1854 * submission (by quite a lot). Increment the overflow count in
1855 * the ring.
1856 */
1857 cqe = io_get_cqring(ctx);
1858 if (likely(cqe)) {
1859 WRITE_ONCE(cqe->user_data, req->user_data);
1860 WRITE_ONCE(cqe->res, res);
1861 WRITE_ONCE(cqe->flags, cflags);
1862 } else if (ctx->cq_overflow_flushed ||
1863 atomic_read(&req->task->io_uring->in_idle)) {
1864 /*
1865 * If we're in ring overflow flush mode, or in task cancel mode,
1866 * then we cannot store the request for later flushing, we need
1867 * to drop it on the floor.
1868 */
1869 ctx->cached_cq_overflow++;
1870 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1871 } else {
1872 if (list_empty(&ctx->cq_overflow_list)) {
1873 set_bit(0, &ctx->sq_check_overflow);
1874 set_bit(0, &ctx->cq_check_overflow);
1875 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1876 }
1877 io_clean_op(req);
1878 req->result = res;
1879 req->compl.cflags = cflags;
1880 refcount_inc(&req->refs);
1881 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1882 }
1883 }
1884
1885 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1886 {
1887 __io_cqring_fill_event(req, res, 0);
1888 }
1889
1890 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1891 {
1892 struct io_ring_ctx *ctx = req->ctx;
1893 unsigned long flags;
1894
1895 spin_lock_irqsave(&ctx->completion_lock, flags);
1896 __io_cqring_fill_event(req, res, cflags);
1897 io_commit_cqring(ctx);
1898 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1899
1900 io_cqring_ev_posted(ctx);
1901 }
1902
1903 static void io_submit_flush_completions(struct io_comp_state *cs)
1904 {
1905 struct io_ring_ctx *ctx = cs->ctx;
1906
1907 spin_lock_irq(&ctx->completion_lock);
1908 while (!list_empty(&cs->list)) {
1909 struct io_kiocb *req;
1910
1911 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1912 list_del(&req->compl.list);
1913 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1914
1915 /*
1916 * io_free_req() doesn't care about completion_lock unless one
1917 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1918 * because of a potential deadlock with req->work.fs->lock
1919 */
1920 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1921 |REQ_F_WORK_INITIALIZED)) {
1922 spin_unlock_irq(&ctx->completion_lock);
1923 io_put_req(req);
1924 spin_lock_irq(&ctx->completion_lock);
1925 } else {
1926 io_put_req(req);
1927 }
1928 }
1929 io_commit_cqring(ctx);
1930 spin_unlock_irq(&ctx->completion_lock);
1931
1932 io_cqring_ev_posted(ctx);
1933 cs->nr = 0;
1934 }
1935
1936 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1937 struct io_comp_state *cs)
1938 {
1939 if (!cs) {
1940 io_cqring_add_event(req, res, cflags);
1941 io_put_req(req);
1942 } else {
1943 io_clean_op(req);
1944 req->result = res;
1945 req->compl.cflags = cflags;
1946 list_add_tail(&req->compl.list, &cs->list);
1947 if (++cs->nr >= 32)
1948 io_submit_flush_completions(cs);
1949 }
1950 }
1951
1952 static void io_req_complete(struct io_kiocb *req, long res)
1953 {
1954 __io_req_complete(req, res, 0, NULL);
1955 }
1956
1957 static inline bool io_is_fallback_req(struct io_kiocb *req)
1958 {
1959 return req == (struct io_kiocb *)
1960 ((unsigned long) req->ctx->fallback_req & ~1UL);
1961 }
1962
1963 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1964 {
1965 struct io_kiocb *req;
1966
1967 req = ctx->fallback_req;
1968 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1969 return req;
1970
1971 return NULL;
1972 }
1973
1974 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1975 struct io_submit_state *state)
1976 {
1977 if (!state->free_reqs) {
1978 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1979 size_t sz;
1980 int ret;
1981
1982 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1983 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1984
1985 /*
1986 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1987 * retry single alloc to be on the safe side.
1988 */
1989 if (unlikely(ret <= 0)) {
1990 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1991 if (!state->reqs[0])
1992 goto fallback;
1993 ret = 1;
1994 }
1995 state->free_reqs = ret;
1996 }
1997
1998 state->free_reqs--;
1999 return state->reqs[state->free_reqs];
2000 fallback:
2001 return io_get_fallback_req(ctx);
2002 }
2003
2004 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2005 bool fixed)
2006 {
2007 if (!fixed)
2008 fput(file);
2009 }
2010
2011 static void io_dismantle_req(struct io_kiocb *req)
2012 {
2013 io_clean_op(req);
2014
2015 if (req->async_data)
2016 kfree(req->async_data);
2017 if (req->file)
2018 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2019 if (req->fixed_file_refs)
2020 percpu_ref_put(req->fixed_file_refs);
2021 io_req_clean_work(req);
2022 }
2023
2024 static void __io_free_req(struct io_kiocb *req)
2025 {
2026 struct io_uring_task *tctx = req->task->io_uring;
2027 struct io_ring_ctx *ctx = req->ctx;
2028
2029 io_dismantle_req(req);
2030
2031 percpu_counter_dec(&tctx->inflight);
2032 if (atomic_read(&tctx->in_idle))
2033 wake_up(&tctx->wait);
2034 put_task_struct(req->task);
2035
2036 if (likely(!io_is_fallback_req(req)))
2037 kmem_cache_free(req_cachep, req);
2038 else
2039 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2040 percpu_ref_put(&ctx->refs);
2041 }
2042
2043 static inline void io_remove_next_linked(struct io_kiocb *req)
2044 {
2045 struct io_kiocb *nxt = req->link;
2046
2047 req->link = nxt->link;
2048 nxt->link = NULL;
2049 }
2050
2051 static void io_kill_linked_timeout(struct io_kiocb *req)
2052 {
2053 struct io_ring_ctx *ctx = req->ctx;
2054 struct io_kiocb *link;
2055 bool cancelled = false;
2056 unsigned long flags;
2057
2058 spin_lock_irqsave(&ctx->completion_lock, flags);
2059 link = req->link;
2060
2061 /*
2062 * Can happen if a linked timeout fired and link had been like
2063 * req -> link t-out -> link t-out [-> ...]
2064 */
2065 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2066 struct io_timeout_data *io = link->async_data;
2067 int ret;
2068
2069 io_remove_next_linked(req);
2070 link->timeout.head = NULL;
2071 ret = hrtimer_try_to_cancel(&io->timer);
2072 if (ret != -1) {
2073 io_cqring_fill_event(link, -ECANCELED);
2074 io_commit_cqring(ctx);
2075 cancelled = true;
2076 }
2077 }
2078 req->flags &= ~REQ_F_LINK_TIMEOUT;
2079 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2080
2081 if (cancelled) {
2082 io_cqring_ev_posted(ctx);
2083 io_put_req(link);
2084 }
2085 }
2086
2087
2088 static void io_fail_links(struct io_kiocb *req)
2089 {
2090 struct io_kiocb *link, *nxt;
2091 struct io_ring_ctx *ctx = req->ctx;
2092 unsigned long flags;
2093
2094 spin_lock_irqsave(&ctx->completion_lock, flags);
2095 link = req->link;
2096 req->link = NULL;
2097
2098 while (link) {
2099 nxt = link->link;
2100 link->link = NULL;
2101
2102 trace_io_uring_fail_link(req, link);
2103 io_cqring_fill_event(link, -ECANCELED);
2104
2105 /*
2106 * It's ok to free under spinlock as they're not linked anymore,
2107 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2108 * work.fs->lock.
2109 */
2110 if (link->flags & REQ_F_WORK_INITIALIZED)
2111 io_put_req_deferred(link, 2);
2112 else
2113 io_double_put_req(link);
2114 link = nxt;
2115 }
2116 io_commit_cqring(ctx);
2117 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2118
2119 io_cqring_ev_posted(ctx);
2120 }
2121
2122 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2123 {
2124 if (req->flags & REQ_F_LINK_TIMEOUT)
2125 io_kill_linked_timeout(req);
2126
2127 /*
2128 * If LINK is set, we have dependent requests in this chain. If we
2129 * didn't fail this request, queue the first one up, moving any other
2130 * dependencies to the next request. In case of failure, fail the rest
2131 * of the chain.
2132 */
2133 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2134 struct io_kiocb *nxt = req->link;
2135
2136 req->link = NULL;
2137 return nxt;
2138 }
2139 io_fail_links(req);
2140 return NULL;
2141 }
2142
2143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2144 {
2145 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2146 return NULL;
2147 return __io_req_find_next(req);
2148 }
2149
2150 static int io_req_task_work_add(struct io_kiocb *req)
2151 {
2152 struct task_struct *tsk = req->task;
2153 struct io_ring_ctx *ctx = req->ctx;
2154 enum task_work_notify_mode notify;
2155 int ret;
2156
2157 if (tsk->flags & PF_EXITING)
2158 return -ESRCH;
2159
2160 /*
2161 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2162 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2163 * processing task_work. There's no reliable way to tell if TWA_RESUME
2164 * will do the job.
2165 */
2166 notify = TWA_NONE;
2167 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2168 notify = TWA_SIGNAL;
2169
2170 ret = task_work_add(tsk, &req->task_work, notify);
2171 if (!ret)
2172 wake_up_process(tsk);
2173
2174 return ret;
2175 }
2176
2177 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2178 void (*cb)(struct callback_head *))
2179 {
2180 struct task_struct *tsk = io_wq_get_task(req->ctx->io_wq);
2181
2182 init_task_work(&req->task_work, cb);
2183 task_work_add(tsk, &req->task_work, TWA_NONE);
2184 wake_up_process(tsk);
2185 }
2186
2187 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2188 {
2189 struct io_ring_ctx *ctx = req->ctx;
2190
2191 spin_lock_irq(&ctx->completion_lock);
2192 io_cqring_fill_event(req, error);
2193 io_commit_cqring(ctx);
2194 spin_unlock_irq(&ctx->completion_lock);
2195
2196 io_cqring_ev_posted(ctx);
2197 req_set_fail_links(req);
2198 io_double_put_req(req);
2199 }
2200
2201 static void io_req_task_cancel(struct callback_head *cb)
2202 {
2203 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2204 struct io_ring_ctx *ctx = req->ctx;
2205
2206 mutex_lock(&ctx->uring_lock);
2207 __io_req_task_cancel(req, -ECANCELED);
2208 mutex_unlock(&ctx->uring_lock);
2209 percpu_ref_put(&ctx->refs);
2210 }
2211
2212 static void __io_req_task_submit(struct io_kiocb *req)
2213 {
2214 struct io_ring_ctx *ctx = req->ctx;
2215
2216 mutex_lock(&ctx->uring_lock);
2217 if (!ctx->sqo_dead &&
2218 !__io_sq_thread_acquire_mm(ctx) &&
2219 !__io_sq_thread_acquire_files(ctx))
2220 __io_queue_sqe(req, NULL);
2221 else
2222 __io_req_task_cancel(req, -EFAULT);
2223 mutex_unlock(&ctx->uring_lock);
2224
2225 ctx->flags &= ~IORING_SETUP_R_DISABLED;
2226 if (ctx->flags & IORING_SETUP_SQPOLL)
2227 io_sq_thread_drop_mm_files();
2228 }
2229
2230 static void io_req_task_submit(struct callback_head *cb)
2231 {
2232 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2233 struct io_ring_ctx *ctx = req->ctx;
2234
2235 __io_req_task_submit(req);
2236 percpu_ref_put(&ctx->refs);
2237 }
2238
2239 static void io_req_task_queue(struct io_kiocb *req)
2240 {
2241 int ret;
2242
2243 init_task_work(&req->task_work, io_req_task_submit);
2244 percpu_ref_get(&req->ctx->refs);
2245
2246 ret = io_req_task_work_add(req);
2247 if (unlikely(ret))
2248 io_req_task_work_add_fallback(req, io_req_task_cancel);
2249 }
2250
2251 static inline void io_queue_next(struct io_kiocb *req)
2252 {
2253 struct io_kiocb *nxt = io_req_find_next(req);
2254
2255 if (nxt)
2256 io_req_task_queue(nxt);
2257 }
2258
2259 static void io_free_req(struct io_kiocb *req)
2260 {
2261 io_queue_next(req);
2262 __io_free_req(req);
2263 }
2264
2265 struct req_batch {
2266 void *reqs[IO_IOPOLL_BATCH];
2267 int to_free;
2268
2269 struct task_struct *task;
2270 int task_refs;
2271 };
2272
2273 static inline void io_init_req_batch(struct req_batch *rb)
2274 {
2275 rb->to_free = 0;
2276 rb->task_refs = 0;
2277 rb->task = NULL;
2278 }
2279
2280 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2281 struct req_batch *rb)
2282 {
2283 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2284 percpu_ref_put_many(&ctx->refs, rb->to_free);
2285 rb->to_free = 0;
2286 }
2287
2288 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2289 struct req_batch *rb)
2290 {
2291 if (rb->to_free)
2292 __io_req_free_batch_flush(ctx, rb);
2293 if (rb->task) {
2294 struct io_uring_task *tctx = rb->task->io_uring;
2295
2296 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2297 if (atomic_read(&tctx->in_idle))
2298 wake_up(&tctx->wait);
2299 put_task_struct_many(rb->task, rb->task_refs);
2300 rb->task = NULL;
2301 }
2302 }
2303
2304 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2305 {
2306 if (unlikely(io_is_fallback_req(req))) {
2307 io_free_req(req);
2308 return;
2309 }
2310 io_queue_next(req);
2311
2312 if (req->task != rb->task) {
2313 if (rb->task) {
2314 struct io_uring_task *tctx = rb->task->io_uring;
2315
2316 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2317 if (atomic_read(&tctx->in_idle))
2318 wake_up(&tctx->wait);
2319 put_task_struct_many(rb->task, rb->task_refs);
2320 }
2321 rb->task = req->task;
2322 rb->task_refs = 0;
2323 }
2324 rb->task_refs++;
2325
2326 io_dismantle_req(req);
2327 rb->reqs[rb->to_free++] = req;
2328 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2329 __io_req_free_batch_flush(req->ctx, rb);
2330 }
2331
2332 /*
2333 * Drop reference to request, return next in chain (if there is one) if this
2334 * was the last reference to this request.
2335 */
2336 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2337 {
2338 struct io_kiocb *nxt = NULL;
2339
2340 if (refcount_dec_and_test(&req->refs)) {
2341 nxt = io_req_find_next(req);
2342 __io_free_req(req);
2343 }
2344 return nxt;
2345 }
2346
2347 static void io_put_req(struct io_kiocb *req)
2348 {
2349 if (refcount_dec_and_test(&req->refs))
2350 io_free_req(req);
2351 }
2352
2353 static void io_put_req_deferred_cb(struct callback_head *cb)
2354 {
2355 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2356
2357 io_free_req(req);
2358 }
2359
2360 static void io_free_req_deferred(struct io_kiocb *req)
2361 {
2362 int ret;
2363
2364 init_task_work(&req->task_work, io_put_req_deferred_cb);
2365 ret = io_req_task_work_add(req);
2366 if (unlikely(ret))
2367 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2368 }
2369
2370 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2371 {
2372 if (refcount_sub_and_test(refs, &req->refs))
2373 io_free_req_deferred(req);
2374 }
2375
2376 static void io_double_put_req(struct io_kiocb *req)
2377 {
2378 /* drop both submit and complete references */
2379 if (refcount_sub_and_test(2, &req->refs))
2380 io_free_req(req);
2381 }
2382
2383 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2384 {
2385 /* See comment at the top of this file */
2386 smp_rmb();
2387 return __io_cqring_events(ctx);
2388 }
2389
2390 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2391 {
2392 struct io_rings *rings = ctx->rings;
2393
2394 /* make sure SQ entry isn't read before tail */
2395 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2396 }
2397
2398 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2399 {
2400 unsigned int cflags;
2401
2402 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2403 cflags |= IORING_CQE_F_BUFFER;
2404 req->flags &= ~REQ_F_BUFFER_SELECTED;
2405 kfree(kbuf);
2406 return cflags;
2407 }
2408
2409 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2410 {
2411 struct io_buffer *kbuf;
2412
2413 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2414 return io_put_kbuf(req, kbuf);
2415 }
2416
2417 static inline bool io_run_task_work(void)
2418 {
2419 /*
2420 * Not safe to run on exiting task, and the task_work handling will
2421 * not add work to such a task.
2422 */
2423 if (unlikely(current->flags & PF_EXITING))
2424 return false;
2425 if (current->task_works) {
2426 __set_current_state(TASK_RUNNING);
2427 task_work_run();
2428 return true;
2429 }
2430
2431 return false;
2432 }
2433
2434 static void io_iopoll_queue(struct list_head *again)
2435 {
2436 struct io_kiocb *req;
2437
2438 do {
2439 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2440 list_del(&req->inflight_entry);
2441 __io_complete_rw(req, -EAGAIN, 0, NULL);
2442 } while (!list_empty(again));
2443 }
2444
2445 /*
2446 * Find and free completed poll iocbs
2447 */
2448 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2449 struct list_head *done)
2450 {
2451 struct req_batch rb;
2452 struct io_kiocb *req;
2453 LIST_HEAD(again);
2454
2455 /* order with ->result store in io_complete_rw_iopoll() */
2456 smp_rmb();
2457
2458 io_init_req_batch(&rb);
2459 while (!list_empty(done)) {
2460 int cflags = 0;
2461
2462 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2463 if (READ_ONCE(req->result) == -EAGAIN) {
2464 req->result = 0;
2465 req->iopoll_completed = 0;
2466 list_move_tail(&req->inflight_entry, &again);
2467 continue;
2468 }
2469 list_del(&req->inflight_entry);
2470
2471 if (req->flags & REQ_F_BUFFER_SELECTED)
2472 cflags = io_put_rw_kbuf(req);
2473
2474 __io_cqring_fill_event(req, req->result, cflags);
2475 (*nr_events)++;
2476
2477 if (refcount_dec_and_test(&req->refs))
2478 io_req_free_batch(&rb, req);
2479 }
2480
2481 io_commit_cqring(ctx);
2482 io_cqring_ev_posted_iopoll(ctx);
2483 io_req_free_batch_finish(ctx, &rb);
2484
2485 if (!list_empty(&again))
2486 io_iopoll_queue(&again);
2487 }
2488
2489 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2490 long min)
2491 {
2492 struct io_kiocb *req, *tmp;
2493 LIST_HEAD(done);
2494 bool spin;
2495 int ret;
2496
2497 /*
2498 * Only spin for completions if we don't have multiple devices hanging
2499 * off our complete list, and we're under the requested amount.
2500 */
2501 spin = !ctx->poll_multi_file && *nr_events < min;
2502
2503 ret = 0;
2504 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2505 struct kiocb *kiocb = &req->rw.kiocb;
2506
2507 /*
2508 * Move completed and retryable entries to our local lists.
2509 * If we find a request that requires polling, break out
2510 * and complete those lists first, if we have entries there.
2511 */
2512 if (READ_ONCE(req->iopoll_completed)) {
2513 list_move_tail(&req->inflight_entry, &done);
2514 continue;
2515 }
2516 if (!list_empty(&done))
2517 break;
2518
2519 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2520 if (ret < 0)
2521 break;
2522
2523 /* iopoll may have completed current req */
2524 if (READ_ONCE(req->iopoll_completed))
2525 list_move_tail(&req->inflight_entry, &done);
2526
2527 if (ret && spin)
2528 spin = false;
2529 ret = 0;
2530 }
2531
2532 if (!list_empty(&done))
2533 io_iopoll_complete(ctx, nr_events, &done);
2534
2535 return ret;
2536 }
2537
2538 /*
2539 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2540 * non-spinning poll check - we'll still enter the driver poll loop, but only
2541 * as a non-spinning completion check.
2542 */
2543 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2544 long min)
2545 {
2546 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2547 int ret;
2548
2549 ret = io_do_iopoll(ctx, nr_events, min);
2550 if (ret < 0)
2551 return ret;
2552 if (*nr_events >= min)
2553 return 0;
2554 }
2555
2556 return 1;
2557 }
2558
2559 /*
2560 * We can't just wait for polled events to come to us, we have to actively
2561 * find and complete them.
2562 */
2563 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2564 {
2565 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2566 return;
2567
2568 mutex_lock(&ctx->uring_lock);
2569 while (!list_empty(&ctx->iopoll_list)) {
2570 unsigned int nr_events = 0;
2571
2572 io_do_iopoll(ctx, &nr_events, 0);
2573
2574 /* let it sleep and repeat later if can't complete a request */
2575 if (nr_events == 0)
2576 break;
2577 /*
2578 * Ensure we allow local-to-the-cpu processing to take place,
2579 * in this case we need to ensure that we reap all events.
2580 * Also let task_work, etc. to progress by releasing the mutex
2581 */
2582 if (need_resched()) {
2583 mutex_unlock(&ctx->uring_lock);
2584 cond_resched();
2585 mutex_lock(&ctx->uring_lock);
2586 }
2587 }
2588 mutex_unlock(&ctx->uring_lock);
2589 }
2590
2591 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2592 {
2593 unsigned int nr_events = 0;
2594 int iters = 0, ret = 0;
2595
2596 /*
2597 * We disallow the app entering submit/complete with polling, but we
2598 * still need to lock the ring to prevent racing with polled issue
2599 * that got punted to a workqueue.
2600 */
2601 mutex_lock(&ctx->uring_lock);
2602 do {
2603 /*
2604 * Don't enter poll loop if we already have events pending.
2605 * If we do, we can potentially be spinning for commands that
2606 * already triggered a CQE (eg in error).
2607 */
2608 if (test_bit(0, &ctx->cq_check_overflow))
2609 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2610 if (io_cqring_events(ctx))
2611 break;
2612
2613 /*
2614 * If a submit got punted to a workqueue, we can have the
2615 * application entering polling for a command before it gets
2616 * issued. That app will hold the uring_lock for the duration
2617 * of the poll right here, so we need to take a breather every
2618 * now and then to ensure that the issue has a chance to add
2619 * the poll to the issued list. Otherwise we can spin here
2620 * forever, while the workqueue is stuck trying to acquire the
2621 * very same mutex.
2622 */
2623 if (!(++iters & 7)) {
2624 mutex_unlock(&ctx->uring_lock);
2625 io_run_task_work();
2626 mutex_lock(&ctx->uring_lock);
2627 }
2628
2629 ret = io_iopoll_getevents(ctx, &nr_events, min);
2630 if (ret <= 0)
2631 break;
2632 ret = 0;
2633 } while (min && !nr_events && !need_resched());
2634
2635 mutex_unlock(&ctx->uring_lock);
2636 return ret;
2637 }
2638
2639 static void kiocb_end_write(struct io_kiocb *req)
2640 {
2641 /*
2642 * Tell lockdep we inherited freeze protection from submission
2643 * thread.
2644 */
2645 if (req->flags & REQ_F_ISREG) {
2646 struct inode *inode = file_inode(req->file);
2647
2648 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2649 }
2650 file_end_write(req->file);
2651 }
2652
2653 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2654 struct io_comp_state *cs)
2655 {
2656 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2657 int cflags = 0;
2658
2659 if (kiocb->ki_flags & IOCB_WRITE)
2660 kiocb_end_write(req);
2661
2662 if (res != req->result)
2663 req_set_fail_links(req);
2664 if (req->flags & REQ_F_BUFFER_SELECTED)
2665 cflags = io_put_rw_kbuf(req);
2666 __io_req_complete(req, res, cflags, cs);
2667 }
2668
2669 #ifdef CONFIG_BLOCK
2670 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2671 {
2672 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2673 ssize_t ret = -ECANCELED;
2674 struct iov_iter iter;
2675 int rw;
2676
2677 if (error) {
2678 ret = error;
2679 goto end_req;
2680 }
2681
2682 switch (req->opcode) {
2683 case IORING_OP_READV:
2684 case IORING_OP_READ_FIXED:
2685 case IORING_OP_READ:
2686 rw = READ;
2687 break;
2688 case IORING_OP_WRITEV:
2689 case IORING_OP_WRITE_FIXED:
2690 case IORING_OP_WRITE:
2691 rw = WRITE;
2692 break;
2693 default:
2694 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2695 req->opcode);
2696 goto end_req;
2697 }
2698
2699 if (!req->async_data) {
2700 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2701 if (ret < 0)
2702 goto end_req;
2703 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2704 if (!ret)
2705 return true;
2706 kfree(iovec);
2707 } else {
2708 return true;
2709 }
2710 end_req:
2711 req_set_fail_links(req);
2712 return false;
2713 }
2714 #endif
2715
2716 static bool io_rw_reissue(struct io_kiocb *req, long res)
2717 {
2718 #ifdef CONFIG_BLOCK
2719 umode_t mode = file_inode(req->file)->i_mode;
2720 int ret;
2721
2722 if (!S_ISBLK(mode) && !S_ISREG(mode))
2723 return false;
2724 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2725 return false;
2726 /*
2727 * If ref is dying, we might be running poll reap from the exit work.
2728 * Don't attempt to reissue from that path, just let it fail with
2729 * -EAGAIN.
2730 */
2731 if (percpu_ref_is_dying(&req->ctx->refs))
2732 return false;
2733
2734 lockdep_assert_held(&req->ctx->uring_lock);
2735
2736 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2737
2738 if (io_resubmit_prep(req, ret)) {
2739 refcount_inc(&req->refs);
2740 io_queue_async_work(req);
2741 return true;
2742 }
2743
2744 #endif
2745 return false;
2746 }
2747
2748 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2749 struct io_comp_state *cs)
2750 {
2751 if (!io_rw_reissue(req, res))
2752 io_complete_rw_common(&req->rw.kiocb, res, cs);
2753 }
2754
2755 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2756 {
2757 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2758
2759 __io_complete_rw(req, res, res2, NULL);
2760 }
2761
2762 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2763 {
2764 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2765
2766 if (kiocb->ki_flags & IOCB_WRITE)
2767 kiocb_end_write(req);
2768
2769 if (res != -EAGAIN && res != req->result)
2770 req_set_fail_links(req);
2771
2772 WRITE_ONCE(req->result, res);
2773 /* order with io_poll_complete() checking ->result */
2774 smp_wmb();
2775 WRITE_ONCE(req->iopoll_completed, 1);
2776 }
2777
2778 /*
2779 * After the iocb has been issued, it's safe to be found on the poll list.
2780 * Adding the kiocb to the list AFTER submission ensures that we don't
2781 * find it from a io_iopoll_getevents() thread before the issuer is done
2782 * accessing the kiocb cookie.
2783 */
2784 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2785 {
2786 struct io_ring_ctx *ctx = req->ctx;
2787
2788 /*
2789 * Track whether we have multiple files in our lists. This will impact
2790 * how we do polling eventually, not spinning if we're on potentially
2791 * different devices.
2792 */
2793 if (list_empty(&ctx->iopoll_list)) {
2794 ctx->poll_multi_file = false;
2795 } else if (!ctx->poll_multi_file) {
2796 struct io_kiocb *list_req;
2797
2798 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2799 inflight_entry);
2800 if (list_req->file != req->file)
2801 ctx->poll_multi_file = true;
2802 }
2803
2804 /*
2805 * For fast devices, IO may have already completed. If it has, add
2806 * it to the front so we find it first.
2807 */
2808 if (READ_ONCE(req->iopoll_completed))
2809 list_add(&req->inflight_entry, &ctx->iopoll_list);
2810 else
2811 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2812
2813 /*
2814 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2815 * task context or in io worker task context. If current task context is
2816 * sq thread, we don't need to check whether should wake up sq thread.
2817 */
2818 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2819 wq_has_sleeper(&ctx->sq_data->wait))
2820 wake_up(&ctx->sq_data->wait);
2821 }
2822
2823 static inline void __io_state_file_put(struct io_submit_state *state)
2824 {
2825 fput_many(state->file, state->file_refs);
2826 state->file_refs = 0;
2827 }
2828
2829 static inline void io_state_file_put(struct io_submit_state *state)
2830 {
2831 if (state->file_refs)
2832 __io_state_file_put(state);
2833 }
2834
2835 /*
2836 * Get as many references to a file as we have IOs left in this submission,
2837 * assuming most submissions are for one file, or at least that each file
2838 * has more than one submission.
2839 */
2840 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2841 {
2842 if (!state)
2843 return fget(fd);
2844
2845 if (state->file_refs) {
2846 if (state->fd == fd) {
2847 state->file_refs--;
2848 return state->file;
2849 }
2850 __io_state_file_put(state);
2851 }
2852 state->file = fget_many(fd, state->ios_left);
2853 if (unlikely(!state->file))
2854 return NULL;
2855
2856 state->fd = fd;
2857 state->file_refs = state->ios_left - 1;
2858 return state->file;
2859 }
2860
2861 static bool io_bdev_nowait(struct block_device *bdev)
2862 {
2863 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2864 }
2865
2866 /*
2867 * If we tracked the file through the SCM inflight mechanism, we could support
2868 * any file. For now, just ensure that anything potentially problematic is done
2869 * inline.
2870 */
2871 static bool io_file_supports_async(struct file *file, int rw)
2872 {
2873 umode_t mode = file_inode(file)->i_mode;
2874
2875 if (S_ISBLK(mode)) {
2876 if (IS_ENABLED(CONFIG_BLOCK) &&
2877 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2878 return true;
2879 return false;
2880 }
2881 if (S_ISCHR(mode) || S_ISSOCK(mode))
2882 return true;
2883 if (S_ISREG(mode)) {
2884 if (IS_ENABLED(CONFIG_BLOCK) &&
2885 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2886 file->f_op != &io_uring_fops)
2887 return true;
2888 return false;
2889 }
2890
2891 /* any ->read/write should understand O_NONBLOCK */
2892 if (file->f_flags & O_NONBLOCK)
2893 return true;
2894
2895 if (!(file->f_mode & FMODE_NOWAIT))
2896 return false;
2897
2898 if (rw == READ)
2899 return file->f_op->read_iter != NULL;
2900
2901 return file->f_op->write_iter != NULL;
2902 }
2903
2904 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2905 {
2906 struct io_ring_ctx *ctx = req->ctx;
2907 struct kiocb *kiocb = &req->rw.kiocb;
2908 unsigned ioprio;
2909 int ret;
2910
2911 if (S_ISREG(file_inode(req->file)->i_mode))
2912 req->flags |= REQ_F_ISREG;
2913
2914 kiocb->ki_pos = READ_ONCE(sqe->off);
2915 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2916 req->flags |= REQ_F_CUR_POS;
2917 kiocb->ki_pos = req->file->f_pos;
2918 }
2919 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2920 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2921 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2922 if (unlikely(ret))
2923 return ret;
2924
2925 ioprio = READ_ONCE(sqe->ioprio);
2926 if (ioprio) {
2927 ret = ioprio_check_cap(ioprio);
2928 if (ret)
2929 return ret;
2930
2931 kiocb->ki_ioprio = ioprio;
2932 } else
2933 kiocb->ki_ioprio = get_current_ioprio();
2934
2935 /* don't allow async punt if RWF_NOWAIT was requested */
2936 if (kiocb->ki_flags & IOCB_NOWAIT)
2937 req->flags |= REQ_F_NOWAIT;
2938
2939 if (ctx->flags & IORING_SETUP_IOPOLL) {
2940 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2941 !kiocb->ki_filp->f_op->iopoll)
2942 return -EOPNOTSUPP;
2943
2944 kiocb->ki_flags |= IOCB_HIPRI;
2945 kiocb->ki_complete = io_complete_rw_iopoll;
2946 req->iopoll_completed = 0;
2947 } else {
2948 if (kiocb->ki_flags & IOCB_HIPRI)
2949 return -EINVAL;
2950 kiocb->ki_complete = io_complete_rw;
2951 }
2952
2953 req->rw.addr = READ_ONCE(sqe->addr);
2954 req->rw.len = READ_ONCE(sqe->len);
2955 req->buf_index = READ_ONCE(sqe->buf_index);
2956 return 0;
2957 }
2958
2959 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2960 {
2961 switch (ret) {
2962 case -EIOCBQUEUED:
2963 break;
2964 case -ERESTARTSYS:
2965 case -ERESTARTNOINTR:
2966 case -ERESTARTNOHAND:
2967 case -ERESTART_RESTARTBLOCK:
2968 /*
2969 * We can't just restart the syscall, since previously
2970 * submitted sqes may already be in progress. Just fail this
2971 * IO with EINTR.
2972 */
2973 ret = -EINTR;
2974 fallthrough;
2975 default:
2976 kiocb->ki_complete(kiocb, ret, 0);
2977 }
2978 }
2979
2980 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2981 struct io_comp_state *cs)
2982 {
2983 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2984 struct io_async_rw *io = req->async_data;
2985
2986 /* add previously done IO, if any */
2987 if (io && io->bytes_done > 0) {
2988 if (ret < 0)
2989 ret = io->bytes_done;
2990 else
2991 ret += io->bytes_done;
2992 }
2993
2994 if (req->flags & REQ_F_CUR_POS)
2995 req->file->f_pos = kiocb->ki_pos;
2996 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2997 __io_complete_rw(req, ret, 0, cs);
2998 else
2999 io_rw_done(kiocb, ret);
3000 }
3001
3002 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
3003 struct iov_iter *iter)
3004 {
3005 struct io_ring_ctx *ctx = req->ctx;
3006 size_t len = req->rw.len;
3007 struct io_mapped_ubuf *imu;
3008 u16 index, buf_index = req->buf_index;
3009 size_t offset;
3010 u64 buf_addr;
3011
3012 if (unlikely(buf_index >= ctx->nr_user_bufs))
3013 return -EFAULT;
3014 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3015 imu = &ctx->user_bufs[index];
3016 buf_addr = req->rw.addr;
3017
3018 /* overflow */
3019 if (buf_addr + len < buf_addr)
3020 return -EFAULT;
3021 /* not inside the mapped region */
3022 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3023 return -EFAULT;
3024
3025 /*
3026 * May not be a start of buffer, set size appropriately
3027 * and advance us to the beginning.
3028 */
3029 offset = buf_addr - imu->ubuf;
3030 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3031
3032 if (offset) {
3033 /*
3034 * Don't use iov_iter_advance() here, as it's really slow for
3035 * using the latter parts of a big fixed buffer - it iterates
3036 * over each segment manually. We can cheat a bit here, because
3037 * we know that:
3038 *
3039 * 1) it's a BVEC iter, we set it up
3040 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3041 * first and last bvec
3042 *
3043 * So just find our index, and adjust the iterator afterwards.
3044 * If the offset is within the first bvec (or the whole first
3045 * bvec, just use iov_iter_advance(). This makes it easier
3046 * since we can just skip the first segment, which may not
3047 * be PAGE_SIZE aligned.
3048 */
3049 const struct bio_vec *bvec = imu->bvec;
3050
3051 if (offset <= bvec->bv_len) {
3052 iov_iter_advance(iter, offset);
3053 } else {
3054 unsigned long seg_skip;
3055
3056 /* skip first vec */
3057 offset -= bvec->bv_len;
3058 seg_skip = 1 + (offset >> PAGE_SHIFT);
3059
3060 iter->bvec = bvec + seg_skip;
3061 iter->nr_segs -= seg_skip;
3062 iter->count -= bvec->bv_len + offset;
3063 iter->iov_offset = offset & ~PAGE_MASK;
3064 }
3065 }
3066
3067 return len;
3068 }
3069
3070 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3071 {
3072 if (needs_lock)
3073 mutex_unlock(&ctx->uring_lock);
3074 }
3075
3076 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3077 {
3078 /*
3079 * "Normal" inline submissions always hold the uring_lock, since we
3080 * grab it from the system call. Same is true for the SQPOLL offload.
3081 * The only exception is when we've detached the request and issue it
3082 * from an async worker thread, grab the lock for that case.
3083 */
3084 if (needs_lock)
3085 mutex_lock(&ctx->uring_lock);
3086 }
3087
3088 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3089 int bgid, struct io_buffer *kbuf,
3090 bool needs_lock)
3091 {
3092 struct io_buffer *head;
3093
3094 if (req->flags & REQ_F_BUFFER_SELECTED)
3095 return kbuf;
3096
3097 io_ring_submit_lock(req->ctx, needs_lock);
3098
3099 lockdep_assert_held(&req->ctx->uring_lock);
3100
3101 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3102 if (head) {
3103 if (!list_empty(&head->list)) {
3104 kbuf = list_last_entry(&head->list, struct io_buffer,
3105 list);
3106 list_del(&kbuf->list);
3107 } else {
3108 kbuf = head;
3109 idr_remove(&req->ctx->io_buffer_idr, bgid);
3110 }
3111 if (*len > kbuf->len)
3112 *len = kbuf->len;
3113 } else {
3114 kbuf = ERR_PTR(-ENOBUFS);
3115 }
3116
3117 io_ring_submit_unlock(req->ctx, needs_lock);
3118
3119 return kbuf;
3120 }
3121
3122 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3123 bool needs_lock)
3124 {
3125 struct io_buffer *kbuf;
3126 u16 bgid;
3127
3128 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3129 bgid = req->buf_index;
3130 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3131 if (IS_ERR(kbuf))
3132 return kbuf;
3133 req->rw.addr = (u64) (unsigned long) kbuf;
3134 req->flags |= REQ_F_BUFFER_SELECTED;
3135 return u64_to_user_ptr(kbuf->addr);
3136 }
3137
3138 #ifdef CONFIG_COMPAT
3139 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3140 bool needs_lock)
3141 {
3142 struct compat_iovec __user *uiov;
3143 compat_ssize_t clen;
3144 void __user *buf;
3145 ssize_t len;
3146
3147 uiov = u64_to_user_ptr(req->rw.addr);
3148 if (!access_ok(uiov, sizeof(*uiov)))
3149 return -EFAULT;
3150 if (__get_user(clen, &uiov->iov_len))
3151 return -EFAULT;
3152 if (clen < 0)
3153 return -EINVAL;
3154
3155 len = clen;
3156 buf = io_rw_buffer_select(req, &len, needs_lock);
3157 if (IS_ERR(buf))
3158 return PTR_ERR(buf);
3159 iov[0].iov_base = buf;
3160 iov[0].iov_len = (compat_size_t) len;
3161 return 0;
3162 }
3163 #endif
3164
3165 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3166 bool needs_lock)
3167 {
3168 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3169 void __user *buf;
3170 ssize_t len;
3171
3172 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3173 return -EFAULT;
3174
3175 len = iov[0].iov_len;
3176 if (len < 0)
3177 return -EINVAL;
3178 buf = io_rw_buffer_select(req, &len, needs_lock);
3179 if (IS_ERR(buf))
3180 return PTR_ERR(buf);
3181 iov[0].iov_base = buf;
3182 iov[0].iov_len = len;
3183 return 0;
3184 }
3185
3186 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3187 bool needs_lock)
3188 {
3189 if (req->flags & REQ_F_BUFFER_SELECTED) {
3190 struct io_buffer *kbuf;
3191
3192 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3193 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3194 iov[0].iov_len = kbuf->len;
3195 return 0;
3196 }
3197 if (req->rw.len != 1)
3198 return -EINVAL;
3199
3200 #ifdef CONFIG_COMPAT
3201 if (req->ctx->compat)
3202 return io_compat_import(req, iov, needs_lock);
3203 #endif
3204
3205 return __io_iov_buffer_select(req, iov, needs_lock);
3206 }
3207
3208 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3209 struct iovec **iovec, struct iov_iter *iter,
3210 bool needs_lock)
3211 {
3212 void __user *buf = u64_to_user_ptr(req->rw.addr);
3213 size_t sqe_len = req->rw.len;
3214 ssize_t ret;
3215 u8 opcode;
3216
3217 opcode = req->opcode;
3218 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3219 *iovec = NULL;
3220 return io_import_fixed(req, rw, iter);
3221 }
3222
3223 /* buffer index only valid with fixed read/write, or buffer select */
3224 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3225 return -EINVAL;
3226
3227 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3228 if (req->flags & REQ_F_BUFFER_SELECT) {
3229 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3230 if (IS_ERR(buf))
3231 return PTR_ERR(buf);
3232 req->rw.len = sqe_len;
3233 }
3234
3235 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3236 *iovec = NULL;
3237 return ret;
3238 }
3239
3240 if (req->flags & REQ_F_BUFFER_SELECT) {
3241 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3242 if (!ret) {
3243 ret = (*iovec)->iov_len;
3244 iov_iter_init(iter, rw, *iovec, 1, ret);
3245 }
3246 *iovec = NULL;
3247 return ret;
3248 }
3249
3250 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3251 req->ctx->compat);
3252 }
3253
3254 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3255 {
3256 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3257 }
3258
3259 /*
3260 * For files that don't have ->read_iter() and ->write_iter(), handle them
3261 * by looping over ->read() or ->write() manually.
3262 */
3263 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3264 {
3265 struct kiocb *kiocb = &req->rw.kiocb;
3266 struct file *file = req->file;
3267 ssize_t ret = 0;
3268
3269 /*
3270 * Don't support polled IO through this interface, and we can't
3271 * support non-blocking either. For the latter, this just causes
3272 * the kiocb to be handled from an async context.
3273 */
3274 if (kiocb->ki_flags & IOCB_HIPRI)
3275 return -EOPNOTSUPP;
3276 if (kiocb->ki_flags & IOCB_NOWAIT)
3277 return -EAGAIN;
3278
3279 while (iov_iter_count(iter)) {
3280 struct iovec iovec;
3281 ssize_t nr;
3282
3283 if (!iov_iter_is_bvec(iter)) {
3284 iovec = iov_iter_iovec(iter);
3285 } else {
3286 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3287 iovec.iov_len = req->rw.len;
3288 }
3289
3290 if (rw == READ) {
3291 nr = file->f_op->read(file, iovec.iov_base,
3292 iovec.iov_len, io_kiocb_ppos(kiocb));
3293 } else {
3294 nr = file->f_op->write(file, iovec.iov_base,
3295 iovec.iov_len, io_kiocb_ppos(kiocb));
3296 }
3297
3298 if (nr < 0) {
3299 if (!ret)
3300 ret = nr;
3301 break;
3302 }
3303 ret += nr;
3304 if (nr != iovec.iov_len)
3305 break;
3306 req->rw.len -= nr;
3307 req->rw.addr += nr;
3308 iov_iter_advance(iter, nr);
3309 }
3310
3311 return ret;
3312 }
3313
3314 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3315 const struct iovec *fast_iov, struct iov_iter *iter)
3316 {
3317 struct io_async_rw *rw = req->async_data;
3318
3319 memcpy(&rw->iter, iter, sizeof(*iter));
3320 rw->free_iovec = iovec;
3321 rw->bytes_done = 0;
3322 /* can only be fixed buffers, no need to do anything */
3323 if (iov_iter_is_bvec(iter))
3324 return;
3325 if (!iovec) {
3326 unsigned iov_off = 0;
3327
3328 rw->iter.iov = rw->fast_iov;
3329 if (iter->iov != fast_iov) {
3330 iov_off = iter->iov - fast_iov;
3331 rw->iter.iov += iov_off;
3332 }
3333 if (rw->fast_iov != fast_iov)
3334 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3335 sizeof(struct iovec) * iter->nr_segs);
3336 } else {
3337 req->flags |= REQ_F_NEED_CLEANUP;
3338 }
3339 }
3340
3341 static inline int __io_alloc_async_data(struct io_kiocb *req)
3342 {
3343 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3344 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3345 return req->async_data == NULL;
3346 }
3347
3348 static int io_alloc_async_data(struct io_kiocb *req)
3349 {
3350 if (!io_op_defs[req->opcode].needs_async_data)
3351 return 0;
3352
3353 return __io_alloc_async_data(req);
3354 }
3355
3356 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3357 const struct iovec *fast_iov,
3358 struct iov_iter *iter, bool force)
3359 {
3360 if (!force && !io_op_defs[req->opcode].needs_async_data)
3361 return 0;
3362 if (!req->async_data) {
3363 if (__io_alloc_async_data(req))
3364 return -ENOMEM;
3365
3366 io_req_map_rw(req, iovec, fast_iov, iter);
3367 }
3368 return 0;
3369 }
3370
3371 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3372 {
3373 struct io_async_rw *iorw = req->async_data;
3374 struct iovec *iov = iorw->fast_iov;
3375 ssize_t ret;
3376
3377 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3378 if (unlikely(ret < 0))
3379 return ret;
3380
3381 iorw->bytes_done = 0;
3382 iorw->free_iovec = iov;
3383 if (iov)
3384 req->flags |= REQ_F_NEED_CLEANUP;
3385 return 0;
3386 }
3387
3388 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3389 {
3390 ssize_t ret;
3391
3392 ret = io_prep_rw(req, sqe);
3393 if (ret)
3394 return ret;
3395
3396 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3397 return -EBADF;
3398
3399 /* either don't need iovec imported or already have it */
3400 if (!req->async_data)
3401 return 0;
3402 return io_rw_prep_async(req, READ);
3403 }
3404
3405 /*
3406 * This is our waitqueue callback handler, registered through lock_page_async()
3407 * when we initially tried to do the IO with the iocb armed our waitqueue.
3408 * This gets called when the page is unlocked, and we generally expect that to
3409 * happen when the page IO is completed and the page is now uptodate. This will
3410 * queue a task_work based retry of the operation, attempting to copy the data
3411 * again. If the latter fails because the page was NOT uptodate, then we will
3412 * do a thread based blocking retry of the operation. That's the unexpected
3413 * slow path.
3414 */
3415 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3416 int sync, void *arg)
3417 {
3418 struct wait_page_queue *wpq;
3419 struct io_kiocb *req = wait->private;
3420 struct wait_page_key *key = arg;
3421 int ret;
3422
3423 wpq = container_of(wait, struct wait_page_queue, wait);
3424
3425 if (!wake_page_match(wpq, key))
3426 return 0;
3427
3428 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3429 list_del_init(&wait->entry);
3430
3431 init_task_work(&req->task_work, io_req_task_submit);
3432 percpu_ref_get(&req->ctx->refs);
3433
3434 /* submit ref gets dropped, acquire a new one */
3435 refcount_inc(&req->refs);
3436 ret = io_req_task_work_add(req);
3437 if (unlikely(ret))
3438 io_req_task_work_add_fallback(req, io_req_task_cancel);
3439 return 1;
3440 }
3441
3442 /*
3443 * This controls whether a given IO request should be armed for async page
3444 * based retry. If we return false here, the request is handed to the async
3445 * worker threads for retry. If we're doing buffered reads on a regular file,
3446 * we prepare a private wait_page_queue entry and retry the operation. This
3447 * will either succeed because the page is now uptodate and unlocked, or it
3448 * will register a callback when the page is unlocked at IO completion. Through
3449 * that callback, io_uring uses task_work to setup a retry of the operation.
3450 * That retry will attempt the buffered read again. The retry will generally
3451 * succeed, or in rare cases where it fails, we then fall back to using the
3452 * async worker threads for a blocking retry.
3453 */
3454 static bool io_rw_should_retry(struct io_kiocb *req)
3455 {
3456 struct io_async_rw *rw = req->async_data;
3457 struct wait_page_queue *wait = &rw->wpq;
3458 struct kiocb *kiocb = &req->rw.kiocb;
3459
3460 /* never retry for NOWAIT, we just complete with -EAGAIN */
3461 if (req->flags & REQ_F_NOWAIT)
3462 return false;
3463
3464 /* Only for buffered IO */
3465 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3466 return false;
3467
3468 /*
3469 * just use poll if we can, and don't attempt if the fs doesn't
3470 * support callback based unlocks
3471 */
3472 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3473 return false;
3474
3475 wait->wait.func = io_async_buf_func;
3476 wait->wait.private = req;
3477 wait->wait.flags = 0;
3478 INIT_LIST_HEAD(&wait->wait.entry);
3479 kiocb->ki_flags |= IOCB_WAITQ;
3480 kiocb->ki_flags &= ~IOCB_NOWAIT;
3481 kiocb->ki_waitq = wait;
3482 return true;
3483 }
3484
3485 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3486 {
3487 if (req->file->f_op->read_iter)
3488 return call_read_iter(req->file, &req->rw.kiocb, iter);
3489 else if (req->file->f_op->read)
3490 return loop_rw_iter(READ, req, iter);
3491 else
3492 return -EINVAL;
3493 }
3494
3495 static int io_read(struct io_kiocb *req, bool force_nonblock,
3496 struct io_comp_state *cs)
3497 {
3498 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3499 struct kiocb *kiocb = &req->rw.kiocb;
3500 struct iov_iter __iter, *iter = &__iter;
3501 struct io_async_rw *rw = req->async_data;
3502 ssize_t io_size, ret, ret2;
3503 bool no_async;
3504
3505 if (rw) {
3506 iter = &rw->iter;
3507 iovec = NULL;
3508 } else {
3509 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3510 if (ret < 0)
3511 return ret;
3512 }
3513 io_size = iov_iter_count(iter);
3514 req->result = io_size;
3515 ret = 0;
3516
3517 /* Ensure we clear previously set non-block flag */
3518 if (!force_nonblock)
3519 kiocb->ki_flags &= ~IOCB_NOWAIT;
3520 else
3521 kiocb->ki_flags |= IOCB_NOWAIT;
3522
3523 /* If the file doesn't support async, just async punt */
3524 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3525 if (no_async)
3526 goto copy_iov;
3527
3528 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3529 if (unlikely(ret))
3530 goto out_free;
3531
3532 ret = io_iter_do_read(req, iter);
3533
3534 if (ret == -EIOCBQUEUED) {
3535 ret = 0;
3536 goto out_free;
3537 } else if (ret == -EAGAIN) {
3538 /* IOPOLL retry should happen for io-wq threads */
3539 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3540 goto done;
3541 /* no retry on NONBLOCK marked file */
3542 if (req->file->f_flags & O_NONBLOCK)
3543 goto done;
3544 /* some cases will consume bytes even on error returns */
3545 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3546 ret = 0;
3547 goto copy_iov;
3548 } else if (ret <= 0) {
3549 /* make sure -ERESTARTSYS -> -EINTR is done */
3550 goto done;
3551 }
3552
3553 /* read it all, or we did blocking attempt. no retry. */
3554 if (!iov_iter_count(iter) || !force_nonblock ||
3555 (req->file->f_flags & O_NONBLOCK) || !(req->flags & REQ_F_ISREG))
3556 goto done;
3557
3558 io_size -= ret;
3559 copy_iov:
3560 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3561 if (ret2) {
3562 ret = ret2;
3563 goto out_free;
3564 }
3565 if (no_async)
3566 return -EAGAIN;
3567 rw = req->async_data;
3568 /* it's copied and will be cleaned with ->io */
3569 iovec = NULL;
3570 /* now use our persistent iterator, if we aren't already */
3571 iter = &rw->iter;
3572 retry:
3573 rw->bytes_done += ret;
3574 /* if we can retry, do so with the callbacks armed */
3575 if (!io_rw_should_retry(req)) {
3576 kiocb->ki_flags &= ~IOCB_WAITQ;
3577 return -EAGAIN;
3578 }
3579
3580 /*
3581 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3582 * get -EIOCBQUEUED, then we'll get a notification when the desired
3583 * page gets unlocked. We can also get a partial read here, and if we
3584 * do, then just retry at the new offset.
3585 */
3586 ret = io_iter_do_read(req, iter);
3587 if (ret == -EIOCBQUEUED) {
3588 ret = 0;
3589 goto out_free;
3590 } else if (ret > 0 && ret < io_size) {
3591 /* we got some bytes, but not all. retry. */
3592 kiocb->ki_flags &= ~IOCB_WAITQ;
3593 goto retry;
3594 }
3595 done:
3596 kiocb_done(kiocb, ret, cs);
3597 ret = 0;
3598 out_free:
3599 /* it's reportedly faster than delegating the null check to kfree() */
3600 if (iovec)
3601 kfree(iovec);
3602 return ret;
3603 }
3604
3605 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3606 {
3607 ssize_t ret;
3608
3609 ret = io_prep_rw(req, sqe);
3610 if (ret)
3611 return ret;
3612
3613 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3614 return -EBADF;
3615
3616 /* either don't need iovec imported or already have it */
3617 if (!req->async_data)
3618 return 0;
3619 return io_rw_prep_async(req, WRITE);
3620 }
3621
3622 static int io_write(struct io_kiocb *req, bool force_nonblock,
3623 struct io_comp_state *cs)
3624 {
3625 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3626 struct kiocb *kiocb = &req->rw.kiocb;
3627 struct iov_iter __iter, *iter = &__iter;
3628 struct io_async_rw *rw = req->async_data;
3629 ssize_t ret, ret2, io_size;
3630
3631 if (rw) {
3632 iter = &rw->iter;
3633 iovec = NULL;
3634 } else {
3635 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3636 if (ret < 0)
3637 return ret;
3638 }
3639 io_size = iov_iter_count(iter);
3640 req->result = io_size;
3641
3642 /* Ensure we clear previously set non-block flag */
3643 if (!force_nonblock)
3644 kiocb->ki_flags &= ~IOCB_NOWAIT;
3645 else
3646 kiocb->ki_flags |= IOCB_NOWAIT;
3647
3648 /* If the file doesn't support async, just async punt */
3649 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3650 goto copy_iov;
3651
3652 /* file path doesn't support NOWAIT for non-direct_IO */
3653 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3654 (req->flags & REQ_F_ISREG))
3655 goto copy_iov;
3656
3657 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3658 if (unlikely(ret))
3659 goto out_free;
3660
3661 /*
3662 * Open-code file_start_write here to grab freeze protection,
3663 * which will be released by another thread in
3664 * io_complete_rw(). Fool lockdep by telling it the lock got
3665 * released so that it doesn't complain about the held lock when
3666 * we return to userspace.
3667 */
3668 if (req->flags & REQ_F_ISREG) {
3669 sb_start_write(file_inode(req->file)->i_sb);
3670 __sb_writers_release(file_inode(req->file)->i_sb,
3671 SB_FREEZE_WRITE);
3672 }
3673 kiocb->ki_flags |= IOCB_WRITE;
3674
3675 if (req->file->f_op->write_iter)
3676 ret2 = call_write_iter(req->file, kiocb, iter);
3677 else if (req->file->f_op->write)
3678 ret2 = loop_rw_iter(WRITE, req, iter);
3679 else
3680 ret2 = -EINVAL;
3681
3682 /*
3683 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3684 * retry them without IOCB_NOWAIT.
3685 */
3686 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3687 ret2 = -EAGAIN;
3688 /* no retry on NONBLOCK marked file */
3689 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3690 goto done;
3691 if (!force_nonblock || ret2 != -EAGAIN) {
3692 /* IOPOLL retry should happen for io-wq threads */
3693 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3694 goto copy_iov;
3695 done:
3696 kiocb_done(kiocb, ret2, cs);
3697 } else {
3698 copy_iov:
3699 /* some cases will consume bytes even on error returns */
3700 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3701 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3702 if (!ret)
3703 return -EAGAIN;
3704 }
3705 out_free:
3706 /* it's reportedly faster than delegating the null check to kfree() */
3707 if (iovec)
3708 kfree(iovec);
3709 return ret;
3710 }
3711
3712 static int io_renameat_prep(struct io_kiocb *req,
3713 const struct io_uring_sqe *sqe)
3714 {
3715 struct io_rename *ren = &req->rename;
3716 const char __user *oldf, *newf;
3717
3718 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3719 return -EBADF;
3720
3721 ren->old_dfd = READ_ONCE(sqe->fd);
3722 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3723 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3724 ren->new_dfd = READ_ONCE(sqe->len);
3725 ren->flags = READ_ONCE(sqe->rename_flags);
3726
3727 ren->oldpath = getname(oldf);
3728 if (IS_ERR(ren->oldpath))
3729 return PTR_ERR(ren->oldpath);
3730
3731 ren->newpath = getname(newf);
3732 if (IS_ERR(ren->newpath)) {
3733 putname(ren->oldpath);
3734 return PTR_ERR(ren->newpath);
3735 }
3736
3737 req->flags |= REQ_F_NEED_CLEANUP;
3738 return 0;
3739 }
3740
3741 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3742 {
3743 struct io_rename *ren = &req->rename;
3744 int ret;
3745
3746 if (force_nonblock)
3747 return -EAGAIN;
3748
3749 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3750 ren->newpath, ren->flags);
3751
3752 req->flags &= ~REQ_F_NEED_CLEANUP;
3753 if (ret < 0)
3754 req_set_fail_links(req);
3755 io_req_complete(req, ret);
3756 return 0;
3757 }
3758
3759 static int io_unlinkat_prep(struct io_kiocb *req,
3760 const struct io_uring_sqe *sqe)
3761 {
3762 struct io_unlink *un = &req->unlink;
3763 const char __user *fname;
3764
3765 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3766 return -EBADF;
3767
3768 un->dfd = READ_ONCE(sqe->fd);
3769
3770 un->flags = READ_ONCE(sqe->unlink_flags);
3771 if (un->flags & ~AT_REMOVEDIR)
3772 return -EINVAL;
3773
3774 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3775 un->filename = getname(fname);
3776 if (IS_ERR(un->filename))
3777 return PTR_ERR(un->filename);
3778
3779 req->flags |= REQ_F_NEED_CLEANUP;
3780 return 0;
3781 }
3782
3783 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3784 {
3785 struct io_unlink *un = &req->unlink;
3786 int ret;
3787
3788 if (force_nonblock)
3789 return -EAGAIN;
3790
3791 if (un->flags & AT_REMOVEDIR)
3792 ret = do_rmdir(un->dfd, un->filename);
3793 else
3794 ret = do_unlinkat(un->dfd, un->filename);
3795
3796 req->flags &= ~REQ_F_NEED_CLEANUP;
3797 if (ret < 0)
3798 req_set_fail_links(req);
3799 io_req_complete(req, ret);
3800 return 0;
3801 }
3802
3803 static int io_shutdown_prep(struct io_kiocb *req,
3804 const struct io_uring_sqe *sqe)
3805 {
3806 #if defined(CONFIG_NET)
3807 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3808 return -EINVAL;
3809 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3810 sqe->buf_index)
3811 return -EINVAL;
3812
3813 req->shutdown.how = READ_ONCE(sqe->len);
3814 return 0;
3815 #else
3816 return -EOPNOTSUPP;
3817 #endif
3818 }
3819
3820 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3821 {
3822 #if defined(CONFIG_NET)
3823 struct socket *sock;
3824 int ret;
3825
3826 if (force_nonblock)
3827 return -EAGAIN;
3828
3829 sock = sock_from_file(req->file);
3830 if (unlikely(!sock))
3831 return -ENOTSOCK;
3832
3833 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3834 if (ret < 0)
3835 req_set_fail_links(req);
3836 io_req_complete(req, ret);
3837 return 0;
3838 #else
3839 return -EOPNOTSUPP;
3840 #endif
3841 }
3842
3843 static int __io_splice_prep(struct io_kiocb *req,
3844 const struct io_uring_sqe *sqe)
3845 {
3846 struct io_splice* sp = &req->splice;
3847 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3848
3849 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3850 return -EINVAL;
3851
3852 sp->file_in = NULL;
3853 sp->len = READ_ONCE(sqe->len);
3854 sp->flags = READ_ONCE(sqe->splice_flags);
3855
3856 if (unlikely(sp->flags & ~valid_flags))
3857 return -EINVAL;
3858
3859 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3860 (sp->flags & SPLICE_F_FD_IN_FIXED));
3861 if (!sp->file_in)
3862 return -EBADF;
3863 req->flags |= REQ_F_NEED_CLEANUP;
3864
3865 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3866 /*
3867 * Splice operation will be punted aync, and here need to
3868 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3869 */
3870 io_req_init_async(req);
3871 req->work.flags |= IO_WQ_WORK_UNBOUND;
3872 }
3873
3874 return 0;
3875 }
3876
3877 static int io_tee_prep(struct io_kiocb *req,
3878 const struct io_uring_sqe *sqe)
3879 {
3880 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3881 return -EINVAL;
3882 return __io_splice_prep(req, sqe);
3883 }
3884
3885 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3886 {
3887 struct io_splice *sp = &req->splice;
3888 struct file *in = sp->file_in;
3889 struct file *out = sp->file_out;
3890 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3891 long ret = 0;
3892
3893 if (force_nonblock)
3894 return -EAGAIN;
3895 if (sp->len)
3896 ret = do_tee(in, out, sp->len, flags);
3897
3898 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3899 req->flags &= ~REQ_F_NEED_CLEANUP;
3900
3901 if (ret != sp->len)
3902 req_set_fail_links(req);
3903 io_req_complete(req, ret);
3904 return 0;
3905 }
3906
3907 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3908 {
3909 struct io_splice* sp = &req->splice;
3910
3911 sp->off_in = READ_ONCE(sqe->splice_off_in);
3912 sp->off_out = READ_ONCE(sqe->off);
3913 return __io_splice_prep(req, sqe);
3914 }
3915
3916 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3917 {
3918 struct io_splice *sp = &req->splice;
3919 struct file *in = sp->file_in;
3920 struct file *out = sp->file_out;
3921 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3922 loff_t *poff_in, *poff_out;
3923 long ret = 0;
3924
3925 if (force_nonblock)
3926 return -EAGAIN;
3927
3928 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3929 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3930
3931 if (sp->len)
3932 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3933
3934 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3935 req->flags &= ~REQ_F_NEED_CLEANUP;
3936
3937 if (ret != sp->len)
3938 req_set_fail_links(req);
3939 io_req_complete(req, ret);
3940 return 0;
3941 }
3942
3943 /*
3944 * IORING_OP_NOP just posts a completion event, nothing else.
3945 */
3946 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3947 {
3948 struct io_ring_ctx *ctx = req->ctx;
3949
3950 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3951 return -EINVAL;
3952
3953 __io_req_complete(req, 0, 0, cs);
3954 return 0;
3955 }
3956
3957 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3958 {
3959 struct io_ring_ctx *ctx = req->ctx;
3960
3961 if (!req->file)
3962 return -EBADF;
3963
3964 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3965 return -EINVAL;
3966 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3967 return -EINVAL;
3968
3969 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3970 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3971 return -EINVAL;
3972
3973 req->sync.off = READ_ONCE(sqe->off);
3974 req->sync.len = READ_ONCE(sqe->len);
3975 return 0;
3976 }
3977
3978 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3979 {
3980 loff_t end = req->sync.off + req->sync.len;
3981 int ret;
3982
3983 /* fsync always requires a blocking context */
3984 if (force_nonblock)
3985 return -EAGAIN;
3986
3987 ret = vfs_fsync_range(req->file, req->sync.off,
3988 end > 0 ? end : LLONG_MAX,
3989 req->sync.flags & IORING_FSYNC_DATASYNC);
3990 if (ret < 0)
3991 req_set_fail_links(req);
3992 io_req_complete(req, ret);
3993 return 0;
3994 }
3995
3996 static int io_fallocate_prep(struct io_kiocb *req,
3997 const struct io_uring_sqe *sqe)
3998 {
3999 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
4000 return -EINVAL;
4001 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4002 return -EINVAL;
4003
4004 req->sync.off = READ_ONCE(sqe->off);
4005 req->sync.len = READ_ONCE(sqe->addr);
4006 req->sync.mode = READ_ONCE(sqe->len);
4007 return 0;
4008 }
4009
4010 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
4011 {
4012 int ret;
4013
4014 /* fallocate always requiring blocking context */
4015 if (force_nonblock)
4016 return -EAGAIN;
4017 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4018 req->sync.len);
4019 if (ret < 0)
4020 req_set_fail_links(req);
4021 io_req_complete(req, ret);
4022 return 0;
4023 }
4024
4025 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4026 {
4027 const char __user *fname;
4028 int ret;
4029
4030 if (unlikely(sqe->ioprio || sqe->buf_index))
4031 return -EINVAL;
4032 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4033 return -EBADF;
4034
4035 /* open.how should be already initialised */
4036 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4037 req->open.how.flags |= O_LARGEFILE;
4038
4039 req->open.dfd = READ_ONCE(sqe->fd);
4040 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4041 req->open.filename = getname(fname);
4042 if (IS_ERR(req->open.filename)) {
4043 ret = PTR_ERR(req->open.filename);
4044 req->open.filename = NULL;
4045 return ret;
4046 }
4047 req->open.nofile = rlimit(RLIMIT_NOFILE);
4048 req->open.ignore_nonblock = false;
4049 req->flags |= REQ_F_NEED_CLEANUP;
4050 return 0;
4051 }
4052
4053 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4054 {
4055 u64 flags, mode;
4056
4057 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4058 return -EINVAL;
4059 mode = READ_ONCE(sqe->len);
4060 flags = READ_ONCE(sqe->open_flags);
4061 req->open.how = build_open_how(flags, mode);
4062 return __io_openat_prep(req, sqe);
4063 }
4064
4065 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4066 {
4067 struct open_how __user *how;
4068 size_t len;
4069 int ret;
4070
4071 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4072 return -EINVAL;
4073 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4074 len = READ_ONCE(sqe->len);
4075 if (len < OPEN_HOW_SIZE_VER0)
4076 return -EINVAL;
4077
4078 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4079 len);
4080 if (ret)
4081 return ret;
4082
4083 return __io_openat_prep(req, sqe);
4084 }
4085
4086 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4087 {
4088 struct open_flags op;
4089 struct file *file;
4090 int ret;
4091
4092 if (force_nonblock && !req->open.ignore_nonblock)
4093 return -EAGAIN;
4094
4095 ret = build_open_flags(&req->open.how, &op);
4096 if (ret)
4097 goto err;
4098
4099 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4100 if (ret < 0)
4101 goto err;
4102
4103 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4104 if (IS_ERR(file)) {
4105 put_unused_fd(ret);
4106 ret = PTR_ERR(file);
4107 /*
4108 * A work-around to ensure that /proc/self works that way
4109 * that it should - if we get -EOPNOTSUPP back, then assume
4110 * that proc_self_get_link() failed us because we're in async
4111 * context. We should be safe to retry this from the task
4112 * itself with force_nonblock == false set, as it should not
4113 * block on lookup. Would be nice to know this upfront and
4114 * avoid the async dance, but doesn't seem feasible.
4115 */
4116 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4117 req->open.ignore_nonblock = true;
4118 refcount_inc(&req->refs);
4119 io_req_task_queue(req);
4120 return 0;
4121 }
4122 } else {
4123 fsnotify_open(file);
4124 fd_install(ret, file);
4125 }
4126 err:
4127 putname(req->open.filename);
4128 req->flags &= ~REQ_F_NEED_CLEANUP;
4129 if (ret < 0)
4130 req_set_fail_links(req);
4131 io_req_complete(req, ret);
4132 return 0;
4133 }
4134
4135 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4136 {
4137 return io_openat2(req, force_nonblock);
4138 }
4139
4140 static int io_remove_buffers_prep(struct io_kiocb *req,
4141 const struct io_uring_sqe *sqe)
4142 {
4143 struct io_provide_buf *p = &req->pbuf;
4144 u64 tmp;
4145
4146 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4147 return -EINVAL;
4148
4149 tmp = READ_ONCE(sqe->fd);
4150 if (!tmp || tmp > USHRT_MAX)
4151 return -EINVAL;
4152
4153 memset(p, 0, sizeof(*p));
4154 p->nbufs = tmp;
4155 p->bgid = READ_ONCE(sqe->buf_group);
4156 return 0;
4157 }
4158
4159 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4160 int bgid, unsigned nbufs)
4161 {
4162 unsigned i = 0;
4163
4164 /* shouldn't happen */
4165 if (!nbufs)
4166 return 0;
4167
4168 /* the head kbuf is the list itself */
4169 while (!list_empty(&buf->list)) {
4170 struct io_buffer *nxt;
4171
4172 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4173 list_del(&nxt->list);
4174 kfree(nxt);
4175 if (++i == nbufs)
4176 return i;
4177 }
4178 i++;
4179 kfree(buf);
4180 idr_remove(&ctx->io_buffer_idr, bgid);
4181
4182 return i;
4183 }
4184
4185 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4186 struct io_comp_state *cs)
4187 {
4188 struct io_provide_buf *p = &req->pbuf;
4189 struct io_ring_ctx *ctx = req->ctx;
4190 struct io_buffer *head;
4191 int ret = 0;
4192
4193 io_ring_submit_lock(ctx, !force_nonblock);
4194
4195 lockdep_assert_held(&ctx->uring_lock);
4196
4197 ret = -ENOENT;
4198 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4199 if (head)
4200 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4201 if (ret < 0)
4202 req_set_fail_links(req);
4203
4204 /* need to hold the lock to complete IOPOLL requests */
4205 if (ctx->flags & IORING_SETUP_IOPOLL) {
4206 __io_req_complete(req, ret, 0, cs);
4207 io_ring_submit_unlock(ctx, !force_nonblock);
4208 } else {
4209 io_ring_submit_unlock(ctx, !force_nonblock);
4210 __io_req_complete(req, ret, 0, cs);
4211 }
4212 return 0;
4213 }
4214
4215 static int io_provide_buffers_prep(struct io_kiocb *req,
4216 const struct io_uring_sqe *sqe)
4217 {
4218 unsigned long size, tmp_check;
4219 struct io_provide_buf *p = &req->pbuf;
4220 u64 tmp;
4221
4222 if (sqe->ioprio || sqe->rw_flags)
4223 return -EINVAL;
4224
4225 tmp = READ_ONCE(sqe->fd);
4226 if (!tmp || tmp > USHRT_MAX)
4227 return -E2BIG;
4228 p->nbufs = tmp;
4229 p->addr = READ_ONCE(sqe->addr);
4230 p->len = READ_ONCE(sqe->len);
4231
4232 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4233 &size))
4234 return -EOVERFLOW;
4235 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4236 return -EOVERFLOW;
4237
4238 size = (unsigned long)p->len * p->nbufs;
4239 if (!access_ok(u64_to_user_ptr(p->addr), size))
4240 return -EFAULT;
4241
4242 p->bgid = READ_ONCE(sqe->buf_group);
4243 tmp = READ_ONCE(sqe->off);
4244 if (tmp > USHRT_MAX)
4245 return -E2BIG;
4246 p->bid = tmp;
4247 return 0;
4248 }
4249
4250 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4251 {
4252 struct io_buffer *buf;
4253 u64 addr = pbuf->addr;
4254 int i, bid = pbuf->bid;
4255
4256 for (i = 0; i < pbuf->nbufs; i++) {
4257 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4258 if (!buf)
4259 break;
4260
4261 buf->addr = addr;
4262 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4263 buf->bid = bid;
4264 addr += pbuf->len;
4265 bid++;
4266 if (!*head) {
4267 INIT_LIST_HEAD(&buf->list);
4268 *head = buf;
4269 } else {
4270 list_add_tail(&buf->list, &(*head)->list);
4271 }
4272 }
4273
4274 return i ? i : -ENOMEM;
4275 }
4276
4277 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4278 struct io_comp_state *cs)
4279 {
4280 struct io_provide_buf *p = &req->pbuf;
4281 struct io_ring_ctx *ctx = req->ctx;
4282 struct io_buffer *head, *list;
4283 int ret = 0;
4284
4285 io_ring_submit_lock(ctx, !force_nonblock);
4286
4287 lockdep_assert_held(&ctx->uring_lock);
4288
4289 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4290
4291 ret = io_add_buffers(p, &head);
4292 if (ret < 0)
4293 goto out;
4294
4295 if (!list) {
4296 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4297 GFP_KERNEL);
4298 if (ret < 0) {
4299 __io_remove_buffers(ctx, head, p->bgid, -1U);
4300 goto out;
4301 }
4302 }
4303 out:
4304 if (ret < 0)
4305 req_set_fail_links(req);
4306
4307 /* need to hold the lock to complete IOPOLL requests */
4308 if (ctx->flags & IORING_SETUP_IOPOLL) {
4309 __io_req_complete(req, ret, 0, cs);
4310 io_ring_submit_unlock(ctx, !force_nonblock);
4311 } else {
4312 io_ring_submit_unlock(ctx, !force_nonblock);
4313 __io_req_complete(req, ret, 0, cs);
4314 }
4315 return 0;
4316 }
4317
4318 static int io_epoll_ctl_prep(struct io_kiocb *req,
4319 const struct io_uring_sqe *sqe)
4320 {
4321 #if defined(CONFIG_EPOLL)
4322 if (sqe->ioprio || sqe->buf_index)
4323 return -EINVAL;
4324 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4325 return -EINVAL;
4326
4327 req->epoll.epfd = READ_ONCE(sqe->fd);
4328 req->epoll.op = READ_ONCE(sqe->len);
4329 req->epoll.fd = READ_ONCE(sqe->off);
4330
4331 if (ep_op_has_event(req->epoll.op)) {
4332 struct epoll_event __user *ev;
4333
4334 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4335 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4336 return -EFAULT;
4337 }
4338
4339 return 0;
4340 #else
4341 return -EOPNOTSUPP;
4342 #endif
4343 }
4344
4345 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4346 struct io_comp_state *cs)
4347 {
4348 #if defined(CONFIG_EPOLL)
4349 struct io_epoll *ie = &req->epoll;
4350 int ret;
4351
4352 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4353 if (force_nonblock && ret == -EAGAIN)
4354 return -EAGAIN;
4355
4356 if (ret < 0)
4357 req_set_fail_links(req);
4358 __io_req_complete(req, ret, 0, cs);
4359 return 0;
4360 #else
4361 return -EOPNOTSUPP;
4362 #endif
4363 }
4364
4365 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4366 {
4367 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4368 if (sqe->ioprio || sqe->buf_index || sqe->off)
4369 return -EINVAL;
4370 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4371 return -EINVAL;
4372
4373 req->madvise.addr = READ_ONCE(sqe->addr);
4374 req->madvise.len = READ_ONCE(sqe->len);
4375 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4376 return 0;
4377 #else
4378 return -EOPNOTSUPP;
4379 #endif
4380 }
4381
4382 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4383 {
4384 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4385 struct io_madvise *ma = &req->madvise;
4386 int ret;
4387
4388 if (force_nonblock)
4389 return -EAGAIN;
4390
4391 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4392 if (ret < 0)
4393 req_set_fail_links(req);
4394 io_req_complete(req, ret);
4395 return 0;
4396 #else
4397 return -EOPNOTSUPP;
4398 #endif
4399 }
4400
4401 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4402 {
4403 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4404 return -EINVAL;
4405 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4406 return -EINVAL;
4407
4408 req->fadvise.offset = READ_ONCE(sqe->off);
4409 req->fadvise.len = READ_ONCE(sqe->len);
4410 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4411 return 0;
4412 }
4413
4414 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4415 {
4416 struct io_fadvise *fa = &req->fadvise;
4417 int ret;
4418
4419 if (force_nonblock) {
4420 switch (fa->advice) {
4421 case POSIX_FADV_NORMAL:
4422 case POSIX_FADV_RANDOM:
4423 case POSIX_FADV_SEQUENTIAL:
4424 break;
4425 default:
4426 return -EAGAIN;
4427 }
4428 }
4429
4430 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4431 if (ret < 0)
4432 req_set_fail_links(req);
4433 io_req_complete(req, ret);
4434 return 0;
4435 }
4436
4437 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4438 {
4439 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4440 return -EINVAL;
4441 if (sqe->ioprio || sqe->buf_index)
4442 return -EINVAL;
4443 if (req->flags & REQ_F_FIXED_FILE)
4444 return -EBADF;
4445
4446 req->statx.dfd = READ_ONCE(sqe->fd);
4447 req->statx.mask = READ_ONCE(sqe->len);
4448 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4449 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4450 req->statx.flags = READ_ONCE(sqe->statx_flags);
4451
4452 return 0;
4453 }
4454
4455 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4456 {
4457 struct io_statx *ctx = &req->statx;
4458 int ret;
4459
4460 if (force_nonblock) {
4461 /* only need file table for an actual valid fd */
4462 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4463 req->flags |= REQ_F_NO_FILE_TABLE;
4464 return -EAGAIN;
4465 }
4466
4467 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4468 ctx->buffer);
4469
4470 if (ret < 0)
4471 req_set_fail_links(req);
4472 io_req_complete(req, ret);
4473 return 0;
4474 }
4475
4476 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4477 {
4478 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4479 return -EINVAL;
4480 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4481 sqe->rw_flags || sqe->buf_index)
4482 return -EINVAL;
4483 if (req->flags & REQ_F_FIXED_FILE)
4484 return -EBADF;
4485
4486 req->close.fd = READ_ONCE(sqe->fd);
4487 return 0;
4488 }
4489
4490 static int io_close(struct io_kiocb *req, bool force_nonblock,
4491 struct io_comp_state *cs)
4492 {
4493 struct files_struct *files = current->files;
4494 struct io_close *close = &req->close;
4495 struct fdtable *fdt;
4496 struct file *file;
4497 int ret;
4498
4499 file = NULL;
4500 ret = -EBADF;
4501 spin_lock(&files->file_lock);
4502 fdt = files_fdtable(files);
4503 if (close->fd >= fdt->max_fds) {
4504 spin_unlock(&files->file_lock);
4505 goto err;
4506 }
4507 file = fdt->fd[close->fd];
4508 if (!file) {
4509 spin_unlock(&files->file_lock);
4510 goto err;
4511 }
4512
4513 if (file->f_op == &io_uring_fops) {
4514 spin_unlock(&files->file_lock);
4515 file = NULL;
4516 goto err;
4517 }
4518
4519 /* if the file has a flush method, be safe and punt to async */
4520 if (file->f_op->flush && force_nonblock) {
4521 spin_unlock(&files->file_lock);
4522 return -EAGAIN;
4523 }
4524
4525 ret = __close_fd_get_file(close->fd, &file);
4526 spin_unlock(&files->file_lock);
4527 if (ret < 0) {
4528 if (ret == -ENOENT)
4529 ret = -EBADF;
4530 goto err;
4531 }
4532
4533 /* No ->flush() or already async, safely close from here */
4534 ret = filp_close(file, current->files);
4535 err:
4536 if (ret < 0)
4537 req_set_fail_links(req);
4538 if (file)
4539 fput(file);
4540 __io_req_complete(req, ret, 0, cs);
4541 return 0;
4542 }
4543
4544 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4545 {
4546 struct io_ring_ctx *ctx = req->ctx;
4547
4548 if (!req->file)
4549 return -EBADF;
4550
4551 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4552 return -EINVAL;
4553 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4554 return -EINVAL;
4555
4556 req->sync.off = READ_ONCE(sqe->off);
4557 req->sync.len = READ_ONCE(sqe->len);
4558 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4559 return 0;
4560 }
4561
4562 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4563 {
4564 int ret;
4565
4566 /* sync_file_range always requires a blocking context */
4567 if (force_nonblock)
4568 return -EAGAIN;
4569
4570 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4571 req->sync.flags);
4572 if (ret < 0)
4573 req_set_fail_links(req);
4574 io_req_complete(req, ret);
4575 return 0;
4576 }
4577
4578 #if defined(CONFIG_NET)
4579 static int io_setup_async_msg(struct io_kiocb *req,
4580 struct io_async_msghdr *kmsg)
4581 {
4582 struct io_async_msghdr *async_msg = req->async_data;
4583
4584 if (async_msg)
4585 return -EAGAIN;
4586 if (io_alloc_async_data(req)) {
4587 if (kmsg->iov != kmsg->fast_iov)
4588 kfree(kmsg->iov);
4589 return -ENOMEM;
4590 }
4591 async_msg = req->async_data;
4592 req->flags |= REQ_F_NEED_CLEANUP;
4593 memcpy(async_msg, kmsg, sizeof(*kmsg));
4594 return -EAGAIN;
4595 }
4596
4597 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4598 struct io_async_msghdr *iomsg)
4599 {
4600 iomsg->iov = iomsg->fast_iov;
4601 iomsg->msg.msg_name = &iomsg->addr;
4602 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4603 req->sr_msg.msg_flags, &iomsg->iov);
4604 }
4605
4606 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4607 {
4608 struct io_async_msghdr *async_msg = req->async_data;
4609 struct io_sr_msg *sr = &req->sr_msg;
4610 int ret;
4611
4612 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4613 return -EINVAL;
4614
4615 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4616 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4617 sr->len = READ_ONCE(sqe->len);
4618
4619 #ifdef CONFIG_COMPAT
4620 if (req->ctx->compat)
4621 sr->msg_flags |= MSG_CMSG_COMPAT;
4622 #endif
4623
4624 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4625 return 0;
4626 ret = io_sendmsg_copy_hdr(req, async_msg);
4627 if (!ret)
4628 req->flags |= REQ_F_NEED_CLEANUP;
4629 return ret;
4630 }
4631
4632 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4633 struct io_comp_state *cs)
4634 {
4635 struct io_async_msghdr iomsg, *kmsg;
4636 struct socket *sock;
4637 unsigned flags;
4638 int min_ret = 0;
4639 int ret;
4640
4641 sock = sock_from_file(req->file);
4642 if (unlikely(!sock))
4643 return -ENOTSOCK;
4644
4645 if (req->async_data) {
4646 kmsg = req->async_data;
4647 kmsg->msg.msg_name = &kmsg->addr;
4648 /* if iov is set, it's allocated already */
4649 if (!kmsg->iov)
4650 kmsg->iov = kmsg->fast_iov;
4651 kmsg->msg.msg_iter.iov = kmsg->iov;
4652 } else {
4653 ret = io_sendmsg_copy_hdr(req, &iomsg);
4654 if (ret)
4655 return ret;
4656 kmsg = &iomsg;
4657 }
4658
4659 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4660 if (flags & MSG_DONTWAIT)
4661 req->flags |= REQ_F_NOWAIT;
4662 else if (force_nonblock)
4663 flags |= MSG_DONTWAIT;
4664
4665 if (flags & MSG_WAITALL)
4666 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4667
4668 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4669 if (force_nonblock && ret == -EAGAIN)
4670 return io_setup_async_msg(req, kmsg);
4671 if (ret == -ERESTARTSYS)
4672 ret = -EINTR;
4673
4674 if (kmsg->iov != kmsg->fast_iov)
4675 kfree(kmsg->iov);
4676 req->flags &= ~REQ_F_NEED_CLEANUP;
4677 if (ret < min_ret)
4678 req_set_fail_links(req);
4679 __io_req_complete(req, ret, 0, cs);
4680 return 0;
4681 }
4682
4683 static int io_send(struct io_kiocb *req, bool force_nonblock,
4684 struct io_comp_state *cs)
4685 {
4686 struct io_sr_msg *sr = &req->sr_msg;
4687 struct msghdr msg;
4688 struct iovec iov;
4689 struct socket *sock;
4690 unsigned flags;
4691 int min_ret = 0;
4692 int ret;
4693
4694 sock = sock_from_file(req->file);
4695 if (unlikely(!sock))
4696 return -ENOTSOCK;
4697
4698 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4699 if (unlikely(ret))
4700 return ret;
4701
4702 msg.msg_name = NULL;
4703 msg.msg_control = NULL;
4704 msg.msg_controllen = 0;
4705 msg.msg_namelen = 0;
4706
4707 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4708 if (flags & MSG_DONTWAIT)
4709 req->flags |= REQ_F_NOWAIT;
4710 else if (force_nonblock)
4711 flags |= MSG_DONTWAIT;
4712
4713 if (flags & MSG_WAITALL)
4714 min_ret = iov_iter_count(&msg.msg_iter);
4715
4716 msg.msg_flags = flags;
4717 ret = sock_sendmsg(sock, &msg);
4718 if (force_nonblock && ret == -EAGAIN)
4719 return -EAGAIN;
4720 if (ret == -ERESTARTSYS)
4721 ret = -EINTR;
4722
4723 if (ret < min_ret)
4724 req_set_fail_links(req);
4725 __io_req_complete(req, ret, 0, cs);
4726 return 0;
4727 }
4728
4729 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4730 struct io_async_msghdr *iomsg)
4731 {
4732 struct io_sr_msg *sr = &req->sr_msg;
4733 struct iovec __user *uiov;
4734 size_t iov_len;
4735 int ret;
4736
4737 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4738 &iomsg->uaddr, &uiov, &iov_len);
4739 if (ret)
4740 return ret;
4741
4742 if (req->flags & REQ_F_BUFFER_SELECT) {
4743 if (iov_len > 1)
4744 return -EINVAL;
4745 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4746 return -EFAULT;
4747 sr->len = iomsg->iov[0].iov_len;
4748 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4749 sr->len);
4750 iomsg->iov = NULL;
4751 } else {
4752 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4753 &iomsg->iov, &iomsg->msg.msg_iter,
4754 false);
4755 if (ret > 0)
4756 ret = 0;
4757 }
4758
4759 return ret;
4760 }
4761
4762 #ifdef CONFIG_COMPAT
4763 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4764 struct io_async_msghdr *iomsg)
4765 {
4766 struct compat_msghdr __user *msg_compat;
4767 struct io_sr_msg *sr = &req->sr_msg;
4768 struct compat_iovec __user *uiov;
4769 compat_uptr_t ptr;
4770 compat_size_t len;
4771 int ret;
4772
4773 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4774 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4775 &ptr, &len);
4776 if (ret)
4777 return ret;
4778
4779 uiov = compat_ptr(ptr);
4780 if (req->flags & REQ_F_BUFFER_SELECT) {
4781 compat_ssize_t clen;
4782
4783 if (len > 1)
4784 return -EINVAL;
4785 if (!access_ok(uiov, sizeof(*uiov)))
4786 return -EFAULT;
4787 if (__get_user(clen, &uiov->iov_len))
4788 return -EFAULT;
4789 if (clen < 0)
4790 return -EINVAL;
4791 sr->len = clen;
4792 iomsg->iov[0].iov_len = clen;
4793 iomsg->iov = NULL;
4794 } else {
4795 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4796 UIO_FASTIOV, &iomsg->iov,
4797 &iomsg->msg.msg_iter, true);
4798 if (ret < 0)
4799 return ret;
4800 }
4801
4802 return 0;
4803 }
4804 #endif
4805
4806 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4807 struct io_async_msghdr *iomsg)
4808 {
4809 iomsg->msg.msg_name = &iomsg->addr;
4810 iomsg->iov = iomsg->fast_iov;
4811
4812 #ifdef CONFIG_COMPAT
4813 if (req->ctx->compat)
4814 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4815 #endif
4816
4817 return __io_recvmsg_copy_hdr(req, iomsg);
4818 }
4819
4820 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4821 bool needs_lock)
4822 {
4823 struct io_sr_msg *sr = &req->sr_msg;
4824 struct io_buffer *kbuf;
4825
4826 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4827 if (IS_ERR(kbuf))
4828 return kbuf;
4829
4830 sr->kbuf = kbuf;
4831 req->flags |= REQ_F_BUFFER_SELECTED;
4832 return kbuf;
4833 }
4834
4835 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4836 {
4837 return io_put_kbuf(req, req->sr_msg.kbuf);
4838 }
4839
4840 static int io_recvmsg_prep(struct io_kiocb *req,
4841 const struct io_uring_sqe *sqe)
4842 {
4843 struct io_async_msghdr *async_msg = req->async_data;
4844 struct io_sr_msg *sr = &req->sr_msg;
4845 int ret;
4846
4847 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4848 return -EINVAL;
4849
4850 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4851 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4852 sr->len = READ_ONCE(sqe->len);
4853 sr->bgid = READ_ONCE(sqe->buf_group);
4854
4855 #ifdef CONFIG_COMPAT
4856 if (req->ctx->compat)
4857 sr->msg_flags |= MSG_CMSG_COMPAT;
4858 #endif
4859
4860 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4861 return 0;
4862 ret = io_recvmsg_copy_hdr(req, async_msg);
4863 if (!ret)
4864 req->flags |= REQ_F_NEED_CLEANUP;
4865 return ret;
4866 }
4867
4868 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4869 struct io_comp_state *cs)
4870 {
4871 struct io_async_msghdr iomsg, *kmsg;
4872 struct socket *sock;
4873 struct io_buffer *kbuf;
4874 unsigned flags;
4875 int min_ret = 0;
4876 int ret, cflags = 0;
4877
4878 sock = sock_from_file(req->file);
4879 if (unlikely(!sock))
4880 return -ENOTSOCK;
4881
4882 if (req->async_data) {
4883 kmsg = req->async_data;
4884 kmsg->msg.msg_name = &kmsg->addr;
4885 /* if iov is set, it's allocated already */
4886 if (!kmsg->iov)
4887 kmsg->iov = kmsg->fast_iov;
4888 kmsg->msg.msg_iter.iov = kmsg->iov;
4889 } else {
4890 ret = io_recvmsg_copy_hdr(req, &iomsg);
4891 if (ret)
4892 return ret;
4893 kmsg = &iomsg;
4894 }
4895
4896 if (req->flags & REQ_F_BUFFER_SELECT) {
4897 kbuf = io_recv_buffer_select(req, !force_nonblock);
4898 if (IS_ERR(kbuf))
4899 return PTR_ERR(kbuf);
4900 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4901 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4902 1, req->sr_msg.len);
4903 }
4904
4905 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4906 if (flags & MSG_DONTWAIT)
4907 req->flags |= REQ_F_NOWAIT;
4908 else if (force_nonblock)
4909 flags |= MSG_DONTWAIT;
4910
4911 if (flags & MSG_WAITALL)
4912 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4913
4914 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4915 kmsg->uaddr, flags);
4916 if (force_nonblock && ret == -EAGAIN)
4917 return io_setup_async_msg(req, kmsg);
4918 if (ret == -ERESTARTSYS)
4919 ret = -EINTR;
4920
4921 if (req->flags & REQ_F_BUFFER_SELECTED)
4922 cflags = io_put_recv_kbuf(req);
4923 if (kmsg->iov != kmsg->fast_iov)
4924 kfree(kmsg->iov);
4925 req->flags &= ~REQ_F_NEED_CLEANUP;
4926 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4927 req_set_fail_links(req);
4928 __io_req_complete(req, ret, cflags, cs);
4929 return 0;
4930 }
4931
4932 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4933 struct io_comp_state *cs)
4934 {
4935 struct io_buffer *kbuf;
4936 struct io_sr_msg *sr = &req->sr_msg;
4937 struct msghdr msg;
4938 void __user *buf = sr->buf;
4939 struct socket *sock;
4940 struct iovec iov;
4941 unsigned flags;
4942 int min_ret = 0;
4943 int ret, cflags = 0;
4944
4945 sock = sock_from_file(req->file);
4946 if (unlikely(!sock))
4947 return -ENOTSOCK;
4948
4949 if (req->flags & REQ_F_BUFFER_SELECT) {
4950 kbuf = io_recv_buffer_select(req, !force_nonblock);
4951 if (IS_ERR(kbuf))
4952 return PTR_ERR(kbuf);
4953 buf = u64_to_user_ptr(kbuf->addr);
4954 }
4955
4956 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4957 if (unlikely(ret))
4958 goto out_free;
4959
4960 msg.msg_name = NULL;
4961 msg.msg_control = NULL;
4962 msg.msg_controllen = 0;
4963 msg.msg_namelen = 0;
4964 msg.msg_iocb = NULL;
4965 msg.msg_flags = 0;
4966
4967 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4968 if (flags & MSG_DONTWAIT)
4969 req->flags |= REQ_F_NOWAIT;
4970 else if (force_nonblock)
4971 flags |= MSG_DONTWAIT;
4972
4973 if (flags & MSG_WAITALL)
4974 min_ret = iov_iter_count(&msg.msg_iter);
4975
4976 ret = sock_recvmsg(sock, &msg, flags);
4977 if (force_nonblock && ret == -EAGAIN)
4978 return -EAGAIN;
4979 if (ret == -ERESTARTSYS)
4980 ret = -EINTR;
4981 out_free:
4982 if (req->flags & REQ_F_BUFFER_SELECTED)
4983 cflags = io_put_recv_kbuf(req);
4984 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4985 req_set_fail_links(req);
4986 __io_req_complete(req, ret, cflags, cs);
4987 return 0;
4988 }
4989
4990 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4991 {
4992 struct io_accept *accept = &req->accept;
4993
4994 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4995 return -EINVAL;
4996 if (sqe->ioprio || sqe->len || sqe->buf_index)
4997 return -EINVAL;
4998
4999 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5000 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5001 accept->flags = READ_ONCE(sqe->accept_flags);
5002 accept->nofile = rlimit(RLIMIT_NOFILE);
5003 return 0;
5004 }
5005
5006 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5007 struct io_comp_state *cs)
5008 {
5009 struct io_accept *accept = &req->accept;
5010 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5011 int ret;
5012
5013 if (req->file->f_flags & O_NONBLOCK)
5014 req->flags |= REQ_F_NOWAIT;
5015
5016 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
5017 accept->addr_len, accept->flags,
5018 accept->nofile);
5019 if (ret == -EAGAIN && force_nonblock)
5020 return -EAGAIN;
5021 if (ret < 0) {
5022 if (ret == -ERESTARTSYS)
5023 ret = -EINTR;
5024 req_set_fail_links(req);
5025 }
5026 __io_req_complete(req, ret, 0, cs);
5027 return 0;
5028 }
5029
5030 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5031 {
5032 struct io_connect *conn = &req->connect;
5033 struct io_async_connect *io = req->async_data;
5034
5035 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5036 return -EINVAL;
5037 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5038 return -EINVAL;
5039
5040 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5041 conn->addr_len = READ_ONCE(sqe->addr2);
5042
5043 if (!io)
5044 return 0;
5045
5046 return move_addr_to_kernel(conn->addr, conn->addr_len,
5047 &io->address);
5048 }
5049
5050 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5051 struct io_comp_state *cs)
5052 {
5053 struct io_async_connect __io, *io;
5054 unsigned file_flags;
5055 int ret;
5056
5057 if (req->async_data) {
5058 io = req->async_data;
5059 } else {
5060 ret = move_addr_to_kernel(req->connect.addr,
5061 req->connect.addr_len,
5062 &__io.address);
5063 if (ret)
5064 goto out;
5065 io = &__io;
5066 }
5067
5068 file_flags = force_nonblock ? O_NONBLOCK : 0;
5069
5070 ret = __sys_connect_file(req->file, &io->address,
5071 req->connect.addr_len, file_flags);
5072 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5073 if (req->async_data)
5074 return -EAGAIN;
5075 if (io_alloc_async_data(req)) {
5076 ret = -ENOMEM;
5077 goto out;
5078 }
5079 io = req->async_data;
5080 memcpy(req->async_data, &__io, sizeof(__io));
5081 return -EAGAIN;
5082 }
5083 if (ret == -ERESTARTSYS)
5084 ret = -EINTR;
5085 out:
5086 if (ret < 0)
5087 req_set_fail_links(req);
5088 __io_req_complete(req, ret, 0, cs);
5089 return 0;
5090 }
5091 #else /* !CONFIG_NET */
5092 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5093 {
5094 return -EOPNOTSUPP;
5095 }
5096
5097 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5098 struct io_comp_state *cs)
5099 {
5100 return -EOPNOTSUPP;
5101 }
5102
5103 static int io_send(struct io_kiocb *req, bool force_nonblock,
5104 struct io_comp_state *cs)
5105 {
5106 return -EOPNOTSUPP;
5107 }
5108
5109 static int io_recvmsg_prep(struct io_kiocb *req,
5110 const struct io_uring_sqe *sqe)
5111 {
5112 return -EOPNOTSUPP;
5113 }
5114
5115 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5116 struct io_comp_state *cs)
5117 {
5118 return -EOPNOTSUPP;
5119 }
5120
5121 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5122 struct io_comp_state *cs)
5123 {
5124 return -EOPNOTSUPP;
5125 }
5126
5127 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5128 {
5129 return -EOPNOTSUPP;
5130 }
5131
5132 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5133 struct io_comp_state *cs)
5134 {
5135 return -EOPNOTSUPP;
5136 }
5137
5138 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5139 {
5140 return -EOPNOTSUPP;
5141 }
5142
5143 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5144 struct io_comp_state *cs)
5145 {
5146 return -EOPNOTSUPP;
5147 }
5148 #endif /* CONFIG_NET */
5149
5150 struct io_poll_table {
5151 struct poll_table_struct pt;
5152 struct io_kiocb *req;
5153 int error;
5154 };
5155
5156 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5157 __poll_t mask, task_work_func_t func)
5158 {
5159 int ret;
5160
5161 /* for instances that support it check for an event match first: */
5162 if (mask && !(mask & poll->events))
5163 return 0;
5164
5165 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5166
5167 list_del_init(&poll->wait.entry);
5168
5169 req->result = mask;
5170 init_task_work(&req->task_work, func);
5171 percpu_ref_get(&req->ctx->refs);
5172
5173 /*
5174 * If this fails, then the task is exiting. When a task exits, the
5175 * work gets canceled, so just cancel this request as well instead
5176 * of executing it. We can't safely execute it anyway, as we may not
5177 * have the needed state needed for it anyway.
5178 */
5179 ret = io_req_task_work_add(req);
5180 if (unlikely(ret)) {
5181 WRITE_ONCE(poll->canceled, true);
5182 io_req_task_work_add_fallback(req, func);
5183 }
5184 return 1;
5185 }
5186
5187 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5188 __acquires(&req->ctx->completion_lock)
5189 {
5190 struct io_ring_ctx *ctx = req->ctx;
5191
5192 if (!req->result && !READ_ONCE(poll->canceled)) {
5193 struct poll_table_struct pt = { ._key = poll->events };
5194
5195 req->result = vfs_poll(req->file, &pt) & poll->events;
5196 }
5197
5198 spin_lock_irq(&ctx->completion_lock);
5199 if (!req->result && !READ_ONCE(poll->canceled)) {
5200 add_wait_queue(poll->head, &poll->wait);
5201 return true;
5202 }
5203
5204 return false;
5205 }
5206
5207 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5208 {
5209 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5210 if (req->opcode == IORING_OP_POLL_ADD)
5211 return req->async_data;
5212 return req->apoll->double_poll;
5213 }
5214
5215 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5216 {
5217 if (req->opcode == IORING_OP_POLL_ADD)
5218 return &req->poll;
5219 return &req->apoll->poll;
5220 }
5221
5222 static void io_poll_remove_double(struct io_kiocb *req)
5223 {
5224 struct io_poll_iocb *poll = io_poll_get_double(req);
5225
5226 lockdep_assert_held(&req->ctx->completion_lock);
5227
5228 if (poll && poll->head) {
5229 struct wait_queue_head *head = poll->head;
5230
5231 spin_lock(&head->lock);
5232 list_del_init(&poll->wait.entry);
5233 if (poll->wait.private)
5234 refcount_dec(&req->refs);
5235 poll->head = NULL;
5236 spin_unlock(&head->lock);
5237 }
5238 }
5239
5240 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5241 {
5242 struct io_ring_ctx *ctx = req->ctx;
5243
5244 io_poll_remove_double(req);
5245 req->poll.done = true;
5246 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5247 io_commit_cqring(ctx);
5248 }
5249
5250 static void io_poll_task_func(struct callback_head *cb)
5251 {
5252 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5253 struct io_ring_ctx *ctx = req->ctx;
5254 struct io_kiocb *nxt;
5255
5256 if (io_poll_rewait(req, &req->poll)) {
5257 spin_unlock_irq(&ctx->completion_lock);
5258 } else {
5259 hash_del(&req->hash_node);
5260 io_poll_complete(req, req->result, 0);
5261 spin_unlock_irq(&ctx->completion_lock);
5262
5263 nxt = io_put_req_find_next(req);
5264 io_cqring_ev_posted(ctx);
5265 if (nxt)
5266 __io_req_task_submit(nxt);
5267 }
5268
5269 percpu_ref_put(&ctx->refs);
5270 }
5271
5272 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5273 int sync, void *key)
5274 {
5275 struct io_kiocb *req = wait->private;
5276 struct io_poll_iocb *poll = io_poll_get_single(req);
5277 __poll_t mask = key_to_poll(key);
5278
5279 /* for instances that support it check for an event match first: */
5280 if (mask && !(mask & poll->events))
5281 return 0;
5282
5283 list_del_init(&wait->entry);
5284
5285 if (poll && poll->head) {
5286 bool done;
5287
5288 spin_lock(&poll->head->lock);
5289 done = list_empty(&poll->wait.entry);
5290 if (!done)
5291 list_del_init(&poll->wait.entry);
5292 /* make sure double remove sees this as being gone */
5293 wait->private = NULL;
5294 spin_unlock(&poll->head->lock);
5295 if (!done) {
5296 /* use wait func handler, so it matches the rq type */
5297 poll->wait.func(&poll->wait, mode, sync, key);
5298 }
5299 }
5300 refcount_dec(&req->refs);
5301 return 1;
5302 }
5303
5304 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5305 wait_queue_func_t wake_func)
5306 {
5307 poll->head = NULL;
5308 poll->done = false;
5309 poll->canceled = false;
5310 poll->events = events;
5311 INIT_LIST_HEAD(&poll->wait.entry);
5312 init_waitqueue_func_entry(&poll->wait, wake_func);
5313 }
5314
5315 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5316 struct wait_queue_head *head,
5317 struct io_poll_iocb **poll_ptr)
5318 {
5319 struct io_kiocb *req = pt->req;
5320
5321 /*
5322 * If poll->head is already set, it's because the file being polled
5323 * uses multiple waitqueues for poll handling (eg one for read, one
5324 * for write). Setup a separate io_poll_iocb if this happens.
5325 */
5326 if (unlikely(poll->head)) {
5327 struct io_poll_iocb *poll_one = poll;
5328
5329 /* already have a 2nd entry, fail a third attempt */
5330 if (*poll_ptr) {
5331 pt->error = -EINVAL;
5332 return;
5333 }
5334 /* double add on the same waitqueue head, ignore */
5335 if (poll->head == head)
5336 return;
5337 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5338 if (!poll) {
5339 pt->error = -ENOMEM;
5340 return;
5341 }
5342 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5343 refcount_inc(&req->refs);
5344 poll->wait.private = req;
5345 *poll_ptr = poll;
5346 }
5347
5348 pt->error = 0;
5349 poll->head = head;
5350
5351 if (poll->events & EPOLLEXCLUSIVE)
5352 add_wait_queue_exclusive(head, &poll->wait);
5353 else
5354 add_wait_queue(head, &poll->wait);
5355 }
5356
5357 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5358 struct poll_table_struct *p)
5359 {
5360 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5361 struct async_poll *apoll = pt->req->apoll;
5362
5363 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5364 }
5365
5366 static void io_async_task_func(struct callback_head *cb)
5367 {
5368 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5369 struct async_poll *apoll = req->apoll;
5370 struct io_ring_ctx *ctx = req->ctx;
5371
5372 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5373
5374 if (io_poll_rewait(req, &apoll->poll)) {
5375 spin_unlock_irq(&ctx->completion_lock);
5376 percpu_ref_put(&ctx->refs);
5377 return;
5378 }
5379
5380 /* If req is still hashed, it cannot have been canceled. Don't check. */
5381 if (hash_hashed(&req->hash_node))
5382 hash_del(&req->hash_node);
5383
5384 io_poll_remove_double(req);
5385 spin_unlock_irq(&ctx->completion_lock);
5386
5387 if (!READ_ONCE(apoll->poll.canceled))
5388 __io_req_task_submit(req);
5389 else
5390 __io_req_task_cancel(req, -ECANCELED);
5391
5392 percpu_ref_put(&ctx->refs);
5393 kfree(apoll->double_poll);
5394 kfree(apoll);
5395 }
5396
5397 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5398 void *key)
5399 {
5400 struct io_kiocb *req = wait->private;
5401 struct io_poll_iocb *poll = &req->apoll->poll;
5402
5403 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5404 key_to_poll(key));
5405
5406 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5407 }
5408
5409 static void io_poll_req_insert(struct io_kiocb *req)
5410 {
5411 struct io_ring_ctx *ctx = req->ctx;
5412 struct hlist_head *list;
5413
5414 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5415 hlist_add_head(&req->hash_node, list);
5416 }
5417
5418 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5419 struct io_poll_iocb *poll,
5420 struct io_poll_table *ipt, __poll_t mask,
5421 wait_queue_func_t wake_func)
5422 __acquires(&ctx->completion_lock)
5423 {
5424 struct io_ring_ctx *ctx = req->ctx;
5425 bool cancel = false;
5426
5427 INIT_HLIST_NODE(&req->hash_node);
5428 io_init_poll_iocb(poll, mask, wake_func);
5429 poll->file = req->file;
5430 poll->wait.private = req;
5431
5432 ipt->pt._key = mask;
5433 ipt->req = req;
5434 ipt->error = -EINVAL;
5435
5436 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5437
5438 spin_lock_irq(&ctx->completion_lock);
5439 if (likely(poll->head)) {
5440 spin_lock(&poll->head->lock);
5441 if (unlikely(list_empty(&poll->wait.entry))) {
5442 if (ipt->error)
5443 cancel = true;
5444 ipt->error = 0;
5445 mask = 0;
5446 }
5447 if (mask || ipt->error)
5448 list_del_init(&poll->wait.entry);
5449 else if (cancel)
5450 WRITE_ONCE(poll->canceled, true);
5451 else if (!poll->done) /* actually waiting for an event */
5452 io_poll_req_insert(req);
5453 spin_unlock(&poll->head->lock);
5454 }
5455
5456 return mask;
5457 }
5458
5459 static bool io_arm_poll_handler(struct io_kiocb *req)
5460 {
5461 const struct io_op_def *def = &io_op_defs[req->opcode];
5462 struct io_ring_ctx *ctx = req->ctx;
5463 struct async_poll *apoll;
5464 struct io_poll_table ipt;
5465 __poll_t mask, ret;
5466 int rw;
5467
5468 if (!req->file || !file_can_poll(req->file))
5469 return false;
5470 if (req->flags & REQ_F_POLLED)
5471 return false;
5472 if (def->pollin)
5473 rw = READ;
5474 else if (def->pollout)
5475 rw = WRITE;
5476 else
5477 return false;
5478 /* if we can't nonblock try, then no point in arming a poll handler */
5479 if (!io_file_supports_async(req->file, rw))
5480 return false;
5481
5482 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5483 if (unlikely(!apoll))
5484 return false;
5485 apoll->double_poll = NULL;
5486
5487 req->flags |= REQ_F_POLLED;
5488 req->apoll = apoll;
5489
5490 mask = 0;
5491 if (def->pollin)
5492 mask |= POLLIN | POLLRDNORM;
5493 if (def->pollout)
5494 mask |= POLLOUT | POLLWRNORM;
5495
5496 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5497 if ((req->opcode == IORING_OP_RECVMSG) &&
5498 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5499 mask &= ~POLLIN;
5500
5501 mask |= POLLERR | POLLPRI;
5502
5503 ipt.pt._qproc = io_async_queue_proc;
5504
5505 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5506 io_async_wake);
5507 if (ret || ipt.error) {
5508 io_poll_remove_double(req);
5509 spin_unlock_irq(&ctx->completion_lock);
5510 kfree(apoll->double_poll);
5511 kfree(apoll);
5512 return false;
5513 }
5514 spin_unlock_irq(&ctx->completion_lock);
5515 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5516 apoll->poll.events);
5517 return true;
5518 }
5519
5520 static bool __io_poll_remove_one(struct io_kiocb *req,
5521 struct io_poll_iocb *poll)
5522 {
5523 bool do_complete = false;
5524
5525 spin_lock(&poll->head->lock);
5526 WRITE_ONCE(poll->canceled, true);
5527 if (!list_empty(&poll->wait.entry)) {
5528 list_del_init(&poll->wait.entry);
5529 do_complete = true;
5530 }
5531 spin_unlock(&poll->head->lock);
5532 hash_del(&req->hash_node);
5533 return do_complete;
5534 }
5535
5536 static bool io_poll_remove_one(struct io_kiocb *req)
5537 {
5538 bool do_complete;
5539
5540 io_poll_remove_double(req);
5541
5542 if (req->opcode == IORING_OP_POLL_ADD) {
5543 do_complete = __io_poll_remove_one(req, &req->poll);
5544 } else {
5545 struct async_poll *apoll = req->apoll;
5546
5547 /* non-poll requests have submit ref still */
5548 do_complete = __io_poll_remove_one(req, &apoll->poll);
5549 if (do_complete) {
5550 io_put_req(req);
5551 kfree(apoll->double_poll);
5552 kfree(apoll);
5553 }
5554 }
5555
5556 if (do_complete) {
5557 io_cqring_fill_event(req, -ECANCELED);
5558 io_commit_cqring(req->ctx);
5559 req_set_fail_links(req);
5560 io_put_req_deferred(req, 1);
5561 }
5562
5563 return do_complete;
5564 }
5565
5566 /*
5567 * Returns true if we found and killed one or more poll requests
5568 */
5569 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5570 struct files_struct *files)
5571 {
5572 struct hlist_node *tmp;
5573 struct io_kiocb *req;
5574 int posted = 0, i;
5575
5576 spin_lock_irq(&ctx->completion_lock);
5577 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5578 struct hlist_head *list;
5579
5580 list = &ctx->cancel_hash[i];
5581 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5582 if (io_match_task(req, tsk, files))
5583 posted += io_poll_remove_one(req);
5584 }
5585 }
5586 spin_unlock_irq(&ctx->completion_lock);
5587
5588 if (posted)
5589 io_cqring_ev_posted(ctx);
5590
5591 return posted != 0;
5592 }
5593
5594 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5595 {
5596 struct hlist_head *list;
5597 struct io_kiocb *req;
5598
5599 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5600 hlist_for_each_entry(req, list, hash_node) {
5601 if (sqe_addr != req->user_data)
5602 continue;
5603 if (io_poll_remove_one(req))
5604 return 0;
5605 return -EALREADY;
5606 }
5607
5608 return -ENOENT;
5609 }
5610
5611 static int io_poll_remove_prep(struct io_kiocb *req,
5612 const struct io_uring_sqe *sqe)
5613 {
5614 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5615 return -EINVAL;
5616 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5617 sqe->poll_events)
5618 return -EINVAL;
5619
5620 req->poll_remove.addr = READ_ONCE(sqe->addr);
5621 return 0;
5622 }
5623
5624 /*
5625 * Find a running poll command that matches one specified in sqe->addr,
5626 * and remove it if found.
5627 */
5628 static int io_poll_remove(struct io_kiocb *req)
5629 {
5630 struct io_ring_ctx *ctx = req->ctx;
5631 int ret;
5632
5633 spin_lock_irq(&ctx->completion_lock);
5634 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5635 spin_unlock_irq(&ctx->completion_lock);
5636
5637 if (ret < 0)
5638 req_set_fail_links(req);
5639 io_req_complete(req, ret);
5640 return 0;
5641 }
5642
5643 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5644 void *key)
5645 {
5646 struct io_kiocb *req = wait->private;
5647 struct io_poll_iocb *poll = &req->poll;
5648
5649 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5650 }
5651
5652 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5653 struct poll_table_struct *p)
5654 {
5655 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5656
5657 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5658 }
5659
5660 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5661 {
5662 struct io_poll_iocb *poll = &req->poll;
5663 u32 events;
5664
5665 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5666 return -EINVAL;
5667 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5668 return -EINVAL;
5669
5670 events = READ_ONCE(sqe->poll32_events);
5671 #ifdef __BIG_ENDIAN
5672 events = swahw32(events);
5673 #endif
5674 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5675 (events & EPOLLEXCLUSIVE);
5676 return 0;
5677 }
5678
5679 static int io_poll_add(struct io_kiocb *req)
5680 {
5681 struct io_poll_iocb *poll = &req->poll;
5682 struct io_ring_ctx *ctx = req->ctx;
5683 struct io_poll_table ipt;
5684 __poll_t mask;
5685
5686 ipt.pt._qproc = io_poll_queue_proc;
5687
5688 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5689 io_poll_wake);
5690
5691 if (mask) { /* no async, we'd stolen it */
5692 ipt.error = 0;
5693 io_poll_complete(req, mask, 0);
5694 }
5695 spin_unlock_irq(&ctx->completion_lock);
5696
5697 if (mask) {
5698 io_cqring_ev_posted(ctx);
5699 io_put_req(req);
5700 }
5701 return ipt.error;
5702 }
5703
5704 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5705 {
5706 struct io_timeout_data *data = container_of(timer,
5707 struct io_timeout_data, timer);
5708 struct io_kiocb *req = data->req;
5709 struct io_ring_ctx *ctx = req->ctx;
5710 unsigned long flags;
5711
5712 spin_lock_irqsave(&ctx->completion_lock, flags);
5713 list_del_init(&req->timeout.list);
5714 atomic_set(&req->ctx->cq_timeouts,
5715 atomic_read(&req->ctx->cq_timeouts) + 1);
5716
5717 io_cqring_fill_event(req, -ETIME);
5718 io_commit_cqring(ctx);
5719 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5720
5721 io_cqring_ev_posted(ctx);
5722 req_set_fail_links(req);
5723 io_put_req(req);
5724 return HRTIMER_NORESTART;
5725 }
5726
5727 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5728 __u64 user_data)
5729 {
5730 struct io_timeout_data *io;
5731 struct io_kiocb *req;
5732 int ret = -ENOENT;
5733
5734 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5735 if (user_data == req->user_data) {
5736 ret = 0;
5737 break;
5738 }
5739 }
5740
5741 if (ret == -ENOENT)
5742 return ERR_PTR(ret);
5743
5744 io = req->async_data;
5745 ret = hrtimer_try_to_cancel(&io->timer);
5746 if (ret == -1)
5747 return ERR_PTR(-EALREADY);
5748 list_del_init(&req->timeout.list);
5749 return req;
5750 }
5751
5752 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5753 {
5754 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5755
5756 if (IS_ERR(req))
5757 return PTR_ERR(req);
5758
5759 req_set_fail_links(req);
5760 io_cqring_fill_event(req, -ECANCELED);
5761 io_put_req_deferred(req, 1);
5762 return 0;
5763 }
5764
5765 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5766 struct timespec64 *ts, enum hrtimer_mode mode)
5767 {
5768 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5769 struct io_timeout_data *data;
5770
5771 if (IS_ERR(req))
5772 return PTR_ERR(req);
5773
5774 req->timeout.off = 0; /* noseq */
5775 data = req->async_data;
5776 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5777 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5778 data->timer.function = io_timeout_fn;
5779 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5780 return 0;
5781 }
5782
5783 static int io_timeout_remove_prep(struct io_kiocb *req,
5784 const struct io_uring_sqe *sqe)
5785 {
5786 struct io_timeout_rem *tr = &req->timeout_rem;
5787
5788 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5789 return -EINVAL;
5790 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5791 return -EINVAL;
5792 if (sqe->ioprio || sqe->buf_index || sqe->len)
5793 return -EINVAL;
5794
5795 tr->addr = READ_ONCE(sqe->addr);
5796 tr->flags = READ_ONCE(sqe->timeout_flags);
5797 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5798 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5799 return -EINVAL;
5800 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5801 return -EFAULT;
5802 } else if (tr->flags) {
5803 /* timeout removal doesn't support flags */
5804 return -EINVAL;
5805 }
5806
5807 return 0;
5808 }
5809
5810 /*
5811 * Remove or update an existing timeout command
5812 */
5813 static int io_timeout_remove(struct io_kiocb *req)
5814 {
5815 struct io_timeout_rem *tr = &req->timeout_rem;
5816 struct io_ring_ctx *ctx = req->ctx;
5817 int ret;
5818
5819 spin_lock_irq(&ctx->completion_lock);
5820 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5821 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5822 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5823
5824 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5825 } else {
5826 ret = io_timeout_cancel(ctx, tr->addr);
5827 }
5828
5829 io_cqring_fill_event(req, ret);
5830 io_commit_cqring(ctx);
5831 spin_unlock_irq(&ctx->completion_lock);
5832 io_cqring_ev_posted(ctx);
5833 if (ret < 0)
5834 req_set_fail_links(req);
5835 io_put_req(req);
5836 return 0;
5837 }
5838
5839 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5840 bool is_timeout_link)
5841 {
5842 struct io_timeout_data *data;
5843 unsigned flags;
5844 u32 off = READ_ONCE(sqe->off);
5845
5846 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5847 return -EINVAL;
5848 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5849 return -EINVAL;
5850 if (off && is_timeout_link)
5851 return -EINVAL;
5852 flags = READ_ONCE(sqe->timeout_flags);
5853 if (flags & ~IORING_TIMEOUT_ABS)
5854 return -EINVAL;
5855
5856 req->timeout.off = off;
5857
5858 if (!req->async_data && io_alloc_async_data(req))
5859 return -ENOMEM;
5860
5861 data = req->async_data;
5862 data->req = req;
5863
5864 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5865 return -EFAULT;
5866
5867 if (flags & IORING_TIMEOUT_ABS)
5868 data->mode = HRTIMER_MODE_ABS;
5869 else
5870 data->mode = HRTIMER_MODE_REL;
5871
5872 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5873 return 0;
5874 }
5875
5876 static int io_timeout(struct io_kiocb *req)
5877 {
5878 struct io_ring_ctx *ctx = req->ctx;
5879 struct io_timeout_data *data = req->async_data;
5880 struct list_head *entry;
5881 u32 tail, off = req->timeout.off;
5882
5883 spin_lock_irq(&ctx->completion_lock);
5884
5885 /*
5886 * sqe->off holds how many events that need to occur for this
5887 * timeout event to be satisfied. If it isn't set, then this is
5888 * a pure timeout request, sequence isn't used.
5889 */
5890 if (io_is_timeout_noseq(req)) {
5891 entry = ctx->timeout_list.prev;
5892 goto add;
5893 }
5894
5895 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5896 req->timeout.target_seq = tail + off;
5897
5898 /* Update the last seq here in case io_flush_timeouts() hasn't.
5899 * This is safe because ->completion_lock is held, and submissions
5900 * and completions are never mixed in the same ->completion_lock section.
5901 */
5902 ctx->cq_last_tm_flush = tail;
5903
5904 /*
5905 * Insertion sort, ensuring the first entry in the list is always
5906 * the one we need first.
5907 */
5908 list_for_each_prev(entry, &ctx->timeout_list) {
5909 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5910 timeout.list);
5911
5912 if (io_is_timeout_noseq(nxt))
5913 continue;
5914 /* nxt.seq is behind @tail, otherwise would've been completed */
5915 if (off >= nxt->timeout.target_seq - tail)
5916 break;
5917 }
5918 add:
5919 list_add(&req->timeout.list, entry);
5920 data->timer.function = io_timeout_fn;
5921 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5922 spin_unlock_irq(&ctx->completion_lock);
5923 return 0;
5924 }
5925
5926 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5927 {
5928 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5929
5930 return req->user_data == (unsigned long) data;
5931 }
5932
5933 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5934 {
5935 enum io_wq_cancel cancel_ret;
5936 int ret = 0;
5937
5938 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5939 switch (cancel_ret) {
5940 case IO_WQ_CANCEL_OK:
5941 ret = 0;
5942 break;
5943 case IO_WQ_CANCEL_RUNNING:
5944 ret = -EALREADY;
5945 break;
5946 case IO_WQ_CANCEL_NOTFOUND:
5947 ret = -ENOENT;
5948 break;
5949 }
5950
5951 return ret;
5952 }
5953
5954 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5955 struct io_kiocb *req, __u64 sqe_addr,
5956 int success_ret)
5957 {
5958 unsigned long flags;
5959 int ret;
5960
5961 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5962 if (ret != -ENOENT) {
5963 spin_lock_irqsave(&ctx->completion_lock, flags);
5964 goto done;
5965 }
5966
5967 spin_lock_irqsave(&ctx->completion_lock, flags);
5968 ret = io_timeout_cancel(ctx, sqe_addr);
5969 if (ret != -ENOENT)
5970 goto done;
5971 ret = io_poll_cancel(ctx, sqe_addr);
5972 done:
5973 if (!ret)
5974 ret = success_ret;
5975 io_cqring_fill_event(req, ret);
5976 io_commit_cqring(ctx);
5977 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5978 io_cqring_ev_posted(ctx);
5979
5980 if (ret < 0)
5981 req_set_fail_links(req);
5982 io_put_req(req);
5983 }
5984
5985 static int io_async_cancel_prep(struct io_kiocb *req,
5986 const struct io_uring_sqe *sqe)
5987 {
5988 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5989 return -EINVAL;
5990 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5991 return -EINVAL;
5992 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5993 return -EINVAL;
5994
5995 req->cancel.addr = READ_ONCE(sqe->addr);
5996 return 0;
5997 }
5998
5999 static int io_async_cancel(struct io_kiocb *req)
6000 {
6001 struct io_ring_ctx *ctx = req->ctx;
6002
6003 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
6004 return 0;
6005 }
6006
6007 static int io_files_update_prep(struct io_kiocb *req,
6008 const struct io_uring_sqe *sqe)
6009 {
6010 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
6011 return -EINVAL;
6012 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6013 return -EINVAL;
6014 if (sqe->ioprio || sqe->rw_flags)
6015 return -EINVAL;
6016
6017 req->files_update.offset = READ_ONCE(sqe->off);
6018 req->files_update.nr_args = READ_ONCE(sqe->len);
6019 if (!req->files_update.nr_args)
6020 return -EINVAL;
6021 req->files_update.arg = READ_ONCE(sqe->addr);
6022 return 0;
6023 }
6024
6025 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
6026 struct io_comp_state *cs)
6027 {
6028 struct io_ring_ctx *ctx = req->ctx;
6029 struct io_uring_files_update up;
6030 int ret;
6031
6032 if (force_nonblock)
6033 return -EAGAIN;
6034
6035 up.offset = req->files_update.offset;
6036 up.fds = req->files_update.arg;
6037
6038 mutex_lock(&ctx->uring_lock);
6039 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
6040 mutex_unlock(&ctx->uring_lock);
6041
6042 if (ret < 0)
6043 req_set_fail_links(req);
6044 __io_req_complete(req, ret, 0, cs);
6045 return 0;
6046 }
6047
6048 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6049 {
6050 switch (req->opcode) {
6051 case IORING_OP_NOP:
6052 return 0;
6053 case IORING_OP_READV:
6054 case IORING_OP_READ_FIXED:
6055 case IORING_OP_READ:
6056 return io_read_prep(req, sqe);
6057 case IORING_OP_WRITEV:
6058 case IORING_OP_WRITE_FIXED:
6059 case IORING_OP_WRITE:
6060 return io_write_prep(req, sqe);
6061 case IORING_OP_POLL_ADD:
6062 return io_poll_add_prep(req, sqe);
6063 case IORING_OP_POLL_REMOVE:
6064 return io_poll_remove_prep(req, sqe);
6065 case IORING_OP_FSYNC:
6066 return io_prep_fsync(req, sqe);
6067 case IORING_OP_SYNC_FILE_RANGE:
6068 return io_prep_sfr(req, sqe);
6069 case IORING_OP_SENDMSG:
6070 case IORING_OP_SEND:
6071 return io_sendmsg_prep(req, sqe);
6072 case IORING_OP_RECVMSG:
6073 case IORING_OP_RECV:
6074 return io_recvmsg_prep(req, sqe);
6075 case IORING_OP_CONNECT:
6076 return io_connect_prep(req, sqe);
6077 case IORING_OP_TIMEOUT:
6078 return io_timeout_prep(req, sqe, false);
6079 case IORING_OP_TIMEOUT_REMOVE:
6080 return io_timeout_remove_prep(req, sqe);
6081 case IORING_OP_ASYNC_CANCEL:
6082 return io_async_cancel_prep(req, sqe);
6083 case IORING_OP_LINK_TIMEOUT:
6084 return io_timeout_prep(req, sqe, true);
6085 case IORING_OP_ACCEPT:
6086 return io_accept_prep(req, sqe);
6087 case IORING_OP_FALLOCATE:
6088 return io_fallocate_prep(req, sqe);
6089 case IORING_OP_OPENAT:
6090 return io_openat_prep(req, sqe);
6091 case IORING_OP_CLOSE:
6092 return io_close_prep(req, sqe);
6093 case IORING_OP_FILES_UPDATE:
6094 return io_files_update_prep(req, sqe);
6095 case IORING_OP_STATX:
6096 return io_statx_prep(req, sqe);
6097 case IORING_OP_FADVISE:
6098 return io_fadvise_prep(req, sqe);
6099 case IORING_OP_MADVISE:
6100 return io_madvise_prep(req, sqe);
6101 case IORING_OP_OPENAT2:
6102 return io_openat2_prep(req, sqe);
6103 case IORING_OP_EPOLL_CTL:
6104 return io_epoll_ctl_prep(req, sqe);
6105 case IORING_OP_SPLICE:
6106 return io_splice_prep(req, sqe);
6107 case IORING_OP_PROVIDE_BUFFERS:
6108 return io_provide_buffers_prep(req, sqe);
6109 case IORING_OP_REMOVE_BUFFERS:
6110 return io_remove_buffers_prep(req, sqe);
6111 case IORING_OP_TEE:
6112 return io_tee_prep(req, sqe);
6113 case IORING_OP_SHUTDOWN:
6114 return io_shutdown_prep(req, sqe);
6115 case IORING_OP_RENAMEAT:
6116 return io_renameat_prep(req, sqe);
6117 case IORING_OP_UNLINKAT:
6118 return io_unlinkat_prep(req, sqe);
6119 }
6120
6121 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6122 req->opcode);
6123 return-EINVAL;
6124 }
6125
6126 static int io_req_defer_prep(struct io_kiocb *req,
6127 const struct io_uring_sqe *sqe)
6128 {
6129 if (!sqe)
6130 return 0;
6131 if (io_alloc_async_data(req))
6132 return -EAGAIN;
6133 return io_req_prep(req, sqe);
6134 }
6135
6136 static u32 io_get_sequence(struct io_kiocb *req)
6137 {
6138 struct io_kiocb *pos;
6139 struct io_ring_ctx *ctx = req->ctx;
6140 u32 total_submitted, nr_reqs = 0;
6141
6142 io_for_each_link(pos, req)
6143 nr_reqs++;
6144
6145 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6146 return total_submitted - nr_reqs;
6147 }
6148
6149 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6150 {
6151 struct io_ring_ctx *ctx = req->ctx;
6152 struct io_defer_entry *de;
6153 int ret;
6154 u32 seq;
6155
6156 /* Still need defer if there is pending req in defer list. */
6157 if (likely(list_empty_careful(&ctx->defer_list) &&
6158 !(req->flags & REQ_F_IO_DRAIN)))
6159 return 0;
6160
6161 seq = io_get_sequence(req);
6162 /* Still a chance to pass the sequence check */
6163 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6164 return 0;
6165
6166 if (!req->async_data) {
6167 ret = io_req_defer_prep(req, sqe);
6168 if (ret)
6169 return ret;
6170 }
6171 io_prep_async_link(req);
6172 de = kmalloc(sizeof(*de), GFP_KERNEL);
6173 if (!de)
6174 return -ENOMEM;
6175
6176 spin_lock_irq(&ctx->completion_lock);
6177 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6178 spin_unlock_irq(&ctx->completion_lock);
6179 kfree(de);
6180 io_queue_async_work(req);
6181 return -EIOCBQUEUED;
6182 }
6183
6184 trace_io_uring_defer(ctx, req, req->user_data);
6185 de->req = req;
6186 de->seq = seq;
6187 list_add_tail(&de->list, &ctx->defer_list);
6188 spin_unlock_irq(&ctx->completion_lock);
6189 return -EIOCBQUEUED;
6190 }
6191
6192 static void io_req_drop_files(struct io_kiocb *req)
6193 {
6194 struct io_ring_ctx *ctx = req->ctx;
6195 struct io_uring_task *tctx = req->task->io_uring;
6196 unsigned long flags;
6197
6198 if (req->work.flags & IO_WQ_WORK_FILES) {
6199 put_files_struct(req->work.identity->files);
6200 put_nsproxy(req->work.identity->nsproxy);
6201 }
6202 spin_lock_irqsave(&ctx->inflight_lock, flags);
6203 list_del(&req->inflight_entry);
6204 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6205 req->flags &= ~REQ_F_INFLIGHT;
6206 req->work.flags &= ~IO_WQ_WORK_FILES;
6207 if (atomic_read(&tctx->in_idle))
6208 wake_up(&tctx->wait);
6209 }
6210
6211 static void __io_clean_op(struct io_kiocb *req)
6212 {
6213 if (req->flags & REQ_F_BUFFER_SELECTED) {
6214 switch (req->opcode) {
6215 case IORING_OP_READV:
6216 case IORING_OP_READ_FIXED:
6217 case IORING_OP_READ:
6218 kfree((void *)(unsigned long)req->rw.addr);
6219 break;
6220 case IORING_OP_RECVMSG:
6221 case IORING_OP_RECV:
6222 kfree(req->sr_msg.kbuf);
6223 break;
6224 }
6225 req->flags &= ~REQ_F_BUFFER_SELECTED;
6226 }
6227
6228 if (req->flags & REQ_F_NEED_CLEANUP) {
6229 switch (req->opcode) {
6230 case IORING_OP_READV:
6231 case IORING_OP_READ_FIXED:
6232 case IORING_OP_READ:
6233 case IORING_OP_WRITEV:
6234 case IORING_OP_WRITE_FIXED:
6235 case IORING_OP_WRITE: {
6236 struct io_async_rw *io = req->async_data;
6237 if (io->free_iovec)
6238 kfree(io->free_iovec);
6239 break;
6240 }
6241 case IORING_OP_RECVMSG:
6242 case IORING_OP_SENDMSG: {
6243 struct io_async_msghdr *io = req->async_data;
6244 if (io->iov != io->fast_iov)
6245 kfree(io->iov);
6246 break;
6247 }
6248 case IORING_OP_SPLICE:
6249 case IORING_OP_TEE:
6250 io_put_file(req, req->splice.file_in,
6251 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6252 break;
6253 case IORING_OP_OPENAT:
6254 case IORING_OP_OPENAT2:
6255 if (req->open.filename)
6256 putname(req->open.filename);
6257 break;
6258 case IORING_OP_RENAMEAT:
6259 putname(req->rename.oldpath);
6260 putname(req->rename.newpath);
6261 break;
6262 case IORING_OP_UNLINKAT:
6263 putname(req->unlink.filename);
6264 break;
6265 }
6266 req->flags &= ~REQ_F_NEED_CLEANUP;
6267 }
6268 }
6269
6270 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6271 struct io_comp_state *cs)
6272 {
6273 struct io_ring_ctx *ctx = req->ctx;
6274 int ret;
6275
6276 switch (req->opcode) {
6277 case IORING_OP_NOP:
6278 ret = io_nop(req, cs);
6279 break;
6280 case IORING_OP_READV:
6281 case IORING_OP_READ_FIXED:
6282 case IORING_OP_READ:
6283 ret = io_read(req, force_nonblock, cs);
6284 break;
6285 case IORING_OP_WRITEV:
6286 case IORING_OP_WRITE_FIXED:
6287 case IORING_OP_WRITE:
6288 ret = io_write(req, force_nonblock, cs);
6289 break;
6290 case IORING_OP_FSYNC:
6291 ret = io_fsync(req, force_nonblock);
6292 break;
6293 case IORING_OP_POLL_ADD:
6294 ret = io_poll_add(req);
6295 break;
6296 case IORING_OP_POLL_REMOVE:
6297 ret = io_poll_remove(req);
6298 break;
6299 case IORING_OP_SYNC_FILE_RANGE:
6300 ret = io_sync_file_range(req, force_nonblock);
6301 break;
6302 case IORING_OP_SENDMSG:
6303 ret = io_sendmsg(req, force_nonblock, cs);
6304 break;
6305 case IORING_OP_SEND:
6306 ret = io_send(req, force_nonblock, cs);
6307 break;
6308 case IORING_OP_RECVMSG:
6309 ret = io_recvmsg(req, force_nonblock, cs);
6310 break;
6311 case IORING_OP_RECV:
6312 ret = io_recv(req, force_nonblock, cs);
6313 break;
6314 case IORING_OP_TIMEOUT:
6315 ret = io_timeout(req);
6316 break;
6317 case IORING_OP_TIMEOUT_REMOVE:
6318 ret = io_timeout_remove(req);
6319 break;
6320 case IORING_OP_ACCEPT:
6321 ret = io_accept(req, force_nonblock, cs);
6322 break;
6323 case IORING_OP_CONNECT:
6324 ret = io_connect(req, force_nonblock, cs);
6325 break;
6326 case IORING_OP_ASYNC_CANCEL:
6327 ret = io_async_cancel(req);
6328 break;
6329 case IORING_OP_FALLOCATE:
6330 ret = io_fallocate(req, force_nonblock);
6331 break;
6332 case IORING_OP_OPENAT:
6333 ret = io_openat(req, force_nonblock);
6334 break;
6335 case IORING_OP_CLOSE:
6336 ret = io_close(req, force_nonblock, cs);
6337 break;
6338 case IORING_OP_FILES_UPDATE:
6339 ret = io_files_update(req, force_nonblock, cs);
6340 break;
6341 case IORING_OP_STATX:
6342 ret = io_statx(req, force_nonblock);
6343 break;
6344 case IORING_OP_FADVISE:
6345 ret = io_fadvise(req, force_nonblock);
6346 break;
6347 case IORING_OP_MADVISE:
6348 ret = io_madvise(req, force_nonblock);
6349 break;
6350 case IORING_OP_OPENAT2:
6351 ret = io_openat2(req, force_nonblock);
6352 break;
6353 case IORING_OP_EPOLL_CTL:
6354 ret = io_epoll_ctl(req, force_nonblock, cs);
6355 break;
6356 case IORING_OP_SPLICE:
6357 ret = io_splice(req, force_nonblock);
6358 break;
6359 case IORING_OP_PROVIDE_BUFFERS:
6360 ret = io_provide_buffers(req, force_nonblock, cs);
6361 break;
6362 case IORING_OP_REMOVE_BUFFERS:
6363 ret = io_remove_buffers(req, force_nonblock, cs);
6364 break;
6365 case IORING_OP_TEE:
6366 ret = io_tee(req, force_nonblock);
6367 break;
6368 case IORING_OP_SHUTDOWN:
6369 ret = io_shutdown(req, force_nonblock);
6370 break;
6371 case IORING_OP_RENAMEAT:
6372 ret = io_renameat(req, force_nonblock);
6373 break;
6374 case IORING_OP_UNLINKAT:
6375 ret = io_unlinkat(req, force_nonblock);
6376 break;
6377 default:
6378 ret = -EINVAL;
6379 break;
6380 }
6381
6382 if (ret)
6383 return ret;
6384
6385 /* If the op doesn't have a file, we're not polling for it */
6386 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6387 const bool in_async = io_wq_current_is_worker();
6388
6389 /* workqueue context doesn't hold uring_lock, grab it now */
6390 if (in_async)
6391 mutex_lock(&ctx->uring_lock);
6392
6393 io_iopoll_req_issued(req, in_async);
6394
6395 if (in_async)
6396 mutex_unlock(&ctx->uring_lock);
6397 }
6398
6399 return 0;
6400 }
6401
6402 static void io_wq_submit_work(struct io_wq_work *work)
6403 {
6404 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6405 struct io_kiocb *timeout;
6406 int ret = 0;
6407
6408 timeout = io_prep_linked_timeout(req);
6409 if (timeout)
6410 io_queue_linked_timeout(timeout);
6411
6412 if (work->flags & IO_WQ_WORK_CANCEL) {
6413 /* io-wq is going to take down one */
6414 refcount_inc(&req->refs);
6415 percpu_ref_get(&req->ctx->refs);
6416 io_req_task_work_add_fallback(req, io_req_task_cancel);
6417 return;
6418 }
6419
6420 if (!ret) {
6421 do {
6422 ret = io_issue_sqe(req, false, NULL);
6423 /*
6424 * We can get EAGAIN for polled IO even though we're
6425 * forcing a sync submission from here, since we can't
6426 * wait for request slots on the block side.
6427 */
6428 if (ret != -EAGAIN)
6429 break;
6430 cond_resched();
6431 } while (1);
6432 }
6433
6434 if (ret) {
6435 struct io_ring_ctx *lock_ctx = NULL;
6436
6437 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6438 lock_ctx = req->ctx;
6439
6440 /*
6441 * io_iopoll_complete() does not hold completion_lock to
6442 * complete polled io, so here for polled io, we can not call
6443 * io_req_complete() directly, otherwise there maybe concurrent
6444 * access to cqring, defer_list, etc, which is not safe. Given
6445 * that io_iopoll_complete() is always called under uring_lock,
6446 * so here for polled io, we also get uring_lock to complete
6447 * it.
6448 */
6449 if (lock_ctx)
6450 mutex_lock(&lock_ctx->uring_lock);
6451
6452 req_set_fail_links(req);
6453 io_req_complete(req, ret);
6454
6455 if (lock_ctx)
6456 mutex_unlock(&lock_ctx->uring_lock);
6457 }
6458 }
6459
6460 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6461 int index)
6462 {
6463 struct fixed_file_table *table;
6464
6465 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6466 return table->files[index & IORING_FILE_TABLE_MASK];
6467 }
6468
6469 static struct file *io_file_get(struct io_submit_state *state,
6470 struct io_kiocb *req, int fd, bool fixed)
6471 {
6472 struct io_ring_ctx *ctx = req->ctx;
6473 struct file *file;
6474
6475 if (fixed) {
6476 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6477 return NULL;
6478 fd = array_index_nospec(fd, ctx->nr_user_files);
6479 file = io_file_from_index(ctx, fd);
6480 io_set_resource_node(req);
6481 } else {
6482 trace_io_uring_file_get(ctx, fd);
6483 file = __io_file_get(state, fd);
6484 }
6485
6486 if (file && file->f_op == &io_uring_fops &&
6487 !(req->flags & REQ_F_INFLIGHT)) {
6488 io_req_init_async(req);
6489 req->flags |= REQ_F_INFLIGHT;
6490
6491 spin_lock_irq(&ctx->inflight_lock);
6492 list_add(&req->inflight_entry, &ctx->inflight_list);
6493 spin_unlock_irq(&ctx->inflight_lock);
6494 }
6495
6496 return file;
6497 }
6498
6499 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6500 {
6501 struct io_timeout_data *data = container_of(timer,
6502 struct io_timeout_data, timer);
6503 struct io_kiocb *prev, *req = data->req;
6504 struct io_ring_ctx *ctx = req->ctx;
6505 unsigned long flags;
6506
6507 spin_lock_irqsave(&ctx->completion_lock, flags);
6508 prev = req->timeout.head;
6509 req->timeout.head = NULL;
6510
6511 /*
6512 * We don't expect the list to be empty, that will only happen if we
6513 * race with the completion of the linked work.
6514 */
6515 if (prev) {
6516 io_remove_next_linked(prev);
6517 if (!refcount_inc_not_zero(&prev->refs))
6518 prev = NULL;
6519 }
6520 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6521
6522 if (prev) {
6523 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6524 io_put_req_deferred(prev, 1);
6525 io_put_req_deferred(req, 1);
6526 } else {
6527 io_cqring_add_event(req, -ETIME, 0);
6528 io_put_req_deferred(req, 1);
6529 }
6530 return HRTIMER_NORESTART;
6531 }
6532
6533 static void __io_queue_linked_timeout(struct io_kiocb *req)
6534 {
6535 /*
6536 * If the back reference is NULL, then our linked request finished
6537 * before we got a chance to setup the timer
6538 */
6539 if (req->timeout.head) {
6540 struct io_timeout_data *data = req->async_data;
6541
6542 data->timer.function = io_link_timeout_fn;
6543 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6544 data->mode);
6545 }
6546 }
6547
6548 static void io_queue_linked_timeout(struct io_kiocb *req)
6549 {
6550 struct io_ring_ctx *ctx = req->ctx;
6551
6552 spin_lock_irq(&ctx->completion_lock);
6553 __io_queue_linked_timeout(req);
6554 spin_unlock_irq(&ctx->completion_lock);
6555
6556 /* drop submission reference */
6557 io_put_req(req);
6558 }
6559
6560 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6561 {
6562 struct io_kiocb *nxt = req->link;
6563
6564 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6565 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6566 return NULL;
6567
6568 nxt->timeout.head = req;
6569 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6570 req->flags |= REQ_F_LINK_TIMEOUT;
6571 return nxt;
6572 }
6573
6574 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6575 {
6576 struct io_kiocb *linked_timeout;
6577 const struct cred *old_creds = NULL;
6578 int ret;
6579
6580 again:
6581 linked_timeout = io_prep_linked_timeout(req);
6582
6583 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6584 (req->work.flags & IO_WQ_WORK_CREDS) &&
6585 req->work.identity->creds != current_cred()) {
6586 if (old_creds)
6587 revert_creds(old_creds);
6588 if (old_creds == req->work.identity->creds)
6589 old_creds = NULL; /* restored original creds */
6590 else
6591 old_creds = override_creds(req->work.identity->creds);
6592 }
6593
6594 ret = io_issue_sqe(req, true, cs);
6595
6596 /*
6597 * We async punt it if the file wasn't marked NOWAIT, or if the file
6598 * doesn't support non-blocking read/write attempts
6599 */
6600 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6601 if (!io_arm_poll_handler(req)) {
6602 /*
6603 * Queued up for async execution, worker will release
6604 * submit reference when the iocb is actually submitted.
6605 */
6606 io_queue_async_work(req);
6607 }
6608
6609 if (linked_timeout)
6610 io_queue_linked_timeout(linked_timeout);
6611 } else if (likely(!ret)) {
6612 /* drop submission reference */
6613 req = io_put_req_find_next(req);
6614 if (linked_timeout)
6615 io_queue_linked_timeout(linked_timeout);
6616
6617 if (req) {
6618 if (!(req->flags & REQ_F_FORCE_ASYNC))
6619 goto again;
6620 io_queue_async_work(req);
6621 }
6622 } else {
6623 /* un-prep timeout, so it'll be killed as any other linked */
6624 req->flags &= ~REQ_F_LINK_TIMEOUT;
6625 req_set_fail_links(req);
6626 io_put_req(req);
6627 io_req_complete(req, ret);
6628 }
6629
6630 if (old_creds)
6631 revert_creds(old_creds);
6632 }
6633
6634 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6635 struct io_comp_state *cs)
6636 {
6637 int ret;
6638
6639 ret = io_req_defer(req, sqe);
6640 if (ret) {
6641 if (ret != -EIOCBQUEUED) {
6642 fail_req:
6643 req_set_fail_links(req);
6644 io_put_req(req);
6645 io_req_complete(req, ret);
6646 }
6647 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6648 if (!req->async_data) {
6649 ret = io_req_defer_prep(req, sqe);
6650 if (unlikely(ret))
6651 goto fail_req;
6652 }
6653 io_queue_async_work(req);
6654 } else {
6655 if (sqe) {
6656 ret = io_req_prep(req, sqe);
6657 if (unlikely(ret))
6658 goto fail_req;
6659 }
6660 __io_queue_sqe(req, cs);
6661 }
6662 }
6663
6664 static inline void io_queue_link_head(struct io_kiocb *req,
6665 struct io_comp_state *cs)
6666 {
6667 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6668 io_put_req(req);
6669 io_req_complete(req, -ECANCELED);
6670 } else
6671 io_queue_sqe(req, NULL, cs);
6672 }
6673
6674 struct io_submit_link {
6675 struct io_kiocb *head;
6676 struct io_kiocb *last;
6677 };
6678
6679 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6680 struct io_submit_link *link, struct io_comp_state *cs)
6681 {
6682 struct io_ring_ctx *ctx = req->ctx;
6683 int ret;
6684
6685 /*
6686 * If we already have a head request, queue this one for async
6687 * submittal once the head completes. If we don't have a head but
6688 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6689 * submitted sync once the chain is complete. If none of those
6690 * conditions are true (normal request), then just queue it.
6691 */
6692 if (link->head) {
6693 struct io_kiocb *head = link->head;
6694
6695 /*
6696 * Taking sequential execution of a link, draining both sides
6697 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6698 * requests in the link. So, it drains the head and the
6699 * next after the link request. The last one is done via
6700 * drain_next flag to persist the effect across calls.
6701 */
6702 if (req->flags & REQ_F_IO_DRAIN) {
6703 head->flags |= REQ_F_IO_DRAIN;
6704 ctx->drain_next = 1;
6705 }
6706 ret = io_req_defer_prep(req, sqe);
6707 if (unlikely(ret)) {
6708 /* fail even hard links since we don't submit */
6709 head->flags |= REQ_F_FAIL_LINK;
6710 return ret;
6711 }
6712 trace_io_uring_link(ctx, req, head);
6713 link->last->link = req;
6714 link->last = req;
6715
6716 /* last request of a link, enqueue the link */
6717 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6718 io_queue_link_head(head, cs);
6719 link->head = NULL;
6720 }
6721 } else {
6722 if (unlikely(ctx->drain_next)) {
6723 req->flags |= REQ_F_IO_DRAIN;
6724 ctx->drain_next = 0;
6725 }
6726 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6727 ret = io_req_defer_prep(req, sqe);
6728 if (unlikely(ret))
6729 req->flags |= REQ_F_FAIL_LINK;
6730 link->head = req;
6731 link->last = req;
6732 } else {
6733 io_queue_sqe(req, sqe, cs);
6734 }
6735 }
6736
6737 return 0;
6738 }
6739
6740 /*
6741 * Batched submission is done, ensure local IO is flushed out.
6742 */
6743 static void io_submit_state_end(struct io_submit_state *state)
6744 {
6745 if (!list_empty(&state->comp.list))
6746 io_submit_flush_completions(&state->comp);
6747 if (state->plug_started)
6748 blk_finish_plug(&state->plug);
6749 io_state_file_put(state);
6750 if (state->free_reqs)
6751 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6752 }
6753
6754 /*
6755 * Start submission side cache.
6756 */
6757 static void io_submit_state_start(struct io_submit_state *state,
6758 struct io_ring_ctx *ctx, unsigned int max_ios)
6759 {
6760 state->plug_started = false;
6761 state->comp.nr = 0;
6762 INIT_LIST_HEAD(&state->comp.list);
6763 state->comp.ctx = ctx;
6764 state->free_reqs = 0;
6765 state->file_refs = 0;
6766 state->ios_left = max_ios;
6767 }
6768
6769 static void io_commit_sqring(struct io_ring_ctx *ctx)
6770 {
6771 struct io_rings *rings = ctx->rings;
6772
6773 /*
6774 * Ensure any loads from the SQEs are done at this point,
6775 * since once we write the new head, the application could
6776 * write new data to them.
6777 */
6778 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6779 }
6780
6781 /*
6782 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6783 * that is mapped by userspace. This means that care needs to be taken to
6784 * ensure that reads are stable, as we cannot rely on userspace always
6785 * being a good citizen. If members of the sqe are validated and then later
6786 * used, it's important that those reads are done through READ_ONCE() to
6787 * prevent a re-load down the line.
6788 */
6789 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6790 {
6791 u32 *sq_array = ctx->sq_array;
6792 unsigned head;
6793
6794 /*
6795 * The cached sq head (or cq tail) serves two purposes:
6796 *
6797 * 1) allows us to batch the cost of updating the user visible
6798 * head updates.
6799 * 2) allows the kernel side to track the head on its own, even
6800 * though the application is the one updating it.
6801 */
6802 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6803 if (likely(head < ctx->sq_entries))
6804 return &ctx->sq_sqes[head];
6805
6806 /* drop invalid entries */
6807 ctx->cached_sq_dropped++;
6808 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6809 return NULL;
6810 }
6811
6812 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6813 {
6814 ctx->cached_sq_head++;
6815 }
6816
6817 /*
6818 * Check SQE restrictions (opcode and flags).
6819 *
6820 * Returns 'true' if SQE is allowed, 'false' otherwise.
6821 */
6822 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6823 struct io_kiocb *req,
6824 unsigned int sqe_flags)
6825 {
6826 if (!ctx->restricted)
6827 return true;
6828
6829 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6830 return false;
6831
6832 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6833 ctx->restrictions.sqe_flags_required)
6834 return false;
6835
6836 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6837 ctx->restrictions.sqe_flags_required))
6838 return false;
6839
6840 return true;
6841 }
6842
6843 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6844 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6845 IOSQE_BUFFER_SELECT)
6846
6847 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6848 const struct io_uring_sqe *sqe,
6849 struct io_submit_state *state)
6850 {
6851 unsigned int sqe_flags;
6852 int id, ret;
6853
6854 req->opcode = READ_ONCE(sqe->opcode);
6855 req->user_data = READ_ONCE(sqe->user_data);
6856 req->async_data = NULL;
6857 req->file = NULL;
6858 req->ctx = ctx;
6859 req->flags = 0;
6860 req->link = NULL;
6861 req->fixed_file_refs = NULL;
6862 /* one is dropped after submission, the other at completion */
6863 refcount_set(&req->refs, 2);
6864 req->task = current;
6865 req->result = 0;
6866
6867 if (unlikely(req->opcode >= IORING_OP_LAST))
6868 return -EINVAL;
6869
6870 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6871 return -EFAULT;
6872
6873 sqe_flags = READ_ONCE(sqe->flags);
6874 /* enforce forwards compatibility on users */
6875 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6876 return -EINVAL;
6877
6878 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6879 return -EACCES;
6880
6881 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6882 !io_op_defs[req->opcode].buffer_select)
6883 return -EOPNOTSUPP;
6884
6885 id = READ_ONCE(sqe->personality);
6886 if (id) {
6887 struct io_identity *iod;
6888
6889 iod = idr_find(&ctx->personality_idr, id);
6890 if (unlikely(!iod))
6891 return -EINVAL;
6892 refcount_inc(&iod->count);
6893
6894 __io_req_init_async(req);
6895 get_cred(iod->creds);
6896 req->work.identity = iod;
6897 req->work.flags |= IO_WQ_WORK_CREDS;
6898 }
6899
6900 /* same numerical values with corresponding REQ_F_*, safe to copy */
6901 req->flags |= sqe_flags;
6902
6903 /*
6904 * Plug now if we have more than 1 IO left after this, and the target
6905 * is potentially a read/write to block based storage.
6906 */
6907 if (!state->plug_started && state->ios_left > 1 &&
6908 io_op_defs[req->opcode].plug) {
6909 blk_start_plug(&state->plug);
6910 state->plug_started = true;
6911 }
6912
6913 ret = 0;
6914 if (io_op_defs[req->opcode].needs_file) {
6915 bool fixed = req->flags & REQ_F_FIXED_FILE;
6916
6917 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6918 if (unlikely(!req->file &&
6919 !io_op_defs[req->opcode].needs_file_no_error))
6920 ret = -EBADF;
6921 }
6922
6923 state->ios_left--;
6924 return ret;
6925 }
6926
6927 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6928 {
6929 struct io_submit_state state;
6930 struct io_submit_link link;
6931 int i, submitted = 0;
6932
6933 /* if we have a backlog and couldn't flush it all, return BUSY */
6934 if (test_bit(0, &ctx->sq_check_overflow)) {
6935 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6936 return -EBUSY;
6937 }
6938
6939 /* make sure SQ entry isn't read before tail */
6940 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6941
6942 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6943 return -EAGAIN;
6944
6945 percpu_counter_add(&current->io_uring->inflight, nr);
6946 refcount_add(nr, &current->usage);
6947
6948 io_submit_state_start(&state, ctx, nr);
6949 link.head = NULL;
6950
6951 for (i = 0; i < nr; i++) {
6952 const struct io_uring_sqe *sqe;
6953 struct io_kiocb *req;
6954 int err;
6955
6956 sqe = io_get_sqe(ctx);
6957 if (unlikely(!sqe)) {
6958 io_consume_sqe(ctx);
6959 break;
6960 }
6961 req = io_alloc_req(ctx, &state);
6962 if (unlikely(!req)) {
6963 if (!submitted)
6964 submitted = -EAGAIN;
6965 break;
6966 }
6967 io_consume_sqe(ctx);
6968 /* will complete beyond this point, count as submitted */
6969 submitted++;
6970
6971 err = io_init_req(ctx, req, sqe, &state);
6972 if (unlikely(err)) {
6973 fail_req:
6974 io_put_req(req);
6975 io_req_complete(req, err);
6976 break;
6977 }
6978
6979 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6980 true, io_async_submit(ctx));
6981 err = io_submit_sqe(req, sqe, &link, &state.comp);
6982 if (err)
6983 goto fail_req;
6984 }
6985
6986 if (unlikely(submitted != nr)) {
6987 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6988 struct io_uring_task *tctx = current->io_uring;
6989 int unused = nr - ref_used;
6990
6991 percpu_ref_put_many(&ctx->refs, unused);
6992 percpu_counter_sub(&tctx->inflight, unused);
6993 put_task_struct_many(current, unused);
6994 }
6995 if (link.head)
6996 io_queue_link_head(link.head, &state.comp);
6997 io_submit_state_end(&state);
6998
6999 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7000 io_commit_sqring(ctx);
7001
7002 return submitted;
7003 }
7004
7005 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7006 {
7007 /* Tell userspace we may need a wakeup call */
7008 spin_lock_irq(&ctx->completion_lock);
7009 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
7010 spin_unlock_irq(&ctx->completion_lock);
7011 }
7012
7013 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7014 {
7015 spin_lock_irq(&ctx->completion_lock);
7016 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
7017 spin_unlock_irq(&ctx->completion_lock);
7018 }
7019
7020 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7021 {
7022 unsigned int to_submit;
7023 int ret = 0;
7024
7025 to_submit = io_sqring_entries(ctx);
7026 /* if we're handling multiple rings, cap submit size for fairness */
7027 if (cap_entries && to_submit > 8)
7028 to_submit = 8;
7029
7030 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7031 unsigned nr_events = 0;
7032
7033 mutex_lock(&ctx->uring_lock);
7034 if (!list_empty(&ctx->iopoll_list))
7035 io_do_iopoll(ctx, &nr_events, 0);
7036
7037 if (to_submit && !ctx->sqo_dead &&
7038 likely(!percpu_ref_is_dying(&ctx->refs)))
7039 ret = io_submit_sqes(ctx, to_submit);
7040 mutex_unlock(&ctx->uring_lock);
7041 }
7042
7043 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
7044 wake_up(&ctx->sqo_sq_wait);
7045
7046 return ret;
7047 }
7048
7049 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7050 {
7051 struct io_ring_ctx *ctx;
7052 unsigned sq_thread_idle = 0;
7053
7054 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7055 if (sq_thread_idle < ctx->sq_thread_idle)
7056 sq_thread_idle = ctx->sq_thread_idle;
7057 }
7058
7059 sqd->sq_thread_idle = sq_thread_idle;
7060 }
7061
7062 static void io_sqd_init_new(struct io_sq_data *sqd)
7063 {
7064 struct io_ring_ctx *ctx;
7065
7066 while (!list_empty(&sqd->ctx_new_list)) {
7067 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7068 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7069 complete(&ctx->sq_thread_comp);
7070 }
7071
7072 io_sqd_update_thread_idle(sqd);
7073 }
7074
7075 static int io_sq_thread(void *data)
7076 {
7077 struct cgroup_subsys_state *cur_css = NULL;
7078 struct files_struct *old_files = current->files;
7079 struct nsproxy *old_nsproxy = current->nsproxy;
7080 const struct cred *old_cred = NULL;
7081 struct io_sq_data *sqd = data;
7082 struct io_ring_ctx *ctx;
7083 unsigned long timeout = 0;
7084 DEFINE_WAIT(wait);
7085
7086 task_lock(current);
7087 current->files = NULL;
7088 current->nsproxy = NULL;
7089 task_unlock(current);
7090
7091 while (!kthread_should_stop()) {
7092 int ret;
7093 bool cap_entries, sqt_spin, needs_sched;
7094
7095 /*
7096 * Any changes to the sqd lists are synchronized through the
7097 * kthread parking. This synchronizes the thread vs users,
7098 * the users are synchronized on the sqd->ctx_lock.
7099 */
7100 if (kthread_should_park()) {
7101 kthread_parkme();
7102 /*
7103 * When sq thread is unparked, in case the previous park operation
7104 * comes from io_put_sq_data(), which means that sq thread is going
7105 * to be stopped, so here needs to have a check.
7106 */
7107 if (kthread_should_stop())
7108 break;
7109 }
7110
7111 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7112 io_sqd_init_new(sqd);
7113 timeout = jiffies + sqd->sq_thread_idle;
7114 }
7115
7116 sqt_spin = false;
7117 cap_entries = !list_is_singular(&sqd->ctx_list);
7118 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7119 if (current->cred != ctx->creds) {
7120 if (old_cred)
7121 revert_creds(old_cred);
7122 old_cred = override_creds(ctx->creds);
7123 }
7124 io_sq_thread_associate_blkcg(ctx, &cur_css);
7125 #ifdef CONFIG_AUDIT
7126 current->loginuid = ctx->loginuid;
7127 current->sessionid = ctx->sessionid;
7128 #endif
7129
7130 ret = __io_sq_thread(ctx, cap_entries);
7131 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7132 sqt_spin = true;
7133
7134 io_sq_thread_drop_mm_files();
7135 }
7136
7137 if (sqt_spin || !time_after(jiffies, timeout)) {
7138 io_run_task_work();
7139 io_sq_thread_drop_mm_files();
7140 cond_resched();
7141 if (sqt_spin)
7142 timeout = jiffies + sqd->sq_thread_idle;
7143 continue;
7144 }
7145
7146 if (kthread_should_park())
7147 continue;
7148
7149 needs_sched = true;
7150 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7151 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7152 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7153 !list_empty_careful(&ctx->iopoll_list)) {
7154 needs_sched = false;
7155 break;
7156 }
7157 if (io_sqring_entries(ctx)) {
7158 needs_sched = false;
7159 break;
7160 }
7161 }
7162
7163 if (needs_sched) {
7164 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7165 io_ring_set_wakeup_flag(ctx);
7166
7167 schedule();
7168 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7169 io_ring_clear_wakeup_flag(ctx);
7170 }
7171
7172 finish_wait(&sqd->wait, &wait);
7173 timeout = jiffies + sqd->sq_thread_idle;
7174 }
7175
7176 io_run_task_work();
7177 io_sq_thread_drop_mm_files();
7178
7179 if (cur_css)
7180 io_sq_thread_unassociate_blkcg();
7181 if (old_cred)
7182 revert_creds(old_cred);
7183
7184 task_lock(current);
7185 current->files = old_files;
7186 current->nsproxy = old_nsproxy;
7187 task_unlock(current);
7188
7189 kthread_parkme();
7190
7191 return 0;
7192 }
7193
7194 struct io_wait_queue {
7195 struct wait_queue_entry wq;
7196 struct io_ring_ctx *ctx;
7197 unsigned to_wait;
7198 unsigned nr_timeouts;
7199 };
7200
7201 static inline bool io_should_wake(struct io_wait_queue *iowq)
7202 {
7203 struct io_ring_ctx *ctx = iowq->ctx;
7204
7205 /*
7206 * Wake up if we have enough events, or if a timeout occurred since we
7207 * started waiting. For timeouts, we always want to return to userspace,
7208 * regardless of event count.
7209 */
7210 return io_cqring_events(ctx) >= iowq->to_wait ||
7211 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7212 }
7213
7214 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7215 int wake_flags, void *key)
7216 {
7217 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7218 wq);
7219
7220 /*
7221 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7222 * the task, and the next invocation will do it.
7223 */
7224 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7225 return autoremove_wake_function(curr, mode, wake_flags, key);
7226 return -1;
7227 }
7228
7229 static int io_run_task_work_sig(void)
7230 {
7231 if (io_run_task_work())
7232 return 1;
7233 if (!signal_pending(current))
7234 return 0;
7235 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7236 return -ERESTARTSYS;
7237 return -EINTR;
7238 }
7239
7240 /* when returns >0, the caller should retry */
7241 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7242 struct io_wait_queue *iowq,
7243 signed long *timeout)
7244 {
7245 int ret;
7246
7247 /* make sure we run task_work before checking for signals */
7248 ret = io_run_task_work_sig();
7249 if (ret || io_should_wake(iowq))
7250 return ret;
7251 /* let the caller flush overflows, retry */
7252 if (test_bit(0, &ctx->cq_check_overflow))
7253 return 1;
7254
7255 *timeout = schedule_timeout(*timeout);
7256 return !*timeout ? -ETIME : 1;
7257 }
7258
7259 /*
7260 * Wait until events become available, if we don't already have some. The
7261 * application must reap them itself, as they reside on the shared cq ring.
7262 */
7263 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7264 const sigset_t __user *sig, size_t sigsz,
7265 struct __kernel_timespec __user *uts)
7266 {
7267 struct io_wait_queue iowq = {
7268 .wq = {
7269 .private = current,
7270 .func = io_wake_function,
7271 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7272 },
7273 .ctx = ctx,
7274 .to_wait = min_events,
7275 };
7276 struct io_rings *rings = ctx->rings;
7277 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7278 int ret;
7279
7280 do {
7281 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7282 if (io_cqring_events(ctx) >= min_events)
7283 return 0;
7284 if (!io_run_task_work())
7285 break;
7286 } while (1);
7287
7288 if (sig) {
7289 #ifdef CONFIG_COMPAT
7290 if (in_compat_syscall())
7291 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7292 sigsz);
7293 else
7294 #endif
7295 ret = set_user_sigmask(sig, sigsz);
7296
7297 if (ret)
7298 return ret;
7299 }
7300
7301 if (uts) {
7302 struct timespec64 ts;
7303
7304 if (get_timespec64(&ts, uts))
7305 return -EFAULT;
7306 timeout = timespec64_to_jiffies(&ts);
7307 }
7308
7309 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7310 trace_io_uring_cqring_wait(ctx, min_events);
7311 do {
7312 /* if we can't even flush overflow, don't wait for more */
7313 if (!io_cqring_overflow_flush(ctx, false, NULL, NULL)) {
7314 ret = -EBUSY;
7315 break;
7316 }
7317 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7318 TASK_INTERRUPTIBLE);
7319 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7320 finish_wait(&ctx->wait, &iowq.wq);
7321 cond_resched();
7322 } while (ret > 0);
7323
7324 restore_saved_sigmask_unless(ret == -EINTR);
7325
7326 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7327 }
7328
7329 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7330 {
7331 #if defined(CONFIG_UNIX)
7332 if (ctx->ring_sock) {
7333 struct sock *sock = ctx->ring_sock->sk;
7334 struct sk_buff *skb;
7335
7336 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7337 kfree_skb(skb);
7338 }
7339 #else
7340 int i;
7341
7342 for (i = 0; i < ctx->nr_user_files; i++) {
7343 struct file *file;
7344
7345 file = io_file_from_index(ctx, i);
7346 if (file)
7347 fput(file);
7348 }
7349 #endif
7350 }
7351
7352 static void io_file_ref_kill(struct percpu_ref *ref)
7353 {
7354 struct fixed_file_data *data;
7355
7356 data = container_of(ref, struct fixed_file_data, refs);
7357 complete(&data->done);
7358 }
7359
7360 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7361 struct fixed_file_ref_node *ref_node)
7362 {
7363 spin_lock_bh(&file_data->lock);
7364 file_data->node = ref_node;
7365 list_add_tail(&ref_node->node, &file_data->ref_list);
7366 spin_unlock_bh(&file_data->lock);
7367 percpu_ref_get(&file_data->refs);
7368 }
7369
7370 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7371 {
7372 struct fixed_file_data *data = ctx->file_data;
7373 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7374 unsigned nr_tables, i;
7375 int ret;
7376
7377 if (!data)
7378 return -ENXIO;
7379 backup_node = alloc_fixed_file_ref_node(ctx);
7380 if (!backup_node)
7381 return -ENOMEM;
7382
7383 spin_lock_bh(&data->lock);
7384 ref_node = data->node;
7385 spin_unlock_bh(&data->lock);
7386 if (ref_node)
7387 percpu_ref_kill(&ref_node->refs);
7388
7389 percpu_ref_kill(&data->refs);
7390
7391 /* wait for all refs nodes to complete */
7392 flush_delayed_work(&ctx->file_put_work);
7393 do {
7394 ret = wait_for_completion_interruptible(&data->done);
7395 if (!ret)
7396 break;
7397 ret = io_run_task_work_sig();
7398 if (ret < 0) {
7399 percpu_ref_resurrect(&data->refs);
7400 reinit_completion(&data->done);
7401 io_sqe_files_set_node(data, backup_node);
7402 return ret;
7403 }
7404 } while (1);
7405
7406 __io_sqe_files_unregister(ctx);
7407 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7408 for (i = 0; i < nr_tables; i++)
7409 kfree(data->table[i].files);
7410 kfree(data->table);
7411 percpu_ref_exit(&data->refs);
7412 kfree(data);
7413 ctx->file_data = NULL;
7414 ctx->nr_user_files = 0;
7415 destroy_fixed_file_ref_node(backup_node);
7416 return 0;
7417 }
7418
7419 static void io_put_sq_data(struct io_sq_data *sqd)
7420 {
7421 if (refcount_dec_and_test(&sqd->refs)) {
7422 /*
7423 * The park is a bit of a work-around, without it we get
7424 * warning spews on shutdown with SQPOLL set and affinity
7425 * set to a single CPU.
7426 */
7427 if (sqd->thread) {
7428 kthread_park(sqd->thread);
7429 kthread_stop(sqd->thread);
7430 }
7431
7432 kfree(sqd);
7433 }
7434 }
7435
7436 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7437 {
7438 struct io_ring_ctx *ctx_attach;
7439 struct io_sq_data *sqd;
7440 struct fd f;
7441
7442 f = fdget(p->wq_fd);
7443 if (!f.file)
7444 return ERR_PTR(-ENXIO);
7445 if (f.file->f_op != &io_uring_fops) {
7446 fdput(f);
7447 return ERR_PTR(-EINVAL);
7448 }
7449
7450 ctx_attach = f.file->private_data;
7451 sqd = ctx_attach->sq_data;
7452 if (!sqd) {
7453 fdput(f);
7454 return ERR_PTR(-EINVAL);
7455 }
7456
7457 refcount_inc(&sqd->refs);
7458 fdput(f);
7459 return sqd;
7460 }
7461
7462 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7463 {
7464 struct io_sq_data *sqd;
7465
7466 if (p->flags & IORING_SETUP_ATTACH_WQ)
7467 return io_attach_sq_data(p);
7468
7469 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7470 if (!sqd)
7471 return ERR_PTR(-ENOMEM);
7472
7473 refcount_set(&sqd->refs, 1);
7474 INIT_LIST_HEAD(&sqd->ctx_list);
7475 INIT_LIST_HEAD(&sqd->ctx_new_list);
7476 mutex_init(&sqd->ctx_lock);
7477 mutex_init(&sqd->lock);
7478 init_waitqueue_head(&sqd->wait);
7479 return sqd;
7480 }
7481
7482 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7483 __releases(&sqd->lock)
7484 {
7485 if (!sqd->thread)
7486 return;
7487 kthread_unpark(sqd->thread);
7488 mutex_unlock(&sqd->lock);
7489 }
7490
7491 static void io_sq_thread_park(struct io_sq_data *sqd)
7492 __acquires(&sqd->lock)
7493 {
7494 if (!sqd->thread)
7495 return;
7496 mutex_lock(&sqd->lock);
7497 kthread_park(sqd->thread);
7498 }
7499
7500 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7501 {
7502 struct io_sq_data *sqd = ctx->sq_data;
7503
7504 if (sqd) {
7505 if (sqd->thread) {
7506 /*
7507 * We may arrive here from the error branch in
7508 * io_sq_offload_create() where the kthread is created
7509 * without being waked up, thus wake it up now to make
7510 * sure the wait will complete.
7511 */
7512 wake_up_process(sqd->thread);
7513 wait_for_completion(&ctx->sq_thread_comp);
7514
7515 io_sq_thread_park(sqd);
7516 }
7517
7518 mutex_lock(&sqd->ctx_lock);
7519 list_del(&ctx->sqd_list);
7520 io_sqd_update_thread_idle(sqd);
7521 mutex_unlock(&sqd->ctx_lock);
7522
7523 if (sqd->thread)
7524 io_sq_thread_unpark(sqd);
7525
7526 io_put_sq_data(sqd);
7527 ctx->sq_data = NULL;
7528 }
7529 }
7530
7531 static void io_finish_async(struct io_ring_ctx *ctx)
7532 {
7533 io_sq_thread_stop(ctx);
7534
7535 if (ctx->io_wq) {
7536 io_wq_destroy(ctx->io_wq);
7537 ctx->io_wq = NULL;
7538 }
7539 }
7540
7541 #if defined(CONFIG_UNIX)
7542 /*
7543 * Ensure the UNIX gc is aware of our file set, so we are certain that
7544 * the io_uring can be safely unregistered on process exit, even if we have
7545 * loops in the file referencing.
7546 */
7547 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7548 {
7549 struct sock *sk = ctx->ring_sock->sk;
7550 struct scm_fp_list *fpl;
7551 struct sk_buff *skb;
7552 int i, nr_files;
7553
7554 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7555 if (!fpl)
7556 return -ENOMEM;
7557
7558 skb = alloc_skb(0, GFP_KERNEL);
7559 if (!skb) {
7560 kfree(fpl);
7561 return -ENOMEM;
7562 }
7563
7564 skb->sk = sk;
7565
7566 nr_files = 0;
7567 fpl->user = get_uid(ctx->user);
7568 for (i = 0; i < nr; i++) {
7569 struct file *file = io_file_from_index(ctx, i + offset);
7570
7571 if (!file)
7572 continue;
7573 fpl->fp[nr_files] = get_file(file);
7574 unix_inflight(fpl->user, fpl->fp[nr_files]);
7575 nr_files++;
7576 }
7577
7578 if (nr_files) {
7579 fpl->max = SCM_MAX_FD;
7580 fpl->count = nr_files;
7581 UNIXCB(skb).fp = fpl;
7582 skb->destructor = unix_destruct_scm;
7583 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7584 skb_queue_head(&sk->sk_receive_queue, skb);
7585
7586 for (i = 0; i < nr_files; i++)
7587 fput(fpl->fp[i]);
7588 } else {
7589 kfree_skb(skb);
7590 kfree(fpl);
7591 }
7592
7593 return 0;
7594 }
7595
7596 /*
7597 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7598 * causes regular reference counting to break down. We rely on the UNIX
7599 * garbage collection to take care of this problem for us.
7600 */
7601 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7602 {
7603 unsigned left, total;
7604 int ret = 0;
7605
7606 total = 0;
7607 left = ctx->nr_user_files;
7608 while (left) {
7609 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7610
7611 ret = __io_sqe_files_scm(ctx, this_files, total);
7612 if (ret)
7613 break;
7614 left -= this_files;
7615 total += this_files;
7616 }
7617
7618 if (!ret)
7619 return 0;
7620
7621 while (total < ctx->nr_user_files) {
7622 struct file *file = io_file_from_index(ctx, total);
7623
7624 if (file)
7625 fput(file);
7626 total++;
7627 }
7628
7629 return ret;
7630 }
7631 #else
7632 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7633 {
7634 return 0;
7635 }
7636 #endif
7637
7638 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7639 unsigned nr_tables, unsigned nr_files)
7640 {
7641 int i;
7642
7643 for (i = 0; i < nr_tables; i++) {
7644 struct fixed_file_table *table = &file_data->table[i];
7645 unsigned this_files;
7646
7647 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7648 table->files = kcalloc(this_files, sizeof(struct file *),
7649 GFP_KERNEL);
7650 if (!table->files)
7651 break;
7652 nr_files -= this_files;
7653 }
7654
7655 if (i == nr_tables)
7656 return 0;
7657
7658 for (i = 0; i < nr_tables; i++) {
7659 struct fixed_file_table *table = &file_data->table[i];
7660 kfree(table->files);
7661 }
7662 return 1;
7663 }
7664
7665 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7666 {
7667 #if defined(CONFIG_UNIX)
7668 struct sock *sock = ctx->ring_sock->sk;
7669 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7670 struct sk_buff *skb;
7671 int i;
7672
7673 __skb_queue_head_init(&list);
7674
7675 /*
7676 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7677 * remove this entry and rearrange the file array.
7678 */
7679 skb = skb_dequeue(head);
7680 while (skb) {
7681 struct scm_fp_list *fp;
7682
7683 fp = UNIXCB(skb).fp;
7684 for (i = 0; i < fp->count; i++) {
7685 int left;
7686
7687 if (fp->fp[i] != file)
7688 continue;
7689
7690 unix_notinflight(fp->user, fp->fp[i]);
7691 left = fp->count - 1 - i;
7692 if (left) {
7693 memmove(&fp->fp[i], &fp->fp[i + 1],
7694 left * sizeof(struct file *));
7695 }
7696 fp->count--;
7697 if (!fp->count) {
7698 kfree_skb(skb);
7699 skb = NULL;
7700 } else {
7701 __skb_queue_tail(&list, skb);
7702 }
7703 fput(file);
7704 file = NULL;
7705 break;
7706 }
7707
7708 if (!file)
7709 break;
7710
7711 __skb_queue_tail(&list, skb);
7712
7713 skb = skb_dequeue(head);
7714 }
7715
7716 if (skb_peek(&list)) {
7717 spin_lock_irq(&head->lock);
7718 while ((skb = __skb_dequeue(&list)) != NULL)
7719 __skb_queue_tail(head, skb);
7720 spin_unlock_irq(&head->lock);
7721 }
7722 #else
7723 fput(file);
7724 #endif
7725 }
7726
7727 struct io_file_put {
7728 struct list_head list;
7729 struct file *file;
7730 };
7731
7732 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7733 {
7734 struct fixed_file_data *file_data = ref_node->file_data;
7735 struct io_ring_ctx *ctx = file_data->ctx;
7736 struct io_file_put *pfile, *tmp;
7737
7738 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7739 list_del(&pfile->list);
7740 io_ring_file_put(ctx, pfile->file);
7741 kfree(pfile);
7742 }
7743
7744 percpu_ref_exit(&ref_node->refs);
7745 kfree(ref_node);
7746 percpu_ref_put(&file_data->refs);
7747 }
7748
7749 static void io_file_put_work(struct work_struct *work)
7750 {
7751 struct io_ring_ctx *ctx;
7752 struct llist_node *node;
7753
7754 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7755 node = llist_del_all(&ctx->file_put_llist);
7756
7757 while (node) {
7758 struct fixed_file_ref_node *ref_node;
7759 struct llist_node *next = node->next;
7760
7761 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7762 __io_file_put_work(ref_node);
7763 node = next;
7764 }
7765 }
7766
7767 static void io_file_data_ref_zero(struct percpu_ref *ref)
7768 {
7769 struct fixed_file_ref_node *ref_node;
7770 struct fixed_file_data *data;
7771 struct io_ring_ctx *ctx;
7772 bool first_add = false;
7773 int delay = HZ;
7774
7775 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7776 data = ref_node->file_data;
7777 ctx = data->ctx;
7778
7779 spin_lock_bh(&data->lock);
7780 ref_node->done = true;
7781
7782 while (!list_empty(&data->ref_list)) {
7783 ref_node = list_first_entry(&data->ref_list,
7784 struct fixed_file_ref_node, node);
7785 /* recycle ref nodes in order */
7786 if (!ref_node->done)
7787 break;
7788 list_del(&ref_node->node);
7789 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7790 }
7791 spin_unlock_bh(&data->lock);
7792
7793 if (percpu_ref_is_dying(&data->refs))
7794 delay = 0;
7795
7796 if (!delay)
7797 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7798 else if (first_add)
7799 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7800 }
7801
7802 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7803 struct io_ring_ctx *ctx)
7804 {
7805 struct fixed_file_ref_node *ref_node;
7806
7807 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7808 if (!ref_node)
7809 return NULL;
7810
7811 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7812 0, GFP_KERNEL)) {
7813 kfree(ref_node);
7814 return NULL;
7815 }
7816 INIT_LIST_HEAD(&ref_node->node);
7817 INIT_LIST_HEAD(&ref_node->file_list);
7818 ref_node->file_data = ctx->file_data;
7819 ref_node->done = false;
7820 return ref_node;
7821 }
7822
7823 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7824 {
7825 percpu_ref_exit(&ref_node->refs);
7826 kfree(ref_node);
7827 }
7828
7829 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7830 unsigned nr_args)
7831 {
7832 __s32 __user *fds = (__s32 __user *) arg;
7833 unsigned nr_tables, i;
7834 struct file *file;
7835 int fd, ret = -ENOMEM;
7836 struct fixed_file_ref_node *ref_node;
7837 struct fixed_file_data *file_data;
7838
7839 if (ctx->file_data)
7840 return -EBUSY;
7841 if (!nr_args)
7842 return -EINVAL;
7843 if (nr_args > IORING_MAX_FIXED_FILES)
7844 return -EMFILE;
7845
7846 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7847 if (!file_data)
7848 return -ENOMEM;
7849 file_data->ctx = ctx;
7850 init_completion(&file_data->done);
7851 INIT_LIST_HEAD(&file_data->ref_list);
7852 spin_lock_init(&file_data->lock);
7853
7854 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7855 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7856 GFP_KERNEL);
7857 if (!file_data->table)
7858 goto out_free;
7859
7860 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7861 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7862 goto out_free;
7863
7864 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7865 goto out_ref;
7866 ctx->file_data = file_data;
7867
7868 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7869 struct fixed_file_table *table;
7870 unsigned index;
7871
7872 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7873 ret = -EFAULT;
7874 goto out_fput;
7875 }
7876 /* allow sparse sets */
7877 if (fd == -1)
7878 continue;
7879
7880 file = fget(fd);
7881 ret = -EBADF;
7882 if (!file)
7883 goto out_fput;
7884
7885 /*
7886 * Don't allow io_uring instances to be registered. If UNIX
7887 * isn't enabled, then this causes a reference cycle and this
7888 * instance can never get freed. If UNIX is enabled we'll
7889 * handle it just fine, but there's still no point in allowing
7890 * a ring fd as it doesn't support regular read/write anyway.
7891 */
7892 if (file->f_op == &io_uring_fops) {
7893 fput(file);
7894 goto out_fput;
7895 }
7896 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7897 index = i & IORING_FILE_TABLE_MASK;
7898 table->files[index] = file;
7899 }
7900
7901 ret = io_sqe_files_scm(ctx);
7902 if (ret) {
7903 io_sqe_files_unregister(ctx);
7904 return ret;
7905 }
7906
7907 ref_node = alloc_fixed_file_ref_node(ctx);
7908 if (!ref_node) {
7909 io_sqe_files_unregister(ctx);
7910 return -ENOMEM;
7911 }
7912
7913 io_sqe_files_set_node(file_data, ref_node);
7914 return ret;
7915 out_fput:
7916 for (i = 0; i < ctx->nr_user_files; i++) {
7917 file = io_file_from_index(ctx, i);
7918 if (file)
7919 fput(file);
7920 }
7921 for (i = 0; i < nr_tables; i++)
7922 kfree(file_data->table[i].files);
7923 ctx->nr_user_files = 0;
7924 out_ref:
7925 percpu_ref_exit(&file_data->refs);
7926 out_free:
7927 kfree(file_data->table);
7928 kfree(file_data);
7929 ctx->file_data = NULL;
7930 return ret;
7931 }
7932
7933 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7934 int index)
7935 {
7936 #if defined(CONFIG_UNIX)
7937 struct sock *sock = ctx->ring_sock->sk;
7938 struct sk_buff_head *head = &sock->sk_receive_queue;
7939 struct sk_buff *skb;
7940
7941 /*
7942 * See if we can merge this file into an existing skb SCM_RIGHTS
7943 * file set. If there's no room, fall back to allocating a new skb
7944 * and filling it in.
7945 */
7946 spin_lock_irq(&head->lock);
7947 skb = skb_peek(head);
7948 if (skb) {
7949 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7950
7951 if (fpl->count < SCM_MAX_FD) {
7952 __skb_unlink(skb, head);
7953 spin_unlock_irq(&head->lock);
7954 fpl->fp[fpl->count] = get_file(file);
7955 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7956 fpl->count++;
7957 spin_lock_irq(&head->lock);
7958 __skb_queue_head(head, skb);
7959 } else {
7960 skb = NULL;
7961 }
7962 }
7963 spin_unlock_irq(&head->lock);
7964
7965 if (skb) {
7966 fput(file);
7967 return 0;
7968 }
7969
7970 return __io_sqe_files_scm(ctx, 1, index);
7971 #else
7972 return 0;
7973 #endif
7974 }
7975
7976 static int io_queue_file_removal(struct fixed_file_data *data,
7977 struct file *file)
7978 {
7979 struct io_file_put *pfile;
7980 struct fixed_file_ref_node *ref_node = data->node;
7981
7982 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7983 if (!pfile)
7984 return -ENOMEM;
7985
7986 pfile->file = file;
7987 list_add(&pfile->list, &ref_node->file_list);
7988
7989 return 0;
7990 }
7991
7992 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7993 struct io_uring_files_update *up,
7994 unsigned nr_args)
7995 {
7996 struct fixed_file_data *data = ctx->file_data;
7997 struct fixed_file_ref_node *ref_node;
7998 struct file *file;
7999 __s32 __user *fds;
8000 int fd, i, err;
8001 __u32 done;
8002 bool needs_switch = false;
8003
8004 if (check_add_overflow(up->offset, nr_args, &done))
8005 return -EOVERFLOW;
8006 if (done > ctx->nr_user_files)
8007 return -EINVAL;
8008
8009 ref_node = alloc_fixed_file_ref_node(ctx);
8010 if (!ref_node)
8011 return -ENOMEM;
8012
8013 done = 0;
8014 fds = u64_to_user_ptr(up->fds);
8015 while (nr_args) {
8016 struct fixed_file_table *table;
8017 unsigned index;
8018
8019 err = 0;
8020 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
8021 err = -EFAULT;
8022 break;
8023 }
8024 i = array_index_nospec(up->offset, ctx->nr_user_files);
8025 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
8026 index = i & IORING_FILE_TABLE_MASK;
8027 if (table->files[index]) {
8028 file = table->files[index];
8029 err = io_queue_file_removal(data, file);
8030 if (err)
8031 break;
8032 table->files[index] = NULL;
8033 needs_switch = true;
8034 }
8035 if (fd != -1) {
8036 file = fget(fd);
8037 if (!file) {
8038 err = -EBADF;
8039 break;
8040 }
8041 /*
8042 * Don't allow io_uring instances to be registered. If
8043 * UNIX isn't enabled, then this causes a reference
8044 * cycle and this instance can never get freed. If UNIX
8045 * is enabled we'll handle it just fine, but there's
8046 * still no point in allowing a ring fd as it doesn't
8047 * support regular read/write anyway.
8048 */
8049 if (file->f_op == &io_uring_fops) {
8050 fput(file);
8051 err = -EBADF;
8052 break;
8053 }
8054 table->files[index] = file;
8055 err = io_sqe_file_register(ctx, file, i);
8056 if (err) {
8057 table->files[index] = NULL;
8058 fput(file);
8059 break;
8060 }
8061 }
8062 nr_args--;
8063 done++;
8064 up->offset++;
8065 }
8066
8067 if (needs_switch) {
8068 percpu_ref_kill(&data->node->refs);
8069 io_sqe_files_set_node(data, ref_node);
8070 } else
8071 destroy_fixed_file_ref_node(ref_node);
8072
8073 return done ? done : err;
8074 }
8075
8076 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8077 unsigned nr_args)
8078 {
8079 struct io_uring_files_update up;
8080
8081 if (!ctx->file_data)
8082 return -ENXIO;
8083 if (!nr_args)
8084 return -EINVAL;
8085 if (copy_from_user(&up, arg, sizeof(up)))
8086 return -EFAULT;
8087 if (up.resv)
8088 return -EINVAL;
8089
8090 return __io_sqe_files_update(ctx, &up, nr_args);
8091 }
8092
8093 static struct io_wq_work *io_free_work(struct io_wq_work *work)
8094 {
8095 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8096
8097 req = io_put_req_find_next(req);
8098 return req ? &req->work : NULL;
8099 }
8100
8101 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8102 struct io_uring_params *p)
8103 {
8104 struct io_wq_data data;
8105 struct fd f;
8106 struct io_ring_ctx *ctx_attach;
8107 unsigned int concurrency;
8108 int ret = 0;
8109
8110 data.user = ctx->user;
8111 data.free_work = io_free_work;
8112 data.do_work = io_wq_submit_work;
8113
8114 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8115 /* Do QD, or 4 * CPUS, whatever is smallest */
8116 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8117
8118 ctx->io_wq = io_wq_create(concurrency, &data);
8119 if (IS_ERR(ctx->io_wq)) {
8120 ret = PTR_ERR(ctx->io_wq);
8121 ctx->io_wq = NULL;
8122 }
8123 return ret;
8124 }
8125
8126 f = fdget(p->wq_fd);
8127 if (!f.file)
8128 return -EBADF;
8129
8130 if (f.file->f_op != &io_uring_fops) {
8131 ret = -EINVAL;
8132 goto out_fput;
8133 }
8134
8135 ctx_attach = f.file->private_data;
8136 /* @io_wq is protected by holding the fd */
8137 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8138 ret = -EINVAL;
8139 goto out_fput;
8140 }
8141
8142 ctx->io_wq = ctx_attach->io_wq;
8143 out_fput:
8144 fdput(f);
8145 return ret;
8146 }
8147
8148 static int io_uring_alloc_task_context(struct task_struct *task)
8149 {
8150 struct io_uring_task *tctx;
8151 int ret;
8152
8153 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8154 if (unlikely(!tctx))
8155 return -ENOMEM;
8156
8157 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8158 if (unlikely(ret)) {
8159 kfree(tctx);
8160 return ret;
8161 }
8162
8163 xa_init(&tctx->xa);
8164 init_waitqueue_head(&tctx->wait);
8165 tctx->last = NULL;
8166 atomic_set(&tctx->in_idle, 0);
8167 tctx->sqpoll = false;
8168 io_init_identity(&tctx->__identity);
8169 tctx->identity = &tctx->__identity;
8170 task->io_uring = tctx;
8171 return 0;
8172 }
8173
8174 void __io_uring_free(struct task_struct *tsk)
8175 {
8176 struct io_uring_task *tctx = tsk->io_uring;
8177
8178 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8179 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8180 if (tctx->identity != &tctx->__identity)
8181 kfree(tctx->identity);
8182 percpu_counter_destroy(&tctx->inflight);
8183 kfree(tctx);
8184 tsk->io_uring = NULL;
8185 }
8186
8187 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8188 struct io_uring_params *p)
8189 {
8190 int ret;
8191
8192 if (ctx->flags & IORING_SETUP_SQPOLL) {
8193 struct io_sq_data *sqd;
8194
8195 ret = -EPERM;
8196 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8197 goto err;
8198
8199 sqd = io_get_sq_data(p);
8200 if (IS_ERR(sqd)) {
8201 ret = PTR_ERR(sqd);
8202 goto err;
8203 }
8204
8205 ctx->sq_data = sqd;
8206 io_sq_thread_park(sqd);
8207 mutex_lock(&sqd->ctx_lock);
8208 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8209 mutex_unlock(&sqd->ctx_lock);
8210 io_sq_thread_unpark(sqd);
8211
8212 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8213 if (!ctx->sq_thread_idle)
8214 ctx->sq_thread_idle = HZ;
8215
8216 if (sqd->thread)
8217 goto done;
8218
8219 if (p->flags & IORING_SETUP_SQ_AFF) {
8220 int cpu = p->sq_thread_cpu;
8221
8222 ret = -EINVAL;
8223 if (cpu >= nr_cpu_ids)
8224 goto err;
8225 if (!cpu_online(cpu))
8226 goto err;
8227
8228 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8229 cpu, "io_uring-sq");
8230 } else {
8231 sqd->thread = kthread_create(io_sq_thread, sqd,
8232 "io_uring-sq");
8233 }
8234 if (IS_ERR(sqd->thread)) {
8235 ret = PTR_ERR(sqd->thread);
8236 sqd->thread = NULL;
8237 goto err;
8238 }
8239 ret = io_uring_alloc_task_context(sqd->thread);
8240 if (ret)
8241 goto err;
8242 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8243 /* Can't have SQ_AFF without SQPOLL */
8244 ret = -EINVAL;
8245 goto err;
8246 }
8247
8248 done:
8249 ret = io_init_wq_offload(ctx, p);
8250 if (ret)
8251 goto err;
8252
8253 return 0;
8254 err:
8255 io_finish_async(ctx);
8256 return ret;
8257 }
8258
8259 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8260 {
8261 struct io_sq_data *sqd = ctx->sq_data;
8262
8263 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8264 wake_up_process(sqd->thread);
8265 }
8266
8267 static inline void __io_unaccount_mem(struct user_struct *user,
8268 unsigned long nr_pages)
8269 {
8270 atomic_long_sub(nr_pages, &user->locked_vm);
8271 }
8272
8273 static inline int __io_account_mem(struct user_struct *user,
8274 unsigned long nr_pages)
8275 {
8276 unsigned long page_limit, cur_pages, new_pages;
8277
8278 /* Don't allow more pages than we can safely lock */
8279 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8280
8281 do {
8282 cur_pages = atomic_long_read(&user->locked_vm);
8283 new_pages = cur_pages + nr_pages;
8284 if (new_pages > page_limit)
8285 return -ENOMEM;
8286 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8287 new_pages) != cur_pages);
8288
8289 return 0;
8290 }
8291
8292 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8293 enum io_mem_account acct)
8294 {
8295 if (ctx->limit_mem)
8296 __io_unaccount_mem(ctx->user, nr_pages);
8297
8298 if (ctx->mm_account) {
8299 if (acct == ACCT_LOCKED) {
8300 mmap_write_lock(ctx->mm_account);
8301 ctx->mm_account->locked_vm -= nr_pages;
8302 mmap_write_unlock(ctx->mm_account);
8303 }else if (acct == ACCT_PINNED) {
8304 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8305 }
8306 }
8307 }
8308
8309 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8310 enum io_mem_account acct)
8311 {
8312 int ret;
8313
8314 if (ctx->limit_mem) {
8315 ret = __io_account_mem(ctx->user, nr_pages);
8316 if (ret)
8317 return ret;
8318 }
8319
8320 if (ctx->mm_account) {
8321 if (acct == ACCT_LOCKED) {
8322 mmap_write_lock(ctx->mm_account);
8323 ctx->mm_account->locked_vm += nr_pages;
8324 mmap_write_unlock(ctx->mm_account);
8325 } else if (acct == ACCT_PINNED) {
8326 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8327 }
8328 }
8329
8330 return 0;
8331 }
8332
8333 static void io_mem_free(void *ptr)
8334 {
8335 struct page *page;
8336
8337 if (!ptr)
8338 return;
8339
8340 page = virt_to_head_page(ptr);
8341 if (put_page_testzero(page))
8342 free_compound_page(page);
8343 }
8344
8345 static void *io_mem_alloc(size_t size)
8346 {
8347 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8348 __GFP_NORETRY;
8349
8350 return (void *) __get_free_pages(gfp_flags, get_order(size));
8351 }
8352
8353 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8354 size_t *sq_offset)
8355 {
8356 struct io_rings *rings;
8357 size_t off, sq_array_size;
8358
8359 off = struct_size(rings, cqes, cq_entries);
8360 if (off == SIZE_MAX)
8361 return SIZE_MAX;
8362
8363 #ifdef CONFIG_SMP
8364 off = ALIGN(off, SMP_CACHE_BYTES);
8365 if (off == 0)
8366 return SIZE_MAX;
8367 #endif
8368
8369 if (sq_offset)
8370 *sq_offset = off;
8371
8372 sq_array_size = array_size(sizeof(u32), sq_entries);
8373 if (sq_array_size == SIZE_MAX)
8374 return SIZE_MAX;
8375
8376 if (check_add_overflow(off, sq_array_size, &off))
8377 return SIZE_MAX;
8378
8379 return off;
8380 }
8381
8382 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8383 {
8384 size_t pages;
8385
8386 pages = (size_t)1 << get_order(
8387 rings_size(sq_entries, cq_entries, NULL));
8388 pages += (size_t)1 << get_order(
8389 array_size(sizeof(struct io_uring_sqe), sq_entries));
8390
8391 return pages;
8392 }
8393
8394 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8395 {
8396 int i, j;
8397
8398 if (!ctx->user_bufs)
8399 return -ENXIO;
8400
8401 for (i = 0; i < ctx->nr_user_bufs; i++) {
8402 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8403
8404 for (j = 0; j < imu->nr_bvecs; j++)
8405 unpin_user_page(imu->bvec[j].bv_page);
8406
8407 if (imu->acct_pages)
8408 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8409 kvfree(imu->bvec);
8410 imu->nr_bvecs = 0;
8411 }
8412
8413 kfree(ctx->user_bufs);
8414 ctx->user_bufs = NULL;
8415 ctx->nr_user_bufs = 0;
8416 return 0;
8417 }
8418
8419 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8420 void __user *arg, unsigned index)
8421 {
8422 struct iovec __user *src;
8423
8424 #ifdef CONFIG_COMPAT
8425 if (ctx->compat) {
8426 struct compat_iovec __user *ciovs;
8427 struct compat_iovec ciov;
8428
8429 ciovs = (struct compat_iovec __user *) arg;
8430 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8431 return -EFAULT;
8432
8433 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8434 dst->iov_len = ciov.iov_len;
8435 return 0;
8436 }
8437 #endif
8438 src = (struct iovec __user *) arg;
8439 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8440 return -EFAULT;
8441 return 0;
8442 }
8443
8444 /*
8445 * Not super efficient, but this is just a registration time. And we do cache
8446 * the last compound head, so generally we'll only do a full search if we don't
8447 * match that one.
8448 *
8449 * We check if the given compound head page has already been accounted, to
8450 * avoid double accounting it. This allows us to account the full size of the
8451 * page, not just the constituent pages of a huge page.
8452 */
8453 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8454 int nr_pages, struct page *hpage)
8455 {
8456 int i, j;
8457
8458 /* check current page array */
8459 for (i = 0; i < nr_pages; i++) {
8460 if (!PageCompound(pages[i]))
8461 continue;
8462 if (compound_head(pages[i]) == hpage)
8463 return true;
8464 }
8465
8466 /* check previously registered pages */
8467 for (i = 0; i < ctx->nr_user_bufs; i++) {
8468 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8469
8470 for (j = 0; j < imu->nr_bvecs; j++) {
8471 if (!PageCompound(imu->bvec[j].bv_page))
8472 continue;
8473 if (compound_head(imu->bvec[j].bv_page) == hpage)
8474 return true;
8475 }
8476 }
8477
8478 return false;
8479 }
8480
8481 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8482 int nr_pages, struct io_mapped_ubuf *imu,
8483 struct page **last_hpage)
8484 {
8485 int i, ret;
8486
8487 for (i = 0; i < nr_pages; i++) {
8488 if (!PageCompound(pages[i])) {
8489 imu->acct_pages++;
8490 } else {
8491 struct page *hpage;
8492
8493 hpage = compound_head(pages[i]);
8494 if (hpage == *last_hpage)
8495 continue;
8496 *last_hpage = hpage;
8497 if (headpage_already_acct(ctx, pages, i, hpage))
8498 continue;
8499 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8500 }
8501 }
8502
8503 if (!imu->acct_pages)
8504 return 0;
8505
8506 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8507 if (ret)
8508 imu->acct_pages = 0;
8509 return ret;
8510 }
8511
8512 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8513 unsigned nr_args)
8514 {
8515 struct vm_area_struct **vmas = NULL;
8516 struct page **pages = NULL;
8517 struct page *last_hpage = NULL;
8518 int i, j, got_pages = 0;
8519 int ret = -EINVAL;
8520
8521 if (ctx->user_bufs)
8522 return -EBUSY;
8523 if (!nr_args || nr_args > UIO_MAXIOV)
8524 return -EINVAL;
8525
8526 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8527 GFP_KERNEL);
8528 if (!ctx->user_bufs)
8529 return -ENOMEM;
8530
8531 for (i = 0; i < nr_args; i++) {
8532 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8533 unsigned long off, start, end, ubuf;
8534 int pret, nr_pages;
8535 struct iovec iov;
8536 size_t size;
8537
8538 ret = io_copy_iov(ctx, &iov, arg, i);
8539 if (ret)
8540 goto err;
8541
8542 /*
8543 * Don't impose further limits on the size and buffer
8544 * constraints here, we'll -EINVAL later when IO is
8545 * submitted if they are wrong.
8546 */
8547 ret = -EFAULT;
8548 if (!iov.iov_base || !iov.iov_len)
8549 goto err;
8550
8551 /* arbitrary limit, but we need something */
8552 if (iov.iov_len > SZ_1G)
8553 goto err;
8554
8555 ubuf = (unsigned long) iov.iov_base;
8556 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8557 start = ubuf >> PAGE_SHIFT;
8558 nr_pages = end - start;
8559
8560 ret = 0;
8561 if (!pages || nr_pages > got_pages) {
8562 kvfree(vmas);
8563 kvfree(pages);
8564 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8565 GFP_KERNEL);
8566 vmas = kvmalloc_array(nr_pages,
8567 sizeof(struct vm_area_struct *),
8568 GFP_KERNEL);
8569 if (!pages || !vmas) {
8570 ret = -ENOMEM;
8571 goto err;
8572 }
8573 got_pages = nr_pages;
8574 }
8575
8576 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8577 GFP_KERNEL);
8578 ret = -ENOMEM;
8579 if (!imu->bvec)
8580 goto err;
8581
8582 ret = 0;
8583 mmap_read_lock(current->mm);
8584 pret = pin_user_pages(ubuf, nr_pages,
8585 FOLL_WRITE | FOLL_LONGTERM,
8586 pages, vmas);
8587 if (pret == nr_pages) {
8588 /* don't support file backed memory */
8589 for (j = 0; j < nr_pages; j++) {
8590 struct vm_area_struct *vma = vmas[j];
8591
8592 if (vma->vm_file &&
8593 !is_file_hugepages(vma->vm_file)) {
8594 ret = -EOPNOTSUPP;
8595 break;
8596 }
8597 }
8598 } else {
8599 ret = pret < 0 ? pret : -EFAULT;
8600 }
8601 mmap_read_unlock(current->mm);
8602 if (ret) {
8603 /*
8604 * if we did partial map, or found file backed vmas,
8605 * release any pages we did get
8606 */
8607 if (pret > 0)
8608 unpin_user_pages(pages, pret);
8609 kvfree(imu->bvec);
8610 goto err;
8611 }
8612
8613 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8614 if (ret) {
8615 unpin_user_pages(pages, pret);
8616 kvfree(imu->bvec);
8617 goto err;
8618 }
8619
8620 off = ubuf & ~PAGE_MASK;
8621 size = iov.iov_len;
8622 for (j = 0; j < nr_pages; j++) {
8623 size_t vec_len;
8624
8625 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8626 imu->bvec[j].bv_page = pages[j];
8627 imu->bvec[j].bv_len = vec_len;
8628 imu->bvec[j].bv_offset = off;
8629 off = 0;
8630 size -= vec_len;
8631 }
8632 /* store original address for later verification */
8633 imu->ubuf = ubuf;
8634 imu->len = iov.iov_len;
8635 imu->nr_bvecs = nr_pages;
8636
8637 ctx->nr_user_bufs++;
8638 }
8639 kvfree(pages);
8640 kvfree(vmas);
8641 return 0;
8642 err:
8643 kvfree(pages);
8644 kvfree(vmas);
8645 io_sqe_buffer_unregister(ctx);
8646 return ret;
8647 }
8648
8649 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8650 {
8651 __s32 __user *fds = arg;
8652 int fd;
8653
8654 if (ctx->cq_ev_fd)
8655 return -EBUSY;
8656
8657 if (copy_from_user(&fd, fds, sizeof(*fds)))
8658 return -EFAULT;
8659
8660 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8661 if (IS_ERR(ctx->cq_ev_fd)) {
8662 int ret = PTR_ERR(ctx->cq_ev_fd);
8663 ctx->cq_ev_fd = NULL;
8664 return ret;
8665 }
8666
8667 return 0;
8668 }
8669
8670 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8671 {
8672 if (ctx->cq_ev_fd) {
8673 eventfd_ctx_put(ctx->cq_ev_fd);
8674 ctx->cq_ev_fd = NULL;
8675 return 0;
8676 }
8677
8678 return -ENXIO;
8679 }
8680
8681 static int __io_destroy_buffers(int id, void *p, void *data)
8682 {
8683 struct io_ring_ctx *ctx = data;
8684 struct io_buffer *buf = p;
8685
8686 __io_remove_buffers(ctx, buf, id, -1U);
8687 return 0;
8688 }
8689
8690 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8691 {
8692 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8693 idr_destroy(&ctx->io_buffer_idr);
8694 }
8695
8696 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8697 {
8698 io_finish_async(ctx);
8699 io_sqe_buffer_unregister(ctx);
8700
8701 if (ctx->sqo_task) {
8702 put_task_struct(ctx->sqo_task);
8703 ctx->sqo_task = NULL;
8704 mmdrop(ctx->mm_account);
8705 ctx->mm_account = NULL;
8706 }
8707
8708 #ifdef CONFIG_BLK_CGROUP
8709 if (ctx->sqo_blkcg_css)
8710 css_put(ctx->sqo_blkcg_css);
8711 #endif
8712
8713 io_sqe_files_unregister(ctx);
8714 io_eventfd_unregister(ctx);
8715 io_destroy_buffers(ctx);
8716 idr_destroy(&ctx->personality_idr);
8717
8718 #if defined(CONFIG_UNIX)
8719 if (ctx->ring_sock) {
8720 ctx->ring_sock->file = NULL; /* so that iput() is called */
8721 sock_release(ctx->ring_sock);
8722 }
8723 #endif
8724
8725 io_mem_free(ctx->rings);
8726 io_mem_free(ctx->sq_sqes);
8727
8728 percpu_ref_exit(&ctx->refs);
8729 free_uid(ctx->user);
8730 put_cred(ctx->creds);
8731 kfree(ctx->cancel_hash);
8732 kmem_cache_free(req_cachep, ctx->fallback_req);
8733 kfree(ctx);
8734 }
8735
8736 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8737 {
8738 struct io_ring_ctx *ctx = file->private_data;
8739 __poll_t mask = 0;
8740
8741 poll_wait(file, &ctx->cq_wait, wait);
8742 /*
8743 * synchronizes with barrier from wq_has_sleeper call in
8744 * io_commit_cqring
8745 */
8746 smp_rmb();
8747 if (!io_sqring_full(ctx))
8748 mask |= EPOLLOUT | EPOLLWRNORM;
8749
8750 /* prevent SQPOLL from submitting new requests */
8751 if (ctx->sq_data) {
8752 io_sq_thread_park(ctx->sq_data);
8753 list_del_init(&ctx->sqd_list);
8754 io_sqd_update_thread_idle(ctx->sq_data);
8755 io_sq_thread_unpark(ctx->sq_data);
8756 }
8757
8758 /*
8759 * Don't flush cqring overflow list here, just do a simple check.
8760 * Otherwise there could possible be ABBA deadlock:
8761 * CPU0 CPU1
8762 * ---- ----
8763 * lock(&ctx->uring_lock);
8764 * lock(&ep->mtx);
8765 * lock(&ctx->uring_lock);
8766 * lock(&ep->mtx);
8767 *
8768 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8769 * pushs them to do the flush.
8770 */
8771 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8772 mask |= EPOLLIN | EPOLLRDNORM;
8773
8774 return mask;
8775 }
8776
8777 static int io_uring_fasync(int fd, struct file *file, int on)
8778 {
8779 struct io_ring_ctx *ctx = file->private_data;
8780
8781 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8782 }
8783
8784 static int io_remove_personalities(int id, void *p, void *data)
8785 {
8786 struct io_ring_ctx *ctx = data;
8787 struct io_identity *iod;
8788
8789 iod = idr_remove(&ctx->personality_idr, id);
8790 if (iod) {
8791 put_cred(iod->creds);
8792 if (refcount_dec_and_test(&iod->count))
8793 kfree(iod);
8794 }
8795 return 0;
8796 }
8797
8798 static void io_ring_exit_work(struct work_struct *work)
8799 {
8800 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8801 exit_work);
8802
8803 /*
8804 * If we're doing polled IO and end up having requests being
8805 * submitted async (out-of-line), then completions can come in while
8806 * we're waiting for refs to drop. We need to reap these manually,
8807 * as nobody else will be looking for them.
8808 */
8809 do {
8810 io_uring_try_cancel_requests(ctx, NULL, NULL);
8811 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8812 io_ring_ctx_free(ctx);
8813 }
8814
8815 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8816 {
8817 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8818
8819 return req->ctx == data;
8820 }
8821
8822 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8823 {
8824 mutex_lock(&ctx->uring_lock);
8825 percpu_ref_kill(&ctx->refs);
8826
8827 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8828 ctx->sqo_dead = 1;
8829
8830 /* if force is set, the ring is going away. always drop after that */
8831 ctx->cq_overflow_flushed = 1;
8832 if (ctx->rings)
8833 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8834 mutex_unlock(&ctx->uring_lock);
8835
8836 io_kill_timeouts(ctx, NULL, NULL);
8837 io_poll_remove_all(ctx, NULL, NULL);
8838
8839 if (ctx->io_wq)
8840 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8841
8842 /* if we failed setting up the ctx, we might not have any rings */
8843 io_iopoll_try_reap_events(ctx);
8844 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8845
8846 /*
8847 * Do this upfront, so we won't have a grace period where the ring
8848 * is closed but resources aren't reaped yet. This can cause
8849 * spurious failure in setting up a new ring.
8850 */
8851 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8852 ACCT_LOCKED);
8853
8854 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8855 /*
8856 * Use system_unbound_wq to avoid spawning tons of event kworkers
8857 * if we're exiting a ton of rings at the same time. It just adds
8858 * noise and overhead, there's no discernable change in runtime
8859 * over using system_wq.
8860 */
8861 queue_work(system_unbound_wq, &ctx->exit_work);
8862 }
8863
8864 static int io_uring_release(struct inode *inode, struct file *file)
8865 {
8866 struct io_ring_ctx *ctx = file->private_data;
8867
8868 file->private_data = NULL;
8869 io_ring_ctx_wait_and_kill(ctx);
8870 return 0;
8871 }
8872
8873 struct io_task_cancel {
8874 struct task_struct *task;
8875 struct files_struct *files;
8876 };
8877
8878 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8879 {
8880 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8881 struct io_task_cancel *cancel = data;
8882 bool ret;
8883
8884 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8885 unsigned long flags;
8886 struct io_ring_ctx *ctx = req->ctx;
8887
8888 /* protect against races with linked timeouts */
8889 spin_lock_irqsave(&ctx->completion_lock, flags);
8890 ret = io_match_task(req, cancel->task, cancel->files);
8891 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8892 } else {
8893 ret = io_match_task(req, cancel->task, cancel->files);
8894 }
8895 return ret;
8896 }
8897
8898 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8899 struct task_struct *task,
8900 struct files_struct *files)
8901 {
8902 struct io_defer_entry *de;
8903 LIST_HEAD(list);
8904
8905 spin_lock_irq(&ctx->completion_lock);
8906 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8907 if (io_match_task(de->req, task, files)) {
8908 list_cut_position(&list, &ctx->defer_list, &de->list);
8909 break;
8910 }
8911 }
8912 spin_unlock_irq(&ctx->completion_lock);
8913 if (list_empty(&list))
8914 return false;
8915
8916 while (!list_empty(&list)) {
8917 de = list_first_entry(&list, struct io_defer_entry, list);
8918 list_del_init(&de->list);
8919 req_set_fail_links(de->req);
8920 io_put_req(de->req);
8921 io_req_complete(de->req, -ECANCELED);
8922 kfree(de);
8923 }
8924 return true;
8925 }
8926
8927 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8928 struct task_struct *task,
8929 struct files_struct *files)
8930 {
8931 struct io_task_cancel cancel = { .task = task, .files = files, };
8932
8933 while (1) {
8934 enum io_wq_cancel cret;
8935 bool ret = false;
8936
8937 if (ctx->io_wq) {
8938 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8939 &cancel, true);
8940 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8941 }
8942
8943 /* SQPOLL thread does its own polling */
8944 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && !files) ||
8945 (ctx->sq_data && ctx->sq_data->thread == current)) {
8946 while (!list_empty_careful(&ctx->iopoll_list)) {
8947 io_iopoll_try_reap_events(ctx);
8948 ret = true;
8949 }
8950 }
8951
8952 ret |= io_cancel_defer_files(ctx, task, files);
8953 ret |= io_poll_remove_all(ctx, task, files);
8954 ret |= io_kill_timeouts(ctx, task, files);
8955 ret |= io_run_task_work();
8956 io_cqring_overflow_flush(ctx, true, task, files);
8957 if (!ret)
8958 break;
8959 cond_resched();
8960 }
8961 }
8962
8963 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8964 struct task_struct *task,
8965 struct files_struct *files)
8966 {
8967 struct io_kiocb *req;
8968 int cnt = 0;
8969
8970 spin_lock_irq(&ctx->inflight_lock);
8971 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8972 cnt += io_match_task(req, task, files);
8973 spin_unlock_irq(&ctx->inflight_lock);
8974 return cnt;
8975 }
8976
8977 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8978 struct task_struct *task,
8979 struct files_struct *files)
8980 {
8981 while (!list_empty_careful(&ctx->inflight_list)) {
8982 DEFINE_WAIT(wait);
8983 int inflight;
8984
8985 inflight = io_uring_count_inflight(ctx, task, files);
8986 if (!inflight)
8987 break;
8988
8989 io_uring_try_cancel_requests(ctx, task, files);
8990
8991 if (ctx->sq_data)
8992 io_sq_thread_unpark(ctx->sq_data);
8993 prepare_to_wait(&task->io_uring->wait, &wait,
8994 TASK_UNINTERRUPTIBLE);
8995 if (inflight == io_uring_count_inflight(ctx, task, files))
8996 schedule();
8997 finish_wait(&task->io_uring->wait, &wait);
8998 if (ctx->sq_data)
8999 io_sq_thread_park(ctx->sq_data);
9000 }
9001 }
9002
9003 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
9004 {
9005 mutex_lock(&ctx->uring_lock);
9006 ctx->sqo_dead = 1;
9007 if (ctx->flags & IORING_SETUP_R_DISABLED)
9008 io_sq_offload_start(ctx);
9009 mutex_unlock(&ctx->uring_lock);
9010
9011 /* make sure callers enter the ring to get error */
9012 if (ctx->rings)
9013 io_ring_set_wakeup_flag(ctx);
9014 }
9015
9016 /*
9017 * We need to iteratively cancel requests, in case a request has dependent
9018 * hard links. These persist even for failure of cancelations, hence keep
9019 * looping until none are found.
9020 */
9021 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
9022 struct files_struct *files)
9023 {
9024 struct task_struct *task = current;
9025
9026 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9027 io_disable_sqo_submit(ctx);
9028 task = ctx->sq_data->thread;
9029 atomic_inc(&task->io_uring->in_idle);
9030 io_sq_thread_park(ctx->sq_data);
9031 }
9032
9033 io_uring_cancel_files(ctx, task, files);
9034 if (!files)
9035 io_uring_try_cancel_requests(ctx, task, NULL);
9036
9037 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9038 atomic_dec(&task->io_uring->in_idle);
9039 io_sq_thread_unpark(ctx->sq_data);
9040 }
9041 }
9042
9043 /*
9044 * Note that this task has used io_uring. We use it for cancelation purposes.
9045 */
9046 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
9047 {
9048 struct io_uring_task *tctx = current->io_uring;
9049 int ret;
9050
9051 if (unlikely(!tctx)) {
9052 ret = io_uring_alloc_task_context(current);
9053 if (unlikely(ret))
9054 return ret;
9055 tctx = current->io_uring;
9056 }
9057 if (tctx->last != file) {
9058 void *old = xa_load(&tctx->xa, (unsigned long)file);
9059
9060 if (!old) {
9061 get_file(file);
9062 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9063 file, GFP_KERNEL));
9064 if (ret) {
9065 fput(file);
9066 return ret;
9067 }
9068 }
9069 tctx->last = file;
9070 }
9071
9072 /*
9073 * This is race safe in that the task itself is doing this, hence it
9074 * cannot be going through the exit/cancel paths at the same time.
9075 * This cannot be modified while exit/cancel is running.
9076 */
9077 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9078 tctx->sqpoll = true;
9079
9080 return 0;
9081 }
9082
9083 /*
9084 * Remove this io_uring_file -> task mapping.
9085 */
9086 static void io_uring_del_task_file(struct file *file)
9087 {
9088 struct io_uring_task *tctx = current->io_uring;
9089
9090 if (tctx->last == file)
9091 tctx->last = NULL;
9092 file = xa_erase(&tctx->xa, (unsigned long)file);
9093 if (file)
9094 fput(file);
9095 }
9096
9097 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9098 {
9099 struct file *file;
9100 unsigned long index;
9101
9102 xa_for_each(&tctx->xa, index, file)
9103 io_uring_del_task_file(file);
9104 }
9105
9106 void __io_uring_files_cancel(struct files_struct *files)
9107 {
9108 struct io_uring_task *tctx = current->io_uring;
9109 struct file *file;
9110 unsigned long index;
9111
9112 /* make sure overflow events are dropped */
9113 atomic_inc(&tctx->in_idle);
9114 xa_for_each(&tctx->xa, index, file)
9115 io_uring_cancel_task_requests(file->private_data, files);
9116 atomic_dec(&tctx->in_idle);
9117
9118 if (files)
9119 io_uring_remove_task_files(tctx);
9120 }
9121
9122 static s64 tctx_inflight(struct io_uring_task *tctx)
9123 {
9124 unsigned long index;
9125 struct file *file;
9126 s64 inflight;
9127
9128 inflight = percpu_counter_sum(&tctx->inflight);
9129 if (!tctx->sqpoll)
9130 return inflight;
9131
9132 /*
9133 * If we have SQPOLL rings, then we need to iterate and find them, and
9134 * add the pending count for those.
9135 */
9136 xa_for_each(&tctx->xa, index, file) {
9137 struct io_ring_ctx *ctx = file->private_data;
9138
9139 if (ctx->flags & IORING_SETUP_SQPOLL) {
9140 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9141
9142 inflight += percpu_counter_sum(&__tctx->inflight);
9143 }
9144 }
9145
9146 return inflight;
9147 }
9148
9149 /*
9150 * Find any io_uring fd that this task has registered or done IO on, and cancel
9151 * requests.
9152 */
9153 void __io_uring_task_cancel(void)
9154 {
9155 struct io_uring_task *tctx = current->io_uring;
9156 DEFINE_WAIT(wait);
9157 s64 inflight;
9158
9159 /* make sure overflow events are dropped */
9160 atomic_inc(&tctx->in_idle);
9161
9162 /* trigger io_disable_sqo_submit() */
9163 if (tctx->sqpoll)
9164 __io_uring_files_cancel(NULL);
9165
9166 do {
9167 /* read completions before cancelations */
9168 inflight = tctx_inflight(tctx);
9169 if (!inflight)
9170 break;
9171 __io_uring_files_cancel(NULL);
9172
9173 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9174
9175 /*
9176 * If we've seen completions, retry without waiting. This
9177 * avoids a race where a completion comes in before we did
9178 * prepare_to_wait().
9179 */
9180 if (inflight == tctx_inflight(tctx))
9181 schedule();
9182 finish_wait(&tctx->wait, &wait);
9183 } while (1);
9184
9185 atomic_dec(&tctx->in_idle);
9186
9187 io_uring_remove_task_files(tctx);
9188 }
9189
9190 static int io_uring_flush(struct file *file, void *data)
9191 {
9192 struct io_uring_task *tctx = current->io_uring;
9193 struct io_ring_ctx *ctx = file->private_data;
9194
9195 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
9196 io_uring_cancel_task_requests(ctx, NULL);
9197
9198 if (!tctx)
9199 return 0;
9200
9201 /* we should have cancelled and erased it before PF_EXITING */
9202 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9203 xa_load(&tctx->xa, (unsigned long)file));
9204
9205 /*
9206 * fput() is pending, will be 2 if the only other ref is our potential
9207 * task file note. If the task is exiting, drop regardless of count.
9208 */
9209 if (atomic_long_read(&file->f_count) != 2)
9210 return 0;
9211
9212 if (ctx->flags & IORING_SETUP_SQPOLL) {
9213 /* there is only one file note, which is owned by sqo_task */
9214 WARN_ON_ONCE(ctx->sqo_task != current &&
9215 xa_load(&tctx->xa, (unsigned long)file));
9216 /* sqo_dead check is for when this happens after cancellation */
9217 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9218 !xa_load(&tctx->xa, (unsigned long)file));
9219
9220 io_disable_sqo_submit(ctx);
9221 }
9222
9223 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9224 io_uring_del_task_file(file);
9225 return 0;
9226 }
9227
9228 static void *io_uring_validate_mmap_request(struct file *file,
9229 loff_t pgoff, size_t sz)
9230 {
9231 struct io_ring_ctx *ctx = file->private_data;
9232 loff_t offset = pgoff << PAGE_SHIFT;
9233 struct page *page;
9234 void *ptr;
9235
9236 switch (offset) {
9237 case IORING_OFF_SQ_RING:
9238 case IORING_OFF_CQ_RING:
9239 ptr = ctx->rings;
9240 break;
9241 case IORING_OFF_SQES:
9242 ptr = ctx->sq_sqes;
9243 break;
9244 default:
9245 return ERR_PTR(-EINVAL);
9246 }
9247
9248 page = virt_to_head_page(ptr);
9249 if (sz > page_size(page))
9250 return ERR_PTR(-EINVAL);
9251
9252 return ptr;
9253 }
9254
9255 #ifdef CONFIG_MMU
9256
9257 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9258 {
9259 size_t sz = vma->vm_end - vma->vm_start;
9260 unsigned long pfn;
9261 void *ptr;
9262
9263 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9264 if (IS_ERR(ptr))
9265 return PTR_ERR(ptr);
9266
9267 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9268 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9269 }
9270
9271 #else /* !CONFIG_MMU */
9272
9273 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9274 {
9275 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9276 }
9277
9278 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9279 {
9280 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9281 }
9282
9283 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9284 unsigned long addr, unsigned long len,
9285 unsigned long pgoff, unsigned long flags)
9286 {
9287 void *ptr;
9288
9289 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9290 if (IS_ERR(ptr))
9291 return PTR_ERR(ptr);
9292
9293 return (unsigned long) ptr;
9294 }
9295
9296 #endif /* !CONFIG_MMU */
9297
9298 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9299 {
9300 int ret = 0;
9301 DEFINE_WAIT(wait);
9302
9303 do {
9304 if (!io_sqring_full(ctx))
9305 break;
9306
9307 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9308
9309 if (unlikely(ctx->sqo_dead)) {
9310 ret = -EOWNERDEAD;
9311 goto out;
9312 }
9313
9314 if (!io_sqring_full(ctx))
9315 break;
9316
9317 schedule();
9318 } while (!signal_pending(current));
9319
9320 finish_wait(&ctx->sqo_sq_wait, &wait);
9321 out:
9322 return ret;
9323 }
9324
9325 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9326 struct __kernel_timespec __user **ts,
9327 const sigset_t __user **sig)
9328 {
9329 struct io_uring_getevents_arg arg;
9330
9331 /*
9332 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9333 * is just a pointer to the sigset_t.
9334 */
9335 if (!(flags & IORING_ENTER_EXT_ARG)) {
9336 *sig = (const sigset_t __user *) argp;
9337 *ts = NULL;
9338 return 0;
9339 }
9340
9341 /*
9342 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9343 * timespec and sigset_t pointers if good.
9344 */
9345 if (*argsz != sizeof(arg))
9346 return -EINVAL;
9347 if (copy_from_user(&arg, argp, sizeof(arg)))
9348 return -EFAULT;
9349 *sig = u64_to_user_ptr(arg.sigmask);
9350 *argsz = arg.sigmask_sz;
9351 *ts = u64_to_user_ptr(arg.ts);
9352 return 0;
9353 }
9354
9355 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9356 u32, min_complete, u32, flags, const void __user *, argp,
9357 size_t, argsz)
9358 {
9359 struct io_ring_ctx *ctx;
9360 long ret = -EBADF;
9361 int submitted = 0;
9362 struct fd f;
9363
9364 io_run_task_work();
9365
9366 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9367 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9368 return -EINVAL;
9369
9370 f = fdget(fd);
9371 if (!f.file)
9372 return -EBADF;
9373
9374 ret = -EOPNOTSUPP;
9375 if (f.file->f_op != &io_uring_fops)
9376 goto out_fput;
9377
9378 ret = -ENXIO;
9379 ctx = f.file->private_data;
9380 if (!percpu_ref_tryget(&ctx->refs))
9381 goto out_fput;
9382
9383 ret = -EBADFD;
9384 if (ctx->flags & IORING_SETUP_R_DISABLED)
9385 goto out;
9386
9387 /*
9388 * For SQ polling, the thread will do all submissions and completions.
9389 * Just return the requested submit count, and wake the thread if
9390 * we were asked to.
9391 */
9392 ret = 0;
9393 if (ctx->flags & IORING_SETUP_SQPOLL) {
9394 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9395
9396 ret = -EOWNERDEAD;
9397 if (unlikely(ctx->sqo_dead))
9398 goto out;
9399 if (flags & IORING_ENTER_SQ_WAKEUP)
9400 wake_up(&ctx->sq_data->wait);
9401 if (flags & IORING_ENTER_SQ_WAIT) {
9402 ret = io_sqpoll_wait_sq(ctx);
9403 if (ret)
9404 goto out;
9405 }
9406 submitted = to_submit;
9407 } else if (to_submit) {
9408 ret = io_uring_add_task_file(ctx, f.file);
9409 if (unlikely(ret))
9410 goto out;
9411 mutex_lock(&ctx->uring_lock);
9412 submitted = io_submit_sqes(ctx, to_submit);
9413 mutex_unlock(&ctx->uring_lock);
9414
9415 if (submitted != to_submit)
9416 goto out;
9417 }
9418 if (flags & IORING_ENTER_GETEVENTS) {
9419 const sigset_t __user *sig;
9420 struct __kernel_timespec __user *ts;
9421
9422 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9423 if (unlikely(ret))
9424 goto out;
9425
9426 min_complete = min(min_complete, ctx->cq_entries);
9427
9428 /*
9429 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9430 * space applications don't need to do io completion events
9431 * polling again, they can rely on io_sq_thread to do polling
9432 * work, which can reduce cpu usage and uring_lock contention.
9433 */
9434 if (ctx->flags & IORING_SETUP_IOPOLL &&
9435 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9436 ret = io_iopoll_check(ctx, min_complete);
9437 } else {
9438 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9439 }
9440 }
9441
9442 out:
9443 percpu_ref_put(&ctx->refs);
9444 out_fput:
9445 fdput(f);
9446 return submitted ? submitted : ret;
9447 }
9448
9449 #ifdef CONFIG_PROC_FS
9450 static int io_uring_show_cred(int id, void *p, void *data)
9451 {
9452 struct io_identity *iod = p;
9453 const struct cred *cred = iod->creds;
9454 struct seq_file *m = data;
9455 struct user_namespace *uns = seq_user_ns(m);
9456 struct group_info *gi;
9457 kernel_cap_t cap;
9458 unsigned __capi;
9459 int g;
9460
9461 seq_printf(m, "%5d\n", id);
9462 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9463 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9464 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9465 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9466 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9467 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9468 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9469 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9470 seq_puts(m, "\n\tGroups:\t");
9471 gi = cred->group_info;
9472 for (g = 0; g < gi->ngroups; g++) {
9473 seq_put_decimal_ull(m, g ? " " : "",
9474 from_kgid_munged(uns, gi->gid[g]));
9475 }
9476 seq_puts(m, "\n\tCapEff:\t");
9477 cap = cred->cap_effective;
9478 CAP_FOR_EACH_U32(__capi)
9479 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9480 seq_putc(m, '\n');
9481 return 0;
9482 }
9483
9484 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9485 {
9486 struct io_sq_data *sq = NULL;
9487 bool has_lock;
9488 int i;
9489
9490 /*
9491 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9492 * since fdinfo case grabs it in the opposite direction of normal use
9493 * cases. If we fail to get the lock, we just don't iterate any
9494 * structures that could be going away outside the io_uring mutex.
9495 */
9496 has_lock = mutex_trylock(&ctx->uring_lock);
9497
9498 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9499 sq = ctx->sq_data;
9500
9501 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9502 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9503 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9504 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9505 struct fixed_file_table *table;
9506 struct file *f;
9507
9508 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9509 f = table->files[i & IORING_FILE_TABLE_MASK];
9510 if (f)
9511 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9512 else
9513 seq_printf(m, "%5u: <none>\n", i);
9514 }
9515 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9516 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9517 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9518
9519 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9520 (unsigned int) buf->len);
9521 }
9522 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9523 seq_printf(m, "Personalities:\n");
9524 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9525 }
9526 seq_printf(m, "PollList:\n");
9527 spin_lock_irq(&ctx->completion_lock);
9528 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9529 struct hlist_head *list = &ctx->cancel_hash[i];
9530 struct io_kiocb *req;
9531
9532 hlist_for_each_entry(req, list, hash_node)
9533 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9534 req->task->task_works != NULL);
9535 }
9536 spin_unlock_irq(&ctx->completion_lock);
9537 if (has_lock)
9538 mutex_unlock(&ctx->uring_lock);
9539 }
9540
9541 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9542 {
9543 struct io_ring_ctx *ctx = f->private_data;
9544
9545 if (percpu_ref_tryget(&ctx->refs)) {
9546 __io_uring_show_fdinfo(ctx, m);
9547 percpu_ref_put(&ctx->refs);
9548 }
9549 }
9550 #endif
9551
9552 static const struct file_operations io_uring_fops = {
9553 .release = io_uring_release,
9554 .flush = io_uring_flush,
9555 .mmap = io_uring_mmap,
9556 #ifndef CONFIG_MMU
9557 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9558 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9559 #endif
9560 .poll = io_uring_poll,
9561 .fasync = io_uring_fasync,
9562 #ifdef CONFIG_PROC_FS
9563 .show_fdinfo = io_uring_show_fdinfo,
9564 #endif
9565 };
9566
9567 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9568 struct io_uring_params *p)
9569 {
9570 struct io_rings *rings;
9571 size_t size, sq_array_offset;
9572
9573 /* make sure these are sane, as we already accounted them */
9574 ctx->sq_entries = p->sq_entries;
9575 ctx->cq_entries = p->cq_entries;
9576
9577 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9578 if (size == SIZE_MAX)
9579 return -EOVERFLOW;
9580
9581 rings = io_mem_alloc(size);
9582 if (!rings)
9583 return -ENOMEM;
9584
9585 ctx->rings = rings;
9586 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9587 rings->sq_ring_mask = p->sq_entries - 1;
9588 rings->cq_ring_mask = p->cq_entries - 1;
9589 rings->sq_ring_entries = p->sq_entries;
9590 rings->cq_ring_entries = p->cq_entries;
9591 ctx->sq_mask = rings->sq_ring_mask;
9592 ctx->cq_mask = rings->cq_ring_mask;
9593
9594 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9595 if (size == SIZE_MAX) {
9596 io_mem_free(ctx->rings);
9597 ctx->rings = NULL;
9598 return -EOVERFLOW;
9599 }
9600
9601 ctx->sq_sqes = io_mem_alloc(size);
9602 if (!ctx->sq_sqes) {
9603 io_mem_free(ctx->rings);
9604 ctx->rings = NULL;
9605 return -ENOMEM;
9606 }
9607
9608 return 0;
9609 }
9610
9611 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9612 {
9613 int ret, fd;
9614
9615 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9616 if (fd < 0)
9617 return fd;
9618
9619 ret = io_uring_add_task_file(ctx, file);
9620 if (ret) {
9621 put_unused_fd(fd);
9622 return ret;
9623 }
9624 fd_install(fd, file);
9625 return fd;
9626 }
9627
9628 /*
9629 * Allocate an anonymous fd, this is what constitutes the application
9630 * visible backing of an io_uring instance. The application mmaps this
9631 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9632 * we have to tie this fd to a socket for file garbage collection purposes.
9633 */
9634 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9635 {
9636 struct file *file;
9637 #if defined(CONFIG_UNIX)
9638 int ret;
9639
9640 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9641 &ctx->ring_sock);
9642 if (ret)
9643 return ERR_PTR(ret);
9644 #endif
9645
9646 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9647 O_RDWR | O_CLOEXEC);
9648 #if defined(CONFIG_UNIX)
9649 if (IS_ERR(file)) {
9650 sock_release(ctx->ring_sock);
9651 ctx->ring_sock = NULL;
9652 } else {
9653 ctx->ring_sock->file = file;
9654 }
9655 #endif
9656 return file;
9657 }
9658
9659 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9660 struct io_uring_params __user *params)
9661 {
9662 struct user_struct *user = NULL;
9663 struct io_ring_ctx *ctx;
9664 struct file *file;
9665 bool limit_mem;
9666 int ret;
9667
9668 if (!entries)
9669 return -EINVAL;
9670 if (entries > IORING_MAX_ENTRIES) {
9671 if (!(p->flags & IORING_SETUP_CLAMP))
9672 return -EINVAL;
9673 entries = IORING_MAX_ENTRIES;
9674 }
9675
9676 /*
9677 * Use twice as many entries for the CQ ring. It's possible for the
9678 * application to drive a higher depth than the size of the SQ ring,
9679 * since the sqes are only used at submission time. This allows for
9680 * some flexibility in overcommitting a bit. If the application has
9681 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9682 * of CQ ring entries manually.
9683 */
9684 p->sq_entries = roundup_pow_of_two(entries);
9685 if (p->flags & IORING_SETUP_CQSIZE) {
9686 /*
9687 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9688 * to a power-of-two, if it isn't already. We do NOT impose
9689 * any cq vs sq ring sizing.
9690 */
9691 if (!p->cq_entries)
9692 return -EINVAL;
9693 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9694 if (!(p->flags & IORING_SETUP_CLAMP))
9695 return -EINVAL;
9696 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9697 }
9698 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9699 if (p->cq_entries < p->sq_entries)
9700 return -EINVAL;
9701 } else {
9702 p->cq_entries = 2 * p->sq_entries;
9703 }
9704
9705 user = get_uid(current_user());
9706 limit_mem = !capable(CAP_IPC_LOCK);
9707
9708 if (limit_mem) {
9709 ret = __io_account_mem(user,
9710 ring_pages(p->sq_entries, p->cq_entries));
9711 if (ret) {
9712 free_uid(user);
9713 return ret;
9714 }
9715 }
9716
9717 ctx = io_ring_ctx_alloc(p);
9718 if (!ctx) {
9719 if (limit_mem)
9720 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9721 p->cq_entries));
9722 free_uid(user);
9723 return -ENOMEM;
9724 }
9725 ctx->compat = in_compat_syscall();
9726 ctx->user = user;
9727 ctx->creds = get_current_cred();
9728 #ifdef CONFIG_AUDIT
9729 ctx->loginuid = current->loginuid;
9730 ctx->sessionid = current->sessionid;
9731 #endif
9732 ctx->sqo_task = get_task_struct(current);
9733
9734 /*
9735 * This is just grabbed for accounting purposes. When a process exits,
9736 * the mm is exited and dropped before the files, hence we need to hang
9737 * on to this mm purely for the purposes of being able to unaccount
9738 * memory (locked/pinned vm). It's not used for anything else.
9739 */
9740 mmgrab(current->mm);
9741 ctx->mm_account = current->mm;
9742
9743 #ifdef CONFIG_BLK_CGROUP
9744 /*
9745 * The sq thread will belong to the original cgroup it was inited in.
9746 * If the cgroup goes offline (e.g. disabling the io controller), then
9747 * issued bios will be associated with the closest cgroup later in the
9748 * block layer.
9749 */
9750 rcu_read_lock();
9751 ctx->sqo_blkcg_css = blkcg_css();
9752 ret = css_tryget_online(ctx->sqo_blkcg_css);
9753 rcu_read_unlock();
9754 if (!ret) {
9755 /* don't init against a dying cgroup, have the user try again */
9756 ctx->sqo_blkcg_css = NULL;
9757 ret = -ENODEV;
9758 goto err;
9759 }
9760 #endif
9761
9762 /*
9763 * Account memory _before_ installing the file descriptor. Once
9764 * the descriptor is installed, it can get closed at any time. Also
9765 * do this before hitting the general error path, as ring freeing
9766 * will un-account as well.
9767 */
9768 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9769 ACCT_LOCKED);
9770 ctx->limit_mem = limit_mem;
9771
9772 ret = io_allocate_scq_urings(ctx, p);
9773 if (ret)
9774 goto err;
9775
9776 ret = io_sq_offload_create(ctx, p);
9777 if (ret)
9778 goto err;
9779
9780 if (!(p->flags & IORING_SETUP_R_DISABLED))
9781 io_sq_offload_start(ctx);
9782
9783 memset(&p->sq_off, 0, sizeof(p->sq_off));
9784 p->sq_off.head = offsetof(struct io_rings, sq.head);
9785 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9786 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9787 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9788 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9789 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9790 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9791
9792 memset(&p->cq_off, 0, sizeof(p->cq_off));
9793 p->cq_off.head = offsetof(struct io_rings, cq.head);
9794 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9795 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9796 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9797 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9798 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9799 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9800
9801 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9802 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9803 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9804 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9805 IORING_FEAT_EXT_ARG;
9806
9807 if (copy_to_user(params, p, sizeof(*p))) {
9808 ret = -EFAULT;
9809 goto err;
9810 }
9811
9812 file = io_uring_get_file(ctx);
9813 if (IS_ERR(file)) {
9814 ret = PTR_ERR(file);
9815 goto err;
9816 }
9817
9818 /*
9819 * Install ring fd as the very last thing, so we don't risk someone
9820 * having closed it before we finish setup
9821 */
9822 ret = io_uring_install_fd(ctx, file);
9823 if (ret < 0) {
9824 io_disable_sqo_submit(ctx);
9825 /* fput will clean it up */
9826 fput(file);
9827 return ret;
9828 }
9829
9830 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9831 return ret;
9832 err:
9833 io_disable_sqo_submit(ctx);
9834 io_ring_ctx_wait_and_kill(ctx);
9835 return ret;
9836 }
9837
9838 /*
9839 * Sets up an aio uring context, and returns the fd. Applications asks for a
9840 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9841 * params structure passed in.
9842 */
9843 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9844 {
9845 struct io_uring_params p;
9846 int i;
9847
9848 if (copy_from_user(&p, params, sizeof(p)))
9849 return -EFAULT;
9850 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9851 if (p.resv[i])
9852 return -EINVAL;
9853 }
9854
9855 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9856 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9857 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9858 IORING_SETUP_R_DISABLED))
9859 return -EINVAL;
9860
9861 return io_uring_create(entries, &p, params);
9862 }
9863
9864 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9865 struct io_uring_params __user *, params)
9866 {
9867 return io_uring_setup(entries, params);
9868 }
9869
9870 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9871 {
9872 struct io_uring_probe *p;
9873 size_t size;
9874 int i, ret;
9875
9876 size = struct_size(p, ops, nr_args);
9877 if (size == SIZE_MAX)
9878 return -EOVERFLOW;
9879 p = kzalloc(size, GFP_KERNEL);
9880 if (!p)
9881 return -ENOMEM;
9882
9883 ret = -EFAULT;
9884 if (copy_from_user(p, arg, size))
9885 goto out;
9886 ret = -EINVAL;
9887 if (memchr_inv(p, 0, size))
9888 goto out;
9889
9890 p->last_op = IORING_OP_LAST - 1;
9891 if (nr_args > IORING_OP_LAST)
9892 nr_args = IORING_OP_LAST;
9893
9894 for (i = 0; i < nr_args; i++) {
9895 p->ops[i].op = i;
9896 if (!io_op_defs[i].not_supported)
9897 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9898 }
9899 p->ops_len = i;
9900
9901 ret = 0;
9902 if (copy_to_user(arg, p, size))
9903 ret = -EFAULT;
9904 out:
9905 kfree(p);
9906 return ret;
9907 }
9908
9909 static int io_register_personality(struct io_ring_ctx *ctx)
9910 {
9911 struct io_identity *id;
9912 int ret;
9913
9914 id = kmalloc(sizeof(*id), GFP_KERNEL);
9915 if (unlikely(!id))
9916 return -ENOMEM;
9917
9918 io_init_identity(id);
9919 id->creds = get_current_cred();
9920
9921 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9922 if (ret < 0) {
9923 put_cred(id->creds);
9924 kfree(id);
9925 }
9926 return ret;
9927 }
9928
9929 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9930 {
9931 struct io_identity *iod;
9932
9933 iod = idr_remove(&ctx->personality_idr, id);
9934 if (iod) {
9935 put_cred(iod->creds);
9936 if (refcount_dec_and_test(&iod->count))
9937 kfree(iod);
9938 return 0;
9939 }
9940
9941 return -EINVAL;
9942 }
9943
9944 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9945 unsigned int nr_args)
9946 {
9947 struct io_uring_restriction *res;
9948 size_t size;
9949 int i, ret;
9950
9951 /* Restrictions allowed only if rings started disabled */
9952 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9953 return -EBADFD;
9954
9955 /* We allow only a single restrictions registration */
9956 if (ctx->restrictions.registered)
9957 return -EBUSY;
9958
9959 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9960 return -EINVAL;
9961
9962 size = array_size(nr_args, sizeof(*res));
9963 if (size == SIZE_MAX)
9964 return -EOVERFLOW;
9965
9966 res = memdup_user(arg, size);
9967 if (IS_ERR(res))
9968 return PTR_ERR(res);
9969
9970 ret = 0;
9971
9972 for (i = 0; i < nr_args; i++) {
9973 switch (res[i].opcode) {
9974 case IORING_RESTRICTION_REGISTER_OP:
9975 if (res[i].register_op >= IORING_REGISTER_LAST) {
9976 ret = -EINVAL;
9977 goto out;
9978 }
9979
9980 __set_bit(res[i].register_op,
9981 ctx->restrictions.register_op);
9982 break;
9983 case IORING_RESTRICTION_SQE_OP:
9984 if (res[i].sqe_op >= IORING_OP_LAST) {
9985 ret = -EINVAL;
9986 goto out;
9987 }
9988
9989 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9990 break;
9991 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9992 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9993 break;
9994 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9995 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9996 break;
9997 default:
9998 ret = -EINVAL;
9999 goto out;
10000 }
10001 }
10002
10003 out:
10004 /* Reset all restrictions if an error happened */
10005 if (ret != 0)
10006 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10007 else
10008 ctx->restrictions.registered = true;
10009
10010 kfree(res);
10011 return ret;
10012 }
10013
10014 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10015 {
10016 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10017 return -EBADFD;
10018
10019 if (ctx->restrictions.registered)
10020 ctx->restricted = 1;
10021
10022 io_sq_offload_start(ctx);
10023 return 0;
10024 }
10025
10026 static bool io_register_op_must_quiesce(int op)
10027 {
10028 switch (op) {
10029 case IORING_UNREGISTER_FILES:
10030 case IORING_REGISTER_FILES_UPDATE:
10031 case IORING_REGISTER_PROBE:
10032 case IORING_REGISTER_PERSONALITY:
10033 case IORING_UNREGISTER_PERSONALITY:
10034 return false;
10035 default:
10036 return true;
10037 }
10038 }
10039
10040 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10041 void __user *arg, unsigned nr_args)
10042 __releases(ctx->uring_lock)
10043 __acquires(ctx->uring_lock)
10044 {
10045 int ret;
10046
10047 /*
10048 * We're inside the ring mutex, if the ref is already dying, then
10049 * someone else killed the ctx or is already going through
10050 * io_uring_register().
10051 */
10052 if (percpu_ref_is_dying(&ctx->refs))
10053 return -ENXIO;
10054
10055 if (io_register_op_must_quiesce(opcode)) {
10056 percpu_ref_kill(&ctx->refs);
10057
10058 /*
10059 * Drop uring mutex before waiting for references to exit. If
10060 * another thread is currently inside io_uring_enter() it might
10061 * need to grab the uring_lock to make progress. If we hold it
10062 * here across the drain wait, then we can deadlock. It's safe
10063 * to drop the mutex here, since no new references will come in
10064 * after we've killed the percpu ref.
10065 */
10066 mutex_unlock(&ctx->uring_lock);
10067 do {
10068 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10069 if (!ret)
10070 break;
10071 ret = io_run_task_work_sig();
10072 if (ret < 0)
10073 break;
10074 } while (1);
10075
10076 mutex_lock(&ctx->uring_lock);
10077
10078 if (ret) {
10079 percpu_ref_resurrect(&ctx->refs);
10080 goto out_quiesce;
10081 }
10082 }
10083
10084 if (ctx->restricted) {
10085 if (opcode >= IORING_REGISTER_LAST) {
10086 ret = -EINVAL;
10087 goto out;
10088 }
10089
10090 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10091 ret = -EACCES;
10092 goto out;
10093 }
10094 }
10095
10096 switch (opcode) {
10097 case IORING_REGISTER_BUFFERS:
10098 ret = io_sqe_buffer_register(ctx, arg, nr_args);
10099 break;
10100 case IORING_UNREGISTER_BUFFERS:
10101 ret = -EINVAL;
10102 if (arg || nr_args)
10103 break;
10104 ret = io_sqe_buffer_unregister(ctx);
10105 break;
10106 case IORING_REGISTER_FILES:
10107 ret = io_sqe_files_register(ctx, arg, nr_args);
10108 break;
10109 case IORING_UNREGISTER_FILES:
10110 ret = -EINVAL;
10111 if (arg || nr_args)
10112 break;
10113 ret = io_sqe_files_unregister(ctx);
10114 break;
10115 case IORING_REGISTER_FILES_UPDATE:
10116 ret = io_sqe_files_update(ctx, arg, nr_args);
10117 break;
10118 case IORING_REGISTER_EVENTFD:
10119 case IORING_REGISTER_EVENTFD_ASYNC:
10120 ret = -EINVAL;
10121 if (nr_args != 1)
10122 break;
10123 ret = io_eventfd_register(ctx, arg);
10124 if (ret)
10125 break;
10126 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10127 ctx->eventfd_async = 1;
10128 else
10129 ctx->eventfd_async = 0;
10130 break;
10131 case IORING_UNREGISTER_EVENTFD:
10132 ret = -EINVAL;
10133 if (arg || nr_args)
10134 break;
10135 ret = io_eventfd_unregister(ctx);
10136 break;
10137 case IORING_REGISTER_PROBE:
10138 ret = -EINVAL;
10139 if (!arg || nr_args > 256)
10140 break;
10141 ret = io_probe(ctx, arg, nr_args);
10142 break;
10143 case IORING_REGISTER_PERSONALITY:
10144 ret = -EINVAL;
10145 if (arg || nr_args)
10146 break;
10147 ret = io_register_personality(ctx);
10148 break;
10149 case IORING_UNREGISTER_PERSONALITY:
10150 ret = -EINVAL;
10151 if (arg)
10152 break;
10153 ret = io_unregister_personality(ctx, nr_args);
10154 break;
10155 case IORING_REGISTER_ENABLE_RINGS:
10156 ret = -EINVAL;
10157 if (arg || nr_args)
10158 break;
10159 ret = io_register_enable_rings(ctx);
10160 break;
10161 case IORING_REGISTER_RESTRICTIONS:
10162 ret = io_register_restrictions(ctx, arg, nr_args);
10163 break;
10164 default:
10165 ret = -EINVAL;
10166 break;
10167 }
10168
10169 out:
10170 if (io_register_op_must_quiesce(opcode)) {
10171 /* bring the ctx back to life */
10172 percpu_ref_reinit(&ctx->refs);
10173 out_quiesce:
10174 reinit_completion(&ctx->ref_comp);
10175 }
10176 return ret;
10177 }
10178
10179 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10180 void __user *, arg, unsigned int, nr_args)
10181 {
10182 struct io_ring_ctx *ctx;
10183 long ret = -EBADF;
10184 struct fd f;
10185
10186 f = fdget(fd);
10187 if (!f.file)
10188 return -EBADF;
10189
10190 ret = -EOPNOTSUPP;
10191 if (f.file->f_op != &io_uring_fops)
10192 goto out_fput;
10193
10194 ctx = f.file->private_data;
10195
10196 mutex_lock(&ctx->uring_lock);
10197 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10198 mutex_unlock(&ctx->uring_lock);
10199 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10200 ctx->cq_ev_fd != NULL, ret);
10201 out_fput:
10202 fdput(f);
10203 return ret;
10204 }
10205
10206 static int __init io_uring_init(void)
10207 {
10208 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10209 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10210 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10211 } while (0)
10212
10213 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10214 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10215 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10216 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10217 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10218 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10219 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10220 BUILD_BUG_SQE_ELEM(8, __u64, off);
10221 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10222 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10223 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10224 BUILD_BUG_SQE_ELEM(24, __u32, len);
10225 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10226 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10227 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10228 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10229 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10230 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10231 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10232 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10233 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10234 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10235 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10236 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10237 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10238 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10239 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10240 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10241 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10242 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10243 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10244
10245 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10246 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10247 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10248 return 0;
10249 };
10250 __initcall(io_uring_init);