]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
2dbef0835d51d83bf4d36a607e41cdb6e2820ac4
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 struct wait_queue_entry wait;
490 };
491
492 struct io_poll_update {
493 struct file *file;
494 u64 old_user_data;
495 u64 new_user_data;
496 __poll_t events;
497 bool update_events;
498 bool update_user_data;
499 };
500
501 struct io_close {
502 struct file *file;
503 int fd;
504 u32 file_slot;
505 };
506
507 struct io_timeout_data {
508 struct io_kiocb *req;
509 struct hrtimer timer;
510 struct timespec64 ts;
511 enum hrtimer_mode mode;
512 u32 flags;
513 };
514
515 struct io_accept {
516 struct file *file;
517 struct sockaddr __user *addr;
518 int __user *addr_len;
519 int flags;
520 u32 file_slot;
521 unsigned long nofile;
522 };
523
524 struct io_sync {
525 struct file *file;
526 loff_t len;
527 loff_t off;
528 int flags;
529 int mode;
530 };
531
532 struct io_cancel {
533 struct file *file;
534 u64 addr;
535 };
536
537 struct io_timeout {
538 struct file *file;
539 u32 off;
540 u32 target_seq;
541 struct list_head list;
542 /* head of the link, used by linked timeouts only */
543 struct io_kiocb *head;
544 /* for linked completions */
545 struct io_kiocb *prev;
546 };
547
548 struct io_timeout_rem {
549 struct file *file;
550 u64 addr;
551
552 /* timeout update */
553 struct timespec64 ts;
554 u32 flags;
555 bool ltimeout;
556 };
557
558 struct io_rw {
559 /* NOTE: kiocb has the file as the first member, so don't do it here */
560 struct kiocb kiocb;
561 u64 addr;
562 u64 len;
563 };
564
565 struct io_connect {
566 struct file *file;
567 struct sockaddr __user *addr;
568 int addr_len;
569 };
570
571 struct io_sr_msg {
572 struct file *file;
573 union {
574 struct compat_msghdr __user *umsg_compat;
575 struct user_msghdr __user *umsg;
576 void __user *buf;
577 };
578 int msg_flags;
579 int bgid;
580 size_t len;
581 struct io_buffer *kbuf;
582 };
583
584 struct io_open {
585 struct file *file;
586 int dfd;
587 u32 file_slot;
588 struct filename *filename;
589 struct open_how how;
590 unsigned long nofile;
591 };
592
593 struct io_rsrc_update {
594 struct file *file;
595 u64 arg;
596 u32 nr_args;
597 u32 offset;
598 };
599
600 struct io_fadvise {
601 struct file *file;
602 u64 offset;
603 u32 len;
604 u32 advice;
605 };
606
607 struct io_madvise {
608 struct file *file;
609 u64 addr;
610 u32 len;
611 u32 advice;
612 };
613
614 struct io_epoll {
615 struct file *file;
616 int epfd;
617 int op;
618 int fd;
619 struct epoll_event event;
620 };
621
622 struct io_splice {
623 struct file *file_out;
624 loff_t off_out;
625 loff_t off_in;
626 u64 len;
627 int splice_fd_in;
628 unsigned int flags;
629 };
630
631 struct io_provide_buf {
632 struct file *file;
633 __u64 addr;
634 __u32 len;
635 __u32 bgid;
636 __u16 nbufs;
637 __u16 bid;
638 };
639
640 struct io_statx {
641 struct file *file;
642 int dfd;
643 unsigned int mask;
644 unsigned int flags;
645 const char __user *filename;
646 struct statx __user *buffer;
647 };
648
649 struct io_shutdown {
650 struct file *file;
651 int how;
652 };
653
654 struct io_rename {
655 struct file *file;
656 int old_dfd;
657 int new_dfd;
658 struct filename *oldpath;
659 struct filename *newpath;
660 int flags;
661 };
662
663 struct io_unlink {
664 struct file *file;
665 int dfd;
666 int flags;
667 struct filename *filename;
668 };
669
670 struct io_mkdir {
671 struct file *file;
672 int dfd;
673 umode_t mode;
674 struct filename *filename;
675 };
676
677 struct io_symlink {
678 struct file *file;
679 int new_dfd;
680 struct filename *oldpath;
681 struct filename *newpath;
682 };
683
684 struct io_hardlink {
685 struct file *file;
686 int old_dfd;
687 int new_dfd;
688 struct filename *oldpath;
689 struct filename *newpath;
690 int flags;
691 };
692
693 struct io_completion {
694 struct file *file;
695 u32 cflags;
696 };
697
698 struct io_async_connect {
699 struct sockaddr_storage address;
700 };
701
702 struct io_async_msghdr {
703 struct iovec fast_iov[UIO_FASTIOV];
704 /* points to an allocated iov, if NULL we use fast_iov instead */
705 struct iovec *free_iov;
706 struct sockaddr __user *uaddr;
707 struct msghdr msg;
708 struct sockaddr_storage addr;
709 };
710
711 struct io_async_rw {
712 struct iovec fast_iov[UIO_FASTIOV];
713 const struct iovec *free_iovec;
714 struct iov_iter iter;
715 struct iov_iter_state iter_state;
716 size_t bytes_done;
717 struct wait_page_queue wpq;
718 };
719
720 enum {
721 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
722 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
723 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
724 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
725 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
726 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
727
728 /* first byte is taken by user flags, shift it to not overlap */
729 REQ_F_FAIL_BIT = 8,
730 REQ_F_INFLIGHT_BIT,
731 REQ_F_CUR_POS_BIT,
732 REQ_F_NOWAIT_BIT,
733 REQ_F_LINK_TIMEOUT_BIT,
734 REQ_F_NEED_CLEANUP_BIT,
735 REQ_F_POLLED_BIT,
736 REQ_F_BUFFER_SELECTED_BIT,
737 REQ_F_COMPLETE_INLINE_BIT,
738 REQ_F_REISSUE_BIT,
739 REQ_F_CREDS_BIT,
740 REQ_F_REFCOUNT_BIT,
741 REQ_F_ARM_LTIMEOUT_BIT,
742 /* keep async read/write and isreg together and in order */
743 REQ_F_NOWAIT_READ_BIT,
744 REQ_F_NOWAIT_WRITE_BIT,
745 REQ_F_ISREG_BIT,
746
747 /* not a real bit, just to check we're not overflowing the space */
748 __REQ_F_LAST_BIT,
749 };
750
751 enum {
752 /* ctx owns file */
753 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
754 /* drain existing IO first */
755 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
756 /* linked sqes */
757 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
758 /* doesn't sever on completion < 0 */
759 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
760 /* IOSQE_ASYNC */
761 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
762 /* IOSQE_BUFFER_SELECT */
763 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
764
765 /* fail rest of links */
766 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
767 /* on inflight list, should be cancelled and waited on exit reliably */
768 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
769 /* read/write uses file position */
770 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
771 /* must not punt to workers */
772 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
773 /* has or had linked timeout */
774 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
775 /* needs cleanup */
776 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
777 /* already went through poll handler */
778 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
779 /* buffer already selected */
780 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
781 /* completion is deferred through io_comp_state */
782 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
783 /* caller should reissue async */
784 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
785 /* supports async reads */
786 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
787 /* supports async writes */
788 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
789 /* regular file */
790 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
791 /* has creds assigned */
792 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
793 /* skip refcounting if not set */
794 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
795 /* there is a linked timeout that has to be armed */
796 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
797 };
798
799 struct async_poll {
800 struct io_poll_iocb poll;
801 struct io_poll_iocb *double_poll;
802 };
803
804 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
805
806 struct io_task_work {
807 union {
808 struct io_wq_work_node node;
809 struct llist_node fallback_node;
810 };
811 io_req_tw_func_t func;
812 };
813
814 enum {
815 IORING_RSRC_FILE = 0,
816 IORING_RSRC_BUFFER = 1,
817 };
818
819 /*
820 * NOTE! Each of the iocb union members has the file pointer
821 * as the first entry in their struct definition. So you can
822 * access the file pointer through any of the sub-structs,
823 * or directly as just 'ki_filp' in this struct.
824 */
825 struct io_kiocb {
826 union {
827 struct file *file;
828 struct io_rw rw;
829 struct io_poll_iocb poll;
830 struct io_poll_update poll_update;
831 struct io_accept accept;
832 struct io_sync sync;
833 struct io_cancel cancel;
834 struct io_timeout timeout;
835 struct io_timeout_rem timeout_rem;
836 struct io_connect connect;
837 struct io_sr_msg sr_msg;
838 struct io_open open;
839 struct io_close close;
840 struct io_rsrc_update rsrc_update;
841 struct io_fadvise fadvise;
842 struct io_madvise madvise;
843 struct io_epoll epoll;
844 struct io_splice splice;
845 struct io_provide_buf pbuf;
846 struct io_statx statx;
847 struct io_shutdown shutdown;
848 struct io_rename rename;
849 struct io_unlink unlink;
850 struct io_mkdir mkdir;
851 struct io_symlink symlink;
852 struct io_hardlink hardlink;
853 /* use only after cleaning per-op data, see io_clean_op() */
854 struct io_completion compl;
855 };
856
857 /* opcode allocated if it needs to store data for async defer */
858 void *async_data;
859 u8 opcode;
860 /* polled IO has completed */
861 u8 iopoll_completed;
862
863 u16 buf_index;
864 u32 result;
865
866 struct io_ring_ctx *ctx;
867 unsigned int flags;
868 atomic_t refs;
869 struct task_struct *task;
870 u64 user_data;
871
872 struct io_kiocb *link;
873 struct percpu_ref *fixed_rsrc_refs;
874
875 /* used with ctx->iopoll_list with reads/writes */
876 struct list_head inflight_entry;
877 struct io_task_work io_task_work;
878 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
879 struct hlist_node hash_node;
880 struct async_poll *apoll;
881 struct io_wq_work work;
882 const struct cred *creds;
883
884 /* store used ubuf, so we can prevent reloading */
885 struct io_mapped_ubuf *imu;
886 /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
887 struct io_buffer *kbuf;
888 atomic_t poll_refs;
889 };
890
891 struct io_tctx_node {
892 struct list_head ctx_node;
893 struct task_struct *task;
894 struct io_ring_ctx *ctx;
895 };
896
897 struct io_defer_entry {
898 struct list_head list;
899 struct io_kiocb *req;
900 u32 seq;
901 };
902
903 struct io_op_def {
904 /* needs req->file assigned */
905 unsigned needs_file : 1;
906 /* hash wq insertion if file is a regular file */
907 unsigned hash_reg_file : 1;
908 /* unbound wq insertion if file is a non-regular file */
909 unsigned unbound_nonreg_file : 1;
910 /* opcode is not supported by this kernel */
911 unsigned not_supported : 1;
912 /* set if opcode supports polled "wait" */
913 unsigned pollin : 1;
914 unsigned pollout : 1;
915 /* op supports buffer selection */
916 unsigned buffer_select : 1;
917 /* do prep async if is going to be punted */
918 unsigned needs_async_setup : 1;
919 /* should block plug */
920 unsigned plug : 1;
921 /* size of async data needed, if any */
922 unsigned short async_size;
923 };
924
925 static const struct io_op_def io_op_defs[] = {
926 [IORING_OP_NOP] = {},
927 [IORING_OP_READV] = {
928 .needs_file = 1,
929 .unbound_nonreg_file = 1,
930 .pollin = 1,
931 .buffer_select = 1,
932 .needs_async_setup = 1,
933 .plug = 1,
934 .async_size = sizeof(struct io_async_rw),
935 },
936 [IORING_OP_WRITEV] = {
937 .needs_file = 1,
938 .hash_reg_file = 1,
939 .unbound_nonreg_file = 1,
940 .pollout = 1,
941 .needs_async_setup = 1,
942 .plug = 1,
943 .async_size = sizeof(struct io_async_rw),
944 },
945 [IORING_OP_FSYNC] = {
946 .needs_file = 1,
947 },
948 [IORING_OP_READ_FIXED] = {
949 .needs_file = 1,
950 .unbound_nonreg_file = 1,
951 .pollin = 1,
952 .plug = 1,
953 .async_size = sizeof(struct io_async_rw),
954 },
955 [IORING_OP_WRITE_FIXED] = {
956 .needs_file = 1,
957 .hash_reg_file = 1,
958 .unbound_nonreg_file = 1,
959 .pollout = 1,
960 .plug = 1,
961 .async_size = sizeof(struct io_async_rw),
962 },
963 [IORING_OP_POLL_ADD] = {
964 .needs_file = 1,
965 .unbound_nonreg_file = 1,
966 },
967 [IORING_OP_POLL_REMOVE] = {},
968 [IORING_OP_SYNC_FILE_RANGE] = {
969 .needs_file = 1,
970 },
971 [IORING_OP_SENDMSG] = {
972 .needs_file = 1,
973 .unbound_nonreg_file = 1,
974 .pollout = 1,
975 .needs_async_setup = 1,
976 .async_size = sizeof(struct io_async_msghdr),
977 },
978 [IORING_OP_RECVMSG] = {
979 .needs_file = 1,
980 .unbound_nonreg_file = 1,
981 .pollin = 1,
982 .buffer_select = 1,
983 .needs_async_setup = 1,
984 .async_size = sizeof(struct io_async_msghdr),
985 },
986 [IORING_OP_TIMEOUT] = {
987 .async_size = sizeof(struct io_timeout_data),
988 },
989 [IORING_OP_TIMEOUT_REMOVE] = {
990 /* used by timeout updates' prep() */
991 },
992 [IORING_OP_ACCEPT] = {
993 .needs_file = 1,
994 .unbound_nonreg_file = 1,
995 .pollin = 1,
996 },
997 [IORING_OP_ASYNC_CANCEL] = {},
998 [IORING_OP_LINK_TIMEOUT] = {
999 .async_size = sizeof(struct io_timeout_data),
1000 },
1001 [IORING_OP_CONNECT] = {
1002 .needs_file = 1,
1003 .unbound_nonreg_file = 1,
1004 .pollout = 1,
1005 .needs_async_setup = 1,
1006 .async_size = sizeof(struct io_async_connect),
1007 },
1008 [IORING_OP_FALLOCATE] = {
1009 .needs_file = 1,
1010 },
1011 [IORING_OP_OPENAT] = {},
1012 [IORING_OP_CLOSE] = {},
1013 [IORING_OP_FILES_UPDATE] = {},
1014 [IORING_OP_STATX] = {},
1015 [IORING_OP_READ] = {
1016 .needs_file = 1,
1017 .unbound_nonreg_file = 1,
1018 .pollin = 1,
1019 .buffer_select = 1,
1020 .plug = 1,
1021 .async_size = sizeof(struct io_async_rw),
1022 },
1023 [IORING_OP_WRITE] = {
1024 .needs_file = 1,
1025 .hash_reg_file = 1,
1026 .unbound_nonreg_file = 1,
1027 .pollout = 1,
1028 .plug = 1,
1029 .async_size = sizeof(struct io_async_rw),
1030 },
1031 [IORING_OP_FADVISE] = {
1032 .needs_file = 1,
1033 },
1034 [IORING_OP_MADVISE] = {},
1035 [IORING_OP_SEND] = {
1036 .needs_file = 1,
1037 .unbound_nonreg_file = 1,
1038 .pollout = 1,
1039 },
1040 [IORING_OP_RECV] = {
1041 .needs_file = 1,
1042 .unbound_nonreg_file = 1,
1043 .pollin = 1,
1044 .buffer_select = 1,
1045 },
1046 [IORING_OP_OPENAT2] = {
1047 },
1048 [IORING_OP_EPOLL_CTL] = {
1049 .unbound_nonreg_file = 1,
1050 },
1051 [IORING_OP_SPLICE] = {
1052 .needs_file = 1,
1053 .hash_reg_file = 1,
1054 .unbound_nonreg_file = 1,
1055 },
1056 [IORING_OP_PROVIDE_BUFFERS] = {},
1057 [IORING_OP_REMOVE_BUFFERS] = {},
1058 [IORING_OP_TEE] = {
1059 .needs_file = 1,
1060 .hash_reg_file = 1,
1061 .unbound_nonreg_file = 1,
1062 },
1063 [IORING_OP_SHUTDOWN] = {
1064 .needs_file = 1,
1065 },
1066 [IORING_OP_RENAMEAT] = {},
1067 [IORING_OP_UNLINKAT] = {},
1068 [IORING_OP_MKDIRAT] = {},
1069 [IORING_OP_SYMLINKAT] = {},
1070 [IORING_OP_LINKAT] = {},
1071 };
1072
1073 /* requests with any of those set should undergo io_disarm_next() */
1074 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1075
1076 static bool io_disarm_next(struct io_kiocb *req);
1077 static void io_uring_del_tctx_node(unsigned long index);
1078 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1079 struct task_struct *task,
1080 bool cancel_all);
1081 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1082
1083 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1084
1085 static void io_put_req(struct io_kiocb *req);
1086 static void io_put_req_deferred(struct io_kiocb *req);
1087 static void io_dismantle_req(struct io_kiocb *req);
1088 static void io_queue_linked_timeout(struct io_kiocb *req);
1089 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1090 struct io_uring_rsrc_update2 *up,
1091 unsigned nr_args);
1092 static void io_clean_op(struct io_kiocb *req);
1093 static struct file *io_file_get(struct io_ring_ctx *ctx,
1094 struct io_kiocb *req, int fd, bool fixed);
1095 static void __io_queue_sqe(struct io_kiocb *req);
1096 static void io_rsrc_put_work(struct work_struct *work);
1097
1098 static void io_req_task_queue(struct io_kiocb *req);
1099 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1100 static int io_req_prep_async(struct io_kiocb *req);
1101
1102 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1103 unsigned int issue_flags, u32 slot_index);
1104 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1105
1106 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1107
1108 static struct kmem_cache *req_cachep;
1109
1110 static const struct file_operations io_uring_fops;
1111
1112 struct sock *io_uring_get_socket(struct file *file)
1113 {
1114 #if defined(CONFIG_UNIX)
1115 if (file->f_op == &io_uring_fops) {
1116 struct io_ring_ctx *ctx = file->private_data;
1117
1118 return ctx->ring_sock->sk;
1119 }
1120 #endif
1121 return NULL;
1122 }
1123 EXPORT_SYMBOL(io_uring_get_socket);
1124
1125 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1126 {
1127 if (!*locked) {
1128 mutex_lock(&ctx->uring_lock);
1129 *locked = true;
1130 }
1131 }
1132
1133 #define io_for_each_link(pos, head) \
1134 for (pos = (head); pos; pos = pos->link)
1135
1136 /*
1137 * Shamelessly stolen from the mm implementation of page reference checking,
1138 * see commit f958d7b528b1 for details.
1139 */
1140 #define req_ref_zero_or_close_to_overflow(req) \
1141 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1142
1143 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1144 {
1145 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1146 return atomic_inc_not_zero(&req->refs);
1147 }
1148
1149 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1150 {
1151 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1152 return true;
1153
1154 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1155 return atomic_dec_and_test(&req->refs);
1156 }
1157
1158 static inline void req_ref_put(struct io_kiocb *req)
1159 {
1160 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1161 WARN_ON_ONCE(req_ref_put_and_test(req));
1162 }
1163
1164 static inline void req_ref_get(struct io_kiocb *req)
1165 {
1166 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1167 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1168 atomic_inc(&req->refs);
1169 }
1170
1171 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1172 {
1173 if (!(req->flags & REQ_F_REFCOUNT)) {
1174 req->flags |= REQ_F_REFCOUNT;
1175 atomic_set(&req->refs, nr);
1176 }
1177 }
1178
1179 static inline void io_req_set_refcount(struct io_kiocb *req)
1180 {
1181 __io_req_set_refcount(req, 1);
1182 }
1183
1184 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1185 {
1186 struct io_ring_ctx *ctx = req->ctx;
1187
1188 if (!req->fixed_rsrc_refs) {
1189 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1190 percpu_ref_get(req->fixed_rsrc_refs);
1191 }
1192 }
1193
1194 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1195 {
1196 bool got = percpu_ref_tryget(ref);
1197
1198 /* already at zero, wait for ->release() */
1199 if (!got)
1200 wait_for_completion(compl);
1201 percpu_ref_resurrect(ref);
1202 if (got)
1203 percpu_ref_put(ref);
1204 }
1205
1206 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1207 bool cancel_all)
1208 __must_hold(&req->ctx->timeout_lock)
1209 {
1210 struct io_kiocb *req;
1211
1212 if (task && head->task != task)
1213 return false;
1214 if (cancel_all)
1215 return true;
1216
1217 io_for_each_link(req, head) {
1218 if (req->flags & REQ_F_INFLIGHT)
1219 return true;
1220 }
1221 return false;
1222 }
1223
1224 static bool io_match_linked(struct io_kiocb *head)
1225 {
1226 struct io_kiocb *req;
1227
1228 io_for_each_link(req, head) {
1229 if (req->flags & REQ_F_INFLIGHT)
1230 return true;
1231 }
1232 return false;
1233 }
1234
1235 /*
1236 * As io_match_task() but protected against racing with linked timeouts.
1237 * User must not hold timeout_lock.
1238 */
1239 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1240 bool cancel_all)
1241 {
1242 bool matched;
1243
1244 if (task && head->task != task)
1245 return false;
1246 if (cancel_all)
1247 return true;
1248
1249 if (head->flags & REQ_F_LINK_TIMEOUT) {
1250 struct io_ring_ctx *ctx = head->ctx;
1251
1252 /* protect against races with linked timeouts */
1253 spin_lock_irq(&ctx->timeout_lock);
1254 matched = io_match_linked(head);
1255 spin_unlock_irq(&ctx->timeout_lock);
1256 } else {
1257 matched = io_match_linked(head);
1258 }
1259 return matched;
1260 }
1261
1262 static inline void req_set_fail(struct io_kiocb *req)
1263 {
1264 req->flags |= REQ_F_FAIL;
1265 }
1266
1267 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1268 {
1269 req_set_fail(req);
1270 req->result = res;
1271 }
1272
1273 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1274 {
1275 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1276
1277 complete(&ctx->ref_comp);
1278 }
1279
1280 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1281 {
1282 return !req->timeout.off;
1283 }
1284
1285 static void io_fallback_req_func(struct work_struct *work)
1286 {
1287 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1288 fallback_work.work);
1289 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1290 struct io_kiocb *req, *tmp;
1291 bool locked = false;
1292
1293 percpu_ref_get(&ctx->refs);
1294 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1295 req->io_task_work.func(req, &locked);
1296
1297 if (locked) {
1298 if (ctx->submit_state.compl_nr)
1299 io_submit_flush_completions(ctx);
1300 mutex_unlock(&ctx->uring_lock);
1301 }
1302 percpu_ref_put(&ctx->refs);
1303
1304 }
1305
1306 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1307 {
1308 struct io_ring_ctx *ctx;
1309 int hash_bits;
1310
1311 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1312 if (!ctx)
1313 return NULL;
1314
1315 /*
1316 * Use 5 bits less than the max cq entries, that should give us around
1317 * 32 entries per hash list if totally full and uniformly spread.
1318 */
1319 hash_bits = ilog2(p->cq_entries);
1320 hash_bits -= 5;
1321 if (hash_bits <= 0)
1322 hash_bits = 1;
1323 ctx->cancel_hash_bits = hash_bits;
1324 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1325 GFP_KERNEL);
1326 if (!ctx->cancel_hash)
1327 goto err;
1328 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1329
1330 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1331 if (!ctx->dummy_ubuf)
1332 goto err;
1333 /* set invalid range, so io_import_fixed() fails meeting it */
1334 ctx->dummy_ubuf->ubuf = -1UL;
1335
1336 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1337 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1338 goto err;
1339
1340 ctx->flags = p->flags;
1341 init_waitqueue_head(&ctx->sqo_sq_wait);
1342 INIT_LIST_HEAD(&ctx->sqd_list);
1343 init_waitqueue_head(&ctx->poll_wait);
1344 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1345 init_completion(&ctx->ref_comp);
1346 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1347 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1348 mutex_init(&ctx->uring_lock);
1349 init_waitqueue_head(&ctx->cq_wait);
1350 spin_lock_init(&ctx->completion_lock);
1351 spin_lock_init(&ctx->timeout_lock);
1352 INIT_LIST_HEAD(&ctx->iopoll_list);
1353 INIT_LIST_HEAD(&ctx->defer_list);
1354 INIT_LIST_HEAD(&ctx->timeout_list);
1355 INIT_LIST_HEAD(&ctx->ltimeout_list);
1356 spin_lock_init(&ctx->rsrc_ref_lock);
1357 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1358 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1359 init_llist_head(&ctx->rsrc_put_llist);
1360 INIT_LIST_HEAD(&ctx->tctx_list);
1361 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1362 INIT_LIST_HEAD(&ctx->locked_free_list);
1363 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1364 return ctx;
1365 err:
1366 kfree(ctx->dummy_ubuf);
1367 kfree(ctx->cancel_hash);
1368 kfree(ctx);
1369 return NULL;
1370 }
1371
1372 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1373 {
1374 struct io_rings *r = ctx->rings;
1375
1376 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1377 ctx->cq_extra--;
1378 }
1379
1380 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1381 {
1382 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1383 struct io_ring_ctx *ctx = req->ctx;
1384
1385 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1386 }
1387
1388 return false;
1389 }
1390
1391 #define FFS_ASYNC_READ 0x1UL
1392 #define FFS_ASYNC_WRITE 0x2UL
1393 #ifdef CONFIG_64BIT
1394 #define FFS_ISREG 0x4UL
1395 #else
1396 #define FFS_ISREG 0x0UL
1397 #endif
1398 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1399
1400 static inline bool io_req_ffs_set(struct io_kiocb *req)
1401 {
1402 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1403 }
1404
1405 static void io_req_track_inflight(struct io_kiocb *req)
1406 {
1407 if (!(req->flags & REQ_F_INFLIGHT)) {
1408 req->flags |= REQ_F_INFLIGHT;
1409 atomic_inc(&current->io_uring->inflight_tracked);
1410 }
1411 }
1412
1413 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1414 {
1415 if (WARN_ON_ONCE(!req->link))
1416 return NULL;
1417
1418 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1419 req->flags |= REQ_F_LINK_TIMEOUT;
1420
1421 /* linked timeouts should have two refs once prep'ed */
1422 io_req_set_refcount(req);
1423 __io_req_set_refcount(req->link, 2);
1424 return req->link;
1425 }
1426
1427 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1428 {
1429 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1430 return NULL;
1431 return __io_prep_linked_timeout(req);
1432 }
1433
1434 static void io_prep_async_work(struct io_kiocb *req)
1435 {
1436 const struct io_op_def *def = &io_op_defs[req->opcode];
1437 struct io_ring_ctx *ctx = req->ctx;
1438
1439 if (!(req->flags & REQ_F_CREDS)) {
1440 req->flags |= REQ_F_CREDS;
1441 req->creds = get_current_cred();
1442 }
1443
1444 req->work.list.next = NULL;
1445 req->work.flags = 0;
1446 if (req->flags & REQ_F_FORCE_ASYNC)
1447 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1448
1449 if (req->flags & REQ_F_ISREG) {
1450 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1451 io_wq_hash_work(&req->work, file_inode(req->file));
1452 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1453 if (def->unbound_nonreg_file)
1454 req->work.flags |= IO_WQ_WORK_UNBOUND;
1455 }
1456 }
1457
1458 static void io_prep_async_link(struct io_kiocb *req)
1459 {
1460 struct io_kiocb *cur;
1461
1462 if (req->flags & REQ_F_LINK_TIMEOUT) {
1463 struct io_ring_ctx *ctx = req->ctx;
1464
1465 spin_lock_irq(&ctx->timeout_lock);
1466 io_for_each_link(cur, req)
1467 io_prep_async_work(cur);
1468 spin_unlock_irq(&ctx->timeout_lock);
1469 } else {
1470 io_for_each_link(cur, req)
1471 io_prep_async_work(cur);
1472 }
1473 }
1474
1475 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1476 {
1477 struct io_ring_ctx *ctx = req->ctx;
1478 struct io_kiocb *link = io_prep_linked_timeout(req);
1479 struct io_uring_task *tctx = req->task->io_uring;
1480
1481 /* must not take the lock, NULL it as a precaution */
1482 locked = NULL;
1483
1484 BUG_ON(!tctx);
1485 BUG_ON(!tctx->io_wq);
1486
1487 /* init ->work of the whole link before punting */
1488 io_prep_async_link(req);
1489
1490 /*
1491 * Not expected to happen, but if we do have a bug where this _can_
1492 * happen, catch it here and ensure the request is marked as
1493 * canceled. That will make io-wq go through the usual work cancel
1494 * procedure rather than attempt to run this request (or create a new
1495 * worker for it).
1496 */
1497 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1498 req->work.flags |= IO_WQ_WORK_CANCEL;
1499
1500 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1501 &req->work, req->flags);
1502 io_wq_enqueue(tctx->io_wq, &req->work);
1503 if (link)
1504 io_queue_linked_timeout(link);
1505 }
1506
1507 static void io_kill_timeout(struct io_kiocb *req, int status)
1508 __must_hold(&req->ctx->completion_lock)
1509 __must_hold(&req->ctx->timeout_lock)
1510 {
1511 struct io_timeout_data *io = req->async_data;
1512
1513 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1514 if (status)
1515 req_set_fail(req);
1516 atomic_set(&req->ctx->cq_timeouts,
1517 atomic_read(&req->ctx->cq_timeouts) + 1);
1518 list_del_init(&req->timeout.list);
1519 io_fill_cqe_req(req, status, 0);
1520 io_put_req_deferred(req);
1521 }
1522 }
1523
1524 static void io_queue_deferred(struct io_ring_ctx *ctx)
1525 {
1526 while (!list_empty(&ctx->defer_list)) {
1527 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1528 struct io_defer_entry, list);
1529
1530 if (req_need_defer(de->req, de->seq))
1531 break;
1532 list_del_init(&de->list);
1533 io_req_task_queue(de->req);
1534 kfree(de);
1535 }
1536 }
1537
1538 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1539 __must_hold(&ctx->completion_lock)
1540 {
1541 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1542 struct io_kiocb *req, *tmp;
1543
1544 spin_lock_irq(&ctx->timeout_lock);
1545 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1546 u32 events_needed, events_got;
1547
1548 if (io_is_timeout_noseq(req))
1549 break;
1550
1551 /*
1552 * Since seq can easily wrap around over time, subtract
1553 * the last seq at which timeouts were flushed before comparing.
1554 * Assuming not more than 2^31-1 events have happened since,
1555 * these subtractions won't have wrapped, so we can check if
1556 * target is in [last_seq, current_seq] by comparing the two.
1557 */
1558 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1559 events_got = seq - ctx->cq_last_tm_flush;
1560 if (events_got < events_needed)
1561 break;
1562
1563 io_kill_timeout(req, 0);
1564 }
1565 ctx->cq_last_tm_flush = seq;
1566 spin_unlock_irq(&ctx->timeout_lock);
1567 }
1568
1569 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1570 {
1571 if (ctx->off_timeout_used)
1572 io_flush_timeouts(ctx);
1573 if (ctx->drain_active)
1574 io_queue_deferred(ctx);
1575 }
1576
1577 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1578 {
1579 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1580 __io_commit_cqring_flush(ctx);
1581 /* order cqe stores with ring update */
1582 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1583 }
1584
1585 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1586 {
1587 struct io_rings *r = ctx->rings;
1588
1589 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1590 }
1591
1592 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1593 {
1594 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1595 }
1596
1597 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1598 {
1599 struct io_rings *rings = ctx->rings;
1600 unsigned tail, mask = ctx->cq_entries - 1;
1601
1602 /*
1603 * writes to the cq entry need to come after reading head; the
1604 * control dependency is enough as we're using WRITE_ONCE to
1605 * fill the cq entry
1606 */
1607 if (__io_cqring_events(ctx) == ctx->cq_entries)
1608 return NULL;
1609
1610 tail = ctx->cached_cq_tail++;
1611 return &rings->cqes[tail & mask];
1612 }
1613
1614 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1615 {
1616 if (likely(!ctx->cq_ev_fd))
1617 return false;
1618 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1619 return false;
1620 return !ctx->eventfd_async || io_wq_current_is_worker();
1621 }
1622
1623 /*
1624 * This should only get called when at least one event has been posted.
1625 * Some applications rely on the eventfd notification count only changing
1626 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1627 * 1:1 relationship between how many times this function is called (and
1628 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1629 */
1630 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1631 {
1632 /*
1633 * wake_up_all() may seem excessive, but io_wake_function() and
1634 * io_should_wake() handle the termination of the loop and only
1635 * wake as many waiters as we need to.
1636 */
1637 if (wq_has_sleeper(&ctx->cq_wait))
1638 wake_up_all(&ctx->cq_wait);
1639 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1640 wake_up(&ctx->sq_data->wait);
1641 if (io_should_trigger_evfd(ctx))
1642 eventfd_signal(ctx->cq_ev_fd, 1);
1643 if (waitqueue_active(&ctx->poll_wait))
1644 wake_up_interruptible(&ctx->poll_wait);
1645 }
1646
1647 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1648 {
1649 /* see waitqueue_active() comment */
1650 smp_mb();
1651
1652 if (ctx->flags & IORING_SETUP_SQPOLL) {
1653 if (waitqueue_active(&ctx->cq_wait))
1654 wake_up_all(&ctx->cq_wait);
1655 }
1656 if (io_should_trigger_evfd(ctx))
1657 eventfd_signal(ctx->cq_ev_fd, 1);
1658 if (waitqueue_active(&ctx->poll_wait))
1659 wake_up_interruptible(&ctx->poll_wait);
1660 }
1661
1662 /* Returns true if there are no backlogged entries after the flush */
1663 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1664 {
1665 bool all_flushed, posted;
1666
1667 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1668 return false;
1669
1670 posted = false;
1671 spin_lock(&ctx->completion_lock);
1672 while (!list_empty(&ctx->cq_overflow_list)) {
1673 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1674 struct io_overflow_cqe *ocqe;
1675
1676 if (!cqe && !force)
1677 break;
1678 ocqe = list_first_entry(&ctx->cq_overflow_list,
1679 struct io_overflow_cqe, list);
1680 if (cqe)
1681 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1682 else
1683 io_account_cq_overflow(ctx);
1684
1685 posted = true;
1686 list_del(&ocqe->list);
1687 kfree(ocqe);
1688 }
1689
1690 all_flushed = list_empty(&ctx->cq_overflow_list);
1691 if (all_flushed) {
1692 clear_bit(0, &ctx->check_cq_overflow);
1693 WRITE_ONCE(ctx->rings->sq_flags,
1694 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1695 }
1696
1697 if (posted)
1698 io_commit_cqring(ctx);
1699 spin_unlock(&ctx->completion_lock);
1700 if (posted)
1701 io_cqring_ev_posted(ctx);
1702 return all_flushed;
1703 }
1704
1705 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1706 {
1707 bool ret = true;
1708
1709 if (test_bit(0, &ctx->check_cq_overflow)) {
1710 /* iopoll syncs against uring_lock, not completion_lock */
1711 if (ctx->flags & IORING_SETUP_IOPOLL)
1712 mutex_lock(&ctx->uring_lock);
1713 ret = __io_cqring_overflow_flush(ctx, false);
1714 if (ctx->flags & IORING_SETUP_IOPOLL)
1715 mutex_unlock(&ctx->uring_lock);
1716 }
1717
1718 return ret;
1719 }
1720
1721 /* must to be called somewhat shortly after putting a request */
1722 static inline void io_put_task(struct task_struct *task, int nr)
1723 {
1724 struct io_uring_task *tctx = task->io_uring;
1725
1726 if (likely(task == current)) {
1727 tctx->cached_refs += nr;
1728 } else {
1729 percpu_counter_sub(&tctx->inflight, nr);
1730 if (unlikely(atomic_read(&tctx->in_idle)))
1731 wake_up(&tctx->wait);
1732 put_task_struct_many(task, nr);
1733 }
1734 }
1735
1736 static void io_task_refs_refill(struct io_uring_task *tctx)
1737 {
1738 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1739
1740 percpu_counter_add(&tctx->inflight, refill);
1741 refcount_add(refill, &current->usage);
1742 tctx->cached_refs += refill;
1743 }
1744
1745 static inline void io_get_task_refs(int nr)
1746 {
1747 struct io_uring_task *tctx = current->io_uring;
1748
1749 tctx->cached_refs -= nr;
1750 if (unlikely(tctx->cached_refs < 0))
1751 io_task_refs_refill(tctx);
1752 }
1753
1754 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1755 {
1756 struct io_uring_task *tctx = task->io_uring;
1757 unsigned int refs = tctx->cached_refs;
1758
1759 if (refs) {
1760 tctx->cached_refs = 0;
1761 percpu_counter_sub(&tctx->inflight, refs);
1762 put_task_struct_many(task, refs);
1763 }
1764 }
1765
1766 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1767 s32 res, u32 cflags)
1768 {
1769 struct io_overflow_cqe *ocqe;
1770
1771 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1772 if (!ocqe) {
1773 /*
1774 * If we're in ring overflow flush mode, or in task cancel mode,
1775 * or cannot allocate an overflow entry, then we need to drop it
1776 * on the floor.
1777 */
1778 io_account_cq_overflow(ctx);
1779 return false;
1780 }
1781 if (list_empty(&ctx->cq_overflow_list)) {
1782 set_bit(0, &ctx->check_cq_overflow);
1783 WRITE_ONCE(ctx->rings->sq_flags,
1784 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1785
1786 }
1787 ocqe->cqe.user_data = user_data;
1788 ocqe->cqe.res = res;
1789 ocqe->cqe.flags = cflags;
1790 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1791 return true;
1792 }
1793
1794 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1795 s32 res, u32 cflags)
1796 {
1797 struct io_uring_cqe *cqe;
1798
1799 trace_io_uring_complete(ctx, user_data, res, cflags);
1800
1801 /*
1802 * If we can't get a cq entry, userspace overflowed the
1803 * submission (by quite a lot). Increment the overflow count in
1804 * the ring.
1805 */
1806 cqe = io_get_cqe(ctx);
1807 if (likely(cqe)) {
1808 WRITE_ONCE(cqe->user_data, user_data);
1809 WRITE_ONCE(cqe->res, res);
1810 WRITE_ONCE(cqe->flags, cflags);
1811 return true;
1812 }
1813 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1814 }
1815
1816 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1817 {
1818 __io_fill_cqe(req->ctx, req->user_data, res, cflags);
1819 }
1820
1821 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1822 s32 res, u32 cflags)
1823 {
1824 ctx->cq_extra++;
1825 return __io_fill_cqe(ctx, user_data, res, cflags);
1826 }
1827
1828 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1829 u32 cflags)
1830 {
1831 struct io_ring_ctx *ctx = req->ctx;
1832
1833 spin_lock(&ctx->completion_lock);
1834 __io_fill_cqe(ctx, req->user_data, res, cflags);
1835 /*
1836 * If we're the last reference to this request, add to our locked
1837 * free_list cache.
1838 */
1839 if (req_ref_put_and_test(req)) {
1840 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1841 if (req->flags & IO_DISARM_MASK)
1842 io_disarm_next(req);
1843 if (req->link) {
1844 io_req_task_queue(req->link);
1845 req->link = NULL;
1846 }
1847 }
1848 io_dismantle_req(req);
1849 io_put_task(req->task, 1);
1850 list_add(&req->inflight_entry, &ctx->locked_free_list);
1851 ctx->locked_free_nr++;
1852 } else {
1853 if (!percpu_ref_tryget(&ctx->refs))
1854 req = NULL;
1855 }
1856 io_commit_cqring(ctx);
1857 spin_unlock(&ctx->completion_lock);
1858
1859 if (req) {
1860 io_cqring_ev_posted(ctx);
1861 percpu_ref_put(&ctx->refs);
1862 }
1863 }
1864
1865 static inline bool io_req_needs_clean(struct io_kiocb *req)
1866 {
1867 return req->flags & IO_REQ_CLEAN_FLAGS;
1868 }
1869
1870 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1871 u32 cflags)
1872 {
1873 if (io_req_needs_clean(req))
1874 io_clean_op(req);
1875 req->result = res;
1876 req->compl.cflags = cflags;
1877 req->flags |= REQ_F_COMPLETE_INLINE;
1878 }
1879
1880 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1881 s32 res, u32 cflags)
1882 {
1883 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1884 io_req_complete_state(req, res, cflags);
1885 else
1886 io_req_complete_post(req, res, cflags);
1887 }
1888
1889 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1890 {
1891 __io_req_complete(req, 0, res, 0);
1892 }
1893
1894 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1895 {
1896 req_set_fail(req);
1897 io_req_complete_post(req, res, 0);
1898 }
1899
1900 static void io_req_complete_fail_submit(struct io_kiocb *req)
1901 {
1902 /*
1903 * We don't submit, fail them all, for that replace hardlinks with
1904 * normal links. Extra REQ_F_LINK is tolerated.
1905 */
1906 req->flags &= ~REQ_F_HARDLINK;
1907 req->flags |= REQ_F_LINK;
1908 io_req_complete_failed(req, req->result);
1909 }
1910
1911 /*
1912 * Don't initialise the fields below on every allocation, but do that in
1913 * advance and keep them valid across allocations.
1914 */
1915 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1916 {
1917 req->ctx = ctx;
1918 req->link = NULL;
1919 req->async_data = NULL;
1920 /* not necessary, but safer to zero */
1921 req->result = 0;
1922 }
1923
1924 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1925 struct io_submit_state *state)
1926 {
1927 spin_lock(&ctx->completion_lock);
1928 list_splice_init(&ctx->locked_free_list, &state->free_list);
1929 ctx->locked_free_nr = 0;
1930 spin_unlock(&ctx->completion_lock);
1931 }
1932
1933 /* Returns true IFF there are requests in the cache */
1934 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1935 {
1936 struct io_submit_state *state = &ctx->submit_state;
1937 int nr;
1938
1939 /*
1940 * If we have more than a batch's worth of requests in our IRQ side
1941 * locked cache, grab the lock and move them over to our submission
1942 * side cache.
1943 */
1944 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1945 io_flush_cached_locked_reqs(ctx, state);
1946
1947 nr = state->free_reqs;
1948 while (!list_empty(&state->free_list)) {
1949 struct io_kiocb *req = list_first_entry(&state->free_list,
1950 struct io_kiocb, inflight_entry);
1951
1952 list_del(&req->inflight_entry);
1953 state->reqs[nr++] = req;
1954 if (nr == ARRAY_SIZE(state->reqs))
1955 break;
1956 }
1957
1958 state->free_reqs = nr;
1959 return nr != 0;
1960 }
1961
1962 /*
1963 * A request might get retired back into the request caches even before opcode
1964 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1965 * Because of that, io_alloc_req() should be called only under ->uring_lock
1966 * and with extra caution to not get a request that is still worked on.
1967 */
1968 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1969 __must_hold(&ctx->uring_lock)
1970 {
1971 struct io_submit_state *state = &ctx->submit_state;
1972 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1973 int ret, i;
1974
1975 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1976
1977 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1978 goto got_req;
1979
1980 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1981 state->reqs);
1982
1983 /*
1984 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1985 * retry single alloc to be on the safe side.
1986 */
1987 if (unlikely(ret <= 0)) {
1988 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1989 if (!state->reqs[0])
1990 return NULL;
1991 ret = 1;
1992 }
1993
1994 for (i = 0; i < ret; i++)
1995 io_preinit_req(state->reqs[i], ctx);
1996 state->free_reqs = ret;
1997 got_req:
1998 state->free_reqs--;
1999 return state->reqs[state->free_reqs];
2000 }
2001
2002 static inline void io_put_file(struct file *file)
2003 {
2004 if (file)
2005 fput(file);
2006 }
2007
2008 static void io_dismantle_req(struct io_kiocb *req)
2009 {
2010 unsigned int flags = req->flags;
2011
2012 if (io_req_needs_clean(req))
2013 io_clean_op(req);
2014 if (!(flags & REQ_F_FIXED_FILE))
2015 io_put_file(req->file);
2016 if (req->fixed_rsrc_refs)
2017 percpu_ref_put(req->fixed_rsrc_refs);
2018 if (req->async_data) {
2019 kfree(req->async_data);
2020 req->async_data = NULL;
2021 }
2022 }
2023
2024 static void __io_free_req(struct io_kiocb *req)
2025 {
2026 struct io_ring_ctx *ctx = req->ctx;
2027
2028 io_dismantle_req(req);
2029 io_put_task(req->task, 1);
2030
2031 spin_lock(&ctx->completion_lock);
2032 list_add(&req->inflight_entry, &ctx->locked_free_list);
2033 ctx->locked_free_nr++;
2034 spin_unlock(&ctx->completion_lock);
2035
2036 percpu_ref_put(&ctx->refs);
2037 }
2038
2039 static inline void io_remove_next_linked(struct io_kiocb *req)
2040 {
2041 struct io_kiocb *nxt = req->link;
2042
2043 req->link = nxt->link;
2044 nxt->link = NULL;
2045 }
2046
2047 static bool io_kill_linked_timeout(struct io_kiocb *req)
2048 __must_hold(&req->ctx->completion_lock)
2049 __must_hold(&req->ctx->timeout_lock)
2050 {
2051 struct io_kiocb *link = req->link;
2052
2053 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2054 struct io_timeout_data *io = link->async_data;
2055
2056 io_remove_next_linked(req);
2057 link->timeout.head = NULL;
2058 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2059 list_del(&link->timeout.list);
2060 io_fill_cqe_req(link, -ECANCELED, 0);
2061 io_put_req_deferred(link);
2062 return true;
2063 }
2064 }
2065 return false;
2066 }
2067
2068 static void io_fail_links(struct io_kiocb *req)
2069 __must_hold(&req->ctx->completion_lock)
2070 {
2071 struct io_kiocb *nxt, *link = req->link;
2072
2073 req->link = NULL;
2074 while (link) {
2075 long res = -ECANCELED;
2076
2077 if (link->flags & REQ_F_FAIL)
2078 res = link->result;
2079
2080 nxt = link->link;
2081 link->link = NULL;
2082
2083 trace_io_uring_fail_link(req, link);
2084 io_fill_cqe_req(link, res, 0);
2085 io_put_req_deferred(link);
2086 link = nxt;
2087 }
2088 }
2089
2090 static bool io_disarm_next(struct io_kiocb *req)
2091 __must_hold(&req->ctx->completion_lock)
2092 {
2093 bool posted = false;
2094
2095 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2096 struct io_kiocb *link = req->link;
2097
2098 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2099 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2100 io_remove_next_linked(req);
2101 io_fill_cqe_req(link, -ECANCELED, 0);
2102 io_put_req_deferred(link);
2103 posted = true;
2104 }
2105 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2106 struct io_ring_ctx *ctx = req->ctx;
2107
2108 spin_lock_irq(&ctx->timeout_lock);
2109 posted = io_kill_linked_timeout(req);
2110 spin_unlock_irq(&ctx->timeout_lock);
2111 }
2112 if (unlikely((req->flags & REQ_F_FAIL) &&
2113 !(req->flags & REQ_F_HARDLINK))) {
2114 posted |= (req->link != NULL);
2115 io_fail_links(req);
2116 }
2117 return posted;
2118 }
2119
2120 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2121 {
2122 struct io_kiocb *nxt;
2123
2124 /*
2125 * If LINK is set, we have dependent requests in this chain. If we
2126 * didn't fail this request, queue the first one up, moving any other
2127 * dependencies to the next request. In case of failure, fail the rest
2128 * of the chain.
2129 */
2130 if (req->flags & IO_DISARM_MASK) {
2131 struct io_ring_ctx *ctx = req->ctx;
2132 bool posted;
2133
2134 spin_lock(&ctx->completion_lock);
2135 posted = io_disarm_next(req);
2136 if (posted)
2137 io_commit_cqring(req->ctx);
2138 spin_unlock(&ctx->completion_lock);
2139 if (posted)
2140 io_cqring_ev_posted(ctx);
2141 }
2142 nxt = req->link;
2143 req->link = NULL;
2144 return nxt;
2145 }
2146
2147 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2148 {
2149 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2150 return NULL;
2151 return __io_req_find_next(req);
2152 }
2153
2154 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2155 {
2156 if (!ctx)
2157 return;
2158 if (*locked) {
2159 if (ctx->submit_state.compl_nr)
2160 io_submit_flush_completions(ctx);
2161 mutex_unlock(&ctx->uring_lock);
2162 *locked = false;
2163 }
2164 percpu_ref_put(&ctx->refs);
2165 }
2166
2167 static void tctx_task_work(struct callback_head *cb)
2168 {
2169 bool locked = false;
2170 struct io_ring_ctx *ctx = NULL;
2171 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2172 task_work);
2173
2174 while (1) {
2175 struct io_wq_work_node *node;
2176
2177 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2178 io_submit_flush_completions(ctx);
2179
2180 spin_lock_irq(&tctx->task_lock);
2181 node = tctx->task_list.first;
2182 INIT_WQ_LIST(&tctx->task_list);
2183 if (!node)
2184 tctx->task_running = false;
2185 spin_unlock_irq(&tctx->task_lock);
2186 if (!node)
2187 break;
2188
2189 do {
2190 struct io_wq_work_node *next = node->next;
2191 struct io_kiocb *req = container_of(node, struct io_kiocb,
2192 io_task_work.node);
2193
2194 if (req->ctx != ctx) {
2195 ctx_flush_and_put(ctx, &locked);
2196 ctx = req->ctx;
2197 /* if not contended, grab and improve batching */
2198 locked = mutex_trylock(&ctx->uring_lock);
2199 percpu_ref_get(&ctx->refs);
2200 }
2201 req->io_task_work.func(req, &locked);
2202 node = next;
2203 } while (node);
2204
2205 cond_resched();
2206 }
2207
2208 ctx_flush_and_put(ctx, &locked);
2209
2210 /* relaxed read is enough as only the task itself sets ->in_idle */
2211 if (unlikely(atomic_read(&tctx->in_idle)))
2212 io_uring_drop_tctx_refs(current);
2213 }
2214
2215 static void io_req_task_work_add(struct io_kiocb *req)
2216 {
2217 struct task_struct *tsk = req->task;
2218 struct io_uring_task *tctx = tsk->io_uring;
2219 enum task_work_notify_mode notify;
2220 struct io_wq_work_node *node;
2221 unsigned long flags;
2222 bool running;
2223
2224 WARN_ON_ONCE(!tctx);
2225
2226 spin_lock_irqsave(&tctx->task_lock, flags);
2227 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2228 running = tctx->task_running;
2229 if (!running)
2230 tctx->task_running = true;
2231 spin_unlock_irqrestore(&tctx->task_lock, flags);
2232
2233 /* task_work already pending, we're done */
2234 if (running)
2235 return;
2236
2237 /*
2238 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2239 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2240 * processing task_work. There's no reliable way to tell if TWA_RESUME
2241 * will do the job.
2242 */
2243 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2244 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2245 wake_up_process(tsk);
2246 return;
2247 }
2248
2249 spin_lock_irqsave(&tctx->task_lock, flags);
2250 tctx->task_running = false;
2251 node = tctx->task_list.first;
2252 INIT_WQ_LIST(&tctx->task_list);
2253 spin_unlock_irqrestore(&tctx->task_lock, flags);
2254
2255 while (node) {
2256 req = container_of(node, struct io_kiocb, io_task_work.node);
2257 node = node->next;
2258 if (llist_add(&req->io_task_work.fallback_node,
2259 &req->ctx->fallback_llist))
2260 schedule_delayed_work(&req->ctx->fallback_work, 1);
2261 }
2262 }
2263
2264 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2265 {
2266 struct io_ring_ctx *ctx = req->ctx;
2267
2268 /* not needed for normal modes, but SQPOLL depends on it */
2269 io_tw_lock(ctx, locked);
2270 io_req_complete_failed(req, req->result);
2271 }
2272
2273 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2274 {
2275 struct io_ring_ctx *ctx = req->ctx;
2276
2277 io_tw_lock(ctx, locked);
2278 /* req->task == current here, checking PF_EXITING is safe */
2279 if (likely(!(req->task->flags & PF_EXITING)))
2280 __io_queue_sqe(req);
2281 else
2282 io_req_complete_failed(req, -EFAULT);
2283 }
2284
2285 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2286 {
2287 req->result = ret;
2288 req->io_task_work.func = io_req_task_cancel;
2289 io_req_task_work_add(req);
2290 }
2291
2292 static void io_req_task_queue(struct io_kiocb *req)
2293 {
2294 req->io_task_work.func = io_req_task_submit;
2295 io_req_task_work_add(req);
2296 }
2297
2298 static void io_req_task_queue_reissue(struct io_kiocb *req)
2299 {
2300 req->io_task_work.func = io_queue_async_work;
2301 io_req_task_work_add(req);
2302 }
2303
2304 static inline void io_queue_next(struct io_kiocb *req)
2305 {
2306 struct io_kiocb *nxt = io_req_find_next(req);
2307
2308 if (nxt)
2309 io_req_task_queue(nxt);
2310 }
2311
2312 static void io_free_req(struct io_kiocb *req)
2313 {
2314 io_queue_next(req);
2315 __io_free_req(req);
2316 }
2317
2318 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2319 {
2320 io_free_req(req);
2321 }
2322
2323 struct req_batch {
2324 struct task_struct *task;
2325 int task_refs;
2326 int ctx_refs;
2327 };
2328
2329 static inline void io_init_req_batch(struct req_batch *rb)
2330 {
2331 rb->task_refs = 0;
2332 rb->ctx_refs = 0;
2333 rb->task = NULL;
2334 }
2335
2336 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2337 struct req_batch *rb)
2338 {
2339 if (rb->ctx_refs)
2340 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2341 if (rb->task)
2342 io_put_task(rb->task, rb->task_refs);
2343 }
2344
2345 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2346 struct io_submit_state *state)
2347 {
2348 io_queue_next(req);
2349 io_dismantle_req(req);
2350
2351 if (req->task != rb->task) {
2352 if (rb->task)
2353 io_put_task(rb->task, rb->task_refs);
2354 rb->task = req->task;
2355 rb->task_refs = 0;
2356 }
2357 rb->task_refs++;
2358 rb->ctx_refs++;
2359
2360 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2361 state->reqs[state->free_reqs++] = req;
2362 else
2363 list_add(&req->inflight_entry, &state->free_list);
2364 }
2365
2366 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2367 __must_hold(&ctx->uring_lock)
2368 {
2369 struct io_submit_state *state = &ctx->submit_state;
2370 int i, nr = state->compl_nr;
2371 struct req_batch rb;
2372
2373 spin_lock(&ctx->completion_lock);
2374 for (i = 0; i < nr; i++) {
2375 struct io_kiocb *req = state->compl_reqs[i];
2376
2377 __io_fill_cqe(ctx, req->user_data, req->result,
2378 req->compl.cflags);
2379 }
2380 io_commit_cqring(ctx);
2381 spin_unlock(&ctx->completion_lock);
2382 io_cqring_ev_posted(ctx);
2383
2384 io_init_req_batch(&rb);
2385 for (i = 0; i < nr; i++) {
2386 struct io_kiocb *req = state->compl_reqs[i];
2387
2388 if (req_ref_put_and_test(req))
2389 io_req_free_batch(&rb, req, &ctx->submit_state);
2390 }
2391
2392 io_req_free_batch_finish(ctx, &rb);
2393 state->compl_nr = 0;
2394 }
2395
2396 /*
2397 * Drop reference to request, return next in chain (if there is one) if this
2398 * was the last reference to this request.
2399 */
2400 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2401 {
2402 struct io_kiocb *nxt = NULL;
2403
2404 if (req_ref_put_and_test(req)) {
2405 nxt = io_req_find_next(req);
2406 __io_free_req(req);
2407 }
2408 return nxt;
2409 }
2410
2411 static inline void io_put_req(struct io_kiocb *req)
2412 {
2413 if (req_ref_put_and_test(req))
2414 io_free_req(req);
2415 }
2416
2417 static inline void io_put_req_deferred(struct io_kiocb *req)
2418 {
2419 if (req_ref_put_and_test(req)) {
2420 req->io_task_work.func = io_free_req_work;
2421 io_req_task_work_add(req);
2422 }
2423 }
2424
2425 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2426 {
2427 /* See comment at the top of this file */
2428 smp_rmb();
2429 return __io_cqring_events(ctx);
2430 }
2431
2432 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2433 {
2434 struct io_rings *rings = ctx->rings;
2435
2436 /* make sure SQ entry isn't read before tail */
2437 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2438 }
2439
2440 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2441 {
2442 unsigned int cflags;
2443
2444 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2445 cflags |= IORING_CQE_F_BUFFER;
2446 req->flags &= ~REQ_F_BUFFER_SELECTED;
2447 kfree(kbuf);
2448 return cflags;
2449 }
2450
2451 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2452 {
2453 struct io_buffer *kbuf;
2454
2455 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2456 return 0;
2457 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2458 return io_put_kbuf(req, kbuf);
2459 }
2460
2461 static inline bool io_run_task_work(void)
2462 {
2463 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2464 __set_current_state(TASK_RUNNING);
2465 tracehook_notify_signal();
2466 return true;
2467 }
2468
2469 return false;
2470 }
2471
2472 /*
2473 * Find and free completed poll iocbs
2474 */
2475 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2476 struct list_head *done)
2477 {
2478 struct req_batch rb;
2479 struct io_kiocb *req;
2480
2481 /* order with ->result store in io_complete_rw_iopoll() */
2482 smp_rmb();
2483
2484 io_init_req_batch(&rb);
2485 while (!list_empty(done)) {
2486 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2487 list_del(&req->inflight_entry);
2488
2489 io_fill_cqe_req(req, req->result, io_put_rw_kbuf(req));
2490 (*nr_events)++;
2491
2492 if (req_ref_put_and_test(req))
2493 io_req_free_batch(&rb, req, &ctx->submit_state);
2494 }
2495
2496 io_commit_cqring(ctx);
2497 io_cqring_ev_posted_iopoll(ctx);
2498 io_req_free_batch_finish(ctx, &rb);
2499 }
2500
2501 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2502 long min)
2503 {
2504 struct io_kiocb *req, *tmp;
2505 LIST_HEAD(done);
2506 bool spin;
2507
2508 /*
2509 * Only spin for completions if we don't have multiple devices hanging
2510 * off our complete list, and we're under the requested amount.
2511 */
2512 spin = !ctx->poll_multi_queue && *nr_events < min;
2513
2514 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2515 struct kiocb *kiocb = &req->rw.kiocb;
2516 int ret;
2517
2518 /*
2519 * Move completed and retryable entries to our local lists.
2520 * If we find a request that requires polling, break out
2521 * and complete those lists first, if we have entries there.
2522 */
2523 if (READ_ONCE(req->iopoll_completed)) {
2524 list_move_tail(&req->inflight_entry, &done);
2525 continue;
2526 }
2527 if (!list_empty(&done))
2528 break;
2529
2530 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2531 if (unlikely(ret < 0))
2532 return ret;
2533 else if (ret)
2534 spin = false;
2535
2536 /* iopoll may have completed current req */
2537 if (READ_ONCE(req->iopoll_completed))
2538 list_move_tail(&req->inflight_entry, &done);
2539 }
2540
2541 if (!list_empty(&done))
2542 io_iopoll_complete(ctx, nr_events, &done);
2543
2544 return 0;
2545 }
2546
2547 /*
2548 * We can't just wait for polled events to come to us, we have to actively
2549 * find and complete them.
2550 */
2551 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2552 {
2553 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2554 return;
2555
2556 mutex_lock(&ctx->uring_lock);
2557 while (!list_empty(&ctx->iopoll_list)) {
2558 unsigned int nr_events = 0;
2559
2560 io_do_iopoll(ctx, &nr_events, 0);
2561
2562 /* let it sleep and repeat later if can't complete a request */
2563 if (nr_events == 0)
2564 break;
2565 /*
2566 * Ensure we allow local-to-the-cpu processing to take place,
2567 * in this case we need to ensure that we reap all events.
2568 * Also let task_work, etc. to progress by releasing the mutex
2569 */
2570 if (need_resched()) {
2571 mutex_unlock(&ctx->uring_lock);
2572 cond_resched();
2573 mutex_lock(&ctx->uring_lock);
2574 }
2575 }
2576 mutex_unlock(&ctx->uring_lock);
2577 }
2578
2579 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2580 {
2581 unsigned int nr_events = 0;
2582 int ret = 0;
2583
2584 /*
2585 * We disallow the app entering submit/complete with polling, but we
2586 * still need to lock the ring to prevent racing with polled issue
2587 * that got punted to a workqueue.
2588 */
2589 mutex_lock(&ctx->uring_lock);
2590 /*
2591 * Don't enter poll loop if we already have events pending.
2592 * If we do, we can potentially be spinning for commands that
2593 * already triggered a CQE (eg in error).
2594 */
2595 if (test_bit(0, &ctx->check_cq_overflow))
2596 __io_cqring_overflow_flush(ctx, false);
2597 if (io_cqring_events(ctx))
2598 goto out;
2599 do {
2600 /*
2601 * If a submit got punted to a workqueue, we can have the
2602 * application entering polling for a command before it gets
2603 * issued. That app will hold the uring_lock for the duration
2604 * of the poll right here, so we need to take a breather every
2605 * now and then to ensure that the issue has a chance to add
2606 * the poll to the issued list. Otherwise we can spin here
2607 * forever, while the workqueue is stuck trying to acquire the
2608 * very same mutex.
2609 */
2610 if (list_empty(&ctx->iopoll_list)) {
2611 u32 tail = ctx->cached_cq_tail;
2612
2613 mutex_unlock(&ctx->uring_lock);
2614 io_run_task_work();
2615 mutex_lock(&ctx->uring_lock);
2616
2617 /* some requests don't go through iopoll_list */
2618 if (tail != ctx->cached_cq_tail ||
2619 list_empty(&ctx->iopoll_list))
2620 break;
2621 }
2622 ret = io_do_iopoll(ctx, &nr_events, min);
2623 } while (!ret && nr_events < min && !need_resched());
2624 out:
2625 mutex_unlock(&ctx->uring_lock);
2626 return ret;
2627 }
2628
2629 static void kiocb_end_write(struct io_kiocb *req)
2630 {
2631 /*
2632 * Tell lockdep we inherited freeze protection from submission
2633 * thread.
2634 */
2635 if (req->flags & REQ_F_ISREG) {
2636 struct super_block *sb = file_inode(req->file)->i_sb;
2637
2638 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2639 sb_end_write(sb);
2640 }
2641 }
2642
2643 #ifdef CONFIG_BLOCK
2644 static bool io_resubmit_prep(struct io_kiocb *req)
2645 {
2646 struct io_async_rw *rw = req->async_data;
2647
2648 if (!rw)
2649 return !io_req_prep_async(req);
2650 iov_iter_restore(&rw->iter, &rw->iter_state);
2651 return true;
2652 }
2653
2654 static bool io_rw_should_reissue(struct io_kiocb *req)
2655 {
2656 umode_t mode = file_inode(req->file)->i_mode;
2657 struct io_ring_ctx *ctx = req->ctx;
2658
2659 if (!S_ISBLK(mode) && !S_ISREG(mode))
2660 return false;
2661 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2662 !(ctx->flags & IORING_SETUP_IOPOLL)))
2663 return false;
2664 /*
2665 * If ref is dying, we might be running poll reap from the exit work.
2666 * Don't attempt to reissue from that path, just let it fail with
2667 * -EAGAIN.
2668 */
2669 if (percpu_ref_is_dying(&ctx->refs))
2670 return false;
2671 /*
2672 * Play it safe and assume not safe to re-import and reissue if we're
2673 * not in the original thread group (or in task context).
2674 */
2675 if (!same_thread_group(req->task, current) || !in_task())
2676 return false;
2677 return true;
2678 }
2679 #else
2680 static bool io_resubmit_prep(struct io_kiocb *req)
2681 {
2682 return false;
2683 }
2684 static bool io_rw_should_reissue(struct io_kiocb *req)
2685 {
2686 return false;
2687 }
2688 #endif
2689
2690 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2691 {
2692 if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
2693 kiocb_end_write(req);
2694 fsnotify_modify(req->file);
2695 } else {
2696 fsnotify_access(req->file);
2697 }
2698 if (res != req->result) {
2699 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2700 io_rw_should_reissue(req)) {
2701 req->flags |= REQ_F_REISSUE;
2702 return true;
2703 }
2704 req_set_fail(req);
2705 req->result = res;
2706 }
2707 return false;
2708 }
2709
2710 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2711 {
2712 unsigned int cflags = io_put_rw_kbuf(req);
2713 int res = req->result;
2714
2715 if (*locked) {
2716 struct io_ring_ctx *ctx = req->ctx;
2717 struct io_submit_state *state = &ctx->submit_state;
2718
2719 io_req_complete_state(req, res, cflags);
2720 state->compl_reqs[state->compl_nr++] = req;
2721 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2722 io_submit_flush_completions(ctx);
2723 } else {
2724 io_req_complete_post(req, res, cflags);
2725 }
2726 }
2727
2728 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2729 unsigned int issue_flags)
2730 {
2731 if (__io_complete_rw_common(req, res))
2732 return;
2733 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2734 }
2735
2736 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2737 {
2738 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2739
2740 if (__io_complete_rw_common(req, res))
2741 return;
2742 req->result = res;
2743 req->io_task_work.func = io_req_task_complete;
2744 io_req_task_work_add(req);
2745 }
2746
2747 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2748 {
2749 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2750
2751 if (kiocb->ki_flags & IOCB_WRITE)
2752 kiocb_end_write(req);
2753 if (unlikely(res != req->result)) {
2754 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2755 req->flags |= REQ_F_REISSUE;
2756 return;
2757 }
2758 }
2759
2760 WRITE_ONCE(req->result, res);
2761 /* order with io_iopoll_complete() checking ->result */
2762 smp_wmb();
2763 WRITE_ONCE(req->iopoll_completed, 1);
2764 }
2765
2766 /*
2767 * After the iocb has been issued, it's safe to be found on the poll list.
2768 * Adding the kiocb to the list AFTER submission ensures that we don't
2769 * find it from a io_do_iopoll() thread before the issuer is done
2770 * accessing the kiocb cookie.
2771 */
2772 static void io_iopoll_req_issued(struct io_kiocb *req)
2773 {
2774 struct io_ring_ctx *ctx = req->ctx;
2775 const bool in_async = io_wq_current_is_worker();
2776
2777 /* workqueue context doesn't hold uring_lock, grab it now */
2778 if (unlikely(in_async))
2779 mutex_lock(&ctx->uring_lock);
2780
2781 /*
2782 * Track whether we have multiple files in our lists. This will impact
2783 * how we do polling eventually, not spinning if we're on potentially
2784 * different devices.
2785 */
2786 if (list_empty(&ctx->iopoll_list)) {
2787 ctx->poll_multi_queue = false;
2788 } else if (!ctx->poll_multi_queue) {
2789 struct io_kiocb *list_req;
2790 unsigned int queue_num0, queue_num1;
2791
2792 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2793 inflight_entry);
2794
2795 if (list_req->file != req->file) {
2796 ctx->poll_multi_queue = true;
2797 } else {
2798 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2799 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2800 if (queue_num0 != queue_num1)
2801 ctx->poll_multi_queue = true;
2802 }
2803 }
2804
2805 /*
2806 * For fast devices, IO may have already completed. If it has, add
2807 * it to the front so we find it first.
2808 */
2809 if (READ_ONCE(req->iopoll_completed))
2810 list_add(&req->inflight_entry, &ctx->iopoll_list);
2811 else
2812 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2813
2814 if (unlikely(in_async)) {
2815 /*
2816 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2817 * in sq thread task context or in io worker task context. If
2818 * current task context is sq thread, we don't need to check
2819 * whether should wake up sq thread.
2820 */
2821 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2822 wq_has_sleeper(&ctx->sq_data->wait))
2823 wake_up(&ctx->sq_data->wait);
2824
2825 mutex_unlock(&ctx->uring_lock);
2826 }
2827 }
2828
2829 static bool io_bdev_nowait(struct block_device *bdev)
2830 {
2831 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2832 }
2833
2834 /*
2835 * If we tracked the file through the SCM inflight mechanism, we could support
2836 * any file. For now, just ensure that anything potentially problematic is done
2837 * inline.
2838 */
2839 static bool __io_file_supports_nowait(struct file *file, int rw)
2840 {
2841 umode_t mode = file_inode(file)->i_mode;
2842
2843 if (S_ISBLK(mode)) {
2844 if (IS_ENABLED(CONFIG_BLOCK) &&
2845 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2846 return true;
2847 return false;
2848 }
2849 if (S_ISSOCK(mode))
2850 return true;
2851 if (S_ISREG(mode)) {
2852 if (IS_ENABLED(CONFIG_BLOCK) &&
2853 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2854 file->f_op != &io_uring_fops)
2855 return true;
2856 return false;
2857 }
2858
2859 /* any ->read/write should understand O_NONBLOCK */
2860 if (file->f_flags & O_NONBLOCK)
2861 return true;
2862
2863 if (!(file->f_mode & FMODE_NOWAIT))
2864 return false;
2865
2866 if (rw == READ)
2867 return file->f_op->read_iter != NULL;
2868
2869 return file->f_op->write_iter != NULL;
2870 }
2871
2872 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2873 {
2874 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2875 return true;
2876 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2877 return true;
2878
2879 return __io_file_supports_nowait(req->file, rw);
2880 }
2881
2882 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2883 int rw)
2884 {
2885 struct io_ring_ctx *ctx = req->ctx;
2886 struct kiocb *kiocb = &req->rw.kiocb;
2887 struct file *file = req->file;
2888 unsigned ioprio;
2889 int ret;
2890
2891 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2892 req->flags |= REQ_F_ISREG;
2893
2894 kiocb->ki_pos = READ_ONCE(sqe->off);
2895 if (kiocb->ki_pos == -1) {
2896 if (!(file->f_mode & FMODE_STREAM)) {
2897 req->flags |= REQ_F_CUR_POS;
2898 kiocb->ki_pos = file->f_pos;
2899 } else {
2900 kiocb->ki_pos = 0;
2901 }
2902 }
2903 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2904 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2905 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2906 if (unlikely(ret))
2907 return ret;
2908
2909 /*
2910 * If the file is marked O_NONBLOCK, still allow retry for it if it
2911 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2912 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2913 */
2914 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2915 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2916 req->flags |= REQ_F_NOWAIT;
2917
2918 ioprio = READ_ONCE(sqe->ioprio);
2919 if (ioprio) {
2920 ret = ioprio_check_cap(ioprio);
2921 if (ret)
2922 return ret;
2923
2924 kiocb->ki_ioprio = ioprio;
2925 } else
2926 kiocb->ki_ioprio = get_current_ioprio();
2927
2928 if (ctx->flags & IORING_SETUP_IOPOLL) {
2929 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2930 !kiocb->ki_filp->f_op->iopoll)
2931 return -EOPNOTSUPP;
2932
2933 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2934 kiocb->ki_complete = io_complete_rw_iopoll;
2935 req->iopoll_completed = 0;
2936 } else {
2937 if (kiocb->ki_flags & IOCB_HIPRI)
2938 return -EINVAL;
2939 kiocb->ki_complete = io_complete_rw;
2940 }
2941
2942 /* used for fixed read/write too - just read unconditionally */
2943 req->buf_index = READ_ONCE(sqe->buf_index);
2944 req->imu = NULL;
2945
2946 if (req->opcode == IORING_OP_READ_FIXED ||
2947 req->opcode == IORING_OP_WRITE_FIXED) {
2948 struct io_ring_ctx *ctx = req->ctx;
2949 u16 index;
2950
2951 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
2952 return -EFAULT;
2953 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
2954 req->imu = ctx->user_bufs[index];
2955 io_req_set_rsrc_node(req);
2956 }
2957
2958 req->rw.addr = READ_ONCE(sqe->addr);
2959 req->rw.len = READ_ONCE(sqe->len);
2960 return 0;
2961 }
2962
2963 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2964 {
2965 switch (ret) {
2966 case -EIOCBQUEUED:
2967 break;
2968 case -ERESTARTSYS:
2969 case -ERESTARTNOINTR:
2970 case -ERESTARTNOHAND:
2971 case -ERESTART_RESTARTBLOCK:
2972 /*
2973 * We can't just restart the syscall, since previously
2974 * submitted sqes may already be in progress. Just fail this
2975 * IO with EINTR.
2976 */
2977 ret = -EINTR;
2978 fallthrough;
2979 default:
2980 kiocb->ki_complete(kiocb, ret, 0);
2981 }
2982 }
2983
2984 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2985 unsigned int issue_flags)
2986 {
2987 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2988 struct io_async_rw *io = req->async_data;
2989
2990 /* add previously done IO, if any */
2991 if (io && io->bytes_done > 0) {
2992 if (ret < 0)
2993 ret = io->bytes_done;
2994 else
2995 ret += io->bytes_done;
2996 }
2997
2998 if (req->flags & REQ_F_CUR_POS)
2999 req->file->f_pos = kiocb->ki_pos;
3000 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
3001 __io_complete_rw(req, ret, 0, issue_flags);
3002 else
3003 io_rw_done(kiocb, ret);
3004
3005 if (req->flags & REQ_F_REISSUE) {
3006 req->flags &= ~REQ_F_REISSUE;
3007 if (io_resubmit_prep(req)) {
3008 io_req_task_queue_reissue(req);
3009 } else {
3010 unsigned int cflags = io_put_rw_kbuf(req);
3011 struct io_ring_ctx *ctx = req->ctx;
3012
3013 req_set_fail(req);
3014 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3015 mutex_lock(&ctx->uring_lock);
3016 __io_req_complete(req, issue_flags, ret, cflags);
3017 mutex_unlock(&ctx->uring_lock);
3018 } else {
3019 __io_req_complete(req, issue_flags, ret, cflags);
3020 }
3021 }
3022 }
3023 }
3024
3025 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3026 struct io_mapped_ubuf *imu)
3027 {
3028 size_t len = req->rw.len;
3029 u64 buf_end, buf_addr = req->rw.addr;
3030 size_t offset;
3031
3032 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3033 return -EFAULT;
3034 /* not inside the mapped region */
3035 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3036 return -EFAULT;
3037
3038 /*
3039 * May not be a start of buffer, set size appropriately
3040 * and advance us to the beginning.
3041 */
3042 offset = buf_addr - imu->ubuf;
3043 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3044
3045 if (offset) {
3046 /*
3047 * Don't use iov_iter_advance() here, as it's really slow for
3048 * using the latter parts of a big fixed buffer - it iterates
3049 * over each segment manually. We can cheat a bit here, because
3050 * we know that:
3051 *
3052 * 1) it's a BVEC iter, we set it up
3053 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3054 * first and last bvec
3055 *
3056 * So just find our index, and adjust the iterator afterwards.
3057 * If the offset is within the first bvec (or the whole first
3058 * bvec, just use iov_iter_advance(). This makes it easier
3059 * since we can just skip the first segment, which may not
3060 * be PAGE_SIZE aligned.
3061 */
3062 const struct bio_vec *bvec = imu->bvec;
3063
3064 if (offset <= bvec->bv_len) {
3065 iov_iter_advance(iter, offset);
3066 } else {
3067 unsigned long seg_skip;
3068
3069 /* skip first vec */
3070 offset -= bvec->bv_len;
3071 seg_skip = 1 + (offset >> PAGE_SHIFT);
3072
3073 iter->bvec = bvec + seg_skip;
3074 iter->nr_segs -= seg_skip;
3075 iter->count -= bvec->bv_len + offset;
3076 iter->iov_offset = offset & ~PAGE_MASK;
3077 }
3078 }
3079
3080 return 0;
3081 }
3082
3083 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3084 {
3085 if (WARN_ON_ONCE(!req->imu))
3086 return -EFAULT;
3087 return __io_import_fixed(req, rw, iter, req->imu);
3088 }
3089
3090 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3091 {
3092 if (needs_lock)
3093 mutex_unlock(&ctx->uring_lock);
3094 }
3095
3096 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3097 {
3098 /*
3099 * "Normal" inline submissions always hold the uring_lock, since we
3100 * grab it from the system call. Same is true for the SQPOLL offload.
3101 * The only exception is when we've detached the request and issue it
3102 * from an async worker thread, grab the lock for that case.
3103 */
3104 if (needs_lock)
3105 mutex_lock(&ctx->uring_lock);
3106 }
3107
3108 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3109 int bgid, struct io_buffer *kbuf,
3110 bool needs_lock)
3111 {
3112 struct io_buffer *head;
3113
3114 if (req->flags & REQ_F_BUFFER_SELECTED)
3115 return kbuf;
3116
3117 io_ring_submit_lock(req->ctx, needs_lock);
3118
3119 lockdep_assert_held(&req->ctx->uring_lock);
3120
3121 head = xa_load(&req->ctx->io_buffers, bgid);
3122 if (head) {
3123 if (!list_empty(&head->list)) {
3124 kbuf = list_last_entry(&head->list, struct io_buffer,
3125 list);
3126 list_del(&kbuf->list);
3127 } else {
3128 kbuf = head;
3129 xa_erase(&req->ctx->io_buffers, bgid);
3130 }
3131 if (*len > kbuf->len)
3132 *len = kbuf->len;
3133 } else {
3134 kbuf = ERR_PTR(-ENOBUFS);
3135 }
3136
3137 io_ring_submit_unlock(req->ctx, needs_lock);
3138
3139 return kbuf;
3140 }
3141
3142 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3143 bool needs_lock)
3144 {
3145 struct io_buffer *kbuf;
3146 u16 bgid;
3147
3148 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3149 bgid = req->buf_index;
3150 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3151 if (IS_ERR(kbuf))
3152 return kbuf;
3153 req->rw.addr = (u64) (unsigned long) kbuf;
3154 req->flags |= REQ_F_BUFFER_SELECTED;
3155 return u64_to_user_ptr(kbuf->addr);
3156 }
3157
3158 #ifdef CONFIG_COMPAT
3159 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3160 bool needs_lock)
3161 {
3162 struct compat_iovec __user *uiov;
3163 compat_ssize_t clen;
3164 void __user *buf;
3165 ssize_t len;
3166
3167 uiov = u64_to_user_ptr(req->rw.addr);
3168 if (!access_ok(uiov, sizeof(*uiov)))
3169 return -EFAULT;
3170 if (__get_user(clen, &uiov->iov_len))
3171 return -EFAULT;
3172 if (clen < 0)
3173 return -EINVAL;
3174
3175 len = clen;
3176 buf = io_rw_buffer_select(req, &len, needs_lock);
3177 if (IS_ERR(buf))
3178 return PTR_ERR(buf);
3179 iov[0].iov_base = buf;
3180 iov[0].iov_len = (compat_size_t) len;
3181 return 0;
3182 }
3183 #endif
3184
3185 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3186 bool needs_lock)
3187 {
3188 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3189 void __user *buf;
3190 ssize_t len;
3191
3192 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3193 return -EFAULT;
3194
3195 len = iov[0].iov_len;
3196 if (len < 0)
3197 return -EINVAL;
3198 buf = io_rw_buffer_select(req, &len, needs_lock);
3199 if (IS_ERR(buf))
3200 return PTR_ERR(buf);
3201 iov[0].iov_base = buf;
3202 iov[0].iov_len = len;
3203 return 0;
3204 }
3205
3206 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3207 bool needs_lock)
3208 {
3209 if (req->flags & REQ_F_BUFFER_SELECTED) {
3210 struct io_buffer *kbuf;
3211
3212 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3213 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3214 iov[0].iov_len = kbuf->len;
3215 return 0;
3216 }
3217 if (req->rw.len != 1)
3218 return -EINVAL;
3219
3220 #ifdef CONFIG_COMPAT
3221 if (req->ctx->compat)
3222 return io_compat_import(req, iov, needs_lock);
3223 #endif
3224
3225 return __io_iov_buffer_select(req, iov, needs_lock);
3226 }
3227
3228 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3229 struct iov_iter *iter, bool needs_lock)
3230 {
3231 void __user *buf = u64_to_user_ptr(req->rw.addr);
3232 size_t sqe_len = req->rw.len;
3233 u8 opcode = req->opcode;
3234 ssize_t ret;
3235
3236 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3237 *iovec = NULL;
3238 return io_import_fixed(req, rw, iter);
3239 }
3240
3241 /* buffer index only valid with fixed read/write, or buffer select */
3242 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3243 return -EINVAL;
3244
3245 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3246 if (req->flags & REQ_F_BUFFER_SELECT) {
3247 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3248 if (IS_ERR(buf))
3249 return PTR_ERR(buf);
3250 req->rw.len = sqe_len;
3251 }
3252
3253 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3254 *iovec = NULL;
3255 return ret;
3256 }
3257
3258 if (req->flags & REQ_F_BUFFER_SELECT) {
3259 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3260 if (!ret)
3261 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3262 *iovec = NULL;
3263 return ret;
3264 }
3265
3266 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3267 req->ctx->compat);
3268 }
3269
3270 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3271 {
3272 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3273 }
3274
3275 /*
3276 * For files that don't have ->read_iter() and ->write_iter(), handle them
3277 * by looping over ->read() or ->write() manually.
3278 */
3279 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3280 {
3281 struct kiocb *kiocb = &req->rw.kiocb;
3282 struct file *file = req->file;
3283 ssize_t ret = 0;
3284
3285 /*
3286 * Don't support polled IO through this interface, and we can't
3287 * support non-blocking either. For the latter, this just causes
3288 * the kiocb to be handled from an async context.
3289 */
3290 if (kiocb->ki_flags & IOCB_HIPRI)
3291 return -EOPNOTSUPP;
3292 if (kiocb->ki_flags & IOCB_NOWAIT)
3293 return -EAGAIN;
3294
3295 while (iov_iter_count(iter)) {
3296 struct iovec iovec;
3297 ssize_t nr;
3298
3299 if (!iov_iter_is_bvec(iter)) {
3300 iovec = iov_iter_iovec(iter);
3301 } else {
3302 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3303 iovec.iov_len = req->rw.len;
3304 }
3305
3306 if (rw == READ) {
3307 nr = file->f_op->read(file, iovec.iov_base,
3308 iovec.iov_len, io_kiocb_ppos(kiocb));
3309 } else {
3310 nr = file->f_op->write(file, iovec.iov_base,
3311 iovec.iov_len, io_kiocb_ppos(kiocb));
3312 }
3313
3314 if (nr < 0) {
3315 if (!ret)
3316 ret = nr;
3317 break;
3318 }
3319 ret += nr;
3320 if (!iov_iter_is_bvec(iter)) {
3321 iov_iter_advance(iter, nr);
3322 } else {
3323 req->rw.addr += nr;
3324 req->rw.len -= nr;
3325 if (!req->rw.len)
3326 break;
3327 }
3328 if (nr != iovec.iov_len)
3329 break;
3330 }
3331
3332 return ret;
3333 }
3334
3335 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3336 const struct iovec *fast_iov, struct iov_iter *iter)
3337 {
3338 struct io_async_rw *rw = req->async_data;
3339
3340 memcpy(&rw->iter, iter, sizeof(*iter));
3341 rw->free_iovec = iovec;
3342 rw->bytes_done = 0;
3343 /* can only be fixed buffers, no need to do anything */
3344 if (iov_iter_is_bvec(iter))
3345 return;
3346 if (!iovec) {
3347 unsigned iov_off = 0;
3348
3349 rw->iter.iov = rw->fast_iov;
3350 if (iter->iov != fast_iov) {
3351 iov_off = iter->iov - fast_iov;
3352 rw->iter.iov += iov_off;
3353 }
3354 if (rw->fast_iov != fast_iov)
3355 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3356 sizeof(struct iovec) * iter->nr_segs);
3357 } else {
3358 req->flags |= REQ_F_NEED_CLEANUP;
3359 }
3360 }
3361
3362 static inline int io_alloc_async_data(struct io_kiocb *req)
3363 {
3364 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3365 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3366 return req->async_data == NULL;
3367 }
3368
3369 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3370 const struct iovec *fast_iov,
3371 struct iov_iter *iter, bool force)
3372 {
3373 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3374 return 0;
3375 if (!req->async_data) {
3376 struct io_async_rw *iorw;
3377
3378 if (io_alloc_async_data(req)) {
3379 kfree(iovec);
3380 return -ENOMEM;
3381 }
3382
3383 io_req_map_rw(req, iovec, fast_iov, iter);
3384 iorw = req->async_data;
3385 /* we've copied and mapped the iter, ensure state is saved */
3386 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3387 }
3388 return 0;
3389 }
3390
3391 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3392 {
3393 struct io_async_rw *iorw = req->async_data;
3394 struct iovec *iov = iorw->fast_iov;
3395 int ret;
3396
3397 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3398 if (unlikely(ret < 0))
3399 return ret;
3400
3401 iorw->bytes_done = 0;
3402 iorw->free_iovec = iov;
3403 if (iov)
3404 req->flags |= REQ_F_NEED_CLEANUP;
3405 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3406 return 0;
3407 }
3408
3409 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3410 {
3411 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3412 return -EBADF;
3413 return io_prep_rw(req, sqe, READ);
3414 }
3415
3416 /*
3417 * This is our waitqueue callback handler, registered through lock_page_async()
3418 * when we initially tried to do the IO with the iocb armed our waitqueue.
3419 * This gets called when the page is unlocked, and we generally expect that to
3420 * happen when the page IO is completed and the page is now uptodate. This will
3421 * queue a task_work based retry of the operation, attempting to copy the data
3422 * again. If the latter fails because the page was NOT uptodate, then we will
3423 * do a thread based blocking retry of the operation. That's the unexpected
3424 * slow path.
3425 */
3426 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3427 int sync, void *arg)
3428 {
3429 struct wait_page_queue *wpq;
3430 struct io_kiocb *req = wait->private;
3431 struct wait_page_key *key = arg;
3432
3433 wpq = container_of(wait, struct wait_page_queue, wait);
3434
3435 if (!wake_page_match(wpq, key))
3436 return 0;
3437
3438 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3439 list_del_init(&wait->entry);
3440 io_req_task_queue(req);
3441 return 1;
3442 }
3443
3444 /*
3445 * This controls whether a given IO request should be armed for async page
3446 * based retry. If we return false here, the request is handed to the async
3447 * worker threads for retry. If we're doing buffered reads on a regular file,
3448 * we prepare a private wait_page_queue entry and retry the operation. This
3449 * will either succeed because the page is now uptodate and unlocked, or it
3450 * will register a callback when the page is unlocked at IO completion. Through
3451 * that callback, io_uring uses task_work to setup a retry of the operation.
3452 * That retry will attempt the buffered read again. The retry will generally
3453 * succeed, or in rare cases where it fails, we then fall back to using the
3454 * async worker threads for a blocking retry.
3455 */
3456 static bool io_rw_should_retry(struct io_kiocb *req)
3457 {
3458 struct io_async_rw *rw = req->async_data;
3459 struct wait_page_queue *wait = &rw->wpq;
3460 struct kiocb *kiocb = &req->rw.kiocb;
3461
3462 /* never retry for NOWAIT, we just complete with -EAGAIN */
3463 if (req->flags & REQ_F_NOWAIT)
3464 return false;
3465
3466 /* Only for buffered IO */
3467 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3468 return false;
3469
3470 /*
3471 * just use poll if we can, and don't attempt if the fs doesn't
3472 * support callback based unlocks
3473 */
3474 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3475 return false;
3476
3477 wait->wait.func = io_async_buf_func;
3478 wait->wait.private = req;
3479 wait->wait.flags = 0;
3480 INIT_LIST_HEAD(&wait->wait.entry);
3481 kiocb->ki_flags |= IOCB_WAITQ;
3482 kiocb->ki_flags &= ~IOCB_NOWAIT;
3483 kiocb->ki_waitq = wait;
3484 return true;
3485 }
3486
3487 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3488 {
3489 if (req->file->f_op->read_iter)
3490 return call_read_iter(req->file, &req->rw.kiocb, iter);
3491 else if (req->file->f_op->read)
3492 return loop_rw_iter(READ, req, iter);
3493 else
3494 return -EINVAL;
3495 }
3496
3497 static bool need_read_all(struct io_kiocb *req)
3498 {
3499 return req->flags & REQ_F_ISREG ||
3500 S_ISBLK(file_inode(req->file)->i_mode);
3501 }
3502
3503 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3504 {
3505 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3506 struct kiocb *kiocb = &req->rw.kiocb;
3507 struct iov_iter __iter, *iter = &__iter;
3508 struct io_async_rw *rw = req->async_data;
3509 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3510 struct iov_iter_state __state, *state;
3511 ssize_t ret, ret2;
3512
3513 if (rw) {
3514 iter = &rw->iter;
3515 state = &rw->iter_state;
3516 /*
3517 * We come here from an earlier attempt, restore our state to
3518 * match in case it doesn't. It's cheap enough that we don't
3519 * need to make this conditional.
3520 */
3521 iov_iter_restore(iter, state);
3522 iovec = NULL;
3523 } else {
3524 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3525 if (ret < 0)
3526 return ret;
3527 state = &__state;
3528 iov_iter_save_state(iter, state);
3529 }
3530 req->result = iov_iter_count(iter);
3531
3532 /* Ensure we clear previously set non-block flag */
3533 if (!force_nonblock)
3534 kiocb->ki_flags &= ~IOCB_NOWAIT;
3535 else
3536 kiocb->ki_flags |= IOCB_NOWAIT;
3537
3538 /* If the file doesn't support async, just async punt */
3539 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3540 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3541 return ret ?: -EAGAIN;
3542 }
3543
3544 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3545 if (unlikely(ret)) {
3546 kfree(iovec);
3547 return ret;
3548 }
3549
3550 ret = io_iter_do_read(req, iter);
3551
3552 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3553 req->flags &= ~REQ_F_REISSUE;
3554 /* IOPOLL retry should happen for io-wq threads */
3555 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3556 goto done;
3557 /* no retry on NONBLOCK nor RWF_NOWAIT */
3558 if (req->flags & REQ_F_NOWAIT)
3559 goto done;
3560 ret = 0;
3561 } else if (ret == -EIOCBQUEUED) {
3562 goto out_free;
3563 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3564 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3565 /* read all, failed, already did sync or don't want to retry */
3566 goto done;
3567 }
3568
3569 /*
3570 * Don't depend on the iter state matching what was consumed, or being
3571 * untouched in case of error. Restore it and we'll advance it
3572 * manually if we need to.
3573 */
3574 iov_iter_restore(iter, state);
3575
3576 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3577 if (ret2)
3578 return ret2;
3579
3580 iovec = NULL;
3581 rw = req->async_data;
3582 /*
3583 * Now use our persistent iterator and state, if we aren't already.
3584 * We've restored and mapped the iter to match.
3585 */
3586 if (iter != &rw->iter) {
3587 iter = &rw->iter;
3588 state = &rw->iter_state;
3589 }
3590
3591 do {
3592 /*
3593 * We end up here because of a partial read, either from
3594 * above or inside this loop. Advance the iter by the bytes
3595 * that were consumed.
3596 */
3597 iov_iter_advance(iter, ret);
3598 if (!iov_iter_count(iter))
3599 break;
3600 rw->bytes_done += ret;
3601 iov_iter_save_state(iter, state);
3602
3603 /* if we can retry, do so with the callbacks armed */
3604 if (!io_rw_should_retry(req)) {
3605 kiocb->ki_flags &= ~IOCB_WAITQ;
3606 return -EAGAIN;
3607 }
3608
3609 /*
3610 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3611 * we get -EIOCBQUEUED, then we'll get a notification when the
3612 * desired page gets unlocked. We can also get a partial read
3613 * here, and if we do, then just retry at the new offset.
3614 */
3615 ret = io_iter_do_read(req, iter);
3616 if (ret == -EIOCBQUEUED)
3617 return 0;
3618 /* we got some bytes, but not all. retry. */
3619 kiocb->ki_flags &= ~IOCB_WAITQ;
3620 iov_iter_restore(iter, state);
3621 } while (ret > 0);
3622 done:
3623 kiocb_done(kiocb, ret, issue_flags);
3624 out_free:
3625 /* it's faster to check here then delegate to kfree */
3626 if (iovec)
3627 kfree(iovec);
3628 return 0;
3629 }
3630
3631 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3632 {
3633 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3634 return -EBADF;
3635 return io_prep_rw(req, sqe, WRITE);
3636 }
3637
3638 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3639 {
3640 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3641 struct kiocb *kiocb = &req->rw.kiocb;
3642 struct iov_iter __iter, *iter = &__iter;
3643 struct io_async_rw *rw = req->async_data;
3644 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3645 struct iov_iter_state __state, *state;
3646 ssize_t ret, ret2;
3647
3648 if (rw) {
3649 iter = &rw->iter;
3650 state = &rw->iter_state;
3651 iov_iter_restore(iter, state);
3652 iovec = NULL;
3653 } else {
3654 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3655 if (ret < 0)
3656 return ret;
3657 state = &__state;
3658 iov_iter_save_state(iter, state);
3659 }
3660 req->result = iov_iter_count(iter);
3661
3662 /* Ensure we clear previously set non-block flag */
3663 if (!force_nonblock)
3664 kiocb->ki_flags &= ~IOCB_NOWAIT;
3665 else
3666 kiocb->ki_flags |= IOCB_NOWAIT;
3667
3668 /* If the file doesn't support async, just async punt */
3669 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3670 goto copy_iov;
3671
3672 /* file path doesn't support NOWAIT for non-direct_IO */
3673 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3674 (req->flags & REQ_F_ISREG))
3675 goto copy_iov;
3676
3677 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3678 if (unlikely(ret))
3679 goto out_free;
3680
3681 /*
3682 * Open-code file_start_write here to grab freeze protection,
3683 * which will be released by another thread in
3684 * io_complete_rw(). Fool lockdep by telling it the lock got
3685 * released so that it doesn't complain about the held lock when
3686 * we return to userspace.
3687 */
3688 if (req->flags & REQ_F_ISREG) {
3689 sb_start_write(file_inode(req->file)->i_sb);
3690 __sb_writers_release(file_inode(req->file)->i_sb,
3691 SB_FREEZE_WRITE);
3692 }
3693 kiocb->ki_flags |= IOCB_WRITE;
3694
3695 if (req->file->f_op->write_iter)
3696 ret2 = call_write_iter(req->file, kiocb, iter);
3697 else if (req->file->f_op->write)
3698 ret2 = loop_rw_iter(WRITE, req, iter);
3699 else
3700 ret2 = -EINVAL;
3701
3702 if (req->flags & REQ_F_REISSUE) {
3703 req->flags &= ~REQ_F_REISSUE;
3704 ret2 = -EAGAIN;
3705 }
3706
3707 /*
3708 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3709 * retry them without IOCB_NOWAIT.
3710 */
3711 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3712 ret2 = -EAGAIN;
3713 /* no retry on NONBLOCK nor RWF_NOWAIT */
3714 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3715 goto done;
3716 if (!force_nonblock || ret2 != -EAGAIN) {
3717 /* IOPOLL retry should happen for io-wq threads */
3718 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3719 goto copy_iov;
3720 done:
3721 kiocb_done(kiocb, ret2, issue_flags);
3722 } else {
3723 copy_iov:
3724 iov_iter_restore(iter, state);
3725 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3726 return ret ?: -EAGAIN;
3727 }
3728 out_free:
3729 /* it's reportedly faster than delegating the null check to kfree() */
3730 if (iovec)
3731 kfree(iovec);
3732 return ret;
3733 }
3734
3735 static int io_renameat_prep(struct io_kiocb *req,
3736 const struct io_uring_sqe *sqe)
3737 {
3738 struct io_rename *ren = &req->rename;
3739 const char __user *oldf, *newf;
3740
3741 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3742 return -EINVAL;
3743 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3744 return -EINVAL;
3745 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3746 return -EBADF;
3747
3748 ren->old_dfd = READ_ONCE(sqe->fd);
3749 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3750 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3751 ren->new_dfd = READ_ONCE(sqe->len);
3752 ren->flags = READ_ONCE(sqe->rename_flags);
3753
3754 ren->oldpath = getname(oldf);
3755 if (IS_ERR(ren->oldpath))
3756 return PTR_ERR(ren->oldpath);
3757
3758 ren->newpath = getname(newf);
3759 if (IS_ERR(ren->newpath)) {
3760 putname(ren->oldpath);
3761 return PTR_ERR(ren->newpath);
3762 }
3763
3764 req->flags |= REQ_F_NEED_CLEANUP;
3765 return 0;
3766 }
3767
3768 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3769 {
3770 struct io_rename *ren = &req->rename;
3771 int ret;
3772
3773 if (issue_flags & IO_URING_F_NONBLOCK)
3774 return -EAGAIN;
3775
3776 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3777 ren->newpath, ren->flags);
3778
3779 req->flags &= ~REQ_F_NEED_CLEANUP;
3780 if (ret < 0)
3781 req_set_fail(req);
3782 io_req_complete(req, ret);
3783 return 0;
3784 }
3785
3786 static int io_unlinkat_prep(struct io_kiocb *req,
3787 const struct io_uring_sqe *sqe)
3788 {
3789 struct io_unlink *un = &req->unlink;
3790 const char __user *fname;
3791
3792 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3793 return -EINVAL;
3794 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3795 sqe->splice_fd_in)
3796 return -EINVAL;
3797 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3798 return -EBADF;
3799
3800 un->dfd = READ_ONCE(sqe->fd);
3801
3802 un->flags = READ_ONCE(sqe->unlink_flags);
3803 if (un->flags & ~AT_REMOVEDIR)
3804 return -EINVAL;
3805
3806 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3807 un->filename = getname(fname);
3808 if (IS_ERR(un->filename))
3809 return PTR_ERR(un->filename);
3810
3811 req->flags |= REQ_F_NEED_CLEANUP;
3812 return 0;
3813 }
3814
3815 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3816 {
3817 struct io_unlink *un = &req->unlink;
3818 int ret;
3819
3820 if (issue_flags & IO_URING_F_NONBLOCK)
3821 return -EAGAIN;
3822
3823 if (un->flags & AT_REMOVEDIR)
3824 ret = do_rmdir(un->dfd, un->filename);
3825 else
3826 ret = do_unlinkat(un->dfd, un->filename);
3827
3828 req->flags &= ~REQ_F_NEED_CLEANUP;
3829 if (ret < 0)
3830 req_set_fail(req);
3831 io_req_complete(req, ret);
3832 return 0;
3833 }
3834
3835 static int io_mkdirat_prep(struct io_kiocb *req,
3836 const struct io_uring_sqe *sqe)
3837 {
3838 struct io_mkdir *mkd = &req->mkdir;
3839 const char __user *fname;
3840
3841 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3842 return -EINVAL;
3843 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3844 sqe->splice_fd_in)
3845 return -EINVAL;
3846 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3847 return -EBADF;
3848
3849 mkd->dfd = READ_ONCE(sqe->fd);
3850 mkd->mode = READ_ONCE(sqe->len);
3851
3852 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3853 mkd->filename = getname(fname);
3854 if (IS_ERR(mkd->filename))
3855 return PTR_ERR(mkd->filename);
3856
3857 req->flags |= REQ_F_NEED_CLEANUP;
3858 return 0;
3859 }
3860
3861 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3862 {
3863 struct io_mkdir *mkd = &req->mkdir;
3864 int ret;
3865
3866 if (issue_flags & IO_URING_F_NONBLOCK)
3867 return -EAGAIN;
3868
3869 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3870
3871 req->flags &= ~REQ_F_NEED_CLEANUP;
3872 if (ret < 0)
3873 req_set_fail(req);
3874 io_req_complete(req, ret);
3875 return 0;
3876 }
3877
3878 static int io_symlinkat_prep(struct io_kiocb *req,
3879 const struct io_uring_sqe *sqe)
3880 {
3881 struct io_symlink *sl = &req->symlink;
3882 const char __user *oldpath, *newpath;
3883
3884 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3885 return -EINVAL;
3886 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3887 sqe->splice_fd_in)
3888 return -EINVAL;
3889 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3890 return -EBADF;
3891
3892 sl->new_dfd = READ_ONCE(sqe->fd);
3893 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3894 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3895
3896 sl->oldpath = getname(oldpath);
3897 if (IS_ERR(sl->oldpath))
3898 return PTR_ERR(sl->oldpath);
3899
3900 sl->newpath = getname(newpath);
3901 if (IS_ERR(sl->newpath)) {
3902 putname(sl->oldpath);
3903 return PTR_ERR(sl->newpath);
3904 }
3905
3906 req->flags |= REQ_F_NEED_CLEANUP;
3907 return 0;
3908 }
3909
3910 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3911 {
3912 struct io_symlink *sl = &req->symlink;
3913 int ret;
3914
3915 if (issue_flags & IO_URING_F_NONBLOCK)
3916 return -EAGAIN;
3917
3918 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3919
3920 req->flags &= ~REQ_F_NEED_CLEANUP;
3921 if (ret < 0)
3922 req_set_fail(req);
3923 io_req_complete(req, ret);
3924 return 0;
3925 }
3926
3927 static int io_linkat_prep(struct io_kiocb *req,
3928 const struct io_uring_sqe *sqe)
3929 {
3930 struct io_hardlink *lnk = &req->hardlink;
3931 const char __user *oldf, *newf;
3932
3933 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3934 return -EINVAL;
3935 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3936 return -EINVAL;
3937 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3938 return -EBADF;
3939
3940 lnk->old_dfd = READ_ONCE(sqe->fd);
3941 lnk->new_dfd = READ_ONCE(sqe->len);
3942 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3943 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3944 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3945
3946 lnk->oldpath = getname(oldf);
3947 if (IS_ERR(lnk->oldpath))
3948 return PTR_ERR(lnk->oldpath);
3949
3950 lnk->newpath = getname(newf);
3951 if (IS_ERR(lnk->newpath)) {
3952 putname(lnk->oldpath);
3953 return PTR_ERR(lnk->newpath);
3954 }
3955
3956 req->flags |= REQ_F_NEED_CLEANUP;
3957 return 0;
3958 }
3959
3960 static int io_linkat(struct io_kiocb *req, int issue_flags)
3961 {
3962 struct io_hardlink *lnk = &req->hardlink;
3963 int ret;
3964
3965 if (issue_flags & IO_URING_F_NONBLOCK)
3966 return -EAGAIN;
3967
3968 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3969 lnk->newpath, lnk->flags);
3970
3971 req->flags &= ~REQ_F_NEED_CLEANUP;
3972 if (ret < 0)
3973 req_set_fail(req);
3974 io_req_complete(req, ret);
3975 return 0;
3976 }
3977
3978 static int io_shutdown_prep(struct io_kiocb *req,
3979 const struct io_uring_sqe *sqe)
3980 {
3981 #if defined(CONFIG_NET)
3982 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3983 return -EINVAL;
3984 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3985 sqe->buf_index || sqe->splice_fd_in))
3986 return -EINVAL;
3987
3988 req->shutdown.how = READ_ONCE(sqe->len);
3989 return 0;
3990 #else
3991 return -EOPNOTSUPP;
3992 #endif
3993 }
3994
3995 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3996 {
3997 #if defined(CONFIG_NET)
3998 struct socket *sock;
3999 int ret;
4000
4001 if (issue_flags & IO_URING_F_NONBLOCK)
4002 return -EAGAIN;
4003
4004 sock = sock_from_file(req->file);
4005 if (unlikely(!sock))
4006 return -ENOTSOCK;
4007
4008 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4009 if (ret < 0)
4010 req_set_fail(req);
4011 io_req_complete(req, ret);
4012 return 0;
4013 #else
4014 return -EOPNOTSUPP;
4015 #endif
4016 }
4017
4018 static int __io_splice_prep(struct io_kiocb *req,
4019 const struct io_uring_sqe *sqe)
4020 {
4021 struct io_splice *sp = &req->splice;
4022 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4023
4024 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4025 return -EINVAL;
4026
4027 sp->len = READ_ONCE(sqe->len);
4028 sp->flags = READ_ONCE(sqe->splice_flags);
4029 if (unlikely(sp->flags & ~valid_flags))
4030 return -EINVAL;
4031 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4032 return 0;
4033 }
4034
4035 static int io_tee_prep(struct io_kiocb *req,
4036 const struct io_uring_sqe *sqe)
4037 {
4038 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4039 return -EINVAL;
4040 return __io_splice_prep(req, sqe);
4041 }
4042
4043 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4044 {
4045 struct io_splice *sp = &req->splice;
4046 struct file *out = sp->file_out;
4047 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4048 struct file *in;
4049 long ret = 0;
4050
4051 if (issue_flags & IO_URING_F_NONBLOCK)
4052 return -EAGAIN;
4053
4054 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4055 (sp->flags & SPLICE_F_FD_IN_FIXED));
4056 if (!in) {
4057 ret = -EBADF;
4058 goto done;
4059 }
4060
4061 if (sp->len)
4062 ret = do_tee(in, out, sp->len, flags);
4063
4064 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4065 io_put_file(in);
4066 done:
4067 if (ret != sp->len)
4068 req_set_fail(req);
4069 io_req_complete(req, ret);
4070 return 0;
4071 }
4072
4073 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4074 {
4075 struct io_splice *sp = &req->splice;
4076
4077 sp->off_in = READ_ONCE(sqe->splice_off_in);
4078 sp->off_out = READ_ONCE(sqe->off);
4079 return __io_splice_prep(req, sqe);
4080 }
4081
4082 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4083 {
4084 struct io_splice *sp = &req->splice;
4085 struct file *out = sp->file_out;
4086 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4087 loff_t *poff_in, *poff_out;
4088 struct file *in;
4089 long ret = 0;
4090
4091 if (issue_flags & IO_URING_F_NONBLOCK)
4092 return -EAGAIN;
4093
4094 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4095 (sp->flags & SPLICE_F_FD_IN_FIXED));
4096 if (!in) {
4097 ret = -EBADF;
4098 goto done;
4099 }
4100
4101 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4102 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4103
4104 if (sp->len)
4105 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4106
4107 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4108 io_put_file(in);
4109 done:
4110 if (ret != sp->len)
4111 req_set_fail(req);
4112 io_req_complete(req, ret);
4113 return 0;
4114 }
4115
4116 /*
4117 * IORING_OP_NOP just posts a completion event, nothing else.
4118 */
4119 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4120 {
4121 struct io_ring_ctx *ctx = req->ctx;
4122
4123 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4124 return -EINVAL;
4125
4126 __io_req_complete(req, issue_flags, 0, 0);
4127 return 0;
4128 }
4129
4130 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4131 {
4132 struct io_ring_ctx *ctx = req->ctx;
4133
4134 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4135 return -EINVAL;
4136 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4137 sqe->splice_fd_in))
4138 return -EINVAL;
4139
4140 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4141 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4142 return -EINVAL;
4143
4144 req->sync.off = READ_ONCE(sqe->off);
4145 req->sync.len = READ_ONCE(sqe->len);
4146 return 0;
4147 }
4148
4149 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4150 {
4151 loff_t end = req->sync.off + req->sync.len;
4152 int ret;
4153
4154 /* fsync always requires a blocking context */
4155 if (issue_flags & IO_URING_F_NONBLOCK)
4156 return -EAGAIN;
4157
4158 ret = vfs_fsync_range(req->file, req->sync.off,
4159 end > 0 ? end : LLONG_MAX,
4160 req->sync.flags & IORING_FSYNC_DATASYNC);
4161 if (ret < 0)
4162 req_set_fail(req);
4163 io_req_complete(req, ret);
4164 return 0;
4165 }
4166
4167 static int io_fallocate_prep(struct io_kiocb *req,
4168 const struct io_uring_sqe *sqe)
4169 {
4170 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4171 sqe->splice_fd_in)
4172 return -EINVAL;
4173 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4174 return -EINVAL;
4175
4176 req->sync.off = READ_ONCE(sqe->off);
4177 req->sync.len = READ_ONCE(sqe->addr);
4178 req->sync.mode = READ_ONCE(sqe->len);
4179 return 0;
4180 }
4181
4182 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4183 {
4184 int ret;
4185
4186 /* fallocate always requiring blocking context */
4187 if (issue_flags & IO_URING_F_NONBLOCK)
4188 return -EAGAIN;
4189 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4190 req->sync.len);
4191 if (ret < 0)
4192 req_set_fail(req);
4193 else
4194 fsnotify_modify(req->file);
4195 io_req_complete(req, ret);
4196 return 0;
4197 }
4198
4199 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4200 {
4201 const char __user *fname;
4202 int ret;
4203
4204 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4205 return -EINVAL;
4206 if (unlikely(sqe->ioprio || sqe->buf_index))
4207 return -EINVAL;
4208 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4209 return -EBADF;
4210
4211 /* open.how should be already initialised */
4212 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4213 req->open.how.flags |= O_LARGEFILE;
4214
4215 req->open.dfd = READ_ONCE(sqe->fd);
4216 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4217 req->open.filename = getname(fname);
4218 if (IS_ERR(req->open.filename)) {
4219 ret = PTR_ERR(req->open.filename);
4220 req->open.filename = NULL;
4221 return ret;
4222 }
4223
4224 req->open.file_slot = READ_ONCE(sqe->file_index);
4225 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4226 return -EINVAL;
4227
4228 req->open.nofile = rlimit(RLIMIT_NOFILE);
4229 req->flags |= REQ_F_NEED_CLEANUP;
4230 return 0;
4231 }
4232
4233 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4234 {
4235 u64 mode = READ_ONCE(sqe->len);
4236 u64 flags = READ_ONCE(sqe->open_flags);
4237
4238 req->open.how = build_open_how(flags, mode);
4239 return __io_openat_prep(req, sqe);
4240 }
4241
4242 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4243 {
4244 struct open_how __user *how;
4245 size_t len;
4246 int ret;
4247
4248 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4249 len = READ_ONCE(sqe->len);
4250 if (len < OPEN_HOW_SIZE_VER0)
4251 return -EINVAL;
4252
4253 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4254 len);
4255 if (ret)
4256 return ret;
4257
4258 return __io_openat_prep(req, sqe);
4259 }
4260
4261 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4262 {
4263 struct open_flags op;
4264 struct file *file;
4265 bool resolve_nonblock, nonblock_set;
4266 bool fixed = !!req->open.file_slot;
4267 int ret;
4268
4269 ret = build_open_flags(&req->open.how, &op);
4270 if (ret)
4271 goto err;
4272 nonblock_set = op.open_flag & O_NONBLOCK;
4273 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4274 if (issue_flags & IO_URING_F_NONBLOCK) {
4275 /*
4276 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4277 * it'll always -EAGAIN
4278 */
4279 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4280 return -EAGAIN;
4281 op.lookup_flags |= LOOKUP_CACHED;
4282 op.open_flag |= O_NONBLOCK;
4283 }
4284
4285 if (!fixed) {
4286 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4287 if (ret < 0)
4288 goto err;
4289 }
4290
4291 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4292 if (IS_ERR(file)) {
4293 /*
4294 * We could hang on to this 'fd' on retrying, but seems like
4295 * marginal gain for something that is now known to be a slower
4296 * path. So just put it, and we'll get a new one when we retry.
4297 */
4298 if (!fixed)
4299 put_unused_fd(ret);
4300
4301 ret = PTR_ERR(file);
4302 /* only retry if RESOLVE_CACHED wasn't already set by application */
4303 if (ret == -EAGAIN &&
4304 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4305 return -EAGAIN;
4306 goto err;
4307 }
4308
4309 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4310 file->f_flags &= ~O_NONBLOCK;
4311 fsnotify_open(file);
4312
4313 if (!fixed)
4314 fd_install(ret, file);
4315 else
4316 ret = io_install_fixed_file(req, file, issue_flags,
4317 req->open.file_slot - 1);
4318 err:
4319 putname(req->open.filename);
4320 req->flags &= ~REQ_F_NEED_CLEANUP;
4321 if (ret < 0)
4322 req_set_fail(req);
4323 __io_req_complete(req, issue_flags, ret, 0);
4324 return 0;
4325 }
4326
4327 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4328 {
4329 return io_openat2(req, issue_flags);
4330 }
4331
4332 static int io_remove_buffers_prep(struct io_kiocb *req,
4333 const struct io_uring_sqe *sqe)
4334 {
4335 struct io_provide_buf *p = &req->pbuf;
4336 u64 tmp;
4337
4338 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4339 sqe->splice_fd_in)
4340 return -EINVAL;
4341
4342 tmp = READ_ONCE(sqe->fd);
4343 if (!tmp || tmp > USHRT_MAX)
4344 return -EINVAL;
4345
4346 memset(p, 0, sizeof(*p));
4347 p->nbufs = tmp;
4348 p->bgid = READ_ONCE(sqe->buf_group);
4349 return 0;
4350 }
4351
4352 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4353 int bgid, unsigned nbufs)
4354 {
4355 unsigned i = 0;
4356
4357 /* shouldn't happen */
4358 if (!nbufs)
4359 return 0;
4360
4361 /* the head kbuf is the list itself */
4362 while (!list_empty(&buf->list)) {
4363 struct io_buffer *nxt;
4364
4365 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4366 list_del(&nxt->list);
4367 kfree(nxt);
4368 if (++i == nbufs)
4369 return i;
4370 cond_resched();
4371 }
4372 i++;
4373 kfree(buf);
4374 xa_erase(&ctx->io_buffers, bgid);
4375
4376 return i;
4377 }
4378
4379 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4380 {
4381 struct io_provide_buf *p = &req->pbuf;
4382 struct io_ring_ctx *ctx = req->ctx;
4383 struct io_buffer *head;
4384 int ret = 0;
4385 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4386
4387 io_ring_submit_lock(ctx, !force_nonblock);
4388
4389 lockdep_assert_held(&ctx->uring_lock);
4390
4391 ret = -ENOENT;
4392 head = xa_load(&ctx->io_buffers, p->bgid);
4393 if (head)
4394 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4395 if (ret < 0)
4396 req_set_fail(req);
4397
4398 /* complete before unlock, IOPOLL may need the lock */
4399 __io_req_complete(req, issue_flags, ret, 0);
4400 io_ring_submit_unlock(ctx, !force_nonblock);
4401 return 0;
4402 }
4403
4404 static int io_provide_buffers_prep(struct io_kiocb *req,
4405 const struct io_uring_sqe *sqe)
4406 {
4407 unsigned long size, tmp_check;
4408 struct io_provide_buf *p = &req->pbuf;
4409 u64 tmp;
4410
4411 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4412 return -EINVAL;
4413
4414 tmp = READ_ONCE(sqe->fd);
4415 if (!tmp || tmp > USHRT_MAX)
4416 return -E2BIG;
4417 p->nbufs = tmp;
4418 p->addr = READ_ONCE(sqe->addr);
4419 p->len = READ_ONCE(sqe->len);
4420
4421 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4422 &size))
4423 return -EOVERFLOW;
4424 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4425 return -EOVERFLOW;
4426
4427 size = (unsigned long)p->len * p->nbufs;
4428 if (!access_ok(u64_to_user_ptr(p->addr), size))
4429 return -EFAULT;
4430
4431 p->bgid = READ_ONCE(sqe->buf_group);
4432 tmp = READ_ONCE(sqe->off);
4433 if (tmp > USHRT_MAX)
4434 return -E2BIG;
4435 p->bid = tmp;
4436 return 0;
4437 }
4438
4439 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4440 {
4441 struct io_buffer *buf;
4442 u64 addr = pbuf->addr;
4443 int i, bid = pbuf->bid;
4444
4445 for (i = 0; i < pbuf->nbufs; i++) {
4446 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4447 if (!buf)
4448 break;
4449
4450 buf->addr = addr;
4451 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4452 buf->bid = bid;
4453 addr += pbuf->len;
4454 bid++;
4455 if (!*head) {
4456 INIT_LIST_HEAD(&buf->list);
4457 *head = buf;
4458 } else {
4459 list_add_tail(&buf->list, &(*head)->list);
4460 }
4461 cond_resched();
4462 }
4463
4464 return i ? i : -ENOMEM;
4465 }
4466
4467 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4468 {
4469 struct io_provide_buf *p = &req->pbuf;
4470 struct io_ring_ctx *ctx = req->ctx;
4471 struct io_buffer *head, *list;
4472 int ret = 0;
4473 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4474
4475 io_ring_submit_lock(ctx, !force_nonblock);
4476
4477 lockdep_assert_held(&ctx->uring_lock);
4478
4479 list = head = xa_load(&ctx->io_buffers, p->bgid);
4480
4481 ret = io_add_buffers(p, &head);
4482 if (ret >= 0 && !list) {
4483 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4484 if (ret < 0)
4485 __io_remove_buffers(ctx, head, p->bgid, -1U);
4486 }
4487 if (ret < 0)
4488 req_set_fail(req);
4489 /* complete before unlock, IOPOLL may need the lock */
4490 __io_req_complete(req, issue_flags, ret, 0);
4491 io_ring_submit_unlock(ctx, !force_nonblock);
4492 return 0;
4493 }
4494
4495 static int io_epoll_ctl_prep(struct io_kiocb *req,
4496 const struct io_uring_sqe *sqe)
4497 {
4498 #if defined(CONFIG_EPOLL)
4499 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4500 return -EINVAL;
4501 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4502 return -EINVAL;
4503
4504 req->epoll.epfd = READ_ONCE(sqe->fd);
4505 req->epoll.op = READ_ONCE(sqe->len);
4506 req->epoll.fd = READ_ONCE(sqe->off);
4507
4508 if (ep_op_has_event(req->epoll.op)) {
4509 struct epoll_event __user *ev;
4510
4511 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4512 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4513 return -EFAULT;
4514 }
4515
4516 return 0;
4517 #else
4518 return -EOPNOTSUPP;
4519 #endif
4520 }
4521
4522 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4523 {
4524 #if defined(CONFIG_EPOLL)
4525 struct io_epoll *ie = &req->epoll;
4526 int ret;
4527 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4528
4529 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4530 if (force_nonblock && ret == -EAGAIN)
4531 return -EAGAIN;
4532
4533 if (ret < 0)
4534 req_set_fail(req);
4535 __io_req_complete(req, issue_flags, ret, 0);
4536 return 0;
4537 #else
4538 return -EOPNOTSUPP;
4539 #endif
4540 }
4541
4542 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4543 {
4544 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4545 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4546 return -EINVAL;
4547 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4548 return -EINVAL;
4549
4550 req->madvise.addr = READ_ONCE(sqe->addr);
4551 req->madvise.len = READ_ONCE(sqe->len);
4552 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4553 return 0;
4554 #else
4555 return -EOPNOTSUPP;
4556 #endif
4557 }
4558
4559 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4560 {
4561 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4562 struct io_madvise *ma = &req->madvise;
4563 int ret;
4564
4565 if (issue_flags & IO_URING_F_NONBLOCK)
4566 return -EAGAIN;
4567
4568 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4569 if (ret < 0)
4570 req_set_fail(req);
4571 io_req_complete(req, ret);
4572 return 0;
4573 #else
4574 return -EOPNOTSUPP;
4575 #endif
4576 }
4577
4578 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4579 {
4580 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4581 return -EINVAL;
4582 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4583 return -EINVAL;
4584
4585 req->fadvise.offset = READ_ONCE(sqe->off);
4586 req->fadvise.len = READ_ONCE(sqe->len);
4587 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4588 return 0;
4589 }
4590
4591 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4592 {
4593 struct io_fadvise *fa = &req->fadvise;
4594 int ret;
4595
4596 if (issue_flags & IO_URING_F_NONBLOCK) {
4597 switch (fa->advice) {
4598 case POSIX_FADV_NORMAL:
4599 case POSIX_FADV_RANDOM:
4600 case POSIX_FADV_SEQUENTIAL:
4601 break;
4602 default:
4603 return -EAGAIN;
4604 }
4605 }
4606
4607 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4608 if (ret < 0)
4609 req_set_fail(req);
4610 __io_req_complete(req, issue_flags, ret, 0);
4611 return 0;
4612 }
4613
4614 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4615 {
4616 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4617 return -EINVAL;
4618 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4619 return -EINVAL;
4620 if (req->flags & REQ_F_FIXED_FILE)
4621 return -EBADF;
4622
4623 req->statx.dfd = READ_ONCE(sqe->fd);
4624 req->statx.mask = READ_ONCE(sqe->len);
4625 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4626 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4627 req->statx.flags = READ_ONCE(sqe->statx_flags);
4628
4629 return 0;
4630 }
4631
4632 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4633 {
4634 struct io_statx *ctx = &req->statx;
4635 int ret;
4636
4637 if (issue_flags & IO_URING_F_NONBLOCK)
4638 return -EAGAIN;
4639
4640 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4641 ctx->buffer);
4642
4643 if (ret < 0)
4644 req_set_fail(req);
4645 io_req_complete(req, ret);
4646 return 0;
4647 }
4648
4649 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4650 {
4651 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4652 return -EINVAL;
4653 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4654 sqe->rw_flags || sqe->buf_index)
4655 return -EINVAL;
4656 if (req->flags & REQ_F_FIXED_FILE)
4657 return -EBADF;
4658
4659 req->close.fd = READ_ONCE(sqe->fd);
4660 req->close.file_slot = READ_ONCE(sqe->file_index);
4661 if (req->close.file_slot && req->close.fd)
4662 return -EINVAL;
4663
4664 return 0;
4665 }
4666
4667 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4668 {
4669 struct files_struct *files = current->files;
4670 struct io_close *close = &req->close;
4671 struct fdtable *fdt;
4672 struct file *file = NULL;
4673 int ret = -EBADF;
4674
4675 if (req->close.file_slot) {
4676 ret = io_close_fixed(req, issue_flags);
4677 goto err;
4678 }
4679
4680 spin_lock(&files->file_lock);
4681 fdt = files_fdtable(files);
4682 if (close->fd >= fdt->max_fds) {
4683 spin_unlock(&files->file_lock);
4684 goto err;
4685 }
4686 file = fdt->fd[close->fd];
4687 if (!file || file->f_op == &io_uring_fops) {
4688 spin_unlock(&files->file_lock);
4689 file = NULL;
4690 goto err;
4691 }
4692
4693 /* if the file has a flush method, be safe and punt to async */
4694 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4695 spin_unlock(&files->file_lock);
4696 return -EAGAIN;
4697 }
4698
4699 ret = __close_fd_get_file(close->fd, &file);
4700 spin_unlock(&files->file_lock);
4701 if (ret < 0) {
4702 if (ret == -ENOENT)
4703 ret = -EBADF;
4704 goto err;
4705 }
4706
4707 /* No ->flush() or already async, safely close from here */
4708 ret = filp_close(file, current->files);
4709 err:
4710 if (ret < 0)
4711 req_set_fail(req);
4712 if (file)
4713 fput(file);
4714 __io_req_complete(req, issue_flags, ret, 0);
4715 return 0;
4716 }
4717
4718 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4719 {
4720 struct io_ring_ctx *ctx = req->ctx;
4721
4722 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4723 return -EINVAL;
4724 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4725 sqe->splice_fd_in))
4726 return -EINVAL;
4727
4728 req->sync.off = READ_ONCE(sqe->off);
4729 req->sync.len = READ_ONCE(sqe->len);
4730 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4731 return 0;
4732 }
4733
4734 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4735 {
4736 int ret;
4737
4738 /* sync_file_range always requires a blocking context */
4739 if (issue_flags & IO_URING_F_NONBLOCK)
4740 return -EAGAIN;
4741
4742 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4743 req->sync.flags);
4744 if (ret < 0)
4745 req_set_fail(req);
4746 io_req_complete(req, ret);
4747 return 0;
4748 }
4749
4750 #if defined(CONFIG_NET)
4751 static int io_setup_async_msg(struct io_kiocb *req,
4752 struct io_async_msghdr *kmsg)
4753 {
4754 struct io_async_msghdr *async_msg = req->async_data;
4755
4756 if (async_msg)
4757 return -EAGAIN;
4758 if (io_alloc_async_data(req)) {
4759 kfree(kmsg->free_iov);
4760 return -ENOMEM;
4761 }
4762 async_msg = req->async_data;
4763 req->flags |= REQ_F_NEED_CLEANUP;
4764 memcpy(async_msg, kmsg, sizeof(*kmsg));
4765 async_msg->msg.msg_name = &async_msg->addr;
4766 /* if were using fast_iov, set it to the new one */
4767 if (!async_msg->free_iov)
4768 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4769
4770 return -EAGAIN;
4771 }
4772
4773 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4774 struct io_async_msghdr *iomsg)
4775 {
4776 iomsg->msg.msg_name = &iomsg->addr;
4777 iomsg->free_iov = iomsg->fast_iov;
4778 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4779 req->sr_msg.msg_flags, &iomsg->free_iov);
4780 }
4781
4782 static int io_sendmsg_prep_async(struct io_kiocb *req)
4783 {
4784 int ret;
4785
4786 ret = io_sendmsg_copy_hdr(req, req->async_data);
4787 if (!ret)
4788 req->flags |= REQ_F_NEED_CLEANUP;
4789 return ret;
4790 }
4791
4792 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4793 {
4794 struct io_sr_msg *sr = &req->sr_msg;
4795
4796 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4797 return -EINVAL;
4798 if (unlikely(sqe->addr2 || sqe->file_index))
4799 return -EINVAL;
4800 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4801 return -EINVAL;
4802
4803 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4804 sr->len = READ_ONCE(sqe->len);
4805 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4806 if (sr->msg_flags & MSG_DONTWAIT)
4807 req->flags |= REQ_F_NOWAIT;
4808
4809 #ifdef CONFIG_COMPAT
4810 if (req->ctx->compat)
4811 sr->msg_flags |= MSG_CMSG_COMPAT;
4812 #endif
4813 return 0;
4814 }
4815
4816 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4817 {
4818 struct io_async_msghdr iomsg, *kmsg;
4819 struct socket *sock;
4820 unsigned flags;
4821 int min_ret = 0;
4822 int ret;
4823
4824 sock = sock_from_file(req->file);
4825 if (unlikely(!sock))
4826 return -ENOTSOCK;
4827
4828 kmsg = req->async_data;
4829 if (!kmsg) {
4830 ret = io_sendmsg_copy_hdr(req, &iomsg);
4831 if (ret)
4832 return ret;
4833 kmsg = &iomsg;
4834 }
4835
4836 flags = req->sr_msg.msg_flags;
4837 if (issue_flags & IO_URING_F_NONBLOCK)
4838 flags |= MSG_DONTWAIT;
4839 if (flags & MSG_WAITALL)
4840 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4841
4842 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4843 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4844 return io_setup_async_msg(req, kmsg);
4845 if (ret == -ERESTARTSYS)
4846 ret = -EINTR;
4847
4848 /* fast path, check for non-NULL to avoid function call */
4849 if (kmsg->free_iov)
4850 kfree(kmsg->free_iov);
4851 req->flags &= ~REQ_F_NEED_CLEANUP;
4852 if (ret < min_ret)
4853 req_set_fail(req);
4854 __io_req_complete(req, issue_flags, ret, 0);
4855 return 0;
4856 }
4857
4858 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4859 {
4860 struct io_sr_msg *sr = &req->sr_msg;
4861 struct msghdr msg;
4862 struct iovec iov;
4863 struct socket *sock;
4864 unsigned flags;
4865 int min_ret = 0;
4866 int ret;
4867
4868 sock = sock_from_file(req->file);
4869 if (unlikely(!sock))
4870 return -ENOTSOCK;
4871
4872 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4873 if (unlikely(ret))
4874 return ret;
4875
4876 msg.msg_name = NULL;
4877 msg.msg_control = NULL;
4878 msg.msg_controllen = 0;
4879 msg.msg_namelen = 0;
4880
4881 flags = req->sr_msg.msg_flags;
4882 if (issue_flags & IO_URING_F_NONBLOCK)
4883 flags |= MSG_DONTWAIT;
4884 if (flags & MSG_WAITALL)
4885 min_ret = iov_iter_count(&msg.msg_iter);
4886
4887 msg.msg_flags = flags;
4888 ret = sock_sendmsg(sock, &msg);
4889 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4890 return -EAGAIN;
4891 if (ret == -ERESTARTSYS)
4892 ret = -EINTR;
4893
4894 if (ret < min_ret)
4895 req_set_fail(req);
4896 __io_req_complete(req, issue_flags, ret, 0);
4897 return 0;
4898 }
4899
4900 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4901 struct io_async_msghdr *iomsg)
4902 {
4903 struct io_sr_msg *sr = &req->sr_msg;
4904 struct iovec __user *uiov;
4905 size_t iov_len;
4906 int ret;
4907
4908 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4909 &iomsg->uaddr, &uiov, &iov_len);
4910 if (ret)
4911 return ret;
4912
4913 if (req->flags & REQ_F_BUFFER_SELECT) {
4914 if (iov_len > 1)
4915 return -EINVAL;
4916 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4917 return -EFAULT;
4918 sr->len = iomsg->fast_iov[0].iov_len;
4919 iomsg->free_iov = NULL;
4920 } else {
4921 iomsg->free_iov = iomsg->fast_iov;
4922 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4923 &iomsg->free_iov, &iomsg->msg.msg_iter,
4924 false);
4925 if (ret > 0)
4926 ret = 0;
4927 }
4928
4929 return ret;
4930 }
4931
4932 #ifdef CONFIG_COMPAT
4933 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4934 struct io_async_msghdr *iomsg)
4935 {
4936 struct io_sr_msg *sr = &req->sr_msg;
4937 struct compat_iovec __user *uiov;
4938 compat_uptr_t ptr;
4939 compat_size_t len;
4940 int ret;
4941
4942 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4943 &ptr, &len);
4944 if (ret)
4945 return ret;
4946
4947 uiov = compat_ptr(ptr);
4948 if (req->flags & REQ_F_BUFFER_SELECT) {
4949 compat_ssize_t clen;
4950
4951 if (len > 1)
4952 return -EINVAL;
4953 if (!access_ok(uiov, sizeof(*uiov)))
4954 return -EFAULT;
4955 if (__get_user(clen, &uiov->iov_len))
4956 return -EFAULT;
4957 if (clen < 0)
4958 return -EINVAL;
4959 sr->len = clen;
4960 iomsg->free_iov = NULL;
4961 } else {
4962 iomsg->free_iov = iomsg->fast_iov;
4963 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4964 UIO_FASTIOV, &iomsg->free_iov,
4965 &iomsg->msg.msg_iter, true);
4966 if (ret < 0)
4967 return ret;
4968 }
4969
4970 return 0;
4971 }
4972 #endif
4973
4974 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4975 struct io_async_msghdr *iomsg)
4976 {
4977 iomsg->msg.msg_name = &iomsg->addr;
4978
4979 #ifdef CONFIG_COMPAT
4980 if (req->ctx->compat)
4981 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4982 #endif
4983
4984 return __io_recvmsg_copy_hdr(req, iomsg);
4985 }
4986
4987 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4988 bool needs_lock)
4989 {
4990 struct io_sr_msg *sr = &req->sr_msg;
4991 struct io_buffer *kbuf;
4992
4993 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4994 if (IS_ERR(kbuf))
4995 return kbuf;
4996
4997 sr->kbuf = kbuf;
4998 req->flags |= REQ_F_BUFFER_SELECTED;
4999 return kbuf;
5000 }
5001
5002 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5003 {
5004 return io_put_kbuf(req, req->sr_msg.kbuf);
5005 }
5006
5007 static int io_recvmsg_prep_async(struct io_kiocb *req)
5008 {
5009 int ret;
5010
5011 ret = io_recvmsg_copy_hdr(req, req->async_data);
5012 if (!ret)
5013 req->flags |= REQ_F_NEED_CLEANUP;
5014 return ret;
5015 }
5016
5017 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5018 {
5019 struct io_sr_msg *sr = &req->sr_msg;
5020
5021 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5022 return -EINVAL;
5023 if (unlikely(sqe->addr2 || sqe->file_index))
5024 return -EINVAL;
5025 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5026 return -EINVAL;
5027
5028 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5029 sr->len = READ_ONCE(sqe->len);
5030 sr->bgid = READ_ONCE(sqe->buf_group);
5031 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5032 if (sr->msg_flags & MSG_DONTWAIT)
5033 req->flags |= REQ_F_NOWAIT;
5034
5035 #ifdef CONFIG_COMPAT
5036 if (req->ctx->compat)
5037 sr->msg_flags |= MSG_CMSG_COMPAT;
5038 #endif
5039 return 0;
5040 }
5041
5042 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5043 {
5044 struct io_async_msghdr iomsg, *kmsg;
5045 struct socket *sock;
5046 struct io_buffer *kbuf;
5047 unsigned flags;
5048 int min_ret = 0;
5049 int ret, cflags = 0;
5050 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5051
5052 sock = sock_from_file(req->file);
5053 if (unlikely(!sock))
5054 return -ENOTSOCK;
5055
5056 kmsg = req->async_data;
5057 if (!kmsg) {
5058 ret = io_recvmsg_copy_hdr(req, &iomsg);
5059 if (ret)
5060 return ret;
5061 kmsg = &iomsg;
5062 }
5063
5064 if (req->flags & REQ_F_BUFFER_SELECT) {
5065 kbuf = io_recv_buffer_select(req, !force_nonblock);
5066 if (IS_ERR(kbuf))
5067 return PTR_ERR(kbuf);
5068 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5069 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5070 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5071 1, req->sr_msg.len);
5072 }
5073
5074 flags = req->sr_msg.msg_flags;
5075 if (force_nonblock)
5076 flags |= MSG_DONTWAIT;
5077 if (flags & MSG_WAITALL)
5078 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5079
5080 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5081 kmsg->uaddr, flags);
5082 if (force_nonblock && ret == -EAGAIN)
5083 return io_setup_async_msg(req, kmsg);
5084 if (ret == -ERESTARTSYS)
5085 ret = -EINTR;
5086
5087 if (req->flags & REQ_F_BUFFER_SELECTED)
5088 cflags = io_put_recv_kbuf(req);
5089 /* fast path, check for non-NULL to avoid function call */
5090 if (kmsg->free_iov)
5091 kfree(kmsg->free_iov);
5092 req->flags &= ~REQ_F_NEED_CLEANUP;
5093 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5094 req_set_fail(req);
5095 __io_req_complete(req, issue_flags, ret, cflags);
5096 return 0;
5097 }
5098
5099 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5100 {
5101 struct io_buffer *kbuf;
5102 struct io_sr_msg *sr = &req->sr_msg;
5103 struct msghdr msg;
5104 void __user *buf = sr->buf;
5105 struct socket *sock;
5106 struct iovec iov;
5107 unsigned flags;
5108 int min_ret = 0;
5109 int ret, cflags = 0;
5110 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5111
5112 sock = sock_from_file(req->file);
5113 if (unlikely(!sock))
5114 return -ENOTSOCK;
5115
5116 if (req->flags & REQ_F_BUFFER_SELECT) {
5117 kbuf = io_recv_buffer_select(req, !force_nonblock);
5118 if (IS_ERR(kbuf))
5119 return PTR_ERR(kbuf);
5120 buf = u64_to_user_ptr(kbuf->addr);
5121 }
5122
5123 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5124 if (unlikely(ret))
5125 goto out_free;
5126
5127 msg.msg_name = NULL;
5128 msg.msg_control = NULL;
5129 msg.msg_controllen = 0;
5130 msg.msg_namelen = 0;
5131 msg.msg_iocb = NULL;
5132 msg.msg_flags = 0;
5133
5134 flags = req->sr_msg.msg_flags;
5135 if (force_nonblock)
5136 flags |= MSG_DONTWAIT;
5137 if (flags & MSG_WAITALL)
5138 min_ret = iov_iter_count(&msg.msg_iter);
5139
5140 ret = sock_recvmsg(sock, &msg, flags);
5141 if (force_nonblock && ret == -EAGAIN)
5142 return -EAGAIN;
5143 if (ret == -ERESTARTSYS)
5144 ret = -EINTR;
5145 out_free:
5146 if (req->flags & REQ_F_BUFFER_SELECTED)
5147 cflags = io_put_recv_kbuf(req);
5148 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5149 req_set_fail(req);
5150 __io_req_complete(req, issue_flags, ret, cflags);
5151 return 0;
5152 }
5153
5154 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5155 {
5156 struct io_accept *accept = &req->accept;
5157
5158 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5159 return -EINVAL;
5160 if (sqe->ioprio || sqe->len || sqe->buf_index)
5161 return -EINVAL;
5162
5163 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5164 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5165 accept->flags = READ_ONCE(sqe->accept_flags);
5166 accept->nofile = rlimit(RLIMIT_NOFILE);
5167
5168 accept->file_slot = READ_ONCE(sqe->file_index);
5169 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5170 return -EINVAL;
5171 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5172 return -EINVAL;
5173 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5174 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5175 return 0;
5176 }
5177
5178 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5179 {
5180 struct io_accept *accept = &req->accept;
5181 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5182 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5183 bool fixed = !!accept->file_slot;
5184 struct file *file;
5185 int ret, fd;
5186
5187 if (req->file->f_flags & O_NONBLOCK)
5188 req->flags |= REQ_F_NOWAIT;
5189
5190 if (!fixed) {
5191 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5192 if (unlikely(fd < 0))
5193 return fd;
5194 }
5195 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5196 accept->flags);
5197 if (IS_ERR(file)) {
5198 if (!fixed)
5199 put_unused_fd(fd);
5200 ret = PTR_ERR(file);
5201 if (ret == -EAGAIN && force_nonblock)
5202 return -EAGAIN;
5203 if (ret == -ERESTARTSYS)
5204 ret = -EINTR;
5205 req_set_fail(req);
5206 } else if (!fixed) {
5207 fd_install(fd, file);
5208 ret = fd;
5209 } else {
5210 ret = io_install_fixed_file(req, file, issue_flags,
5211 accept->file_slot - 1);
5212 }
5213 __io_req_complete(req, issue_flags, ret, 0);
5214 return 0;
5215 }
5216
5217 static int io_connect_prep_async(struct io_kiocb *req)
5218 {
5219 struct io_async_connect *io = req->async_data;
5220 struct io_connect *conn = &req->connect;
5221
5222 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5223 }
5224
5225 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5226 {
5227 struct io_connect *conn = &req->connect;
5228
5229 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5230 return -EINVAL;
5231 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5232 sqe->splice_fd_in)
5233 return -EINVAL;
5234
5235 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5236 conn->addr_len = READ_ONCE(sqe->addr2);
5237 return 0;
5238 }
5239
5240 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5241 {
5242 struct io_async_connect __io, *io;
5243 unsigned file_flags;
5244 int ret;
5245 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5246
5247 if (req->async_data) {
5248 io = req->async_data;
5249 } else {
5250 ret = move_addr_to_kernel(req->connect.addr,
5251 req->connect.addr_len,
5252 &__io.address);
5253 if (ret)
5254 goto out;
5255 io = &__io;
5256 }
5257
5258 file_flags = force_nonblock ? O_NONBLOCK : 0;
5259
5260 ret = __sys_connect_file(req->file, &io->address,
5261 req->connect.addr_len, file_flags);
5262 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5263 if (req->async_data)
5264 return -EAGAIN;
5265 if (io_alloc_async_data(req)) {
5266 ret = -ENOMEM;
5267 goto out;
5268 }
5269 memcpy(req->async_data, &__io, sizeof(__io));
5270 return -EAGAIN;
5271 }
5272 if (ret == -ERESTARTSYS)
5273 ret = -EINTR;
5274 out:
5275 if (ret < 0)
5276 req_set_fail(req);
5277 __io_req_complete(req, issue_flags, ret, 0);
5278 return 0;
5279 }
5280 #else /* !CONFIG_NET */
5281 #define IO_NETOP_FN(op) \
5282 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5283 { \
5284 return -EOPNOTSUPP; \
5285 }
5286
5287 #define IO_NETOP_PREP(op) \
5288 IO_NETOP_FN(op) \
5289 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5290 { \
5291 return -EOPNOTSUPP; \
5292 } \
5293
5294 #define IO_NETOP_PREP_ASYNC(op) \
5295 IO_NETOP_PREP(op) \
5296 static int io_##op##_prep_async(struct io_kiocb *req) \
5297 { \
5298 return -EOPNOTSUPP; \
5299 }
5300
5301 IO_NETOP_PREP_ASYNC(sendmsg);
5302 IO_NETOP_PREP_ASYNC(recvmsg);
5303 IO_NETOP_PREP_ASYNC(connect);
5304 IO_NETOP_PREP(accept);
5305 IO_NETOP_FN(send);
5306 IO_NETOP_FN(recv);
5307 #endif /* CONFIG_NET */
5308
5309 struct io_poll_table {
5310 struct poll_table_struct pt;
5311 struct io_kiocb *req;
5312 int nr_entries;
5313 int error;
5314 };
5315
5316 #define IO_POLL_CANCEL_FLAG BIT(31)
5317 #define IO_POLL_REF_MASK GENMASK(30, 0)
5318
5319 /*
5320 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5321 * bump it and acquire ownership. It's disallowed to modify requests while not
5322 * owning it, that prevents from races for enqueueing task_work's and b/w
5323 * arming poll and wakeups.
5324 */
5325 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5326 {
5327 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5328 }
5329
5330 static void io_poll_mark_cancelled(struct io_kiocb *req)
5331 {
5332 atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5333 }
5334
5335 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5336 {
5337 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5338 if (req->opcode == IORING_OP_POLL_ADD)
5339 return req->async_data;
5340 return req->apoll->double_poll;
5341 }
5342
5343 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5344 {
5345 if (req->opcode == IORING_OP_POLL_ADD)
5346 return &req->poll;
5347 return &req->apoll->poll;
5348 }
5349
5350 static void io_poll_req_insert(struct io_kiocb *req)
5351 {
5352 struct io_ring_ctx *ctx = req->ctx;
5353 struct hlist_head *list;
5354
5355 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5356 hlist_add_head(&req->hash_node, list);
5357 }
5358
5359 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5360 wait_queue_func_t wake_func)
5361 {
5362 poll->head = NULL;
5363 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5364 /* mask in events that we always want/need */
5365 poll->events = events | IO_POLL_UNMASK;
5366 INIT_LIST_HEAD(&poll->wait.entry);
5367 init_waitqueue_func_entry(&poll->wait, wake_func);
5368 }
5369
5370 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5371 {
5372 struct wait_queue_head *head = poll->head;
5373
5374 spin_lock_irq(&head->lock);
5375 list_del_init(&poll->wait.entry);
5376 poll->head = NULL;
5377 spin_unlock_irq(&head->lock);
5378 }
5379
5380 static void io_poll_remove_entries(struct io_kiocb *req)
5381 {
5382 struct io_poll_iocb *poll = io_poll_get_single(req);
5383 struct io_poll_iocb *poll_double = io_poll_get_double(req);
5384
5385 if (poll->head)
5386 io_poll_remove_entry(poll);
5387 if (poll_double && poll_double->head)
5388 io_poll_remove_entry(poll_double);
5389 }
5390
5391 /*
5392 * All poll tw should go through this. Checks for poll events, manages
5393 * references, does rewait, etc.
5394 *
5395 * Returns a negative error on failure. >0 when no action require, which is
5396 * either spurious wakeup or multishot CQE is served. 0 when it's done with
5397 * the request, then the mask is stored in req->result.
5398 */
5399 static int io_poll_check_events(struct io_kiocb *req)
5400 {
5401 struct io_ring_ctx *ctx = req->ctx;
5402 struct io_poll_iocb *poll = io_poll_get_single(req);
5403 int v;
5404
5405 /* req->task == current here, checking PF_EXITING is safe */
5406 if (unlikely(req->task->flags & PF_EXITING))
5407 io_poll_mark_cancelled(req);
5408
5409 do {
5410 v = atomic_read(&req->poll_refs);
5411
5412 /* tw handler should be the owner, and so have some references */
5413 if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5414 return 0;
5415 if (v & IO_POLL_CANCEL_FLAG)
5416 return -ECANCELED;
5417
5418 if (!req->result) {
5419 struct poll_table_struct pt = { ._key = poll->events };
5420
5421 req->result = vfs_poll(req->file, &pt) & poll->events;
5422 }
5423
5424 /* multishot, just fill an CQE and proceed */
5425 if (req->result && !(poll->events & EPOLLONESHOT)) {
5426 __poll_t mask = mangle_poll(req->result & poll->events);
5427 bool filled;
5428
5429 spin_lock(&ctx->completion_lock);
5430 filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5431 IORING_CQE_F_MORE);
5432 io_commit_cqring(ctx);
5433 spin_unlock(&ctx->completion_lock);
5434 if (unlikely(!filled))
5435 return -ECANCELED;
5436 io_cqring_ev_posted(ctx);
5437 } else if (req->result) {
5438 return 0;
5439 }
5440
5441 /*
5442 * Release all references, retry if someone tried to restart
5443 * task_work while we were executing it.
5444 */
5445 } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs));
5446
5447 return 1;
5448 }
5449
5450 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5451 {
5452 struct io_ring_ctx *ctx = req->ctx;
5453 int ret;
5454
5455 ret = io_poll_check_events(req);
5456 if (ret > 0)
5457 return;
5458
5459 if (!ret) {
5460 req->result = mangle_poll(req->result & req->poll.events);
5461 } else {
5462 req->result = ret;
5463 req_set_fail(req);
5464 }
5465
5466 io_poll_remove_entries(req);
5467 spin_lock(&ctx->completion_lock);
5468 hash_del(&req->hash_node);
5469 spin_unlock(&ctx->completion_lock);
5470 io_req_complete_post(req, req->result, 0);
5471 }
5472
5473 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5474 {
5475 struct io_ring_ctx *ctx = req->ctx;
5476 int ret;
5477
5478 ret = io_poll_check_events(req);
5479 if (ret > 0)
5480 return;
5481
5482 io_poll_remove_entries(req);
5483 spin_lock(&ctx->completion_lock);
5484 hash_del(&req->hash_node);
5485 spin_unlock(&ctx->completion_lock);
5486
5487 if (!ret)
5488 io_req_task_submit(req, locked);
5489 else
5490 io_req_complete_failed(req, ret);
5491 }
5492
5493 static void __io_poll_execute(struct io_kiocb *req, int mask)
5494 {
5495 req->result = mask;
5496 if (req->opcode == IORING_OP_POLL_ADD)
5497 req->io_task_work.func = io_poll_task_func;
5498 else
5499 req->io_task_work.func = io_apoll_task_func;
5500
5501 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5502 io_req_task_work_add(req);
5503 }
5504
5505 static inline void io_poll_execute(struct io_kiocb *req, int res)
5506 {
5507 if (io_poll_get_ownership(req))
5508 __io_poll_execute(req, res);
5509 }
5510
5511 static void io_poll_cancel_req(struct io_kiocb *req)
5512 {
5513 io_poll_mark_cancelled(req);
5514 /* kick tw, which should complete the request */
5515 io_poll_execute(req, 0);
5516 }
5517
5518 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5519 void *key)
5520 {
5521 struct io_kiocb *req = wait->private;
5522 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5523 wait);
5524 __poll_t mask = key_to_poll(key);
5525
5526 /* for instances that support it check for an event match first */
5527 if (mask && !(mask & poll->events))
5528 return 0;
5529
5530 if (io_poll_get_ownership(req))
5531 __io_poll_execute(req, mask);
5532 return 1;
5533 }
5534
5535 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5536 struct wait_queue_head *head,
5537 struct io_poll_iocb **poll_ptr)
5538 {
5539 struct io_kiocb *req = pt->req;
5540
5541 /*
5542 * The file being polled uses multiple waitqueues for poll handling
5543 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5544 * if this happens.
5545 */
5546 if (unlikely(pt->nr_entries)) {
5547 struct io_poll_iocb *first = poll;
5548
5549 /* double add on the same waitqueue head, ignore */
5550 if (first->head == head)
5551 return;
5552 /* already have a 2nd entry, fail a third attempt */
5553 if (*poll_ptr) {
5554 if ((*poll_ptr)->head == head)
5555 return;
5556 pt->error = -EINVAL;
5557 return;
5558 }
5559
5560 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5561 if (!poll) {
5562 pt->error = -ENOMEM;
5563 return;
5564 }
5565 io_init_poll_iocb(poll, first->events, first->wait.func);
5566 *poll_ptr = poll;
5567 }
5568
5569 pt->nr_entries++;
5570 poll->head = head;
5571 poll->wait.private = req;
5572
5573 if (poll->events & EPOLLEXCLUSIVE)
5574 add_wait_queue_exclusive(head, &poll->wait);
5575 else
5576 add_wait_queue(head, &poll->wait);
5577 }
5578
5579 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5580 struct poll_table_struct *p)
5581 {
5582 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5583
5584 __io_queue_proc(&pt->req->poll, pt, head,
5585 (struct io_poll_iocb **) &pt->req->async_data);
5586 }
5587
5588 static int __io_arm_poll_handler(struct io_kiocb *req,
5589 struct io_poll_iocb *poll,
5590 struct io_poll_table *ipt, __poll_t mask)
5591 {
5592 struct io_ring_ctx *ctx = req->ctx;
5593 int v;
5594
5595 INIT_HLIST_NODE(&req->hash_node);
5596 io_init_poll_iocb(poll, mask, io_poll_wake);
5597 poll->file = req->file;
5598 poll->wait.private = req;
5599
5600 ipt->pt._key = mask;
5601 ipt->req = req;
5602 ipt->error = 0;
5603 ipt->nr_entries = 0;
5604
5605 /*
5606 * Take the ownership to delay any tw execution up until we're done
5607 * with poll arming. see io_poll_get_ownership().
5608 */
5609 atomic_set(&req->poll_refs, 1);
5610 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5611
5612 if (mask && (poll->events & EPOLLONESHOT)) {
5613 io_poll_remove_entries(req);
5614 /* no one else has access to the req, forget about the ref */
5615 return mask;
5616 }
5617 if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5618 io_poll_remove_entries(req);
5619 if (!ipt->error)
5620 ipt->error = -EINVAL;
5621 return 0;
5622 }
5623
5624 spin_lock(&ctx->completion_lock);
5625 io_poll_req_insert(req);
5626 spin_unlock(&ctx->completion_lock);
5627
5628 if (mask) {
5629 /* can't multishot if failed, just queue the event we've got */
5630 if (unlikely(ipt->error || !ipt->nr_entries))
5631 poll->events |= EPOLLONESHOT;
5632 __io_poll_execute(req, mask);
5633 return 0;
5634 }
5635
5636 /*
5637 * Release ownership. If someone tried to queue a tw while it was
5638 * locked, kick it off for them.
5639 */
5640 v = atomic_dec_return(&req->poll_refs);
5641 if (unlikely(v & IO_POLL_REF_MASK))
5642 __io_poll_execute(req, 0);
5643 return 0;
5644 }
5645
5646 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5647 struct poll_table_struct *p)
5648 {
5649 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5650 struct async_poll *apoll = pt->req->apoll;
5651
5652 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5653 }
5654
5655 enum {
5656 IO_APOLL_OK,
5657 IO_APOLL_ABORTED,
5658 IO_APOLL_READY
5659 };
5660
5661 static int io_arm_poll_handler(struct io_kiocb *req)
5662 {
5663 const struct io_op_def *def = &io_op_defs[req->opcode];
5664 struct io_ring_ctx *ctx = req->ctx;
5665 struct async_poll *apoll;
5666 struct io_poll_table ipt;
5667 __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5668 int ret;
5669
5670 if (!req->file || !file_can_poll(req->file))
5671 return IO_APOLL_ABORTED;
5672 if (req->flags & REQ_F_POLLED)
5673 return IO_APOLL_ABORTED;
5674 if (!def->pollin && !def->pollout)
5675 return IO_APOLL_ABORTED;
5676
5677 if (def->pollin) {
5678 mask |= POLLIN | POLLRDNORM;
5679
5680 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5681 if ((req->opcode == IORING_OP_RECVMSG) &&
5682 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5683 mask &= ~POLLIN;
5684 } else {
5685 mask |= POLLOUT | POLLWRNORM;
5686 }
5687
5688 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5689 if (unlikely(!apoll))
5690 return IO_APOLL_ABORTED;
5691 apoll->double_poll = NULL;
5692 req->apoll = apoll;
5693 req->flags |= REQ_F_POLLED;
5694 ipt.pt._qproc = io_async_queue_proc;
5695
5696 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5697 if (ret || ipt.error)
5698 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5699
5700 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5701 mask, apoll->poll.events);
5702 return IO_APOLL_OK;
5703 }
5704
5705 /*
5706 * Returns true if we found and killed one or more poll requests
5707 */
5708 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5709 bool cancel_all)
5710 {
5711 struct hlist_node *tmp;
5712 struct io_kiocb *req;
5713 bool found = false;
5714 int i;
5715
5716 spin_lock(&ctx->completion_lock);
5717 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5718 struct hlist_head *list;
5719
5720 list = &ctx->cancel_hash[i];
5721 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5722 if (io_match_task_safe(req, tsk, cancel_all)) {
5723 hlist_del_init(&req->hash_node);
5724 io_poll_cancel_req(req);
5725 found = true;
5726 }
5727 }
5728 }
5729 spin_unlock(&ctx->completion_lock);
5730 return found;
5731 }
5732
5733 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5734 bool poll_only)
5735 __must_hold(&ctx->completion_lock)
5736 {
5737 struct hlist_head *list;
5738 struct io_kiocb *req;
5739
5740 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5741 hlist_for_each_entry(req, list, hash_node) {
5742 if (sqe_addr != req->user_data)
5743 continue;
5744 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5745 continue;
5746 return req;
5747 }
5748 return NULL;
5749 }
5750
5751 static bool io_poll_disarm(struct io_kiocb *req)
5752 __must_hold(&ctx->completion_lock)
5753 {
5754 if (!io_poll_get_ownership(req))
5755 return false;
5756 io_poll_remove_entries(req);
5757 hash_del(&req->hash_node);
5758 return true;
5759 }
5760
5761 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5762 bool poll_only)
5763 __must_hold(&ctx->completion_lock)
5764 {
5765 struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5766
5767 if (!req)
5768 return -ENOENT;
5769 io_poll_cancel_req(req);
5770 return 0;
5771 }
5772
5773 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5774 unsigned int flags)
5775 {
5776 u32 events;
5777
5778 events = READ_ONCE(sqe->poll32_events);
5779 #ifdef __BIG_ENDIAN
5780 events = swahw32(events);
5781 #endif
5782 if (!(flags & IORING_POLL_ADD_MULTI))
5783 events |= EPOLLONESHOT;
5784 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5785 }
5786
5787 static int io_poll_update_prep(struct io_kiocb *req,
5788 const struct io_uring_sqe *sqe)
5789 {
5790 struct io_poll_update *upd = &req->poll_update;
5791 u32 flags;
5792
5793 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5794 return -EINVAL;
5795 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5796 return -EINVAL;
5797 flags = READ_ONCE(sqe->len);
5798 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5799 IORING_POLL_ADD_MULTI))
5800 return -EINVAL;
5801 /* meaningless without update */
5802 if (flags == IORING_POLL_ADD_MULTI)
5803 return -EINVAL;
5804
5805 upd->old_user_data = READ_ONCE(sqe->addr);
5806 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5807 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5808
5809 upd->new_user_data = READ_ONCE(sqe->off);
5810 if (!upd->update_user_data && upd->new_user_data)
5811 return -EINVAL;
5812 if (upd->update_events)
5813 upd->events = io_poll_parse_events(sqe, flags);
5814 else if (sqe->poll32_events)
5815 return -EINVAL;
5816
5817 return 0;
5818 }
5819
5820 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5821 {
5822 struct io_poll_iocb *poll = &req->poll;
5823 u32 flags;
5824
5825 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5826 return -EINVAL;
5827 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5828 return -EINVAL;
5829 flags = READ_ONCE(sqe->len);
5830 if (flags & ~IORING_POLL_ADD_MULTI)
5831 return -EINVAL;
5832
5833 io_req_set_refcount(req);
5834 poll->events = io_poll_parse_events(sqe, flags);
5835 return 0;
5836 }
5837
5838 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5839 {
5840 struct io_poll_iocb *poll = &req->poll;
5841 struct io_poll_table ipt;
5842 int ret;
5843
5844 ipt.pt._qproc = io_poll_queue_proc;
5845
5846 ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
5847 ret = ret ?: ipt.error;
5848 if (ret)
5849 __io_req_complete(req, issue_flags, ret, 0);
5850 return 0;
5851 }
5852
5853 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5854 {
5855 struct io_ring_ctx *ctx = req->ctx;
5856 struct io_kiocb *preq;
5857 int ret2, ret = 0;
5858
5859 spin_lock(&ctx->completion_lock);
5860 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5861 if (!preq || !io_poll_disarm(preq)) {
5862 spin_unlock(&ctx->completion_lock);
5863 ret = preq ? -EALREADY : -ENOENT;
5864 goto out;
5865 }
5866 spin_unlock(&ctx->completion_lock);
5867
5868 if (req->poll_update.update_events || req->poll_update.update_user_data) {
5869 /* only mask one event flags, keep behavior flags */
5870 if (req->poll_update.update_events) {
5871 preq->poll.events &= ~0xffff;
5872 preq->poll.events |= req->poll_update.events & 0xffff;
5873 preq->poll.events |= IO_POLL_UNMASK;
5874 }
5875 if (req->poll_update.update_user_data)
5876 preq->user_data = req->poll_update.new_user_data;
5877
5878 ret2 = io_poll_add(preq, issue_flags);
5879 /* successfully updated, don't complete poll request */
5880 if (!ret2)
5881 goto out;
5882 }
5883 req_set_fail(preq);
5884 io_req_complete(preq, -ECANCELED);
5885 out:
5886 if (ret < 0)
5887 req_set_fail(req);
5888 /* complete update request, we're done with it */
5889 io_req_complete(req, ret);
5890 return 0;
5891 }
5892
5893 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5894 {
5895 req_set_fail(req);
5896 io_req_complete_post(req, -ETIME, 0);
5897 }
5898
5899 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5900 {
5901 struct io_timeout_data *data = container_of(timer,
5902 struct io_timeout_data, timer);
5903 struct io_kiocb *req = data->req;
5904 struct io_ring_ctx *ctx = req->ctx;
5905 unsigned long flags;
5906
5907 spin_lock_irqsave(&ctx->timeout_lock, flags);
5908 list_del_init(&req->timeout.list);
5909 atomic_set(&req->ctx->cq_timeouts,
5910 atomic_read(&req->ctx->cq_timeouts) + 1);
5911 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5912
5913 req->io_task_work.func = io_req_task_timeout;
5914 io_req_task_work_add(req);
5915 return HRTIMER_NORESTART;
5916 }
5917
5918 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5919 __u64 user_data)
5920 __must_hold(&ctx->timeout_lock)
5921 {
5922 struct io_timeout_data *io;
5923 struct io_kiocb *req;
5924 bool found = false;
5925
5926 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5927 found = user_data == req->user_data;
5928 if (found)
5929 break;
5930 }
5931 if (!found)
5932 return ERR_PTR(-ENOENT);
5933
5934 io = req->async_data;
5935 if (hrtimer_try_to_cancel(&io->timer) == -1)
5936 return ERR_PTR(-EALREADY);
5937 list_del_init(&req->timeout.list);
5938 return req;
5939 }
5940
5941 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5942 __must_hold(&ctx->completion_lock)
5943 __must_hold(&ctx->timeout_lock)
5944 {
5945 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5946
5947 if (IS_ERR(req))
5948 return PTR_ERR(req);
5949
5950 req_set_fail(req);
5951 io_fill_cqe_req(req, -ECANCELED, 0);
5952 io_put_req_deferred(req);
5953 return 0;
5954 }
5955
5956 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
5957 {
5958 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
5959 case IORING_TIMEOUT_BOOTTIME:
5960 return CLOCK_BOOTTIME;
5961 case IORING_TIMEOUT_REALTIME:
5962 return CLOCK_REALTIME;
5963 default:
5964 /* can't happen, vetted at prep time */
5965 WARN_ON_ONCE(1);
5966 fallthrough;
5967 case 0:
5968 return CLOCK_MONOTONIC;
5969 }
5970 }
5971
5972 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5973 struct timespec64 *ts, enum hrtimer_mode mode)
5974 __must_hold(&ctx->timeout_lock)
5975 {
5976 struct io_timeout_data *io;
5977 struct io_kiocb *req;
5978 bool found = false;
5979
5980 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
5981 found = user_data == req->user_data;
5982 if (found)
5983 break;
5984 }
5985 if (!found)
5986 return -ENOENT;
5987
5988 io = req->async_data;
5989 if (hrtimer_try_to_cancel(&io->timer) == -1)
5990 return -EALREADY;
5991 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
5992 io->timer.function = io_link_timeout_fn;
5993 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
5994 return 0;
5995 }
5996
5997 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5998 struct timespec64 *ts, enum hrtimer_mode mode)
5999 __must_hold(&ctx->timeout_lock)
6000 {
6001 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6002 struct io_timeout_data *data;
6003
6004 if (IS_ERR(req))
6005 return PTR_ERR(req);
6006
6007 req->timeout.off = 0; /* noseq */
6008 data = req->async_data;
6009 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6010 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6011 data->timer.function = io_timeout_fn;
6012 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6013 return 0;
6014 }
6015
6016 static int io_timeout_remove_prep(struct io_kiocb *req,
6017 const struct io_uring_sqe *sqe)
6018 {
6019 struct io_timeout_rem *tr = &req->timeout_rem;
6020
6021 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6022 return -EINVAL;
6023 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6024 return -EINVAL;
6025 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6026 return -EINVAL;
6027
6028 tr->ltimeout = false;
6029 tr->addr = READ_ONCE(sqe->addr);
6030 tr->flags = READ_ONCE(sqe->timeout_flags);
6031 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6032 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6033 return -EINVAL;
6034 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6035 tr->ltimeout = true;
6036 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6037 return -EINVAL;
6038 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6039 return -EFAULT;
6040 } else if (tr->flags) {
6041 /* timeout removal doesn't support flags */
6042 return -EINVAL;
6043 }
6044
6045 return 0;
6046 }
6047
6048 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6049 {
6050 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6051 : HRTIMER_MODE_REL;
6052 }
6053
6054 /*
6055 * Remove or update an existing timeout command
6056 */
6057 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6058 {
6059 struct io_timeout_rem *tr = &req->timeout_rem;
6060 struct io_ring_ctx *ctx = req->ctx;
6061 int ret;
6062
6063 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6064 spin_lock(&ctx->completion_lock);
6065 spin_lock_irq(&ctx->timeout_lock);
6066 ret = io_timeout_cancel(ctx, tr->addr);
6067 spin_unlock_irq(&ctx->timeout_lock);
6068 spin_unlock(&ctx->completion_lock);
6069 } else {
6070 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6071
6072 spin_lock_irq(&ctx->timeout_lock);
6073 if (tr->ltimeout)
6074 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6075 else
6076 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6077 spin_unlock_irq(&ctx->timeout_lock);
6078 }
6079
6080 if (ret < 0)
6081 req_set_fail(req);
6082 io_req_complete_post(req, ret, 0);
6083 return 0;
6084 }
6085
6086 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6087 bool is_timeout_link)
6088 {
6089 struct io_timeout_data *data;
6090 unsigned flags;
6091 u32 off = READ_ONCE(sqe->off);
6092
6093 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6094 return -EINVAL;
6095 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6096 sqe->splice_fd_in)
6097 return -EINVAL;
6098 if (off && is_timeout_link)
6099 return -EINVAL;
6100 flags = READ_ONCE(sqe->timeout_flags);
6101 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6102 return -EINVAL;
6103 /* more than one clock specified is invalid, obviously */
6104 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6105 return -EINVAL;
6106
6107 INIT_LIST_HEAD(&req->timeout.list);
6108 req->timeout.off = off;
6109 if (unlikely(off && !req->ctx->off_timeout_used))
6110 req->ctx->off_timeout_used = true;
6111
6112 if (!req->async_data && io_alloc_async_data(req))
6113 return -ENOMEM;
6114
6115 data = req->async_data;
6116 data->req = req;
6117 data->flags = flags;
6118
6119 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6120 return -EFAULT;
6121
6122 INIT_LIST_HEAD(&req->timeout.list);
6123 data->mode = io_translate_timeout_mode(flags);
6124 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6125
6126 if (is_timeout_link) {
6127 struct io_submit_link *link = &req->ctx->submit_state.link;
6128
6129 if (!link->head)
6130 return -EINVAL;
6131 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6132 return -EINVAL;
6133 req->timeout.head = link->last;
6134 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6135 }
6136 return 0;
6137 }
6138
6139 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6140 {
6141 struct io_ring_ctx *ctx = req->ctx;
6142 struct io_timeout_data *data = req->async_data;
6143 struct list_head *entry;
6144 u32 tail, off = req->timeout.off;
6145
6146 spin_lock_irq(&ctx->timeout_lock);
6147
6148 /*
6149 * sqe->off holds how many events that need to occur for this
6150 * timeout event to be satisfied. If it isn't set, then this is
6151 * a pure timeout request, sequence isn't used.
6152 */
6153 if (io_is_timeout_noseq(req)) {
6154 entry = ctx->timeout_list.prev;
6155 goto add;
6156 }
6157
6158 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6159 req->timeout.target_seq = tail + off;
6160
6161 /* Update the last seq here in case io_flush_timeouts() hasn't.
6162 * This is safe because ->completion_lock is held, and submissions
6163 * and completions are never mixed in the same ->completion_lock section.
6164 */
6165 ctx->cq_last_tm_flush = tail;
6166
6167 /*
6168 * Insertion sort, ensuring the first entry in the list is always
6169 * the one we need first.
6170 */
6171 list_for_each_prev(entry, &ctx->timeout_list) {
6172 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6173 timeout.list);
6174
6175 if (io_is_timeout_noseq(nxt))
6176 continue;
6177 /* nxt.seq is behind @tail, otherwise would've been completed */
6178 if (off >= nxt->timeout.target_seq - tail)
6179 break;
6180 }
6181 add:
6182 list_add(&req->timeout.list, entry);
6183 data->timer.function = io_timeout_fn;
6184 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6185 spin_unlock_irq(&ctx->timeout_lock);
6186 return 0;
6187 }
6188
6189 struct io_cancel_data {
6190 struct io_ring_ctx *ctx;
6191 u64 user_data;
6192 };
6193
6194 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6195 {
6196 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6197 struct io_cancel_data *cd = data;
6198
6199 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6200 }
6201
6202 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6203 struct io_ring_ctx *ctx)
6204 {
6205 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6206 enum io_wq_cancel cancel_ret;
6207 int ret = 0;
6208
6209 if (!tctx || !tctx->io_wq)
6210 return -ENOENT;
6211
6212 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6213 switch (cancel_ret) {
6214 case IO_WQ_CANCEL_OK:
6215 ret = 0;
6216 break;
6217 case IO_WQ_CANCEL_RUNNING:
6218 ret = -EALREADY;
6219 break;
6220 case IO_WQ_CANCEL_NOTFOUND:
6221 ret = -ENOENT;
6222 break;
6223 }
6224
6225 return ret;
6226 }
6227
6228 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6229 {
6230 struct io_ring_ctx *ctx = req->ctx;
6231 int ret;
6232
6233 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6234
6235 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6236 if (ret != -ENOENT)
6237 return ret;
6238
6239 spin_lock(&ctx->completion_lock);
6240 spin_lock_irq(&ctx->timeout_lock);
6241 ret = io_timeout_cancel(ctx, sqe_addr);
6242 spin_unlock_irq(&ctx->timeout_lock);
6243 if (ret != -ENOENT)
6244 goto out;
6245 ret = io_poll_cancel(ctx, sqe_addr, false);
6246 out:
6247 spin_unlock(&ctx->completion_lock);
6248 return ret;
6249 }
6250
6251 static int io_async_cancel_prep(struct io_kiocb *req,
6252 const struct io_uring_sqe *sqe)
6253 {
6254 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6255 return -EINVAL;
6256 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6257 return -EINVAL;
6258 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6259 sqe->splice_fd_in)
6260 return -EINVAL;
6261
6262 req->cancel.addr = READ_ONCE(sqe->addr);
6263 return 0;
6264 }
6265
6266 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6267 {
6268 struct io_ring_ctx *ctx = req->ctx;
6269 u64 sqe_addr = req->cancel.addr;
6270 struct io_tctx_node *node;
6271 int ret;
6272
6273 ret = io_try_cancel_userdata(req, sqe_addr);
6274 if (ret != -ENOENT)
6275 goto done;
6276
6277 /* slow path, try all io-wq's */
6278 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6279 ret = -ENOENT;
6280 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6281 struct io_uring_task *tctx = node->task->io_uring;
6282
6283 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6284 if (ret != -ENOENT)
6285 break;
6286 }
6287 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6288 done:
6289 if (ret < 0)
6290 req_set_fail(req);
6291 io_req_complete_post(req, ret, 0);
6292 return 0;
6293 }
6294
6295 static int io_rsrc_update_prep(struct io_kiocb *req,
6296 const struct io_uring_sqe *sqe)
6297 {
6298 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6299 return -EINVAL;
6300 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6301 return -EINVAL;
6302
6303 req->rsrc_update.offset = READ_ONCE(sqe->off);
6304 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6305 if (!req->rsrc_update.nr_args)
6306 return -EINVAL;
6307 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6308 return 0;
6309 }
6310
6311 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6312 {
6313 struct io_ring_ctx *ctx = req->ctx;
6314 struct io_uring_rsrc_update2 up;
6315 int ret;
6316
6317 up.offset = req->rsrc_update.offset;
6318 up.data = req->rsrc_update.arg;
6319 up.nr = 0;
6320 up.tags = 0;
6321 up.resv = 0;
6322 up.resv2 = 0;
6323
6324 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6325 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6326 &up, req->rsrc_update.nr_args);
6327 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6328
6329 if (ret < 0)
6330 req_set_fail(req);
6331 __io_req_complete(req, issue_flags, ret, 0);
6332 return 0;
6333 }
6334
6335 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6336 {
6337 switch (req->opcode) {
6338 case IORING_OP_NOP:
6339 return 0;
6340 case IORING_OP_READV:
6341 case IORING_OP_READ_FIXED:
6342 case IORING_OP_READ:
6343 return io_read_prep(req, sqe);
6344 case IORING_OP_WRITEV:
6345 case IORING_OP_WRITE_FIXED:
6346 case IORING_OP_WRITE:
6347 return io_write_prep(req, sqe);
6348 case IORING_OP_POLL_ADD:
6349 return io_poll_add_prep(req, sqe);
6350 case IORING_OP_POLL_REMOVE:
6351 return io_poll_update_prep(req, sqe);
6352 case IORING_OP_FSYNC:
6353 return io_fsync_prep(req, sqe);
6354 case IORING_OP_SYNC_FILE_RANGE:
6355 return io_sfr_prep(req, sqe);
6356 case IORING_OP_SENDMSG:
6357 case IORING_OP_SEND:
6358 return io_sendmsg_prep(req, sqe);
6359 case IORING_OP_RECVMSG:
6360 case IORING_OP_RECV:
6361 return io_recvmsg_prep(req, sqe);
6362 case IORING_OP_CONNECT:
6363 return io_connect_prep(req, sqe);
6364 case IORING_OP_TIMEOUT:
6365 return io_timeout_prep(req, sqe, false);
6366 case IORING_OP_TIMEOUT_REMOVE:
6367 return io_timeout_remove_prep(req, sqe);
6368 case IORING_OP_ASYNC_CANCEL:
6369 return io_async_cancel_prep(req, sqe);
6370 case IORING_OP_LINK_TIMEOUT:
6371 return io_timeout_prep(req, sqe, true);
6372 case IORING_OP_ACCEPT:
6373 return io_accept_prep(req, sqe);
6374 case IORING_OP_FALLOCATE:
6375 return io_fallocate_prep(req, sqe);
6376 case IORING_OP_OPENAT:
6377 return io_openat_prep(req, sqe);
6378 case IORING_OP_CLOSE:
6379 return io_close_prep(req, sqe);
6380 case IORING_OP_FILES_UPDATE:
6381 return io_rsrc_update_prep(req, sqe);
6382 case IORING_OP_STATX:
6383 return io_statx_prep(req, sqe);
6384 case IORING_OP_FADVISE:
6385 return io_fadvise_prep(req, sqe);
6386 case IORING_OP_MADVISE:
6387 return io_madvise_prep(req, sqe);
6388 case IORING_OP_OPENAT2:
6389 return io_openat2_prep(req, sqe);
6390 case IORING_OP_EPOLL_CTL:
6391 return io_epoll_ctl_prep(req, sqe);
6392 case IORING_OP_SPLICE:
6393 return io_splice_prep(req, sqe);
6394 case IORING_OP_PROVIDE_BUFFERS:
6395 return io_provide_buffers_prep(req, sqe);
6396 case IORING_OP_REMOVE_BUFFERS:
6397 return io_remove_buffers_prep(req, sqe);
6398 case IORING_OP_TEE:
6399 return io_tee_prep(req, sqe);
6400 case IORING_OP_SHUTDOWN:
6401 return io_shutdown_prep(req, sqe);
6402 case IORING_OP_RENAMEAT:
6403 return io_renameat_prep(req, sqe);
6404 case IORING_OP_UNLINKAT:
6405 return io_unlinkat_prep(req, sqe);
6406 case IORING_OP_MKDIRAT:
6407 return io_mkdirat_prep(req, sqe);
6408 case IORING_OP_SYMLINKAT:
6409 return io_symlinkat_prep(req, sqe);
6410 case IORING_OP_LINKAT:
6411 return io_linkat_prep(req, sqe);
6412 }
6413
6414 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6415 req->opcode);
6416 return -EINVAL;
6417 }
6418
6419 static int io_req_prep_async(struct io_kiocb *req)
6420 {
6421 if (!io_op_defs[req->opcode].needs_async_setup)
6422 return 0;
6423 if (WARN_ON_ONCE(req->async_data))
6424 return -EFAULT;
6425 if (io_alloc_async_data(req))
6426 return -EAGAIN;
6427
6428 switch (req->opcode) {
6429 case IORING_OP_READV:
6430 return io_rw_prep_async(req, READ);
6431 case IORING_OP_WRITEV:
6432 return io_rw_prep_async(req, WRITE);
6433 case IORING_OP_SENDMSG:
6434 return io_sendmsg_prep_async(req);
6435 case IORING_OP_RECVMSG:
6436 return io_recvmsg_prep_async(req);
6437 case IORING_OP_CONNECT:
6438 return io_connect_prep_async(req);
6439 }
6440 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6441 req->opcode);
6442 return -EFAULT;
6443 }
6444
6445 static u32 io_get_sequence(struct io_kiocb *req)
6446 {
6447 u32 seq = req->ctx->cached_sq_head;
6448
6449 /* need original cached_sq_head, but it was increased for each req */
6450 io_for_each_link(req, req)
6451 seq--;
6452 return seq;
6453 }
6454
6455 static bool io_drain_req(struct io_kiocb *req)
6456 {
6457 struct io_kiocb *pos;
6458 struct io_ring_ctx *ctx = req->ctx;
6459 struct io_defer_entry *de;
6460 int ret;
6461 u32 seq;
6462
6463 if (req->flags & REQ_F_FAIL) {
6464 io_req_complete_fail_submit(req);
6465 return true;
6466 }
6467
6468 /*
6469 * If we need to drain a request in the middle of a link, drain the
6470 * head request and the next request/link after the current link.
6471 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6472 * maintained for every request of our link.
6473 */
6474 if (ctx->drain_next) {
6475 req->flags |= REQ_F_IO_DRAIN;
6476 ctx->drain_next = false;
6477 }
6478 /* not interested in head, start from the first linked */
6479 io_for_each_link(pos, req->link) {
6480 if (pos->flags & REQ_F_IO_DRAIN) {
6481 ctx->drain_next = true;
6482 req->flags |= REQ_F_IO_DRAIN;
6483 break;
6484 }
6485 }
6486
6487 /* Still need defer if there is pending req in defer list. */
6488 spin_lock(&ctx->completion_lock);
6489 if (likely(list_empty_careful(&ctx->defer_list) &&
6490 !(req->flags & REQ_F_IO_DRAIN))) {
6491 spin_unlock(&ctx->completion_lock);
6492 ctx->drain_active = false;
6493 return false;
6494 }
6495 spin_unlock(&ctx->completion_lock);
6496
6497 seq = io_get_sequence(req);
6498 /* Still a chance to pass the sequence check */
6499 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6500 return false;
6501
6502 ret = io_req_prep_async(req);
6503 if (ret)
6504 goto fail;
6505 io_prep_async_link(req);
6506 de = kmalloc(sizeof(*de), GFP_KERNEL);
6507 if (!de) {
6508 ret = -ENOMEM;
6509 fail:
6510 io_req_complete_failed(req, ret);
6511 return true;
6512 }
6513
6514 spin_lock(&ctx->completion_lock);
6515 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6516 spin_unlock(&ctx->completion_lock);
6517 kfree(de);
6518 io_queue_async_work(req, NULL);
6519 return true;
6520 }
6521
6522 trace_io_uring_defer(ctx, req, req->user_data);
6523 de->req = req;
6524 de->seq = seq;
6525 list_add_tail(&de->list, &ctx->defer_list);
6526 spin_unlock(&ctx->completion_lock);
6527 return true;
6528 }
6529
6530 static void io_clean_op(struct io_kiocb *req)
6531 {
6532 if (req->flags & REQ_F_BUFFER_SELECTED) {
6533 switch (req->opcode) {
6534 case IORING_OP_READV:
6535 case IORING_OP_READ_FIXED:
6536 case IORING_OP_READ:
6537 kfree((void *)(unsigned long)req->rw.addr);
6538 break;
6539 case IORING_OP_RECVMSG:
6540 case IORING_OP_RECV:
6541 kfree(req->sr_msg.kbuf);
6542 break;
6543 }
6544 }
6545
6546 if (req->flags & REQ_F_NEED_CLEANUP) {
6547 switch (req->opcode) {
6548 case IORING_OP_READV:
6549 case IORING_OP_READ_FIXED:
6550 case IORING_OP_READ:
6551 case IORING_OP_WRITEV:
6552 case IORING_OP_WRITE_FIXED:
6553 case IORING_OP_WRITE: {
6554 struct io_async_rw *io = req->async_data;
6555
6556 kfree(io->free_iovec);
6557 break;
6558 }
6559 case IORING_OP_RECVMSG:
6560 case IORING_OP_SENDMSG: {
6561 struct io_async_msghdr *io = req->async_data;
6562
6563 kfree(io->free_iov);
6564 break;
6565 }
6566 case IORING_OP_OPENAT:
6567 case IORING_OP_OPENAT2:
6568 if (req->open.filename)
6569 putname(req->open.filename);
6570 break;
6571 case IORING_OP_RENAMEAT:
6572 putname(req->rename.oldpath);
6573 putname(req->rename.newpath);
6574 break;
6575 case IORING_OP_UNLINKAT:
6576 putname(req->unlink.filename);
6577 break;
6578 case IORING_OP_MKDIRAT:
6579 putname(req->mkdir.filename);
6580 break;
6581 case IORING_OP_SYMLINKAT:
6582 putname(req->symlink.oldpath);
6583 putname(req->symlink.newpath);
6584 break;
6585 case IORING_OP_LINKAT:
6586 putname(req->hardlink.oldpath);
6587 putname(req->hardlink.newpath);
6588 break;
6589 }
6590 }
6591 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6592 kfree(req->apoll->double_poll);
6593 kfree(req->apoll);
6594 req->apoll = NULL;
6595 }
6596 if (req->flags & REQ_F_INFLIGHT) {
6597 struct io_uring_task *tctx = req->task->io_uring;
6598
6599 atomic_dec(&tctx->inflight_tracked);
6600 }
6601 if (req->flags & REQ_F_CREDS)
6602 put_cred(req->creds);
6603
6604 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6605 }
6606
6607 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6608 {
6609 struct io_ring_ctx *ctx = req->ctx;
6610 const struct cred *creds = NULL;
6611 int ret;
6612
6613 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6614 creds = override_creds(req->creds);
6615
6616 switch (req->opcode) {
6617 case IORING_OP_NOP:
6618 ret = io_nop(req, issue_flags);
6619 break;
6620 case IORING_OP_READV:
6621 case IORING_OP_READ_FIXED:
6622 case IORING_OP_READ:
6623 ret = io_read(req, issue_flags);
6624 break;
6625 case IORING_OP_WRITEV:
6626 case IORING_OP_WRITE_FIXED:
6627 case IORING_OP_WRITE:
6628 ret = io_write(req, issue_flags);
6629 break;
6630 case IORING_OP_FSYNC:
6631 ret = io_fsync(req, issue_flags);
6632 break;
6633 case IORING_OP_POLL_ADD:
6634 ret = io_poll_add(req, issue_flags);
6635 break;
6636 case IORING_OP_POLL_REMOVE:
6637 ret = io_poll_update(req, issue_flags);
6638 break;
6639 case IORING_OP_SYNC_FILE_RANGE:
6640 ret = io_sync_file_range(req, issue_flags);
6641 break;
6642 case IORING_OP_SENDMSG:
6643 ret = io_sendmsg(req, issue_flags);
6644 break;
6645 case IORING_OP_SEND:
6646 ret = io_send(req, issue_flags);
6647 break;
6648 case IORING_OP_RECVMSG:
6649 ret = io_recvmsg(req, issue_flags);
6650 break;
6651 case IORING_OP_RECV:
6652 ret = io_recv(req, issue_flags);
6653 break;
6654 case IORING_OP_TIMEOUT:
6655 ret = io_timeout(req, issue_flags);
6656 break;
6657 case IORING_OP_TIMEOUT_REMOVE:
6658 ret = io_timeout_remove(req, issue_flags);
6659 break;
6660 case IORING_OP_ACCEPT:
6661 ret = io_accept(req, issue_flags);
6662 break;
6663 case IORING_OP_CONNECT:
6664 ret = io_connect(req, issue_flags);
6665 break;
6666 case IORING_OP_ASYNC_CANCEL:
6667 ret = io_async_cancel(req, issue_flags);
6668 break;
6669 case IORING_OP_FALLOCATE:
6670 ret = io_fallocate(req, issue_flags);
6671 break;
6672 case IORING_OP_OPENAT:
6673 ret = io_openat(req, issue_flags);
6674 break;
6675 case IORING_OP_CLOSE:
6676 ret = io_close(req, issue_flags);
6677 break;
6678 case IORING_OP_FILES_UPDATE:
6679 ret = io_files_update(req, issue_flags);
6680 break;
6681 case IORING_OP_STATX:
6682 ret = io_statx(req, issue_flags);
6683 break;
6684 case IORING_OP_FADVISE:
6685 ret = io_fadvise(req, issue_flags);
6686 break;
6687 case IORING_OP_MADVISE:
6688 ret = io_madvise(req, issue_flags);
6689 break;
6690 case IORING_OP_OPENAT2:
6691 ret = io_openat2(req, issue_flags);
6692 break;
6693 case IORING_OP_EPOLL_CTL:
6694 ret = io_epoll_ctl(req, issue_flags);
6695 break;
6696 case IORING_OP_SPLICE:
6697 ret = io_splice(req, issue_flags);
6698 break;
6699 case IORING_OP_PROVIDE_BUFFERS:
6700 ret = io_provide_buffers(req, issue_flags);
6701 break;
6702 case IORING_OP_REMOVE_BUFFERS:
6703 ret = io_remove_buffers(req, issue_flags);
6704 break;
6705 case IORING_OP_TEE:
6706 ret = io_tee(req, issue_flags);
6707 break;
6708 case IORING_OP_SHUTDOWN:
6709 ret = io_shutdown(req, issue_flags);
6710 break;
6711 case IORING_OP_RENAMEAT:
6712 ret = io_renameat(req, issue_flags);
6713 break;
6714 case IORING_OP_UNLINKAT:
6715 ret = io_unlinkat(req, issue_flags);
6716 break;
6717 case IORING_OP_MKDIRAT:
6718 ret = io_mkdirat(req, issue_flags);
6719 break;
6720 case IORING_OP_SYMLINKAT:
6721 ret = io_symlinkat(req, issue_flags);
6722 break;
6723 case IORING_OP_LINKAT:
6724 ret = io_linkat(req, issue_flags);
6725 break;
6726 default:
6727 ret = -EINVAL;
6728 break;
6729 }
6730
6731 if (creds)
6732 revert_creds(creds);
6733 if (ret)
6734 return ret;
6735 /* If the op doesn't have a file, we're not polling for it */
6736 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6737 io_iopoll_req_issued(req);
6738
6739 return 0;
6740 }
6741
6742 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6743 {
6744 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6745
6746 req = io_put_req_find_next(req);
6747 return req ? &req->work : NULL;
6748 }
6749
6750 static void io_wq_submit_work(struct io_wq_work *work)
6751 {
6752 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6753 struct io_kiocb *timeout;
6754 int ret = 0;
6755
6756 /* one will be dropped by ->io_free_work() after returning to io-wq */
6757 if (!(req->flags & REQ_F_REFCOUNT))
6758 __io_req_set_refcount(req, 2);
6759 else
6760 req_ref_get(req);
6761
6762 timeout = io_prep_linked_timeout(req);
6763 if (timeout)
6764 io_queue_linked_timeout(timeout);
6765
6766 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6767 if (work->flags & IO_WQ_WORK_CANCEL)
6768 ret = -ECANCELED;
6769
6770 if (!ret) {
6771 do {
6772 ret = io_issue_sqe(req, 0);
6773 /*
6774 * We can get EAGAIN for polled IO even though we're
6775 * forcing a sync submission from here, since we can't
6776 * wait for request slots on the block side.
6777 */
6778 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6779 break;
6780 cond_resched();
6781 } while (1);
6782 }
6783
6784 /* avoid locking problems by failing it from a clean context */
6785 if (ret)
6786 io_req_task_queue_fail(req, ret);
6787 }
6788
6789 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6790 unsigned i)
6791 {
6792 return &table->files[i];
6793 }
6794
6795 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6796 int index)
6797 {
6798 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6799
6800 return (struct file *) (slot->file_ptr & FFS_MASK);
6801 }
6802
6803 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6804 {
6805 unsigned long file_ptr = (unsigned long) file;
6806
6807 if (__io_file_supports_nowait(file, READ))
6808 file_ptr |= FFS_ASYNC_READ;
6809 if (__io_file_supports_nowait(file, WRITE))
6810 file_ptr |= FFS_ASYNC_WRITE;
6811 if (S_ISREG(file_inode(file)->i_mode))
6812 file_ptr |= FFS_ISREG;
6813 file_slot->file_ptr = file_ptr;
6814 }
6815
6816 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6817 struct io_kiocb *req, int fd)
6818 {
6819 struct file *file;
6820 unsigned long file_ptr;
6821
6822 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6823 return NULL;
6824 fd = array_index_nospec(fd, ctx->nr_user_files);
6825 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6826 file = (struct file *) (file_ptr & FFS_MASK);
6827 file_ptr &= ~FFS_MASK;
6828 /* mask in overlapping REQ_F and FFS bits */
6829 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6830 io_req_set_rsrc_node(req);
6831 return file;
6832 }
6833
6834 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6835 struct io_kiocb *req, int fd)
6836 {
6837 struct file *file = fget(fd);
6838
6839 trace_io_uring_file_get(ctx, fd);
6840
6841 /* we don't allow fixed io_uring files */
6842 if (file && unlikely(file->f_op == &io_uring_fops))
6843 io_req_track_inflight(req);
6844 return file;
6845 }
6846
6847 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6848 struct io_kiocb *req, int fd, bool fixed)
6849 {
6850 if (fixed)
6851 return io_file_get_fixed(ctx, req, fd);
6852 else
6853 return io_file_get_normal(ctx, req, fd);
6854 }
6855
6856 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6857 {
6858 struct io_kiocb *prev = req->timeout.prev;
6859 int ret = -ENOENT;
6860
6861 if (prev) {
6862 if (!(req->task->flags & PF_EXITING))
6863 ret = io_try_cancel_userdata(req, prev->user_data);
6864 io_req_complete_post(req, ret ?: -ETIME, 0);
6865 io_put_req(prev);
6866 } else {
6867 io_req_complete_post(req, -ETIME, 0);
6868 }
6869 }
6870
6871 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6872 {
6873 struct io_timeout_data *data = container_of(timer,
6874 struct io_timeout_data, timer);
6875 struct io_kiocb *prev, *req = data->req;
6876 struct io_ring_ctx *ctx = req->ctx;
6877 unsigned long flags;
6878
6879 spin_lock_irqsave(&ctx->timeout_lock, flags);
6880 prev = req->timeout.head;
6881 req->timeout.head = NULL;
6882
6883 /*
6884 * We don't expect the list to be empty, that will only happen if we
6885 * race with the completion of the linked work.
6886 */
6887 if (prev) {
6888 io_remove_next_linked(prev);
6889 if (!req_ref_inc_not_zero(prev))
6890 prev = NULL;
6891 }
6892 list_del(&req->timeout.list);
6893 req->timeout.prev = prev;
6894 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6895
6896 req->io_task_work.func = io_req_task_link_timeout;
6897 io_req_task_work_add(req);
6898 return HRTIMER_NORESTART;
6899 }
6900
6901 static void io_queue_linked_timeout(struct io_kiocb *req)
6902 {
6903 struct io_ring_ctx *ctx = req->ctx;
6904
6905 spin_lock_irq(&ctx->timeout_lock);
6906 /*
6907 * If the back reference is NULL, then our linked request finished
6908 * before we got a chance to setup the timer
6909 */
6910 if (req->timeout.head) {
6911 struct io_timeout_data *data = req->async_data;
6912
6913 data->timer.function = io_link_timeout_fn;
6914 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6915 data->mode);
6916 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6917 }
6918 spin_unlock_irq(&ctx->timeout_lock);
6919 /* drop submission reference */
6920 io_put_req(req);
6921 }
6922
6923 static void __io_queue_sqe(struct io_kiocb *req)
6924 __must_hold(&req->ctx->uring_lock)
6925 {
6926 struct io_kiocb *linked_timeout;
6927 int ret;
6928
6929 issue_sqe:
6930 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6931
6932 /*
6933 * We async punt it if the file wasn't marked NOWAIT, or if the file
6934 * doesn't support non-blocking read/write attempts
6935 */
6936 if (likely(!ret)) {
6937 if (req->flags & REQ_F_COMPLETE_INLINE) {
6938 struct io_ring_ctx *ctx = req->ctx;
6939 struct io_submit_state *state = &ctx->submit_state;
6940
6941 state->compl_reqs[state->compl_nr++] = req;
6942 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
6943 io_submit_flush_completions(ctx);
6944 return;
6945 }
6946
6947 linked_timeout = io_prep_linked_timeout(req);
6948 if (linked_timeout)
6949 io_queue_linked_timeout(linked_timeout);
6950 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6951 linked_timeout = io_prep_linked_timeout(req);
6952
6953 switch (io_arm_poll_handler(req)) {
6954 case IO_APOLL_READY:
6955 if (linked_timeout)
6956 io_queue_linked_timeout(linked_timeout);
6957 goto issue_sqe;
6958 case IO_APOLL_ABORTED:
6959 /*
6960 * Queued up for async execution, worker will release
6961 * submit reference when the iocb is actually submitted.
6962 */
6963 io_queue_async_work(req, NULL);
6964 break;
6965 }
6966
6967 if (linked_timeout)
6968 io_queue_linked_timeout(linked_timeout);
6969 } else {
6970 io_req_complete_failed(req, ret);
6971 }
6972 }
6973
6974 static inline void io_queue_sqe(struct io_kiocb *req)
6975 __must_hold(&req->ctx->uring_lock)
6976 {
6977 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
6978 return;
6979
6980 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
6981 __io_queue_sqe(req);
6982 } else if (req->flags & REQ_F_FAIL) {
6983 io_req_complete_fail_submit(req);
6984 } else {
6985 int ret = io_req_prep_async(req);
6986
6987 if (unlikely(ret))
6988 io_req_complete_failed(req, ret);
6989 else
6990 io_queue_async_work(req, NULL);
6991 }
6992 }
6993
6994 /*
6995 * Check SQE restrictions (opcode and flags).
6996 *
6997 * Returns 'true' if SQE is allowed, 'false' otherwise.
6998 */
6999 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7000 struct io_kiocb *req,
7001 unsigned int sqe_flags)
7002 {
7003 if (likely(!ctx->restricted))
7004 return true;
7005
7006 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7007 return false;
7008
7009 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7010 ctx->restrictions.sqe_flags_required)
7011 return false;
7012
7013 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7014 ctx->restrictions.sqe_flags_required))
7015 return false;
7016
7017 return true;
7018 }
7019
7020 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7021 const struct io_uring_sqe *sqe)
7022 __must_hold(&ctx->uring_lock)
7023 {
7024 struct io_submit_state *state;
7025 unsigned int sqe_flags;
7026 int personality, ret = 0;
7027
7028 /* req is partially pre-initialised, see io_preinit_req() */
7029 req->opcode = READ_ONCE(sqe->opcode);
7030 /* same numerical values with corresponding REQ_F_*, safe to copy */
7031 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7032 req->user_data = READ_ONCE(sqe->user_data);
7033 req->file = NULL;
7034 req->fixed_rsrc_refs = NULL;
7035 req->task = current;
7036
7037 /* enforce forwards compatibility on users */
7038 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7039 return -EINVAL;
7040 if (unlikely(req->opcode >= IORING_OP_LAST))
7041 return -EINVAL;
7042 if (!io_check_restriction(ctx, req, sqe_flags))
7043 return -EACCES;
7044
7045 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7046 !io_op_defs[req->opcode].buffer_select)
7047 return -EOPNOTSUPP;
7048 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7049 ctx->drain_active = true;
7050
7051 personality = READ_ONCE(sqe->personality);
7052 if (personality) {
7053 req->creds = xa_load(&ctx->personalities, personality);
7054 if (!req->creds)
7055 return -EINVAL;
7056 get_cred(req->creds);
7057 req->flags |= REQ_F_CREDS;
7058 }
7059 state = &ctx->submit_state;
7060
7061 /*
7062 * Plug now if we have more than 1 IO left after this, and the target
7063 * is potentially a read/write to block based storage.
7064 */
7065 if (!state->plug_started && state->ios_left > 1 &&
7066 io_op_defs[req->opcode].plug) {
7067 blk_start_plug(&state->plug);
7068 state->plug_started = true;
7069 }
7070
7071 if (io_op_defs[req->opcode].needs_file) {
7072 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7073 (sqe_flags & IOSQE_FIXED_FILE));
7074 if (unlikely(!req->file))
7075 ret = -EBADF;
7076 }
7077
7078 state->ios_left--;
7079 return ret;
7080 }
7081
7082 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7083 const struct io_uring_sqe *sqe)
7084 __must_hold(&ctx->uring_lock)
7085 {
7086 struct io_submit_link *link = &ctx->submit_state.link;
7087 int ret;
7088
7089 ret = io_init_req(ctx, req, sqe);
7090 if (unlikely(ret)) {
7091 fail_req:
7092 /* fail even hard links since we don't submit */
7093 if (link->head) {
7094 /*
7095 * we can judge a link req is failed or cancelled by if
7096 * REQ_F_FAIL is set, but the head is an exception since
7097 * it may be set REQ_F_FAIL because of other req's failure
7098 * so let's leverage req->result to distinguish if a head
7099 * is set REQ_F_FAIL because of its failure or other req's
7100 * failure so that we can set the correct ret code for it.
7101 * init result here to avoid affecting the normal path.
7102 */
7103 if (!(link->head->flags & REQ_F_FAIL))
7104 req_fail_link_node(link->head, -ECANCELED);
7105 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7106 /*
7107 * the current req is a normal req, we should return
7108 * error and thus break the submittion loop.
7109 */
7110 io_req_complete_failed(req, ret);
7111 return ret;
7112 }
7113 req_fail_link_node(req, ret);
7114 } else {
7115 ret = io_req_prep(req, sqe);
7116 if (unlikely(ret))
7117 goto fail_req;
7118 }
7119
7120 /* don't need @sqe from now on */
7121 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7122 req->flags, true,
7123 ctx->flags & IORING_SETUP_SQPOLL);
7124
7125 /*
7126 * If we already have a head request, queue this one for async
7127 * submittal once the head completes. If we don't have a head but
7128 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7129 * submitted sync once the chain is complete. If none of those
7130 * conditions are true (normal request), then just queue it.
7131 */
7132 if (link->head) {
7133 struct io_kiocb *head = link->head;
7134
7135 if (!(req->flags & REQ_F_FAIL)) {
7136 ret = io_req_prep_async(req);
7137 if (unlikely(ret)) {
7138 req_fail_link_node(req, ret);
7139 if (!(head->flags & REQ_F_FAIL))
7140 req_fail_link_node(head, -ECANCELED);
7141 }
7142 }
7143 trace_io_uring_link(ctx, req, head);
7144 link->last->link = req;
7145 link->last = req;
7146
7147 /* last request of a link, enqueue the link */
7148 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7149 link->head = NULL;
7150 io_queue_sqe(head);
7151 }
7152 } else {
7153 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7154 link->head = req;
7155 link->last = req;
7156 } else {
7157 io_queue_sqe(req);
7158 }
7159 }
7160
7161 return 0;
7162 }
7163
7164 /*
7165 * Batched submission is done, ensure local IO is flushed out.
7166 */
7167 static void io_submit_state_end(struct io_submit_state *state,
7168 struct io_ring_ctx *ctx)
7169 {
7170 if (state->link.head)
7171 io_queue_sqe(state->link.head);
7172 if (state->compl_nr)
7173 io_submit_flush_completions(ctx);
7174 if (state->plug_started)
7175 blk_finish_plug(&state->plug);
7176 }
7177
7178 /*
7179 * Start submission side cache.
7180 */
7181 static void io_submit_state_start(struct io_submit_state *state,
7182 unsigned int max_ios)
7183 {
7184 state->plug_started = false;
7185 state->ios_left = max_ios;
7186 /* set only head, no need to init link_last in advance */
7187 state->link.head = NULL;
7188 }
7189
7190 static void io_commit_sqring(struct io_ring_ctx *ctx)
7191 {
7192 struct io_rings *rings = ctx->rings;
7193
7194 /*
7195 * Ensure any loads from the SQEs are done at this point,
7196 * since once we write the new head, the application could
7197 * write new data to them.
7198 */
7199 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7200 }
7201
7202 /*
7203 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7204 * that is mapped by userspace. This means that care needs to be taken to
7205 * ensure that reads are stable, as we cannot rely on userspace always
7206 * being a good citizen. If members of the sqe are validated and then later
7207 * used, it's important that those reads are done through READ_ONCE() to
7208 * prevent a re-load down the line.
7209 */
7210 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7211 {
7212 unsigned head, mask = ctx->sq_entries - 1;
7213 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7214
7215 /*
7216 * The cached sq head (or cq tail) serves two purposes:
7217 *
7218 * 1) allows us to batch the cost of updating the user visible
7219 * head updates.
7220 * 2) allows the kernel side to track the head on its own, even
7221 * though the application is the one updating it.
7222 */
7223 head = READ_ONCE(ctx->sq_array[sq_idx]);
7224 if (likely(head < ctx->sq_entries))
7225 return &ctx->sq_sqes[head];
7226
7227 /* drop invalid entries */
7228 ctx->cq_extra--;
7229 WRITE_ONCE(ctx->rings->sq_dropped,
7230 READ_ONCE(ctx->rings->sq_dropped) + 1);
7231 return NULL;
7232 }
7233
7234 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7235 __must_hold(&ctx->uring_lock)
7236 {
7237 int submitted = 0;
7238
7239 /* make sure SQ entry isn't read before tail */
7240 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7241 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7242 return -EAGAIN;
7243 io_get_task_refs(nr);
7244
7245 io_submit_state_start(&ctx->submit_state, nr);
7246 while (submitted < nr) {
7247 const struct io_uring_sqe *sqe;
7248 struct io_kiocb *req;
7249
7250 req = io_alloc_req(ctx);
7251 if (unlikely(!req)) {
7252 if (!submitted)
7253 submitted = -EAGAIN;
7254 break;
7255 }
7256 sqe = io_get_sqe(ctx);
7257 if (unlikely(!sqe)) {
7258 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7259 break;
7260 }
7261 /* will complete beyond this point, count as submitted */
7262 submitted++;
7263 if (io_submit_sqe(ctx, req, sqe))
7264 break;
7265 }
7266
7267 if (unlikely(submitted != nr)) {
7268 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7269 int unused = nr - ref_used;
7270
7271 current->io_uring->cached_refs += unused;
7272 percpu_ref_put_many(&ctx->refs, unused);
7273 }
7274
7275 io_submit_state_end(&ctx->submit_state, ctx);
7276 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7277 io_commit_sqring(ctx);
7278
7279 return submitted;
7280 }
7281
7282 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7283 {
7284 return READ_ONCE(sqd->state);
7285 }
7286
7287 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7288 {
7289 /* Tell userspace we may need a wakeup call */
7290 spin_lock(&ctx->completion_lock);
7291 WRITE_ONCE(ctx->rings->sq_flags,
7292 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7293 spin_unlock(&ctx->completion_lock);
7294 }
7295
7296 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7297 {
7298 spin_lock(&ctx->completion_lock);
7299 WRITE_ONCE(ctx->rings->sq_flags,
7300 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7301 spin_unlock(&ctx->completion_lock);
7302 }
7303
7304 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7305 {
7306 unsigned int to_submit;
7307 int ret = 0;
7308
7309 to_submit = io_sqring_entries(ctx);
7310 /* if we're handling multiple rings, cap submit size for fairness */
7311 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7312 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7313
7314 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7315 unsigned nr_events = 0;
7316 const struct cred *creds = NULL;
7317
7318 if (ctx->sq_creds != current_cred())
7319 creds = override_creds(ctx->sq_creds);
7320
7321 mutex_lock(&ctx->uring_lock);
7322 if (!list_empty(&ctx->iopoll_list))
7323 io_do_iopoll(ctx, &nr_events, 0);
7324
7325 /*
7326 * Don't submit if refs are dying, good for io_uring_register(),
7327 * but also it is relied upon by io_ring_exit_work()
7328 */
7329 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7330 !(ctx->flags & IORING_SETUP_R_DISABLED))
7331 ret = io_submit_sqes(ctx, to_submit);
7332 mutex_unlock(&ctx->uring_lock);
7333
7334 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7335 wake_up(&ctx->sqo_sq_wait);
7336 if (creds)
7337 revert_creds(creds);
7338 }
7339
7340 return ret;
7341 }
7342
7343 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7344 {
7345 struct io_ring_ctx *ctx;
7346 unsigned sq_thread_idle = 0;
7347
7348 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7349 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7350 sqd->sq_thread_idle = sq_thread_idle;
7351 }
7352
7353 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7354 {
7355 bool did_sig = false;
7356 struct ksignal ksig;
7357
7358 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7359 signal_pending(current)) {
7360 mutex_unlock(&sqd->lock);
7361 if (signal_pending(current))
7362 did_sig = get_signal(&ksig);
7363 cond_resched();
7364 mutex_lock(&sqd->lock);
7365 }
7366 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7367 }
7368
7369 static int io_sq_thread(void *data)
7370 {
7371 struct io_sq_data *sqd = data;
7372 struct io_ring_ctx *ctx;
7373 unsigned long timeout = 0;
7374 char buf[TASK_COMM_LEN];
7375 DEFINE_WAIT(wait);
7376
7377 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7378 set_task_comm(current, buf);
7379
7380 if (sqd->sq_cpu != -1)
7381 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7382 else
7383 set_cpus_allowed_ptr(current, cpu_online_mask);
7384 current->flags |= PF_NO_SETAFFINITY;
7385
7386 mutex_lock(&sqd->lock);
7387 while (1) {
7388 bool cap_entries, sqt_spin = false;
7389
7390 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7391 if (io_sqd_handle_event(sqd))
7392 break;
7393 timeout = jiffies + sqd->sq_thread_idle;
7394 }
7395
7396 cap_entries = !list_is_singular(&sqd->ctx_list);
7397 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7398 int ret = __io_sq_thread(ctx, cap_entries);
7399
7400 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7401 sqt_spin = true;
7402 }
7403 if (io_run_task_work())
7404 sqt_spin = true;
7405
7406 if (sqt_spin || !time_after(jiffies, timeout)) {
7407 cond_resched();
7408 if (sqt_spin)
7409 timeout = jiffies + sqd->sq_thread_idle;
7410 continue;
7411 }
7412
7413 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7414 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7415 bool needs_sched = true;
7416
7417 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7418 io_ring_set_wakeup_flag(ctx);
7419
7420 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7421 !list_empty_careful(&ctx->iopoll_list)) {
7422 needs_sched = false;
7423 break;
7424 }
7425 if (io_sqring_entries(ctx)) {
7426 needs_sched = false;
7427 break;
7428 }
7429 }
7430
7431 if (needs_sched) {
7432 mutex_unlock(&sqd->lock);
7433 schedule();
7434 mutex_lock(&sqd->lock);
7435 }
7436 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7437 io_ring_clear_wakeup_flag(ctx);
7438 }
7439
7440 finish_wait(&sqd->wait, &wait);
7441 timeout = jiffies + sqd->sq_thread_idle;
7442 }
7443
7444 io_uring_cancel_generic(true, sqd);
7445 sqd->thread = NULL;
7446 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7447 io_ring_set_wakeup_flag(ctx);
7448 io_run_task_work();
7449 mutex_unlock(&sqd->lock);
7450
7451 complete(&sqd->exited);
7452 do_exit(0);
7453 }
7454
7455 struct io_wait_queue {
7456 struct wait_queue_entry wq;
7457 struct io_ring_ctx *ctx;
7458 unsigned cq_tail;
7459 unsigned nr_timeouts;
7460 };
7461
7462 static inline bool io_should_wake(struct io_wait_queue *iowq)
7463 {
7464 struct io_ring_ctx *ctx = iowq->ctx;
7465 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7466
7467 /*
7468 * Wake up if we have enough events, or if a timeout occurred since we
7469 * started waiting. For timeouts, we always want to return to userspace,
7470 * regardless of event count.
7471 */
7472 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7473 }
7474
7475 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7476 int wake_flags, void *key)
7477 {
7478 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7479 wq);
7480
7481 /*
7482 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7483 * the task, and the next invocation will do it.
7484 */
7485 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7486 return autoremove_wake_function(curr, mode, wake_flags, key);
7487 return -1;
7488 }
7489
7490 static int io_run_task_work_sig(void)
7491 {
7492 if (io_run_task_work())
7493 return 1;
7494 if (!signal_pending(current))
7495 return 0;
7496 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7497 return -ERESTARTSYS;
7498 return -EINTR;
7499 }
7500
7501 /* when returns >0, the caller should retry */
7502 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7503 struct io_wait_queue *iowq,
7504 ktime_t timeout)
7505 {
7506 int ret;
7507
7508 /* make sure we run task_work before checking for signals */
7509 ret = io_run_task_work_sig();
7510 if (ret || io_should_wake(iowq))
7511 return ret;
7512 /* let the caller flush overflows, retry */
7513 if (test_bit(0, &ctx->check_cq_overflow))
7514 return 1;
7515
7516 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7517 return -ETIME;
7518 return 1;
7519 }
7520
7521 /*
7522 * Wait until events become available, if we don't already have some. The
7523 * application must reap them itself, as they reside on the shared cq ring.
7524 */
7525 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7526 const sigset_t __user *sig, size_t sigsz,
7527 struct __kernel_timespec __user *uts)
7528 {
7529 struct io_wait_queue iowq;
7530 struct io_rings *rings = ctx->rings;
7531 ktime_t timeout = KTIME_MAX;
7532 int ret;
7533
7534 do {
7535 io_cqring_overflow_flush(ctx);
7536 if (io_cqring_events(ctx) >= min_events)
7537 return 0;
7538 if (!io_run_task_work())
7539 break;
7540 } while (1);
7541
7542 if (uts) {
7543 struct timespec64 ts;
7544
7545 if (get_timespec64(&ts, uts))
7546 return -EFAULT;
7547 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7548 }
7549
7550 if (sig) {
7551 #ifdef CONFIG_COMPAT
7552 if (in_compat_syscall())
7553 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7554 sigsz);
7555 else
7556 #endif
7557 ret = set_user_sigmask(sig, sigsz);
7558
7559 if (ret)
7560 return ret;
7561 }
7562
7563 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7564 iowq.wq.private = current;
7565 INIT_LIST_HEAD(&iowq.wq.entry);
7566 iowq.ctx = ctx;
7567 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7568 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7569
7570 trace_io_uring_cqring_wait(ctx, min_events);
7571 do {
7572 /* if we can't even flush overflow, don't wait for more */
7573 if (!io_cqring_overflow_flush(ctx)) {
7574 ret = -EBUSY;
7575 break;
7576 }
7577 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7578 TASK_INTERRUPTIBLE);
7579 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7580 finish_wait(&ctx->cq_wait, &iowq.wq);
7581 cond_resched();
7582 } while (ret > 0);
7583
7584 restore_saved_sigmask_unless(ret == -EINTR);
7585
7586 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7587 }
7588
7589 static void io_free_page_table(void **table, size_t size)
7590 {
7591 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7592
7593 for (i = 0; i < nr_tables; i++)
7594 kfree(table[i]);
7595 kfree(table);
7596 }
7597
7598 static void **io_alloc_page_table(size_t size)
7599 {
7600 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7601 size_t init_size = size;
7602 void **table;
7603
7604 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7605 if (!table)
7606 return NULL;
7607
7608 for (i = 0; i < nr_tables; i++) {
7609 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7610
7611 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7612 if (!table[i]) {
7613 io_free_page_table(table, init_size);
7614 return NULL;
7615 }
7616 size -= this_size;
7617 }
7618 return table;
7619 }
7620
7621 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7622 {
7623 percpu_ref_exit(&ref_node->refs);
7624 kfree(ref_node);
7625 }
7626
7627 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7628 {
7629 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7630 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7631 unsigned long flags;
7632 bool first_add = false;
7633 unsigned long delay = HZ;
7634
7635 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7636 node->done = true;
7637
7638 /* if we are mid-quiesce then do not delay */
7639 if (node->rsrc_data->quiesce)
7640 delay = 0;
7641
7642 while (!list_empty(&ctx->rsrc_ref_list)) {
7643 node = list_first_entry(&ctx->rsrc_ref_list,
7644 struct io_rsrc_node, node);
7645 /* recycle ref nodes in order */
7646 if (!node->done)
7647 break;
7648 list_del(&node->node);
7649 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7650 }
7651 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7652
7653 if (first_add)
7654 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7655 }
7656
7657 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7658 {
7659 struct io_rsrc_node *ref_node;
7660
7661 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7662 if (!ref_node)
7663 return NULL;
7664
7665 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7666 0, GFP_KERNEL)) {
7667 kfree(ref_node);
7668 return NULL;
7669 }
7670 INIT_LIST_HEAD(&ref_node->node);
7671 INIT_LIST_HEAD(&ref_node->rsrc_list);
7672 ref_node->done = false;
7673 return ref_node;
7674 }
7675
7676 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7677 struct io_rsrc_data *data_to_kill)
7678 {
7679 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7680 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7681
7682 if (data_to_kill) {
7683 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7684
7685 rsrc_node->rsrc_data = data_to_kill;
7686 spin_lock_irq(&ctx->rsrc_ref_lock);
7687 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7688 spin_unlock_irq(&ctx->rsrc_ref_lock);
7689
7690 atomic_inc(&data_to_kill->refs);
7691 percpu_ref_kill(&rsrc_node->refs);
7692 ctx->rsrc_node = NULL;
7693 }
7694
7695 if (!ctx->rsrc_node) {
7696 ctx->rsrc_node = ctx->rsrc_backup_node;
7697 ctx->rsrc_backup_node = NULL;
7698 }
7699 }
7700
7701 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7702 {
7703 if (ctx->rsrc_backup_node)
7704 return 0;
7705 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7706 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7707 }
7708
7709 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7710 {
7711 int ret;
7712
7713 /* As we may drop ->uring_lock, other task may have started quiesce */
7714 if (data->quiesce)
7715 return -ENXIO;
7716
7717 data->quiesce = true;
7718 do {
7719 ret = io_rsrc_node_switch_start(ctx);
7720 if (ret)
7721 break;
7722 io_rsrc_node_switch(ctx, data);
7723
7724 /* kill initial ref, already quiesced if zero */
7725 if (atomic_dec_and_test(&data->refs))
7726 break;
7727 mutex_unlock(&ctx->uring_lock);
7728 flush_delayed_work(&ctx->rsrc_put_work);
7729 ret = wait_for_completion_interruptible(&data->done);
7730 if (!ret) {
7731 mutex_lock(&ctx->uring_lock);
7732 if (atomic_read(&data->refs) > 0) {
7733 /*
7734 * it has been revived by another thread while
7735 * we were unlocked
7736 */
7737 mutex_unlock(&ctx->uring_lock);
7738 } else {
7739 break;
7740 }
7741 }
7742
7743 atomic_inc(&data->refs);
7744 /* wait for all works potentially completing data->done */
7745 flush_delayed_work(&ctx->rsrc_put_work);
7746 reinit_completion(&data->done);
7747
7748 ret = io_run_task_work_sig();
7749 mutex_lock(&ctx->uring_lock);
7750 } while (ret >= 0);
7751 data->quiesce = false;
7752
7753 return ret;
7754 }
7755
7756 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7757 {
7758 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7759 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7760
7761 return &data->tags[table_idx][off];
7762 }
7763
7764 static void io_rsrc_data_free(struct io_rsrc_data *data)
7765 {
7766 size_t size = data->nr * sizeof(data->tags[0][0]);
7767
7768 if (data->tags)
7769 io_free_page_table((void **)data->tags, size);
7770 kfree(data);
7771 }
7772
7773 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7774 u64 __user *utags, unsigned nr,
7775 struct io_rsrc_data **pdata)
7776 {
7777 struct io_rsrc_data *data;
7778 int ret = -ENOMEM;
7779 unsigned i;
7780
7781 data = kzalloc(sizeof(*data), GFP_KERNEL);
7782 if (!data)
7783 return -ENOMEM;
7784 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7785 if (!data->tags) {
7786 kfree(data);
7787 return -ENOMEM;
7788 }
7789
7790 data->nr = nr;
7791 data->ctx = ctx;
7792 data->do_put = do_put;
7793 if (utags) {
7794 ret = -EFAULT;
7795 for (i = 0; i < nr; i++) {
7796 u64 *tag_slot = io_get_tag_slot(data, i);
7797
7798 if (copy_from_user(tag_slot, &utags[i],
7799 sizeof(*tag_slot)))
7800 goto fail;
7801 }
7802 }
7803
7804 atomic_set(&data->refs, 1);
7805 init_completion(&data->done);
7806 *pdata = data;
7807 return 0;
7808 fail:
7809 io_rsrc_data_free(data);
7810 return ret;
7811 }
7812
7813 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7814 {
7815 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7816 GFP_KERNEL_ACCOUNT);
7817 return !!table->files;
7818 }
7819
7820 static void io_free_file_tables(struct io_file_table *table)
7821 {
7822 kvfree(table->files);
7823 table->files = NULL;
7824 }
7825
7826 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7827 {
7828 #if defined(CONFIG_UNIX)
7829 if (ctx->ring_sock) {
7830 struct sock *sock = ctx->ring_sock->sk;
7831 struct sk_buff *skb;
7832
7833 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7834 kfree_skb(skb);
7835 }
7836 #else
7837 int i;
7838
7839 for (i = 0; i < ctx->nr_user_files; i++) {
7840 struct file *file;
7841
7842 file = io_file_from_index(ctx, i);
7843 if (file)
7844 fput(file);
7845 }
7846 #endif
7847 io_free_file_tables(&ctx->file_table);
7848 io_rsrc_data_free(ctx->file_data);
7849 ctx->file_data = NULL;
7850 ctx->nr_user_files = 0;
7851 }
7852
7853 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7854 {
7855 unsigned nr = ctx->nr_user_files;
7856 int ret;
7857
7858 if (!ctx->file_data)
7859 return -ENXIO;
7860
7861 /*
7862 * Quiesce may unlock ->uring_lock, and while it's not held
7863 * prevent new requests using the table.
7864 */
7865 ctx->nr_user_files = 0;
7866 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7867 ctx->nr_user_files = nr;
7868 if (!ret)
7869 __io_sqe_files_unregister(ctx);
7870 return ret;
7871 }
7872
7873 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7874 __releases(&sqd->lock)
7875 {
7876 WARN_ON_ONCE(sqd->thread == current);
7877
7878 /*
7879 * Do the dance but not conditional clear_bit() because it'd race with
7880 * other threads incrementing park_pending and setting the bit.
7881 */
7882 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7883 if (atomic_dec_return(&sqd->park_pending))
7884 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7885 mutex_unlock(&sqd->lock);
7886 }
7887
7888 static void io_sq_thread_park(struct io_sq_data *sqd)
7889 __acquires(&sqd->lock)
7890 {
7891 WARN_ON_ONCE(sqd->thread == current);
7892
7893 atomic_inc(&sqd->park_pending);
7894 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7895 mutex_lock(&sqd->lock);
7896 if (sqd->thread)
7897 wake_up_process(sqd->thread);
7898 }
7899
7900 static void io_sq_thread_stop(struct io_sq_data *sqd)
7901 {
7902 WARN_ON_ONCE(sqd->thread == current);
7903 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7904
7905 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7906 mutex_lock(&sqd->lock);
7907 if (sqd->thread)
7908 wake_up_process(sqd->thread);
7909 mutex_unlock(&sqd->lock);
7910 wait_for_completion(&sqd->exited);
7911 }
7912
7913 static void io_put_sq_data(struct io_sq_data *sqd)
7914 {
7915 if (refcount_dec_and_test(&sqd->refs)) {
7916 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7917
7918 io_sq_thread_stop(sqd);
7919 kfree(sqd);
7920 }
7921 }
7922
7923 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7924 {
7925 struct io_sq_data *sqd = ctx->sq_data;
7926
7927 if (sqd) {
7928 io_sq_thread_park(sqd);
7929 list_del_init(&ctx->sqd_list);
7930 io_sqd_update_thread_idle(sqd);
7931 io_sq_thread_unpark(sqd);
7932
7933 io_put_sq_data(sqd);
7934 ctx->sq_data = NULL;
7935 }
7936 }
7937
7938 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7939 {
7940 struct io_ring_ctx *ctx_attach;
7941 struct io_sq_data *sqd;
7942 struct fd f;
7943
7944 f = fdget(p->wq_fd);
7945 if (!f.file)
7946 return ERR_PTR(-ENXIO);
7947 if (f.file->f_op != &io_uring_fops) {
7948 fdput(f);
7949 return ERR_PTR(-EINVAL);
7950 }
7951
7952 ctx_attach = f.file->private_data;
7953 sqd = ctx_attach->sq_data;
7954 if (!sqd) {
7955 fdput(f);
7956 return ERR_PTR(-EINVAL);
7957 }
7958 if (sqd->task_tgid != current->tgid) {
7959 fdput(f);
7960 return ERR_PTR(-EPERM);
7961 }
7962
7963 refcount_inc(&sqd->refs);
7964 fdput(f);
7965 return sqd;
7966 }
7967
7968 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7969 bool *attached)
7970 {
7971 struct io_sq_data *sqd;
7972
7973 *attached = false;
7974 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7975 sqd = io_attach_sq_data(p);
7976 if (!IS_ERR(sqd)) {
7977 *attached = true;
7978 return sqd;
7979 }
7980 /* fall through for EPERM case, setup new sqd/task */
7981 if (PTR_ERR(sqd) != -EPERM)
7982 return sqd;
7983 }
7984
7985 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7986 if (!sqd)
7987 return ERR_PTR(-ENOMEM);
7988
7989 atomic_set(&sqd->park_pending, 0);
7990 refcount_set(&sqd->refs, 1);
7991 INIT_LIST_HEAD(&sqd->ctx_list);
7992 mutex_init(&sqd->lock);
7993 init_waitqueue_head(&sqd->wait);
7994 init_completion(&sqd->exited);
7995 return sqd;
7996 }
7997
7998 #if defined(CONFIG_UNIX)
7999 /*
8000 * Ensure the UNIX gc is aware of our file set, so we are certain that
8001 * the io_uring can be safely unregistered on process exit, even if we have
8002 * loops in the file referencing.
8003 */
8004 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8005 {
8006 struct sock *sk = ctx->ring_sock->sk;
8007 struct scm_fp_list *fpl;
8008 struct sk_buff *skb;
8009 int i, nr_files;
8010
8011 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8012 if (!fpl)
8013 return -ENOMEM;
8014
8015 skb = alloc_skb(0, GFP_KERNEL);
8016 if (!skb) {
8017 kfree(fpl);
8018 return -ENOMEM;
8019 }
8020
8021 skb->sk = sk;
8022
8023 nr_files = 0;
8024 fpl->user = get_uid(current_user());
8025 for (i = 0; i < nr; i++) {
8026 struct file *file = io_file_from_index(ctx, i + offset);
8027
8028 if (!file)
8029 continue;
8030 fpl->fp[nr_files] = get_file(file);
8031 unix_inflight(fpl->user, fpl->fp[nr_files]);
8032 nr_files++;
8033 }
8034
8035 if (nr_files) {
8036 fpl->max = SCM_MAX_FD;
8037 fpl->count = nr_files;
8038 UNIXCB(skb).fp = fpl;
8039 skb->destructor = unix_destruct_scm;
8040 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8041 skb_queue_head(&sk->sk_receive_queue, skb);
8042
8043 for (i = 0; i < nr; i++) {
8044 struct file *file = io_file_from_index(ctx, i + offset);
8045
8046 if (file)
8047 fput(file);
8048 }
8049 } else {
8050 kfree_skb(skb);
8051 free_uid(fpl->user);
8052 kfree(fpl);
8053 }
8054
8055 return 0;
8056 }
8057
8058 /*
8059 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8060 * causes regular reference counting to break down. We rely on the UNIX
8061 * garbage collection to take care of this problem for us.
8062 */
8063 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8064 {
8065 unsigned left, total;
8066 int ret = 0;
8067
8068 total = 0;
8069 left = ctx->nr_user_files;
8070 while (left) {
8071 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8072
8073 ret = __io_sqe_files_scm(ctx, this_files, total);
8074 if (ret)
8075 break;
8076 left -= this_files;
8077 total += this_files;
8078 }
8079
8080 if (!ret)
8081 return 0;
8082
8083 while (total < ctx->nr_user_files) {
8084 struct file *file = io_file_from_index(ctx, total);
8085
8086 if (file)
8087 fput(file);
8088 total++;
8089 }
8090
8091 return ret;
8092 }
8093 #else
8094 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8095 {
8096 return 0;
8097 }
8098 #endif
8099
8100 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8101 {
8102 struct file *file = prsrc->file;
8103 #if defined(CONFIG_UNIX)
8104 struct sock *sock = ctx->ring_sock->sk;
8105 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8106 struct sk_buff *skb;
8107 int i;
8108
8109 __skb_queue_head_init(&list);
8110
8111 /*
8112 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8113 * remove this entry and rearrange the file array.
8114 */
8115 skb = skb_dequeue(head);
8116 while (skb) {
8117 struct scm_fp_list *fp;
8118
8119 fp = UNIXCB(skb).fp;
8120 for (i = 0; i < fp->count; i++) {
8121 int left;
8122
8123 if (fp->fp[i] != file)
8124 continue;
8125
8126 unix_notinflight(fp->user, fp->fp[i]);
8127 left = fp->count - 1 - i;
8128 if (left) {
8129 memmove(&fp->fp[i], &fp->fp[i + 1],
8130 left * sizeof(struct file *));
8131 }
8132 fp->count--;
8133 if (!fp->count) {
8134 kfree_skb(skb);
8135 skb = NULL;
8136 } else {
8137 __skb_queue_tail(&list, skb);
8138 }
8139 fput(file);
8140 file = NULL;
8141 break;
8142 }
8143
8144 if (!file)
8145 break;
8146
8147 __skb_queue_tail(&list, skb);
8148
8149 skb = skb_dequeue(head);
8150 }
8151
8152 if (skb_peek(&list)) {
8153 spin_lock_irq(&head->lock);
8154 while ((skb = __skb_dequeue(&list)) != NULL)
8155 __skb_queue_tail(head, skb);
8156 spin_unlock_irq(&head->lock);
8157 }
8158 #else
8159 fput(file);
8160 #endif
8161 }
8162
8163 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8164 {
8165 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8166 struct io_ring_ctx *ctx = rsrc_data->ctx;
8167 struct io_rsrc_put *prsrc, *tmp;
8168
8169 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8170 list_del(&prsrc->list);
8171
8172 if (prsrc->tag) {
8173 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8174
8175 io_ring_submit_lock(ctx, lock_ring);
8176 spin_lock(&ctx->completion_lock);
8177 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8178 io_commit_cqring(ctx);
8179 spin_unlock(&ctx->completion_lock);
8180 io_cqring_ev_posted(ctx);
8181 io_ring_submit_unlock(ctx, lock_ring);
8182 }
8183
8184 rsrc_data->do_put(ctx, prsrc);
8185 kfree(prsrc);
8186 }
8187
8188 io_rsrc_node_destroy(ref_node);
8189 if (atomic_dec_and_test(&rsrc_data->refs))
8190 complete(&rsrc_data->done);
8191 }
8192
8193 static void io_rsrc_put_work(struct work_struct *work)
8194 {
8195 struct io_ring_ctx *ctx;
8196 struct llist_node *node;
8197
8198 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8199 node = llist_del_all(&ctx->rsrc_put_llist);
8200
8201 while (node) {
8202 struct io_rsrc_node *ref_node;
8203 struct llist_node *next = node->next;
8204
8205 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8206 __io_rsrc_put_work(ref_node);
8207 node = next;
8208 }
8209 }
8210
8211 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8212 unsigned nr_args, u64 __user *tags)
8213 {
8214 __s32 __user *fds = (__s32 __user *) arg;
8215 struct file *file;
8216 int fd, ret;
8217 unsigned i;
8218
8219 if (ctx->file_data)
8220 return -EBUSY;
8221 if (!nr_args)
8222 return -EINVAL;
8223 if (nr_args > IORING_MAX_FIXED_FILES)
8224 return -EMFILE;
8225 if (nr_args > rlimit(RLIMIT_NOFILE))
8226 return -EMFILE;
8227 ret = io_rsrc_node_switch_start(ctx);
8228 if (ret)
8229 return ret;
8230 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8231 &ctx->file_data);
8232 if (ret)
8233 return ret;
8234
8235 ret = -ENOMEM;
8236 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8237 goto out_free;
8238
8239 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8240 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8241 ret = -EFAULT;
8242 goto out_fput;
8243 }
8244 /* allow sparse sets */
8245 if (fd == -1) {
8246 ret = -EINVAL;
8247 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8248 goto out_fput;
8249 continue;
8250 }
8251
8252 file = fget(fd);
8253 ret = -EBADF;
8254 if (unlikely(!file))
8255 goto out_fput;
8256
8257 /*
8258 * Don't allow io_uring instances to be registered. If UNIX
8259 * isn't enabled, then this causes a reference cycle and this
8260 * instance can never get freed. If UNIX is enabled we'll
8261 * handle it just fine, but there's still no point in allowing
8262 * a ring fd as it doesn't support regular read/write anyway.
8263 */
8264 if (file->f_op == &io_uring_fops) {
8265 fput(file);
8266 goto out_fput;
8267 }
8268 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8269 }
8270
8271 ret = io_sqe_files_scm(ctx);
8272 if (ret) {
8273 __io_sqe_files_unregister(ctx);
8274 return ret;
8275 }
8276
8277 io_rsrc_node_switch(ctx, NULL);
8278 return ret;
8279 out_fput:
8280 for (i = 0; i < ctx->nr_user_files; i++) {
8281 file = io_file_from_index(ctx, i);
8282 if (file)
8283 fput(file);
8284 }
8285 io_free_file_tables(&ctx->file_table);
8286 ctx->nr_user_files = 0;
8287 out_free:
8288 io_rsrc_data_free(ctx->file_data);
8289 ctx->file_data = NULL;
8290 return ret;
8291 }
8292
8293 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8294 int index)
8295 {
8296 #if defined(CONFIG_UNIX)
8297 struct sock *sock = ctx->ring_sock->sk;
8298 struct sk_buff_head *head = &sock->sk_receive_queue;
8299 struct sk_buff *skb;
8300
8301 /*
8302 * See if we can merge this file into an existing skb SCM_RIGHTS
8303 * file set. If there's no room, fall back to allocating a new skb
8304 * and filling it in.
8305 */
8306 spin_lock_irq(&head->lock);
8307 skb = skb_peek(head);
8308 if (skb) {
8309 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8310
8311 if (fpl->count < SCM_MAX_FD) {
8312 __skb_unlink(skb, head);
8313 spin_unlock_irq(&head->lock);
8314 fpl->fp[fpl->count] = get_file(file);
8315 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8316 fpl->count++;
8317 spin_lock_irq(&head->lock);
8318 __skb_queue_head(head, skb);
8319 } else {
8320 skb = NULL;
8321 }
8322 }
8323 spin_unlock_irq(&head->lock);
8324
8325 if (skb) {
8326 fput(file);
8327 return 0;
8328 }
8329
8330 return __io_sqe_files_scm(ctx, 1, index);
8331 #else
8332 return 0;
8333 #endif
8334 }
8335
8336 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8337 struct io_rsrc_node *node, void *rsrc)
8338 {
8339 u64 *tag_slot = io_get_tag_slot(data, idx);
8340 struct io_rsrc_put *prsrc;
8341
8342 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8343 if (!prsrc)
8344 return -ENOMEM;
8345
8346 prsrc->tag = *tag_slot;
8347 *tag_slot = 0;
8348 prsrc->rsrc = rsrc;
8349 list_add(&prsrc->list, &node->rsrc_list);
8350 return 0;
8351 }
8352
8353 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8354 unsigned int issue_flags, u32 slot_index)
8355 {
8356 struct io_ring_ctx *ctx = req->ctx;
8357 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8358 bool needs_switch = false;
8359 struct io_fixed_file *file_slot;
8360 int ret = -EBADF;
8361
8362 io_ring_submit_lock(ctx, !force_nonblock);
8363 if (file->f_op == &io_uring_fops)
8364 goto err;
8365 ret = -ENXIO;
8366 if (!ctx->file_data)
8367 goto err;
8368 ret = -EINVAL;
8369 if (slot_index >= ctx->nr_user_files)
8370 goto err;
8371
8372 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8373 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8374
8375 if (file_slot->file_ptr) {
8376 struct file *old_file;
8377
8378 ret = io_rsrc_node_switch_start(ctx);
8379 if (ret)
8380 goto err;
8381
8382 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8383 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8384 ctx->rsrc_node, old_file);
8385 if (ret)
8386 goto err;
8387 file_slot->file_ptr = 0;
8388 needs_switch = true;
8389 }
8390
8391 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8392 io_fixed_file_set(file_slot, file);
8393 ret = io_sqe_file_register(ctx, file, slot_index);
8394 if (ret) {
8395 file_slot->file_ptr = 0;
8396 goto err;
8397 }
8398
8399 ret = 0;
8400 err:
8401 if (needs_switch)
8402 io_rsrc_node_switch(ctx, ctx->file_data);
8403 io_ring_submit_unlock(ctx, !force_nonblock);
8404 if (ret)
8405 fput(file);
8406 return ret;
8407 }
8408
8409 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8410 {
8411 unsigned int offset = req->close.file_slot - 1;
8412 struct io_ring_ctx *ctx = req->ctx;
8413 struct io_fixed_file *file_slot;
8414 struct file *file;
8415 int ret;
8416
8417 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8418 ret = -ENXIO;
8419 if (unlikely(!ctx->file_data))
8420 goto out;
8421 ret = -EINVAL;
8422 if (offset >= ctx->nr_user_files)
8423 goto out;
8424 ret = io_rsrc_node_switch_start(ctx);
8425 if (ret)
8426 goto out;
8427
8428 offset = array_index_nospec(offset, ctx->nr_user_files);
8429 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8430 ret = -EBADF;
8431 if (!file_slot->file_ptr)
8432 goto out;
8433
8434 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8435 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8436 if (ret)
8437 goto out;
8438
8439 file_slot->file_ptr = 0;
8440 io_rsrc_node_switch(ctx, ctx->file_data);
8441 ret = 0;
8442 out:
8443 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8444 return ret;
8445 }
8446
8447 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8448 struct io_uring_rsrc_update2 *up,
8449 unsigned nr_args)
8450 {
8451 u64 __user *tags = u64_to_user_ptr(up->tags);
8452 __s32 __user *fds = u64_to_user_ptr(up->data);
8453 struct io_rsrc_data *data = ctx->file_data;
8454 struct io_fixed_file *file_slot;
8455 struct file *file;
8456 int fd, i, err = 0;
8457 unsigned int done;
8458 bool needs_switch = false;
8459
8460 if (!ctx->file_data)
8461 return -ENXIO;
8462 if (up->offset + nr_args > ctx->nr_user_files)
8463 return -EINVAL;
8464
8465 for (done = 0; done < nr_args; done++) {
8466 u64 tag = 0;
8467
8468 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8469 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8470 err = -EFAULT;
8471 break;
8472 }
8473 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8474 err = -EINVAL;
8475 break;
8476 }
8477 if (fd == IORING_REGISTER_FILES_SKIP)
8478 continue;
8479
8480 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8481 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8482
8483 if (file_slot->file_ptr) {
8484 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8485 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8486 if (err)
8487 break;
8488 file_slot->file_ptr = 0;
8489 needs_switch = true;
8490 }
8491 if (fd != -1) {
8492 file = fget(fd);
8493 if (!file) {
8494 err = -EBADF;
8495 break;
8496 }
8497 /*
8498 * Don't allow io_uring instances to be registered. If
8499 * UNIX isn't enabled, then this causes a reference
8500 * cycle and this instance can never get freed. If UNIX
8501 * is enabled we'll handle it just fine, but there's
8502 * still no point in allowing a ring fd as it doesn't
8503 * support regular read/write anyway.
8504 */
8505 if (file->f_op == &io_uring_fops) {
8506 fput(file);
8507 err = -EBADF;
8508 break;
8509 }
8510 *io_get_tag_slot(data, i) = tag;
8511 io_fixed_file_set(file_slot, file);
8512 err = io_sqe_file_register(ctx, file, i);
8513 if (err) {
8514 file_slot->file_ptr = 0;
8515 fput(file);
8516 break;
8517 }
8518 }
8519 }
8520
8521 if (needs_switch)
8522 io_rsrc_node_switch(ctx, data);
8523 return done ? done : err;
8524 }
8525
8526 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8527 struct task_struct *task)
8528 {
8529 struct io_wq_hash *hash;
8530 struct io_wq_data data;
8531 unsigned int concurrency;
8532
8533 mutex_lock(&ctx->uring_lock);
8534 hash = ctx->hash_map;
8535 if (!hash) {
8536 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8537 if (!hash) {
8538 mutex_unlock(&ctx->uring_lock);
8539 return ERR_PTR(-ENOMEM);
8540 }
8541 refcount_set(&hash->refs, 1);
8542 init_waitqueue_head(&hash->wait);
8543 ctx->hash_map = hash;
8544 }
8545 mutex_unlock(&ctx->uring_lock);
8546
8547 data.hash = hash;
8548 data.task = task;
8549 data.free_work = io_wq_free_work;
8550 data.do_work = io_wq_submit_work;
8551
8552 /* Do QD, or 4 * CPUS, whatever is smallest */
8553 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8554
8555 return io_wq_create(concurrency, &data);
8556 }
8557
8558 static int io_uring_alloc_task_context(struct task_struct *task,
8559 struct io_ring_ctx *ctx)
8560 {
8561 struct io_uring_task *tctx;
8562 int ret;
8563
8564 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8565 if (unlikely(!tctx))
8566 return -ENOMEM;
8567
8568 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8569 if (unlikely(ret)) {
8570 kfree(tctx);
8571 return ret;
8572 }
8573
8574 tctx->io_wq = io_init_wq_offload(ctx, task);
8575 if (IS_ERR(tctx->io_wq)) {
8576 ret = PTR_ERR(tctx->io_wq);
8577 percpu_counter_destroy(&tctx->inflight);
8578 kfree(tctx);
8579 return ret;
8580 }
8581
8582 xa_init(&tctx->xa);
8583 init_waitqueue_head(&tctx->wait);
8584 atomic_set(&tctx->in_idle, 0);
8585 atomic_set(&tctx->inflight_tracked, 0);
8586 task->io_uring = tctx;
8587 spin_lock_init(&tctx->task_lock);
8588 INIT_WQ_LIST(&tctx->task_list);
8589 init_task_work(&tctx->task_work, tctx_task_work);
8590 return 0;
8591 }
8592
8593 void __io_uring_free(struct task_struct *tsk)
8594 {
8595 struct io_uring_task *tctx = tsk->io_uring;
8596
8597 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8598 WARN_ON_ONCE(tctx->io_wq);
8599 WARN_ON_ONCE(tctx->cached_refs);
8600
8601 percpu_counter_destroy(&tctx->inflight);
8602 kfree(tctx);
8603 tsk->io_uring = NULL;
8604 }
8605
8606 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8607 struct io_uring_params *p)
8608 {
8609 int ret;
8610
8611 /* Retain compatibility with failing for an invalid attach attempt */
8612 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8613 IORING_SETUP_ATTACH_WQ) {
8614 struct fd f;
8615
8616 f = fdget(p->wq_fd);
8617 if (!f.file)
8618 return -ENXIO;
8619 if (f.file->f_op != &io_uring_fops) {
8620 fdput(f);
8621 return -EINVAL;
8622 }
8623 fdput(f);
8624 }
8625 if (ctx->flags & IORING_SETUP_SQPOLL) {
8626 struct task_struct *tsk;
8627 struct io_sq_data *sqd;
8628 bool attached;
8629
8630 sqd = io_get_sq_data(p, &attached);
8631 if (IS_ERR(sqd)) {
8632 ret = PTR_ERR(sqd);
8633 goto err;
8634 }
8635
8636 ctx->sq_creds = get_current_cred();
8637 ctx->sq_data = sqd;
8638 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8639 if (!ctx->sq_thread_idle)
8640 ctx->sq_thread_idle = HZ;
8641
8642 io_sq_thread_park(sqd);
8643 list_add(&ctx->sqd_list, &sqd->ctx_list);
8644 io_sqd_update_thread_idle(sqd);
8645 /* don't attach to a dying SQPOLL thread, would be racy */
8646 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8647 io_sq_thread_unpark(sqd);
8648
8649 if (ret < 0)
8650 goto err;
8651 if (attached)
8652 return 0;
8653
8654 if (p->flags & IORING_SETUP_SQ_AFF) {
8655 int cpu = p->sq_thread_cpu;
8656
8657 ret = -EINVAL;
8658 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8659 goto err_sqpoll;
8660 sqd->sq_cpu = cpu;
8661 } else {
8662 sqd->sq_cpu = -1;
8663 }
8664
8665 sqd->task_pid = current->pid;
8666 sqd->task_tgid = current->tgid;
8667 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8668 if (IS_ERR(tsk)) {
8669 ret = PTR_ERR(tsk);
8670 goto err_sqpoll;
8671 }
8672
8673 sqd->thread = tsk;
8674 ret = io_uring_alloc_task_context(tsk, ctx);
8675 wake_up_new_task(tsk);
8676 if (ret)
8677 goto err;
8678 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8679 /* Can't have SQ_AFF without SQPOLL */
8680 ret = -EINVAL;
8681 goto err;
8682 }
8683
8684 return 0;
8685 err_sqpoll:
8686 complete(&ctx->sq_data->exited);
8687 err:
8688 io_sq_thread_finish(ctx);
8689 return ret;
8690 }
8691
8692 static inline void __io_unaccount_mem(struct user_struct *user,
8693 unsigned long nr_pages)
8694 {
8695 atomic_long_sub(nr_pages, &user->locked_vm);
8696 }
8697
8698 static inline int __io_account_mem(struct user_struct *user,
8699 unsigned long nr_pages)
8700 {
8701 unsigned long page_limit, cur_pages, new_pages;
8702
8703 /* Don't allow more pages than we can safely lock */
8704 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8705
8706 do {
8707 cur_pages = atomic_long_read(&user->locked_vm);
8708 new_pages = cur_pages + nr_pages;
8709 if (new_pages > page_limit)
8710 return -ENOMEM;
8711 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8712 new_pages) != cur_pages);
8713
8714 return 0;
8715 }
8716
8717 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8718 {
8719 if (ctx->user)
8720 __io_unaccount_mem(ctx->user, nr_pages);
8721
8722 if (ctx->mm_account)
8723 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8724 }
8725
8726 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8727 {
8728 int ret;
8729
8730 if (ctx->user) {
8731 ret = __io_account_mem(ctx->user, nr_pages);
8732 if (ret)
8733 return ret;
8734 }
8735
8736 if (ctx->mm_account)
8737 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8738
8739 return 0;
8740 }
8741
8742 static void io_mem_free(void *ptr)
8743 {
8744 struct page *page;
8745
8746 if (!ptr)
8747 return;
8748
8749 page = virt_to_head_page(ptr);
8750 if (put_page_testzero(page))
8751 free_compound_page(page);
8752 }
8753
8754 static void *io_mem_alloc(size_t size)
8755 {
8756 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8757
8758 return (void *) __get_free_pages(gfp, get_order(size));
8759 }
8760
8761 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8762 size_t *sq_offset)
8763 {
8764 struct io_rings *rings;
8765 size_t off, sq_array_size;
8766
8767 off = struct_size(rings, cqes, cq_entries);
8768 if (off == SIZE_MAX)
8769 return SIZE_MAX;
8770
8771 #ifdef CONFIG_SMP
8772 off = ALIGN(off, SMP_CACHE_BYTES);
8773 if (off == 0)
8774 return SIZE_MAX;
8775 #endif
8776
8777 if (sq_offset)
8778 *sq_offset = off;
8779
8780 sq_array_size = array_size(sizeof(u32), sq_entries);
8781 if (sq_array_size == SIZE_MAX)
8782 return SIZE_MAX;
8783
8784 if (check_add_overflow(off, sq_array_size, &off))
8785 return SIZE_MAX;
8786
8787 return off;
8788 }
8789
8790 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8791 {
8792 struct io_mapped_ubuf *imu = *slot;
8793 unsigned int i;
8794
8795 if (imu != ctx->dummy_ubuf) {
8796 for (i = 0; i < imu->nr_bvecs; i++)
8797 unpin_user_page(imu->bvec[i].bv_page);
8798 if (imu->acct_pages)
8799 io_unaccount_mem(ctx, imu->acct_pages);
8800 kvfree(imu);
8801 }
8802 *slot = NULL;
8803 }
8804
8805 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8806 {
8807 io_buffer_unmap(ctx, &prsrc->buf);
8808 prsrc->buf = NULL;
8809 }
8810
8811 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8812 {
8813 unsigned int i;
8814
8815 for (i = 0; i < ctx->nr_user_bufs; i++)
8816 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8817 kfree(ctx->user_bufs);
8818 io_rsrc_data_free(ctx->buf_data);
8819 ctx->user_bufs = NULL;
8820 ctx->buf_data = NULL;
8821 ctx->nr_user_bufs = 0;
8822 }
8823
8824 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8825 {
8826 unsigned nr = ctx->nr_user_bufs;
8827 int ret;
8828
8829 if (!ctx->buf_data)
8830 return -ENXIO;
8831
8832 /*
8833 * Quiesce may unlock ->uring_lock, and while it's not held
8834 * prevent new requests using the table.
8835 */
8836 ctx->nr_user_bufs = 0;
8837 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8838 ctx->nr_user_bufs = nr;
8839 if (!ret)
8840 __io_sqe_buffers_unregister(ctx);
8841 return ret;
8842 }
8843
8844 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8845 void __user *arg, unsigned index)
8846 {
8847 struct iovec __user *src;
8848
8849 #ifdef CONFIG_COMPAT
8850 if (ctx->compat) {
8851 struct compat_iovec __user *ciovs;
8852 struct compat_iovec ciov;
8853
8854 ciovs = (struct compat_iovec __user *) arg;
8855 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8856 return -EFAULT;
8857
8858 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8859 dst->iov_len = ciov.iov_len;
8860 return 0;
8861 }
8862 #endif
8863 src = (struct iovec __user *) arg;
8864 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8865 return -EFAULT;
8866 return 0;
8867 }
8868
8869 /*
8870 * Not super efficient, but this is just a registration time. And we do cache
8871 * the last compound head, so generally we'll only do a full search if we don't
8872 * match that one.
8873 *
8874 * We check if the given compound head page has already been accounted, to
8875 * avoid double accounting it. This allows us to account the full size of the
8876 * page, not just the constituent pages of a huge page.
8877 */
8878 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8879 int nr_pages, struct page *hpage)
8880 {
8881 int i, j;
8882
8883 /* check current page array */
8884 for (i = 0; i < nr_pages; i++) {
8885 if (!PageCompound(pages[i]))
8886 continue;
8887 if (compound_head(pages[i]) == hpage)
8888 return true;
8889 }
8890
8891 /* check previously registered pages */
8892 for (i = 0; i < ctx->nr_user_bufs; i++) {
8893 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8894
8895 for (j = 0; j < imu->nr_bvecs; j++) {
8896 if (!PageCompound(imu->bvec[j].bv_page))
8897 continue;
8898 if (compound_head(imu->bvec[j].bv_page) == hpage)
8899 return true;
8900 }
8901 }
8902
8903 return false;
8904 }
8905
8906 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8907 int nr_pages, struct io_mapped_ubuf *imu,
8908 struct page **last_hpage)
8909 {
8910 int i, ret;
8911
8912 imu->acct_pages = 0;
8913 for (i = 0; i < nr_pages; i++) {
8914 if (!PageCompound(pages[i])) {
8915 imu->acct_pages++;
8916 } else {
8917 struct page *hpage;
8918
8919 hpage = compound_head(pages[i]);
8920 if (hpage == *last_hpage)
8921 continue;
8922 *last_hpage = hpage;
8923 if (headpage_already_acct(ctx, pages, i, hpage))
8924 continue;
8925 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8926 }
8927 }
8928
8929 if (!imu->acct_pages)
8930 return 0;
8931
8932 ret = io_account_mem(ctx, imu->acct_pages);
8933 if (ret)
8934 imu->acct_pages = 0;
8935 return ret;
8936 }
8937
8938 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8939 struct io_mapped_ubuf **pimu,
8940 struct page **last_hpage)
8941 {
8942 struct io_mapped_ubuf *imu = NULL;
8943 struct vm_area_struct **vmas = NULL;
8944 struct page **pages = NULL;
8945 unsigned long off, start, end, ubuf;
8946 size_t size;
8947 int ret, pret, nr_pages, i;
8948
8949 if (!iov->iov_base) {
8950 *pimu = ctx->dummy_ubuf;
8951 return 0;
8952 }
8953
8954 ubuf = (unsigned long) iov->iov_base;
8955 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8956 start = ubuf >> PAGE_SHIFT;
8957 nr_pages = end - start;
8958
8959 *pimu = NULL;
8960 ret = -ENOMEM;
8961
8962 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8963 if (!pages)
8964 goto done;
8965
8966 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8967 GFP_KERNEL);
8968 if (!vmas)
8969 goto done;
8970
8971 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8972 if (!imu)
8973 goto done;
8974
8975 ret = 0;
8976 mmap_read_lock(current->mm);
8977 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8978 pages, vmas);
8979 if (pret == nr_pages) {
8980 /* don't support file backed memory */
8981 for (i = 0; i < nr_pages; i++) {
8982 struct vm_area_struct *vma = vmas[i];
8983
8984 if (vma_is_shmem(vma))
8985 continue;
8986 if (vma->vm_file &&
8987 !is_file_hugepages(vma->vm_file)) {
8988 ret = -EOPNOTSUPP;
8989 break;
8990 }
8991 }
8992 } else {
8993 ret = pret < 0 ? pret : -EFAULT;
8994 }
8995 mmap_read_unlock(current->mm);
8996 if (ret) {
8997 /*
8998 * if we did partial map, or found file backed vmas,
8999 * release any pages we did get
9000 */
9001 if (pret > 0)
9002 unpin_user_pages(pages, pret);
9003 goto done;
9004 }
9005
9006 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9007 if (ret) {
9008 unpin_user_pages(pages, pret);
9009 goto done;
9010 }
9011
9012 off = ubuf & ~PAGE_MASK;
9013 size = iov->iov_len;
9014 for (i = 0; i < nr_pages; i++) {
9015 size_t vec_len;
9016
9017 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9018 imu->bvec[i].bv_page = pages[i];
9019 imu->bvec[i].bv_len = vec_len;
9020 imu->bvec[i].bv_offset = off;
9021 off = 0;
9022 size -= vec_len;
9023 }
9024 /* store original address for later verification */
9025 imu->ubuf = ubuf;
9026 imu->ubuf_end = ubuf + iov->iov_len;
9027 imu->nr_bvecs = nr_pages;
9028 *pimu = imu;
9029 ret = 0;
9030 done:
9031 if (ret)
9032 kvfree(imu);
9033 kvfree(pages);
9034 kvfree(vmas);
9035 return ret;
9036 }
9037
9038 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9039 {
9040 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9041 return ctx->user_bufs ? 0 : -ENOMEM;
9042 }
9043
9044 static int io_buffer_validate(struct iovec *iov)
9045 {
9046 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9047
9048 /*
9049 * Don't impose further limits on the size and buffer
9050 * constraints here, we'll -EINVAL later when IO is
9051 * submitted if they are wrong.
9052 */
9053 if (!iov->iov_base)
9054 return iov->iov_len ? -EFAULT : 0;
9055 if (!iov->iov_len)
9056 return -EFAULT;
9057
9058 /* arbitrary limit, but we need something */
9059 if (iov->iov_len > SZ_1G)
9060 return -EFAULT;
9061
9062 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9063 return -EOVERFLOW;
9064
9065 return 0;
9066 }
9067
9068 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9069 unsigned int nr_args, u64 __user *tags)
9070 {
9071 struct page *last_hpage = NULL;
9072 struct io_rsrc_data *data;
9073 int i, ret;
9074 struct iovec iov;
9075
9076 if (ctx->user_bufs)
9077 return -EBUSY;
9078 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9079 return -EINVAL;
9080 ret = io_rsrc_node_switch_start(ctx);
9081 if (ret)
9082 return ret;
9083 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9084 if (ret)
9085 return ret;
9086 ret = io_buffers_map_alloc(ctx, nr_args);
9087 if (ret) {
9088 io_rsrc_data_free(data);
9089 return ret;
9090 }
9091
9092 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9093 ret = io_copy_iov(ctx, &iov, arg, i);
9094 if (ret)
9095 break;
9096 ret = io_buffer_validate(&iov);
9097 if (ret)
9098 break;
9099 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9100 ret = -EINVAL;
9101 break;
9102 }
9103
9104 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9105 &last_hpage);
9106 if (ret)
9107 break;
9108 }
9109
9110 WARN_ON_ONCE(ctx->buf_data);
9111
9112 ctx->buf_data = data;
9113 if (ret)
9114 __io_sqe_buffers_unregister(ctx);
9115 else
9116 io_rsrc_node_switch(ctx, NULL);
9117 return ret;
9118 }
9119
9120 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9121 struct io_uring_rsrc_update2 *up,
9122 unsigned int nr_args)
9123 {
9124 u64 __user *tags = u64_to_user_ptr(up->tags);
9125 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9126 struct page *last_hpage = NULL;
9127 bool needs_switch = false;
9128 __u32 done;
9129 int i, err;
9130
9131 if (!ctx->buf_data)
9132 return -ENXIO;
9133 if (up->offset + nr_args > ctx->nr_user_bufs)
9134 return -EINVAL;
9135
9136 for (done = 0; done < nr_args; done++) {
9137 struct io_mapped_ubuf *imu;
9138 int offset = up->offset + done;
9139 u64 tag = 0;
9140
9141 err = io_copy_iov(ctx, &iov, iovs, done);
9142 if (err)
9143 break;
9144 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9145 err = -EFAULT;
9146 break;
9147 }
9148 err = io_buffer_validate(&iov);
9149 if (err)
9150 break;
9151 if (!iov.iov_base && tag) {
9152 err = -EINVAL;
9153 break;
9154 }
9155 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9156 if (err)
9157 break;
9158
9159 i = array_index_nospec(offset, ctx->nr_user_bufs);
9160 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9161 err = io_queue_rsrc_removal(ctx->buf_data, i,
9162 ctx->rsrc_node, ctx->user_bufs[i]);
9163 if (unlikely(err)) {
9164 io_buffer_unmap(ctx, &imu);
9165 break;
9166 }
9167 ctx->user_bufs[i] = NULL;
9168 needs_switch = true;
9169 }
9170
9171 ctx->user_bufs[i] = imu;
9172 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9173 }
9174
9175 if (needs_switch)
9176 io_rsrc_node_switch(ctx, ctx->buf_data);
9177 return done ? done : err;
9178 }
9179
9180 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9181 {
9182 __s32 __user *fds = arg;
9183 int fd;
9184
9185 if (ctx->cq_ev_fd)
9186 return -EBUSY;
9187
9188 if (copy_from_user(&fd, fds, sizeof(*fds)))
9189 return -EFAULT;
9190
9191 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9192 if (IS_ERR(ctx->cq_ev_fd)) {
9193 int ret = PTR_ERR(ctx->cq_ev_fd);
9194
9195 ctx->cq_ev_fd = NULL;
9196 return ret;
9197 }
9198
9199 return 0;
9200 }
9201
9202 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9203 {
9204 if (ctx->cq_ev_fd) {
9205 eventfd_ctx_put(ctx->cq_ev_fd);
9206 ctx->cq_ev_fd = NULL;
9207 return 0;
9208 }
9209
9210 return -ENXIO;
9211 }
9212
9213 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9214 {
9215 struct io_buffer *buf;
9216 unsigned long index;
9217
9218 xa_for_each(&ctx->io_buffers, index, buf)
9219 __io_remove_buffers(ctx, buf, index, -1U);
9220 }
9221
9222 static void io_req_cache_free(struct list_head *list)
9223 {
9224 struct io_kiocb *req, *nxt;
9225
9226 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9227 list_del(&req->inflight_entry);
9228 kmem_cache_free(req_cachep, req);
9229 }
9230 }
9231
9232 static void io_req_caches_free(struct io_ring_ctx *ctx)
9233 {
9234 struct io_submit_state *state = &ctx->submit_state;
9235
9236 mutex_lock(&ctx->uring_lock);
9237
9238 if (state->free_reqs) {
9239 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9240 state->free_reqs = 0;
9241 }
9242
9243 io_flush_cached_locked_reqs(ctx, state);
9244 io_req_cache_free(&state->free_list);
9245 mutex_unlock(&ctx->uring_lock);
9246 }
9247
9248 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9249 {
9250 if (data && !atomic_dec_and_test(&data->refs))
9251 wait_for_completion(&data->done);
9252 }
9253
9254 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9255 {
9256 io_sq_thread_finish(ctx);
9257
9258 if (ctx->mm_account) {
9259 mmdrop(ctx->mm_account);
9260 ctx->mm_account = NULL;
9261 }
9262
9263 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9264 io_wait_rsrc_data(ctx->buf_data);
9265 io_wait_rsrc_data(ctx->file_data);
9266
9267 mutex_lock(&ctx->uring_lock);
9268 if (ctx->buf_data)
9269 __io_sqe_buffers_unregister(ctx);
9270 if (ctx->file_data)
9271 __io_sqe_files_unregister(ctx);
9272 if (ctx->rings)
9273 __io_cqring_overflow_flush(ctx, true);
9274 mutex_unlock(&ctx->uring_lock);
9275 io_eventfd_unregister(ctx);
9276 io_destroy_buffers(ctx);
9277 if (ctx->sq_creds)
9278 put_cred(ctx->sq_creds);
9279
9280 /* there are no registered resources left, nobody uses it */
9281 if (ctx->rsrc_node)
9282 io_rsrc_node_destroy(ctx->rsrc_node);
9283 if (ctx->rsrc_backup_node)
9284 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9285 flush_delayed_work(&ctx->rsrc_put_work);
9286
9287 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9288 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9289
9290 #if defined(CONFIG_UNIX)
9291 if (ctx->ring_sock) {
9292 ctx->ring_sock->file = NULL; /* so that iput() is called */
9293 sock_release(ctx->ring_sock);
9294 }
9295 #endif
9296 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9297
9298 io_mem_free(ctx->rings);
9299 io_mem_free(ctx->sq_sqes);
9300
9301 percpu_ref_exit(&ctx->refs);
9302 free_uid(ctx->user);
9303 io_req_caches_free(ctx);
9304 if (ctx->hash_map)
9305 io_wq_put_hash(ctx->hash_map);
9306 kfree(ctx->cancel_hash);
9307 kfree(ctx->dummy_ubuf);
9308 kfree(ctx);
9309 }
9310
9311 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9312 {
9313 struct io_ring_ctx *ctx = file->private_data;
9314 __poll_t mask = 0;
9315
9316 poll_wait(file, &ctx->poll_wait, wait);
9317 /*
9318 * synchronizes with barrier from wq_has_sleeper call in
9319 * io_commit_cqring
9320 */
9321 smp_rmb();
9322 if (!io_sqring_full(ctx))
9323 mask |= EPOLLOUT | EPOLLWRNORM;
9324
9325 /*
9326 * Don't flush cqring overflow list here, just do a simple check.
9327 * Otherwise there could possible be ABBA deadlock:
9328 * CPU0 CPU1
9329 * ---- ----
9330 * lock(&ctx->uring_lock);
9331 * lock(&ep->mtx);
9332 * lock(&ctx->uring_lock);
9333 * lock(&ep->mtx);
9334 *
9335 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9336 * pushs them to do the flush.
9337 */
9338 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9339 mask |= EPOLLIN | EPOLLRDNORM;
9340
9341 return mask;
9342 }
9343
9344 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9345 {
9346 const struct cred *creds;
9347
9348 creds = xa_erase(&ctx->personalities, id);
9349 if (creds) {
9350 put_cred(creds);
9351 return 0;
9352 }
9353
9354 return -EINVAL;
9355 }
9356
9357 struct io_tctx_exit {
9358 struct callback_head task_work;
9359 struct completion completion;
9360 struct io_ring_ctx *ctx;
9361 };
9362
9363 static void io_tctx_exit_cb(struct callback_head *cb)
9364 {
9365 struct io_uring_task *tctx = current->io_uring;
9366 struct io_tctx_exit *work;
9367
9368 work = container_of(cb, struct io_tctx_exit, task_work);
9369 /*
9370 * When @in_idle, we're in cancellation and it's racy to remove the
9371 * node. It'll be removed by the end of cancellation, just ignore it.
9372 */
9373 if (!atomic_read(&tctx->in_idle))
9374 io_uring_del_tctx_node((unsigned long)work->ctx);
9375 complete(&work->completion);
9376 }
9377
9378 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9379 {
9380 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9381
9382 return req->ctx == data;
9383 }
9384
9385 static void io_ring_exit_work(struct work_struct *work)
9386 {
9387 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9388 unsigned long timeout = jiffies + HZ * 60 * 5;
9389 unsigned long interval = HZ / 20;
9390 struct io_tctx_exit exit;
9391 struct io_tctx_node *node;
9392 int ret;
9393
9394 /*
9395 * If we're doing polled IO and end up having requests being
9396 * submitted async (out-of-line), then completions can come in while
9397 * we're waiting for refs to drop. We need to reap these manually,
9398 * as nobody else will be looking for them.
9399 */
9400 do {
9401 io_uring_try_cancel_requests(ctx, NULL, true);
9402 if (ctx->sq_data) {
9403 struct io_sq_data *sqd = ctx->sq_data;
9404 struct task_struct *tsk;
9405
9406 io_sq_thread_park(sqd);
9407 tsk = sqd->thread;
9408 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9409 io_wq_cancel_cb(tsk->io_uring->io_wq,
9410 io_cancel_ctx_cb, ctx, true);
9411 io_sq_thread_unpark(sqd);
9412 }
9413
9414 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9415 /* there is little hope left, don't run it too often */
9416 interval = HZ * 60;
9417 }
9418 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9419
9420 init_completion(&exit.completion);
9421 init_task_work(&exit.task_work, io_tctx_exit_cb);
9422 exit.ctx = ctx;
9423 /*
9424 * Some may use context even when all refs and requests have been put,
9425 * and they are free to do so while still holding uring_lock or
9426 * completion_lock, see io_req_task_submit(). Apart from other work,
9427 * this lock/unlock section also waits them to finish.
9428 */
9429 mutex_lock(&ctx->uring_lock);
9430 while (!list_empty(&ctx->tctx_list)) {
9431 WARN_ON_ONCE(time_after(jiffies, timeout));
9432
9433 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9434 ctx_node);
9435 /* don't spin on a single task if cancellation failed */
9436 list_rotate_left(&ctx->tctx_list);
9437 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9438 if (WARN_ON_ONCE(ret))
9439 continue;
9440 wake_up_process(node->task);
9441
9442 mutex_unlock(&ctx->uring_lock);
9443 wait_for_completion(&exit.completion);
9444 mutex_lock(&ctx->uring_lock);
9445 }
9446 mutex_unlock(&ctx->uring_lock);
9447 spin_lock(&ctx->completion_lock);
9448 spin_unlock(&ctx->completion_lock);
9449
9450 io_ring_ctx_free(ctx);
9451 }
9452
9453 /* Returns true if we found and killed one or more timeouts */
9454 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9455 bool cancel_all)
9456 {
9457 struct io_kiocb *req, *tmp;
9458 int canceled = 0;
9459
9460 spin_lock(&ctx->completion_lock);
9461 spin_lock_irq(&ctx->timeout_lock);
9462 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9463 if (io_match_task(req, tsk, cancel_all)) {
9464 io_kill_timeout(req, -ECANCELED);
9465 canceled++;
9466 }
9467 }
9468 spin_unlock_irq(&ctx->timeout_lock);
9469 if (canceled != 0)
9470 io_commit_cqring(ctx);
9471 spin_unlock(&ctx->completion_lock);
9472 if (canceled != 0)
9473 io_cqring_ev_posted(ctx);
9474 return canceled != 0;
9475 }
9476
9477 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9478 {
9479 unsigned long index;
9480 struct creds *creds;
9481
9482 mutex_lock(&ctx->uring_lock);
9483 percpu_ref_kill(&ctx->refs);
9484 if (ctx->rings)
9485 __io_cqring_overflow_flush(ctx, true);
9486 xa_for_each(&ctx->personalities, index, creds)
9487 io_unregister_personality(ctx, index);
9488 mutex_unlock(&ctx->uring_lock);
9489
9490 io_kill_timeouts(ctx, NULL, true);
9491 io_poll_remove_all(ctx, NULL, true);
9492
9493 /* if we failed setting up the ctx, we might not have any rings */
9494 io_iopoll_try_reap_events(ctx);
9495
9496 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9497 /*
9498 * Use system_unbound_wq to avoid spawning tons of event kworkers
9499 * if we're exiting a ton of rings at the same time. It just adds
9500 * noise and overhead, there's no discernable change in runtime
9501 * over using system_wq.
9502 */
9503 queue_work(system_unbound_wq, &ctx->exit_work);
9504 }
9505
9506 static int io_uring_release(struct inode *inode, struct file *file)
9507 {
9508 struct io_ring_ctx *ctx = file->private_data;
9509
9510 file->private_data = NULL;
9511 io_ring_ctx_wait_and_kill(ctx);
9512 return 0;
9513 }
9514
9515 struct io_task_cancel {
9516 struct task_struct *task;
9517 bool all;
9518 };
9519
9520 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9521 {
9522 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9523 struct io_task_cancel *cancel = data;
9524
9525 return io_match_task_safe(req, cancel->task, cancel->all);
9526 }
9527
9528 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9529 struct task_struct *task, bool cancel_all)
9530 {
9531 struct io_defer_entry *de;
9532 LIST_HEAD(list);
9533
9534 spin_lock(&ctx->completion_lock);
9535 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9536 if (io_match_task_safe(de->req, task, cancel_all)) {
9537 list_cut_position(&list, &ctx->defer_list, &de->list);
9538 break;
9539 }
9540 }
9541 spin_unlock(&ctx->completion_lock);
9542 if (list_empty(&list))
9543 return false;
9544
9545 while (!list_empty(&list)) {
9546 de = list_first_entry(&list, struct io_defer_entry, list);
9547 list_del_init(&de->list);
9548 io_req_complete_failed(de->req, -ECANCELED);
9549 kfree(de);
9550 }
9551 return true;
9552 }
9553
9554 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9555 {
9556 struct io_tctx_node *node;
9557 enum io_wq_cancel cret;
9558 bool ret = false;
9559
9560 mutex_lock(&ctx->uring_lock);
9561 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9562 struct io_uring_task *tctx = node->task->io_uring;
9563
9564 /*
9565 * io_wq will stay alive while we hold uring_lock, because it's
9566 * killed after ctx nodes, which requires to take the lock.
9567 */
9568 if (!tctx || !tctx->io_wq)
9569 continue;
9570 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9571 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9572 }
9573 mutex_unlock(&ctx->uring_lock);
9574
9575 return ret;
9576 }
9577
9578 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9579 struct task_struct *task,
9580 bool cancel_all)
9581 {
9582 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9583 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9584
9585 while (1) {
9586 enum io_wq_cancel cret;
9587 bool ret = false;
9588
9589 if (!task) {
9590 ret |= io_uring_try_cancel_iowq(ctx);
9591 } else if (tctx && tctx->io_wq) {
9592 /*
9593 * Cancels requests of all rings, not only @ctx, but
9594 * it's fine as the task is in exit/exec.
9595 */
9596 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9597 &cancel, true);
9598 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9599 }
9600
9601 /* SQPOLL thread does its own polling */
9602 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9603 (ctx->sq_data && ctx->sq_data->thread == current)) {
9604 while (!list_empty_careful(&ctx->iopoll_list)) {
9605 io_iopoll_try_reap_events(ctx);
9606 ret = true;
9607 }
9608 }
9609
9610 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9611 ret |= io_poll_remove_all(ctx, task, cancel_all);
9612 ret |= io_kill_timeouts(ctx, task, cancel_all);
9613 if (task)
9614 ret |= io_run_task_work();
9615 if (!ret)
9616 break;
9617 cond_resched();
9618 }
9619 }
9620
9621 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9622 {
9623 struct io_uring_task *tctx = current->io_uring;
9624 struct io_tctx_node *node;
9625 int ret;
9626
9627 if (unlikely(!tctx)) {
9628 ret = io_uring_alloc_task_context(current, ctx);
9629 if (unlikely(ret))
9630 return ret;
9631
9632 tctx = current->io_uring;
9633 if (ctx->iowq_limits_set) {
9634 unsigned int limits[2] = { ctx->iowq_limits[0],
9635 ctx->iowq_limits[1], };
9636
9637 ret = io_wq_max_workers(tctx->io_wq, limits);
9638 if (ret)
9639 return ret;
9640 }
9641 }
9642 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9643 node = kmalloc(sizeof(*node), GFP_KERNEL);
9644 if (!node)
9645 return -ENOMEM;
9646 node->ctx = ctx;
9647 node->task = current;
9648
9649 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9650 node, GFP_KERNEL));
9651 if (ret) {
9652 kfree(node);
9653 return ret;
9654 }
9655
9656 mutex_lock(&ctx->uring_lock);
9657 list_add(&node->ctx_node, &ctx->tctx_list);
9658 mutex_unlock(&ctx->uring_lock);
9659 }
9660 tctx->last = ctx;
9661 return 0;
9662 }
9663
9664 /*
9665 * Note that this task has used io_uring. We use it for cancelation purposes.
9666 */
9667 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9668 {
9669 struct io_uring_task *tctx = current->io_uring;
9670
9671 if (likely(tctx && tctx->last == ctx))
9672 return 0;
9673 return __io_uring_add_tctx_node(ctx);
9674 }
9675
9676 /*
9677 * Remove this io_uring_file -> task mapping.
9678 */
9679 static void io_uring_del_tctx_node(unsigned long index)
9680 {
9681 struct io_uring_task *tctx = current->io_uring;
9682 struct io_tctx_node *node;
9683
9684 if (!tctx)
9685 return;
9686 node = xa_erase(&tctx->xa, index);
9687 if (!node)
9688 return;
9689
9690 WARN_ON_ONCE(current != node->task);
9691 WARN_ON_ONCE(list_empty(&node->ctx_node));
9692
9693 mutex_lock(&node->ctx->uring_lock);
9694 list_del(&node->ctx_node);
9695 mutex_unlock(&node->ctx->uring_lock);
9696
9697 if (tctx->last == node->ctx)
9698 tctx->last = NULL;
9699 kfree(node);
9700 }
9701
9702 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9703 {
9704 struct io_wq *wq = tctx->io_wq;
9705 struct io_tctx_node *node;
9706 unsigned long index;
9707
9708 xa_for_each(&tctx->xa, index, node) {
9709 io_uring_del_tctx_node(index);
9710 cond_resched();
9711 }
9712 if (wq) {
9713 /*
9714 * Must be after io_uring_del_task_file() (removes nodes under
9715 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9716 */
9717 io_wq_put_and_exit(wq);
9718 tctx->io_wq = NULL;
9719 }
9720 }
9721
9722 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9723 {
9724 if (tracked)
9725 return atomic_read(&tctx->inflight_tracked);
9726 return percpu_counter_sum(&tctx->inflight);
9727 }
9728
9729 /*
9730 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9731 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9732 */
9733 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9734 {
9735 struct io_uring_task *tctx = current->io_uring;
9736 struct io_ring_ctx *ctx;
9737 s64 inflight;
9738 DEFINE_WAIT(wait);
9739
9740 WARN_ON_ONCE(sqd && sqd->thread != current);
9741
9742 if (!current->io_uring)
9743 return;
9744 if (tctx->io_wq)
9745 io_wq_exit_start(tctx->io_wq);
9746
9747 atomic_inc(&tctx->in_idle);
9748 do {
9749 io_uring_drop_tctx_refs(current);
9750 /* read completions before cancelations */
9751 inflight = tctx_inflight(tctx, !cancel_all);
9752 if (!inflight)
9753 break;
9754
9755 if (!sqd) {
9756 struct io_tctx_node *node;
9757 unsigned long index;
9758
9759 xa_for_each(&tctx->xa, index, node) {
9760 /* sqpoll task will cancel all its requests */
9761 if (node->ctx->sq_data)
9762 continue;
9763 io_uring_try_cancel_requests(node->ctx, current,
9764 cancel_all);
9765 }
9766 } else {
9767 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9768 io_uring_try_cancel_requests(ctx, current,
9769 cancel_all);
9770 }
9771
9772 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9773 io_run_task_work();
9774 io_uring_drop_tctx_refs(current);
9775
9776 /*
9777 * If we've seen completions, retry without waiting. This
9778 * avoids a race where a completion comes in before we did
9779 * prepare_to_wait().
9780 */
9781 if (inflight == tctx_inflight(tctx, !cancel_all))
9782 schedule();
9783 finish_wait(&tctx->wait, &wait);
9784 } while (1);
9785
9786 io_uring_clean_tctx(tctx);
9787 if (cancel_all) {
9788 /*
9789 * We shouldn't run task_works after cancel, so just leave
9790 * ->in_idle set for normal exit.
9791 */
9792 atomic_dec(&tctx->in_idle);
9793 /* for exec all current's requests should be gone, kill tctx */
9794 __io_uring_free(current);
9795 }
9796 }
9797
9798 void __io_uring_cancel(bool cancel_all)
9799 {
9800 io_uring_cancel_generic(cancel_all, NULL);
9801 }
9802
9803 static void *io_uring_validate_mmap_request(struct file *file,
9804 loff_t pgoff, size_t sz)
9805 {
9806 struct io_ring_ctx *ctx = file->private_data;
9807 loff_t offset = pgoff << PAGE_SHIFT;
9808 struct page *page;
9809 void *ptr;
9810
9811 switch (offset) {
9812 case IORING_OFF_SQ_RING:
9813 case IORING_OFF_CQ_RING:
9814 ptr = ctx->rings;
9815 break;
9816 case IORING_OFF_SQES:
9817 ptr = ctx->sq_sqes;
9818 break;
9819 default:
9820 return ERR_PTR(-EINVAL);
9821 }
9822
9823 page = virt_to_head_page(ptr);
9824 if (sz > page_size(page))
9825 return ERR_PTR(-EINVAL);
9826
9827 return ptr;
9828 }
9829
9830 #ifdef CONFIG_MMU
9831
9832 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9833 {
9834 size_t sz = vma->vm_end - vma->vm_start;
9835 unsigned long pfn;
9836 void *ptr;
9837
9838 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9839 if (IS_ERR(ptr))
9840 return PTR_ERR(ptr);
9841
9842 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9843 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9844 }
9845
9846 #else /* !CONFIG_MMU */
9847
9848 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9849 {
9850 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9851 }
9852
9853 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9854 {
9855 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9856 }
9857
9858 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9859 unsigned long addr, unsigned long len,
9860 unsigned long pgoff, unsigned long flags)
9861 {
9862 void *ptr;
9863
9864 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9865 if (IS_ERR(ptr))
9866 return PTR_ERR(ptr);
9867
9868 return (unsigned long) ptr;
9869 }
9870
9871 #endif /* !CONFIG_MMU */
9872
9873 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9874 {
9875 DEFINE_WAIT(wait);
9876
9877 do {
9878 if (!io_sqring_full(ctx))
9879 break;
9880 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9881
9882 if (!io_sqring_full(ctx))
9883 break;
9884 schedule();
9885 } while (!signal_pending(current));
9886
9887 finish_wait(&ctx->sqo_sq_wait, &wait);
9888 return 0;
9889 }
9890
9891 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9892 struct __kernel_timespec __user **ts,
9893 const sigset_t __user **sig)
9894 {
9895 struct io_uring_getevents_arg arg;
9896
9897 /*
9898 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9899 * is just a pointer to the sigset_t.
9900 */
9901 if (!(flags & IORING_ENTER_EXT_ARG)) {
9902 *sig = (const sigset_t __user *) argp;
9903 *ts = NULL;
9904 return 0;
9905 }
9906
9907 /*
9908 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9909 * timespec and sigset_t pointers if good.
9910 */
9911 if (*argsz != sizeof(arg))
9912 return -EINVAL;
9913 if (copy_from_user(&arg, argp, sizeof(arg)))
9914 return -EFAULT;
9915 if (arg.pad)
9916 return -EINVAL;
9917 *sig = u64_to_user_ptr(arg.sigmask);
9918 *argsz = arg.sigmask_sz;
9919 *ts = u64_to_user_ptr(arg.ts);
9920 return 0;
9921 }
9922
9923 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9924 u32, min_complete, u32, flags, const void __user *, argp,
9925 size_t, argsz)
9926 {
9927 struct io_ring_ctx *ctx;
9928 int submitted = 0;
9929 struct fd f;
9930 long ret;
9931
9932 io_run_task_work();
9933
9934 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9935 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9936 return -EINVAL;
9937
9938 f = fdget(fd);
9939 if (unlikely(!f.file))
9940 return -EBADF;
9941
9942 ret = -EOPNOTSUPP;
9943 if (unlikely(f.file->f_op != &io_uring_fops))
9944 goto out_fput;
9945
9946 ret = -ENXIO;
9947 ctx = f.file->private_data;
9948 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9949 goto out_fput;
9950
9951 ret = -EBADFD;
9952 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9953 goto out;
9954
9955 /*
9956 * For SQ polling, the thread will do all submissions and completions.
9957 * Just return the requested submit count, and wake the thread if
9958 * we were asked to.
9959 */
9960 ret = 0;
9961 if (ctx->flags & IORING_SETUP_SQPOLL) {
9962 io_cqring_overflow_flush(ctx);
9963
9964 if (unlikely(ctx->sq_data->thread == NULL)) {
9965 ret = -EOWNERDEAD;
9966 goto out;
9967 }
9968 if (flags & IORING_ENTER_SQ_WAKEUP)
9969 wake_up(&ctx->sq_data->wait);
9970 if (flags & IORING_ENTER_SQ_WAIT) {
9971 ret = io_sqpoll_wait_sq(ctx);
9972 if (ret)
9973 goto out;
9974 }
9975 submitted = to_submit;
9976 } else if (to_submit) {
9977 ret = io_uring_add_tctx_node(ctx);
9978 if (unlikely(ret))
9979 goto out;
9980 mutex_lock(&ctx->uring_lock);
9981 submitted = io_submit_sqes(ctx, to_submit);
9982 mutex_unlock(&ctx->uring_lock);
9983
9984 if (submitted != to_submit)
9985 goto out;
9986 }
9987 if (flags & IORING_ENTER_GETEVENTS) {
9988 const sigset_t __user *sig;
9989 struct __kernel_timespec __user *ts;
9990
9991 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9992 if (unlikely(ret))
9993 goto out;
9994
9995 min_complete = min(min_complete, ctx->cq_entries);
9996
9997 /*
9998 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9999 * space applications don't need to do io completion events
10000 * polling again, they can rely on io_sq_thread to do polling
10001 * work, which can reduce cpu usage and uring_lock contention.
10002 */
10003 if (ctx->flags & IORING_SETUP_IOPOLL &&
10004 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10005 ret = io_iopoll_check(ctx, min_complete);
10006 } else {
10007 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10008 }
10009 }
10010
10011 out:
10012 percpu_ref_put(&ctx->refs);
10013 out_fput:
10014 fdput(f);
10015 return submitted ? submitted : ret;
10016 }
10017
10018 #ifdef CONFIG_PROC_FS
10019 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10020 const struct cred *cred)
10021 {
10022 struct user_namespace *uns = seq_user_ns(m);
10023 struct group_info *gi;
10024 kernel_cap_t cap;
10025 unsigned __capi;
10026 int g;
10027
10028 seq_printf(m, "%5d\n", id);
10029 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10030 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10031 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10032 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10033 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10034 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10035 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10036 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10037 seq_puts(m, "\n\tGroups:\t");
10038 gi = cred->group_info;
10039 for (g = 0; g < gi->ngroups; g++) {
10040 seq_put_decimal_ull(m, g ? " " : "",
10041 from_kgid_munged(uns, gi->gid[g]));
10042 }
10043 seq_puts(m, "\n\tCapEff:\t");
10044 cap = cred->cap_effective;
10045 CAP_FOR_EACH_U32(__capi)
10046 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10047 seq_putc(m, '\n');
10048 return 0;
10049 }
10050
10051 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10052 {
10053 struct io_sq_data *sq = NULL;
10054 bool has_lock;
10055 int i;
10056
10057 /*
10058 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10059 * since fdinfo case grabs it in the opposite direction of normal use
10060 * cases. If we fail to get the lock, we just don't iterate any
10061 * structures that could be going away outside the io_uring mutex.
10062 */
10063 has_lock = mutex_trylock(&ctx->uring_lock);
10064
10065 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10066 sq = ctx->sq_data;
10067 if (!sq->thread)
10068 sq = NULL;
10069 }
10070
10071 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10072 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10073 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10074 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10075 struct file *f = io_file_from_index(ctx, i);
10076
10077 if (f)
10078 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10079 else
10080 seq_printf(m, "%5u: <none>\n", i);
10081 }
10082 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10083 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10084 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10085 unsigned int len = buf->ubuf_end - buf->ubuf;
10086
10087 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10088 }
10089 if (has_lock && !xa_empty(&ctx->personalities)) {
10090 unsigned long index;
10091 const struct cred *cred;
10092
10093 seq_printf(m, "Personalities:\n");
10094 xa_for_each(&ctx->personalities, index, cred)
10095 io_uring_show_cred(m, index, cred);
10096 }
10097 seq_printf(m, "PollList:\n");
10098 spin_lock(&ctx->completion_lock);
10099 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10100 struct hlist_head *list = &ctx->cancel_hash[i];
10101 struct io_kiocb *req;
10102
10103 hlist_for_each_entry(req, list, hash_node)
10104 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10105 req->task->task_works != NULL);
10106 }
10107 spin_unlock(&ctx->completion_lock);
10108 if (has_lock)
10109 mutex_unlock(&ctx->uring_lock);
10110 }
10111
10112 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10113 {
10114 struct io_ring_ctx *ctx = f->private_data;
10115
10116 if (percpu_ref_tryget(&ctx->refs)) {
10117 __io_uring_show_fdinfo(ctx, m);
10118 percpu_ref_put(&ctx->refs);
10119 }
10120 }
10121 #endif
10122
10123 static const struct file_operations io_uring_fops = {
10124 .release = io_uring_release,
10125 .mmap = io_uring_mmap,
10126 #ifndef CONFIG_MMU
10127 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10128 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10129 #endif
10130 .poll = io_uring_poll,
10131 #ifdef CONFIG_PROC_FS
10132 .show_fdinfo = io_uring_show_fdinfo,
10133 #endif
10134 };
10135
10136 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10137 struct io_uring_params *p)
10138 {
10139 struct io_rings *rings;
10140 size_t size, sq_array_offset;
10141
10142 /* make sure these are sane, as we already accounted them */
10143 ctx->sq_entries = p->sq_entries;
10144 ctx->cq_entries = p->cq_entries;
10145
10146 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10147 if (size == SIZE_MAX)
10148 return -EOVERFLOW;
10149
10150 rings = io_mem_alloc(size);
10151 if (!rings)
10152 return -ENOMEM;
10153
10154 ctx->rings = rings;
10155 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10156 rings->sq_ring_mask = p->sq_entries - 1;
10157 rings->cq_ring_mask = p->cq_entries - 1;
10158 rings->sq_ring_entries = p->sq_entries;
10159 rings->cq_ring_entries = p->cq_entries;
10160
10161 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10162 if (size == SIZE_MAX) {
10163 io_mem_free(ctx->rings);
10164 ctx->rings = NULL;
10165 return -EOVERFLOW;
10166 }
10167
10168 ctx->sq_sqes = io_mem_alloc(size);
10169 if (!ctx->sq_sqes) {
10170 io_mem_free(ctx->rings);
10171 ctx->rings = NULL;
10172 return -ENOMEM;
10173 }
10174
10175 return 0;
10176 }
10177
10178 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10179 {
10180 int ret, fd;
10181
10182 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10183 if (fd < 0)
10184 return fd;
10185
10186 ret = io_uring_add_tctx_node(ctx);
10187 if (ret) {
10188 put_unused_fd(fd);
10189 return ret;
10190 }
10191 fd_install(fd, file);
10192 return fd;
10193 }
10194
10195 /*
10196 * Allocate an anonymous fd, this is what constitutes the application
10197 * visible backing of an io_uring instance. The application mmaps this
10198 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10199 * we have to tie this fd to a socket for file garbage collection purposes.
10200 */
10201 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10202 {
10203 struct file *file;
10204 #if defined(CONFIG_UNIX)
10205 int ret;
10206
10207 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10208 &ctx->ring_sock);
10209 if (ret)
10210 return ERR_PTR(ret);
10211 #endif
10212
10213 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10214 O_RDWR | O_CLOEXEC);
10215 #if defined(CONFIG_UNIX)
10216 if (IS_ERR(file)) {
10217 sock_release(ctx->ring_sock);
10218 ctx->ring_sock = NULL;
10219 } else {
10220 ctx->ring_sock->file = file;
10221 }
10222 #endif
10223 return file;
10224 }
10225
10226 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10227 struct io_uring_params __user *params)
10228 {
10229 struct io_ring_ctx *ctx;
10230 struct file *file;
10231 int ret;
10232
10233 if (!entries)
10234 return -EINVAL;
10235 if (entries > IORING_MAX_ENTRIES) {
10236 if (!(p->flags & IORING_SETUP_CLAMP))
10237 return -EINVAL;
10238 entries = IORING_MAX_ENTRIES;
10239 }
10240
10241 /*
10242 * Use twice as many entries for the CQ ring. It's possible for the
10243 * application to drive a higher depth than the size of the SQ ring,
10244 * since the sqes are only used at submission time. This allows for
10245 * some flexibility in overcommitting a bit. If the application has
10246 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10247 * of CQ ring entries manually.
10248 */
10249 p->sq_entries = roundup_pow_of_two(entries);
10250 if (p->flags & IORING_SETUP_CQSIZE) {
10251 /*
10252 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10253 * to a power-of-two, if it isn't already. We do NOT impose
10254 * any cq vs sq ring sizing.
10255 */
10256 if (!p->cq_entries)
10257 return -EINVAL;
10258 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10259 if (!(p->flags & IORING_SETUP_CLAMP))
10260 return -EINVAL;
10261 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10262 }
10263 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10264 if (p->cq_entries < p->sq_entries)
10265 return -EINVAL;
10266 } else {
10267 p->cq_entries = 2 * p->sq_entries;
10268 }
10269
10270 ctx = io_ring_ctx_alloc(p);
10271 if (!ctx)
10272 return -ENOMEM;
10273 ctx->compat = in_compat_syscall();
10274 if (!capable(CAP_IPC_LOCK))
10275 ctx->user = get_uid(current_user());
10276
10277 /*
10278 * This is just grabbed for accounting purposes. When a process exits,
10279 * the mm is exited and dropped before the files, hence we need to hang
10280 * on to this mm purely for the purposes of being able to unaccount
10281 * memory (locked/pinned vm). It's not used for anything else.
10282 */
10283 mmgrab(current->mm);
10284 ctx->mm_account = current->mm;
10285
10286 ret = io_allocate_scq_urings(ctx, p);
10287 if (ret)
10288 goto err;
10289
10290 ret = io_sq_offload_create(ctx, p);
10291 if (ret)
10292 goto err;
10293 /* always set a rsrc node */
10294 ret = io_rsrc_node_switch_start(ctx);
10295 if (ret)
10296 goto err;
10297 io_rsrc_node_switch(ctx, NULL);
10298
10299 memset(&p->sq_off, 0, sizeof(p->sq_off));
10300 p->sq_off.head = offsetof(struct io_rings, sq.head);
10301 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10302 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10303 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10304 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10305 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10306 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10307
10308 memset(&p->cq_off, 0, sizeof(p->cq_off));
10309 p->cq_off.head = offsetof(struct io_rings, cq.head);
10310 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10311 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10312 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10313 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10314 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10315 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10316
10317 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10318 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10319 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10320 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10321 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10322 IORING_FEAT_RSRC_TAGS;
10323
10324 if (copy_to_user(params, p, sizeof(*p))) {
10325 ret = -EFAULT;
10326 goto err;
10327 }
10328
10329 file = io_uring_get_file(ctx);
10330 if (IS_ERR(file)) {
10331 ret = PTR_ERR(file);
10332 goto err;
10333 }
10334
10335 /*
10336 * Install ring fd as the very last thing, so we don't risk someone
10337 * having closed it before we finish setup
10338 */
10339 ret = io_uring_install_fd(ctx, file);
10340 if (ret < 0) {
10341 /* fput will clean it up */
10342 fput(file);
10343 return ret;
10344 }
10345
10346 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10347 return ret;
10348 err:
10349 io_ring_ctx_wait_and_kill(ctx);
10350 return ret;
10351 }
10352
10353 /*
10354 * Sets up an aio uring context, and returns the fd. Applications asks for a
10355 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10356 * params structure passed in.
10357 */
10358 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10359 {
10360 struct io_uring_params p;
10361 int i;
10362
10363 if (copy_from_user(&p, params, sizeof(p)))
10364 return -EFAULT;
10365 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10366 if (p.resv[i])
10367 return -EINVAL;
10368 }
10369
10370 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10371 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10372 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10373 IORING_SETUP_R_DISABLED))
10374 return -EINVAL;
10375
10376 return io_uring_create(entries, &p, params);
10377 }
10378
10379 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10380 struct io_uring_params __user *, params)
10381 {
10382 return io_uring_setup(entries, params);
10383 }
10384
10385 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10386 {
10387 struct io_uring_probe *p;
10388 size_t size;
10389 int i, ret;
10390
10391 size = struct_size(p, ops, nr_args);
10392 if (size == SIZE_MAX)
10393 return -EOVERFLOW;
10394 p = kzalloc(size, GFP_KERNEL);
10395 if (!p)
10396 return -ENOMEM;
10397
10398 ret = -EFAULT;
10399 if (copy_from_user(p, arg, size))
10400 goto out;
10401 ret = -EINVAL;
10402 if (memchr_inv(p, 0, size))
10403 goto out;
10404
10405 p->last_op = IORING_OP_LAST - 1;
10406 if (nr_args > IORING_OP_LAST)
10407 nr_args = IORING_OP_LAST;
10408
10409 for (i = 0; i < nr_args; i++) {
10410 p->ops[i].op = i;
10411 if (!io_op_defs[i].not_supported)
10412 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10413 }
10414 p->ops_len = i;
10415
10416 ret = 0;
10417 if (copy_to_user(arg, p, size))
10418 ret = -EFAULT;
10419 out:
10420 kfree(p);
10421 return ret;
10422 }
10423
10424 static int io_register_personality(struct io_ring_ctx *ctx)
10425 {
10426 const struct cred *creds;
10427 u32 id;
10428 int ret;
10429
10430 creds = get_current_cred();
10431
10432 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10433 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10434 if (ret < 0) {
10435 put_cred(creds);
10436 return ret;
10437 }
10438 return id;
10439 }
10440
10441 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10442 unsigned int nr_args)
10443 {
10444 struct io_uring_restriction *res;
10445 size_t size;
10446 int i, ret;
10447
10448 /* Restrictions allowed only if rings started disabled */
10449 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10450 return -EBADFD;
10451
10452 /* We allow only a single restrictions registration */
10453 if (ctx->restrictions.registered)
10454 return -EBUSY;
10455
10456 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10457 return -EINVAL;
10458
10459 size = array_size(nr_args, sizeof(*res));
10460 if (size == SIZE_MAX)
10461 return -EOVERFLOW;
10462
10463 res = memdup_user(arg, size);
10464 if (IS_ERR(res))
10465 return PTR_ERR(res);
10466
10467 ret = 0;
10468
10469 for (i = 0; i < nr_args; i++) {
10470 switch (res[i].opcode) {
10471 case IORING_RESTRICTION_REGISTER_OP:
10472 if (res[i].register_op >= IORING_REGISTER_LAST) {
10473 ret = -EINVAL;
10474 goto out;
10475 }
10476
10477 __set_bit(res[i].register_op,
10478 ctx->restrictions.register_op);
10479 break;
10480 case IORING_RESTRICTION_SQE_OP:
10481 if (res[i].sqe_op >= IORING_OP_LAST) {
10482 ret = -EINVAL;
10483 goto out;
10484 }
10485
10486 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10487 break;
10488 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10489 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10490 break;
10491 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10492 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10493 break;
10494 default:
10495 ret = -EINVAL;
10496 goto out;
10497 }
10498 }
10499
10500 out:
10501 /* Reset all restrictions if an error happened */
10502 if (ret != 0)
10503 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10504 else
10505 ctx->restrictions.registered = true;
10506
10507 kfree(res);
10508 return ret;
10509 }
10510
10511 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10512 {
10513 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10514 return -EBADFD;
10515
10516 if (ctx->restrictions.registered)
10517 ctx->restricted = 1;
10518
10519 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10520 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10521 wake_up(&ctx->sq_data->wait);
10522 return 0;
10523 }
10524
10525 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10526 struct io_uring_rsrc_update2 *up,
10527 unsigned nr_args)
10528 {
10529 __u32 tmp;
10530 int err;
10531
10532 if (check_add_overflow(up->offset, nr_args, &tmp))
10533 return -EOVERFLOW;
10534 err = io_rsrc_node_switch_start(ctx);
10535 if (err)
10536 return err;
10537
10538 switch (type) {
10539 case IORING_RSRC_FILE:
10540 return __io_sqe_files_update(ctx, up, nr_args);
10541 case IORING_RSRC_BUFFER:
10542 return __io_sqe_buffers_update(ctx, up, nr_args);
10543 }
10544 return -EINVAL;
10545 }
10546
10547 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10548 unsigned nr_args)
10549 {
10550 struct io_uring_rsrc_update2 up;
10551
10552 if (!nr_args)
10553 return -EINVAL;
10554 memset(&up, 0, sizeof(up));
10555 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10556 return -EFAULT;
10557 if (up.resv || up.resv2)
10558 return -EINVAL;
10559 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10560 }
10561
10562 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10563 unsigned size, unsigned type)
10564 {
10565 struct io_uring_rsrc_update2 up;
10566
10567 if (size != sizeof(up))
10568 return -EINVAL;
10569 if (copy_from_user(&up, arg, sizeof(up)))
10570 return -EFAULT;
10571 if (!up.nr || up.resv || up.resv2)
10572 return -EINVAL;
10573 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10574 }
10575
10576 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10577 unsigned int size, unsigned int type)
10578 {
10579 struct io_uring_rsrc_register rr;
10580
10581 /* keep it extendible */
10582 if (size != sizeof(rr))
10583 return -EINVAL;
10584
10585 memset(&rr, 0, sizeof(rr));
10586 if (copy_from_user(&rr, arg, size))
10587 return -EFAULT;
10588 if (!rr.nr || rr.resv || rr.resv2)
10589 return -EINVAL;
10590
10591 switch (type) {
10592 case IORING_RSRC_FILE:
10593 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10594 rr.nr, u64_to_user_ptr(rr.tags));
10595 case IORING_RSRC_BUFFER:
10596 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10597 rr.nr, u64_to_user_ptr(rr.tags));
10598 }
10599 return -EINVAL;
10600 }
10601
10602 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10603 unsigned len)
10604 {
10605 struct io_uring_task *tctx = current->io_uring;
10606 cpumask_var_t new_mask;
10607 int ret;
10608
10609 if (!tctx || !tctx->io_wq)
10610 return -EINVAL;
10611
10612 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10613 return -ENOMEM;
10614
10615 cpumask_clear(new_mask);
10616 if (len > cpumask_size())
10617 len = cpumask_size();
10618
10619 if (in_compat_syscall()) {
10620 ret = compat_get_bitmap(cpumask_bits(new_mask),
10621 (const compat_ulong_t __user *)arg,
10622 len * 8 /* CHAR_BIT */);
10623 } else {
10624 ret = copy_from_user(new_mask, arg, len);
10625 }
10626
10627 if (ret) {
10628 free_cpumask_var(new_mask);
10629 return -EFAULT;
10630 }
10631
10632 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10633 free_cpumask_var(new_mask);
10634 return ret;
10635 }
10636
10637 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10638 {
10639 struct io_uring_task *tctx = current->io_uring;
10640
10641 if (!tctx || !tctx->io_wq)
10642 return -EINVAL;
10643
10644 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10645 }
10646
10647 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10648 void __user *arg)
10649 __must_hold(&ctx->uring_lock)
10650 {
10651 struct io_tctx_node *node;
10652 struct io_uring_task *tctx = NULL;
10653 struct io_sq_data *sqd = NULL;
10654 __u32 new_count[2];
10655 int i, ret;
10656
10657 if (copy_from_user(new_count, arg, sizeof(new_count)))
10658 return -EFAULT;
10659 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10660 if (new_count[i] > INT_MAX)
10661 return -EINVAL;
10662
10663 if (ctx->flags & IORING_SETUP_SQPOLL) {
10664 sqd = ctx->sq_data;
10665 if (sqd) {
10666 /*
10667 * Observe the correct sqd->lock -> ctx->uring_lock
10668 * ordering. Fine to drop uring_lock here, we hold
10669 * a ref to the ctx.
10670 */
10671 refcount_inc(&sqd->refs);
10672 mutex_unlock(&ctx->uring_lock);
10673 mutex_lock(&sqd->lock);
10674 mutex_lock(&ctx->uring_lock);
10675 if (sqd->thread)
10676 tctx = sqd->thread->io_uring;
10677 }
10678 } else {
10679 tctx = current->io_uring;
10680 }
10681
10682 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10683
10684 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10685 if (new_count[i])
10686 ctx->iowq_limits[i] = new_count[i];
10687 ctx->iowq_limits_set = true;
10688
10689 ret = -EINVAL;
10690 if (tctx && tctx->io_wq) {
10691 ret = io_wq_max_workers(tctx->io_wq, new_count);
10692 if (ret)
10693 goto err;
10694 } else {
10695 memset(new_count, 0, sizeof(new_count));
10696 }
10697
10698 if (sqd) {
10699 mutex_unlock(&sqd->lock);
10700 io_put_sq_data(sqd);
10701 }
10702
10703 if (copy_to_user(arg, new_count, sizeof(new_count)))
10704 return -EFAULT;
10705
10706 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10707 if (sqd)
10708 return 0;
10709
10710 /* now propagate the restriction to all registered users */
10711 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10712 struct io_uring_task *tctx = node->task->io_uring;
10713
10714 if (WARN_ON_ONCE(!tctx->io_wq))
10715 continue;
10716
10717 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10718 new_count[i] = ctx->iowq_limits[i];
10719 /* ignore errors, it always returns zero anyway */
10720 (void)io_wq_max_workers(tctx->io_wq, new_count);
10721 }
10722 return 0;
10723 err:
10724 if (sqd) {
10725 mutex_unlock(&sqd->lock);
10726 io_put_sq_data(sqd);
10727 }
10728 return ret;
10729 }
10730
10731 static bool io_register_op_must_quiesce(int op)
10732 {
10733 switch (op) {
10734 case IORING_REGISTER_BUFFERS:
10735 case IORING_UNREGISTER_BUFFERS:
10736 case IORING_REGISTER_FILES:
10737 case IORING_UNREGISTER_FILES:
10738 case IORING_REGISTER_FILES_UPDATE:
10739 case IORING_REGISTER_PROBE:
10740 case IORING_REGISTER_PERSONALITY:
10741 case IORING_UNREGISTER_PERSONALITY:
10742 case IORING_REGISTER_FILES2:
10743 case IORING_REGISTER_FILES_UPDATE2:
10744 case IORING_REGISTER_BUFFERS2:
10745 case IORING_REGISTER_BUFFERS_UPDATE:
10746 case IORING_REGISTER_IOWQ_AFF:
10747 case IORING_UNREGISTER_IOWQ_AFF:
10748 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10749 return false;
10750 default:
10751 return true;
10752 }
10753 }
10754
10755 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10756 {
10757 long ret;
10758
10759 percpu_ref_kill(&ctx->refs);
10760
10761 /*
10762 * Drop uring mutex before waiting for references to exit. If another
10763 * thread is currently inside io_uring_enter() it might need to grab the
10764 * uring_lock to make progress. If we hold it here across the drain
10765 * wait, then we can deadlock. It's safe to drop the mutex here, since
10766 * no new references will come in after we've killed the percpu ref.
10767 */
10768 mutex_unlock(&ctx->uring_lock);
10769 do {
10770 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10771 if (!ret)
10772 break;
10773 ret = io_run_task_work_sig();
10774 } while (ret >= 0);
10775 mutex_lock(&ctx->uring_lock);
10776
10777 if (ret)
10778 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10779 return ret;
10780 }
10781
10782 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10783 void __user *arg, unsigned nr_args)
10784 __releases(ctx->uring_lock)
10785 __acquires(ctx->uring_lock)
10786 {
10787 int ret;
10788
10789 /*
10790 * We're inside the ring mutex, if the ref is already dying, then
10791 * someone else killed the ctx or is already going through
10792 * io_uring_register().
10793 */
10794 if (percpu_ref_is_dying(&ctx->refs))
10795 return -ENXIO;
10796
10797 if (ctx->restricted) {
10798 if (opcode >= IORING_REGISTER_LAST)
10799 return -EINVAL;
10800 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10801 if (!test_bit(opcode, ctx->restrictions.register_op))
10802 return -EACCES;
10803 }
10804
10805 if (io_register_op_must_quiesce(opcode)) {
10806 ret = io_ctx_quiesce(ctx);
10807 if (ret)
10808 return ret;
10809 }
10810
10811 switch (opcode) {
10812 case IORING_REGISTER_BUFFERS:
10813 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10814 break;
10815 case IORING_UNREGISTER_BUFFERS:
10816 ret = -EINVAL;
10817 if (arg || nr_args)
10818 break;
10819 ret = io_sqe_buffers_unregister(ctx);
10820 break;
10821 case IORING_REGISTER_FILES:
10822 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10823 break;
10824 case IORING_UNREGISTER_FILES:
10825 ret = -EINVAL;
10826 if (arg || nr_args)
10827 break;
10828 ret = io_sqe_files_unregister(ctx);
10829 break;
10830 case IORING_REGISTER_FILES_UPDATE:
10831 ret = io_register_files_update(ctx, arg, nr_args);
10832 break;
10833 case IORING_REGISTER_EVENTFD:
10834 case IORING_REGISTER_EVENTFD_ASYNC:
10835 ret = -EINVAL;
10836 if (nr_args != 1)
10837 break;
10838 ret = io_eventfd_register(ctx, arg);
10839 if (ret)
10840 break;
10841 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10842 ctx->eventfd_async = 1;
10843 else
10844 ctx->eventfd_async = 0;
10845 break;
10846 case IORING_UNREGISTER_EVENTFD:
10847 ret = -EINVAL;
10848 if (arg || nr_args)
10849 break;
10850 ret = io_eventfd_unregister(ctx);
10851 break;
10852 case IORING_REGISTER_PROBE:
10853 ret = -EINVAL;
10854 if (!arg || nr_args > 256)
10855 break;
10856 ret = io_probe(ctx, arg, nr_args);
10857 break;
10858 case IORING_REGISTER_PERSONALITY:
10859 ret = -EINVAL;
10860 if (arg || nr_args)
10861 break;
10862 ret = io_register_personality(ctx);
10863 break;
10864 case IORING_UNREGISTER_PERSONALITY:
10865 ret = -EINVAL;
10866 if (arg)
10867 break;
10868 ret = io_unregister_personality(ctx, nr_args);
10869 break;
10870 case IORING_REGISTER_ENABLE_RINGS:
10871 ret = -EINVAL;
10872 if (arg || nr_args)
10873 break;
10874 ret = io_register_enable_rings(ctx);
10875 break;
10876 case IORING_REGISTER_RESTRICTIONS:
10877 ret = io_register_restrictions(ctx, arg, nr_args);
10878 break;
10879 case IORING_REGISTER_FILES2:
10880 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10881 break;
10882 case IORING_REGISTER_FILES_UPDATE2:
10883 ret = io_register_rsrc_update(ctx, arg, nr_args,
10884 IORING_RSRC_FILE);
10885 break;
10886 case IORING_REGISTER_BUFFERS2:
10887 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10888 break;
10889 case IORING_REGISTER_BUFFERS_UPDATE:
10890 ret = io_register_rsrc_update(ctx, arg, nr_args,
10891 IORING_RSRC_BUFFER);
10892 break;
10893 case IORING_REGISTER_IOWQ_AFF:
10894 ret = -EINVAL;
10895 if (!arg || !nr_args)
10896 break;
10897 ret = io_register_iowq_aff(ctx, arg, nr_args);
10898 break;
10899 case IORING_UNREGISTER_IOWQ_AFF:
10900 ret = -EINVAL;
10901 if (arg || nr_args)
10902 break;
10903 ret = io_unregister_iowq_aff(ctx);
10904 break;
10905 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10906 ret = -EINVAL;
10907 if (!arg || nr_args != 2)
10908 break;
10909 ret = io_register_iowq_max_workers(ctx, arg);
10910 break;
10911 default:
10912 ret = -EINVAL;
10913 break;
10914 }
10915
10916 if (io_register_op_must_quiesce(opcode)) {
10917 /* bring the ctx back to life */
10918 percpu_ref_reinit(&ctx->refs);
10919 reinit_completion(&ctx->ref_comp);
10920 }
10921 return ret;
10922 }
10923
10924 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10925 void __user *, arg, unsigned int, nr_args)
10926 {
10927 struct io_ring_ctx *ctx;
10928 long ret = -EBADF;
10929 struct fd f;
10930
10931 f = fdget(fd);
10932 if (!f.file)
10933 return -EBADF;
10934
10935 ret = -EOPNOTSUPP;
10936 if (f.file->f_op != &io_uring_fops)
10937 goto out_fput;
10938
10939 ctx = f.file->private_data;
10940
10941 io_run_task_work();
10942
10943 mutex_lock(&ctx->uring_lock);
10944 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10945 mutex_unlock(&ctx->uring_lock);
10946 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10947 ctx->cq_ev_fd != NULL, ret);
10948 out_fput:
10949 fdput(f);
10950 return ret;
10951 }
10952
10953 static int __init io_uring_init(void)
10954 {
10955 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10956 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10957 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10958 } while (0)
10959
10960 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10961 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10962 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10963 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10964 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10965 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10966 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10967 BUILD_BUG_SQE_ELEM(8, __u64, off);
10968 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10969 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10970 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10971 BUILD_BUG_SQE_ELEM(24, __u32, len);
10972 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10973 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10974 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10975 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10976 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10977 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10978 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10979 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10980 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10981 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10982 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10983 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10984 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10985 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10986 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10987 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10988 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10989 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
10990 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10991 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10992 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
10993
10994 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10995 sizeof(struct io_uring_rsrc_update));
10996 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10997 sizeof(struct io_uring_rsrc_update2));
10998
10999 /* ->buf_index is u16 */
11000 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11001
11002 /* should fit into one byte */
11003 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11004
11005 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11006 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11007
11008 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11009 SLAB_ACCOUNT);
11010 return 0;
11011 };
11012 __initcall(io_uring_init);