]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: clean cqe filling functions
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 bool done;
490 bool canceled;
491 struct wait_queue_entry wait;
492 };
493
494 struct io_poll_update {
495 struct file *file;
496 u64 old_user_data;
497 u64 new_user_data;
498 __poll_t events;
499 bool update_events;
500 bool update_user_data;
501 };
502
503 struct io_close {
504 struct file *file;
505 int fd;
506 u32 file_slot;
507 };
508
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
514 u32 flags;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 u32 file_slot;
523 unsigned long nofile;
524 };
525
526 struct io_sync {
527 struct file *file;
528 loff_t len;
529 loff_t off;
530 int flags;
531 int mode;
532 };
533
534 struct io_cancel {
535 struct file *file;
536 u64 addr;
537 };
538
539 struct io_timeout {
540 struct file *file;
541 u32 off;
542 u32 target_seq;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 bool ltimeout;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 u32 file_slot;
590 struct filename *filename;
591 struct open_how how;
592 unsigned long nofile;
593 };
594
595 struct io_rsrc_update {
596 struct file *file;
597 u64 arg;
598 u32 nr_args;
599 u32 offset;
600 };
601
602 struct io_fadvise {
603 struct file *file;
604 u64 offset;
605 u32 len;
606 u32 advice;
607 };
608
609 struct io_madvise {
610 struct file *file;
611 u64 addr;
612 u32 len;
613 u32 advice;
614 };
615
616 struct io_epoll {
617 struct file *file;
618 int epfd;
619 int op;
620 int fd;
621 struct epoll_event event;
622 };
623
624 struct io_splice {
625 struct file *file_out;
626 loff_t off_out;
627 loff_t off_in;
628 u64 len;
629 int splice_fd_in;
630 unsigned int flags;
631 };
632
633 struct io_provide_buf {
634 struct file *file;
635 __u64 addr;
636 __u32 len;
637 __u32 bgid;
638 __u16 nbufs;
639 __u16 bid;
640 };
641
642 struct io_statx {
643 struct file *file;
644 int dfd;
645 unsigned int mask;
646 unsigned int flags;
647 const char __user *filename;
648 struct statx __user *buffer;
649 };
650
651 struct io_shutdown {
652 struct file *file;
653 int how;
654 };
655
656 struct io_rename {
657 struct file *file;
658 int old_dfd;
659 int new_dfd;
660 struct filename *oldpath;
661 struct filename *newpath;
662 int flags;
663 };
664
665 struct io_unlink {
666 struct file *file;
667 int dfd;
668 int flags;
669 struct filename *filename;
670 };
671
672 struct io_mkdir {
673 struct file *file;
674 int dfd;
675 umode_t mode;
676 struct filename *filename;
677 };
678
679 struct io_symlink {
680 struct file *file;
681 int new_dfd;
682 struct filename *oldpath;
683 struct filename *newpath;
684 };
685
686 struct io_hardlink {
687 struct file *file;
688 int old_dfd;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 int flags;
693 };
694
695 struct io_completion {
696 struct file *file;
697 u32 cflags;
698 };
699
700 struct io_async_connect {
701 struct sockaddr_storage address;
702 };
703
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
709 struct msghdr msg;
710 struct sockaddr_storage addr;
711 };
712
713 struct io_async_rw {
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
718 size_t bytes_done;
719 struct wait_page_queue wpq;
720 };
721
722 enum {
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
729
730 /* first byte is taken by user flags, shift it to not overlap */
731 REQ_F_FAIL_BIT = 8,
732 REQ_F_INFLIGHT_BIT,
733 REQ_F_CUR_POS_BIT,
734 REQ_F_NOWAIT_BIT,
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
737 REQ_F_POLLED_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
740 REQ_F_REISSUE_BIT,
741 REQ_F_CREDS_BIT,
742 REQ_F_REFCOUNT_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800
801 struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804 };
805
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808 struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814 };
815
816 enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819 };
820
821 /*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827 struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888 };
889
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894 };
895
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900 };
901
902 struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922 };
923
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070 };
1071
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1083
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106
1107 static struct kmem_cache *req_cachep;
1108
1109 static const struct file_operations io_uring_fops;
1110
1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1116
1117 return ctx->ring_sock->sk;
1118 }
1119 #endif
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 if (!*locked) {
1127 mutex_lock(&ctx->uring_lock);
1128 *locked = true;
1129 }
1130 }
1131
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1134
1135 /*
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1138 */
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1146 }
1147
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 return true;
1152
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1155 }
1156
1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162
1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1168 }
1169
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1175 }
1176 }
1177
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 __io_req_set_refcount(req, 1);
1181 }
1182
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 struct io_ring_ctx *ctx = req->ctx;
1186
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1190 }
1191 }
1192
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 bool got = percpu_ref_tryget(ref);
1196
1197 /* already at zero, wait for ->release() */
1198 if (!got)
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1201 if (got)
1202 percpu_ref_put(ref);
1203 }
1204
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 bool cancel_all)
1207 __must_hold(&req->ctx->timeout_lock)
1208 {
1209 struct io_kiocb *req;
1210
1211 if (task && head->task != task)
1212 return false;
1213 if (cancel_all)
1214 return true;
1215
1216 io_for_each_link(req, head) {
1217 if (req->flags & REQ_F_INFLIGHT)
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 static bool io_match_linked(struct io_kiocb *head)
1224 {
1225 struct io_kiocb *req;
1226
1227 io_for_each_link(req, head) {
1228 if (req->flags & REQ_F_INFLIGHT)
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 /*
1235 * As io_match_task() but protected against racing with linked timeouts.
1236 * User must not hold timeout_lock.
1237 */
1238 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1239 bool cancel_all)
1240 {
1241 bool matched;
1242
1243 if (task && head->task != task)
1244 return false;
1245 if (cancel_all)
1246 return true;
1247
1248 if (head->flags & REQ_F_LINK_TIMEOUT) {
1249 struct io_ring_ctx *ctx = head->ctx;
1250
1251 /* protect against races with linked timeouts */
1252 spin_lock_irq(&ctx->timeout_lock);
1253 matched = io_match_linked(head);
1254 spin_unlock_irq(&ctx->timeout_lock);
1255 } else {
1256 matched = io_match_linked(head);
1257 }
1258 return matched;
1259 }
1260
1261 static inline void req_set_fail(struct io_kiocb *req)
1262 {
1263 req->flags |= REQ_F_FAIL;
1264 }
1265
1266 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1267 {
1268 req_set_fail(req);
1269 req->result = res;
1270 }
1271
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1273 {
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1275
1276 complete(&ctx->ref_comp);
1277 }
1278
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1280 {
1281 return !req->timeout.off;
1282 }
1283
1284 static void io_fallback_req_func(struct work_struct *work)
1285 {
1286 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1287 fallback_work.work);
1288 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1289 struct io_kiocb *req, *tmp;
1290 bool locked = false;
1291
1292 percpu_ref_get(&ctx->refs);
1293 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1294 req->io_task_work.func(req, &locked);
1295
1296 if (locked) {
1297 if (ctx->submit_state.compl_nr)
1298 io_submit_flush_completions(ctx);
1299 mutex_unlock(&ctx->uring_lock);
1300 }
1301 percpu_ref_put(&ctx->refs);
1302
1303 }
1304
1305 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1306 {
1307 struct io_ring_ctx *ctx;
1308 int hash_bits;
1309
1310 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1311 if (!ctx)
1312 return NULL;
1313
1314 /*
1315 * Use 5 bits less than the max cq entries, that should give us around
1316 * 32 entries per hash list if totally full and uniformly spread.
1317 */
1318 hash_bits = ilog2(p->cq_entries);
1319 hash_bits -= 5;
1320 if (hash_bits <= 0)
1321 hash_bits = 1;
1322 ctx->cancel_hash_bits = hash_bits;
1323 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1324 GFP_KERNEL);
1325 if (!ctx->cancel_hash)
1326 goto err;
1327 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1328
1329 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1330 if (!ctx->dummy_ubuf)
1331 goto err;
1332 /* set invalid range, so io_import_fixed() fails meeting it */
1333 ctx->dummy_ubuf->ubuf = -1UL;
1334
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1337 goto err;
1338
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->poll_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1346 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1347 mutex_init(&ctx->uring_lock);
1348 init_waitqueue_head(&ctx->cq_wait);
1349 spin_lock_init(&ctx->completion_lock);
1350 spin_lock_init(&ctx->timeout_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 INIT_LIST_HEAD(&ctx->ltimeout_list);
1355 spin_lock_init(&ctx->rsrc_ref_lock);
1356 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1357 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1358 init_llist_head(&ctx->rsrc_put_llist);
1359 INIT_LIST_HEAD(&ctx->tctx_list);
1360 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1361 INIT_LIST_HEAD(&ctx->locked_free_list);
1362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1363 return ctx;
1364 err:
1365 kfree(ctx->dummy_ubuf);
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1372 {
1373 struct io_rings *r = ctx->rings;
1374
1375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1376 ctx->cq_extra--;
1377 }
1378
1379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1380 {
1381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1382 struct io_ring_ctx *ctx = req->ctx;
1383
1384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1385 }
1386
1387 return false;
1388 }
1389
1390 #define FFS_ASYNC_READ 0x1UL
1391 #define FFS_ASYNC_WRITE 0x2UL
1392 #ifdef CONFIG_64BIT
1393 #define FFS_ISREG 0x4UL
1394 #else
1395 #define FFS_ISREG 0x0UL
1396 #endif
1397 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1398
1399 static inline bool io_req_ffs_set(struct io_kiocb *req)
1400 {
1401 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1402 }
1403
1404 static void io_req_track_inflight(struct io_kiocb *req)
1405 {
1406 if (!(req->flags & REQ_F_INFLIGHT)) {
1407 req->flags |= REQ_F_INFLIGHT;
1408 atomic_inc(&current->io_uring->inflight_tracked);
1409 }
1410 }
1411
1412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1413 {
1414 if (WARN_ON_ONCE(!req->link))
1415 return NULL;
1416
1417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1418 req->flags |= REQ_F_LINK_TIMEOUT;
1419
1420 /* linked timeouts should have two refs once prep'ed */
1421 io_req_set_refcount(req);
1422 __io_req_set_refcount(req->link, 2);
1423 return req->link;
1424 }
1425
1426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1427 {
1428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1429 return NULL;
1430 return __io_prep_linked_timeout(req);
1431 }
1432
1433 static void io_prep_async_work(struct io_kiocb *req)
1434 {
1435 const struct io_op_def *def = &io_op_defs[req->opcode];
1436 struct io_ring_ctx *ctx = req->ctx;
1437
1438 if (!(req->flags & REQ_F_CREDS)) {
1439 req->flags |= REQ_F_CREDS;
1440 req->creds = get_current_cred();
1441 }
1442
1443 req->work.list.next = NULL;
1444 req->work.flags = 0;
1445 if (req->flags & REQ_F_FORCE_ASYNC)
1446 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1447
1448 if (req->flags & REQ_F_ISREG) {
1449 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1450 io_wq_hash_work(&req->work, file_inode(req->file));
1451 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1452 if (def->unbound_nonreg_file)
1453 req->work.flags |= IO_WQ_WORK_UNBOUND;
1454 }
1455 }
1456
1457 static void io_prep_async_link(struct io_kiocb *req)
1458 {
1459 struct io_kiocb *cur;
1460
1461 if (req->flags & REQ_F_LINK_TIMEOUT) {
1462 struct io_ring_ctx *ctx = req->ctx;
1463
1464 spin_lock_irq(&ctx->timeout_lock);
1465 io_for_each_link(cur, req)
1466 io_prep_async_work(cur);
1467 spin_unlock_irq(&ctx->timeout_lock);
1468 } else {
1469 io_for_each_link(cur, req)
1470 io_prep_async_work(cur);
1471 }
1472 }
1473
1474 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1475 {
1476 struct io_ring_ctx *ctx = req->ctx;
1477 struct io_kiocb *link = io_prep_linked_timeout(req);
1478 struct io_uring_task *tctx = req->task->io_uring;
1479
1480 /* must not take the lock, NULL it as a precaution */
1481 locked = NULL;
1482
1483 BUG_ON(!tctx);
1484 BUG_ON(!tctx->io_wq);
1485
1486 /* init ->work of the whole link before punting */
1487 io_prep_async_link(req);
1488
1489 /*
1490 * Not expected to happen, but if we do have a bug where this _can_
1491 * happen, catch it here and ensure the request is marked as
1492 * canceled. That will make io-wq go through the usual work cancel
1493 * procedure rather than attempt to run this request (or create a new
1494 * worker for it).
1495 */
1496 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1497 req->work.flags |= IO_WQ_WORK_CANCEL;
1498
1499 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1500 &req->work, req->flags);
1501 io_wq_enqueue(tctx->io_wq, &req->work);
1502 if (link)
1503 io_queue_linked_timeout(link);
1504 }
1505
1506 static void io_kill_timeout(struct io_kiocb *req, int status)
1507 __must_hold(&req->ctx->completion_lock)
1508 __must_hold(&req->ctx->timeout_lock)
1509 {
1510 struct io_timeout_data *io = req->async_data;
1511
1512 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1513 if (status)
1514 req_set_fail(req);
1515 atomic_set(&req->ctx->cq_timeouts,
1516 atomic_read(&req->ctx->cq_timeouts) + 1);
1517 list_del_init(&req->timeout.list);
1518 io_fill_cqe_req(req, status, 0);
1519 io_put_req_deferred(req);
1520 }
1521 }
1522
1523 static void io_queue_deferred(struct io_ring_ctx *ctx)
1524 {
1525 while (!list_empty(&ctx->defer_list)) {
1526 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1527 struct io_defer_entry, list);
1528
1529 if (req_need_defer(de->req, de->seq))
1530 break;
1531 list_del_init(&de->list);
1532 io_req_task_queue(de->req);
1533 kfree(de);
1534 }
1535 }
1536
1537 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1538 __must_hold(&ctx->completion_lock)
1539 {
1540 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1541 struct io_kiocb *req, *tmp;
1542
1543 spin_lock_irq(&ctx->timeout_lock);
1544 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1545 u32 events_needed, events_got;
1546
1547 if (io_is_timeout_noseq(req))
1548 break;
1549
1550 /*
1551 * Since seq can easily wrap around over time, subtract
1552 * the last seq at which timeouts were flushed before comparing.
1553 * Assuming not more than 2^31-1 events have happened since,
1554 * these subtractions won't have wrapped, so we can check if
1555 * target is in [last_seq, current_seq] by comparing the two.
1556 */
1557 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1558 events_got = seq - ctx->cq_last_tm_flush;
1559 if (events_got < events_needed)
1560 break;
1561
1562 io_kill_timeout(req, 0);
1563 }
1564 ctx->cq_last_tm_flush = seq;
1565 spin_unlock_irq(&ctx->timeout_lock);
1566 }
1567
1568 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1569 {
1570 if (ctx->off_timeout_used)
1571 io_flush_timeouts(ctx);
1572 if (ctx->drain_active)
1573 io_queue_deferred(ctx);
1574 }
1575
1576 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1577 {
1578 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1579 __io_commit_cqring_flush(ctx);
1580 /* order cqe stores with ring update */
1581 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1582 }
1583
1584 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1585 {
1586 struct io_rings *r = ctx->rings;
1587
1588 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1589 }
1590
1591 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1592 {
1593 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1594 }
1595
1596 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1597 {
1598 struct io_rings *rings = ctx->rings;
1599 unsigned tail, mask = ctx->cq_entries - 1;
1600
1601 /*
1602 * writes to the cq entry need to come after reading head; the
1603 * control dependency is enough as we're using WRITE_ONCE to
1604 * fill the cq entry
1605 */
1606 if (__io_cqring_events(ctx) == ctx->cq_entries)
1607 return NULL;
1608
1609 tail = ctx->cached_cq_tail++;
1610 return &rings->cqes[tail & mask];
1611 }
1612
1613 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1614 {
1615 if (likely(!ctx->cq_ev_fd))
1616 return false;
1617 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1618 return false;
1619 return !ctx->eventfd_async || io_wq_current_is_worker();
1620 }
1621
1622 /*
1623 * This should only get called when at least one event has been posted.
1624 * Some applications rely on the eventfd notification count only changing
1625 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1626 * 1:1 relationship between how many times this function is called (and
1627 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1628 */
1629 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1630 {
1631 /*
1632 * wake_up_all() may seem excessive, but io_wake_function() and
1633 * io_should_wake() handle the termination of the loop and only
1634 * wake as many waiters as we need to.
1635 */
1636 if (wq_has_sleeper(&ctx->cq_wait))
1637 wake_up_all(&ctx->cq_wait);
1638 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1639 wake_up(&ctx->sq_data->wait);
1640 if (io_should_trigger_evfd(ctx))
1641 eventfd_signal(ctx->cq_ev_fd, 1);
1642 if (waitqueue_active(&ctx->poll_wait))
1643 wake_up_interruptible(&ctx->poll_wait);
1644 }
1645
1646 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1647 {
1648 /* see waitqueue_active() comment */
1649 smp_mb();
1650
1651 if (ctx->flags & IORING_SETUP_SQPOLL) {
1652 if (waitqueue_active(&ctx->cq_wait))
1653 wake_up_all(&ctx->cq_wait);
1654 }
1655 if (io_should_trigger_evfd(ctx))
1656 eventfd_signal(ctx->cq_ev_fd, 1);
1657 if (waitqueue_active(&ctx->poll_wait))
1658 wake_up_interruptible(&ctx->poll_wait);
1659 }
1660
1661 /* Returns true if there are no backlogged entries after the flush */
1662 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1663 {
1664 bool all_flushed, posted;
1665
1666 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1667 return false;
1668
1669 posted = false;
1670 spin_lock(&ctx->completion_lock);
1671 while (!list_empty(&ctx->cq_overflow_list)) {
1672 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1673 struct io_overflow_cqe *ocqe;
1674
1675 if (!cqe && !force)
1676 break;
1677 ocqe = list_first_entry(&ctx->cq_overflow_list,
1678 struct io_overflow_cqe, list);
1679 if (cqe)
1680 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1681 else
1682 io_account_cq_overflow(ctx);
1683
1684 posted = true;
1685 list_del(&ocqe->list);
1686 kfree(ocqe);
1687 }
1688
1689 all_flushed = list_empty(&ctx->cq_overflow_list);
1690 if (all_flushed) {
1691 clear_bit(0, &ctx->check_cq_overflow);
1692 WRITE_ONCE(ctx->rings->sq_flags,
1693 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1694 }
1695
1696 if (posted)
1697 io_commit_cqring(ctx);
1698 spin_unlock(&ctx->completion_lock);
1699 if (posted)
1700 io_cqring_ev_posted(ctx);
1701 return all_flushed;
1702 }
1703
1704 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1705 {
1706 bool ret = true;
1707
1708 if (test_bit(0, &ctx->check_cq_overflow)) {
1709 /* iopoll syncs against uring_lock, not completion_lock */
1710 if (ctx->flags & IORING_SETUP_IOPOLL)
1711 mutex_lock(&ctx->uring_lock);
1712 ret = __io_cqring_overflow_flush(ctx, false);
1713 if (ctx->flags & IORING_SETUP_IOPOLL)
1714 mutex_unlock(&ctx->uring_lock);
1715 }
1716
1717 return ret;
1718 }
1719
1720 /* must to be called somewhat shortly after putting a request */
1721 static inline void io_put_task(struct task_struct *task, int nr)
1722 {
1723 struct io_uring_task *tctx = task->io_uring;
1724
1725 if (likely(task == current)) {
1726 tctx->cached_refs += nr;
1727 } else {
1728 percpu_counter_sub(&tctx->inflight, nr);
1729 if (unlikely(atomic_read(&tctx->in_idle)))
1730 wake_up(&tctx->wait);
1731 put_task_struct_many(task, nr);
1732 }
1733 }
1734
1735 static void io_task_refs_refill(struct io_uring_task *tctx)
1736 {
1737 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1738
1739 percpu_counter_add(&tctx->inflight, refill);
1740 refcount_add(refill, &current->usage);
1741 tctx->cached_refs += refill;
1742 }
1743
1744 static inline void io_get_task_refs(int nr)
1745 {
1746 struct io_uring_task *tctx = current->io_uring;
1747
1748 tctx->cached_refs -= nr;
1749 if (unlikely(tctx->cached_refs < 0))
1750 io_task_refs_refill(tctx);
1751 }
1752
1753 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1754 {
1755 struct io_uring_task *tctx = task->io_uring;
1756 unsigned int refs = tctx->cached_refs;
1757
1758 if (refs) {
1759 tctx->cached_refs = 0;
1760 percpu_counter_sub(&tctx->inflight, refs);
1761 put_task_struct_many(task, refs);
1762 }
1763 }
1764
1765 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1766 s32 res, u32 cflags)
1767 {
1768 struct io_overflow_cqe *ocqe;
1769
1770 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1771 if (!ocqe) {
1772 /*
1773 * If we're in ring overflow flush mode, or in task cancel mode,
1774 * or cannot allocate an overflow entry, then we need to drop it
1775 * on the floor.
1776 */
1777 io_account_cq_overflow(ctx);
1778 return false;
1779 }
1780 if (list_empty(&ctx->cq_overflow_list)) {
1781 set_bit(0, &ctx->check_cq_overflow);
1782 WRITE_ONCE(ctx->rings->sq_flags,
1783 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1784
1785 }
1786 ocqe->cqe.user_data = user_data;
1787 ocqe->cqe.res = res;
1788 ocqe->cqe.flags = cflags;
1789 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1790 return true;
1791 }
1792
1793 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1794 s32 res, u32 cflags)
1795 {
1796 struct io_uring_cqe *cqe;
1797
1798 trace_io_uring_complete(ctx, user_data, res, cflags);
1799
1800 /*
1801 * If we can't get a cq entry, userspace overflowed the
1802 * submission (by quite a lot). Increment the overflow count in
1803 * the ring.
1804 */
1805 cqe = io_get_cqe(ctx);
1806 if (likely(cqe)) {
1807 WRITE_ONCE(cqe->user_data, user_data);
1808 WRITE_ONCE(cqe->res, res);
1809 WRITE_ONCE(cqe->flags, cflags);
1810 return true;
1811 }
1812 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1813 }
1814
1815 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1816 {
1817 __io_fill_cqe(req->ctx, req->user_data, res, cflags);
1818 }
1819
1820 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1821 s32 res, u32 cflags)
1822 {
1823 ctx->cq_extra++;
1824 return __io_fill_cqe(ctx, user_data, res, cflags);
1825 }
1826
1827 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1828 u32 cflags)
1829 {
1830 struct io_ring_ctx *ctx = req->ctx;
1831
1832 spin_lock(&ctx->completion_lock);
1833 __io_fill_cqe(ctx, req->user_data, res, cflags);
1834 /*
1835 * If we're the last reference to this request, add to our locked
1836 * free_list cache.
1837 */
1838 if (req_ref_put_and_test(req)) {
1839 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1840 if (req->flags & IO_DISARM_MASK)
1841 io_disarm_next(req);
1842 if (req->link) {
1843 io_req_task_queue(req->link);
1844 req->link = NULL;
1845 }
1846 }
1847 io_dismantle_req(req);
1848 io_put_task(req->task, 1);
1849 list_add(&req->inflight_entry, &ctx->locked_free_list);
1850 ctx->locked_free_nr++;
1851 } else {
1852 if (!percpu_ref_tryget(&ctx->refs))
1853 req = NULL;
1854 }
1855 io_commit_cqring(ctx);
1856 spin_unlock(&ctx->completion_lock);
1857
1858 if (req) {
1859 io_cqring_ev_posted(ctx);
1860 percpu_ref_put(&ctx->refs);
1861 }
1862 }
1863
1864 static inline bool io_req_needs_clean(struct io_kiocb *req)
1865 {
1866 return req->flags & IO_REQ_CLEAN_FLAGS;
1867 }
1868
1869 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1870 u32 cflags)
1871 {
1872 if (io_req_needs_clean(req))
1873 io_clean_op(req);
1874 req->result = res;
1875 req->compl.cflags = cflags;
1876 req->flags |= REQ_F_COMPLETE_INLINE;
1877 }
1878
1879 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1880 s32 res, u32 cflags)
1881 {
1882 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1883 io_req_complete_state(req, res, cflags);
1884 else
1885 io_req_complete_post(req, res, cflags);
1886 }
1887
1888 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1889 {
1890 __io_req_complete(req, 0, res, 0);
1891 }
1892
1893 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1894 {
1895 req_set_fail(req);
1896 io_req_complete_post(req, res, 0);
1897 }
1898
1899 static void io_req_complete_fail_submit(struct io_kiocb *req)
1900 {
1901 /*
1902 * We don't submit, fail them all, for that replace hardlinks with
1903 * normal links. Extra REQ_F_LINK is tolerated.
1904 */
1905 req->flags &= ~REQ_F_HARDLINK;
1906 req->flags |= REQ_F_LINK;
1907 io_req_complete_failed(req, req->result);
1908 }
1909
1910 /*
1911 * Don't initialise the fields below on every allocation, but do that in
1912 * advance and keep them valid across allocations.
1913 */
1914 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1915 {
1916 req->ctx = ctx;
1917 req->link = NULL;
1918 req->async_data = NULL;
1919 /* not necessary, but safer to zero */
1920 req->result = 0;
1921 }
1922
1923 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1924 struct io_submit_state *state)
1925 {
1926 spin_lock(&ctx->completion_lock);
1927 list_splice_init(&ctx->locked_free_list, &state->free_list);
1928 ctx->locked_free_nr = 0;
1929 spin_unlock(&ctx->completion_lock);
1930 }
1931
1932 /* Returns true IFF there are requests in the cache */
1933 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1934 {
1935 struct io_submit_state *state = &ctx->submit_state;
1936 int nr;
1937
1938 /*
1939 * If we have more than a batch's worth of requests in our IRQ side
1940 * locked cache, grab the lock and move them over to our submission
1941 * side cache.
1942 */
1943 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1944 io_flush_cached_locked_reqs(ctx, state);
1945
1946 nr = state->free_reqs;
1947 while (!list_empty(&state->free_list)) {
1948 struct io_kiocb *req = list_first_entry(&state->free_list,
1949 struct io_kiocb, inflight_entry);
1950
1951 list_del(&req->inflight_entry);
1952 state->reqs[nr++] = req;
1953 if (nr == ARRAY_SIZE(state->reqs))
1954 break;
1955 }
1956
1957 state->free_reqs = nr;
1958 return nr != 0;
1959 }
1960
1961 /*
1962 * A request might get retired back into the request caches even before opcode
1963 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1964 * Because of that, io_alloc_req() should be called only under ->uring_lock
1965 * and with extra caution to not get a request that is still worked on.
1966 */
1967 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1968 __must_hold(&ctx->uring_lock)
1969 {
1970 struct io_submit_state *state = &ctx->submit_state;
1971 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1972 int ret, i;
1973
1974 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1975
1976 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1977 goto got_req;
1978
1979 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1980 state->reqs);
1981
1982 /*
1983 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1984 * retry single alloc to be on the safe side.
1985 */
1986 if (unlikely(ret <= 0)) {
1987 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1988 if (!state->reqs[0])
1989 return NULL;
1990 ret = 1;
1991 }
1992
1993 for (i = 0; i < ret; i++)
1994 io_preinit_req(state->reqs[i], ctx);
1995 state->free_reqs = ret;
1996 got_req:
1997 state->free_reqs--;
1998 return state->reqs[state->free_reqs];
1999 }
2000
2001 static inline void io_put_file(struct file *file)
2002 {
2003 if (file)
2004 fput(file);
2005 }
2006
2007 static void io_dismantle_req(struct io_kiocb *req)
2008 {
2009 unsigned int flags = req->flags;
2010
2011 if (io_req_needs_clean(req))
2012 io_clean_op(req);
2013 if (!(flags & REQ_F_FIXED_FILE))
2014 io_put_file(req->file);
2015 if (req->fixed_rsrc_refs)
2016 percpu_ref_put(req->fixed_rsrc_refs);
2017 if (req->async_data) {
2018 kfree(req->async_data);
2019 req->async_data = NULL;
2020 }
2021 }
2022
2023 static void __io_free_req(struct io_kiocb *req)
2024 {
2025 struct io_ring_ctx *ctx = req->ctx;
2026
2027 io_dismantle_req(req);
2028 io_put_task(req->task, 1);
2029
2030 spin_lock(&ctx->completion_lock);
2031 list_add(&req->inflight_entry, &ctx->locked_free_list);
2032 ctx->locked_free_nr++;
2033 spin_unlock(&ctx->completion_lock);
2034
2035 percpu_ref_put(&ctx->refs);
2036 }
2037
2038 static inline void io_remove_next_linked(struct io_kiocb *req)
2039 {
2040 struct io_kiocb *nxt = req->link;
2041
2042 req->link = nxt->link;
2043 nxt->link = NULL;
2044 }
2045
2046 static bool io_kill_linked_timeout(struct io_kiocb *req)
2047 __must_hold(&req->ctx->completion_lock)
2048 __must_hold(&req->ctx->timeout_lock)
2049 {
2050 struct io_kiocb *link = req->link;
2051
2052 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2053 struct io_timeout_data *io = link->async_data;
2054
2055 io_remove_next_linked(req);
2056 link->timeout.head = NULL;
2057 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2058 list_del(&link->timeout.list);
2059 io_fill_cqe_req(link, -ECANCELED, 0);
2060 io_put_req_deferred(link);
2061 return true;
2062 }
2063 }
2064 return false;
2065 }
2066
2067 static void io_fail_links(struct io_kiocb *req)
2068 __must_hold(&req->ctx->completion_lock)
2069 {
2070 struct io_kiocb *nxt, *link = req->link;
2071
2072 req->link = NULL;
2073 while (link) {
2074 long res = -ECANCELED;
2075
2076 if (link->flags & REQ_F_FAIL)
2077 res = link->result;
2078
2079 nxt = link->link;
2080 link->link = NULL;
2081
2082 trace_io_uring_fail_link(req, link);
2083 io_fill_cqe_req(link, res, 0);
2084 io_put_req_deferred(link);
2085 link = nxt;
2086 }
2087 }
2088
2089 static bool io_disarm_next(struct io_kiocb *req)
2090 __must_hold(&req->ctx->completion_lock)
2091 {
2092 bool posted = false;
2093
2094 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2095 struct io_kiocb *link = req->link;
2096
2097 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2098 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2099 io_remove_next_linked(req);
2100 io_fill_cqe_req(link, -ECANCELED, 0);
2101 io_put_req_deferred(link);
2102 posted = true;
2103 }
2104 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2105 struct io_ring_ctx *ctx = req->ctx;
2106
2107 spin_lock_irq(&ctx->timeout_lock);
2108 posted = io_kill_linked_timeout(req);
2109 spin_unlock_irq(&ctx->timeout_lock);
2110 }
2111 if (unlikely((req->flags & REQ_F_FAIL) &&
2112 !(req->flags & REQ_F_HARDLINK))) {
2113 posted |= (req->link != NULL);
2114 io_fail_links(req);
2115 }
2116 return posted;
2117 }
2118
2119 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2120 {
2121 struct io_kiocb *nxt;
2122
2123 /*
2124 * If LINK is set, we have dependent requests in this chain. If we
2125 * didn't fail this request, queue the first one up, moving any other
2126 * dependencies to the next request. In case of failure, fail the rest
2127 * of the chain.
2128 */
2129 if (req->flags & IO_DISARM_MASK) {
2130 struct io_ring_ctx *ctx = req->ctx;
2131 bool posted;
2132
2133 spin_lock(&ctx->completion_lock);
2134 posted = io_disarm_next(req);
2135 if (posted)
2136 io_commit_cqring(req->ctx);
2137 spin_unlock(&ctx->completion_lock);
2138 if (posted)
2139 io_cqring_ev_posted(ctx);
2140 }
2141 nxt = req->link;
2142 req->link = NULL;
2143 return nxt;
2144 }
2145
2146 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2147 {
2148 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2149 return NULL;
2150 return __io_req_find_next(req);
2151 }
2152
2153 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2154 {
2155 if (!ctx)
2156 return;
2157 if (*locked) {
2158 if (ctx->submit_state.compl_nr)
2159 io_submit_flush_completions(ctx);
2160 mutex_unlock(&ctx->uring_lock);
2161 *locked = false;
2162 }
2163 percpu_ref_put(&ctx->refs);
2164 }
2165
2166 static void tctx_task_work(struct callback_head *cb)
2167 {
2168 bool locked = false;
2169 struct io_ring_ctx *ctx = NULL;
2170 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2171 task_work);
2172
2173 while (1) {
2174 struct io_wq_work_node *node;
2175
2176 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2177 io_submit_flush_completions(ctx);
2178
2179 spin_lock_irq(&tctx->task_lock);
2180 node = tctx->task_list.first;
2181 INIT_WQ_LIST(&tctx->task_list);
2182 if (!node)
2183 tctx->task_running = false;
2184 spin_unlock_irq(&tctx->task_lock);
2185 if (!node)
2186 break;
2187
2188 do {
2189 struct io_wq_work_node *next = node->next;
2190 struct io_kiocb *req = container_of(node, struct io_kiocb,
2191 io_task_work.node);
2192
2193 if (req->ctx != ctx) {
2194 ctx_flush_and_put(ctx, &locked);
2195 ctx = req->ctx;
2196 /* if not contended, grab and improve batching */
2197 locked = mutex_trylock(&ctx->uring_lock);
2198 percpu_ref_get(&ctx->refs);
2199 }
2200 req->io_task_work.func(req, &locked);
2201 node = next;
2202 } while (node);
2203
2204 cond_resched();
2205 }
2206
2207 ctx_flush_and_put(ctx, &locked);
2208
2209 /* relaxed read is enough as only the task itself sets ->in_idle */
2210 if (unlikely(atomic_read(&tctx->in_idle)))
2211 io_uring_drop_tctx_refs(current);
2212 }
2213
2214 static void io_req_task_work_add(struct io_kiocb *req)
2215 {
2216 struct task_struct *tsk = req->task;
2217 struct io_uring_task *tctx = tsk->io_uring;
2218 enum task_work_notify_mode notify;
2219 struct io_wq_work_node *node;
2220 unsigned long flags;
2221 bool running;
2222
2223 WARN_ON_ONCE(!tctx);
2224
2225 spin_lock_irqsave(&tctx->task_lock, flags);
2226 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2227 running = tctx->task_running;
2228 if (!running)
2229 tctx->task_running = true;
2230 spin_unlock_irqrestore(&tctx->task_lock, flags);
2231
2232 /* task_work already pending, we're done */
2233 if (running)
2234 return;
2235
2236 /*
2237 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2238 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2239 * processing task_work. There's no reliable way to tell if TWA_RESUME
2240 * will do the job.
2241 */
2242 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2243 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2244 wake_up_process(tsk);
2245 return;
2246 }
2247
2248 spin_lock_irqsave(&tctx->task_lock, flags);
2249 tctx->task_running = false;
2250 node = tctx->task_list.first;
2251 INIT_WQ_LIST(&tctx->task_list);
2252 spin_unlock_irqrestore(&tctx->task_lock, flags);
2253
2254 while (node) {
2255 req = container_of(node, struct io_kiocb, io_task_work.node);
2256 node = node->next;
2257 if (llist_add(&req->io_task_work.fallback_node,
2258 &req->ctx->fallback_llist))
2259 schedule_delayed_work(&req->ctx->fallback_work, 1);
2260 }
2261 }
2262
2263 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2264 {
2265 struct io_ring_ctx *ctx = req->ctx;
2266
2267 /* not needed for normal modes, but SQPOLL depends on it */
2268 io_tw_lock(ctx, locked);
2269 io_req_complete_failed(req, req->result);
2270 }
2271
2272 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2273 {
2274 struct io_ring_ctx *ctx = req->ctx;
2275
2276 io_tw_lock(ctx, locked);
2277 /* req->task == current here, checking PF_EXITING is safe */
2278 if (likely(!(req->task->flags & PF_EXITING)))
2279 __io_queue_sqe(req);
2280 else
2281 io_req_complete_failed(req, -EFAULT);
2282 }
2283
2284 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2285 {
2286 req->result = ret;
2287 req->io_task_work.func = io_req_task_cancel;
2288 io_req_task_work_add(req);
2289 }
2290
2291 static void io_req_task_queue(struct io_kiocb *req)
2292 {
2293 req->io_task_work.func = io_req_task_submit;
2294 io_req_task_work_add(req);
2295 }
2296
2297 static void io_req_task_queue_reissue(struct io_kiocb *req)
2298 {
2299 req->io_task_work.func = io_queue_async_work;
2300 io_req_task_work_add(req);
2301 }
2302
2303 static inline void io_queue_next(struct io_kiocb *req)
2304 {
2305 struct io_kiocb *nxt = io_req_find_next(req);
2306
2307 if (nxt)
2308 io_req_task_queue(nxt);
2309 }
2310
2311 static void io_free_req(struct io_kiocb *req)
2312 {
2313 io_queue_next(req);
2314 __io_free_req(req);
2315 }
2316
2317 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2318 {
2319 io_free_req(req);
2320 }
2321
2322 struct req_batch {
2323 struct task_struct *task;
2324 int task_refs;
2325 int ctx_refs;
2326 };
2327
2328 static inline void io_init_req_batch(struct req_batch *rb)
2329 {
2330 rb->task_refs = 0;
2331 rb->ctx_refs = 0;
2332 rb->task = NULL;
2333 }
2334
2335 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2336 struct req_batch *rb)
2337 {
2338 if (rb->ctx_refs)
2339 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2340 if (rb->task)
2341 io_put_task(rb->task, rb->task_refs);
2342 }
2343
2344 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2345 struct io_submit_state *state)
2346 {
2347 io_queue_next(req);
2348 io_dismantle_req(req);
2349
2350 if (req->task != rb->task) {
2351 if (rb->task)
2352 io_put_task(rb->task, rb->task_refs);
2353 rb->task = req->task;
2354 rb->task_refs = 0;
2355 }
2356 rb->task_refs++;
2357 rb->ctx_refs++;
2358
2359 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2360 state->reqs[state->free_reqs++] = req;
2361 else
2362 list_add(&req->inflight_entry, &state->free_list);
2363 }
2364
2365 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2366 __must_hold(&ctx->uring_lock)
2367 {
2368 struct io_submit_state *state = &ctx->submit_state;
2369 int i, nr = state->compl_nr;
2370 struct req_batch rb;
2371
2372 spin_lock(&ctx->completion_lock);
2373 for (i = 0; i < nr; i++) {
2374 struct io_kiocb *req = state->compl_reqs[i];
2375
2376 __io_fill_cqe(ctx, req->user_data, req->result,
2377 req->compl.cflags);
2378 }
2379 io_commit_cqring(ctx);
2380 spin_unlock(&ctx->completion_lock);
2381 io_cqring_ev_posted(ctx);
2382
2383 io_init_req_batch(&rb);
2384 for (i = 0; i < nr; i++) {
2385 struct io_kiocb *req = state->compl_reqs[i];
2386
2387 if (req_ref_put_and_test(req))
2388 io_req_free_batch(&rb, req, &ctx->submit_state);
2389 }
2390
2391 io_req_free_batch_finish(ctx, &rb);
2392 state->compl_nr = 0;
2393 }
2394
2395 /*
2396 * Drop reference to request, return next in chain (if there is one) if this
2397 * was the last reference to this request.
2398 */
2399 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2400 {
2401 struct io_kiocb *nxt = NULL;
2402
2403 if (req_ref_put_and_test(req)) {
2404 nxt = io_req_find_next(req);
2405 __io_free_req(req);
2406 }
2407 return nxt;
2408 }
2409
2410 static inline void io_put_req(struct io_kiocb *req)
2411 {
2412 if (req_ref_put_and_test(req))
2413 io_free_req(req);
2414 }
2415
2416 static inline void io_put_req_deferred(struct io_kiocb *req)
2417 {
2418 if (req_ref_put_and_test(req)) {
2419 req->io_task_work.func = io_free_req_work;
2420 io_req_task_work_add(req);
2421 }
2422 }
2423
2424 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2425 {
2426 /* See comment at the top of this file */
2427 smp_rmb();
2428 return __io_cqring_events(ctx);
2429 }
2430
2431 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2432 {
2433 struct io_rings *rings = ctx->rings;
2434
2435 /* make sure SQ entry isn't read before tail */
2436 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2437 }
2438
2439 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2440 {
2441 unsigned int cflags;
2442
2443 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2444 cflags |= IORING_CQE_F_BUFFER;
2445 req->flags &= ~REQ_F_BUFFER_SELECTED;
2446 kfree(kbuf);
2447 return cflags;
2448 }
2449
2450 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2451 {
2452 struct io_buffer *kbuf;
2453
2454 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2455 return 0;
2456 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2457 return io_put_kbuf(req, kbuf);
2458 }
2459
2460 static inline bool io_run_task_work(void)
2461 {
2462 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2463 __set_current_state(TASK_RUNNING);
2464 tracehook_notify_signal();
2465 return true;
2466 }
2467
2468 return false;
2469 }
2470
2471 /*
2472 * Find and free completed poll iocbs
2473 */
2474 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2475 struct list_head *done)
2476 {
2477 struct req_batch rb;
2478 struct io_kiocb *req;
2479
2480 /* order with ->result store in io_complete_rw_iopoll() */
2481 smp_rmb();
2482
2483 io_init_req_batch(&rb);
2484 while (!list_empty(done)) {
2485 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2486 list_del(&req->inflight_entry);
2487
2488 io_fill_cqe_req(req, req->result, io_put_rw_kbuf(req));
2489 (*nr_events)++;
2490
2491 if (req_ref_put_and_test(req))
2492 io_req_free_batch(&rb, req, &ctx->submit_state);
2493 }
2494
2495 io_commit_cqring(ctx);
2496 io_cqring_ev_posted_iopoll(ctx);
2497 io_req_free_batch_finish(ctx, &rb);
2498 }
2499
2500 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2501 long min)
2502 {
2503 struct io_kiocb *req, *tmp;
2504 LIST_HEAD(done);
2505 bool spin;
2506
2507 /*
2508 * Only spin for completions if we don't have multiple devices hanging
2509 * off our complete list, and we're under the requested amount.
2510 */
2511 spin = !ctx->poll_multi_queue && *nr_events < min;
2512
2513 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2514 struct kiocb *kiocb = &req->rw.kiocb;
2515 int ret;
2516
2517 /*
2518 * Move completed and retryable entries to our local lists.
2519 * If we find a request that requires polling, break out
2520 * and complete those lists first, if we have entries there.
2521 */
2522 if (READ_ONCE(req->iopoll_completed)) {
2523 list_move_tail(&req->inflight_entry, &done);
2524 continue;
2525 }
2526 if (!list_empty(&done))
2527 break;
2528
2529 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2530 if (unlikely(ret < 0))
2531 return ret;
2532 else if (ret)
2533 spin = false;
2534
2535 /* iopoll may have completed current req */
2536 if (READ_ONCE(req->iopoll_completed))
2537 list_move_tail(&req->inflight_entry, &done);
2538 }
2539
2540 if (!list_empty(&done))
2541 io_iopoll_complete(ctx, nr_events, &done);
2542
2543 return 0;
2544 }
2545
2546 /*
2547 * We can't just wait for polled events to come to us, we have to actively
2548 * find and complete them.
2549 */
2550 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2551 {
2552 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2553 return;
2554
2555 mutex_lock(&ctx->uring_lock);
2556 while (!list_empty(&ctx->iopoll_list)) {
2557 unsigned int nr_events = 0;
2558
2559 io_do_iopoll(ctx, &nr_events, 0);
2560
2561 /* let it sleep and repeat later if can't complete a request */
2562 if (nr_events == 0)
2563 break;
2564 /*
2565 * Ensure we allow local-to-the-cpu processing to take place,
2566 * in this case we need to ensure that we reap all events.
2567 * Also let task_work, etc. to progress by releasing the mutex
2568 */
2569 if (need_resched()) {
2570 mutex_unlock(&ctx->uring_lock);
2571 cond_resched();
2572 mutex_lock(&ctx->uring_lock);
2573 }
2574 }
2575 mutex_unlock(&ctx->uring_lock);
2576 }
2577
2578 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2579 {
2580 unsigned int nr_events = 0;
2581 int ret = 0;
2582
2583 /*
2584 * We disallow the app entering submit/complete with polling, but we
2585 * still need to lock the ring to prevent racing with polled issue
2586 * that got punted to a workqueue.
2587 */
2588 mutex_lock(&ctx->uring_lock);
2589 /*
2590 * Don't enter poll loop if we already have events pending.
2591 * If we do, we can potentially be spinning for commands that
2592 * already triggered a CQE (eg in error).
2593 */
2594 if (test_bit(0, &ctx->check_cq_overflow))
2595 __io_cqring_overflow_flush(ctx, false);
2596 if (io_cqring_events(ctx))
2597 goto out;
2598 do {
2599 /*
2600 * If a submit got punted to a workqueue, we can have the
2601 * application entering polling for a command before it gets
2602 * issued. That app will hold the uring_lock for the duration
2603 * of the poll right here, so we need to take a breather every
2604 * now and then to ensure that the issue has a chance to add
2605 * the poll to the issued list. Otherwise we can spin here
2606 * forever, while the workqueue is stuck trying to acquire the
2607 * very same mutex.
2608 */
2609 if (list_empty(&ctx->iopoll_list)) {
2610 u32 tail = ctx->cached_cq_tail;
2611
2612 mutex_unlock(&ctx->uring_lock);
2613 io_run_task_work();
2614 mutex_lock(&ctx->uring_lock);
2615
2616 /* some requests don't go through iopoll_list */
2617 if (tail != ctx->cached_cq_tail ||
2618 list_empty(&ctx->iopoll_list))
2619 break;
2620 }
2621 ret = io_do_iopoll(ctx, &nr_events, min);
2622 } while (!ret && nr_events < min && !need_resched());
2623 out:
2624 mutex_unlock(&ctx->uring_lock);
2625 return ret;
2626 }
2627
2628 static void kiocb_end_write(struct io_kiocb *req)
2629 {
2630 /*
2631 * Tell lockdep we inherited freeze protection from submission
2632 * thread.
2633 */
2634 if (req->flags & REQ_F_ISREG) {
2635 struct super_block *sb = file_inode(req->file)->i_sb;
2636
2637 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2638 sb_end_write(sb);
2639 }
2640 }
2641
2642 #ifdef CONFIG_BLOCK
2643 static bool io_resubmit_prep(struct io_kiocb *req)
2644 {
2645 struct io_async_rw *rw = req->async_data;
2646
2647 if (!rw)
2648 return !io_req_prep_async(req);
2649 iov_iter_restore(&rw->iter, &rw->iter_state);
2650 return true;
2651 }
2652
2653 static bool io_rw_should_reissue(struct io_kiocb *req)
2654 {
2655 umode_t mode = file_inode(req->file)->i_mode;
2656 struct io_ring_ctx *ctx = req->ctx;
2657
2658 if (!S_ISBLK(mode) && !S_ISREG(mode))
2659 return false;
2660 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2661 !(ctx->flags & IORING_SETUP_IOPOLL)))
2662 return false;
2663 /*
2664 * If ref is dying, we might be running poll reap from the exit work.
2665 * Don't attempt to reissue from that path, just let it fail with
2666 * -EAGAIN.
2667 */
2668 if (percpu_ref_is_dying(&ctx->refs))
2669 return false;
2670 /*
2671 * Play it safe and assume not safe to re-import and reissue if we're
2672 * not in the original thread group (or in task context).
2673 */
2674 if (!same_thread_group(req->task, current) || !in_task())
2675 return false;
2676 return true;
2677 }
2678 #else
2679 static bool io_resubmit_prep(struct io_kiocb *req)
2680 {
2681 return false;
2682 }
2683 static bool io_rw_should_reissue(struct io_kiocb *req)
2684 {
2685 return false;
2686 }
2687 #endif
2688
2689 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2690 {
2691 if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
2692 kiocb_end_write(req);
2693 fsnotify_modify(req->file);
2694 } else {
2695 fsnotify_access(req->file);
2696 }
2697 if (res != req->result) {
2698 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2699 io_rw_should_reissue(req)) {
2700 req->flags |= REQ_F_REISSUE;
2701 return true;
2702 }
2703 req_set_fail(req);
2704 req->result = res;
2705 }
2706 return false;
2707 }
2708
2709 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2710 {
2711 unsigned int cflags = io_put_rw_kbuf(req);
2712 int res = req->result;
2713
2714 if (*locked) {
2715 struct io_ring_ctx *ctx = req->ctx;
2716 struct io_submit_state *state = &ctx->submit_state;
2717
2718 io_req_complete_state(req, res, cflags);
2719 state->compl_reqs[state->compl_nr++] = req;
2720 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2721 io_submit_flush_completions(ctx);
2722 } else {
2723 io_req_complete_post(req, res, cflags);
2724 }
2725 }
2726
2727 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2728 unsigned int issue_flags)
2729 {
2730 if (__io_complete_rw_common(req, res))
2731 return;
2732 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2733 }
2734
2735 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2736 {
2737 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2738
2739 if (__io_complete_rw_common(req, res))
2740 return;
2741 req->result = res;
2742 req->io_task_work.func = io_req_task_complete;
2743 io_req_task_work_add(req);
2744 }
2745
2746 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2747 {
2748 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2749
2750 if (kiocb->ki_flags & IOCB_WRITE)
2751 kiocb_end_write(req);
2752 if (unlikely(res != req->result)) {
2753 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2754 req->flags |= REQ_F_REISSUE;
2755 return;
2756 }
2757 }
2758
2759 WRITE_ONCE(req->result, res);
2760 /* order with io_iopoll_complete() checking ->result */
2761 smp_wmb();
2762 WRITE_ONCE(req->iopoll_completed, 1);
2763 }
2764
2765 /*
2766 * After the iocb has been issued, it's safe to be found on the poll list.
2767 * Adding the kiocb to the list AFTER submission ensures that we don't
2768 * find it from a io_do_iopoll() thread before the issuer is done
2769 * accessing the kiocb cookie.
2770 */
2771 static void io_iopoll_req_issued(struct io_kiocb *req)
2772 {
2773 struct io_ring_ctx *ctx = req->ctx;
2774 const bool in_async = io_wq_current_is_worker();
2775
2776 /* workqueue context doesn't hold uring_lock, grab it now */
2777 if (unlikely(in_async))
2778 mutex_lock(&ctx->uring_lock);
2779
2780 /*
2781 * Track whether we have multiple files in our lists. This will impact
2782 * how we do polling eventually, not spinning if we're on potentially
2783 * different devices.
2784 */
2785 if (list_empty(&ctx->iopoll_list)) {
2786 ctx->poll_multi_queue = false;
2787 } else if (!ctx->poll_multi_queue) {
2788 struct io_kiocb *list_req;
2789 unsigned int queue_num0, queue_num1;
2790
2791 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2792 inflight_entry);
2793
2794 if (list_req->file != req->file) {
2795 ctx->poll_multi_queue = true;
2796 } else {
2797 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2798 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2799 if (queue_num0 != queue_num1)
2800 ctx->poll_multi_queue = true;
2801 }
2802 }
2803
2804 /*
2805 * For fast devices, IO may have already completed. If it has, add
2806 * it to the front so we find it first.
2807 */
2808 if (READ_ONCE(req->iopoll_completed))
2809 list_add(&req->inflight_entry, &ctx->iopoll_list);
2810 else
2811 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2812
2813 if (unlikely(in_async)) {
2814 /*
2815 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2816 * in sq thread task context or in io worker task context. If
2817 * current task context is sq thread, we don't need to check
2818 * whether should wake up sq thread.
2819 */
2820 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2821 wq_has_sleeper(&ctx->sq_data->wait))
2822 wake_up(&ctx->sq_data->wait);
2823
2824 mutex_unlock(&ctx->uring_lock);
2825 }
2826 }
2827
2828 static bool io_bdev_nowait(struct block_device *bdev)
2829 {
2830 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2831 }
2832
2833 /*
2834 * If we tracked the file through the SCM inflight mechanism, we could support
2835 * any file. For now, just ensure that anything potentially problematic is done
2836 * inline.
2837 */
2838 static bool __io_file_supports_nowait(struct file *file, int rw)
2839 {
2840 umode_t mode = file_inode(file)->i_mode;
2841
2842 if (S_ISBLK(mode)) {
2843 if (IS_ENABLED(CONFIG_BLOCK) &&
2844 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2845 return true;
2846 return false;
2847 }
2848 if (S_ISSOCK(mode))
2849 return true;
2850 if (S_ISREG(mode)) {
2851 if (IS_ENABLED(CONFIG_BLOCK) &&
2852 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2853 file->f_op != &io_uring_fops)
2854 return true;
2855 return false;
2856 }
2857
2858 /* any ->read/write should understand O_NONBLOCK */
2859 if (file->f_flags & O_NONBLOCK)
2860 return true;
2861
2862 if (!(file->f_mode & FMODE_NOWAIT))
2863 return false;
2864
2865 if (rw == READ)
2866 return file->f_op->read_iter != NULL;
2867
2868 return file->f_op->write_iter != NULL;
2869 }
2870
2871 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2872 {
2873 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2874 return true;
2875 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2876 return true;
2877
2878 return __io_file_supports_nowait(req->file, rw);
2879 }
2880
2881 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2882 int rw)
2883 {
2884 struct io_ring_ctx *ctx = req->ctx;
2885 struct kiocb *kiocb = &req->rw.kiocb;
2886 struct file *file = req->file;
2887 unsigned ioprio;
2888 int ret;
2889
2890 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2891 req->flags |= REQ_F_ISREG;
2892
2893 kiocb->ki_pos = READ_ONCE(sqe->off);
2894 if (kiocb->ki_pos == -1) {
2895 if (!(file->f_mode & FMODE_STREAM)) {
2896 req->flags |= REQ_F_CUR_POS;
2897 kiocb->ki_pos = file->f_pos;
2898 } else {
2899 kiocb->ki_pos = 0;
2900 }
2901 }
2902 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2903 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2904 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2905 if (unlikely(ret))
2906 return ret;
2907
2908 /*
2909 * If the file is marked O_NONBLOCK, still allow retry for it if it
2910 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2911 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2912 */
2913 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2914 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2915 req->flags |= REQ_F_NOWAIT;
2916
2917 ioprio = READ_ONCE(sqe->ioprio);
2918 if (ioprio) {
2919 ret = ioprio_check_cap(ioprio);
2920 if (ret)
2921 return ret;
2922
2923 kiocb->ki_ioprio = ioprio;
2924 } else
2925 kiocb->ki_ioprio = get_current_ioprio();
2926
2927 if (ctx->flags & IORING_SETUP_IOPOLL) {
2928 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2929 !kiocb->ki_filp->f_op->iopoll)
2930 return -EOPNOTSUPP;
2931
2932 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2933 kiocb->ki_complete = io_complete_rw_iopoll;
2934 req->iopoll_completed = 0;
2935 } else {
2936 if (kiocb->ki_flags & IOCB_HIPRI)
2937 return -EINVAL;
2938 kiocb->ki_complete = io_complete_rw;
2939 }
2940
2941 /* used for fixed read/write too - just read unconditionally */
2942 req->buf_index = READ_ONCE(sqe->buf_index);
2943 req->imu = NULL;
2944
2945 if (req->opcode == IORING_OP_READ_FIXED ||
2946 req->opcode == IORING_OP_WRITE_FIXED) {
2947 struct io_ring_ctx *ctx = req->ctx;
2948 u16 index;
2949
2950 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
2951 return -EFAULT;
2952 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
2953 req->imu = ctx->user_bufs[index];
2954 io_req_set_rsrc_node(req);
2955 }
2956
2957 req->rw.addr = READ_ONCE(sqe->addr);
2958 req->rw.len = READ_ONCE(sqe->len);
2959 return 0;
2960 }
2961
2962 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2963 {
2964 switch (ret) {
2965 case -EIOCBQUEUED:
2966 break;
2967 case -ERESTARTSYS:
2968 case -ERESTARTNOINTR:
2969 case -ERESTARTNOHAND:
2970 case -ERESTART_RESTARTBLOCK:
2971 /*
2972 * We can't just restart the syscall, since previously
2973 * submitted sqes may already be in progress. Just fail this
2974 * IO with EINTR.
2975 */
2976 ret = -EINTR;
2977 fallthrough;
2978 default:
2979 kiocb->ki_complete(kiocb, ret, 0);
2980 }
2981 }
2982
2983 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2984 unsigned int issue_flags)
2985 {
2986 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2987 struct io_async_rw *io = req->async_data;
2988
2989 /* add previously done IO, if any */
2990 if (io && io->bytes_done > 0) {
2991 if (ret < 0)
2992 ret = io->bytes_done;
2993 else
2994 ret += io->bytes_done;
2995 }
2996
2997 if (req->flags & REQ_F_CUR_POS)
2998 req->file->f_pos = kiocb->ki_pos;
2999 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
3000 __io_complete_rw(req, ret, 0, issue_flags);
3001 else
3002 io_rw_done(kiocb, ret);
3003
3004 if (req->flags & REQ_F_REISSUE) {
3005 req->flags &= ~REQ_F_REISSUE;
3006 if (io_resubmit_prep(req)) {
3007 io_req_task_queue_reissue(req);
3008 } else {
3009 unsigned int cflags = io_put_rw_kbuf(req);
3010 struct io_ring_ctx *ctx = req->ctx;
3011
3012 req_set_fail(req);
3013 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3014 mutex_lock(&ctx->uring_lock);
3015 __io_req_complete(req, issue_flags, ret, cflags);
3016 mutex_unlock(&ctx->uring_lock);
3017 } else {
3018 __io_req_complete(req, issue_flags, ret, cflags);
3019 }
3020 }
3021 }
3022 }
3023
3024 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3025 struct io_mapped_ubuf *imu)
3026 {
3027 size_t len = req->rw.len;
3028 u64 buf_end, buf_addr = req->rw.addr;
3029 size_t offset;
3030
3031 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3032 return -EFAULT;
3033 /* not inside the mapped region */
3034 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3035 return -EFAULT;
3036
3037 /*
3038 * May not be a start of buffer, set size appropriately
3039 * and advance us to the beginning.
3040 */
3041 offset = buf_addr - imu->ubuf;
3042 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3043
3044 if (offset) {
3045 /*
3046 * Don't use iov_iter_advance() here, as it's really slow for
3047 * using the latter parts of a big fixed buffer - it iterates
3048 * over each segment manually. We can cheat a bit here, because
3049 * we know that:
3050 *
3051 * 1) it's a BVEC iter, we set it up
3052 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3053 * first and last bvec
3054 *
3055 * So just find our index, and adjust the iterator afterwards.
3056 * If the offset is within the first bvec (or the whole first
3057 * bvec, just use iov_iter_advance(). This makes it easier
3058 * since we can just skip the first segment, which may not
3059 * be PAGE_SIZE aligned.
3060 */
3061 const struct bio_vec *bvec = imu->bvec;
3062
3063 if (offset <= bvec->bv_len) {
3064 iov_iter_advance(iter, offset);
3065 } else {
3066 unsigned long seg_skip;
3067
3068 /* skip first vec */
3069 offset -= bvec->bv_len;
3070 seg_skip = 1 + (offset >> PAGE_SHIFT);
3071
3072 iter->bvec = bvec + seg_skip;
3073 iter->nr_segs -= seg_skip;
3074 iter->count -= bvec->bv_len + offset;
3075 iter->iov_offset = offset & ~PAGE_MASK;
3076 }
3077 }
3078
3079 return 0;
3080 }
3081
3082 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3083 {
3084 if (WARN_ON_ONCE(!req->imu))
3085 return -EFAULT;
3086 return __io_import_fixed(req, rw, iter, req->imu);
3087 }
3088
3089 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3090 {
3091 if (needs_lock)
3092 mutex_unlock(&ctx->uring_lock);
3093 }
3094
3095 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3096 {
3097 /*
3098 * "Normal" inline submissions always hold the uring_lock, since we
3099 * grab it from the system call. Same is true for the SQPOLL offload.
3100 * The only exception is when we've detached the request and issue it
3101 * from an async worker thread, grab the lock for that case.
3102 */
3103 if (needs_lock)
3104 mutex_lock(&ctx->uring_lock);
3105 }
3106
3107 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3108 int bgid, struct io_buffer *kbuf,
3109 bool needs_lock)
3110 {
3111 struct io_buffer *head;
3112
3113 if (req->flags & REQ_F_BUFFER_SELECTED)
3114 return kbuf;
3115
3116 io_ring_submit_lock(req->ctx, needs_lock);
3117
3118 lockdep_assert_held(&req->ctx->uring_lock);
3119
3120 head = xa_load(&req->ctx->io_buffers, bgid);
3121 if (head) {
3122 if (!list_empty(&head->list)) {
3123 kbuf = list_last_entry(&head->list, struct io_buffer,
3124 list);
3125 list_del(&kbuf->list);
3126 } else {
3127 kbuf = head;
3128 xa_erase(&req->ctx->io_buffers, bgid);
3129 }
3130 if (*len > kbuf->len)
3131 *len = kbuf->len;
3132 } else {
3133 kbuf = ERR_PTR(-ENOBUFS);
3134 }
3135
3136 io_ring_submit_unlock(req->ctx, needs_lock);
3137
3138 return kbuf;
3139 }
3140
3141 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3142 bool needs_lock)
3143 {
3144 struct io_buffer *kbuf;
3145 u16 bgid;
3146
3147 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3148 bgid = req->buf_index;
3149 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3150 if (IS_ERR(kbuf))
3151 return kbuf;
3152 req->rw.addr = (u64) (unsigned long) kbuf;
3153 req->flags |= REQ_F_BUFFER_SELECTED;
3154 return u64_to_user_ptr(kbuf->addr);
3155 }
3156
3157 #ifdef CONFIG_COMPAT
3158 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3159 bool needs_lock)
3160 {
3161 struct compat_iovec __user *uiov;
3162 compat_ssize_t clen;
3163 void __user *buf;
3164 ssize_t len;
3165
3166 uiov = u64_to_user_ptr(req->rw.addr);
3167 if (!access_ok(uiov, sizeof(*uiov)))
3168 return -EFAULT;
3169 if (__get_user(clen, &uiov->iov_len))
3170 return -EFAULT;
3171 if (clen < 0)
3172 return -EINVAL;
3173
3174 len = clen;
3175 buf = io_rw_buffer_select(req, &len, needs_lock);
3176 if (IS_ERR(buf))
3177 return PTR_ERR(buf);
3178 iov[0].iov_base = buf;
3179 iov[0].iov_len = (compat_size_t) len;
3180 return 0;
3181 }
3182 #endif
3183
3184 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3185 bool needs_lock)
3186 {
3187 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3188 void __user *buf;
3189 ssize_t len;
3190
3191 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3192 return -EFAULT;
3193
3194 len = iov[0].iov_len;
3195 if (len < 0)
3196 return -EINVAL;
3197 buf = io_rw_buffer_select(req, &len, needs_lock);
3198 if (IS_ERR(buf))
3199 return PTR_ERR(buf);
3200 iov[0].iov_base = buf;
3201 iov[0].iov_len = len;
3202 return 0;
3203 }
3204
3205 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3206 bool needs_lock)
3207 {
3208 if (req->flags & REQ_F_BUFFER_SELECTED) {
3209 struct io_buffer *kbuf;
3210
3211 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3212 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3213 iov[0].iov_len = kbuf->len;
3214 return 0;
3215 }
3216 if (req->rw.len != 1)
3217 return -EINVAL;
3218
3219 #ifdef CONFIG_COMPAT
3220 if (req->ctx->compat)
3221 return io_compat_import(req, iov, needs_lock);
3222 #endif
3223
3224 return __io_iov_buffer_select(req, iov, needs_lock);
3225 }
3226
3227 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3228 struct iov_iter *iter, bool needs_lock)
3229 {
3230 void __user *buf = u64_to_user_ptr(req->rw.addr);
3231 size_t sqe_len = req->rw.len;
3232 u8 opcode = req->opcode;
3233 ssize_t ret;
3234
3235 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3236 *iovec = NULL;
3237 return io_import_fixed(req, rw, iter);
3238 }
3239
3240 /* buffer index only valid with fixed read/write, or buffer select */
3241 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3242 return -EINVAL;
3243
3244 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3245 if (req->flags & REQ_F_BUFFER_SELECT) {
3246 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3247 if (IS_ERR(buf))
3248 return PTR_ERR(buf);
3249 req->rw.len = sqe_len;
3250 }
3251
3252 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3253 *iovec = NULL;
3254 return ret;
3255 }
3256
3257 if (req->flags & REQ_F_BUFFER_SELECT) {
3258 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3259 if (!ret)
3260 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3261 *iovec = NULL;
3262 return ret;
3263 }
3264
3265 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3266 req->ctx->compat);
3267 }
3268
3269 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3270 {
3271 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3272 }
3273
3274 /*
3275 * For files that don't have ->read_iter() and ->write_iter(), handle them
3276 * by looping over ->read() or ->write() manually.
3277 */
3278 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3279 {
3280 struct kiocb *kiocb = &req->rw.kiocb;
3281 struct file *file = req->file;
3282 ssize_t ret = 0;
3283
3284 /*
3285 * Don't support polled IO through this interface, and we can't
3286 * support non-blocking either. For the latter, this just causes
3287 * the kiocb to be handled from an async context.
3288 */
3289 if (kiocb->ki_flags & IOCB_HIPRI)
3290 return -EOPNOTSUPP;
3291 if (kiocb->ki_flags & IOCB_NOWAIT)
3292 return -EAGAIN;
3293
3294 while (iov_iter_count(iter)) {
3295 struct iovec iovec;
3296 ssize_t nr;
3297
3298 if (!iov_iter_is_bvec(iter)) {
3299 iovec = iov_iter_iovec(iter);
3300 } else {
3301 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3302 iovec.iov_len = req->rw.len;
3303 }
3304
3305 if (rw == READ) {
3306 nr = file->f_op->read(file, iovec.iov_base,
3307 iovec.iov_len, io_kiocb_ppos(kiocb));
3308 } else {
3309 nr = file->f_op->write(file, iovec.iov_base,
3310 iovec.iov_len, io_kiocb_ppos(kiocb));
3311 }
3312
3313 if (nr < 0) {
3314 if (!ret)
3315 ret = nr;
3316 break;
3317 }
3318 ret += nr;
3319 if (!iov_iter_is_bvec(iter)) {
3320 iov_iter_advance(iter, nr);
3321 } else {
3322 req->rw.addr += nr;
3323 req->rw.len -= nr;
3324 if (!req->rw.len)
3325 break;
3326 }
3327 if (nr != iovec.iov_len)
3328 break;
3329 }
3330
3331 return ret;
3332 }
3333
3334 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3335 const struct iovec *fast_iov, struct iov_iter *iter)
3336 {
3337 struct io_async_rw *rw = req->async_data;
3338
3339 memcpy(&rw->iter, iter, sizeof(*iter));
3340 rw->free_iovec = iovec;
3341 rw->bytes_done = 0;
3342 /* can only be fixed buffers, no need to do anything */
3343 if (iov_iter_is_bvec(iter))
3344 return;
3345 if (!iovec) {
3346 unsigned iov_off = 0;
3347
3348 rw->iter.iov = rw->fast_iov;
3349 if (iter->iov != fast_iov) {
3350 iov_off = iter->iov - fast_iov;
3351 rw->iter.iov += iov_off;
3352 }
3353 if (rw->fast_iov != fast_iov)
3354 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3355 sizeof(struct iovec) * iter->nr_segs);
3356 } else {
3357 req->flags |= REQ_F_NEED_CLEANUP;
3358 }
3359 }
3360
3361 static inline int io_alloc_async_data(struct io_kiocb *req)
3362 {
3363 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3364 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3365 return req->async_data == NULL;
3366 }
3367
3368 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3369 const struct iovec *fast_iov,
3370 struct iov_iter *iter, bool force)
3371 {
3372 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3373 return 0;
3374 if (!req->async_data) {
3375 struct io_async_rw *iorw;
3376
3377 if (io_alloc_async_data(req)) {
3378 kfree(iovec);
3379 return -ENOMEM;
3380 }
3381
3382 io_req_map_rw(req, iovec, fast_iov, iter);
3383 iorw = req->async_data;
3384 /* we've copied and mapped the iter, ensure state is saved */
3385 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3386 }
3387 return 0;
3388 }
3389
3390 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3391 {
3392 struct io_async_rw *iorw = req->async_data;
3393 struct iovec *iov = iorw->fast_iov;
3394 int ret;
3395
3396 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3397 if (unlikely(ret < 0))
3398 return ret;
3399
3400 iorw->bytes_done = 0;
3401 iorw->free_iovec = iov;
3402 if (iov)
3403 req->flags |= REQ_F_NEED_CLEANUP;
3404 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3405 return 0;
3406 }
3407
3408 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3409 {
3410 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3411 return -EBADF;
3412 return io_prep_rw(req, sqe, READ);
3413 }
3414
3415 /*
3416 * This is our waitqueue callback handler, registered through lock_page_async()
3417 * when we initially tried to do the IO with the iocb armed our waitqueue.
3418 * This gets called when the page is unlocked, and we generally expect that to
3419 * happen when the page IO is completed and the page is now uptodate. This will
3420 * queue a task_work based retry of the operation, attempting to copy the data
3421 * again. If the latter fails because the page was NOT uptodate, then we will
3422 * do a thread based blocking retry of the operation. That's the unexpected
3423 * slow path.
3424 */
3425 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3426 int sync, void *arg)
3427 {
3428 struct wait_page_queue *wpq;
3429 struct io_kiocb *req = wait->private;
3430 struct wait_page_key *key = arg;
3431
3432 wpq = container_of(wait, struct wait_page_queue, wait);
3433
3434 if (!wake_page_match(wpq, key))
3435 return 0;
3436
3437 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3438 list_del_init(&wait->entry);
3439 io_req_task_queue(req);
3440 return 1;
3441 }
3442
3443 /*
3444 * This controls whether a given IO request should be armed for async page
3445 * based retry. If we return false here, the request is handed to the async
3446 * worker threads for retry. If we're doing buffered reads on a regular file,
3447 * we prepare a private wait_page_queue entry and retry the operation. This
3448 * will either succeed because the page is now uptodate and unlocked, or it
3449 * will register a callback when the page is unlocked at IO completion. Through
3450 * that callback, io_uring uses task_work to setup a retry of the operation.
3451 * That retry will attempt the buffered read again. The retry will generally
3452 * succeed, or in rare cases where it fails, we then fall back to using the
3453 * async worker threads for a blocking retry.
3454 */
3455 static bool io_rw_should_retry(struct io_kiocb *req)
3456 {
3457 struct io_async_rw *rw = req->async_data;
3458 struct wait_page_queue *wait = &rw->wpq;
3459 struct kiocb *kiocb = &req->rw.kiocb;
3460
3461 /* never retry for NOWAIT, we just complete with -EAGAIN */
3462 if (req->flags & REQ_F_NOWAIT)
3463 return false;
3464
3465 /* Only for buffered IO */
3466 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3467 return false;
3468
3469 /*
3470 * just use poll if we can, and don't attempt if the fs doesn't
3471 * support callback based unlocks
3472 */
3473 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3474 return false;
3475
3476 wait->wait.func = io_async_buf_func;
3477 wait->wait.private = req;
3478 wait->wait.flags = 0;
3479 INIT_LIST_HEAD(&wait->wait.entry);
3480 kiocb->ki_flags |= IOCB_WAITQ;
3481 kiocb->ki_flags &= ~IOCB_NOWAIT;
3482 kiocb->ki_waitq = wait;
3483 return true;
3484 }
3485
3486 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3487 {
3488 if (req->file->f_op->read_iter)
3489 return call_read_iter(req->file, &req->rw.kiocb, iter);
3490 else if (req->file->f_op->read)
3491 return loop_rw_iter(READ, req, iter);
3492 else
3493 return -EINVAL;
3494 }
3495
3496 static bool need_read_all(struct io_kiocb *req)
3497 {
3498 return req->flags & REQ_F_ISREG ||
3499 S_ISBLK(file_inode(req->file)->i_mode);
3500 }
3501
3502 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3503 {
3504 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3505 struct kiocb *kiocb = &req->rw.kiocb;
3506 struct iov_iter __iter, *iter = &__iter;
3507 struct io_async_rw *rw = req->async_data;
3508 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3509 struct iov_iter_state __state, *state;
3510 ssize_t ret, ret2;
3511
3512 if (rw) {
3513 iter = &rw->iter;
3514 state = &rw->iter_state;
3515 /*
3516 * We come here from an earlier attempt, restore our state to
3517 * match in case it doesn't. It's cheap enough that we don't
3518 * need to make this conditional.
3519 */
3520 iov_iter_restore(iter, state);
3521 iovec = NULL;
3522 } else {
3523 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3524 if (ret < 0)
3525 return ret;
3526 state = &__state;
3527 iov_iter_save_state(iter, state);
3528 }
3529 req->result = iov_iter_count(iter);
3530
3531 /* Ensure we clear previously set non-block flag */
3532 if (!force_nonblock)
3533 kiocb->ki_flags &= ~IOCB_NOWAIT;
3534 else
3535 kiocb->ki_flags |= IOCB_NOWAIT;
3536
3537 /* If the file doesn't support async, just async punt */
3538 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3539 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3540 return ret ?: -EAGAIN;
3541 }
3542
3543 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3544 if (unlikely(ret)) {
3545 kfree(iovec);
3546 return ret;
3547 }
3548
3549 ret = io_iter_do_read(req, iter);
3550
3551 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3552 req->flags &= ~REQ_F_REISSUE;
3553 /* IOPOLL retry should happen for io-wq threads */
3554 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3555 goto done;
3556 /* no retry on NONBLOCK nor RWF_NOWAIT */
3557 if (req->flags & REQ_F_NOWAIT)
3558 goto done;
3559 ret = 0;
3560 } else if (ret == -EIOCBQUEUED) {
3561 goto out_free;
3562 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3563 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3564 /* read all, failed, already did sync or don't want to retry */
3565 goto done;
3566 }
3567
3568 /*
3569 * Don't depend on the iter state matching what was consumed, or being
3570 * untouched in case of error. Restore it and we'll advance it
3571 * manually if we need to.
3572 */
3573 iov_iter_restore(iter, state);
3574
3575 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3576 if (ret2)
3577 return ret2;
3578
3579 iovec = NULL;
3580 rw = req->async_data;
3581 /*
3582 * Now use our persistent iterator and state, if we aren't already.
3583 * We've restored and mapped the iter to match.
3584 */
3585 if (iter != &rw->iter) {
3586 iter = &rw->iter;
3587 state = &rw->iter_state;
3588 }
3589
3590 do {
3591 /*
3592 * We end up here because of a partial read, either from
3593 * above or inside this loop. Advance the iter by the bytes
3594 * that were consumed.
3595 */
3596 iov_iter_advance(iter, ret);
3597 if (!iov_iter_count(iter))
3598 break;
3599 rw->bytes_done += ret;
3600 iov_iter_save_state(iter, state);
3601
3602 /* if we can retry, do so with the callbacks armed */
3603 if (!io_rw_should_retry(req)) {
3604 kiocb->ki_flags &= ~IOCB_WAITQ;
3605 return -EAGAIN;
3606 }
3607
3608 /*
3609 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3610 * we get -EIOCBQUEUED, then we'll get a notification when the
3611 * desired page gets unlocked. We can also get a partial read
3612 * here, and if we do, then just retry at the new offset.
3613 */
3614 ret = io_iter_do_read(req, iter);
3615 if (ret == -EIOCBQUEUED)
3616 return 0;
3617 /* we got some bytes, but not all. retry. */
3618 kiocb->ki_flags &= ~IOCB_WAITQ;
3619 iov_iter_restore(iter, state);
3620 } while (ret > 0);
3621 done:
3622 kiocb_done(kiocb, ret, issue_flags);
3623 out_free:
3624 /* it's faster to check here then delegate to kfree */
3625 if (iovec)
3626 kfree(iovec);
3627 return 0;
3628 }
3629
3630 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3631 {
3632 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3633 return -EBADF;
3634 return io_prep_rw(req, sqe, WRITE);
3635 }
3636
3637 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3638 {
3639 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3640 struct kiocb *kiocb = &req->rw.kiocb;
3641 struct iov_iter __iter, *iter = &__iter;
3642 struct io_async_rw *rw = req->async_data;
3643 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3644 struct iov_iter_state __state, *state;
3645 ssize_t ret, ret2;
3646
3647 if (rw) {
3648 iter = &rw->iter;
3649 state = &rw->iter_state;
3650 iov_iter_restore(iter, state);
3651 iovec = NULL;
3652 } else {
3653 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3654 if (ret < 0)
3655 return ret;
3656 state = &__state;
3657 iov_iter_save_state(iter, state);
3658 }
3659 req->result = iov_iter_count(iter);
3660
3661 /* Ensure we clear previously set non-block flag */
3662 if (!force_nonblock)
3663 kiocb->ki_flags &= ~IOCB_NOWAIT;
3664 else
3665 kiocb->ki_flags |= IOCB_NOWAIT;
3666
3667 /* If the file doesn't support async, just async punt */
3668 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3669 goto copy_iov;
3670
3671 /* file path doesn't support NOWAIT for non-direct_IO */
3672 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3673 (req->flags & REQ_F_ISREG))
3674 goto copy_iov;
3675
3676 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3677 if (unlikely(ret))
3678 goto out_free;
3679
3680 /*
3681 * Open-code file_start_write here to grab freeze protection,
3682 * which will be released by another thread in
3683 * io_complete_rw(). Fool lockdep by telling it the lock got
3684 * released so that it doesn't complain about the held lock when
3685 * we return to userspace.
3686 */
3687 if (req->flags & REQ_F_ISREG) {
3688 sb_start_write(file_inode(req->file)->i_sb);
3689 __sb_writers_release(file_inode(req->file)->i_sb,
3690 SB_FREEZE_WRITE);
3691 }
3692 kiocb->ki_flags |= IOCB_WRITE;
3693
3694 if (req->file->f_op->write_iter)
3695 ret2 = call_write_iter(req->file, kiocb, iter);
3696 else if (req->file->f_op->write)
3697 ret2 = loop_rw_iter(WRITE, req, iter);
3698 else
3699 ret2 = -EINVAL;
3700
3701 if (req->flags & REQ_F_REISSUE) {
3702 req->flags &= ~REQ_F_REISSUE;
3703 ret2 = -EAGAIN;
3704 }
3705
3706 /*
3707 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3708 * retry them without IOCB_NOWAIT.
3709 */
3710 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3711 ret2 = -EAGAIN;
3712 /* no retry on NONBLOCK nor RWF_NOWAIT */
3713 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3714 goto done;
3715 if (!force_nonblock || ret2 != -EAGAIN) {
3716 /* IOPOLL retry should happen for io-wq threads */
3717 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3718 goto copy_iov;
3719 done:
3720 kiocb_done(kiocb, ret2, issue_flags);
3721 } else {
3722 copy_iov:
3723 iov_iter_restore(iter, state);
3724 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3725 return ret ?: -EAGAIN;
3726 }
3727 out_free:
3728 /* it's reportedly faster than delegating the null check to kfree() */
3729 if (iovec)
3730 kfree(iovec);
3731 return ret;
3732 }
3733
3734 static int io_renameat_prep(struct io_kiocb *req,
3735 const struct io_uring_sqe *sqe)
3736 {
3737 struct io_rename *ren = &req->rename;
3738 const char __user *oldf, *newf;
3739
3740 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3741 return -EINVAL;
3742 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3743 return -EINVAL;
3744 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3745 return -EBADF;
3746
3747 ren->old_dfd = READ_ONCE(sqe->fd);
3748 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3749 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3750 ren->new_dfd = READ_ONCE(sqe->len);
3751 ren->flags = READ_ONCE(sqe->rename_flags);
3752
3753 ren->oldpath = getname(oldf);
3754 if (IS_ERR(ren->oldpath))
3755 return PTR_ERR(ren->oldpath);
3756
3757 ren->newpath = getname(newf);
3758 if (IS_ERR(ren->newpath)) {
3759 putname(ren->oldpath);
3760 return PTR_ERR(ren->newpath);
3761 }
3762
3763 req->flags |= REQ_F_NEED_CLEANUP;
3764 return 0;
3765 }
3766
3767 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3768 {
3769 struct io_rename *ren = &req->rename;
3770 int ret;
3771
3772 if (issue_flags & IO_URING_F_NONBLOCK)
3773 return -EAGAIN;
3774
3775 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3776 ren->newpath, ren->flags);
3777
3778 req->flags &= ~REQ_F_NEED_CLEANUP;
3779 if (ret < 0)
3780 req_set_fail(req);
3781 io_req_complete(req, ret);
3782 return 0;
3783 }
3784
3785 static int io_unlinkat_prep(struct io_kiocb *req,
3786 const struct io_uring_sqe *sqe)
3787 {
3788 struct io_unlink *un = &req->unlink;
3789 const char __user *fname;
3790
3791 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3792 return -EINVAL;
3793 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3794 sqe->splice_fd_in)
3795 return -EINVAL;
3796 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3797 return -EBADF;
3798
3799 un->dfd = READ_ONCE(sqe->fd);
3800
3801 un->flags = READ_ONCE(sqe->unlink_flags);
3802 if (un->flags & ~AT_REMOVEDIR)
3803 return -EINVAL;
3804
3805 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3806 un->filename = getname(fname);
3807 if (IS_ERR(un->filename))
3808 return PTR_ERR(un->filename);
3809
3810 req->flags |= REQ_F_NEED_CLEANUP;
3811 return 0;
3812 }
3813
3814 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3815 {
3816 struct io_unlink *un = &req->unlink;
3817 int ret;
3818
3819 if (issue_flags & IO_URING_F_NONBLOCK)
3820 return -EAGAIN;
3821
3822 if (un->flags & AT_REMOVEDIR)
3823 ret = do_rmdir(un->dfd, un->filename);
3824 else
3825 ret = do_unlinkat(un->dfd, un->filename);
3826
3827 req->flags &= ~REQ_F_NEED_CLEANUP;
3828 if (ret < 0)
3829 req_set_fail(req);
3830 io_req_complete(req, ret);
3831 return 0;
3832 }
3833
3834 static int io_mkdirat_prep(struct io_kiocb *req,
3835 const struct io_uring_sqe *sqe)
3836 {
3837 struct io_mkdir *mkd = &req->mkdir;
3838 const char __user *fname;
3839
3840 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3841 return -EINVAL;
3842 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3843 sqe->splice_fd_in)
3844 return -EINVAL;
3845 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3846 return -EBADF;
3847
3848 mkd->dfd = READ_ONCE(sqe->fd);
3849 mkd->mode = READ_ONCE(sqe->len);
3850
3851 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3852 mkd->filename = getname(fname);
3853 if (IS_ERR(mkd->filename))
3854 return PTR_ERR(mkd->filename);
3855
3856 req->flags |= REQ_F_NEED_CLEANUP;
3857 return 0;
3858 }
3859
3860 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3861 {
3862 struct io_mkdir *mkd = &req->mkdir;
3863 int ret;
3864
3865 if (issue_flags & IO_URING_F_NONBLOCK)
3866 return -EAGAIN;
3867
3868 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3869
3870 req->flags &= ~REQ_F_NEED_CLEANUP;
3871 if (ret < 0)
3872 req_set_fail(req);
3873 io_req_complete(req, ret);
3874 return 0;
3875 }
3876
3877 static int io_symlinkat_prep(struct io_kiocb *req,
3878 const struct io_uring_sqe *sqe)
3879 {
3880 struct io_symlink *sl = &req->symlink;
3881 const char __user *oldpath, *newpath;
3882
3883 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3884 return -EINVAL;
3885 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3886 sqe->splice_fd_in)
3887 return -EINVAL;
3888 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3889 return -EBADF;
3890
3891 sl->new_dfd = READ_ONCE(sqe->fd);
3892 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3893 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3894
3895 sl->oldpath = getname(oldpath);
3896 if (IS_ERR(sl->oldpath))
3897 return PTR_ERR(sl->oldpath);
3898
3899 sl->newpath = getname(newpath);
3900 if (IS_ERR(sl->newpath)) {
3901 putname(sl->oldpath);
3902 return PTR_ERR(sl->newpath);
3903 }
3904
3905 req->flags |= REQ_F_NEED_CLEANUP;
3906 return 0;
3907 }
3908
3909 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3910 {
3911 struct io_symlink *sl = &req->symlink;
3912 int ret;
3913
3914 if (issue_flags & IO_URING_F_NONBLOCK)
3915 return -EAGAIN;
3916
3917 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3918
3919 req->flags &= ~REQ_F_NEED_CLEANUP;
3920 if (ret < 0)
3921 req_set_fail(req);
3922 io_req_complete(req, ret);
3923 return 0;
3924 }
3925
3926 static int io_linkat_prep(struct io_kiocb *req,
3927 const struct io_uring_sqe *sqe)
3928 {
3929 struct io_hardlink *lnk = &req->hardlink;
3930 const char __user *oldf, *newf;
3931
3932 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3933 return -EINVAL;
3934 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3935 return -EINVAL;
3936 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3937 return -EBADF;
3938
3939 lnk->old_dfd = READ_ONCE(sqe->fd);
3940 lnk->new_dfd = READ_ONCE(sqe->len);
3941 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3942 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3943 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3944
3945 lnk->oldpath = getname(oldf);
3946 if (IS_ERR(lnk->oldpath))
3947 return PTR_ERR(lnk->oldpath);
3948
3949 lnk->newpath = getname(newf);
3950 if (IS_ERR(lnk->newpath)) {
3951 putname(lnk->oldpath);
3952 return PTR_ERR(lnk->newpath);
3953 }
3954
3955 req->flags |= REQ_F_NEED_CLEANUP;
3956 return 0;
3957 }
3958
3959 static int io_linkat(struct io_kiocb *req, int issue_flags)
3960 {
3961 struct io_hardlink *lnk = &req->hardlink;
3962 int ret;
3963
3964 if (issue_flags & IO_URING_F_NONBLOCK)
3965 return -EAGAIN;
3966
3967 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3968 lnk->newpath, lnk->flags);
3969
3970 req->flags &= ~REQ_F_NEED_CLEANUP;
3971 if (ret < 0)
3972 req_set_fail(req);
3973 io_req_complete(req, ret);
3974 return 0;
3975 }
3976
3977 static int io_shutdown_prep(struct io_kiocb *req,
3978 const struct io_uring_sqe *sqe)
3979 {
3980 #if defined(CONFIG_NET)
3981 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3982 return -EINVAL;
3983 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3984 sqe->buf_index || sqe->splice_fd_in))
3985 return -EINVAL;
3986
3987 req->shutdown.how = READ_ONCE(sqe->len);
3988 return 0;
3989 #else
3990 return -EOPNOTSUPP;
3991 #endif
3992 }
3993
3994 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3995 {
3996 #if defined(CONFIG_NET)
3997 struct socket *sock;
3998 int ret;
3999
4000 if (issue_flags & IO_URING_F_NONBLOCK)
4001 return -EAGAIN;
4002
4003 sock = sock_from_file(req->file);
4004 if (unlikely(!sock))
4005 return -ENOTSOCK;
4006
4007 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4008 if (ret < 0)
4009 req_set_fail(req);
4010 io_req_complete(req, ret);
4011 return 0;
4012 #else
4013 return -EOPNOTSUPP;
4014 #endif
4015 }
4016
4017 static int __io_splice_prep(struct io_kiocb *req,
4018 const struct io_uring_sqe *sqe)
4019 {
4020 struct io_splice *sp = &req->splice;
4021 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4022
4023 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4024 return -EINVAL;
4025
4026 sp->len = READ_ONCE(sqe->len);
4027 sp->flags = READ_ONCE(sqe->splice_flags);
4028 if (unlikely(sp->flags & ~valid_flags))
4029 return -EINVAL;
4030 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4031 return 0;
4032 }
4033
4034 static int io_tee_prep(struct io_kiocb *req,
4035 const struct io_uring_sqe *sqe)
4036 {
4037 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4038 return -EINVAL;
4039 return __io_splice_prep(req, sqe);
4040 }
4041
4042 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4043 {
4044 struct io_splice *sp = &req->splice;
4045 struct file *out = sp->file_out;
4046 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4047 struct file *in;
4048 long ret = 0;
4049
4050 if (issue_flags & IO_URING_F_NONBLOCK)
4051 return -EAGAIN;
4052
4053 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4054 (sp->flags & SPLICE_F_FD_IN_FIXED));
4055 if (!in) {
4056 ret = -EBADF;
4057 goto done;
4058 }
4059
4060 if (sp->len)
4061 ret = do_tee(in, out, sp->len, flags);
4062
4063 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4064 io_put_file(in);
4065 done:
4066 if (ret != sp->len)
4067 req_set_fail(req);
4068 io_req_complete(req, ret);
4069 return 0;
4070 }
4071
4072 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4073 {
4074 struct io_splice *sp = &req->splice;
4075
4076 sp->off_in = READ_ONCE(sqe->splice_off_in);
4077 sp->off_out = READ_ONCE(sqe->off);
4078 return __io_splice_prep(req, sqe);
4079 }
4080
4081 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4082 {
4083 struct io_splice *sp = &req->splice;
4084 struct file *out = sp->file_out;
4085 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4086 loff_t *poff_in, *poff_out;
4087 struct file *in;
4088 long ret = 0;
4089
4090 if (issue_flags & IO_URING_F_NONBLOCK)
4091 return -EAGAIN;
4092
4093 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4094 (sp->flags & SPLICE_F_FD_IN_FIXED));
4095 if (!in) {
4096 ret = -EBADF;
4097 goto done;
4098 }
4099
4100 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4101 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4102
4103 if (sp->len)
4104 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4105
4106 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4107 io_put_file(in);
4108 done:
4109 if (ret != sp->len)
4110 req_set_fail(req);
4111 io_req_complete(req, ret);
4112 return 0;
4113 }
4114
4115 /*
4116 * IORING_OP_NOP just posts a completion event, nothing else.
4117 */
4118 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4119 {
4120 struct io_ring_ctx *ctx = req->ctx;
4121
4122 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4123 return -EINVAL;
4124
4125 __io_req_complete(req, issue_flags, 0, 0);
4126 return 0;
4127 }
4128
4129 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4130 {
4131 struct io_ring_ctx *ctx = req->ctx;
4132
4133 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4134 return -EINVAL;
4135 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4136 sqe->splice_fd_in))
4137 return -EINVAL;
4138
4139 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4140 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4141 return -EINVAL;
4142
4143 req->sync.off = READ_ONCE(sqe->off);
4144 req->sync.len = READ_ONCE(sqe->len);
4145 return 0;
4146 }
4147
4148 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4149 {
4150 loff_t end = req->sync.off + req->sync.len;
4151 int ret;
4152
4153 /* fsync always requires a blocking context */
4154 if (issue_flags & IO_URING_F_NONBLOCK)
4155 return -EAGAIN;
4156
4157 ret = vfs_fsync_range(req->file, req->sync.off,
4158 end > 0 ? end : LLONG_MAX,
4159 req->sync.flags & IORING_FSYNC_DATASYNC);
4160 if (ret < 0)
4161 req_set_fail(req);
4162 io_req_complete(req, ret);
4163 return 0;
4164 }
4165
4166 static int io_fallocate_prep(struct io_kiocb *req,
4167 const struct io_uring_sqe *sqe)
4168 {
4169 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4170 sqe->splice_fd_in)
4171 return -EINVAL;
4172 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4173 return -EINVAL;
4174
4175 req->sync.off = READ_ONCE(sqe->off);
4176 req->sync.len = READ_ONCE(sqe->addr);
4177 req->sync.mode = READ_ONCE(sqe->len);
4178 return 0;
4179 }
4180
4181 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4182 {
4183 int ret;
4184
4185 /* fallocate always requiring blocking context */
4186 if (issue_flags & IO_URING_F_NONBLOCK)
4187 return -EAGAIN;
4188 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4189 req->sync.len);
4190 if (ret < 0)
4191 req_set_fail(req);
4192 else
4193 fsnotify_modify(req->file);
4194 io_req_complete(req, ret);
4195 return 0;
4196 }
4197
4198 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4199 {
4200 const char __user *fname;
4201 int ret;
4202
4203 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4204 return -EINVAL;
4205 if (unlikely(sqe->ioprio || sqe->buf_index))
4206 return -EINVAL;
4207 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4208 return -EBADF;
4209
4210 /* open.how should be already initialised */
4211 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4212 req->open.how.flags |= O_LARGEFILE;
4213
4214 req->open.dfd = READ_ONCE(sqe->fd);
4215 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4216 req->open.filename = getname(fname);
4217 if (IS_ERR(req->open.filename)) {
4218 ret = PTR_ERR(req->open.filename);
4219 req->open.filename = NULL;
4220 return ret;
4221 }
4222
4223 req->open.file_slot = READ_ONCE(sqe->file_index);
4224 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4225 return -EINVAL;
4226
4227 req->open.nofile = rlimit(RLIMIT_NOFILE);
4228 req->flags |= REQ_F_NEED_CLEANUP;
4229 return 0;
4230 }
4231
4232 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4233 {
4234 u64 mode = READ_ONCE(sqe->len);
4235 u64 flags = READ_ONCE(sqe->open_flags);
4236
4237 req->open.how = build_open_how(flags, mode);
4238 return __io_openat_prep(req, sqe);
4239 }
4240
4241 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4242 {
4243 struct open_how __user *how;
4244 size_t len;
4245 int ret;
4246
4247 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4248 len = READ_ONCE(sqe->len);
4249 if (len < OPEN_HOW_SIZE_VER0)
4250 return -EINVAL;
4251
4252 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4253 len);
4254 if (ret)
4255 return ret;
4256
4257 return __io_openat_prep(req, sqe);
4258 }
4259
4260 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4261 {
4262 struct open_flags op;
4263 struct file *file;
4264 bool resolve_nonblock, nonblock_set;
4265 bool fixed = !!req->open.file_slot;
4266 int ret;
4267
4268 ret = build_open_flags(&req->open.how, &op);
4269 if (ret)
4270 goto err;
4271 nonblock_set = op.open_flag & O_NONBLOCK;
4272 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4273 if (issue_flags & IO_URING_F_NONBLOCK) {
4274 /*
4275 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4276 * it'll always -EAGAIN
4277 */
4278 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4279 return -EAGAIN;
4280 op.lookup_flags |= LOOKUP_CACHED;
4281 op.open_flag |= O_NONBLOCK;
4282 }
4283
4284 if (!fixed) {
4285 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4286 if (ret < 0)
4287 goto err;
4288 }
4289
4290 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4291 if (IS_ERR(file)) {
4292 /*
4293 * We could hang on to this 'fd' on retrying, but seems like
4294 * marginal gain for something that is now known to be a slower
4295 * path. So just put it, and we'll get a new one when we retry.
4296 */
4297 if (!fixed)
4298 put_unused_fd(ret);
4299
4300 ret = PTR_ERR(file);
4301 /* only retry if RESOLVE_CACHED wasn't already set by application */
4302 if (ret == -EAGAIN &&
4303 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4304 return -EAGAIN;
4305 goto err;
4306 }
4307
4308 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4309 file->f_flags &= ~O_NONBLOCK;
4310 fsnotify_open(file);
4311
4312 if (!fixed)
4313 fd_install(ret, file);
4314 else
4315 ret = io_install_fixed_file(req, file, issue_flags,
4316 req->open.file_slot - 1);
4317 err:
4318 putname(req->open.filename);
4319 req->flags &= ~REQ_F_NEED_CLEANUP;
4320 if (ret < 0)
4321 req_set_fail(req);
4322 __io_req_complete(req, issue_flags, ret, 0);
4323 return 0;
4324 }
4325
4326 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4327 {
4328 return io_openat2(req, issue_flags);
4329 }
4330
4331 static int io_remove_buffers_prep(struct io_kiocb *req,
4332 const struct io_uring_sqe *sqe)
4333 {
4334 struct io_provide_buf *p = &req->pbuf;
4335 u64 tmp;
4336
4337 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4338 sqe->splice_fd_in)
4339 return -EINVAL;
4340
4341 tmp = READ_ONCE(sqe->fd);
4342 if (!tmp || tmp > USHRT_MAX)
4343 return -EINVAL;
4344
4345 memset(p, 0, sizeof(*p));
4346 p->nbufs = tmp;
4347 p->bgid = READ_ONCE(sqe->buf_group);
4348 return 0;
4349 }
4350
4351 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4352 int bgid, unsigned nbufs)
4353 {
4354 unsigned i = 0;
4355
4356 /* shouldn't happen */
4357 if (!nbufs)
4358 return 0;
4359
4360 /* the head kbuf is the list itself */
4361 while (!list_empty(&buf->list)) {
4362 struct io_buffer *nxt;
4363
4364 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4365 list_del(&nxt->list);
4366 kfree(nxt);
4367 if (++i == nbufs)
4368 return i;
4369 cond_resched();
4370 }
4371 i++;
4372 kfree(buf);
4373 xa_erase(&ctx->io_buffers, bgid);
4374
4375 return i;
4376 }
4377
4378 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4379 {
4380 struct io_provide_buf *p = &req->pbuf;
4381 struct io_ring_ctx *ctx = req->ctx;
4382 struct io_buffer *head;
4383 int ret = 0;
4384 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4385
4386 io_ring_submit_lock(ctx, !force_nonblock);
4387
4388 lockdep_assert_held(&ctx->uring_lock);
4389
4390 ret = -ENOENT;
4391 head = xa_load(&ctx->io_buffers, p->bgid);
4392 if (head)
4393 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4394 if (ret < 0)
4395 req_set_fail(req);
4396
4397 /* complete before unlock, IOPOLL may need the lock */
4398 __io_req_complete(req, issue_flags, ret, 0);
4399 io_ring_submit_unlock(ctx, !force_nonblock);
4400 return 0;
4401 }
4402
4403 static int io_provide_buffers_prep(struct io_kiocb *req,
4404 const struct io_uring_sqe *sqe)
4405 {
4406 unsigned long size, tmp_check;
4407 struct io_provide_buf *p = &req->pbuf;
4408 u64 tmp;
4409
4410 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4411 return -EINVAL;
4412
4413 tmp = READ_ONCE(sqe->fd);
4414 if (!tmp || tmp > USHRT_MAX)
4415 return -E2BIG;
4416 p->nbufs = tmp;
4417 p->addr = READ_ONCE(sqe->addr);
4418 p->len = READ_ONCE(sqe->len);
4419
4420 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4421 &size))
4422 return -EOVERFLOW;
4423 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4424 return -EOVERFLOW;
4425
4426 size = (unsigned long)p->len * p->nbufs;
4427 if (!access_ok(u64_to_user_ptr(p->addr), size))
4428 return -EFAULT;
4429
4430 p->bgid = READ_ONCE(sqe->buf_group);
4431 tmp = READ_ONCE(sqe->off);
4432 if (tmp > USHRT_MAX)
4433 return -E2BIG;
4434 p->bid = tmp;
4435 return 0;
4436 }
4437
4438 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4439 {
4440 struct io_buffer *buf;
4441 u64 addr = pbuf->addr;
4442 int i, bid = pbuf->bid;
4443
4444 for (i = 0; i < pbuf->nbufs; i++) {
4445 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4446 if (!buf)
4447 break;
4448
4449 buf->addr = addr;
4450 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4451 buf->bid = bid;
4452 addr += pbuf->len;
4453 bid++;
4454 if (!*head) {
4455 INIT_LIST_HEAD(&buf->list);
4456 *head = buf;
4457 } else {
4458 list_add_tail(&buf->list, &(*head)->list);
4459 }
4460 cond_resched();
4461 }
4462
4463 return i ? i : -ENOMEM;
4464 }
4465
4466 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4467 {
4468 struct io_provide_buf *p = &req->pbuf;
4469 struct io_ring_ctx *ctx = req->ctx;
4470 struct io_buffer *head, *list;
4471 int ret = 0;
4472 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4473
4474 io_ring_submit_lock(ctx, !force_nonblock);
4475
4476 lockdep_assert_held(&ctx->uring_lock);
4477
4478 list = head = xa_load(&ctx->io_buffers, p->bgid);
4479
4480 ret = io_add_buffers(p, &head);
4481 if (ret >= 0 && !list) {
4482 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4483 if (ret < 0)
4484 __io_remove_buffers(ctx, head, p->bgid, -1U);
4485 }
4486 if (ret < 0)
4487 req_set_fail(req);
4488 /* complete before unlock, IOPOLL may need the lock */
4489 __io_req_complete(req, issue_flags, ret, 0);
4490 io_ring_submit_unlock(ctx, !force_nonblock);
4491 return 0;
4492 }
4493
4494 static int io_epoll_ctl_prep(struct io_kiocb *req,
4495 const struct io_uring_sqe *sqe)
4496 {
4497 #if defined(CONFIG_EPOLL)
4498 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4499 return -EINVAL;
4500 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4501 return -EINVAL;
4502
4503 req->epoll.epfd = READ_ONCE(sqe->fd);
4504 req->epoll.op = READ_ONCE(sqe->len);
4505 req->epoll.fd = READ_ONCE(sqe->off);
4506
4507 if (ep_op_has_event(req->epoll.op)) {
4508 struct epoll_event __user *ev;
4509
4510 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4511 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4512 return -EFAULT;
4513 }
4514
4515 return 0;
4516 #else
4517 return -EOPNOTSUPP;
4518 #endif
4519 }
4520
4521 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4522 {
4523 #if defined(CONFIG_EPOLL)
4524 struct io_epoll *ie = &req->epoll;
4525 int ret;
4526 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4527
4528 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4529 if (force_nonblock && ret == -EAGAIN)
4530 return -EAGAIN;
4531
4532 if (ret < 0)
4533 req_set_fail(req);
4534 __io_req_complete(req, issue_flags, ret, 0);
4535 return 0;
4536 #else
4537 return -EOPNOTSUPP;
4538 #endif
4539 }
4540
4541 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4542 {
4543 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4544 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4545 return -EINVAL;
4546 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4547 return -EINVAL;
4548
4549 req->madvise.addr = READ_ONCE(sqe->addr);
4550 req->madvise.len = READ_ONCE(sqe->len);
4551 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4552 return 0;
4553 #else
4554 return -EOPNOTSUPP;
4555 #endif
4556 }
4557
4558 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4559 {
4560 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4561 struct io_madvise *ma = &req->madvise;
4562 int ret;
4563
4564 if (issue_flags & IO_URING_F_NONBLOCK)
4565 return -EAGAIN;
4566
4567 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4568 if (ret < 0)
4569 req_set_fail(req);
4570 io_req_complete(req, ret);
4571 return 0;
4572 #else
4573 return -EOPNOTSUPP;
4574 #endif
4575 }
4576
4577 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4578 {
4579 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4580 return -EINVAL;
4581 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4582 return -EINVAL;
4583
4584 req->fadvise.offset = READ_ONCE(sqe->off);
4585 req->fadvise.len = READ_ONCE(sqe->len);
4586 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4587 return 0;
4588 }
4589
4590 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4591 {
4592 struct io_fadvise *fa = &req->fadvise;
4593 int ret;
4594
4595 if (issue_flags & IO_URING_F_NONBLOCK) {
4596 switch (fa->advice) {
4597 case POSIX_FADV_NORMAL:
4598 case POSIX_FADV_RANDOM:
4599 case POSIX_FADV_SEQUENTIAL:
4600 break;
4601 default:
4602 return -EAGAIN;
4603 }
4604 }
4605
4606 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4607 if (ret < 0)
4608 req_set_fail(req);
4609 __io_req_complete(req, issue_flags, ret, 0);
4610 return 0;
4611 }
4612
4613 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4614 {
4615 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4616 return -EINVAL;
4617 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4618 return -EINVAL;
4619 if (req->flags & REQ_F_FIXED_FILE)
4620 return -EBADF;
4621
4622 req->statx.dfd = READ_ONCE(sqe->fd);
4623 req->statx.mask = READ_ONCE(sqe->len);
4624 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4625 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4626 req->statx.flags = READ_ONCE(sqe->statx_flags);
4627
4628 return 0;
4629 }
4630
4631 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4632 {
4633 struct io_statx *ctx = &req->statx;
4634 int ret;
4635
4636 if (issue_flags & IO_URING_F_NONBLOCK)
4637 return -EAGAIN;
4638
4639 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4640 ctx->buffer);
4641
4642 if (ret < 0)
4643 req_set_fail(req);
4644 io_req_complete(req, ret);
4645 return 0;
4646 }
4647
4648 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4649 {
4650 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4651 return -EINVAL;
4652 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4653 sqe->rw_flags || sqe->buf_index)
4654 return -EINVAL;
4655 if (req->flags & REQ_F_FIXED_FILE)
4656 return -EBADF;
4657
4658 req->close.fd = READ_ONCE(sqe->fd);
4659 req->close.file_slot = READ_ONCE(sqe->file_index);
4660 if (req->close.file_slot && req->close.fd)
4661 return -EINVAL;
4662
4663 return 0;
4664 }
4665
4666 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4667 {
4668 struct files_struct *files = current->files;
4669 struct io_close *close = &req->close;
4670 struct fdtable *fdt;
4671 struct file *file = NULL;
4672 int ret = -EBADF;
4673
4674 if (req->close.file_slot) {
4675 ret = io_close_fixed(req, issue_flags);
4676 goto err;
4677 }
4678
4679 spin_lock(&files->file_lock);
4680 fdt = files_fdtable(files);
4681 if (close->fd >= fdt->max_fds) {
4682 spin_unlock(&files->file_lock);
4683 goto err;
4684 }
4685 file = fdt->fd[close->fd];
4686 if (!file || file->f_op == &io_uring_fops) {
4687 spin_unlock(&files->file_lock);
4688 file = NULL;
4689 goto err;
4690 }
4691
4692 /* if the file has a flush method, be safe and punt to async */
4693 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4694 spin_unlock(&files->file_lock);
4695 return -EAGAIN;
4696 }
4697
4698 ret = __close_fd_get_file(close->fd, &file);
4699 spin_unlock(&files->file_lock);
4700 if (ret < 0) {
4701 if (ret == -ENOENT)
4702 ret = -EBADF;
4703 goto err;
4704 }
4705
4706 /* No ->flush() or already async, safely close from here */
4707 ret = filp_close(file, current->files);
4708 err:
4709 if (ret < 0)
4710 req_set_fail(req);
4711 if (file)
4712 fput(file);
4713 __io_req_complete(req, issue_flags, ret, 0);
4714 return 0;
4715 }
4716
4717 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4718 {
4719 struct io_ring_ctx *ctx = req->ctx;
4720
4721 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4722 return -EINVAL;
4723 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4724 sqe->splice_fd_in))
4725 return -EINVAL;
4726
4727 req->sync.off = READ_ONCE(sqe->off);
4728 req->sync.len = READ_ONCE(sqe->len);
4729 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4730 return 0;
4731 }
4732
4733 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4734 {
4735 int ret;
4736
4737 /* sync_file_range always requires a blocking context */
4738 if (issue_flags & IO_URING_F_NONBLOCK)
4739 return -EAGAIN;
4740
4741 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4742 req->sync.flags);
4743 if (ret < 0)
4744 req_set_fail(req);
4745 io_req_complete(req, ret);
4746 return 0;
4747 }
4748
4749 #if defined(CONFIG_NET)
4750 static int io_setup_async_msg(struct io_kiocb *req,
4751 struct io_async_msghdr *kmsg)
4752 {
4753 struct io_async_msghdr *async_msg = req->async_data;
4754
4755 if (async_msg)
4756 return -EAGAIN;
4757 if (io_alloc_async_data(req)) {
4758 kfree(kmsg->free_iov);
4759 return -ENOMEM;
4760 }
4761 async_msg = req->async_data;
4762 req->flags |= REQ_F_NEED_CLEANUP;
4763 memcpy(async_msg, kmsg, sizeof(*kmsg));
4764 async_msg->msg.msg_name = &async_msg->addr;
4765 /* if were using fast_iov, set it to the new one */
4766 if (!async_msg->free_iov)
4767 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4768
4769 return -EAGAIN;
4770 }
4771
4772 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4773 struct io_async_msghdr *iomsg)
4774 {
4775 iomsg->msg.msg_name = &iomsg->addr;
4776 iomsg->free_iov = iomsg->fast_iov;
4777 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4778 req->sr_msg.msg_flags, &iomsg->free_iov);
4779 }
4780
4781 static int io_sendmsg_prep_async(struct io_kiocb *req)
4782 {
4783 int ret;
4784
4785 ret = io_sendmsg_copy_hdr(req, req->async_data);
4786 if (!ret)
4787 req->flags |= REQ_F_NEED_CLEANUP;
4788 return ret;
4789 }
4790
4791 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4792 {
4793 struct io_sr_msg *sr = &req->sr_msg;
4794
4795 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4796 return -EINVAL;
4797 if (unlikely(sqe->addr2 || sqe->file_index))
4798 return -EINVAL;
4799 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4800 return -EINVAL;
4801
4802 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4803 sr->len = READ_ONCE(sqe->len);
4804 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4805 if (sr->msg_flags & MSG_DONTWAIT)
4806 req->flags |= REQ_F_NOWAIT;
4807
4808 #ifdef CONFIG_COMPAT
4809 if (req->ctx->compat)
4810 sr->msg_flags |= MSG_CMSG_COMPAT;
4811 #endif
4812 return 0;
4813 }
4814
4815 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4816 {
4817 struct io_async_msghdr iomsg, *kmsg;
4818 struct socket *sock;
4819 unsigned flags;
4820 int min_ret = 0;
4821 int ret;
4822
4823 sock = sock_from_file(req->file);
4824 if (unlikely(!sock))
4825 return -ENOTSOCK;
4826
4827 kmsg = req->async_data;
4828 if (!kmsg) {
4829 ret = io_sendmsg_copy_hdr(req, &iomsg);
4830 if (ret)
4831 return ret;
4832 kmsg = &iomsg;
4833 }
4834
4835 flags = req->sr_msg.msg_flags;
4836 if (issue_flags & IO_URING_F_NONBLOCK)
4837 flags |= MSG_DONTWAIT;
4838 if (flags & MSG_WAITALL)
4839 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4840
4841 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4842 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4843 return io_setup_async_msg(req, kmsg);
4844 if (ret == -ERESTARTSYS)
4845 ret = -EINTR;
4846
4847 /* fast path, check for non-NULL to avoid function call */
4848 if (kmsg->free_iov)
4849 kfree(kmsg->free_iov);
4850 req->flags &= ~REQ_F_NEED_CLEANUP;
4851 if (ret < min_ret)
4852 req_set_fail(req);
4853 __io_req_complete(req, issue_flags, ret, 0);
4854 return 0;
4855 }
4856
4857 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4858 {
4859 struct io_sr_msg *sr = &req->sr_msg;
4860 struct msghdr msg;
4861 struct iovec iov;
4862 struct socket *sock;
4863 unsigned flags;
4864 int min_ret = 0;
4865 int ret;
4866
4867 sock = sock_from_file(req->file);
4868 if (unlikely(!sock))
4869 return -ENOTSOCK;
4870
4871 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4872 if (unlikely(ret))
4873 return ret;
4874
4875 msg.msg_name = NULL;
4876 msg.msg_control = NULL;
4877 msg.msg_controllen = 0;
4878 msg.msg_namelen = 0;
4879
4880 flags = req->sr_msg.msg_flags;
4881 if (issue_flags & IO_URING_F_NONBLOCK)
4882 flags |= MSG_DONTWAIT;
4883 if (flags & MSG_WAITALL)
4884 min_ret = iov_iter_count(&msg.msg_iter);
4885
4886 msg.msg_flags = flags;
4887 ret = sock_sendmsg(sock, &msg);
4888 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4889 return -EAGAIN;
4890 if (ret == -ERESTARTSYS)
4891 ret = -EINTR;
4892
4893 if (ret < min_ret)
4894 req_set_fail(req);
4895 __io_req_complete(req, issue_flags, ret, 0);
4896 return 0;
4897 }
4898
4899 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4900 struct io_async_msghdr *iomsg)
4901 {
4902 struct io_sr_msg *sr = &req->sr_msg;
4903 struct iovec __user *uiov;
4904 size_t iov_len;
4905 int ret;
4906
4907 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4908 &iomsg->uaddr, &uiov, &iov_len);
4909 if (ret)
4910 return ret;
4911
4912 if (req->flags & REQ_F_BUFFER_SELECT) {
4913 if (iov_len > 1)
4914 return -EINVAL;
4915 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4916 return -EFAULT;
4917 sr->len = iomsg->fast_iov[0].iov_len;
4918 iomsg->free_iov = NULL;
4919 } else {
4920 iomsg->free_iov = iomsg->fast_iov;
4921 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4922 &iomsg->free_iov, &iomsg->msg.msg_iter,
4923 false);
4924 if (ret > 0)
4925 ret = 0;
4926 }
4927
4928 return ret;
4929 }
4930
4931 #ifdef CONFIG_COMPAT
4932 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4933 struct io_async_msghdr *iomsg)
4934 {
4935 struct io_sr_msg *sr = &req->sr_msg;
4936 struct compat_iovec __user *uiov;
4937 compat_uptr_t ptr;
4938 compat_size_t len;
4939 int ret;
4940
4941 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4942 &ptr, &len);
4943 if (ret)
4944 return ret;
4945
4946 uiov = compat_ptr(ptr);
4947 if (req->flags & REQ_F_BUFFER_SELECT) {
4948 compat_ssize_t clen;
4949
4950 if (len > 1)
4951 return -EINVAL;
4952 if (!access_ok(uiov, sizeof(*uiov)))
4953 return -EFAULT;
4954 if (__get_user(clen, &uiov->iov_len))
4955 return -EFAULT;
4956 if (clen < 0)
4957 return -EINVAL;
4958 sr->len = clen;
4959 iomsg->free_iov = NULL;
4960 } else {
4961 iomsg->free_iov = iomsg->fast_iov;
4962 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4963 UIO_FASTIOV, &iomsg->free_iov,
4964 &iomsg->msg.msg_iter, true);
4965 if (ret < 0)
4966 return ret;
4967 }
4968
4969 return 0;
4970 }
4971 #endif
4972
4973 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4974 struct io_async_msghdr *iomsg)
4975 {
4976 iomsg->msg.msg_name = &iomsg->addr;
4977
4978 #ifdef CONFIG_COMPAT
4979 if (req->ctx->compat)
4980 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4981 #endif
4982
4983 return __io_recvmsg_copy_hdr(req, iomsg);
4984 }
4985
4986 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4987 bool needs_lock)
4988 {
4989 struct io_sr_msg *sr = &req->sr_msg;
4990 struct io_buffer *kbuf;
4991
4992 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4993 if (IS_ERR(kbuf))
4994 return kbuf;
4995
4996 sr->kbuf = kbuf;
4997 req->flags |= REQ_F_BUFFER_SELECTED;
4998 return kbuf;
4999 }
5000
5001 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5002 {
5003 return io_put_kbuf(req, req->sr_msg.kbuf);
5004 }
5005
5006 static int io_recvmsg_prep_async(struct io_kiocb *req)
5007 {
5008 int ret;
5009
5010 ret = io_recvmsg_copy_hdr(req, req->async_data);
5011 if (!ret)
5012 req->flags |= REQ_F_NEED_CLEANUP;
5013 return ret;
5014 }
5015
5016 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5017 {
5018 struct io_sr_msg *sr = &req->sr_msg;
5019
5020 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5021 return -EINVAL;
5022 if (unlikely(sqe->addr2 || sqe->file_index))
5023 return -EINVAL;
5024 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5025 return -EINVAL;
5026
5027 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5028 sr->len = READ_ONCE(sqe->len);
5029 sr->bgid = READ_ONCE(sqe->buf_group);
5030 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5031 if (sr->msg_flags & MSG_DONTWAIT)
5032 req->flags |= REQ_F_NOWAIT;
5033
5034 #ifdef CONFIG_COMPAT
5035 if (req->ctx->compat)
5036 sr->msg_flags |= MSG_CMSG_COMPAT;
5037 #endif
5038 return 0;
5039 }
5040
5041 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5042 {
5043 struct io_async_msghdr iomsg, *kmsg;
5044 struct socket *sock;
5045 struct io_buffer *kbuf;
5046 unsigned flags;
5047 int min_ret = 0;
5048 int ret, cflags = 0;
5049 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5050
5051 sock = sock_from_file(req->file);
5052 if (unlikely(!sock))
5053 return -ENOTSOCK;
5054
5055 kmsg = req->async_data;
5056 if (!kmsg) {
5057 ret = io_recvmsg_copy_hdr(req, &iomsg);
5058 if (ret)
5059 return ret;
5060 kmsg = &iomsg;
5061 }
5062
5063 if (req->flags & REQ_F_BUFFER_SELECT) {
5064 kbuf = io_recv_buffer_select(req, !force_nonblock);
5065 if (IS_ERR(kbuf))
5066 return PTR_ERR(kbuf);
5067 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5068 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5069 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5070 1, req->sr_msg.len);
5071 }
5072
5073 flags = req->sr_msg.msg_flags;
5074 if (force_nonblock)
5075 flags |= MSG_DONTWAIT;
5076 if (flags & MSG_WAITALL)
5077 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5078
5079 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5080 kmsg->uaddr, flags);
5081 if (force_nonblock && ret == -EAGAIN)
5082 return io_setup_async_msg(req, kmsg);
5083 if (ret == -ERESTARTSYS)
5084 ret = -EINTR;
5085
5086 if (req->flags & REQ_F_BUFFER_SELECTED)
5087 cflags = io_put_recv_kbuf(req);
5088 /* fast path, check for non-NULL to avoid function call */
5089 if (kmsg->free_iov)
5090 kfree(kmsg->free_iov);
5091 req->flags &= ~REQ_F_NEED_CLEANUP;
5092 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5093 req_set_fail(req);
5094 __io_req_complete(req, issue_flags, ret, cflags);
5095 return 0;
5096 }
5097
5098 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5099 {
5100 struct io_buffer *kbuf;
5101 struct io_sr_msg *sr = &req->sr_msg;
5102 struct msghdr msg;
5103 void __user *buf = sr->buf;
5104 struct socket *sock;
5105 struct iovec iov;
5106 unsigned flags;
5107 int min_ret = 0;
5108 int ret, cflags = 0;
5109 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5110
5111 sock = sock_from_file(req->file);
5112 if (unlikely(!sock))
5113 return -ENOTSOCK;
5114
5115 if (req->flags & REQ_F_BUFFER_SELECT) {
5116 kbuf = io_recv_buffer_select(req, !force_nonblock);
5117 if (IS_ERR(kbuf))
5118 return PTR_ERR(kbuf);
5119 buf = u64_to_user_ptr(kbuf->addr);
5120 }
5121
5122 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5123 if (unlikely(ret))
5124 goto out_free;
5125
5126 msg.msg_name = NULL;
5127 msg.msg_control = NULL;
5128 msg.msg_controllen = 0;
5129 msg.msg_namelen = 0;
5130 msg.msg_iocb = NULL;
5131 msg.msg_flags = 0;
5132
5133 flags = req->sr_msg.msg_flags;
5134 if (force_nonblock)
5135 flags |= MSG_DONTWAIT;
5136 if (flags & MSG_WAITALL)
5137 min_ret = iov_iter_count(&msg.msg_iter);
5138
5139 ret = sock_recvmsg(sock, &msg, flags);
5140 if (force_nonblock && ret == -EAGAIN)
5141 return -EAGAIN;
5142 if (ret == -ERESTARTSYS)
5143 ret = -EINTR;
5144 out_free:
5145 if (req->flags & REQ_F_BUFFER_SELECTED)
5146 cflags = io_put_recv_kbuf(req);
5147 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5148 req_set_fail(req);
5149 __io_req_complete(req, issue_flags, ret, cflags);
5150 return 0;
5151 }
5152
5153 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5154 {
5155 struct io_accept *accept = &req->accept;
5156
5157 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5158 return -EINVAL;
5159 if (sqe->ioprio || sqe->len || sqe->buf_index)
5160 return -EINVAL;
5161
5162 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5163 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5164 accept->flags = READ_ONCE(sqe->accept_flags);
5165 accept->nofile = rlimit(RLIMIT_NOFILE);
5166
5167 accept->file_slot = READ_ONCE(sqe->file_index);
5168 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5169 return -EINVAL;
5170 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5171 return -EINVAL;
5172 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5173 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5174 return 0;
5175 }
5176
5177 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5178 {
5179 struct io_accept *accept = &req->accept;
5180 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5181 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5182 bool fixed = !!accept->file_slot;
5183 struct file *file;
5184 int ret, fd;
5185
5186 if (req->file->f_flags & O_NONBLOCK)
5187 req->flags |= REQ_F_NOWAIT;
5188
5189 if (!fixed) {
5190 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5191 if (unlikely(fd < 0))
5192 return fd;
5193 }
5194 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5195 accept->flags);
5196 if (IS_ERR(file)) {
5197 if (!fixed)
5198 put_unused_fd(fd);
5199 ret = PTR_ERR(file);
5200 if (ret == -EAGAIN && force_nonblock)
5201 return -EAGAIN;
5202 if (ret == -ERESTARTSYS)
5203 ret = -EINTR;
5204 req_set_fail(req);
5205 } else if (!fixed) {
5206 fd_install(fd, file);
5207 ret = fd;
5208 } else {
5209 ret = io_install_fixed_file(req, file, issue_flags,
5210 accept->file_slot - 1);
5211 }
5212 __io_req_complete(req, issue_flags, ret, 0);
5213 return 0;
5214 }
5215
5216 static int io_connect_prep_async(struct io_kiocb *req)
5217 {
5218 struct io_async_connect *io = req->async_data;
5219 struct io_connect *conn = &req->connect;
5220
5221 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5222 }
5223
5224 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5225 {
5226 struct io_connect *conn = &req->connect;
5227
5228 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5229 return -EINVAL;
5230 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5231 sqe->splice_fd_in)
5232 return -EINVAL;
5233
5234 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5235 conn->addr_len = READ_ONCE(sqe->addr2);
5236 return 0;
5237 }
5238
5239 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5240 {
5241 struct io_async_connect __io, *io;
5242 unsigned file_flags;
5243 int ret;
5244 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5245
5246 if (req->async_data) {
5247 io = req->async_data;
5248 } else {
5249 ret = move_addr_to_kernel(req->connect.addr,
5250 req->connect.addr_len,
5251 &__io.address);
5252 if (ret)
5253 goto out;
5254 io = &__io;
5255 }
5256
5257 file_flags = force_nonblock ? O_NONBLOCK : 0;
5258
5259 ret = __sys_connect_file(req->file, &io->address,
5260 req->connect.addr_len, file_flags);
5261 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5262 if (req->async_data)
5263 return -EAGAIN;
5264 if (io_alloc_async_data(req)) {
5265 ret = -ENOMEM;
5266 goto out;
5267 }
5268 memcpy(req->async_data, &__io, sizeof(__io));
5269 return -EAGAIN;
5270 }
5271 if (ret == -ERESTARTSYS)
5272 ret = -EINTR;
5273 out:
5274 if (ret < 0)
5275 req_set_fail(req);
5276 __io_req_complete(req, issue_flags, ret, 0);
5277 return 0;
5278 }
5279 #else /* !CONFIG_NET */
5280 #define IO_NETOP_FN(op) \
5281 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5282 { \
5283 return -EOPNOTSUPP; \
5284 }
5285
5286 #define IO_NETOP_PREP(op) \
5287 IO_NETOP_FN(op) \
5288 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5289 { \
5290 return -EOPNOTSUPP; \
5291 } \
5292
5293 #define IO_NETOP_PREP_ASYNC(op) \
5294 IO_NETOP_PREP(op) \
5295 static int io_##op##_prep_async(struct io_kiocb *req) \
5296 { \
5297 return -EOPNOTSUPP; \
5298 }
5299
5300 IO_NETOP_PREP_ASYNC(sendmsg);
5301 IO_NETOP_PREP_ASYNC(recvmsg);
5302 IO_NETOP_PREP_ASYNC(connect);
5303 IO_NETOP_PREP(accept);
5304 IO_NETOP_FN(send);
5305 IO_NETOP_FN(recv);
5306 #endif /* CONFIG_NET */
5307
5308 struct io_poll_table {
5309 struct poll_table_struct pt;
5310 struct io_kiocb *req;
5311 int nr_entries;
5312 int error;
5313 };
5314
5315 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5316 {
5317 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5318 if (req->opcode == IORING_OP_POLL_ADD)
5319 return req->async_data;
5320 return req->apoll->double_poll;
5321 }
5322
5323 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5324 {
5325 if (req->opcode == IORING_OP_POLL_ADD)
5326 return &req->poll;
5327 return &req->apoll->poll;
5328 }
5329
5330 static void io_poll_req_insert(struct io_kiocb *req)
5331 {
5332 struct io_ring_ctx *ctx = req->ctx;
5333 struct hlist_head *list;
5334
5335 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5336 hlist_add_head(&req->hash_node, list);
5337 }
5338
5339 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5340 wait_queue_func_t wake_func)
5341 {
5342 poll->head = NULL;
5343 poll->done = false;
5344 poll->canceled = false;
5345 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5346 /* mask in events that we always want/need */
5347 poll->events = events | IO_POLL_UNMASK;
5348 INIT_LIST_HEAD(&poll->wait.entry);
5349 init_waitqueue_func_entry(&poll->wait, wake_func);
5350 }
5351
5352 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5353 __poll_t mask, io_req_tw_func_t func)
5354 {
5355 /* for instances that support it check for an event match first: */
5356 if (mask && !(mask & poll->events))
5357 return 0;
5358
5359 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5360
5361 list_del_init(&poll->wait.entry);
5362
5363 req->result = mask;
5364 req->io_task_work.func = func;
5365
5366 /*
5367 * If this fails, then the task is exiting. When a task exits, the
5368 * work gets canceled, so just cancel this request as well instead
5369 * of executing it. We can't safely execute it anyway, as we may not
5370 * have the needed state needed for it anyway.
5371 */
5372 io_req_task_work_add(req);
5373 return 1;
5374 }
5375
5376 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5377 __acquires(&req->ctx->completion_lock)
5378 {
5379 struct io_ring_ctx *ctx = req->ctx;
5380
5381 /* req->task == current here, checking PF_EXITING is safe */
5382 if (unlikely(req->task->flags & PF_EXITING))
5383 WRITE_ONCE(poll->canceled, true);
5384
5385 if (!req->result && !READ_ONCE(poll->canceled)) {
5386 struct poll_table_struct pt = { ._key = poll->events };
5387
5388 req->result = vfs_poll(req->file, &pt) & poll->events;
5389 }
5390
5391 spin_lock(&ctx->completion_lock);
5392 if (!req->result && !READ_ONCE(poll->canceled)) {
5393 add_wait_queue(poll->head, &poll->wait);
5394 return true;
5395 }
5396
5397 return false;
5398 }
5399
5400 static void io_poll_remove_double(struct io_kiocb *req)
5401 __must_hold(&req->ctx->completion_lock)
5402 {
5403 struct io_poll_iocb *poll = io_poll_get_double(req);
5404
5405 lockdep_assert_held(&req->ctx->completion_lock);
5406
5407 if (poll && poll->head) {
5408 struct wait_queue_head *head = poll->head;
5409
5410 spin_lock_irq(&head->lock);
5411 list_del_init(&poll->wait.entry);
5412 if (poll->wait.private)
5413 req_ref_put(req);
5414 poll->head = NULL;
5415 spin_unlock_irq(&head->lock);
5416 }
5417 }
5418
5419 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5420 __must_hold(&req->ctx->completion_lock)
5421 {
5422 struct io_ring_ctx *ctx = req->ctx;
5423 unsigned flags = IORING_CQE_F_MORE;
5424 int error;
5425
5426 if (READ_ONCE(req->poll.canceled)) {
5427 error = -ECANCELED;
5428 req->poll.events |= EPOLLONESHOT;
5429 } else {
5430 error = mangle_poll(mask);
5431 }
5432 if (req->poll.events & EPOLLONESHOT)
5433 flags = 0;
5434
5435 if (!(flags & IORING_CQE_F_MORE)) {
5436 io_fill_cqe_req(req, error, flags);
5437 } else if (!io_fill_cqe_aux(ctx, req->user_data, error, flags)) {
5438 req->poll.events |= EPOLLONESHOT;
5439 flags = 0;
5440 }
5441 return !(flags & IORING_CQE_F_MORE);
5442 }
5443
5444 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5445 {
5446 struct io_ring_ctx *ctx = req->ctx;
5447
5448 if (io_poll_rewait(req, &req->poll)) {
5449 spin_unlock(&ctx->completion_lock);
5450 } else {
5451 bool done;
5452
5453 if (req->poll.done) {
5454 spin_unlock(&ctx->completion_lock);
5455 return;
5456 }
5457 done = __io_poll_complete(req, req->result);
5458 if (done) {
5459 io_poll_remove_double(req);
5460 hash_del(&req->hash_node);
5461 req->poll.done = true;
5462 } else {
5463 req->result = 0;
5464 add_wait_queue(req->poll.head, &req->poll.wait);
5465 }
5466 io_commit_cqring(ctx);
5467 spin_unlock(&ctx->completion_lock);
5468 io_cqring_ev_posted(ctx);
5469
5470 if (done)
5471 io_put_req(req);
5472 }
5473 }
5474
5475 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5476 int sync, void *key)
5477 {
5478 struct io_kiocb *req = wait->private;
5479 struct io_poll_iocb *poll = io_poll_get_single(req);
5480 __poll_t mask = key_to_poll(key);
5481 unsigned long flags;
5482
5483 /* for instances that support it check for an event match first: */
5484 if (mask && !(mask & poll->events))
5485 return 0;
5486 if (!(poll->events & EPOLLONESHOT))
5487 return poll->wait.func(&poll->wait, mode, sync, key);
5488
5489 list_del_init(&wait->entry);
5490
5491 if (poll->head) {
5492 bool done;
5493
5494 spin_lock_irqsave(&poll->head->lock, flags);
5495 done = list_empty(&poll->wait.entry);
5496 if (!done)
5497 list_del_init(&poll->wait.entry);
5498 /* make sure double remove sees this as being gone */
5499 wait->private = NULL;
5500 spin_unlock_irqrestore(&poll->head->lock, flags);
5501 if (!done) {
5502 /* use wait func handler, so it matches the rq type */
5503 poll->wait.func(&poll->wait, mode, sync, key);
5504 }
5505 }
5506 req_ref_put(req);
5507 return 1;
5508 }
5509
5510 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5511 struct wait_queue_head *head,
5512 struct io_poll_iocb **poll_ptr)
5513 {
5514 struct io_kiocb *req = pt->req;
5515
5516 /*
5517 * The file being polled uses multiple waitqueues for poll handling
5518 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5519 * if this happens.
5520 */
5521 if (unlikely(pt->nr_entries)) {
5522 struct io_poll_iocb *poll_one = poll;
5523
5524 /* double add on the same waitqueue head, ignore */
5525 if (poll_one->head == head)
5526 return;
5527 /* already have a 2nd entry, fail a third attempt */
5528 if (*poll_ptr) {
5529 if ((*poll_ptr)->head == head)
5530 return;
5531 pt->error = -EINVAL;
5532 return;
5533 }
5534 /*
5535 * Can't handle multishot for double wait for now, turn it
5536 * into one-shot mode.
5537 */
5538 if (!(poll_one->events & EPOLLONESHOT))
5539 poll_one->events |= EPOLLONESHOT;
5540 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5541 if (!poll) {
5542 pt->error = -ENOMEM;
5543 return;
5544 }
5545 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5546 req_ref_get(req);
5547 poll->wait.private = req;
5548 *poll_ptr = poll;
5549 }
5550
5551 pt->nr_entries++;
5552 poll->head = head;
5553
5554 if (poll->events & EPOLLEXCLUSIVE)
5555 add_wait_queue_exclusive(head, &poll->wait);
5556 else
5557 add_wait_queue(head, &poll->wait);
5558 }
5559
5560 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5561 struct poll_table_struct *p)
5562 {
5563 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5564 struct async_poll *apoll = pt->req->apoll;
5565
5566 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5567 }
5568
5569 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5570 {
5571 struct async_poll *apoll = req->apoll;
5572 struct io_ring_ctx *ctx = req->ctx;
5573
5574 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5575
5576 if (io_poll_rewait(req, &apoll->poll)) {
5577 spin_unlock(&ctx->completion_lock);
5578 return;
5579 }
5580
5581 hash_del(&req->hash_node);
5582 io_poll_remove_double(req);
5583 apoll->poll.done = true;
5584 spin_unlock(&ctx->completion_lock);
5585
5586 if (!READ_ONCE(apoll->poll.canceled))
5587 io_req_task_submit(req, locked);
5588 else
5589 io_req_complete_failed(req, -ECANCELED);
5590 }
5591
5592 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5593 void *key)
5594 {
5595 struct io_kiocb *req = wait->private;
5596 struct io_poll_iocb *poll = &req->apoll->poll;
5597
5598 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5599 key_to_poll(key));
5600
5601 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5602 }
5603
5604 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5605 struct io_poll_iocb *poll,
5606 struct io_poll_table *ipt, __poll_t mask,
5607 wait_queue_func_t wake_func)
5608 __acquires(&ctx->completion_lock)
5609 {
5610 struct io_ring_ctx *ctx = req->ctx;
5611 bool cancel = false;
5612
5613 INIT_HLIST_NODE(&req->hash_node);
5614 io_init_poll_iocb(poll, mask, wake_func);
5615 poll->file = req->file;
5616 poll->wait.private = req;
5617
5618 ipt->pt._key = mask;
5619 ipt->req = req;
5620 ipt->error = 0;
5621 ipt->nr_entries = 0;
5622
5623 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5624 if (unlikely(!ipt->nr_entries) && !ipt->error)
5625 ipt->error = -EINVAL;
5626
5627 spin_lock(&ctx->completion_lock);
5628 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5629 io_poll_remove_double(req);
5630 if (likely(poll->head)) {
5631 spin_lock_irq(&poll->head->lock);
5632 if (unlikely(list_empty(&poll->wait.entry))) {
5633 if (ipt->error)
5634 cancel = true;
5635 ipt->error = 0;
5636 mask = 0;
5637 }
5638 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5639 list_del_init(&poll->wait.entry);
5640 else if (cancel)
5641 WRITE_ONCE(poll->canceled, true);
5642 else if (!poll->done) /* actually waiting for an event */
5643 io_poll_req_insert(req);
5644 spin_unlock_irq(&poll->head->lock);
5645 }
5646
5647 return mask;
5648 }
5649
5650 enum {
5651 IO_APOLL_OK,
5652 IO_APOLL_ABORTED,
5653 IO_APOLL_READY
5654 };
5655
5656 static int io_arm_poll_handler(struct io_kiocb *req)
5657 {
5658 const struct io_op_def *def = &io_op_defs[req->opcode];
5659 struct io_ring_ctx *ctx = req->ctx;
5660 struct async_poll *apoll;
5661 struct io_poll_table ipt;
5662 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5663
5664 if (!req->file || !file_can_poll(req->file))
5665 return IO_APOLL_ABORTED;
5666 if (req->flags & REQ_F_POLLED)
5667 return IO_APOLL_ABORTED;
5668 if (!def->pollin && !def->pollout)
5669 return IO_APOLL_ABORTED;
5670
5671 if (def->pollin) {
5672 mask |= POLLIN | POLLRDNORM;
5673
5674 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5675 if ((req->opcode == IORING_OP_RECVMSG) &&
5676 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5677 mask &= ~POLLIN;
5678 } else {
5679 mask |= POLLOUT | POLLWRNORM;
5680 }
5681
5682 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5683 if (unlikely(!apoll))
5684 return IO_APOLL_ABORTED;
5685 apoll->double_poll = NULL;
5686 req->apoll = apoll;
5687 req->flags |= REQ_F_POLLED;
5688 ipt.pt._qproc = io_async_queue_proc;
5689 io_req_set_refcount(req);
5690
5691 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5692 io_async_wake);
5693 spin_unlock(&ctx->completion_lock);
5694 if (ret || ipt.error)
5695 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5696
5697 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5698 mask, apoll->poll.events);
5699 return IO_APOLL_OK;
5700 }
5701
5702 static bool __io_poll_remove_one(struct io_kiocb *req,
5703 struct io_poll_iocb *poll, bool do_cancel)
5704 __must_hold(&req->ctx->completion_lock)
5705 {
5706 bool do_complete = false;
5707
5708 if (!poll->head)
5709 return false;
5710 spin_lock_irq(&poll->head->lock);
5711 if (do_cancel)
5712 WRITE_ONCE(poll->canceled, true);
5713 if (!list_empty(&poll->wait.entry)) {
5714 list_del_init(&poll->wait.entry);
5715 do_complete = true;
5716 }
5717 spin_unlock_irq(&poll->head->lock);
5718 hash_del(&req->hash_node);
5719 return do_complete;
5720 }
5721
5722 static bool io_poll_remove_one(struct io_kiocb *req)
5723 __must_hold(&req->ctx->completion_lock)
5724 {
5725 bool do_complete;
5726
5727 io_poll_remove_double(req);
5728 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5729
5730 if (do_complete) {
5731 req_set_fail(req);
5732 io_fill_cqe_req(req, -ECANCELED, 0);
5733 io_commit_cqring(req->ctx);
5734 io_put_req_deferred(req);
5735 }
5736 return do_complete;
5737 }
5738
5739 /*
5740 * Returns true if we found and killed one or more poll requests
5741 */
5742 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5743 bool cancel_all)
5744 {
5745 struct hlist_node *tmp;
5746 struct io_kiocb *req;
5747 int posted = 0, i;
5748
5749 spin_lock(&ctx->completion_lock);
5750 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5751 struct hlist_head *list;
5752
5753 list = &ctx->cancel_hash[i];
5754 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5755 if (io_match_task_safe(req, tsk, cancel_all))
5756 posted += io_poll_remove_one(req);
5757 }
5758 }
5759 spin_unlock(&ctx->completion_lock);
5760
5761 if (posted)
5762 io_cqring_ev_posted(ctx);
5763
5764 return posted != 0;
5765 }
5766
5767 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5768 bool poll_only)
5769 __must_hold(&ctx->completion_lock)
5770 {
5771 struct hlist_head *list;
5772 struct io_kiocb *req;
5773
5774 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5775 hlist_for_each_entry(req, list, hash_node) {
5776 if (sqe_addr != req->user_data)
5777 continue;
5778 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5779 continue;
5780 return req;
5781 }
5782 return NULL;
5783 }
5784
5785 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5786 bool poll_only)
5787 __must_hold(&ctx->completion_lock)
5788 {
5789 struct io_kiocb *req;
5790
5791 req = io_poll_find(ctx, sqe_addr, poll_only);
5792 if (!req)
5793 return -ENOENT;
5794 if (io_poll_remove_one(req))
5795 return 0;
5796
5797 return -EALREADY;
5798 }
5799
5800 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5801 unsigned int flags)
5802 {
5803 u32 events;
5804
5805 events = READ_ONCE(sqe->poll32_events);
5806 #ifdef __BIG_ENDIAN
5807 events = swahw32(events);
5808 #endif
5809 if (!(flags & IORING_POLL_ADD_MULTI))
5810 events |= EPOLLONESHOT;
5811 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5812 }
5813
5814 static int io_poll_update_prep(struct io_kiocb *req,
5815 const struct io_uring_sqe *sqe)
5816 {
5817 struct io_poll_update *upd = &req->poll_update;
5818 u32 flags;
5819
5820 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5821 return -EINVAL;
5822 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5823 return -EINVAL;
5824 flags = READ_ONCE(sqe->len);
5825 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5826 IORING_POLL_ADD_MULTI))
5827 return -EINVAL;
5828 /* meaningless without update */
5829 if (flags == IORING_POLL_ADD_MULTI)
5830 return -EINVAL;
5831
5832 upd->old_user_data = READ_ONCE(sqe->addr);
5833 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5834 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5835
5836 upd->new_user_data = READ_ONCE(sqe->off);
5837 if (!upd->update_user_data && upd->new_user_data)
5838 return -EINVAL;
5839 if (upd->update_events)
5840 upd->events = io_poll_parse_events(sqe, flags);
5841 else if (sqe->poll32_events)
5842 return -EINVAL;
5843
5844 return 0;
5845 }
5846
5847 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5848 void *key)
5849 {
5850 struct io_kiocb *req = wait->private;
5851 struct io_poll_iocb *poll = &req->poll;
5852
5853 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5854 }
5855
5856 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5857 struct poll_table_struct *p)
5858 {
5859 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5860
5861 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5862 }
5863
5864 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5865 {
5866 struct io_poll_iocb *poll = &req->poll;
5867 u32 flags;
5868
5869 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5870 return -EINVAL;
5871 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5872 return -EINVAL;
5873 flags = READ_ONCE(sqe->len);
5874 if (flags & ~IORING_POLL_ADD_MULTI)
5875 return -EINVAL;
5876
5877 io_req_set_refcount(req);
5878 poll->events = io_poll_parse_events(sqe, flags);
5879 return 0;
5880 }
5881
5882 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5883 {
5884 struct io_poll_iocb *poll = &req->poll;
5885 struct io_ring_ctx *ctx = req->ctx;
5886 struct io_poll_table ipt;
5887 __poll_t mask;
5888 bool done;
5889
5890 ipt.pt._qproc = io_poll_queue_proc;
5891
5892 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5893 io_poll_wake);
5894
5895 if (mask) { /* no async, we'd stolen it */
5896 ipt.error = 0;
5897 done = __io_poll_complete(req, mask);
5898 io_commit_cqring(req->ctx);
5899 }
5900 spin_unlock(&ctx->completion_lock);
5901
5902 if (mask) {
5903 io_cqring_ev_posted(ctx);
5904 if (done)
5905 io_put_req(req);
5906 }
5907 return ipt.error;
5908 }
5909
5910 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5911 {
5912 struct io_ring_ctx *ctx = req->ctx;
5913 struct io_kiocb *preq;
5914 bool completing;
5915 int ret2, ret = 0;
5916
5917 spin_lock(&ctx->completion_lock);
5918 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5919 if (!preq) {
5920 ret = -ENOENT;
5921 fail:
5922 spin_unlock(&ctx->completion_lock);
5923 goto out;
5924 }
5925 io_poll_remove_double(preq);
5926 /*
5927 * Don't allow racy completion with singleshot, as we cannot safely
5928 * update those. For multishot, if we're racing with completion, just
5929 * let completion re-add it.
5930 */
5931 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5932 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5933 ret = -EALREADY;
5934 goto fail;
5935 }
5936 spin_unlock(&ctx->completion_lock);
5937
5938 if (req->poll_update.update_events || req->poll_update.update_user_data) {
5939 /* only mask one event flags, keep behavior flags */
5940 if (req->poll_update.update_events) {
5941 preq->poll.events &= ~0xffff;
5942 preq->poll.events |= req->poll_update.events & 0xffff;
5943 preq->poll.events |= IO_POLL_UNMASK;
5944 }
5945 if (req->poll_update.update_user_data)
5946 preq->user_data = req->poll_update.new_user_data;
5947
5948 ret2 = io_poll_add(preq, issue_flags);
5949 /* successfully updated, don't complete poll request */
5950 if (!ret2)
5951 goto out;
5952 }
5953 req_set_fail(preq);
5954 io_req_complete(preq, -ECANCELED);
5955 out:
5956 if (ret < 0)
5957 req_set_fail(req);
5958 /* complete update request, we're done with it */
5959 io_req_complete(req, ret);
5960 return 0;
5961 }
5962
5963 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5964 {
5965 req_set_fail(req);
5966 io_req_complete_post(req, -ETIME, 0);
5967 }
5968
5969 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5970 {
5971 struct io_timeout_data *data = container_of(timer,
5972 struct io_timeout_data, timer);
5973 struct io_kiocb *req = data->req;
5974 struct io_ring_ctx *ctx = req->ctx;
5975 unsigned long flags;
5976
5977 spin_lock_irqsave(&ctx->timeout_lock, flags);
5978 list_del_init(&req->timeout.list);
5979 atomic_set(&req->ctx->cq_timeouts,
5980 atomic_read(&req->ctx->cq_timeouts) + 1);
5981 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5982
5983 req->io_task_work.func = io_req_task_timeout;
5984 io_req_task_work_add(req);
5985 return HRTIMER_NORESTART;
5986 }
5987
5988 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5989 __u64 user_data)
5990 __must_hold(&ctx->timeout_lock)
5991 {
5992 struct io_timeout_data *io;
5993 struct io_kiocb *req;
5994 bool found = false;
5995
5996 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5997 found = user_data == req->user_data;
5998 if (found)
5999 break;
6000 }
6001 if (!found)
6002 return ERR_PTR(-ENOENT);
6003
6004 io = req->async_data;
6005 if (hrtimer_try_to_cancel(&io->timer) == -1)
6006 return ERR_PTR(-EALREADY);
6007 list_del_init(&req->timeout.list);
6008 return req;
6009 }
6010
6011 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6012 __must_hold(&ctx->completion_lock)
6013 __must_hold(&ctx->timeout_lock)
6014 {
6015 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6016
6017 if (IS_ERR(req))
6018 return PTR_ERR(req);
6019
6020 req_set_fail(req);
6021 io_fill_cqe_req(req, -ECANCELED, 0);
6022 io_put_req_deferred(req);
6023 return 0;
6024 }
6025
6026 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6027 {
6028 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6029 case IORING_TIMEOUT_BOOTTIME:
6030 return CLOCK_BOOTTIME;
6031 case IORING_TIMEOUT_REALTIME:
6032 return CLOCK_REALTIME;
6033 default:
6034 /* can't happen, vetted at prep time */
6035 WARN_ON_ONCE(1);
6036 fallthrough;
6037 case 0:
6038 return CLOCK_MONOTONIC;
6039 }
6040 }
6041
6042 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6043 struct timespec64 *ts, enum hrtimer_mode mode)
6044 __must_hold(&ctx->timeout_lock)
6045 {
6046 struct io_timeout_data *io;
6047 struct io_kiocb *req;
6048 bool found = false;
6049
6050 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6051 found = user_data == req->user_data;
6052 if (found)
6053 break;
6054 }
6055 if (!found)
6056 return -ENOENT;
6057
6058 io = req->async_data;
6059 if (hrtimer_try_to_cancel(&io->timer) == -1)
6060 return -EALREADY;
6061 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6062 io->timer.function = io_link_timeout_fn;
6063 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6064 return 0;
6065 }
6066
6067 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6068 struct timespec64 *ts, enum hrtimer_mode mode)
6069 __must_hold(&ctx->timeout_lock)
6070 {
6071 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6072 struct io_timeout_data *data;
6073
6074 if (IS_ERR(req))
6075 return PTR_ERR(req);
6076
6077 req->timeout.off = 0; /* noseq */
6078 data = req->async_data;
6079 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6080 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6081 data->timer.function = io_timeout_fn;
6082 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6083 return 0;
6084 }
6085
6086 static int io_timeout_remove_prep(struct io_kiocb *req,
6087 const struct io_uring_sqe *sqe)
6088 {
6089 struct io_timeout_rem *tr = &req->timeout_rem;
6090
6091 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6092 return -EINVAL;
6093 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6094 return -EINVAL;
6095 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6096 return -EINVAL;
6097
6098 tr->ltimeout = false;
6099 tr->addr = READ_ONCE(sqe->addr);
6100 tr->flags = READ_ONCE(sqe->timeout_flags);
6101 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6102 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6103 return -EINVAL;
6104 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6105 tr->ltimeout = true;
6106 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6107 return -EINVAL;
6108 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6109 return -EFAULT;
6110 } else if (tr->flags) {
6111 /* timeout removal doesn't support flags */
6112 return -EINVAL;
6113 }
6114
6115 return 0;
6116 }
6117
6118 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6119 {
6120 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6121 : HRTIMER_MODE_REL;
6122 }
6123
6124 /*
6125 * Remove or update an existing timeout command
6126 */
6127 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6128 {
6129 struct io_timeout_rem *tr = &req->timeout_rem;
6130 struct io_ring_ctx *ctx = req->ctx;
6131 int ret;
6132
6133 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6134 spin_lock(&ctx->completion_lock);
6135 spin_lock_irq(&ctx->timeout_lock);
6136 ret = io_timeout_cancel(ctx, tr->addr);
6137 spin_unlock_irq(&ctx->timeout_lock);
6138 spin_unlock(&ctx->completion_lock);
6139 } else {
6140 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6141
6142 spin_lock_irq(&ctx->timeout_lock);
6143 if (tr->ltimeout)
6144 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6145 else
6146 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6147 spin_unlock_irq(&ctx->timeout_lock);
6148 }
6149
6150 if (ret < 0)
6151 req_set_fail(req);
6152 io_req_complete_post(req, ret, 0);
6153 return 0;
6154 }
6155
6156 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6157 bool is_timeout_link)
6158 {
6159 struct io_timeout_data *data;
6160 unsigned flags;
6161 u32 off = READ_ONCE(sqe->off);
6162
6163 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6164 return -EINVAL;
6165 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6166 sqe->splice_fd_in)
6167 return -EINVAL;
6168 if (off && is_timeout_link)
6169 return -EINVAL;
6170 flags = READ_ONCE(sqe->timeout_flags);
6171 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6172 return -EINVAL;
6173 /* more than one clock specified is invalid, obviously */
6174 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6175 return -EINVAL;
6176
6177 INIT_LIST_HEAD(&req->timeout.list);
6178 req->timeout.off = off;
6179 if (unlikely(off && !req->ctx->off_timeout_used))
6180 req->ctx->off_timeout_used = true;
6181
6182 if (!req->async_data && io_alloc_async_data(req))
6183 return -ENOMEM;
6184
6185 data = req->async_data;
6186 data->req = req;
6187 data->flags = flags;
6188
6189 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6190 return -EFAULT;
6191
6192 INIT_LIST_HEAD(&req->timeout.list);
6193 data->mode = io_translate_timeout_mode(flags);
6194 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6195
6196 if (is_timeout_link) {
6197 struct io_submit_link *link = &req->ctx->submit_state.link;
6198
6199 if (!link->head)
6200 return -EINVAL;
6201 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6202 return -EINVAL;
6203 req->timeout.head = link->last;
6204 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6205 }
6206 return 0;
6207 }
6208
6209 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6210 {
6211 struct io_ring_ctx *ctx = req->ctx;
6212 struct io_timeout_data *data = req->async_data;
6213 struct list_head *entry;
6214 u32 tail, off = req->timeout.off;
6215
6216 spin_lock_irq(&ctx->timeout_lock);
6217
6218 /*
6219 * sqe->off holds how many events that need to occur for this
6220 * timeout event to be satisfied. If it isn't set, then this is
6221 * a pure timeout request, sequence isn't used.
6222 */
6223 if (io_is_timeout_noseq(req)) {
6224 entry = ctx->timeout_list.prev;
6225 goto add;
6226 }
6227
6228 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6229 req->timeout.target_seq = tail + off;
6230
6231 /* Update the last seq here in case io_flush_timeouts() hasn't.
6232 * This is safe because ->completion_lock is held, and submissions
6233 * and completions are never mixed in the same ->completion_lock section.
6234 */
6235 ctx->cq_last_tm_flush = tail;
6236
6237 /*
6238 * Insertion sort, ensuring the first entry in the list is always
6239 * the one we need first.
6240 */
6241 list_for_each_prev(entry, &ctx->timeout_list) {
6242 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6243 timeout.list);
6244
6245 if (io_is_timeout_noseq(nxt))
6246 continue;
6247 /* nxt.seq is behind @tail, otherwise would've been completed */
6248 if (off >= nxt->timeout.target_seq - tail)
6249 break;
6250 }
6251 add:
6252 list_add(&req->timeout.list, entry);
6253 data->timer.function = io_timeout_fn;
6254 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6255 spin_unlock_irq(&ctx->timeout_lock);
6256 return 0;
6257 }
6258
6259 struct io_cancel_data {
6260 struct io_ring_ctx *ctx;
6261 u64 user_data;
6262 };
6263
6264 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6265 {
6266 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6267 struct io_cancel_data *cd = data;
6268
6269 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6270 }
6271
6272 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6273 struct io_ring_ctx *ctx)
6274 {
6275 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6276 enum io_wq_cancel cancel_ret;
6277 int ret = 0;
6278
6279 if (!tctx || !tctx->io_wq)
6280 return -ENOENT;
6281
6282 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6283 switch (cancel_ret) {
6284 case IO_WQ_CANCEL_OK:
6285 ret = 0;
6286 break;
6287 case IO_WQ_CANCEL_RUNNING:
6288 ret = -EALREADY;
6289 break;
6290 case IO_WQ_CANCEL_NOTFOUND:
6291 ret = -ENOENT;
6292 break;
6293 }
6294
6295 return ret;
6296 }
6297
6298 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6299 {
6300 struct io_ring_ctx *ctx = req->ctx;
6301 int ret;
6302
6303 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6304
6305 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6306 if (ret != -ENOENT)
6307 return ret;
6308
6309 spin_lock(&ctx->completion_lock);
6310 spin_lock_irq(&ctx->timeout_lock);
6311 ret = io_timeout_cancel(ctx, sqe_addr);
6312 spin_unlock_irq(&ctx->timeout_lock);
6313 if (ret != -ENOENT)
6314 goto out;
6315 ret = io_poll_cancel(ctx, sqe_addr, false);
6316 out:
6317 spin_unlock(&ctx->completion_lock);
6318 return ret;
6319 }
6320
6321 static int io_async_cancel_prep(struct io_kiocb *req,
6322 const struct io_uring_sqe *sqe)
6323 {
6324 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6325 return -EINVAL;
6326 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6327 return -EINVAL;
6328 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6329 sqe->splice_fd_in)
6330 return -EINVAL;
6331
6332 req->cancel.addr = READ_ONCE(sqe->addr);
6333 return 0;
6334 }
6335
6336 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6337 {
6338 struct io_ring_ctx *ctx = req->ctx;
6339 u64 sqe_addr = req->cancel.addr;
6340 struct io_tctx_node *node;
6341 int ret;
6342
6343 ret = io_try_cancel_userdata(req, sqe_addr);
6344 if (ret != -ENOENT)
6345 goto done;
6346
6347 /* slow path, try all io-wq's */
6348 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6349 ret = -ENOENT;
6350 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6351 struct io_uring_task *tctx = node->task->io_uring;
6352
6353 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6354 if (ret != -ENOENT)
6355 break;
6356 }
6357 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6358 done:
6359 if (ret < 0)
6360 req_set_fail(req);
6361 io_req_complete_post(req, ret, 0);
6362 return 0;
6363 }
6364
6365 static int io_rsrc_update_prep(struct io_kiocb *req,
6366 const struct io_uring_sqe *sqe)
6367 {
6368 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6369 return -EINVAL;
6370 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6371 return -EINVAL;
6372
6373 req->rsrc_update.offset = READ_ONCE(sqe->off);
6374 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6375 if (!req->rsrc_update.nr_args)
6376 return -EINVAL;
6377 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6378 return 0;
6379 }
6380
6381 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6382 {
6383 struct io_ring_ctx *ctx = req->ctx;
6384 struct io_uring_rsrc_update2 up;
6385 int ret;
6386
6387 up.offset = req->rsrc_update.offset;
6388 up.data = req->rsrc_update.arg;
6389 up.nr = 0;
6390 up.tags = 0;
6391 up.resv = 0;
6392 up.resv2 = 0;
6393
6394 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6395 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6396 &up, req->rsrc_update.nr_args);
6397 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6398
6399 if (ret < 0)
6400 req_set_fail(req);
6401 __io_req_complete(req, issue_flags, ret, 0);
6402 return 0;
6403 }
6404
6405 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6406 {
6407 switch (req->opcode) {
6408 case IORING_OP_NOP:
6409 return 0;
6410 case IORING_OP_READV:
6411 case IORING_OP_READ_FIXED:
6412 case IORING_OP_READ:
6413 return io_read_prep(req, sqe);
6414 case IORING_OP_WRITEV:
6415 case IORING_OP_WRITE_FIXED:
6416 case IORING_OP_WRITE:
6417 return io_write_prep(req, sqe);
6418 case IORING_OP_POLL_ADD:
6419 return io_poll_add_prep(req, sqe);
6420 case IORING_OP_POLL_REMOVE:
6421 return io_poll_update_prep(req, sqe);
6422 case IORING_OP_FSYNC:
6423 return io_fsync_prep(req, sqe);
6424 case IORING_OP_SYNC_FILE_RANGE:
6425 return io_sfr_prep(req, sqe);
6426 case IORING_OP_SENDMSG:
6427 case IORING_OP_SEND:
6428 return io_sendmsg_prep(req, sqe);
6429 case IORING_OP_RECVMSG:
6430 case IORING_OP_RECV:
6431 return io_recvmsg_prep(req, sqe);
6432 case IORING_OP_CONNECT:
6433 return io_connect_prep(req, sqe);
6434 case IORING_OP_TIMEOUT:
6435 return io_timeout_prep(req, sqe, false);
6436 case IORING_OP_TIMEOUT_REMOVE:
6437 return io_timeout_remove_prep(req, sqe);
6438 case IORING_OP_ASYNC_CANCEL:
6439 return io_async_cancel_prep(req, sqe);
6440 case IORING_OP_LINK_TIMEOUT:
6441 return io_timeout_prep(req, sqe, true);
6442 case IORING_OP_ACCEPT:
6443 return io_accept_prep(req, sqe);
6444 case IORING_OP_FALLOCATE:
6445 return io_fallocate_prep(req, sqe);
6446 case IORING_OP_OPENAT:
6447 return io_openat_prep(req, sqe);
6448 case IORING_OP_CLOSE:
6449 return io_close_prep(req, sqe);
6450 case IORING_OP_FILES_UPDATE:
6451 return io_rsrc_update_prep(req, sqe);
6452 case IORING_OP_STATX:
6453 return io_statx_prep(req, sqe);
6454 case IORING_OP_FADVISE:
6455 return io_fadvise_prep(req, sqe);
6456 case IORING_OP_MADVISE:
6457 return io_madvise_prep(req, sqe);
6458 case IORING_OP_OPENAT2:
6459 return io_openat2_prep(req, sqe);
6460 case IORING_OP_EPOLL_CTL:
6461 return io_epoll_ctl_prep(req, sqe);
6462 case IORING_OP_SPLICE:
6463 return io_splice_prep(req, sqe);
6464 case IORING_OP_PROVIDE_BUFFERS:
6465 return io_provide_buffers_prep(req, sqe);
6466 case IORING_OP_REMOVE_BUFFERS:
6467 return io_remove_buffers_prep(req, sqe);
6468 case IORING_OP_TEE:
6469 return io_tee_prep(req, sqe);
6470 case IORING_OP_SHUTDOWN:
6471 return io_shutdown_prep(req, sqe);
6472 case IORING_OP_RENAMEAT:
6473 return io_renameat_prep(req, sqe);
6474 case IORING_OP_UNLINKAT:
6475 return io_unlinkat_prep(req, sqe);
6476 case IORING_OP_MKDIRAT:
6477 return io_mkdirat_prep(req, sqe);
6478 case IORING_OP_SYMLINKAT:
6479 return io_symlinkat_prep(req, sqe);
6480 case IORING_OP_LINKAT:
6481 return io_linkat_prep(req, sqe);
6482 }
6483
6484 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6485 req->opcode);
6486 return -EINVAL;
6487 }
6488
6489 static int io_req_prep_async(struct io_kiocb *req)
6490 {
6491 if (!io_op_defs[req->opcode].needs_async_setup)
6492 return 0;
6493 if (WARN_ON_ONCE(req->async_data))
6494 return -EFAULT;
6495 if (io_alloc_async_data(req))
6496 return -EAGAIN;
6497
6498 switch (req->opcode) {
6499 case IORING_OP_READV:
6500 return io_rw_prep_async(req, READ);
6501 case IORING_OP_WRITEV:
6502 return io_rw_prep_async(req, WRITE);
6503 case IORING_OP_SENDMSG:
6504 return io_sendmsg_prep_async(req);
6505 case IORING_OP_RECVMSG:
6506 return io_recvmsg_prep_async(req);
6507 case IORING_OP_CONNECT:
6508 return io_connect_prep_async(req);
6509 }
6510 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6511 req->opcode);
6512 return -EFAULT;
6513 }
6514
6515 static u32 io_get_sequence(struct io_kiocb *req)
6516 {
6517 u32 seq = req->ctx->cached_sq_head;
6518
6519 /* need original cached_sq_head, but it was increased for each req */
6520 io_for_each_link(req, req)
6521 seq--;
6522 return seq;
6523 }
6524
6525 static bool io_drain_req(struct io_kiocb *req)
6526 {
6527 struct io_kiocb *pos;
6528 struct io_ring_ctx *ctx = req->ctx;
6529 struct io_defer_entry *de;
6530 int ret;
6531 u32 seq;
6532
6533 if (req->flags & REQ_F_FAIL) {
6534 io_req_complete_fail_submit(req);
6535 return true;
6536 }
6537
6538 /*
6539 * If we need to drain a request in the middle of a link, drain the
6540 * head request and the next request/link after the current link.
6541 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6542 * maintained for every request of our link.
6543 */
6544 if (ctx->drain_next) {
6545 req->flags |= REQ_F_IO_DRAIN;
6546 ctx->drain_next = false;
6547 }
6548 /* not interested in head, start from the first linked */
6549 io_for_each_link(pos, req->link) {
6550 if (pos->flags & REQ_F_IO_DRAIN) {
6551 ctx->drain_next = true;
6552 req->flags |= REQ_F_IO_DRAIN;
6553 break;
6554 }
6555 }
6556
6557 /* Still need defer if there is pending req in defer list. */
6558 spin_lock(&ctx->completion_lock);
6559 if (likely(list_empty_careful(&ctx->defer_list) &&
6560 !(req->flags & REQ_F_IO_DRAIN))) {
6561 spin_unlock(&ctx->completion_lock);
6562 ctx->drain_active = false;
6563 return false;
6564 }
6565 spin_unlock(&ctx->completion_lock);
6566
6567 seq = io_get_sequence(req);
6568 /* Still a chance to pass the sequence check */
6569 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6570 return false;
6571
6572 ret = io_req_prep_async(req);
6573 if (ret)
6574 goto fail;
6575 io_prep_async_link(req);
6576 de = kmalloc(sizeof(*de), GFP_KERNEL);
6577 if (!de) {
6578 ret = -ENOMEM;
6579 fail:
6580 io_req_complete_failed(req, ret);
6581 return true;
6582 }
6583
6584 spin_lock(&ctx->completion_lock);
6585 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6586 spin_unlock(&ctx->completion_lock);
6587 kfree(de);
6588 io_queue_async_work(req, NULL);
6589 return true;
6590 }
6591
6592 trace_io_uring_defer(ctx, req, req->user_data);
6593 de->req = req;
6594 de->seq = seq;
6595 list_add_tail(&de->list, &ctx->defer_list);
6596 spin_unlock(&ctx->completion_lock);
6597 return true;
6598 }
6599
6600 static void io_clean_op(struct io_kiocb *req)
6601 {
6602 if (req->flags & REQ_F_BUFFER_SELECTED) {
6603 switch (req->opcode) {
6604 case IORING_OP_READV:
6605 case IORING_OP_READ_FIXED:
6606 case IORING_OP_READ:
6607 kfree((void *)(unsigned long)req->rw.addr);
6608 break;
6609 case IORING_OP_RECVMSG:
6610 case IORING_OP_RECV:
6611 kfree(req->sr_msg.kbuf);
6612 break;
6613 }
6614 }
6615
6616 if (req->flags & REQ_F_NEED_CLEANUP) {
6617 switch (req->opcode) {
6618 case IORING_OP_READV:
6619 case IORING_OP_READ_FIXED:
6620 case IORING_OP_READ:
6621 case IORING_OP_WRITEV:
6622 case IORING_OP_WRITE_FIXED:
6623 case IORING_OP_WRITE: {
6624 struct io_async_rw *io = req->async_data;
6625
6626 kfree(io->free_iovec);
6627 break;
6628 }
6629 case IORING_OP_RECVMSG:
6630 case IORING_OP_SENDMSG: {
6631 struct io_async_msghdr *io = req->async_data;
6632
6633 kfree(io->free_iov);
6634 break;
6635 }
6636 case IORING_OP_OPENAT:
6637 case IORING_OP_OPENAT2:
6638 if (req->open.filename)
6639 putname(req->open.filename);
6640 break;
6641 case IORING_OP_RENAMEAT:
6642 putname(req->rename.oldpath);
6643 putname(req->rename.newpath);
6644 break;
6645 case IORING_OP_UNLINKAT:
6646 putname(req->unlink.filename);
6647 break;
6648 case IORING_OP_MKDIRAT:
6649 putname(req->mkdir.filename);
6650 break;
6651 case IORING_OP_SYMLINKAT:
6652 putname(req->symlink.oldpath);
6653 putname(req->symlink.newpath);
6654 break;
6655 case IORING_OP_LINKAT:
6656 putname(req->hardlink.oldpath);
6657 putname(req->hardlink.newpath);
6658 break;
6659 }
6660 }
6661 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6662 kfree(req->apoll->double_poll);
6663 kfree(req->apoll);
6664 req->apoll = NULL;
6665 }
6666 if (req->flags & REQ_F_INFLIGHT) {
6667 struct io_uring_task *tctx = req->task->io_uring;
6668
6669 atomic_dec(&tctx->inflight_tracked);
6670 }
6671 if (req->flags & REQ_F_CREDS)
6672 put_cred(req->creds);
6673
6674 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6675 }
6676
6677 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6678 {
6679 struct io_ring_ctx *ctx = req->ctx;
6680 const struct cred *creds = NULL;
6681 int ret;
6682
6683 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6684 creds = override_creds(req->creds);
6685
6686 switch (req->opcode) {
6687 case IORING_OP_NOP:
6688 ret = io_nop(req, issue_flags);
6689 break;
6690 case IORING_OP_READV:
6691 case IORING_OP_READ_FIXED:
6692 case IORING_OP_READ:
6693 ret = io_read(req, issue_flags);
6694 break;
6695 case IORING_OP_WRITEV:
6696 case IORING_OP_WRITE_FIXED:
6697 case IORING_OP_WRITE:
6698 ret = io_write(req, issue_flags);
6699 break;
6700 case IORING_OP_FSYNC:
6701 ret = io_fsync(req, issue_flags);
6702 break;
6703 case IORING_OP_POLL_ADD:
6704 ret = io_poll_add(req, issue_flags);
6705 break;
6706 case IORING_OP_POLL_REMOVE:
6707 ret = io_poll_update(req, issue_flags);
6708 break;
6709 case IORING_OP_SYNC_FILE_RANGE:
6710 ret = io_sync_file_range(req, issue_flags);
6711 break;
6712 case IORING_OP_SENDMSG:
6713 ret = io_sendmsg(req, issue_flags);
6714 break;
6715 case IORING_OP_SEND:
6716 ret = io_send(req, issue_flags);
6717 break;
6718 case IORING_OP_RECVMSG:
6719 ret = io_recvmsg(req, issue_flags);
6720 break;
6721 case IORING_OP_RECV:
6722 ret = io_recv(req, issue_flags);
6723 break;
6724 case IORING_OP_TIMEOUT:
6725 ret = io_timeout(req, issue_flags);
6726 break;
6727 case IORING_OP_TIMEOUT_REMOVE:
6728 ret = io_timeout_remove(req, issue_flags);
6729 break;
6730 case IORING_OP_ACCEPT:
6731 ret = io_accept(req, issue_flags);
6732 break;
6733 case IORING_OP_CONNECT:
6734 ret = io_connect(req, issue_flags);
6735 break;
6736 case IORING_OP_ASYNC_CANCEL:
6737 ret = io_async_cancel(req, issue_flags);
6738 break;
6739 case IORING_OP_FALLOCATE:
6740 ret = io_fallocate(req, issue_flags);
6741 break;
6742 case IORING_OP_OPENAT:
6743 ret = io_openat(req, issue_flags);
6744 break;
6745 case IORING_OP_CLOSE:
6746 ret = io_close(req, issue_flags);
6747 break;
6748 case IORING_OP_FILES_UPDATE:
6749 ret = io_files_update(req, issue_flags);
6750 break;
6751 case IORING_OP_STATX:
6752 ret = io_statx(req, issue_flags);
6753 break;
6754 case IORING_OP_FADVISE:
6755 ret = io_fadvise(req, issue_flags);
6756 break;
6757 case IORING_OP_MADVISE:
6758 ret = io_madvise(req, issue_flags);
6759 break;
6760 case IORING_OP_OPENAT2:
6761 ret = io_openat2(req, issue_flags);
6762 break;
6763 case IORING_OP_EPOLL_CTL:
6764 ret = io_epoll_ctl(req, issue_flags);
6765 break;
6766 case IORING_OP_SPLICE:
6767 ret = io_splice(req, issue_flags);
6768 break;
6769 case IORING_OP_PROVIDE_BUFFERS:
6770 ret = io_provide_buffers(req, issue_flags);
6771 break;
6772 case IORING_OP_REMOVE_BUFFERS:
6773 ret = io_remove_buffers(req, issue_flags);
6774 break;
6775 case IORING_OP_TEE:
6776 ret = io_tee(req, issue_flags);
6777 break;
6778 case IORING_OP_SHUTDOWN:
6779 ret = io_shutdown(req, issue_flags);
6780 break;
6781 case IORING_OP_RENAMEAT:
6782 ret = io_renameat(req, issue_flags);
6783 break;
6784 case IORING_OP_UNLINKAT:
6785 ret = io_unlinkat(req, issue_flags);
6786 break;
6787 case IORING_OP_MKDIRAT:
6788 ret = io_mkdirat(req, issue_flags);
6789 break;
6790 case IORING_OP_SYMLINKAT:
6791 ret = io_symlinkat(req, issue_flags);
6792 break;
6793 case IORING_OP_LINKAT:
6794 ret = io_linkat(req, issue_flags);
6795 break;
6796 default:
6797 ret = -EINVAL;
6798 break;
6799 }
6800
6801 if (creds)
6802 revert_creds(creds);
6803 if (ret)
6804 return ret;
6805 /* If the op doesn't have a file, we're not polling for it */
6806 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6807 io_iopoll_req_issued(req);
6808
6809 return 0;
6810 }
6811
6812 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6813 {
6814 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6815
6816 req = io_put_req_find_next(req);
6817 return req ? &req->work : NULL;
6818 }
6819
6820 static void io_wq_submit_work(struct io_wq_work *work)
6821 {
6822 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6823 struct io_kiocb *timeout;
6824 int ret = 0;
6825
6826 /* one will be dropped by ->io_free_work() after returning to io-wq */
6827 if (!(req->flags & REQ_F_REFCOUNT))
6828 __io_req_set_refcount(req, 2);
6829 else
6830 req_ref_get(req);
6831
6832 timeout = io_prep_linked_timeout(req);
6833 if (timeout)
6834 io_queue_linked_timeout(timeout);
6835
6836 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6837 if (work->flags & IO_WQ_WORK_CANCEL)
6838 ret = -ECANCELED;
6839
6840 if (!ret) {
6841 do {
6842 ret = io_issue_sqe(req, 0);
6843 /*
6844 * We can get EAGAIN for polled IO even though we're
6845 * forcing a sync submission from here, since we can't
6846 * wait for request slots on the block side.
6847 */
6848 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6849 break;
6850 cond_resched();
6851 } while (1);
6852 }
6853
6854 /* avoid locking problems by failing it from a clean context */
6855 if (ret)
6856 io_req_task_queue_fail(req, ret);
6857 }
6858
6859 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6860 unsigned i)
6861 {
6862 return &table->files[i];
6863 }
6864
6865 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6866 int index)
6867 {
6868 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6869
6870 return (struct file *) (slot->file_ptr & FFS_MASK);
6871 }
6872
6873 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6874 {
6875 unsigned long file_ptr = (unsigned long) file;
6876
6877 if (__io_file_supports_nowait(file, READ))
6878 file_ptr |= FFS_ASYNC_READ;
6879 if (__io_file_supports_nowait(file, WRITE))
6880 file_ptr |= FFS_ASYNC_WRITE;
6881 if (S_ISREG(file_inode(file)->i_mode))
6882 file_ptr |= FFS_ISREG;
6883 file_slot->file_ptr = file_ptr;
6884 }
6885
6886 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6887 struct io_kiocb *req, int fd)
6888 {
6889 struct file *file;
6890 unsigned long file_ptr;
6891
6892 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6893 return NULL;
6894 fd = array_index_nospec(fd, ctx->nr_user_files);
6895 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6896 file = (struct file *) (file_ptr & FFS_MASK);
6897 file_ptr &= ~FFS_MASK;
6898 /* mask in overlapping REQ_F and FFS bits */
6899 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6900 io_req_set_rsrc_node(req);
6901 return file;
6902 }
6903
6904 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6905 struct io_kiocb *req, int fd)
6906 {
6907 struct file *file = fget(fd);
6908
6909 trace_io_uring_file_get(ctx, fd);
6910
6911 /* we don't allow fixed io_uring files */
6912 if (file && unlikely(file->f_op == &io_uring_fops))
6913 io_req_track_inflight(req);
6914 return file;
6915 }
6916
6917 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6918 struct io_kiocb *req, int fd, bool fixed)
6919 {
6920 if (fixed)
6921 return io_file_get_fixed(ctx, req, fd);
6922 else
6923 return io_file_get_normal(ctx, req, fd);
6924 }
6925
6926 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6927 {
6928 struct io_kiocb *prev = req->timeout.prev;
6929 int ret = -ENOENT;
6930
6931 if (prev) {
6932 if (!(req->task->flags & PF_EXITING))
6933 ret = io_try_cancel_userdata(req, prev->user_data);
6934 io_req_complete_post(req, ret ?: -ETIME, 0);
6935 io_put_req(prev);
6936 } else {
6937 io_req_complete_post(req, -ETIME, 0);
6938 }
6939 }
6940
6941 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6942 {
6943 struct io_timeout_data *data = container_of(timer,
6944 struct io_timeout_data, timer);
6945 struct io_kiocb *prev, *req = data->req;
6946 struct io_ring_ctx *ctx = req->ctx;
6947 unsigned long flags;
6948
6949 spin_lock_irqsave(&ctx->timeout_lock, flags);
6950 prev = req->timeout.head;
6951 req->timeout.head = NULL;
6952
6953 /*
6954 * We don't expect the list to be empty, that will only happen if we
6955 * race with the completion of the linked work.
6956 */
6957 if (prev) {
6958 io_remove_next_linked(prev);
6959 if (!req_ref_inc_not_zero(prev))
6960 prev = NULL;
6961 }
6962 list_del(&req->timeout.list);
6963 req->timeout.prev = prev;
6964 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6965
6966 req->io_task_work.func = io_req_task_link_timeout;
6967 io_req_task_work_add(req);
6968 return HRTIMER_NORESTART;
6969 }
6970
6971 static void io_queue_linked_timeout(struct io_kiocb *req)
6972 {
6973 struct io_ring_ctx *ctx = req->ctx;
6974
6975 spin_lock_irq(&ctx->timeout_lock);
6976 /*
6977 * If the back reference is NULL, then our linked request finished
6978 * before we got a chance to setup the timer
6979 */
6980 if (req->timeout.head) {
6981 struct io_timeout_data *data = req->async_data;
6982
6983 data->timer.function = io_link_timeout_fn;
6984 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6985 data->mode);
6986 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6987 }
6988 spin_unlock_irq(&ctx->timeout_lock);
6989 /* drop submission reference */
6990 io_put_req(req);
6991 }
6992
6993 static void __io_queue_sqe(struct io_kiocb *req)
6994 __must_hold(&req->ctx->uring_lock)
6995 {
6996 struct io_kiocb *linked_timeout;
6997 int ret;
6998
6999 issue_sqe:
7000 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7001
7002 /*
7003 * We async punt it if the file wasn't marked NOWAIT, or if the file
7004 * doesn't support non-blocking read/write attempts
7005 */
7006 if (likely(!ret)) {
7007 if (req->flags & REQ_F_COMPLETE_INLINE) {
7008 struct io_ring_ctx *ctx = req->ctx;
7009 struct io_submit_state *state = &ctx->submit_state;
7010
7011 state->compl_reqs[state->compl_nr++] = req;
7012 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7013 io_submit_flush_completions(ctx);
7014 return;
7015 }
7016
7017 linked_timeout = io_prep_linked_timeout(req);
7018 if (linked_timeout)
7019 io_queue_linked_timeout(linked_timeout);
7020 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7021 linked_timeout = io_prep_linked_timeout(req);
7022
7023 switch (io_arm_poll_handler(req)) {
7024 case IO_APOLL_READY:
7025 if (linked_timeout)
7026 io_queue_linked_timeout(linked_timeout);
7027 goto issue_sqe;
7028 case IO_APOLL_ABORTED:
7029 /*
7030 * Queued up for async execution, worker will release
7031 * submit reference when the iocb is actually submitted.
7032 */
7033 io_queue_async_work(req, NULL);
7034 break;
7035 }
7036
7037 if (linked_timeout)
7038 io_queue_linked_timeout(linked_timeout);
7039 } else {
7040 io_req_complete_failed(req, ret);
7041 }
7042 }
7043
7044 static inline void io_queue_sqe(struct io_kiocb *req)
7045 __must_hold(&req->ctx->uring_lock)
7046 {
7047 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7048 return;
7049
7050 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7051 __io_queue_sqe(req);
7052 } else if (req->flags & REQ_F_FAIL) {
7053 io_req_complete_fail_submit(req);
7054 } else {
7055 int ret = io_req_prep_async(req);
7056
7057 if (unlikely(ret))
7058 io_req_complete_failed(req, ret);
7059 else
7060 io_queue_async_work(req, NULL);
7061 }
7062 }
7063
7064 /*
7065 * Check SQE restrictions (opcode and flags).
7066 *
7067 * Returns 'true' if SQE is allowed, 'false' otherwise.
7068 */
7069 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7070 struct io_kiocb *req,
7071 unsigned int sqe_flags)
7072 {
7073 if (likely(!ctx->restricted))
7074 return true;
7075
7076 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7077 return false;
7078
7079 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7080 ctx->restrictions.sqe_flags_required)
7081 return false;
7082
7083 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7084 ctx->restrictions.sqe_flags_required))
7085 return false;
7086
7087 return true;
7088 }
7089
7090 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7091 const struct io_uring_sqe *sqe)
7092 __must_hold(&ctx->uring_lock)
7093 {
7094 struct io_submit_state *state;
7095 unsigned int sqe_flags;
7096 int personality, ret = 0;
7097
7098 /* req is partially pre-initialised, see io_preinit_req() */
7099 req->opcode = READ_ONCE(sqe->opcode);
7100 /* same numerical values with corresponding REQ_F_*, safe to copy */
7101 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7102 req->user_data = READ_ONCE(sqe->user_data);
7103 req->file = NULL;
7104 req->fixed_rsrc_refs = NULL;
7105 req->task = current;
7106
7107 /* enforce forwards compatibility on users */
7108 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7109 return -EINVAL;
7110 if (unlikely(req->opcode >= IORING_OP_LAST))
7111 return -EINVAL;
7112 if (!io_check_restriction(ctx, req, sqe_flags))
7113 return -EACCES;
7114
7115 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7116 !io_op_defs[req->opcode].buffer_select)
7117 return -EOPNOTSUPP;
7118 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7119 ctx->drain_active = true;
7120
7121 personality = READ_ONCE(sqe->personality);
7122 if (personality) {
7123 req->creds = xa_load(&ctx->personalities, personality);
7124 if (!req->creds)
7125 return -EINVAL;
7126 get_cred(req->creds);
7127 req->flags |= REQ_F_CREDS;
7128 }
7129 state = &ctx->submit_state;
7130
7131 /*
7132 * Plug now if we have more than 1 IO left after this, and the target
7133 * is potentially a read/write to block based storage.
7134 */
7135 if (!state->plug_started && state->ios_left > 1 &&
7136 io_op_defs[req->opcode].plug) {
7137 blk_start_plug(&state->plug);
7138 state->plug_started = true;
7139 }
7140
7141 if (io_op_defs[req->opcode].needs_file) {
7142 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7143 (sqe_flags & IOSQE_FIXED_FILE));
7144 if (unlikely(!req->file))
7145 ret = -EBADF;
7146 }
7147
7148 state->ios_left--;
7149 return ret;
7150 }
7151
7152 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7153 const struct io_uring_sqe *sqe)
7154 __must_hold(&ctx->uring_lock)
7155 {
7156 struct io_submit_link *link = &ctx->submit_state.link;
7157 int ret;
7158
7159 ret = io_init_req(ctx, req, sqe);
7160 if (unlikely(ret)) {
7161 fail_req:
7162 /* fail even hard links since we don't submit */
7163 if (link->head) {
7164 /*
7165 * we can judge a link req is failed or cancelled by if
7166 * REQ_F_FAIL is set, but the head is an exception since
7167 * it may be set REQ_F_FAIL because of other req's failure
7168 * so let's leverage req->result to distinguish if a head
7169 * is set REQ_F_FAIL because of its failure or other req's
7170 * failure so that we can set the correct ret code for it.
7171 * init result here to avoid affecting the normal path.
7172 */
7173 if (!(link->head->flags & REQ_F_FAIL))
7174 req_fail_link_node(link->head, -ECANCELED);
7175 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7176 /*
7177 * the current req is a normal req, we should return
7178 * error and thus break the submittion loop.
7179 */
7180 io_req_complete_failed(req, ret);
7181 return ret;
7182 }
7183 req_fail_link_node(req, ret);
7184 } else {
7185 ret = io_req_prep(req, sqe);
7186 if (unlikely(ret))
7187 goto fail_req;
7188 }
7189
7190 /* don't need @sqe from now on */
7191 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7192 req->flags, true,
7193 ctx->flags & IORING_SETUP_SQPOLL);
7194
7195 /*
7196 * If we already have a head request, queue this one for async
7197 * submittal once the head completes. If we don't have a head but
7198 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7199 * submitted sync once the chain is complete. If none of those
7200 * conditions are true (normal request), then just queue it.
7201 */
7202 if (link->head) {
7203 struct io_kiocb *head = link->head;
7204
7205 if (!(req->flags & REQ_F_FAIL)) {
7206 ret = io_req_prep_async(req);
7207 if (unlikely(ret)) {
7208 req_fail_link_node(req, ret);
7209 if (!(head->flags & REQ_F_FAIL))
7210 req_fail_link_node(head, -ECANCELED);
7211 }
7212 }
7213 trace_io_uring_link(ctx, req, head);
7214 link->last->link = req;
7215 link->last = req;
7216
7217 /* last request of a link, enqueue the link */
7218 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7219 link->head = NULL;
7220 io_queue_sqe(head);
7221 }
7222 } else {
7223 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7224 link->head = req;
7225 link->last = req;
7226 } else {
7227 io_queue_sqe(req);
7228 }
7229 }
7230
7231 return 0;
7232 }
7233
7234 /*
7235 * Batched submission is done, ensure local IO is flushed out.
7236 */
7237 static void io_submit_state_end(struct io_submit_state *state,
7238 struct io_ring_ctx *ctx)
7239 {
7240 if (state->link.head)
7241 io_queue_sqe(state->link.head);
7242 if (state->compl_nr)
7243 io_submit_flush_completions(ctx);
7244 if (state->plug_started)
7245 blk_finish_plug(&state->plug);
7246 }
7247
7248 /*
7249 * Start submission side cache.
7250 */
7251 static void io_submit_state_start(struct io_submit_state *state,
7252 unsigned int max_ios)
7253 {
7254 state->plug_started = false;
7255 state->ios_left = max_ios;
7256 /* set only head, no need to init link_last in advance */
7257 state->link.head = NULL;
7258 }
7259
7260 static void io_commit_sqring(struct io_ring_ctx *ctx)
7261 {
7262 struct io_rings *rings = ctx->rings;
7263
7264 /*
7265 * Ensure any loads from the SQEs are done at this point,
7266 * since once we write the new head, the application could
7267 * write new data to them.
7268 */
7269 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7270 }
7271
7272 /*
7273 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7274 * that is mapped by userspace. This means that care needs to be taken to
7275 * ensure that reads are stable, as we cannot rely on userspace always
7276 * being a good citizen. If members of the sqe are validated and then later
7277 * used, it's important that those reads are done through READ_ONCE() to
7278 * prevent a re-load down the line.
7279 */
7280 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7281 {
7282 unsigned head, mask = ctx->sq_entries - 1;
7283 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7284
7285 /*
7286 * The cached sq head (or cq tail) serves two purposes:
7287 *
7288 * 1) allows us to batch the cost of updating the user visible
7289 * head updates.
7290 * 2) allows the kernel side to track the head on its own, even
7291 * though the application is the one updating it.
7292 */
7293 head = READ_ONCE(ctx->sq_array[sq_idx]);
7294 if (likely(head < ctx->sq_entries))
7295 return &ctx->sq_sqes[head];
7296
7297 /* drop invalid entries */
7298 ctx->cq_extra--;
7299 WRITE_ONCE(ctx->rings->sq_dropped,
7300 READ_ONCE(ctx->rings->sq_dropped) + 1);
7301 return NULL;
7302 }
7303
7304 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7305 __must_hold(&ctx->uring_lock)
7306 {
7307 int submitted = 0;
7308
7309 /* make sure SQ entry isn't read before tail */
7310 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7311 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7312 return -EAGAIN;
7313 io_get_task_refs(nr);
7314
7315 io_submit_state_start(&ctx->submit_state, nr);
7316 while (submitted < nr) {
7317 const struct io_uring_sqe *sqe;
7318 struct io_kiocb *req;
7319
7320 req = io_alloc_req(ctx);
7321 if (unlikely(!req)) {
7322 if (!submitted)
7323 submitted = -EAGAIN;
7324 break;
7325 }
7326 sqe = io_get_sqe(ctx);
7327 if (unlikely(!sqe)) {
7328 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7329 break;
7330 }
7331 /* will complete beyond this point, count as submitted */
7332 submitted++;
7333 if (io_submit_sqe(ctx, req, sqe))
7334 break;
7335 }
7336
7337 if (unlikely(submitted != nr)) {
7338 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7339 int unused = nr - ref_used;
7340
7341 current->io_uring->cached_refs += unused;
7342 percpu_ref_put_many(&ctx->refs, unused);
7343 }
7344
7345 io_submit_state_end(&ctx->submit_state, ctx);
7346 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7347 io_commit_sqring(ctx);
7348
7349 return submitted;
7350 }
7351
7352 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7353 {
7354 return READ_ONCE(sqd->state);
7355 }
7356
7357 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7358 {
7359 /* Tell userspace we may need a wakeup call */
7360 spin_lock(&ctx->completion_lock);
7361 WRITE_ONCE(ctx->rings->sq_flags,
7362 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7363 spin_unlock(&ctx->completion_lock);
7364 }
7365
7366 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7367 {
7368 spin_lock(&ctx->completion_lock);
7369 WRITE_ONCE(ctx->rings->sq_flags,
7370 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7371 spin_unlock(&ctx->completion_lock);
7372 }
7373
7374 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7375 {
7376 unsigned int to_submit;
7377 int ret = 0;
7378
7379 to_submit = io_sqring_entries(ctx);
7380 /* if we're handling multiple rings, cap submit size for fairness */
7381 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7382 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7383
7384 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7385 unsigned nr_events = 0;
7386 const struct cred *creds = NULL;
7387
7388 if (ctx->sq_creds != current_cred())
7389 creds = override_creds(ctx->sq_creds);
7390
7391 mutex_lock(&ctx->uring_lock);
7392 if (!list_empty(&ctx->iopoll_list))
7393 io_do_iopoll(ctx, &nr_events, 0);
7394
7395 /*
7396 * Don't submit if refs are dying, good for io_uring_register(),
7397 * but also it is relied upon by io_ring_exit_work()
7398 */
7399 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7400 !(ctx->flags & IORING_SETUP_R_DISABLED))
7401 ret = io_submit_sqes(ctx, to_submit);
7402 mutex_unlock(&ctx->uring_lock);
7403
7404 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7405 wake_up(&ctx->sqo_sq_wait);
7406 if (creds)
7407 revert_creds(creds);
7408 }
7409
7410 return ret;
7411 }
7412
7413 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7414 {
7415 struct io_ring_ctx *ctx;
7416 unsigned sq_thread_idle = 0;
7417
7418 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7419 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7420 sqd->sq_thread_idle = sq_thread_idle;
7421 }
7422
7423 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7424 {
7425 bool did_sig = false;
7426 struct ksignal ksig;
7427
7428 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7429 signal_pending(current)) {
7430 mutex_unlock(&sqd->lock);
7431 if (signal_pending(current))
7432 did_sig = get_signal(&ksig);
7433 cond_resched();
7434 mutex_lock(&sqd->lock);
7435 }
7436 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7437 }
7438
7439 static int io_sq_thread(void *data)
7440 {
7441 struct io_sq_data *sqd = data;
7442 struct io_ring_ctx *ctx;
7443 unsigned long timeout = 0;
7444 char buf[TASK_COMM_LEN];
7445 DEFINE_WAIT(wait);
7446
7447 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7448 set_task_comm(current, buf);
7449
7450 if (sqd->sq_cpu != -1)
7451 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7452 else
7453 set_cpus_allowed_ptr(current, cpu_online_mask);
7454 current->flags |= PF_NO_SETAFFINITY;
7455
7456 mutex_lock(&sqd->lock);
7457 while (1) {
7458 bool cap_entries, sqt_spin = false;
7459
7460 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7461 if (io_sqd_handle_event(sqd))
7462 break;
7463 timeout = jiffies + sqd->sq_thread_idle;
7464 }
7465
7466 cap_entries = !list_is_singular(&sqd->ctx_list);
7467 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7468 int ret = __io_sq_thread(ctx, cap_entries);
7469
7470 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7471 sqt_spin = true;
7472 }
7473 if (io_run_task_work())
7474 sqt_spin = true;
7475
7476 if (sqt_spin || !time_after(jiffies, timeout)) {
7477 cond_resched();
7478 if (sqt_spin)
7479 timeout = jiffies + sqd->sq_thread_idle;
7480 continue;
7481 }
7482
7483 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7484 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7485 bool needs_sched = true;
7486
7487 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7488 io_ring_set_wakeup_flag(ctx);
7489
7490 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7491 !list_empty_careful(&ctx->iopoll_list)) {
7492 needs_sched = false;
7493 break;
7494 }
7495 if (io_sqring_entries(ctx)) {
7496 needs_sched = false;
7497 break;
7498 }
7499 }
7500
7501 if (needs_sched) {
7502 mutex_unlock(&sqd->lock);
7503 schedule();
7504 mutex_lock(&sqd->lock);
7505 }
7506 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7507 io_ring_clear_wakeup_flag(ctx);
7508 }
7509
7510 finish_wait(&sqd->wait, &wait);
7511 timeout = jiffies + sqd->sq_thread_idle;
7512 }
7513
7514 io_uring_cancel_generic(true, sqd);
7515 sqd->thread = NULL;
7516 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7517 io_ring_set_wakeup_flag(ctx);
7518 io_run_task_work();
7519 mutex_unlock(&sqd->lock);
7520
7521 complete(&sqd->exited);
7522 do_exit(0);
7523 }
7524
7525 struct io_wait_queue {
7526 struct wait_queue_entry wq;
7527 struct io_ring_ctx *ctx;
7528 unsigned cq_tail;
7529 unsigned nr_timeouts;
7530 };
7531
7532 static inline bool io_should_wake(struct io_wait_queue *iowq)
7533 {
7534 struct io_ring_ctx *ctx = iowq->ctx;
7535 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7536
7537 /*
7538 * Wake up if we have enough events, or if a timeout occurred since we
7539 * started waiting. For timeouts, we always want to return to userspace,
7540 * regardless of event count.
7541 */
7542 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7543 }
7544
7545 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7546 int wake_flags, void *key)
7547 {
7548 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7549 wq);
7550
7551 /*
7552 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7553 * the task, and the next invocation will do it.
7554 */
7555 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7556 return autoremove_wake_function(curr, mode, wake_flags, key);
7557 return -1;
7558 }
7559
7560 static int io_run_task_work_sig(void)
7561 {
7562 if (io_run_task_work())
7563 return 1;
7564 if (!signal_pending(current))
7565 return 0;
7566 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7567 return -ERESTARTSYS;
7568 return -EINTR;
7569 }
7570
7571 /* when returns >0, the caller should retry */
7572 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7573 struct io_wait_queue *iowq,
7574 ktime_t timeout)
7575 {
7576 int ret;
7577
7578 /* make sure we run task_work before checking for signals */
7579 ret = io_run_task_work_sig();
7580 if (ret || io_should_wake(iowq))
7581 return ret;
7582 /* let the caller flush overflows, retry */
7583 if (test_bit(0, &ctx->check_cq_overflow))
7584 return 1;
7585
7586 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7587 return -ETIME;
7588 return 1;
7589 }
7590
7591 /*
7592 * Wait until events become available, if we don't already have some. The
7593 * application must reap them itself, as they reside on the shared cq ring.
7594 */
7595 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7596 const sigset_t __user *sig, size_t sigsz,
7597 struct __kernel_timespec __user *uts)
7598 {
7599 struct io_wait_queue iowq;
7600 struct io_rings *rings = ctx->rings;
7601 ktime_t timeout = KTIME_MAX;
7602 int ret;
7603
7604 do {
7605 io_cqring_overflow_flush(ctx);
7606 if (io_cqring_events(ctx) >= min_events)
7607 return 0;
7608 if (!io_run_task_work())
7609 break;
7610 } while (1);
7611
7612 if (uts) {
7613 struct timespec64 ts;
7614
7615 if (get_timespec64(&ts, uts))
7616 return -EFAULT;
7617 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7618 }
7619
7620 if (sig) {
7621 #ifdef CONFIG_COMPAT
7622 if (in_compat_syscall())
7623 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7624 sigsz);
7625 else
7626 #endif
7627 ret = set_user_sigmask(sig, sigsz);
7628
7629 if (ret)
7630 return ret;
7631 }
7632
7633 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7634 iowq.wq.private = current;
7635 INIT_LIST_HEAD(&iowq.wq.entry);
7636 iowq.ctx = ctx;
7637 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7638 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7639
7640 trace_io_uring_cqring_wait(ctx, min_events);
7641 do {
7642 /* if we can't even flush overflow, don't wait for more */
7643 if (!io_cqring_overflow_flush(ctx)) {
7644 ret = -EBUSY;
7645 break;
7646 }
7647 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7648 TASK_INTERRUPTIBLE);
7649 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7650 finish_wait(&ctx->cq_wait, &iowq.wq);
7651 cond_resched();
7652 } while (ret > 0);
7653
7654 restore_saved_sigmask_unless(ret == -EINTR);
7655
7656 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7657 }
7658
7659 static void io_free_page_table(void **table, size_t size)
7660 {
7661 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7662
7663 for (i = 0; i < nr_tables; i++)
7664 kfree(table[i]);
7665 kfree(table);
7666 }
7667
7668 static void **io_alloc_page_table(size_t size)
7669 {
7670 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7671 size_t init_size = size;
7672 void **table;
7673
7674 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7675 if (!table)
7676 return NULL;
7677
7678 for (i = 0; i < nr_tables; i++) {
7679 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7680
7681 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7682 if (!table[i]) {
7683 io_free_page_table(table, init_size);
7684 return NULL;
7685 }
7686 size -= this_size;
7687 }
7688 return table;
7689 }
7690
7691 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7692 {
7693 percpu_ref_exit(&ref_node->refs);
7694 kfree(ref_node);
7695 }
7696
7697 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7698 {
7699 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7700 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7701 unsigned long flags;
7702 bool first_add = false;
7703 unsigned long delay = HZ;
7704
7705 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7706 node->done = true;
7707
7708 /* if we are mid-quiesce then do not delay */
7709 if (node->rsrc_data->quiesce)
7710 delay = 0;
7711
7712 while (!list_empty(&ctx->rsrc_ref_list)) {
7713 node = list_first_entry(&ctx->rsrc_ref_list,
7714 struct io_rsrc_node, node);
7715 /* recycle ref nodes in order */
7716 if (!node->done)
7717 break;
7718 list_del(&node->node);
7719 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7720 }
7721 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7722
7723 if (first_add)
7724 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7725 }
7726
7727 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7728 {
7729 struct io_rsrc_node *ref_node;
7730
7731 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7732 if (!ref_node)
7733 return NULL;
7734
7735 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7736 0, GFP_KERNEL)) {
7737 kfree(ref_node);
7738 return NULL;
7739 }
7740 INIT_LIST_HEAD(&ref_node->node);
7741 INIT_LIST_HEAD(&ref_node->rsrc_list);
7742 ref_node->done = false;
7743 return ref_node;
7744 }
7745
7746 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7747 struct io_rsrc_data *data_to_kill)
7748 {
7749 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7750 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7751
7752 if (data_to_kill) {
7753 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7754
7755 rsrc_node->rsrc_data = data_to_kill;
7756 spin_lock_irq(&ctx->rsrc_ref_lock);
7757 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7758 spin_unlock_irq(&ctx->rsrc_ref_lock);
7759
7760 atomic_inc(&data_to_kill->refs);
7761 percpu_ref_kill(&rsrc_node->refs);
7762 ctx->rsrc_node = NULL;
7763 }
7764
7765 if (!ctx->rsrc_node) {
7766 ctx->rsrc_node = ctx->rsrc_backup_node;
7767 ctx->rsrc_backup_node = NULL;
7768 }
7769 }
7770
7771 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7772 {
7773 if (ctx->rsrc_backup_node)
7774 return 0;
7775 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7776 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7777 }
7778
7779 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7780 {
7781 int ret;
7782
7783 /* As we may drop ->uring_lock, other task may have started quiesce */
7784 if (data->quiesce)
7785 return -ENXIO;
7786
7787 data->quiesce = true;
7788 do {
7789 ret = io_rsrc_node_switch_start(ctx);
7790 if (ret)
7791 break;
7792 io_rsrc_node_switch(ctx, data);
7793
7794 /* kill initial ref, already quiesced if zero */
7795 if (atomic_dec_and_test(&data->refs))
7796 break;
7797 mutex_unlock(&ctx->uring_lock);
7798 flush_delayed_work(&ctx->rsrc_put_work);
7799 ret = wait_for_completion_interruptible(&data->done);
7800 if (!ret) {
7801 mutex_lock(&ctx->uring_lock);
7802 if (atomic_read(&data->refs) > 0) {
7803 /*
7804 * it has been revived by another thread while
7805 * we were unlocked
7806 */
7807 mutex_unlock(&ctx->uring_lock);
7808 } else {
7809 break;
7810 }
7811 }
7812
7813 atomic_inc(&data->refs);
7814 /* wait for all works potentially completing data->done */
7815 flush_delayed_work(&ctx->rsrc_put_work);
7816 reinit_completion(&data->done);
7817
7818 ret = io_run_task_work_sig();
7819 mutex_lock(&ctx->uring_lock);
7820 } while (ret >= 0);
7821 data->quiesce = false;
7822
7823 return ret;
7824 }
7825
7826 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7827 {
7828 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7829 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7830
7831 return &data->tags[table_idx][off];
7832 }
7833
7834 static void io_rsrc_data_free(struct io_rsrc_data *data)
7835 {
7836 size_t size = data->nr * sizeof(data->tags[0][0]);
7837
7838 if (data->tags)
7839 io_free_page_table((void **)data->tags, size);
7840 kfree(data);
7841 }
7842
7843 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7844 u64 __user *utags, unsigned nr,
7845 struct io_rsrc_data **pdata)
7846 {
7847 struct io_rsrc_data *data;
7848 int ret = -ENOMEM;
7849 unsigned i;
7850
7851 data = kzalloc(sizeof(*data), GFP_KERNEL);
7852 if (!data)
7853 return -ENOMEM;
7854 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7855 if (!data->tags) {
7856 kfree(data);
7857 return -ENOMEM;
7858 }
7859
7860 data->nr = nr;
7861 data->ctx = ctx;
7862 data->do_put = do_put;
7863 if (utags) {
7864 ret = -EFAULT;
7865 for (i = 0; i < nr; i++) {
7866 u64 *tag_slot = io_get_tag_slot(data, i);
7867
7868 if (copy_from_user(tag_slot, &utags[i],
7869 sizeof(*tag_slot)))
7870 goto fail;
7871 }
7872 }
7873
7874 atomic_set(&data->refs, 1);
7875 init_completion(&data->done);
7876 *pdata = data;
7877 return 0;
7878 fail:
7879 io_rsrc_data_free(data);
7880 return ret;
7881 }
7882
7883 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7884 {
7885 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7886 GFP_KERNEL_ACCOUNT);
7887 return !!table->files;
7888 }
7889
7890 static void io_free_file_tables(struct io_file_table *table)
7891 {
7892 kvfree(table->files);
7893 table->files = NULL;
7894 }
7895
7896 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7897 {
7898 #if defined(CONFIG_UNIX)
7899 if (ctx->ring_sock) {
7900 struct sock *sock = ctx->ring_sock->sk;
7901 struct sk_buff *skb;
7902
7903 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7904 kfree_skb(skb);
7905 }
7906 #else
7907 int i;
7908
7909 for (i = 0; i < ctx->nr_user_files; i++) {
7910 struct file *file;
7911
7912 file = io_file_from_index(ctx, i);
7913 if (file)
7914 fput(file);
7915 }
7916 #endif
7917 io_free_file_tables(&ctx->file_table);
7918 io_rsrc_data_free(ctx->file_data);
7919 ctx->file_data = NULL;
7920 ctx->nr_user_files = 0;
7921 }
7922
7923 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7924 {
7925 unsigned nr = ctx->nr_user_files;
7926 int ret;
7927
7928 if (!ctx->file_data)
7929 return -ENXIO;
7930
7931 /*
7932 * Quiesce may unlock ->uring_lock, and while it's not held
7933 * prevent new requests using the table.
7934 */
7935 ctx->nr_user_files = 0;
7936 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7937 ctx->nr_user_files = nr;
7938 if (!ret)
7939 __io_sqe_files_unregister(ctx);
7940 return ret;
7941 }
7942
7943 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7944 __releases(&sqd->lock)
7945 {
7946 WARN_ON_ONCE(sqd->thread == current);
7947
7948 /*
7949 * Do the dance but not conditional clear_bit() because it'd race with
7950 * other threads incrementing park_pending and setting the bit.
7951 */
7952 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7953 if (atomic_dec_return(&sqd->park_pending))
7954 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7955 mutex_unlock(&sqd->lock);
7956 }
7957
7958 static void io_sq_thread_park(struct io_sq_data *sqd)
7959 __acquires(&sqd->lock)
7960 {
7961 WARN_ON_ONCE(sqd->thread == current);
7962
7963 atomic_inc(&sqd->park_pending);
7964 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7965 mutex_lock(&sqd->lock);
7966 if (sqd->thread)
7967 wake_up_process(sqd->thread);
7968 }
7969
7970 static void io_sq_thread_stop(struct io_sq_data *sqd)
7971 {
7972 WARN_ON_ONCE(sqd->thread == current);
7973 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7974
7975 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7976 mutex_lock(&sqd->lock);
7977 if (sqd->thread)
7978 wake_up_process(sqd->thread);
7979 mutex_unlock(&sqd->lock);
7980 wait_for_completion(&sqd->exited);
7981 }
7982
7983 static void io_put_sq_data(struct io_sq_data *sqd)
7984 {
7985 if (refcount_dec_and_test(&sqd->refs)) {
7986 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7987
7988 io_sq_thread_stop(sqd);
7989 kfree(sqd);
7990 }
7991 }
7992
7993 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7994 {
7995 struct io_sq_data *sqd = ctx->sq_data;
7996
7997 if (sqd) {
7998 io_sq_thread_park(sqd);
7999 list_del_init(&ctx->sqd_list);
8000 io_sqd_update_thread_idle(sqd);
8001 io_sq_thread_unpark(sqd);
8002
8003 io_put_sq_data(sqd);
8004 ctx->sq_data = NULL;
8005 }
8006 }
8007
8008 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8009 {
8010 struct io_ring_ctx *ctx_attach;
8011 struct io_sq_data *sqd;
8012 struct fd f;
8013
8014 f = fdget(p->wq_fd);
8015 if (!f.file)
8016 return ERR_PTR(-ENXIO);
8017 if (f.file->f_op != &io_uring_fops) {
8018 fdput(f);
8019 return ERR_PTR(-EINVAL);
8020 }
8021
8022 ctx_attach = f.file->private_data;
8023 sqd = ctx_attach->sq_data;
8024 if (!sqd) {
8025 fdput(f);
8026 return ERR_PTR(-EINVAL);
8027 }
8028 if (sqd->task_tgid != current->tgid) {
8029 fdput(f);
8030 return ERR_PTR(-EPERM);
8031 }
8032
8033 refcount_inc(&sqd->refs);
8034 fdput(f);
8035 return sqd;
8036 }
8037
8038 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8039 bool *attached)
8040 {
8041 struct io_sq_data *sqd;
8042
8043 *attached = false;
8044 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8045 sqd = io_attach_sq_data(p);
8046 if (!IS_ERR(sqd)) {
8047 *attached = true;
8048 return sqd;
8049 }
8050 /* fall through for EPERM case, setup new sqd/task */
8051 if (PTR_ERR(sqd) != -EPERM)
8052 return sqd;
8053 }
8054
8055 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8056 if (!sqd)
8057 return ERR_PTR(-ENOMEM);
8058
8059 atomic_set(&sqd->park_pending, 0);
8060 refcount_set(&sqd->refs, 1);
8061 INIT_LIST_HEAD(&sqd->ctx_list);
8062 mutex_init(&sqd->lock);
8063 init_waitqueue_head(&sqd->wait);
8064 init_completion(&sqd->exited);
8065 return sqd;
8066 }
8067
8068 #if defined(CONFIG_UNIX)
8069 /*
8070 * Ensure the UNIX gc is aware of our file set, so we are certain that
8071 * the io_uring can be safely unregistered on process exit, even if we have
8072 * loops in the file referencing.
8073 */
8074 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8075 {
8076 struct sock *sk = ctx->ring_sock->sk;
8077 struct scm_fp_list *fpl;
8078 struct sk_buff *skb;
8079 int i, nr_files;
8080
8081 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8082 if (!fpl)
8083 return -ENOMEM;
8084
8085 skb = alloc_skb(0, GFP_KERNEL);
8086 if (!skb) {
8087 kfree(fpl);
8088 return -ENOMEM;
8089 }
8090
8091 skb->sk = sk;
8092
8093 nr_files = 0;
8094 fpl->user = get_uid(current_user());
8095 for (i = 0; i < nr; i++) {
8096 struct file *file = io_file_from_index(ctx, i + offset);
8097
8098 if (!file)
8099 continue;
8100 fpl->fp[nr_files] = get_file(file);
8101 unix_inflight(fpl->user, fpl->fp[nr_files]);
8102 nr_files++;
8103 }
8104
8105 if (nr_files) {
8106 fpl->max = SCM_MAX_FD;
8107 fpl->count = nr_files;
8108 UNIXCB(skb).fp = fpl;
8109 skb->destructor = unix_destruct_scm;
8110 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8111 skb_queue_head(&sk->sk_receive_queue, skb);
8112
8113 for (i = 0; i < nr; i++) {
8114 struct file *file = io_file_from_index(ctx, i + offset);
8115
8116 if (file)
8117 fput(file);
8118 }
8119 } else {
8120 kfree_skb(skb);
8121 free_uid(fpl->user);
8122 kfree(fpl);
8123 }
8124
8125 return 0;
8126 }
8127
8128 /*
8129 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8130 * causes regular reference counting to break down. We rely on the UNIX
8131 * garbage collection to take care of this problem for us.
8132 */
8133 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8134 {
8135 unsigned left, total;
8136 int ret = 0;
8137
8138 total = 0;
8139 left = ctx->nr_user_files;
8140 while (left) {
8141 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8142
8143 ret = __io_sqe_files_scm(ctx, this_files, total);
8144 if (ret)
8145 break;
8146 left -= this_files;
8147 total += this_files;
8148 }
8149
8150 if (!ret)
8151 return 0;
8152
8153 while (total < ctx->nr_user_files) {
8154 struct file *file = io_file_from_index(ctx, total);
8155
8156 if (file)
8157 fput(file);
8158 total++;
8159 }
8160
8161 return ret;
8162 }
8163 #else
8164 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8165 {
8166 return 0;
8167 }
8168 #endif
8169
8170 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8171 {
8172 struct file *file = prsrc->file;
8173 #if defined(CONFIG_UNIX)
8174 struct sock *sock = ctx->ring_sock->sk;
8175 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8176 struct sk_buff *skb;
8177 int i;
8178
8179 __skb_queue_head_init(&list);
8180
8181 /*
8182 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8183 * remove this entry and rearrange the file array.
8184 */
8185 skb = skb_dequeue(head);
8186 while (skb) {
8187 struct scm_fp_list *fp;
8188
8189 fp = UNIXCB(skb).fp;
8190 for (i = 0; i < fp->count; i++) {
8191 int left;
8192
8193 if (fp->fp[i] != file)
8194 continue;
8195
8196 unix_notinflight(fp->user, fp->fp[i]);
8197 left = fp->count - 1 - i;
8198 if (left) {
8199 memmove(&fp->fp[i], &fp->fp[i + 1],
8200 left * sizeof(struct file *));
8201 }
8202 fp->count--;
8203 if (!fp->count) {
8204 kfree_skb(skb);
8205 skb = NULL;
8206 } else {
8207 __skb_queue_tail(&list, skb);
8208 }
8209 fput(file);
8210 file = NULL;
8211 break;
8212 }
8213
8214 if (!file)
8215 break;
8216
8217 __skb_queue_tail(&list, skb);
8218
8219 skb = skb_dequeue(head);
8220 }
8221
8222 if (skb_peek(&list)) {
8223 spin_lock_irq(&head->lock);
8224 while ((skb = __skb_dequeue(&list)) != NULL)
8225 __skb_queue_tail(head, skb);
8226 spin_unlock_irq(&head->lock);
8227 }
8228 #else
8229 fput(file);
8230 #endif
8231 }
8232
8233 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8234 {
8235 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8236 struct io_ring_ctx *ctx = rsrc_data->ctx;
8237 struct io_rsrc_put *prsrc, *tmp;
8238
8239 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8240 list_del(&prsrc->list);
8241
8242 if (prsrc->tag) {
8243 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8244
8245 io_ring_submit_lock(ctx, lock_ring);
8246 spin_lock(&ctx->completion_lock);
8247 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8248 io_commit_cqring(ctx);
8249 spin_unlock(&ctx->completion_lock);
8250 io_cqring_ev_posted(ctx);
8251 io_ring_submit_unlock(ctx, lock_ring);
8252 }
8253
8254 rsrc_data->do_put(ctx, prsrc);
8255 kfree(prsrc);
8256 }
8257
8258 io_rsrc_node_destroy(ref_node);
8259 if (atomic_dec_and_test(&rsrc_data->refs))
8260 complete(&rsrc_data->done);
8261 }
8262
8263 static void io_rsrc_put_work(struct work_struct *work)
8264 {
8265 struct io_ring_ctx *ctx;
8266 struct llist_node *node;
8267
8268 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8269 node = llist_del_all(&ctx->rsrc_put_llist);
8270
8271 while (node) {
8272 struct io_rsrc_node *ref_node;
8273 struct llist_node *next = node->next;
8274
8275 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8276 __io_rsrc_put_work(ref_node);
8277 node = next;
8278 }
8279 }
8280
8281 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8282 unsigned nr_args, u64 __user *tags)
8283 {
8284 __s32 __user *fds = (__s32 __user *) arg;
8285 struct file *file;
8286 int fd, ret;
8287 unsigned i;
8288
8289 if (ctx->file_data)
8290 return -EBUSY;
8291 if (!nr_args)
8292 return -EINVAL;
8293 if (nr_args > IORING_MAX_FIXED_FILES)
8294 return -EMFILE;
8295 if (nr_args > rlimit(RLIMIT_NOFILE))
8296 return -EMFILE;
8297 ret = io_rsrc_node_switch_start(ctx);
8298 if (ret)
8299 return ret;
8300 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8301 &ctx->file_data);
8302 if (ret)
8303 return ret;
8304
8305 ret = -ENOMEM;
8306 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8307 goto out_free;
8308
8309 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8310 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8311 ret = -EFAULT;
8312 goto out_fput;
8313 }
8314 /* allow sparse sets */
8315 if (fd == -1) {
8316 ret = -EINVAL;
8317 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8318 goto out_fput;
8319 continue;
8320 }
8321
8322 file = fget(fd);
8323 ret = -EBADF;
8324 if (unlikely(!file))
8325 goto out_fput;
8326
8327 /*
8328 * Don't allow io_uring instances to be registered. If UNIX
8329 * isn't enabled, then this causes a reference cycle and this
8330 * instance can never get freed. If UNIX is enabled we'll
8331 * handle it just fine, but there's still no point in allowing
8332 * a ring fd as it doesn't support regular read/write anyway.
8333 */
8334 if (file->f_op == &io_uring_fops) {
8335 fput(file);
8336 goto out_fput;
8337 }
8338 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8339 }
8340
8341 ret = io_sqe_files_scm(ctx);
8342 if (ret) {
8343 __io_sqe_files_unregister(ctx);
8344 return ret;
8345 }
8346
8347 io_rsrc_node_switch(ctx, NULL);
8348 return ret;
8349 out_fput:
8350 for (i = 0; i < ctx->nr_user_files; i++) {
8351 file = io_file_from_index(ctx, i);
8352 if (file)
8353 fput(file);
8354 }
8355 io_free_file_tables(&ctx->file_table);
8356 ctx->nr_user_files = 0;
8357 out_free:
8358 io_rsrc_data_free(ctx->file_data);
8359 ctx->file_data = NULL;
8360 return ret;
8361 }
8362
8363 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8364 int index)
8365 {
8366 #if defined(CONFIG_UNIX)
8367 struct sock *sock = ctx->ring_sock->sk;
8368 struct sk_buff_head *head = &sock->sk_receive_queue;
8369 struct sk_buff *skb;
8370
8371 /*
8372 * See if we can merge this file into an existing skb SCM_RIGHTS
8373 * file set. If there's no room, fall back to allocating a new skb
8374 * and filling it in.
8375 */
8376 spin_lock_irq(&head->lock);
8377 skb = skb_peek(head);
8378 if (skb) {
8379 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8380
8381 if (fpl->count < SCM_MAX_FD) {
8382 __skb_unlink(skb, head);
8383 spin_unlock_irq(&head->lock);
8384 fpl->fp[fpl->count] = get_file(file);
8385 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8386 fpl->count++;
8387 spin_lock_irq(&head->lock);
8388 __skb_queue_head(head, skb);
8389 } else {
8390 skb = NULL;
8391 }
8392 }
8393 spin_unlock_irq(&head->lock);
8394
8395 if (skb) {
8396 fput(file);
8397 return 0;
8398 }
8399
8400 return __io_sqe_files_scm(ctx, 1, index);
8401 #else
8402 return 0;
8403 #endif
8404 }
8405
8406 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8407 struct io_rsrc_node *node, void *rsrc)
8408 {
8409 u64 *tag_slot = io_get_tag_slot(data, idx);
8410 struct io_rsrc_put *prsrc;
8411
8412 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8413 if (!prsrc)
8414 return -ENOMEM;
8415
8416 prsrc->tag = *tag_slot;
8417 *tag_slot = 0;
8418 prsrc->rsrc = rsrc;
8419 list_add(&prsrc->list, &node->rsrc_list);
8420 return 0;
8421 }
8422
8423 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8424 unsigned int issue_flags, u32 slot_index)
8425 {
8426 struct io_ring_ctx *ctx = req->ctx;
8427 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8428 bool needs_switch = false;
8429 struct io_fixed_file *file_slot;
8430 int ret = -EBADF;
8431
8432 io_ring_submit_lock(ctx, !force_nonblock);
8433 if (file->f_op == &io_uring_fops)
8434 goto err;
8435 ret = -ENXIO;
8436 if (!ctx->file_data)
8437 goto err;
8438 ret = -EINVAL;
8439 if (slot_index >= ctx->nr_user_files)
8440 goto err;
8441
8442 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8443 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8444
8445 if (file_slot->file_ptr) {
8446 struct file *old_file;
8447
8448 ret = io_rsrc_node_switch_start(ctx);
8449 if (ret)
8450 goto err;
8451
8452 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8453 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8454 ctx->rsrc_node, old_file);
8455 if (ret)
8456 goto err;
8457 file_slot->file_ptr = 0;
8458 needs_switch = true;
8459 }
8460
8461 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8462 io_fixed_file_set(file_slot, file);
8463 ret = io_sqe_file_register(ctx, file, slot_index);
8464 if (ret) {
8465 file_slot->file_ptr = 0;
8466 goto err;
8467 }
8468
8469 ret = 0;
8470 err:
8471 if (needs_switch)
8472 io_rsrc_node_switch(ctx, ctx->file_data);
8473 io_ring_submit_unlock(ctx, !force_nonblock);
8474 if (ret)
8475 fput(file);
8476 return ret;
8477 }
8478
8479 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8480 {
8481 unsigned int offset = req->close.file_slot - 1;
8482 struct io_ring_ctx *ctx = req->ctx;
8483 struct io_fixed_file *file_slot;
8484 struct file *file;
8485 int ret;
8486
8487 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8488 ret = -ENXIO;
8489 if (unlikely(!ctx->file_data))
8490 goto out;
8491 ret = -EINVAL;
8492 if (offset >= ctx->nr_user_files)
8493 goto out;
8494 ret = io_rsrc_node_switch_start(ctx);
8495 if (ret)
8496 goto out;
8497
8498 offset = array_index_nospec(offset, ctx->nr_user_files);
8499 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8500 ret = -EBADF;
8501 if (!file_slot->file_ptr)
8502 goto out;
8503
8504 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8505 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8506 if (ret)
8507 goto out;
8508
8509 file_slot->file_ptr = 0;
8510 io_rsrc_node_switch(ctx, ctx->file_data);
8511 ret = 0;
8512 out:
8513 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8514 return ret;
8515 }
8516
8517 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8518 struct io_uring_rsrc_update2 *up,
8519 unsigned nr_args)
8520 {
8521 u64 __user *tags = u64_to_user_ptr(up->tags);
8522 __s32 __user *fds = u64_to_user_ptr(up->data);
8523 struct io_rsrc_data *data = ctx->file_data;
8524 struct io_fixed_file *file_slot;
8525 struct file *file;
8526 int fd, i, err = 0;
8527 unsigned int done;
8528 bool needs_switch = false;
8529
8530 if (!ctx->file_data)
8531 return -ENXIO;
8532 if (up->offset + nr_args > ctx->nr_user_files)
8533 return -EINVAL;
8534
8535 for (done = 0; done < nr_args; done++) {
8536 u64 tag = 0;
8537
8538 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8539 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8540 err = -EFAULT;
8541 break;
8542 }
8543 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8544 err = -EINVAL;
8545 break;
8546 }
8547 if (fd == IORING_REGISTER_FILES_SKIP)
8548 continue;
8549
8550 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8551 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8552
8553 if (file_slot->file_ptr) {
8554 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8555 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8556 if (err)
8557 break;
8558 file_slot->file_ptr = 0;
8559 needs_switch = true;
8560 }
8561 if (fd != -1) {
8562 file = fget(fd);
8563 if (!file) {
8564 err = -EBADF;
8565 break;
8566 }
8567 /*
8568 * Don't allow io_uring instances to be registered. If
8569 * UNIX isn't enabled, then this causes a reference
8570 * cycle and this instance can never get freed. If UNIX
8571 * is enabled we'll handle it just fine, but there's
8572 * still no point in allowing a ring fd as it doesn't
8573 * support regular read/write anyway.
8574 */
8575 if (file->f_op == &io_uring_fops) {
8576 fput(file);
8577 err = -EBADF;
8578 break;
8579 }
8580 *io_get_tag_slot(data, i) = tag;
8581 io_fixed_file_set(file_slot, file);
8582 err = io_sqe_file_register(ctx, file, i);
8583 if (err) {
8584 file_slot->file_ptr = 0;
8585 fput(file);
8586 break;
8587 }
8588 }
8589 }
8590
8591 if (needs_switch)
8592 io_rsrc_node_switch(ctx, data);
8593 return done ? done : err;
8594 }
8595
8596 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8597 struct task_struct *task)
8598 {
8599 struct io_wq_hash *hash;
8600 struct io_wq_data data;
8601 unsigned int concurrency;
8602
8603 mutex_lock(&ctx->uring_lock);
8604 hash = ctx->hash_map;
8605 if (!hash) {
8606 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8607 if (!hash) {
8608 mutex_unlock(&ctx->uring_lock);
8609 return ERR_PTR(-ENOMEM);
8610 }
8611 refcount_set(&hash->refs, 1);
8612 init_waitqueue_head(&hash->wait);
8613 ctx->hash_map = hash;
8614 }
8615 mutex_unlock(&ctx->uring_lock);
8616
8617 data.hash = hash;
8618 data.task = task;
8619 data.free_work = io_wq_free_work;
8620 data.do_work = io_wq_submit_work;
8621
8622 /* Do QD, or 4 * CPUS, whatever is smallest */
8623 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8624
8625 return io_wq_create(concurrency, &data);
8626 }
8627
8628 static int io_uring_alloc_task_context(struct task_struct *task,
8629 struct io_ring_ctx *ctx)
8630 {
8631 struct io_uring_task *tctx;
8632 int ret;
8633
8634 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8635 if (unlikely(!tctx))
8636 return -ENOMEM;
8637
8638 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8639 if (unlikely(ret)) {
8640 kfree(tctx);
8641 return ret;
8642 }
8643
8644 tctx->io_wq = io_init_wq_offload(ctx, task);
8645 if (IS_ERR(tctx->io_wq)) {
8646 ret = PTR_ERR(tctx->io_wq);
8647 percpu_counter_destroy(&tctx->inflight);
8648 kfree(tctx);
8649 return ret;
8650 }
8651
8652 xa_init(&tctx->xa);
8653 init_waitqueue_head(&tctx->wait);
8654 atomic_set(&tctx->in_idle, 0);
8655 atomic_set(&tctx->inflight_tracked, 0);
8656 task->io_uring = tctx;
8657 spin_lock_init(&tctx->task_lock);
8658 INIT_WQ_LIST(&tctx->task_list);
8659 init_task_work(&tctx->task_work, tctx_task_work);
8660 return 0;
8661 }
8662
8663 void __io_uring_free(struct task_struct *tsk)
8664 {
8665 struct io_uring_task *tctx = tsk->io_uring;
8666
8667 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8668 WARN_ON_ONCE(tctx->io_wq);
8669 WARN_ON_ONCE(tctx->cached_refs);
8670
8671 percpu_counter_destroy(&tctx->inflight);
8672 kfree(tctx);
8673 tsk->io_uring = NULL;
8674 }
8675
8676 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8677 struct io_uring_params *p)
8678 {
8679 int ret;
8680
8681 /* Retain compatibility with failing for an invalid attach attempt */
8682 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8683 IORING_SETUP_ATTACH_WQ) {
8684 struct fd f;
8685
8686 f = fdget(p->wq_fd);
8687 if (!f.file)
8688 return -ENXIO;
8689 if (f.file->f_op != &io_uring_fops) {
8690 fdput(f);
8691 return -EINVAL;
8692 }
8693 fdput(f);
8694 }
8695 if (ctx->flags & IORING_SETUP_SQPOLL) {
8696 struct task_struct *tsk;
8697 struct io_sq_data *sqd;
8698 bool attached;
8699
8700 sqd = io_get_sq_data(p, &attached);
8701 if (IS_ERR(sqd)) {
8702 ret = PTR_ERR(sqd);
8703 goto err;
8704 }
8705
8706 ctx->sq_creds = get_current_cred();
8707 ctx->sq_data = sqd;
8708 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8709 if (!ctx->sq_thread_idle)
8710 ctx->sq_thread_idle = HZ;
8711
8712 io_sq_thread_park(sqd);
8713 list_add(&ctx->sqd_list, &sqd->ctx_list);
8714 io_sqd_update_thread_idle(sqd);
8715 /* don't attach to a dying SQPOLL thread, would be racy */
8716 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8717 io_sq_thread_unpark(sqd);
8718
8719 if (ret < 0)
8720 goto err;
8721 if (attached)
8722 return 0;
8723
8724 if (p->flags & IORING_SETUP_SQ_AFF) {
8725 int cpu = p->sq_thread_cpu;
8726
8727 ret = -EINVAL;
8728 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8729 goto err_sqpoll;
8730 sqd->sq_cpu = cpu;
8731 } else {
8732 sqd->sq_cpu = -1;
8733 }
8734
8735 sqd->task_pid = current->pid;
8736 sqd->task_tgid = current->tgid;
8737 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8738 if (IS_ERR(tsk)) {
8739 ret = PTR_ERR(tsk);
8740 goto err_sqpoll;
8741 }
8742
8743 sqd->thread = tsk;
8744 ret = io_uring_alloc_task_context(tsk, ctx);
8745 wake_up_new_task(tsk);
8746 if (ret)
8747 goto err;
8748 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8749 /* Can't have SQ_AFF without SQPOLL */
8750 ret = -EINVAL;
8751 goto err;
8752 }
8753
8754 return 0;
8755 err_sqpoll:
8756 complete(&ctx->sq_data->exited);
8757 err:
8758 io_sq_thread_finish(ctx);
8759 return ret;
8760 }
8761
8762 static inline void __io_unaccount_mem(struct user_struct *user,
8763 unsigned long nr_pages)
8764 {
8765 atomic_long_sub(nr_pages, &user->locked_vm);
8766 }
8767
8768 static inline int __io_account_mem(struct user_struct *user,
8769 unsigned long nr_pages)
8770 {
8771 unsigned long page_limit, cur_pages, new_pages;
8772
8773 /* Don't allow more pages than we can safely lock */
8774 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8775
8776 do {
8777 cur_pages = atomic_long_read(&user->locked_vm);
8778 new_pages = cur_pages + nr_pages;
8779 if (new_pages > page_limit)
8780 return -ENOMEM;
8781 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8782 new_pages) != cur_pages);
8783
8784 return 0;
8785 }
8786
8787 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8788 {
8789 if (ctx->user)
8790 __io_unaccount_mem(ctx->user, nr_pages);
8791
8792 if (ctx->mm_account)
8793 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8794 }
8795
8796 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8797 {
8798 int ret;
8799
8800 if (ctx->user) {
8801 ret = __io_account_mem(ctx->user, nr_pages);
8802 if (ret)
8803 return ret;
8804 }
8805
8806 if (ctx->mm_account)
8807 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8808
8809 return 0;
8810 }
8811
8812 static void io_mem_free(void *ptr)
8813 {
8814 struct page *page;
8815
8816 if (!ptr)
8817 return;
8818
8819 page = virt_to_head_page(ptr);
8820 if (put_page_testzero(page))
8821 free_compound_page(page);
8822 }
8823
8824 static void *io_mem_alloc(size_t size)
8825 {
8826 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8827
8828 return (void *) __get_free_pages(gfp, get_order(size));
8829 }
8830
8831 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8832 size_t *sq_offset)
8833 {
8834 struct io_rings *rings;
8835 size_t off, sq_array_size;
8836
8837 off = struct_size(rings, cqes, cq_entries);
8838 if (off == SIZE_MAX)
8839 return SIZE_MAX;
8840
8841 #ifdef CONFIG_SMP
8842 off = ALIGN(off, SMP_CACHE_BYTES);
8843 if (off == 0)
8844 return SIZE_MAX;
8845 #endif
8846
8847 if (sq_offset)
8848 *sq_offset = off;
8849
8850 sq_array_size = array_size(sizeof(u32), sq_entries);
8851 if (sq_array_size == SIZE_MAX)
8852 return SIZE_MAX;
8853
8854 if (check_add_overflow(off, sq_array_size, &off))
8855 return SIZE_MAX;
8856
8857 return off;
8858 }
8859
8860 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8861 {
8862 struct io_mapped_ubuf *imu = *slot;
8863 unsigned int i;
8864
8865 if (imu != ctx->dummy_ubuf) {
8866 for (i = 0; i < imu->nr_bvecs; i++)
8867 unpin_user_page(imu->bvec[i].bv_page);
8868 if (imu->acct_pages)
8869 io_unaccount_mem(ctx, imu->acct_pages);
8870 kvfree(imu);
8871 }
8872 *slot = NULL;
8873 }
8874
8875 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8876 {
8877 io_buffer_unmap(ctx, &prsrc->buf);
8878 prsrc->buf = NULL;
8879 }
8880
8881 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8882 {
8883 unsigned int i;
8884
8885 for (i = 0; i < ctx->nr_user_bufs; i++)
8886 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8887 kfree(ctx->user_bufs);
8888 io_rsrc_data_free(ctx->buf_data);
8889 ctx->user_bufs = NULL;
8890 ctx->buf_data = NULL;
8891 ctx->nr_user_bufs = 0;
8892 }
8893
8894 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8895 {
8896 unsigned nr = ctx->nr_user_bufs;
8897 int ret;
8898
8899 if (!ctx->buf_data)
8900 return -ENXIO;
8901
8902 /*
8903 * Quiesce may unlock ->uring_lock, and while it's not held
8904 * prevent new requests using the table.
8905 */
8906 ctx->nr_user_bufs = 0;
8907 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8908 ctx->nr_user_bufs = nr;
8909 if (!ret)
8910 __io_sqe_buffers_unregister(ctx);
8911 return ret;
8912 }
8913
8914 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8915 void __user *arg, unsigned index)
8916 {
8917 struct iovec __user *src;
8918
8919 #ifdef CONFIG_COMPAT
8920 if (ctx->compat) {
8921 struct compat_iovec __user *ciovs;
8922 struct compat_iovec ciov;
8923
8924 ciovs = (struct compat_iovec __user *) arg;
8925 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8926 return -EFAULT;
8927
8928 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8929 dst->iov_len = ciov.iov_len;
8930 return 0;
8931 }
8932 #endif
8933 src = (struct iovec __user *) arg;
8934 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8935 return -EFAULT;
8936 return 0;
8937 }
8938
8939 /*
8940 * Not super efficient, but this is just a registration time. And we do cache
8941 * the last compound head, so generally we'll only do a full search if we don't
8942 * match that one.
8943 *
8944 * We check if the given compound head page has already been accounted, to
8945 * avoid double accounting it. This allows us to account the full size of the
8946 * page, not just the constituent pages of a huge page.
8947 */
8948 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8949 int nr_pages, struct page *hpage)
8950 {
8951 int i, j;
8952
8953 /* check current page array */
8954 for (i = 0; i < nr_pages; i++) {
8955 if (!PageCompound(pages[i]))
8956 continue;
8957 if (compound_head(pages[i]) == hpage)
8958 return true;
8959 }
8960
8961 /* check previously registered pages */
8962 for (i = 0; i < ctx->nr_user_bufs; i++) {
8963 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8964
8965 for (j = 0; j < imu->nr_bvecs; j++) {
8966 if (!PageCompound(imu->bvec[j].bv_page))
8967 continue;
8968 if (compound_head(imu->bvec[j].bv_page) == hpage)
8969 return true;
8970 }
8971 }
8972
8973 return false;
8974 }
8975
8976 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8977 int nr_pages, struct io_mapped_ubuf *imu,
8978 struct page **last_hpage)
8979 {
8980 int i, ret;
8981
8982 imu->acct_pages = 0;
8983 for (i = 0; i < nr_pages; i++) {
8984 if (!PageCompound(pages[i])) {
8985 imu->acct_pages++;
8986 } else {
8987 struct page *hpage;
8988
8989 hpage = compound_head(pages[i]);
8990 if (hpage == *last_hpage)
8991 continue;
8992 *last_hpage = hpage;
8993 if (headpage_already_acct(ctx, pages, i, hpage))
8994 continue;
8995 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8996 }
8997 }
8998
8999 if (!imu->acct_pages)
9000 return 0;
9001
9002 ret = io_account_mem(ctx, imu->acct_pages);
9003 if (ret)
9004 imu->acct_pages = 0;
9005 return ret;
9006 }
9007
9008 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9009 struct io_mapped_ubuf **pimu,
9010 struct page **last_hpage)
9011 {
9012 struct io_mapped_ubuf *imu = NULL;
9013 struct vm_area_struct **vmas = NULL;
9014 struct page **pages = NULL;
9015 unsigned long off, start, end, ubuf;
9016 size_t size;
9017 int ret, pret, nr_pages, i;
9018
9019 if (!iov->iov_base) {
9020 *pimu = ctx->dummy_ubuf;
9021 return 0;
9022 }
9023
9024 ubuf = (unsigned long) iov->iov_base;
9025 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9026 start = ubuf >> PAGE_SHIFT;
9027 nr_pages = end - start;
9028
9029 *pimu = NULL;
9030 ret = -ENOMEM;
9031
9032 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9033 if (!pages)
9034 goto done;
9035
9036 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9037 GFP_KERNEL);
9038 if (!vmas)
9039 goto done;
9040
9041 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9042 if (!imu)
9043 goto done;
9044
9045 ret = 0;
9046 mmap_read_lock(current->mm);
9047 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9048 pages, vmas);
9049 if (pret == nr_pages) {
9050 /* don't support file backed memory */
9051 for (i = 0; i < nr_pages; i++) {
9052 struct vm_area_struct *vma = vmas[i];
9053
9054 if (vma_is_shmem(vma))
9055 continue;
9056 if (vma->vm_file &&
9057 !is_file_hugepages(vma->vm_file)) {
9058 ret = -EOPNOTSUPP;
9059 break;
9060 }
9061 }
9062 } else {
9063 ret = pret < 0 ? pret : -EFAULT;
9064 }
9065 mmap_read_unlock(current->mm);
9066 if (ret) {
9067 /*
9068 * if we did partial map, or found file backed vmas,
9069 * release any pages we did get
9070 */
9071 if (pret > 0)
9072 unpin_user_pages(pages, pret);
9073 goto done;
9074 }
9075
9076 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9077 if (ret) {
9078 unpin_user_pages(pages, pret);
9079 goto done;
9080 }
9081
9082 off = ubuf & ~PAGE_MASK;
9083 size = iov->iov_len;
9084 for (i = 0; i < nr_pages; i++) {
9085 size_t vec_len;
9086
9087 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9088 imu->bvec[i].bv_page = pages[i];
9089 imu->bvec[i].bv_len = vec_len;
9090 imu->bvec[i].bv_offset = off;
9091 off = 0;
9092 size -= vec_len;
9093 }
9094 /* store original address for later verification */
9095 imu->ubuf = ubuf;
9096 imu->ubuf_end = ubuf + iov->iov_len;
9097 imu->nr_bvecs = nr_pages;
9098 *pimu = imu;
9099 ret = 0;
9100 done:
9101 if (ret)
9102 kvfree(imu);
9103 kvfree(pages);
9104 kvfree(vmas);
9105 return ret;
9106 }
9107
9108 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9109 {
9110 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9111 return ctx->user_bufs ? 0 : -ENOMEM;
9112 }
9113
9114 static int io_buffer_validate(struct iovec *iov)
9115 {
9116 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9117
9118 /*
9119 * Don't impose further limits on the size and buffer
9120 * constraints here, we'll -EINVAL later when IO is
9121 * submitted if they are wrong.
9122 */
9123 if (!iov->iov_base)
9124 return iov->iov_len ? -EFAULT : 0;
9125 if (!iov->iov_len)
9126 return -EFAULT;
9127
9128 /* arbitrary limit, but we need something */
9129 if (iov->iov_len > SZ_1G)
9130 return -EFAULT;
9131
9132 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9133 return -EOVERFLOW;
9134
9135 return 0;
9136 }
9137
9138 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9139 unsigned int nr_args, u64 __user *tags)
9140 {
9141 struct page *last_hpage = NULL;
9142 struct io_rsrc_data *data;
9143 int i, ret;
9144 struct iovec iov;
9145
9146 if (ctx->user_bufs)
9147 return -EBUSY;
9148 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9149 return -EINVAL;
9150 ret = io_rsrc_node_switch_start(ctx);
9151 if (ret)
9152 return ret;
9153 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9154 if (ret)
9155 return ret;
9156 ret = io_buffers_map_alloc(ctx, nr_args);
9157 if (ret) {
9158 io_rsrc_data_free(data);
9159 return ret;
9160 }
9161
9162 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9163 ret = io_copy_iov(ctx, &iov, arg, i);
9164 if (ret)
9165 break;
9166 ret = io_buffer_validate(&iov);
9167 if (ret)
9168 break;
9169 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9170 ret = -EINVAL;
9171 break;
9172 }
9173
9174 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9175 &last_hpage);
9176 if (ret)
9177 break;
9178 }
9179
9180 WARN_ON_ONCE(ctx->buf_data);
9181
9182 ctx->buf_data = data;
9183 if (ret)
9184 __io_sqe_buffers_unregister(ctx);
9185 else
9186 io_rsrc_node_switch(ctx, NULL);
9187 return ret;
9188 }
9189
9190 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9191 struct io_uring_rsrc_update2 *up,
9192 unsigned int nr_args)
9193 {
9194 u64 __user *tags = u64_to_user_ptr(up->tags);
9195 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9196 struct page *last_hpage = NULL;
9197 bool needs_switch = false;
9198 __u32 done;
9199 int i, err;
9200
9201 if (!ctx->buf_data)
9202 return -ENXIO;
9203 if (up->offset + nr_args > ctx->nr_user_bufs)
9204 return -EINVAL;
9205
9206 for (done = 0; done < nr_args; done++) {
9207 struct io_mapped_ubuf *imu;
9208 int offset = up->offset + done;
9209 u64 tag = 0;
9210
9211 err = io_copy_iov(ctx, &iov, iovs, done);
9212 if (err)
9213 break;
9214 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9215 err = -EFAULT;
9216 break;
9217 }
9218 err = io_buffer_validate(&iov);
9219 if (err)
9220 break;
9221 if (!iov.iov_base && tag) {
9222 err = -EINVAL;
9223 break;
9224 }
9225 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9226 if (err)
9227 break;
9228
9229 i = array_index_nospec(offset, ctx->nr_user_bufs);
9230 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9231 err = io_queue_rsrc_removal(ctx->buf_data, i,
9232 ctx->rsrc_node, ctx->user_bufs[i]);
9233 if (unlikely(err)) {
9234 io_buffer_unmap(ctx, &imu);
9235 break;
9236 }
9237 ctx->user_bufs[i] = NULL;
9238 needs_switch = true;
9239 }
9240
9241 ctx->user_bufs[i] = imu;
9242 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9243 }
9244
9245 if (needs_switch)
9246 io_rsrc_node_switch(ctx, ctx->buf_data);
9247 return done ? done : err;
9248 }
9249
9250 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9251 {
9252 __s32 __user *fds = arg;
9253 int fd;
9254
9255 if (ctx->cq_ev_fd)
9256 return -EBUSY;
9257
9258 if (copy_from_user(&fd, fds, sizeof(*fds)))
9259 return -EFAULT;
9260
9261 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9262 if (IS_ERR(ctx->cq_ev_fd)) {
9263 int ret = PTR_ERR(ctx->cq_ev_fd);
9264
9265 ctx->cq_ev_fd = NULL;
9266 return ret;
9267 }
9268
9269 return 0;
9270 }
9271
9272 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9273 {
9274 if (ctx->cq_ev_fd) {
9275 eventfd_ctx_put(ctx->cq_ev_fd);
9276 ctx->cq_ev_fd = NULL;
9277 return 0;
9278 }
9279
9280 return -ENXIO;
9281 }
9282
9283 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9284 {
9285 struct io_buffer *buf;
9286 unsigned long index;
9287
9288 xa_for_each(&ctx->io_buffers, index, buf)
9289 __io_remove_buffers(ctx, buf, index, -1U);
9290 }
9291
9292 static void io_req_cache_free(struct list_head *list)
9293 {
9294 struct io_kiocb *req, *nxt;
9295
9296 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9297 list_del(&req->inflight_entry);
9298 kmem_cache_free(req_cachep, req);
9299 }
9300 }
9301
9302 static void io_req_caches_free(struct io_ring_ctx *ctx)
9303 {
9304 struct io_submit_state *state = &ctx->submit_state;
9305
9306 mutex_lock(&ctx->uring_lock);
9307
9308 if (state->free_reqs) {
9309 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9310 state->free_reqs = 0;
9311 }
9312
9313 io_flush_cached_locked_reqs(ctx, state);
9314 io_req_cache_free(&state->free_list);
9315 mutex_unlock(&ctx->uring_lock);
9316 }
9317
9318 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9319 {
9320 if (data && !atomic_dec_and_test(&data->refs))
9321 wait_for_completion(&data->done);
9322 }
9323
9324 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9325 {
9326 io_sq_thread_finish(ctx);
9327
9328 if (ctx->mm_account) {
9329 mmdrop(ctx->mm_account);
9330 ctx->mm_account = NULL;
9331 }
9332
9333 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9334 io_wait_rsrc_data(ctx->buf_data);
9335 io_wait_rsrc_data(ctx->file_data);
9336
9337 mutex_lock(&ctx->uring_lock);
9338 if (ctx->buf_data)
9339 __io_sqe_buffers_unregister(ctx);
9340 if (ctx->file_data)
9341 __io_sqe_files_unregister(ctx);
9342 if (ctx->rings)
9343 __io_cqring_overflow_flush(ctx, true);
9344 mutex_unlock(&ctx->uring_lock);
9345 io_eventfd_unregister(ctx);
9346 io_destroy_buffers(ctx);
9347 if (ctx->sq_creds)
9348 put_cred(ctx->sq_creds);
9349
9350 /* there are no registered resources left, nobody uses it */
9351 if (ctx->rsrc_node)
9352 io_rsrc_node_destroy(ctx->rsrc_node);
9353 if (ctx->rsrc_backup_node)
9354 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9355 flush_delayed_work(&ctx->rsrc_put_work);
9356
9357 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9358 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9359
9360 #if defined(CONFIG_UNIX)
9361 if (ctx->ring_sock) {
9362 ctx->ring_sock->file = NULL; /* so that iput() is called */
9363 sock_release(ctx->ring_sock);
9364 }
9365 #endif
9366 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9367
9368 io_mem_free(ctx->rings);
9369 io_mem_free(ctx->sq_sqes);
9370
9371 percpu_ref_exit(&ctx->refs);
9372 free_uid(ctx->user);
9373 io_req_caches_free(ctx);
9374 if (ctx->hash_map)
9375 io_wq_put_hash(ctx->hash_map);
9376 kfree(ctx->cancel_hash);
9377 kfree(ctx->dummy_ubuf);
9378 kfree(ctx);
9379 }
9380
9381 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9382 {
9383 struct io_ring_ctx *ctx = file->private_data;
9384 __poll_t mask = 0;
9385
9386 poll_wait(file, &ctx->poll_wait, wait);
9387 /*
9388 * synchronizes with barrier from wq_has_sleeper call in
9389 * io_commit_cqring
9390 */
9391 smp_rmb();
9392 if (!io_sqring_full(ctx))
9393 mask |= EPOLLOUT | EPOLLWRNORM;
9394
9395 /*
9396 * Don't flush cqring overflow list here, just do a simple check.
9397 * Otherwise there could possible be ABBA deadlock:
9398 * CPU0 CPU1
9399 * ---- ----
9400 * lock(&ctx->uring_lock);
9401 * lock(&ep->mtx);
9402 * lock(&ctx->uring_lock);
9403 * lock(&ep->mtx);
9404 *
9405 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9406 * pushs them to do the flush.
9407 */
9408 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9409 mask |= EPOLLIN | EPOLLRDNORM;
9410
9411 return mask;
9412 }
9413
9414 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9415 {
9416 const struct cred *creds;
9417
9418 creds = xa_erase(&ctx->personalities, id);
9419 if (creds) {
9420 put_cred(creds);
9421 return 0;
9422 }
9423
9424 return -EINVAL;
9425 }
9426
9427 struct io_tctx_exit {
9428 struct callback_head task_work;
9429 struct completion completion;
9430 struct io_ring_ctx *ctx;
9431 };
9432
9433 static void io_tctx_exit_cb(struct callback_head *cb)
9434 {
9435 struct io_uring_task *tctx = current->io_uring;
9436 struct io_tctx_exit *work;
9437
9438 work = container_of(cb, struct io_tctx_exit, task_work);
9439 /*
9440 * When @in_idle, we're in cancellation and it's racy to remove the
9441 * node. It'll be removed by the end of cancellation, just ignore it.
9442 */
9443 if (!atomic_read(&tctx->in_idle))
9444 io_uring_del_tctx_node((unsigned long)work->ctx);
9445 complete(&work->completion);
9446 }
9447
9448 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9449 {
9450 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9451
9452 return req->ctx == data;
9453 }
9454
9455 static void io_ring_exit_work(struct work_struct *work)
9456 {
9457 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9458 unsigned long timeout = jiffies + HZ * 60 * 5;
9459 unsigned long interval = HZ / 20;
9460 struct io_tctx_exit exit;
9461 struct io_tctx_node *node;
9462 int ret;
9463
9464 /*
9465 * If we're doing polled IO and end up having requests being
9466 * submitted async (out-of-line), then completions can come in while
9467 * we're waiting for refs to drop. We need to reap these manually,
9468 * as nobody else will be looking for them.
9469 */
9470 do {
9471 io_uring_try_cancel_requests(ctx, NULL, true);
9472 if (ctx->sq_data) {
9473 struct io_sq_data *sqd = ctx->sq_data;
9474 struct task_struct *tsk;
9475
9476 io_sq_thread_park(sqd);
9477 tsk = sqd->thread;
9478 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9479 io_wq_cancel_cb(tsk->io_uring->io_wq,
9480 io_cancel_ctx_cb, ctx, true);
9481 io_sq_thread_unpark(sqd);
9482 }
9483
9484 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9485 /* there is little hope left, don't run it too often */
9486 interval = HZ * 60;
9487 }
9488 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9489
9490 init_completion(&exit.completion);
9491 init_task_work(&exit.task_work, io_tctx_exit_cb);
9492 exit.ctx = ctx;
9493 /*
9494 * Some may use context even when all refs and requests have been put,
9495 * and they are free to do so while still holding uring_lock or
9496 * completion_lock, see io_req_task_submit(). Apart from other work,
9497 * this lock/unlock section also waits them to finish.
9498 */
9499 mutex_lock(&ctx->uring_lock);
9500 while (!list_empty(&ctx->tctx_list)) {
9501 WARN_ON_ONCE(time_after(jiffies, timeout));
9502
9503 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9504 ctx_node);
9505 /* don't spin on a single task if cancellation failed */
9506 list_rotate_left(&ctx->tctx_list);
9507 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9508 if (WARN_ON_ONCE(ret))
9509 continue;
9510 wake_up_process(node->task);
9511
9512 mutex_unlock(&ctx->uring_lock);
9513 wait_for_completion(&exit.completion);
9514 mutex_lock(&ctx->uring_lock);
9515 }
9516 mutex_unlock(&ctx->uring_lock);
9517 spin_lock(&ctx->completion_lock);
9518 spin_unlock(&ctx->completion_lock);
9519
9520 io_ring_ctx_free(ctx);
9521 }
9522
9523 /* Returns true if we found and killed one or more timeouts */
9524 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9525 bool cancel_all)
9526 {
9527 struct io_kiocb *req, *tmp;
9528 int canceled = 0;
9529
9530 spin_lock(&ctx->completion_lock);
9531 spin_lock_irq(&ctx->timeout_lock);
9532 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9533 if (io_match_task(req, tsk, cancel_all)) {
9534 io_kill_timeout(req, -ECANCELED);
9535 canceled++;
9536 }
9537 }
9538 spin_unlock_irq(&ctx->timeout_lock);
9539 if (canceled != 0)
9540 io_commit_cqring(ctx);
9541 spin_unlock(&ctx->completion_lock);
9542 if (canceled != 0)
9543 io_cqring_ev_posted(ctx);
9544 return canceled != 0;
9545 }
9546
9547 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9548 {
9549 unsigned long index;
9550 struct creds *creds;
9551
9552 mutex_lock(&ctx->uring_lock);
9553 percpu_ref_kill(&ctx->refs);
9554 if (ctx->rings)
9555 __io_cqring_overflow_flush(ctx, true);
9556 xa_for_each(&ctx->personalities, index, creds)
9557 io_unregister_personality(ctx, index);
9558 mutex_unlock(&ctx->uring_lock);
9559
9560 io_kill_timeouts(ctx, NULL, true);
9561 io_poll_remove_all(ctx, NULL, true);
9562
9563 /* if we failed setting up the ctx, we might not have any rings */
9564 io_iopoll_try_reap_events(ctx);
9565
9566 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9567 /*
9568 * Use system_unbound_wq to avoid spawning tons of event kworkers
9569 * if we're exiting a ton of rings at the same time. It just adds
9570 * noise and overhead, there's no discernable change in runtime
9571 * over using system_wq.
9572 */
9573 queue_work(system_unbound_wq, &ctx->exit_work);
9574 }
9575
9576 static int io_uring_release(struct inode *inode, struct file *file)
9577 {
9578 struct io_ring_ctx *ctx = file->private_data;
9579
9580 file->private_data = NULL;
9581 io_ring_ctx_wait_and_kill(ctx);
9582 return 0;
9583 }
9584
9585 struct io_task_cancel {
9586 struct task_struct *task;
9587 bool all;
9588 };
9589
9590 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9591 {
9592 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9593 struct io_task_cancel *cancel = data;
9594
9595 return io_match_task_safe(req, cancel->task, cancel->all);
9596 }
9597
9598 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9599 struct task_struct *task, bool cancel_all)
9600 {
9601 struct io_defer_entry *de;
9602 LIST_HEAD(list);
9603
9604 spin_lock(&ctx->completion_lock);
9605 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9606 if (io_match_task_safe(de->req, task, cancel_all)) {
9607 list_cut_position(&list, &ctx->defer_list, &de->list);
9608 break;
9609 }
9610 }
9611 spin_unlock(&ctx->completion_lock);
9612 if (list_empty(&list))
9613 return false;
9614
9615 while (!list_empty(&list)) {
9616 de = list_first_entry(&list, struct io_defer_entry, list);
9617 list_del_init(&de->list);
9618 io_req_complete_failed(de->req, -ECANCELED);
9619 kfree(de);
9620 }
9621 return true;
9622 }
9623
9624 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9625 {
9626 struct io_tctx_node *node;
9627 enum io_wq_cancel cret;
9628 bool ret = false;
9629
9630 mutex_lock(&ctx->uring_lock);
9631 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9632 struct io_uring_task *tctx = node->task->io_uring;
9633
9634 /*
9635 * io_wq will stay alive while we hold uring_lock, because it's
9636 * killed after ctx nodes, which requires to take the lock.
9637 */
9638 if (!tctx || !tctx->io_wq)
9639 continue;
9640 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9641 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9642 }
9643 mutex_unlock(&ctx->uring_lock);
9644
9645 return ret;
9646 }
9647
9648 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9649 struct task_struct *task,
9650 bool cancel_all)
9651 {
9652 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9653 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9654
9655 while (1) {
9656 enum io_wq_cancel cret;
9657 bool ret = false;
9658
9659 if (!task) {
9660 ret |= io_uring_try_cancel_iowq(ctx);
9661 } else if (tctx && tctx->io_wq) {
9662 /*
9663 * Cancels requests of all rings, not only @ctx, but
9664 * it's fine as the task is in exit/exec.
9665 */
9666 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9667 &cancel, true);
9668 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9669 }
9670
9671 /* SQPOLL thread does its own polling */
9672 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9673 (ctx->sq_data && ctx->sq_data->thread == current)) {
9674 while (!list_empty_careful(&ctx->iopoll_list)) {
9675 io_iopoll_try_reap_events(ctx);
9676 ret = true;
9677 }
9678 }
9679
9680 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9681 ret |= io_poll_remove_all(ctx, task, cancel_all);
9682 ret |= io_kill_timeouts(ctx, task, cancel_all);
9683 if (task)
9684 ret |= io_run_task_work();
9685 if (!ret)
9686 break;
9687 cond_resched();
9688 }
9689 }
9690
9691 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9692 {
9693 struct io_uring_task *tctx = current->io_uring;
9694 struct io_tctx_node *node;
9695 int ret;
9696
9697 if (unlikely(!tctx)) {
9698 ret = io_uring_alloc_task_context(current, ctx);
9699 if (unlikely(ret))
9700 return ret;
9701
9702 tctx = current->io_uring;
9703 if (ctx->iowq_limits_set) {
9704 unsigned int limits[2] = { ctx->iowq_limits[0],
9705 ctx->iowq_limits[1], };
9706
9707 ret = io_wq_max_workers(tctx->io_wq, limits);
9708 if (ret)
9709 return ret;
9710 }
9711 }
9712 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9713 node = kmalloc(sizeof(*node), GFP_KERNEL);
9714 if (!node)
9715 return -ENOMEM;
9716 node->ctx = ctx;
9717 node->task = current;
9718
9719 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9720 node, GFP_KERNEL));
9721 if (ret) {
9722 kfree(node);
9723 return ret;
9724 }
9725
9726 mutex_lock(&ctx->uring_lock);
9727 list_add(&node->ctx_node, &ctx->tctx_list);
9728 mutex_unlock(&ctx->uring_lock);
9729 }
9730 tctx->last = ctx;
9731 return 0;
9732 }
9733
9734 /*
9735 * Note that this task has used io_uring. We use it for cancelation purposes.
9736 */
9737 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9738 {
9739 struct io_uring_task *tctx = current->io_uring;
9740
9741 if (likely(tctx && tctx->last == ctx))
9742 return 0;
9743 return __io_uring_add_tctx_node(ctx);
9744 }
9745
9746 /*
9747 * Remove this io_uring_file -> task mapping.
9748 */
9749 static void io_uring_del_tctx_node(unsigned long index)
9750 {
9751 struct io_uring_task *tctx = current->io_uring;
9752 struct io_tctx_node *node;
9753
9754 if (!tctx)
9755 return;
9756 node = xa_erase(&tctx->xa, index);
9757 if (!node)
9758 return;
9759
9760 WARN_ON_ONCE(current != node->task);
9761 WARN_ON_ONCE(list_empty(&node->ctx_node));
9762
9763 mutex_lock(&node->ctx->uring_lock);
9764 list_del(&node->ctx_node);
9765 mutex_unlock(&node->ctx->uring_lock);
9766
9767 if (tctx->last == node->ctx)
9768 tctx->last = NULL;
9769 kfree(node);
9770 }
9771
9772 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9773 {
9774 struct io_wq *wq = tctx->io_wq;
9775 struct io_tctx_node *node;
9776 unsigned long index;
9777
9778 xa_for_each(&tctx->xa, index, node) {
9779 io_uring_del_tctx_node(index);
9780 cond_resched();
9781 }
9782 if (wq) {
9783 /*
9784 * Must be after io_uring_del_task_file() (removes nodes under
9785 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9786 */
9787 io_wq_put_and_exit(wq);
9788 tctx->io_wq = NULL;
9789 }
9790 }
9791
9792 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9793 {
9794 if (tracked)
9795 return atomic_read(&tctx->inflight_tracked);
9796 return percpu_counter_sum(&tctx->inflight);
9797 }
9798
9799 /*
9800 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9801 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9802 */
9803 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9804 {
9805 struct io_uring_task *tctx = current->io_uring;
9806 struct io_ring_ctx *ctx;
9807 s64 inflight;
9808 DEFINE_WAIT(wait);
9809
9810 WARN_ON_ONCE(sqd && sqd->thread != current);
9811
9812 if (!current->io_uring)
9813 return;
9814 if (tctx->io_wq)
9815 io_wq_exit_start(tctx->io_wq);
9816
9817 atomic_inc(&tctx->in_idle);
9818 do {
9819 io_uring_drop_tctx_refs(current);
9820 /* read completions before cancelations */
9821 inflight = tctx_inflight(tctx, !cancel_all);
9822 if (!inflight)
9823 break;
9824
9825 if (!sqd) {
9826 struct io_tctx_node *node;
9827 unsigned long index;
9828
9829 xa_for_each(&tctx->xa, index, node) {
9830 /* sqpoll task will cancel all its requests */
9831 if (node->ctx->sq_data)
9832 continue;
9833 io_uring_try_cancel_requests(node->ctx, current,
9834 cancel_all);
9835 }
9836 } else {
9837 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9838 io_uring_try_cancel_requests(ctx, current,
9839 cancel_all);
9840 }
9841
9842 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9843 io_run_task_work();
9844 io_uring_drop_tctx_refs(current);
9845
9846 /*
9847 * If we've seen completions, retry without waiting. This
9848 * avoids a race where a completion comes in before we did
9849 * prepare_to_wait().
9850 */
9851 if (inflight == tctx_inflight(tctx, !cancel_all))
9852 schedule();
9853 finish_wait(&tctx->wait, &wait);
9854 } while (1);
9855
9856 io_uring_clean_tctx(tctx);
9857 if (cancel_all) {
9858 /*
9859 * We shouldn't run task_works after cancel, so just leave
9860 * ->in_idle set for normal exit.
9861 */
9862 atomic_dec(&tctx->in_idle);
9863 /* for exec all current's requests should be gone, kill tctx */
9864 __io_uring_free(current);
9865 }
9866 }
9867
9868 void __io_uring_cancel(bool cancel_all)
9869 {
9870 io_uring_cancel_generic(cancel_all, NULL);
9871 }
9872
9873 static void *io_uring_validate_mmap_request(struct file *file,
9874 loff_t pgoff, size_t sz)
9875 {
9876 struct io_ring_ctx *ctx = file->private_data;
9877 loff_t offset = pgoff << PAGE_SHIFT;
9878 struct page *page;
9879 void *ptr;
9880
9881 switch (offset) {
9882 case IORING_OFF_SQ_RING:
9883 case IORING_OFF_CQ_RING:
9884 ptr = ctx->rings;
9885 break;
9886 case IORING_OFF_SQES:
9887 ptr = ctx->sq_sqes;
9888 break;
9889 default:
9890 return ERR_PTR(-EINVAL);
9891 }
9892
9893 page = virt_to_head_page(ptr);
9894 if (sz > page_size(page))
9895 return ERR_PTR(-EINVAL);
9896
9897 return ptr;
9898 }
9899
9900 #ifdef CONFIG_MMU
9901
9902 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9903 {
9904 size_t sz = vma->vm_end - vma->vm_start;
9905 unsigned long pfn;
9906 void *ptr;
9907
9908 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9909 if (IS_ERR(ptr))
9910 return PTR_ERR(ptr);
9911
9912 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9913 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9914 }
9915
9916 #else /* !CONFIG_MMU */
9917
9918 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9919 {
9920 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9921 }
9922
9923 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9924 {
9925 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9926 }
9927
9928 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9929 unsigned long addr, unsigned long len,
9930 unsigned long pgoff, unsigned long flags)
9931 {
9932 void *ptr;
9933
9934 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9935 if (IS_ERR(ptr))
9936 return PTR_ERR(ptr);
9937
9938 return (unsigned long) ptr;
9939 }
9940
9941 #endif /* !CONFIG_MMU */
9942
9943 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9944 {
9945 DEFINE_WAIT(wait);
9946
9947 do {
9948 if (!io_sqring_full(ctx))
9949 break;
9950 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9951
9952 if (!io_sqring_full(ctx))
9953 break;
9954 schedule();
9955 } while (!signal_pending(current));
9956
9957 finish_wait(&ctx->sqo_sq_wait, &wait);
9958 return 0;
9959 }
9960
9961 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9962 struct __kernel_timespec __user **ts,
9963 const sigset_t __user **sig)
9964 {
9965 struct io_uring_getevents_arg arg;
9966
9967 /*
9968 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9969 * is just a pointer to the sigset_t.
9970 */
9971 if (!(flags & IORING_ENTER_EXT_ARG)) {
9972 *sig = (const sigset_t __user *) argp;
9973 *ts = NULL;
9974 return 0;
9975 }
9976
9977 /*
9978 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9979 * timespec and sigset_t pointers if good.
9980 */
9981 if (*argsz != sizeof(arg))
9982 return -EINVAL;
9983 if (copy_from_user(&arg, argp, sizeof(arg)))
9984 return -EFAULT;
9985 if (arg.pad)
9986 return -EINVAL;
9987 *sig = u64_to_user_ptr(arg.sigmask);
9988 *argsz = arg.sigmask_sz;
9989 *ts = u64_to_user_ptr(arg.ts);
9990 return 0;
9991 }
9992
9993 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9994 u32, min_complete, u32, flags, const void __user *, argp,
9995 size_t, argsz)
9996 {
9997 struct io_ring_ctx *ctx;
9998 int submitted = 0;
9999 struct fd f;
10000 long ret;
10001
10002 io_run_task_work();
10003
10004 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10005 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10006 return -EINVAL;
10007
10008 f = fdget(fd);
10009 if (unlikely(!f.file))
10010 return -EBADF;
10011
10012 ret = -EOPNOTSUPP;
10013 if (unlikely(f.file->f_op != &io_uring_fops))
10014 goto out_fput;
10015
10016 ret = -ENXIO;
10017 ctx = f.file->private_data;
10018 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10019 goto out_fput;
10020
10021 ret = -EBADFD;
10022 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10023 goto out;
10024
10025 /*
10026 * For SQ polling, the thread will do all submissions and completions.
10027 * Just return the requested submit count, and wake the thread if
10028 * we were asked to.
10029 */
10030 ret = 0;
10031 if (ctx->flags & IORING_SETUP_SQPOLL) {
10032 io_cqring_overflow_flush(ctx);
10033
10034 if (unlikely(ctx->sq_data->thread == NULL)) {
10035 ret = -EOWNERDEAD;
10036 goto out;
10037 }
10038 if (flags & IORING_ENTER_SQ_WAKEUP)
10039 wake_up(&ctx->sq_data->wait);
10040 if (flags & IORING_ENTER_SQ_WAIT) {
10041 ret = io_sqpoll_wait_sq(ctx);
10042 if (ret)
10043 goto out;
10044 }
10045 submitted = to_submit;
10046 } else if (to_submit) {
10047 ret = io_uring_add_tctx_node(ctx);
10048 if (unlikely(ret))
10049 goto out;
10050 mutex_lock(&ctx->uring_lock);
10051 submitted = io_submit_sqes(ctx, to_submit);
10052 mutex_unlock(&ctx->uring_lock);
10053
10054 if (submitted != to_submit)
10055 goto out;
10056 }
10057 if (flags & IORING_ENTER_GETEVENTS) {
10058 const sigset_t __user *sig;
10059 struct __kernel_timespec __user *ts;
10060
10061 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10062 if (unlikely(ret))
10063 goto out;
10064
10065 min_complete = min(min_complete, ctx->cq_entries);
10066
10067 /*
10068 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10069 * space applications don't need to do io completion events
10070 * polling again, they can rely on io_sq_thread to do polling
10071 * work, which can reduce cpu usage and uring_lock contention.
10072 */
10073 if (ctx->flags & IORING_SETUP_IOPOLL &&
10074 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10075 ret = io_iopoll_check(ctx, min_complete);
10076 } else {
10077 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10078 }
10079 }
10080
10081 out:
10082 percpu_ref_put(&ctx->refs);
10083 out_fput:
10084 fdput(f);
10085 return submitted ? submitted : ret;
10086 }
10087
10088 #ifdef CONFIG_PROC_FS
10089 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10090 const struct cred *cred)
10091 {
10092 struct user_namespace *uns = seq_user_ns(m);
10093 struct group_info *gi;
10094 kernel_cap_t cap;
10095 unsigned __capi;
10096 int g;
10097
10098 seq_printf(m, "%5d\n", id);
10099 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10100 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10101 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10102 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10103 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10104 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10105 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10106 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10107 seq_puts(m, "\n\tGroups:\t");
10108 gi = cred->group_info;
10109 for (g = 0; g < gi->ngroups; g++) {
10110 seq_put_decimal_ull(m, g ? " " : "",
10111 from_kgid_munged(uns, gi->gid[g]));
10112 }
10113 seq_puts(m, "\n\tCapEff:\t");
10114 cap = cred->cap_effective;
10115 CAP_FOR_EACH_U32(__capi)
10116 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10117 seq_putc(m, '\n');
10118 return 0;
10119 }
10120
10121 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10122 {
10123 struct io_sq_data *sq = NULL;
10124 bool has_lock;
10125 int i;
10126
10127 /*
10128 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10129 * since fdinfo case grabs it in the opposite direction of normal use
10130 * cases. If we fail to get the lock, we just don't iterate any
10131 * structures that could be going away outside the io_uring mutex.
10132 */
10133 has_lock = mutex_trylock(&ctx->uring_lock);
10134
10135 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10136 sq = ctx->sq_data;
10137 if (!sq->thread)
10138 sq = NULL;
10139 }
10140
10141 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10142 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10143 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10144 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10145 struct file *f = io_file_from_index(ctx, i);
10146
10147 if (f)
10148 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10149 else
10150 seq_printf(m, "%5u: <none>\n", i);
10151 }
10152 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10153 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10154 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10155 unsigned int len = buf->ubuf_end - buf->ubuf;
10156
10157 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10158 }
10159 if (has_lock && !xa_empty(&ctx->personalities)) {
10160 unsigned long index;
10161 const struct cred *cred;
10162
10163 seq_printf(m, "Personalities:\n");
10164 xa_for_each(&ctx->personalities, index, cred)
10165 io_uring_show_cred(m, index, cred);
10166 }
10167 seq_printf(m, "PollList:\n");
10168 spin_lock(&ctx->completion_lock);
10169 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10170 struct hlist_head *list = &ctx->cancel_hash[i];
10171 struct io_kiocb *req;
10172
10173 hlist_for_each_entry(req, list, hash_node)
10174 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10175 req->task->task_works != NULL);
10176 }
10177 spin_unlock(&ctx->completion_lock);
10178 if (has_lock)
10179 mutex_unlock(&ctx->uring_lock);
10180 }
10181
10182 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10183 {
10184 struct io_ring_ctx *ctx = f->private_data;
10185
10186 if (percpu_ref_tryget(&ctx->refs)) {
10187 __io_uring_show_fdinfo(ctx, m);
10188 percpu_ref_put(&ctx->refs);
10189 }
10190 }
10191 #endif
10192
10193 static const struct file_operations io_uring_fops = {
10194 .release = io_uring_release,
10195 .mmap = io_uring_mmap,
10196 #ifndef CONFIG_MMU
10197 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10198 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10199 #endif
10200 .poll = io_uring_poll,
10201 #ifdef CONFIG_PROC_FS
10202 .show_fdinfo = io_uring_show_fdinfo,
10203 #endif
10204 };
10205
10206 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10207 struct io_uring_params *p)
10208 {
10209 struct io_rings *rings;
10210 size_t size, sq_array_offset;
10211
10212 /* make sure these are sane, as we already accounted them */
10213 ctx->sq_entries = p->sq_entries;
10214 ctx->cq_entries = p->cq_entries;
10215
10216 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10217 if (size == SIZE_MAX)
10218 return -EOVERFLOW;
10219
10220 rings = io_mem_alloc(size);
10221 if (!rings)
10222 return -ENOMEM;
10223
10224 ctx->rings = rings;
10225 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10226 rings->sq_ring_mask = p->sq_entries - 1;
10227 rings->cq_ring_mask = p->cq_entries - 1;
10228 rings->sq_ring_entries = p->sq_entries;
10229 rings->cq_ring_entries = p->cq_entries;
10230
10231 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10232 if (size == SIZE_MAX) {
10233 io_mem_free(ctx->rings);
10234 ctx->rings = NULL;
10235 return -EOVERFLOW;
10236 }
10237
10238 ctx->sq_sqes = io_mem_alloc(size);
10239 if (!ctx->sq_sqes) {
10240 io_mem_free(ctx->rings);
10241 ctx->rings = NULL;
10242 return -ENOMEM;
10243 }
10244
10245 return 0;
10246 }
10247
10248 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10249 {
10250 int ret, fd;
10251
10252 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10253 if (fd < 0)
10254 return fd;
10255
10256 ret = io_uring_add_tctx_node(ctx);
10257 if (ret) {
10258 put_unused_fd(fd);
10259 return ret;
10260 }
10261 fd_install(fd, file);
10262 return fd;
10263 }
10264
10265 /*
10266 * Allocate an anonymous fd, this is what constitutes the application
10267 * visible backing of an io_uring instance. The application mmaps this
10268 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10269 * we have to tie this fd to a socket for file garbage collection purposes.
10270 */
10271 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10272 {
10273 struct file *file;
10274 #if defined(CONFIG_UNIX)
10275 int ret;
10276
10277 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10278 &ctx->ring_sock);
10279 if (ret)
10280 return ERR_PTR(ret);
10281 #endif
10282
10283 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10284 O_RDWR | O_CLOEXEC);
10285 #if defined(CONFIG_UNIX)
10286 if (IS_ERR(file)) {
10287 sock_release(ctx->ring_sock);
10288 ctx->ring_sock = NULL;
10289 } else {
10290 ctx->ring_sock->file = file;
10291 }
10292 #endif
10293 return file;
10294 }
10295
10296 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10297 struct io_uring_params __user *params)
10298 {
10299 struct io_ring_ctx *ctx;
10300 struct file *file;
10301 int ret;
10302
10303 if (!entries)
10304 return -EINVAL;
10305 if (entries > IORING_MAX_ENTRIES) {
10306 if (!(p->flags & IORING_SETUP_CLAMP))
10307 return -EINVAL;
10308 entries = IORING_MAX_ENTRIES;
10309 }
10310
10311 /*
10312 * Use twice as many entries for the CQ ring. It's possible for the
10313 * application to drive a higher depth than the size of the SQ ring,
10314 * since the sqes are only used at submission time. This allows for
10315 * some flexibility in overcommitting a bit. If the application has
10316 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10317 * of CQ ring entries manually.
10318 */
10319 p->sq_entries = roundup_pow_of_two(entries);
10320 if (p->flags & IORING_SETUP_CQSIZE) {
10321 /*
10322 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10323 * to a power-of-two, if it isn't already. We do NOT impose
10324 * any cq vs sq ring sizing.
10325 */
10326 if (!p->cq_entries)
10327 return -EINVAL;
10328 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10329 if (!(p->flags & IORING_SETUP_CLAMP))
10330 return -EINVAL;
10331 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10332 }
10333 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10334 if (p->cq_entries < p->sq_entries)
10335 return -EINVAL;
10336 } else {
10337 p->cq_entries = 2 * p->sq_entries;
10338 }
10339
10340 ctx = io_ring_ctx_alloc(p);
10341 if (!ctx)
10342 return -ENOMEM;
10343 ctx->compat = in_compat_syscall();
10344 if (!capable(CAP_IPC_LOCK))
10345 ctx->user = get_uid(current_user());
10346
10347 /*
10348 * This is just grabbed for accounting purposes. When a process exits,
10349 * the mm is exited and dropped before the files, hence we need to hang
10350 * on to this mm purely for the purposes of being able to unaccount
10351 * memory (locked/pinned vm). It's not used for anything else.
10352 */
10353 mmgrab(current->mm);
10354 ctx->mm_account = current->mm;
10355
10356 ret = io_allocate_scq_urings(ctx, p);
10357 if (ret)
10358 goto err;
10359
10360 ret = io_sq_offload_create(ctx, p);
10361 if (ret)
10362 goto err;
10363 /* always set a rsrc node */
10364 ret = io_rsrc_node_switch_start(ctx);
10365 if (ret)
10366 goto err;
10367 io_rsrc_node_switch(ctx, NULL);
10368
10369 memset(&p->sq_off, 0, sizeof(p->sq_off));
10370 p->sq_off.head = offsetof(struct io_rings, sq.head);
10371 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10372 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10373 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10374 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10375 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10376 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10377
10378 memset(&p->cq_off, 0, sizeof(p->cq_off));
10379 p->cq_off.head = offsetof(struct io_rings, cq.head);
10380 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10381 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10382 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10383 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10384 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10385 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10386
10387 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10388 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10389 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10390 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10391 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10392 IORING_FEAT_RSRC_TAGS;
10393
10394 if (copy_to_user(params, p, sizeof(*p))) {
10395 ret = -EFAULT;
10396 goto err;
10397 }
10398
10399 file = io_uring_get_file(ctx);
10400 if (IS_ERR(file)) {
10401 ret = PTR_ERR(file);
10402 goto err;
10403 }
10404
10405 /*
10406 * Install ring fd as the very last thing, so we don't risk someone
10407 * having closed it before we finish setup
10408 */
10409 ret = io_uring_install_fd(ctx, file);
10410 if (ret < 0) {
10411 /* fput will clean it up */
10412 fput(file);
10413 return ret;
10414 }
10415
10416 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10417 return ret;
10418 err:
10419 io_ring_ctx_wait_and_kill(ctx);
10420 return ret;
10421 }
10422
10423 /*
10424 * Sets up an aio uring context, and returns the fd. Applications asks for a
10425 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10426 * params structure passed in.
10427 */
10428 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10429 {
10430 struct io_uring_params p;
10431 int i;
10432
10433 if (copy_from_user(&p, params, sizeof(p)))
10434 return -EFAULT;
10435 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10436 if (p.resv[i])
10437 return -EINVAL;
10438 }
10439
10440 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10441 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10442 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10443 IORING_SETUP_R_DISABLED))
10444 return -EINVAL;
10445
10446 return io_uring_create(entries, &p, params);
10447 }
10448
10449 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10450 struct io_uring_params __user *, params)
10451 {
10452 return io_uring_setup(entries, params);
10453 }
10454
10455 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10456 {
10457 struct io_uring_probe *p;
10458 size_t size;
10459 int i, ret;
10460
10461 size = struct_size(p, ops, nr_args);
10462 if (size == SIZE_MAX)
10463 return -EOVERFLOW;
10464 p = kzalloc(size, GFP_KERNEL);
10465 if (!p)
10466 return -ENOMEM;
10467
10468 ret = -EFAULT;
10469 if (copy_from_user(p, arg, size))
10470 goto out;
10471 ret = -EINVAL;
10472 if (memchr_inv(p, 0, size))
10473 goto out;
10474
10475 p->last_op = IORING_OP_LAST - 1;
10476 if (nr_args > IORING_OP_LAST)
10477 nr_args = IORING_OP_LAST;
10478
10479 for (i = 0; i < nr_args; i++) {
10480 p->ops[i].op = i;
10481 if (!io_op_defs[i].not_supported)
10482 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10483 }
10484 p->ops_len = i;
10485
10486 ret = 0;
10487 if (copy_to_user(arg, p, size))
10488 ret = -EFAULT;
10489 out:
10490 kfree(p);
10491 return ret;
10492 }
10493
10494 static int io_register_personality(struct io_ring_ctx *ctx)
10495 {
10496 const struct cred *creds;
10497 u32 id;
10498 int ret;
10499
10500 creds = get_current_cred();
10501
10502 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10503 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10504 if (ret < 0) {
10505 put_cred(creds);
10506 return ret;
10507 }
10508 return id;
10509 }
10510
10511 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10512 unsigned int nr_args)
10513 {
10514 struct io_uring_restriction *res;
10515 size_t size;
10516 int i, ret;
10517
10518 /* Restrictions allowed only if rings started disabled */
10519 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10520 return -EBADFD;
10521
10522 /* We allow only a single restrictions registration */
10523 if (ctx->restrictions.registered)
10524 return -EBUSY;
10525
10526 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10527 return -EINVAL;
10528
10529 size = array_size(nr_args, sizeof(*res));
10530 if (size == SIZE_MAX)
10531 return -EOVERFLOW;
10532
10533 res = memdup_user(arg, size);
10534 if (IS_ERR(res))
10535 return PTR_ERR(res);
10536
10537 ret = 0;
10538
10539 for (i = 0; i < nr_args; i++) {
10540 switch (res[i].opcode) {
10541 case IORING_RESTRICTION_REGISTER_OP:
10542 if (res[i].register_op >= IORING_REGISTER_LAST) {
10543 ret = -EINVAL;
10544 goto out;
10545 }
10546
10547 __set_bit(res[i].register_op,
10548 ctx->restrictions.register_op);
10549 break;
10550 case IORING_RESTRICTION_SQE_OP:
10551 if (res[i].sqe_op >= IORING_OP_LAST) {
10552 ret = -EINVAL;
10553 goto out;
10554 }
10555
10556 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10557 break;
10558 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10559 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10560 break;
10561 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10562 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10563 break;
10564 default:
10565 ret = -EINVAL;
10566 goto out;
10567 }
10568 }
10569
10570 out:
10571 /* Reset all restrictions if an error happened */
10572 if (ret != 0)
10573 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10574 else
10575 ctx->restrictions.registered = true;
10576
10577 kfree(res);
10578 return ret;
10579 }
10580
10581 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10582 {
10583 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10584 return -EBADFD;
10585
10586 if (ctx->restrictions.registered)
10587 ctx->restricted = 1;
10588
10589 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10590 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10591 wake_up(&ctx->sq_data->wait);
10592 return 0;
10593 }
10594
10595 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10596 struct io_uring_rsrc_update2 *up,
10597 unsigned nr_args)
10598 {
10599 __u32 tmp;
10600 int err;
10601
10602 if (check_add_overflow(up->offset, nr_args, &tmp))
10603 return -EOVERFLOW;
10604 err = io_rsrc_node_switch_start(ctx);
10605 if (err)
10606 return err;
10607
10608 switch (type) {
10609 case IORING_RSRC_FILE:
10610 return __io_sqe_files_update(ctx, up, nr_args);
10611 case IORING_RSRC_BUFFER:
10612 return __io_sqe_buffers_update(ctx, up, nr_args);
10613 }
10614 return -EINVAL;
10615 }
10616
10617 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10618 unsigned nr_args)
10619 {
10620 struct io_uring_rsrc_update2 up;
10621
10622 if (!nr_args)
10623 return -EINVAL;
10624 memset(&up, 0, sizeof(up));
10625 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10626 return -EFAULT;
10627 if (up.resv || up.resv2)
10628 return -EINVAL;
10629 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10630 }
10631
10632 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10633 unsigned size, unsigned type)
10634 {
10635 struct io_uring_rsrc_update2 up;
10636
10637 if (size != sizeof(up))
10638 return -EINVAL;
10639 if (copy_from_user(&up, arg, sizeof(up)))
10640 return -EFAULT;
10641 if (!up.nr || up.resv || up.resv2)
10642 return -EINVAL;
10643 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10644 }
10645
10646 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10647 unsigned int size, unsigned int type)
10648 {
10649 struct io_uring_rsrc_register rr;
10650
10651 /* keep it extendible */
10652 if (size != sizeof(rr))
10653 return -EINVAL;
10654
10655 memset(&rr, 0, sizeof(rr));
10656 if (copy_from_user(&rr, arg, size))
10657 return -EFAULT;
10658 if (!rr.nr || rr.resv || rr.resv2)
10659 return -EINVAL;
10660
10661 switch (type) {
10662 case IORING_RSRC_FILE:
10663 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10664 rr.nr, u64_to_user_ptr(rr.tags));
10665 case IORING_RSRC_BUFFER:
10666 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10667 rr.nr, u64_to_user_ptr(rr.tags));
10668 }
10669 return -EINVAL;
10670 }
10671
10672 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10673 unsigned len)
10674 {
10675 struct io_uring_task *tctx = current->io_uring;
10676 cpumask_var_t new_mask;
10677 int ret;
10678
10679 if (!tctx || !tctx->io_wq)
10680 return -EINVAL;
10681
10682 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10683 return -ENOMEM;
10684
10685 cpumask_clear(new_mask);
10686 if (len > cpumask_size())
10687 len = cpumask_size();
10688
10689 if (in_compat_syscall()) {
10690 ret = compat_get_bitmap(cpumask_bits(new_mask),
10691 (const compat_ulong_t __user *)arg,
10692 len * 8 /* CHAR_BIT */);
10693 } else {
10694 ret = copy_from_user(new_mask, arg, len);
10695 }
10696
10697 if (ret) {
10698 free_cpumask_var(new_mask);
10699 return -EFAULT;
10700 }
10701
10702 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10703 free_cpumask_var(new_mask);
10704 return ret;
10705 }
10706
10707 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10708 {
10709 struct io_uring_task *tctx = current->io_uring;
10710
10711 if (!tctx || !tctx->io_wq)
10712 return -EINVAL;
10713
10714 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10715 }
10716
10717 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10718 void __user *arg)
10719 __must_hold(&ctx->uring_lock)
10720 {
10721 struct io_tctx_node *node;
10722 struct io_uring_task *tctx = NULL;
10723 struct io_sq_data *sqd = NULL;
10724 __u32 new_count[2];
10725 int i, ret;
10726
10727 if (copy_from_user(new_count, arg, sizeof(new_count)))
10728 return -EFAULT;
10729 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10730 if (new_count[i] > INT_MAX)
10731 return -EINVAL;
10732
10733 if (ctx->flags & IORING_SETUP_SQPOLL) {
10734 sqd = ctx->sq_data;
10735 if (sqd) {
10736 /*
10737 * Observe the correct sqd->lock -> ctx->uring_lock
10738 * ordering. Fine to drop uring_lock here, we hold
10739 * a ref to the ctx.
10740 */
10741 refcount_inc(&sqd->refs);
10742 mutex_unlock(&ctx->uring_lock);
10743 mutex_lock(&sqd->lock);
10744 mutex_lock(&ctx->uring_lock);
10745 if (sqd->thread)
10746 tctx = sqd->thread->io_uring;
10747 }
10748 } else {
10749 tctx = current->io_uring;
10750 }
10751
10752 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10753
10754 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10755 if (new_count[i])
10756 ctx->iowq_limits[i] = new_count[i];
10757 ctx->iowq_limits_set = true;
10758
10759 ret = -EINVAL;
10760 if (tctx && tctx->io_wq) {
10761 ret = io_wq_max_workers(tctx->io_wq, new_count);
10762 if (ret)
10763 goto err;
10764 } else {
10765 memset(new_count, 0, sizeof(new_count));
10766 }
10767
10768 if (sqd) {
10769 mutex_unlock(&sqd->lock);
10770 io_put_sq_data(sqd);
10771 }
10772
10773 if (copy_to_user(arg, new_count, sizeof(new_count)))
10774 return -EFAULT;
10775
10776 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10777 if (sqd)
10778 return 0;
10779
10780 /* now propagate the restriction to all registered users */
10781 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10782 struct io_uring_task *tctx = node->task->io_uring;
10783
10784 if (WARN_ON_ONCE(!tctx->io_wq))
10785 continue;
10786
10787 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10788 new_count[i] = ctx->iowq_limits[i];
10789 /* ignore errors, it always returns zero anyway */
10790 (void)io_wq_max_workers(tctx->io_wq, new_count);
10791 }
10792 return 0;
10793 err:
10794 if (sqd) {
10795 mutex_unlock(&sqd->lock);
10796 io_put_sq_data(sqd);
10797 }
10798 return ret;
10799 }
10800
10801 static bool io_register_op_must_quiesce(int op)
10802 {
10803 switch (op) {
10804 case IORING_REGISTER_BUFFERS:
10805 case IORING_UNREGISTER_BUFFERS:
10806 case IORING_REGISTER_FILES:
10807 case IORING_UNREGISTER_FILES:
10808 case IORING_REGISTER_FILES_UPDATE:
10809 case IORING_REGISTER_PROBE:
10810 case IORING_REGISTER_PERSONALITY:
10811 case IORING_UNREGISTER_PERSONALITY:
10812 case IORING_REGISTER_FILES2:
10813 case IORING_REGISTER_FILES_UPDATE2:
10814 case IORING_REGISTER_BUFFERS2:
10815 case IORING_REGISTER_BUFFERS_UPDATE:
10816 case IORING_REGISTER_IOWQ_AFF:
10817 case IORING_UNREGISTER_IOWQ_AFF:
10818 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10819 return false;
10820 default:
10821 return true;
10822 }
10823 }
10824
10825 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10826 {
10827 long ret;
10828
10829 percpu_ref_kill(&ctx->refs);
10830
10831 /*
10832 * Drop uring mutex before waiting for references to exit. If another
10833 * thread is currently inside io_uring_enter() it might need to grab the
10834 * uring_lock to make progress. If we hold it here across the drain
10835 * wait, then we can deadlock. It's safe to drop the mutex here, since
10836 * no new references will come in after we've killed the percpu ref.
10837 */
10838 mutex_unlock(&ctx->uring_lock);
10839 do {
10840 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10841 if (!ret)
10842 break;
10843 ret = io_run_task_work_sig();
10844 } while (ret >= 0);
10845 mutex_lock(&ctx->uring_lock);
10846
10847 if (ret)
10848 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10849 return ret;
10850 }
10851
10852 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10853 void __user *arg, unsigned nr_args)
10854 __releases(ctx->uring_lock)
10855 __acquires(ctx->uring_lock)
10856 {
10857 int ret;
10858
10859 /*
10860 * We're inside the ring mutex, if the ref is already dying, then
10861 * someone else killed the ctx or is already going through
10862 * io_uring_register().
10863 */
10864 if (percpu_ref_is_dying(&ctx->refs))
10865 return -ENXIO;
10866
10867 if (ctx->restricted) {
10868 if (opcode >= IORING_REGISTER_LAST)
10869 return -EINVAL;
10870 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10871 if (!test_bit(opcode, ctx->restrictions.register_op))
10872 return -EACCES;
10873 }
10874
10875 if (io_register_op_must_quiesce(opcode)) {
10876 ret = io_ctx_quiesce(ctx);
10877 if (ret)
10878 return ret;
10879 }
10880
10881 switch (opcode) {
10882 case IORING_REGISTER_BUFFERS:
10883 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10884 break;
10885 case IORING_UNREGISTER_BUFFERS:
10886 ret = -EINVAL;
10887 if (arg || nr_args)
10888 break;
10889 ret = io_sqe_buffers_unregister(ctx);
10890 break;
10891 case IORING_REGISTER_FILES:
10892 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10893 break;
10894 case IORING_UNREGISTER_FILES:
10895 ret = -EINVAL;
10896 if (arg || nr_args)
10897 break;
10898 ret = io_sqe_files_unregister(ctx);
10899 break;
10900 case IORING_REGISTER_FILES_UPDATE:
10901 ret = io_register_files_update(ctx, arg, nr_args);
10902 break;
10903 case IORING_REGISTER_EVENTFD:
10904 case IORING_REGISTER_EVENTFD_ASYNC:
10905 ret = -EINVAL;
10906 if (nr_args != 1)
10907 break;
10908 ret = io_eventfd_register(ctx, arg);
10909 if (ret)
10910 break;
10911 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10912 ctx->eventfd_async = 1;
10913 else
10914 ctx->eventfd_async = 0;
10915 break;
10916 case IORING_UNREGISTER_EVENTFD:
10917 ret = -EINVAL;
10918 if (arg || nr_args)
10919 break;
10920 ret = io_eventfd_unregister(ctx);
10921 break;
10922 case IORING_REGISTER_PROBE:
10923 ret = -EINVAL;
10924 if (!arg || nr_args > 256)
10925 break;
10926 ret = io_probe(ctx, arg, nr_args);
10927 break;
10928 case IORING_REGISTER_PERSONALITY:
10929 ret = -EINVAL;
10930 if (arg || nr_args)
10931 break;
10932 ret = io_register_personality(ctx);
10933 break;
10934 case IORING_UNREGISTER_PERSONALITY:
10935 ret = -EINVAL;
10936 if (arg)
10937 break;
10938 ret = io_unregister_personality(ctx, nr_args);
10939 break;
10940 case IORING_REGISTER_ENABLE_RINGS:
10941 ret = -EINVAL;
10942 if (arg || nr_args)
10943 break;
10944 ret = io_register_enable_rings(ctx);
10945 break;
10946 case IORING_REGISTER_RESTRICTIONS:
10947 ret = io_register_restrictions(ctx, arg, nr_args);
10948 break;
10949 case IORING_REGISTER_FILES2:
10950 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10951 break;
10952 case IORING_REGISTER_FILES_UPDATE2:
10953 ret = io_register_rsrc_update(ctx, arg, nr_args,
10954 IORING_RSRC_FILE);
10955 break;
10956 case IORING_REGISTER_BUFFERS2:
10957 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10958 break;
10959 case IORING_REGISTER_BUFFERS_UPDATE:
10960 ret = io_register_rsrc_update(ctx, arg, nr_args,
10961 IORING_RSRC_BUFFER);
10962 break;
10963 case IORING_REGISTER_IOWQ_AFF:
10964 ret = -EINVAL;
10965 if (!arg || !nr_args)
10966 break;
10967 ret = io_register_iowq_aff(ctx, arg, nr_args);
10968 break;
10969 case IORING_UNREGISTER_IOWQ_AFF:
10970 ret = -EINVAL;
10971 if (arg || nr_args)
10972 break;
10973 ret = io_unregister_iowq_aff(ctx);
10974 break;
10975 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10976 ret = -EINVAL;
10977 if (!arg || nr_args != 2)
10978 break;
10979 ret = io_register_iowq_max_workers(ctx, arg);
10980 break;
10981 default:
10982 ret = -EINVAL;
10983 break;
10984 }
10985
10986 if (io_register_op_must_quiesce(opcode)) {
10987 /* bring the ctx back to life */
10988 percpu_ref_reinit(&ctx->refs);
10989 reinit_completion(&ctx->ref_comp);
10990 }
10991 return ret;
10992 }
10993
10994 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10995 void __user *, arg, unsigned int, nr_args)
10996 {
10997 struct io_ring_ctx *ctx;
10998 long ret = -EBADF;
10999 struct fd f;
11000
11001 f = fdget(fd);
11002 if (!f.file)
11003 return -EBADF;
11004
11005 ret = -EOPNOTSUPP;
11006 if (f.file->f_op != &io_uring_fops)
11007 goto out_fput;
11008
11009 ctx = f.file->private_data;
11010
11011 io_run_task_work();
11012
11013 mutex_lock(&ctx->uring_lock);
11014 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11015 mutex_unlock(&ctx->uring_lock);
11016 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11017 ctx->cq_ev_fd != NULL, ret);
11018 out_fput:
11019 fdput(f);
11020 return ret;
11021 }
11022
11023 static int __init io_uring_init(void)
11024 {
11025 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11026 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11027 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11028 } while (0)
11029
11030 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11031 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11032 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11033 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11034 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11035 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11036 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11037 BUILD_BUG_SQE_ELEM(8, __u64, off);
11038 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11039 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11040 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11041 BUILD_BUG_SQE_ELEM(24, __u32, len);
11042 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11043 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11044 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11045 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11046 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11047 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11048 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11049 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11050 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11051 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11052 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11053 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11054 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11055 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11056 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11057 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11058 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11059 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11060 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11061 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11062 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11063
11064 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11065 sizeof(struct io_uring_rsrc_update));
11066 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11067 sizeof(struct io_uring_rsrc_update2));
11068
11069 /* ->buf_index is u16 */
11070 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11071
11072 /* should fit into one byte */
11073 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11074
11075 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11076 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11077
11078 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11079 SLAB_ACCOUNT);
11080 return 0;
11081 };
11082 __initcall(io_uring_init);