]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
5265a45b64403d4dd7119b3a5dff4b76a529859f
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __u32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
266
267 /*
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
270 *
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
274 *
275 * The kernel modifies neither the indices array nor the entries
276 * array.
277 */
278 u32 *sq_array;
279 unsigned cached_sq_head;
280 unsigned sq_entries;
281 unsigned sq_mask;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
286
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
290
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct xarray io_buffers;
349
350 struct xarray personalities;
351 u32 pers_next;
352
353 struct {
354 unsigned cached_cq_tail;
355 unsigned cq_entries;
356 unsigned cq_mask;
357 atomic_t cq_timeouts;
358 unsigned cq_last_tm_flush;
359 unsigned long cq_check_overflow;
360 struct wait_queue_head cq_wait;
361 struct fasync_struct *cq_fasync;
362 struct eventfd_ctx *cq_ev_fd;
363 } ____cacheline_aligned_in_smp;
364
365 struct {
366 struct mutex uring_lock;
367 wait_queue_head_t wait;
368 } ____cacheline_aligned_in_smp;
369
370 struct {
371 spinlock_t completion_lock;
372
373 /*
374 * ->iopoll_list is protected by the ctx->uring_lock for
375 * io_uring instances that don't use IORING_SETUP_SQPOLL.
376 * For SQPOLL, only the single threaded io_sq_thread() will
377 * manipulate the list, hence no extra locking is needed there.
378 */
379 struct list_head iopoll_list;
380 struct hlist_head *cancel_hash;
381 unsigned cancel_hash_bits;
382 bool poll_multi_file;
383
384 spinlock_t inflight_lock;
385 struct list_head inflight_list;
386 } ____cacheline_aligned_in_smp;
387
388 struct delayed_work file_put_work;
389 struct llist_head file_put_llist;
390
391 struct work_struct exit_work;
392 struct io_restriction restrictions;
393 };
394
395 /*
396 * First field must be the file pointer in all the
397 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
398 */
399 struct io_poll_iocb {
400 struct file *file;
401 struct wait_queue_head *head;
402 __poll_t events;
403 bool done;
404 bool canceled;
405 struct wait_queue_entry wait;
406 };
407
408 struct io_poll_remove {
409 struct file *file;
410 u64 addr;
411 };
412
413 struct io_close {
414 struct file *file;
415 int fd;
416 };
417
418 struct io_timeout_data {
419 struct io_kiocb *req;
420 struct hrtimer timer;
421 struct timespec64 ts;
422 enum hrtimer_mode mode;
423 };
424
425 struct io_accept {
426 struct file *file;
427 struct sockaddr __user *addr;
428 int __user *addr_len;
429 int flags;
430 unsigned long nofile;
431 };
432
433 struct io_sync {
434 struct file *file;
435 loff_t len;
436 loff_t off;
437 int flags;
438 int mode;
439 };
440
441 struct io_cancel {
442 struct file *file;
443 u64 addr;
444 };
445
446 struct io_timeout {
447 struct file *file;
448 u32 off;
449 u32 target_seq;
450 struct list_head list;
451 /* head of the link, used by linked timeouts only */
452 struct io_kiocb *head;
453 };
454
455 struct io_timeout_rem {
456 struct file *file;
457 u64 addr;
458
459 /* timeout update */
460 struct timespec64 ts;
461 u32 flags;
462 };
463
464 struct io_rw {
465 /* NOTE: kiocb has the file as the first member, so don't do it here */
466 struct kiocb kiocb;
467 u64 addr;
468 u64 len;
469 };
470
471 struct io_connect {
472 struct file *file;
473 struct sockaddr __user *addr;
474 int addr_len;
475 };
476
477 struct io_sr_msg {
478 struct file *file;
479 union {
480 struct user_msghdr __user *umsg;
481 void __user *buf;
482 };
483 int msg_flags;
484 int bgid;
485 size_t len;
486 struct io_buffer *kbuf;
487 };
488
489 struct io_open {
490 struct file *file;
491 int dfd;
492 bool ignore_nonblock;
493 struct filename *filename;
494 struct open_how how;
495 unsigned long nofile;
496 };
497
498 struct io_files_update {
499 struct file *file;
500 u64 arg;
501 u32 nr_args;
502 u32 offset;
503 };
504
505 struct io_fadvise {
506 struct file *file;
507 u64 offset;
508 u32 len;
509 u32 advice;
510 };
511
512 struct io_madvise {
513 struct file *file;
514 u64 addr;
515 u32 len;
516 u32 advice;
517 };
518
519 struct io_epoll {
520 struct file *file;
521 int epfd;
522 int op;
523 int fd;
524 struct epoll_event event;
525 };
526
527 struct io_splice {
528 struct file *file_out;
529 struct file *file_in;
530 loff_t off_out;
531 loff_t off_in;
532 u64 len;
533 unsigned int flags;
534 };
535
536 struct io_provide_buf {
537 struct file *file;
538 __u64 addr;
539 __u32 len;
540 __u32 bgid;
541 __u16 nbufs;
542 __u16 bid;
543 };
544
545 struct io_statx {
546 struct file *file;
547 int dfd;
548 unsigned int mask;
549 unsigned int flags;
550 const char __user *filename;
551 struct statx __user *buffer;
552 };
553
554 struct io_shutdown {
555 struct file *file;
556 int how;
557 };
558
559 struct io_rename {
560 struct file *file;
561 int old_dfd;
562 int new_dfd;
563 struct filename *oldpath;
564 struct filename *newpath;
565 int flags;
566 };
567
568 struct io_unlink {
569 struct file *file;
570 int dfd;
571 int flags;
572 struct filename *filename;
573 };
574
575 struct io_completion {
576 struct file *file;
577 struct list_head list;
578 u32 cflags;
579 };
580
581 struct io_async_connect {
582 struct sockaddr_storage address;
583 };
584
585 struct io_async_msghdr {
586 struct iovec fast_iov[UIO_FASTIOV];
587 struct iovec *iov;
588 struct sockaddr __user *uaddr;
589 struct msghdr msg;
590 struct sockaddr_storage addr;
591 };
592
593 struct io_async_rw {
594 struct iovec fast_iov[UIO_FASTIOV];
595 const struct iovec *free_iovec;
596 struct iov_iter iter;
597 size_t bytes_done;
598 struct wait_page_queue wpq;
599 };
600
601 enum {
602 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
603 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
604 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
605 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
606 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
607 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
608
609 REQ_F_FAIL_LINK_BIT,
610 REQ_F_INFLIGHT_BIT,
611 REQ_F_CUR_POS_BIT,
612 REQ_F_NOWAIT_BIT,
613 REQ_F_LINK_TIMEOUT_BIT,
614 REQ_F_ISREG_BIT,
615 REQ_F_NEED_CLEANUP_BIT,
616 REQ_F_POLLED_BIT,
617 REQ_F_BUFFER_SELECTED_BIT,
618 REQ_F_NO_FILE_TABLE_BIT,
619 REQ_F_WORK_INITIALIZED_BIT,
620 REQ_F_LTIMEOUT_ACTIVE_BIT,
621
622 /* not a real bit, just to check we're not overflowing the space */
623 __REQ_F_LAST_BIT,
624 };
625
626 enum {
627 /* ctx owns file */
628 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
629 /* drain existing IO first */
630 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
631 /* linked sqes */
632 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
633 /* doesn't sever on completion < 0 */
634 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
635 /* IOSQE_ASYNC */
636 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
637 /* IOSQE_BUFFER_SELECT */
638 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
639
640 /* fail rest of links */
641 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
642 /* on inflight list */
643 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
644 /* read/write uses file position */
645 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
646 /* must not punt to workers */
647 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
648 /* has or had linked timeout */
649 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
650 /* regular file */
651 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
652 /* needs cleanup */
653 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
654 /* already went through poll handler */
655 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
656 /* buffer already selected */
657 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
658 /* doesn't need file table for this request */
659 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
660 /* io_wq_work is initialized */
661 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
662 /* linked timeout is active, i.e. prepared by link's head */
663 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
664 };
665
666 struct async_poll {
667 struct io_poll_iocb poll;
668 struct io_poll_iocb *double_poll;
669 };
670
671 /*
672 * NOTE! Each of the iocb union members has the file pointer
673 * as the first entry in their struct definition. So you can
674 * access the file pointer through any of the sub-structs,
675 * or directly as just 'ki_filp' in this struct.
676 */
677 struct io_kiocb {
678 union {
679 struct file *file;
680 struct io_rw rw;
681 struct io_poll_iocb poll;
682 struct io_poll_remove poll_remove;
683 struct io_accept accept;
684 struct io_sync sync;
685 struct io_cancel cancel;
686 struct io_timeout timeout;
687 struct io_timeout_rem timeout_rem;
688 struct io_connect connect;
689 struct io_sr_msg sr_msg;
690 struct io_open open;
691 struct io_close close;
692 struct io_files_update files_update;
693 struct io_fadvise fadvise;
694 struct io_madvise madvise;
695 struct io_epoll epoll;
696 struct io_splice splice;
697 struct io_provide_buf pbuf;
698 struct io_statx statx;
699 struct io_shutdown shutdown;
700 struct io_rename rename;
701 struct io_unlink unlink;
702 /* use only after cleaning per-op data, see io_clean_op() */
703 struct io_completion compl;
704 };
705
706 /* opcode allocated if it needs to store data for async defer */
707 void *async_data;
708 u8 opcode;
709 /* polled IO has completed */
710 u8 iopoll_completed;
711
712 u16 buf_index;
713 u32 result;
714
715 struct io_ring_ctx *ctx;
716 unsigned int flags;
717 refcount_t refs;
718 struct task_struct *task;
719 u64 user_data;
720
721 struct io_kiocb *link;
722 struct percpu_ref *fixed_file_refs;
723
724 /*
725 * 1. used with ctx->iopoll_list with reads/writes
726 * 2. to track reqs with ->files (see io_op_def::file_table)
727 */
728 struct list_head inflight_entry;
729 struct callback_head task_work;
730 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
731 struct hlist_node hash_node;
732 struct async_poll *apoll;
733 struct io_wq_work work;
734 };
735
736 struct io_defer_entry {
737 struct list_head list;
738 struct io_kiocb *req;
739 u32 seq;
740 };
741
742 #define IO_IOPOLL_BATCH 8
743
744 struct io_comp_state {
745 unsigned int nr;
746 struct list_head list;
747 struct io_ring_ctx *ctx;
748 };
749
750 struct io_submit_state {
751 struct blk_plug plug;
752
753 /*
754 * io_kiocb alloc cache
755 */
756 void *reqs[IO_IOPOLL_BATCH];
757 unsigned int free_reqs;
758
759 bool plug_started;
760
761 /*
762 * Batch completion logic
763 */
764 struct io_comp_state comp;
765
766 /*
767 * File reference cache
768 */
769 struct file *file;
770 unsigned int fd;
771 unsigned int file_refs;
772 unsigned int ios_left;
773 };
774
775 struct io_op_def {
776 /* needs req->file assigned */
777 unsigned needs_file : 1;
778 /* don't fail if file grab fails */
779 unsigned needs_file_no_error : 1;
780 /* hash wq insertion if file is a regular file */
781 unsigned hash_reg_file : 1;
782 /* unbound wq insertion if file is a non-regular file */
783 unsigned unbound_nonreg_file : 1;
784 /* opcode is not supported by this kernel */
785 unsigned not_supported : 1;
786 /* set if opcode supports polled "wait" */
787 unsigned pollin : 1;
788 unsigned pollout : 1;
789 /* op supports buffer selection */
790 unsigned buffer_select : 1;
791 /* must always have async data allocated */
792 unsigned needs_async_data : 1;
793 /* should block plug */
794 unsigned plug : 1;
795 /* size of async data needed, if any */
796 unsigned short async_size;
797 unsigned work_flags;
798 };
799
800 static const struct io_op_def io_op_defs[] = {
801 [IORING_OP_NOP] = {},
802 [IORING_OP_READV] = {
803 .needs_file = 1,
804 .unbound_nonreg_file = 1,
805 .pollin = 1,
806 .buffer_select = 1,
807 .needs_async_data = 1,
808 .plug = 1,
809 .async_size = sizeof(struct io_async_rw),
810 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
811 },
812 [IORING_OP_WRITEV] = {
813 .needs_file = 1,
814 .hash_reg_file = 1,
815 .unbound_nonreg_file = 1,
816 .pollout = 1,
817 .needs_async_data = 1,
818 .plug = 1,
819 .async_size = sizeof(struct io_async_rw),
820 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 IO_WQ_WORK_FSIZE,
822 },
823 [IORING_OP_FSYNC] = {
824 .needs_file = 1,
825 .work_flags = IO_WQ_WORK_BLKCG,
826 },
827 [IORING_OP_READ_FIXED] = {
828 .needs_file = 1,
829 .unbound_nonreg_file = 1,
830 .pollin = 1,
831 .plug = 1,
832 .async_size = sizeof(struct io_async_rw),
833 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
834 },
835 [IORING_OP_WRITE_FIXED] = {
836 .needs_file = 1,
837 .hash_reg_file = 1,
838 .unbound_nonreg_file = 1,
839 .pollout = 1,
840 .plug = 1,
841 .async_size = sizeof(struct io_async_rw),
842 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 IO_WQ_WORK_MM,
844 },
845 [IORING_OP_POLL_ADD] = {
846 .needs_file = 1,
847 .unbound_nonreg_file = 1,
848 },
849 [IORING_OP_POLL_REMOVE] = {},
850 [IORING_OP_SYNC_FILE_RANGE] = {
851 .needs_file = 1,
852 .work_flags = IO_WQ_WORK_BLKCG,
853 },
854 [IORING_OP_SENDMSG] = {
855 .needs_file = 1,
856 .unbound_nonreg_file = 1,
857 .pollout = 1,
858 .needs_async_data = 1,
859 .async_size = sizeof(struct io_async_msghdr),
860 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
861 IO_WQ_WORK_FS,
862 },
863 [IORING_OP_RECVMSG] = {
864 .needs_file = 1,
865 .unbound_nonreg_file = 1,
866 .pollin = 1,
867 .buffer_select = 1,
868 .needs_async_data = 1,
869 .async_size = sizeof(struct io_async_msghdr),
870 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
871 IO_WQ_WORK_FS,
872 },
873 [IORING_OP_TIMEOUT] = {
874 .needs_async_data = 1,
875 .async_size = sizeof(struct io_timeout_data),
876 .work_flags = IO_WQ_WORK_MM,
877 },
878 [IORING_OP_TIMEOUT_REMOVE] = {
879 /* used by timeout updates' prep() */
880 .work_flags = IO_WQ_WORK_MM,
881 },
882 [IORING_OP_ACCEPT] = {
883 .needs_file = 1,
884 .unbound_nonreg_file = 1,
885 .pollin = 1,
886 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
887 },
888 [IORING_OP_ASYNC_CANCEL] = {},
889 [IORING_OP_LINK_TIMEOUT] = {
890 .needs_async_data = 1,
891 .async_size = sizeof(struct io_timeout_data),
892 .work_flags = IO_WQ_WORK_MM,
893 },
894 [IORING_OP_CONNECT] = {
895 .needs_file = 1,
896 .unbound_nonreg_file = 1,
897 .pollout = 1,
898 .needs_async_data = 1,
899 .async_size = sizeof(struct io_async_connect),
900 .work_flags = IO_WQ_WORK_MM,
901 },
902 [IORING_OP_FALLOCATE] = {
903 .needs_file = 1,
904 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
905 },
906 [IORING_OP_OPENAT] = {
907 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
908 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
909 },
910 [IORING_OP_CLOSE] = {
911 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
912 },
913 [IORING_OP_FILES_UPDATE] = {
914 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
915 },
916 [IORING_OP_STATX] = {
917 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
918 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
919 },
920 [IORING_OP_READ] = {
921 .needs_file = 1,
922 .unbound_nonreg_file = 1,
923 .pollin = 1,
924 .buffer_select = 1,
925 .plug = 1,
926 .async_size = sizeof(struct io_async_rw),
927 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
928 },
929 [IORING_OP_WRITE] = {
930 .needs_file = 1,
931 .hash_reg_file = 1,
932 .unbound_nonreg_file = 1,
933 .pollout = 1,
934 .plug = 1,
935 .async_size = sizeof(struct io_async_rw),
936 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
937 IO_WQ_WORK_FSIZE,
938 },
939 [IORING_OP_FADVISE] = {
940 .needs_file = 1,
941 .work_flags = IO_WQ_WORK_BLKCG,
942 },
943 [IORING_OP_MADVISE] = {
944 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
945 },
946 [IORING_OP_SEND] = {
947 .needs_file = 1,
948 .unbound_nonreg_file = 1,
949 .pollout = 1,
950 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
951 },
952 [IORING_OP_RECV] = {
953 .needs_file = 1,
954 .unbound_nonreg_file = 1,
955 .pollin = 1,
956 .buffer_select = 1,
957 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
958 },
959 [IORING_OP_OPENAT2] = {
960 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
961 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
962 },
963 [IORING_OP_EPOLL_CTL] = {
964 .unbound_nonreg_file = 1,
965 .work_flags = IO_WQ_WORK_FILES,
966 },
967 [IORING_OP_SPLICE] = {
968 .needs_file = 1,
969 .hash_reg_file = 1,
970 .unbound_nonreg_file = 1,
971 .work_flags = IO_WQ_WORK_BLKCG,
972 },
973 [IORING_OP_PROVIDE_BUFFERS] = {},
974 [IORING_OP_REMOVE_BUFFERS] = {},
975 [IORING_OP_TEE] = {
976 .needs_file = 1,
977 .hash_reg_file = 1,
978 .unbound_nonreg_file = 1,
979 },
980 [IORING_OP_SHUTDOWN] = {
981 .needs_file = 1,
982 },
983 [IORING_OP_RENAMEAT] = {
984 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
985 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
986 },
987 [IORING_OP_UNLINKAT] = {
988 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
989 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
990 },
991 };
992
993 enum io_mem_account {
994 ACCT_LOCKED,
995 ACCT_PINNED,
996 };
997
998 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
999 struct task_struct *task,
1000 struct files_struct *files);
1001 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1002 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1003 struct io_ring_ctx *ctx);
1004
1005 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1006 struct io_comp_state *cs);
1007 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1008 static void io_put_req(struct io_kiocb *req);
1009 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1010 static void io_double_put_req(struct io_kiocb *req);
1011 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1012 static void __io_queue_linked_timeout(struct io_kiocb *req);
1013 static void io_queue_linked_timeout(struct io_kiocb *req);
1014 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1015 struct io_uring_files_update *ip,
1016 unsigned nr_args);
1017 static void __io_clean_op(struct io_kiocb *req);
1018 static struct file *io_file_get(struct io_submit_state *state,
1019 struct io_kiocb *req, int fd, bool fixed);
1020 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1021 static void io_file_put_work(struct work_struct *work);
1022
1023 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1024 struct iovec **iovec, struct iov_iter *iter,
1025 bool needs_lock);
1026 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1027 const struct iovec *fast_iov,
1028 struct iov_iter *iter, bool force);
1029 static void io_req_drop_files(struct io_kiocb *req);
1030 static void io_req_task_queue(struct io_kiocb *req);
1031
1032 static struct kmem_cache *req_cachep;
1033
1034 static const struct file_operations io_uring_fops;
1035
1036 struct sock *io_uring_get_socket(struct file *file)
1037 {
1038 #if defined(CONFIG_UNIX)
1039 if (file->f_op == &io_uring_fops) {
1040 struct io_ring_ctx *ctx = file->private_data;
1041
1042 return ctx->ring_sock->sk;
1043 }
1044 #endif
1045 return NULL;
1046 }
1047 EXPORT_SYMBOL(io_uring_get_socket);
1048
1049 #define io_for_each_link(pos, head) \
1050 for (pos = (head); pos; pos = pos->link)
1051
1052 static inline void io_clean_op(struct io_kiocb *req)
1053 {
1054 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1055 __io_clean_op(req);
1056 }
1057
1058 static inline void io_set_resource_node(struct io_kiocb *req)
1059 {
1060 struct io_ring_ctx *ctx = req->ctx;
1061
1062 if (!req->fixed_file_refs) {
1063 req->fixed_file_refs = &ctx->file_data->node->refs;
1064 percpu_ref_get(req->fixed_file_refs);
1065 }
1066 }
1067
1068 static bool io_match_task(struct io_kiocb *head,
1069 struct task_struct *task,
1070 struct files_struct *files)
1071 {
1072 struct io_kiocb *req;
1073
1074 if (task && head->task != task) {
1075 /* in terms of cancelation, always match if req task is dead */
1076 if (head->task->flags & PF_EXITING)
1077 return true;
1078 return false;
1079 }
1080 if (!files)
1081 return true;
1082
1083 io_for_each_link(req, head) {
1084 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1085 continue;
1086 if (req->file && req->file->f_op == &io_uring_fops)
1087 return true;
1088 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1089 req->work.identity->files == files)
1090 return true;
1091 }
1092 return false;
1093 }
1094
1095 static void io_sq_thread_drop_mm_files(void)
1096 {
1097 struct files_struct *files = current->files;
1098 struct mm_struct *mm = current->mm;
1099
1100 if (mm) {
1101 kthread_unuse_mm(mm);
1102 mmput(mm);
1103 current->mm = NULL;
1104 }
1105 if (files) {
1106 struct nsproxy *nsproxy = current->nsproxy;
1107
1108 task_lock(current);
1109 current->files = NULL;
1110 current->nsproxy = NULL;
1111 task_unlock(current);
1112 put_files_struct(files);
1113 put_nsproxy(nsproxy);
1114 }
1115 }
1116
1117 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1118 {
1119 if (current->flags & PF_EXITING)
1120 return -EFAULT;
1121
1122 if (!current->files) {
1123 struct files_struct *files;
1124 struct nsproxy *nsproxy;
1125
1126 task_lock(ctx->sqo_task);
1127 files = ctx->sqo_task->files;
1128 if (!files) {
1129 task_unlock(ctx->sqo_task);
1130 return -EOWNERDEAD;
1131 }
1132 atomic_inc(&files->count);
1133 get_nsproxy(ctx->sqo_task->nsproxy);
1134 nsproxy = ctx->sqo_task->nsproxy;
1135 task_unlock(ctx->sqo_task);
1136
1137 task_lock(current);
1138 current->files = files;
1139 current->nsproxy = nsproxy;
1140 task_unlock(current);
1141 }
1142 return 0;
1143 }
1144
1145 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1146 {
1147 struct mm_struct *mm;
1148
1149 if (current->flags & PF_EXITING)
1150 return -EFAULT;
1151 if (current->mm)
1152 return 0;
1153
1154 /* Should never happen */
1155 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1156 return -EFAULT;
1157
1158 task_lock(ctx->sqo_task);
1159 mm = ctx->sqo_task->mm;
1160 if (unlikely(!mm || !mmget_not_zero(mm)))
1161 mm = NULL;
1162 task_unlock(ctx->sqo_task);
1163
1164 if (mm) {
1165 kthread_use_mm(mm);
1166 return 0;
1167 }
1168
1169 return -EFAULT;
1170 }
1171
1172 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1173 struct io_kiocb *req)
1174 {
1175 const struct io_op_def *def = &io_op_defs[req->opcode];
1176 int ret;
1177
1178 if (def->work_flags & IO_WQ_WORK_MM) {
1179 ret = __io_sq_thread_acquire_mm(ctx);
1180 if (unlikely(ret))
1181 return ret;
1182 }
1183
1184 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1185 ret = __io_sq_thread_acquire_files(ctx);
1186 if (unlikely(ret))
1187 return ret;
1188 }
1189
1190 return 0;
1191 }
1192
1193 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1194 struct cgroup_subsys_state **cur_css)
1195
1196 {
1197 #ifdef CONFIG_BLK_CGROUP
1198 /* puts the old one when swapping */
1199 if (*cur_css != ctx->sqo_blkcg_css) {
1200 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1201 *cur_css = ctx->sqo_blkcg_css;
1202 }
1203 #endif
1204 }
1205
1206 static void io_sq_thread_unassociate_blkcg(void)
1207 {
1208 #ifdef CONFIG_BLK_CGROUP
1209 kthread_associate_blkcg(NULL);
1210 #endif
1211 }
1212
1213 static inline void req_set_fail_links(struct io_kiocb *req)
1214 {
1215 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1216 req->flags |= REQ_F_FAIL_LINK;
1217 }
1218
1219 /*
1220 * None of these are dereferenced, they are simply used to check if any of
1221 * them have changed. If we're under current and check they are still the
1222 * same, we're fine to grab references to them for actual out-of-line use.
1223 */
1224 static void io_init_identity(struct io_identity *id)
1225 {
1226 id->files = current->files;
1227 id->mm = current->mm;
1228 #ifdef CONFIG_BLK_CGROUP
1229 rcu_read_lock();
1230 id->blkcg_css = blkcg_css();
1231 rcu_read_unlock();
1232 #endif
1233 id->creds = current_cred();
1234 id->nsproxy = current->nsproxy;
1235 id->fs = current->fs;
1236 id->fsize = rlimit(RLIMIT_FSIZE);
1237 #ifdef CONFIG_AUDIT
1238 id->loginuid = current->loginuid;
1239 id->sessionid = current->sessionid;
1240 #endif
1241 refcount_set(&id->count, 1);
1242 }
1243
1244 static inline void __io_req_init_async(struct io_kiocb *req)
1245 {
1246 memset(&req->work, 0, sizeof(req->work));
1247 req->flags |= REQ_F_WORK_INITIALIZED;
1248 }
1249
1250 /*
1251 * Note: must call io_req_init_async() for the first time you
1252 * touch any members of io_wq_work.
1253 */
1254 static inline void io_req_init_async(struct io_kiocb *req)
1255 {
1256 struct io_uring_task *tctx = current->io_uring;
1257
1258 if (req->flags & REQ_F_WORK_INITIALIZED)
1259 return;
1260
1261 __io_req_init_async(req);
1262
1263 /* Grab a ref if this isn't our static identity */
1264 req->work.identity = tctx->identity;
1265 if (tctx->identity != &tctx->__identity)
1266 refcount_inc(&req->work.identity->count);
1267 }
1268
1269 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1270 {
1271 return ctx->flags & IORING_SETUP_SQPOLL;
1272 }
1273
1274 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1275 {
1276 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1277
1278 complete(&ctx->ref_comp);
1279 }
1280
1281 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1282 {
1283 return !req->timeout.off;
1284 }
1285
1286 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1287 {
1288 struct io_ring_ctx *ctx;
1289 int hash_bits;
1290
1291 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1292 if (!ctx)
1293 return NULL;
1294
1295 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1296 if (!ctx->fallback_req)
1297 goto err;
1298
1299 /*
1300 * Use 5 bits less than the max cq entries, that should give us around
1301 * 32 entries per hash list if totally full and uniformly spread.
1302 */
1303 hash_bits = ilog2(p->cq_entries);
1304 hash_bits -= 5;
1305 if (hash_bits <= 0)
1306 hash_bits = 1;
1307 ctx->cancel_hash_bits = hash_bits;
1308 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1309 GFP_KERNEL);
1310 if (!ctx->cancel_hash)
1311 goto err;
1312 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1313
1314 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1315 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1316 goto err;
1317
1318 ctx->flags = p->flags;
1319 init_waitqueue_head(&ctx->sqo_sq_wait);
1320 INIT_LIST_HEAD(&ctx->sqd_list);
1321 init_waitqueue_head(&ctx->cq_wait);
1322 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1323 init_completion(&ctx->ref_comp);
1324 init_completion(&ctx->sq_thread_comp);
1325 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1326 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1327 mutex_init(&ctx->uring_lock);
1328 init_waitqueue_head(&ctx->wait);
1329 spin_lock_init(&ctx->completion_lock);
1330 INIT_LIST_HEAD(&ctx->iopoll_list);
1331 INIT_LIST_HEAD(&ctx->defer_list);
1332 INIT_LIST_HEAD(&ctx->timeout_list);
1333 spin_lock_init(&ctx->inflight_lock);
1334 INIT_LIST_HEAD(&ctx->inflight_list);
1335 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1336 init_llist_head(&ctx->file_put_llist);
1337 return ctx;
1338 err:
1339 if (ctx->fallback_req)
1340 kmem_cache_free(req_cachep, ctx->fallback_req);
1341 kfree(ctx->cancel_hash);
1342 kfree(ctx);
1343 return NULL;
1344 }
1345
1346 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1347 {
1348 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1349 struct io_ring_ctx *ctx = req->ctx;
1350
1351 return seq != ctx->cached_cq_tail
1352 + READ_ONCE(ctx->cached_cq_overflow);
1353 }
1354
1355 return false;
1356 }
1357
1358 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1359 {
1360 struct io_rings *rings = ctx->rings;
1361
1362 /* order cqe stores with ring update */
1363 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1364 }
1365
1366 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1367 {
1368 if (req->work.identity == &tctx->__identity)
1369 return;
1370 if (refcount_dec_and_test(&req->work.identity->count))
1371 kfree(req->work.identity);
1372 }
1373
1374 static void io_req_clean_work(struct io_kiocb *req)
1375 {
1376 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1377 return;
1378
1379 req->flags &= ~REQ_F_WORK_INITIALIZED;
1380
1381 if (req->work.flags & IO_WQ_WORK_MM) {
1382 mmdrop(req->work.identity->mm);
1383 req->work.flags &= ~IO_WQ_WORK_MM;
1384 }
1385 #ifdef CONFIG_BLK_CGROUP
1386 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1387 css_put(req->work.identity->blkcg_css);
1388 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1389 }
1390 #endif
1391 if (req->work.flags & IO_WQ_WORK_CREDS) {
1392 put_cred(req->work.identity->creds);
1393 req->work.flags &= ~IO_WQ_WORK_CREDS;
1394 }
1395 if (req->work.flags & IO_WQ_WORK_FS) {
1396 struct fs_struct *fs = req->work.identity->fs;
1397
1398 spin_lock(&req->work.identity->fs->lock);
1399 if (--fs->users)
1400 fs = NULL;
1401 spin_unlock(&req->work.identity->fs->lock);
1402 if (fs)
1403 free_fs_struct(fs);
1404 req->work.flags &= ~IO_WQ_WORK_FS;
1405 }
1406 if (req->flags & REQ_F_INFLIGHT)
1407 io_req_drop_files(req);
1408
1409 io_put_identity(req->task->io_uring, req);
1410 }
1411
1412 /*
1413 * Create a private copy of io_identity, since some fields don't match
1414 * the current context.
1415 */
1416 static bool io_identity_cow(struct io_kiocb *req)
1417 {
1418 struct io_uring_task *tctx = current->io_uring;
1419 const struct cred *creds = NULL;
1420 struct io_identity *id;
1421
1422 if (req->work.flags & IO_WQ_WORK_CREDS)
1423 creds = req->work.identity->creds;
1424
1425 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1426 if (unlikely(!id)) {
1427 req->work.flags |= IO_WQ_WORK_CANCEL;
1428 return false;
1429 }
1430
1431 /*
1432 * We can safely just re-init the creds we copied Either the field
1433 * matches the current one, or we haven't grabbed it yet. The only
1434 * exception is ->creds, through registered personalities, so handle
1435 * that one separately.
1436 */
1437 io_init_identity(id);
1438 if (creds)
1439 id->creds = creds;
1440
1441 /* add one for this request */
1442 refcount_inc(&id->count);
1443
1444 /* drop tctx and req identity references, if needed */
1445 if (tctx->identity != &tctx->__identity &&
1446 refcount_dec_and_test(&tctx->identity->count))
1447 kfree(tctx->identity);
1448 if (req->work.identity != &tctx->__identity &&
1449 refcount_dec_and_test(&req->work.identity->count))
1450 kfree(req->work.identity);
1451
1452 req->work.identity = id;
1453 tctx->identity = id;
1454 return true;
1455 }
1456
1457 static bool io_grab_identity(struct io_kiocb *req)
1458 {
1459 const struct io_op_def *def = &io_op_defs[req->opcode];
1460 struct io_identity *id = req->work.identity;
1461 struct io_ring_ctx *ctx = req->ctx;
1462
1463 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1464 if (id->fsize != rlimit(RLIMIT_FSIZE))
1465 return false;
1466 req->work.flags |= IO_WQ_WORK_FSIZE;
1467 }
1468 #ifdef CONFIG_BLK_CGROUP
1469 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1470 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1471 rcu_read_lock();
1472 if (id->blkcg_css != blkcg_css()) {
1473 rcu_read_unlock();
1474 return false;
1475 }
1476 /*
1477 * This should be rare, either the cgroup is dying or the task
1478 * is moving cgroups. Just punt to root for the handful of ios.
1479 */
1480 if (css_tryget_online(id->blkcg_css))
1481 req->work.flags |= IO_WQ_WORK_BLKCG;
1482 rcu_read_unlock();
1483 }
1484 #endif
1485 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1486 if (id->creds != current_cred())
1487 return false;
1488 get_cred(id->creds);
1489 req->work.flags |= IO_WQ_WORK_CREDS;
1490 }
1491 #ifdef CONFIG_AUDIT
1492 if (!uid_eq(current->loginuid, id->loginuid) ||
1493 current->sessionid != id->sessionid)
1494 return false;
1495 #endif
1496 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1497 (def->work_flags & IO_WQ_WORK_FS)) {
1498 if (current->fs != id->fs)
1499 return false;
1500 spin_lock(&id->fs->lock);
1501 if (!id->fs->in_exec) {
1502 id->fs->users++;
1503 req->work.flags |= IO_WQ_WORK_FS;
1504 } else {
1505 req->work.flags |= IO_WQ_WORK_CANCEL;
1506 }
1507 spin_unlock(&current->fs->lock);
1508 }
1509 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1510 (def->work_flags & IO_WQ_WORK_FILES) &&
1511 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1512 if (id->files != current->files ||
1513 id->nsproxy != current->nsproxy)
1514 return false;
1515 atomic_inc(&id->files->count);
1516 get_nsproxy(id->nsproxy);
1517
1518 if (!(req->flags & REQ_F_INFLIGHT)) {
1519 req->flags |= REQ_F_INFLIGHT;
1520
1521 spin_lock_irq(&ctx->inflight_lock);
1522 list_add(&req->inflight_entry, &ctx->inflight_list);
1523 spin_unlock_irq(&ctx->inflight_lock);
1524 }
1525 req->work.flags |= IO_WQ_WORK_FILES;
1526 }
1527 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1528 (def->work_flags & IO_WQ_WORK_MM)) {
1529 if (id->mm != current->mm)
1530 return false;
1531 mmgrab(id->mm);
1532 req->work.flags |= IO_WQ_WORK_MM;
1533 }
1534
1535 return true;
1536 }
1537
1538 static void io_prep_async_work(struct io_kiocb *req)
1539 {
1540 const struct io_op_def *def = &io_op_defs[req->opcode];
1541 struct io_ring_ctx *ctx = req->ctx;
1542
1543 io_req_init_async(req);
1544
1545 if (req->flags & REQ_F_FORCE_ASYNC)
1546 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1547
1548 if (req->flags & REQ_F_ISREG) {
1549 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1550 io_wq_hash_work(&req->work, file_inode(req->file));
1551 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1552 if (def->unbound_nonreg_file)
1553 req->work.flags |= IO_WQ_WORK_UNBOUND;
1554 }
1555
1556 /* if we fail grabbing identity, we must COW, regrab, and retry */
1557 if (io_grab_identity(req))
1558 return;
1559
1560 if (!io_identity_cow(req))
1561 return;
1562
1563 /* can't fail at this point */
1564 if (!io_grab_identity(req))
1565 WARN_ON(1);
1566 }
1567
1568 static void io_prep_async_link(struct io_kiocb *req)
1569 {
1570 struct io_kiocb *cur;
1571
1572 if (req->flags & REQ_F_LINK_TIMEOUT) {
1573 struct io_ring_ctx *ctx = req->ctx;
1574
1575 spin_lock_irq(&ctx->completion_lock);
1576 io_for_each_link(cur, req)
1577 io_prep_async_work(cur);
1578 spin_unlock_irq(&ctx->completion_lock);
1579 } else {
1580 io_for_each_link(cur, req)
1581 io_prep_async_work(cur);
1582 }
1583 }
1584
1585 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1586 {
1587 struct io_ring_ctx *ctx = req->ctx;
1588 struct io_kiocb *link = io_prep_linked_timeout(req);
1589
1590 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1591 &req->work, req->flags);
1592 io_wq_enqueue(ctx->io_wq, &req->work);
1593 return link;
1594 }
1595
1596 static void io_queue_async_work(struct io_kiocb *req)
1597 {
1598 struct io_kiocb *link;
1599
1600 /* init ->work of the whole link before punting */
1601 io_prep_async_link(req);
1602 link = __io_queue_async_work(req);
1603
1604 if (link)
1605 io_queue_linked_timeout(link);
1606 }
1607
1608 static void io_kill_timeout(struct io_kiocb *req, int status)
1609 {
1610 struct io_timeout_data *io = req->async_data;
1611 int ret;
1612
1613 ret = hrtimer_try_to_cancel(&io->timer);
1614 if (ret != -1) {
1615 if (status)
1616 req_set_fail_links(req);
1617 atomic_set(&req->ctx->cq_timeouts,
1618 atomic_read(&req->ctx->cq_timeouts) + 1);
1619 list_del_init(&req->timeout.list);
1620 io_cqring_fill_event(req, status);
1621 io_put_req_deferred(req, 1);
1622 }
1623 }
1624
1625 /*
1626 * Returns true if we found and killed one or more timeouts
1627 */
1628 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1629 struct files_struct *files)
1630 {
1631 struct io_kiocb *req, *tmp;
1632 int canceled = 0;
1633
1634 spin_lock_irq(&ctx->completion_lock);
1635 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1636 if (io_match_task(req, tsk, files)) {
1637 io_kill_timeout(req, -ECANCELED);
1638 canceled++;
1639 }
1640 }
1641 spin_unlock_irq(&ctx->completion_lock);
1642 return canceled != 0;
1643 }
1644
1645 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1646 {
1647 do {
1648 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1649 struct io_defer_entry, list);
1650
1651 if (req_need_defer(de->req, de->seq))
1652 break;
1653 list_del_init(&de->list);
1654 io_req_task_queue(de->req);
1655 kfree(de);
1656 } while (!list_empty(&ctx->defer_list));
1657 }
1658
1659 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1660 {
1661 u32 seq;
1662
1663 if (list_empty(&ctx->timeout_list))
1664 return;
1665
1666 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1667
1668 do {
1669 u32 events_needed, events_got;
1670 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1671 struct io_kiocb, timeout.list);
1672
1673 if (io_is_timeout_noseq(req))
1674 break;
1675
1676 /*
1677 * Since seq can easily wrap around over time, subtract
1678 * the last seq at which timeouts were flushed before comparing.
1679 * Assuming not more than 2^31-1 events have happened since,
1680 * these subtractions won't have wrapped, so we can check if
1681 * target is in [last_seq, current_seq] by comparing the two.
1682 */
1683 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1684 events_got = seq - ctx->cq_last_tm_flush;
1685 if (events_got < events_needed)
1686 break;
1687
1688 list_del_init(&req->timeout.list);
1689 io_kill_timeout(req, 0);
1690 } while (!list_empty(&ctx->timeout_list));
1691
1692 ctx->cq_last_tm_flush = seq;
1693 }
1694
1695 static void io_commit_cqring(struct io_ring_ctx *ctx)
1696 {
1697 io_flush_timeouts(ctx);
1698 __io_commit_cqring(ctx);
1699
1700 if (unlikely(!list_empty(&ctx->defer_list)))
1701 __io_queue_deferred(ctx);
1702 }
1703
1704 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1705 {
1706 struct io_rings *r = ctx->rings;
1707
1708 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1709 }
1710
1711 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1712 {
1713 struct io_rings *rings = ctx->rings;
1714 unsigned tail;
1715
1716 tail = ctx->cached_cq_tail;
1717 /*
1718 * writes to the cq entry need to come after reading head; the
1719 * control dependency is enough as we're using WRITE_ONCE to
1720 * fill the cq entry
1721 */
1722 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1723 return NULL;
1724
1725 ctx->cached_cq_tail++;
1726 return &rings->cqes[tail & ctx->cq_mask];
1727 }
1728
1729 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1730 {
1731 if (!ctx->cq_ev_fd)
1732 return false;
1733 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1734 return false;
1735 if (!ctx->eventfd_async)
1736 return true;
1737 return io_wq_current_is_worker();
1738 }
1739
1740 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1741 {
1742 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1743 }
1744
1745 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1746 {
1747 /* see waitqueue_active() comment */
1748 smp_mb();
1749
1750 if (waitqueue_active(&ctx->wait))
1751 wake_up(&ctx->wait);
1752 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1753 wake_up(&ctx->sq_data->wait);
1754 if (io_should_trigger_evfd(ctx))
1755 eventfd_signal(ctx->cq_ev_fd, 1);
1756 if (waitqueue_active(&ctx->cq_wait)) {
1757 wake_up_interruptible(&ctx->cq_wait);
1758 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1759 }
1760 }
1761
1762 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1763 {
1764 /* see waitqueue_active() comment */
1765 smp_mb();
1766
1767 if (ctx->flags & IORING_SETUP_SQPOLL) {
1768 if (waitqueue_active(&ctx->wait))
1769 wake_up(&ctx->wait);
1770 }
1771 if (io_should_trigger_evfd(ctx))
1772 eventfd_signal(ctx->cq_ev_fd, 1);
1773 if (waitqueue_active(&ctx->cq_wait)) {
1774 wake_up_interruptible(&ctx->cq_wait);
1775 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1776 }
1777 }
1778
1779 /* Returns true if there are no backlogged entries after the flush */
1780 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1781 struct task_struct *tsk,
1782 struct files_struct *files)
1783 {
1784 struct io_rings *rings = ctx->rings;
1785 struct io_kiocb *req, *tmp;
1786 struct io_uring_cqe *cqe;
1787 unsigned long flags;
1788 bool all_flushed, posted;
1789 LIST_HEAD(list);
1790
1791 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1792 return false;
1793
1794 posted = false;
1795 spin_lock_irqsave(&ctx->completion_lock, flags);
1796 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1797 if (!io_match_task(req, tsk, files))
1798 continue;
1799
1800 cqe = io_get_cqring(ctx);
1801 if (!cqe && !force)
1802 break;
1803
1804 list_move(&req->compl.list, &list);
1805 if (cqe) {
1806 WRITE_ONCE(cqe->user_data, req->user_data);
1807 WRITE_ONCE(cqe->res, req->result);
1808 WRITE_ONCE(cqe->flags, req->compl.cflags);
1809 } else {
1810 ctx->cached_cq_overflow++;
1811 WRITE_ONCE(ctx->rings->cq_overflow,
1812 ctx->cached_cq_overflow);
1813 }
1814 posted = true;
1815 }
1816
1817 all_flushed = list_empty(&ctx->cq_overflow_list);
1818 if (all_flushed) {
1819 clear_bit(0, &ctx->sq_check_overflow);
1820 clear_bit(0, &ctx->cq_check_overflow);
1821 WRITE_ONCE(ctx->rings->sq_flags,
1822 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1823 }
1824
1825 if (posted)
1826 io_commit_cqring(ctx);
1827 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1828 if (posted)
1829 io_cqring_ev_posted(ctx);
1830
1831 while (!list_empty(&list)) {
1832 req = list_first_entry(&list, struct io_kiocb, compl.list);
1833 list_del(&req->compl.list);
1834 io_put_req(req);
1835 }
1836
1837 return all_flushed;
1838 }
1839
1840 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1841 struct task_struct *tsk,
1842 struct files_struct *files)
1843 {
1844 bool ret = true;
1845
1846 if (test_bit(0, &ctx->cq_check_overflow)) {
1847 /* iopoll syncs against uring_lock, not completion_lock */
1848 if (ctx->flags & IORING_SETUP_IOPOLL)
1849 mutex_lock(&ctx->uring_lock);
1850 ret = __io_cqring_overflow_flush(ctx, force, tsk, files);
1851 if (ctx->flags & IORING_SETUP_IOPOLL)
1852 mutex_unlock(&ctx->uring_lock);
1853 }
1854
1855 return ret;
1856 }
1857
1858 static void __io_cqring_fill_event(struct io_kiocb *req, long res,
1859 unsigned int cflags)
1860 {
1861 struct io_ring_ctx *ctx = req->ctx;
1862 struct io_uring_cqe *cqe;
1863
1864 trace_io_uring_complete(ctx, req->user_data, res);
1865
1866 /*
1867 * If we can't get a cq entry, userspace overflowed the
1868 * submission (by quite a lot). Increment the overflow count in
1869 * the ring.
1870 */
1871 cqe = io_get_cqring(ctx);
1872 if (likely(cqe)) {
1873 WRITE_ONCE(cqe->user_data, req->user_data);
1874 WRITE_ONCE(cqe->res, res);
1875 WRITE_ONCE(cqe->flags, cflags);
1876 } else if (ctx->cq_overflow_flushed ||
1877 atomic_read(&req->task->io_uring->in_idle)) {
1878 /*
1879 * If we're in ring overflow flush mode, or in task cancel mode,
1880 * then we cannot store the request for later flushing, we need
1881 * to drop it on the floor.
1882 */
1883 ctx->cached_cq_overflow++;
1884 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1885 } else {
1886 if (list_empty(&ctx->cq_overflow_list)) {
1887 set_bit(0, &ctx->sq_check_overflow);
1888 set_bit(0, &ctx->cq_check_overflow);
1889 WRITE_ONCE(ctx->rings->sq_flags,
1890 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1891
1892 }
1893 io_clean_op(req);
1894 req->result = res;
1895 req->compl.cflags = cflags;
1896 refcount_inc(&req->refs);
1897 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1898 }
1899 }
1900
1901 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1902 {
1903 __io_cqring_fill_event(req, res, 0);
1904 }
1905
1906 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1907 {
1908 struct io_ring_ctx *ctx = req->ctx;
1909 unsigned long flags;
1910
1911 spin_lock_irqsave(&ctx->completion_lock, flags);
1912 __io_cqring_fill_event(req, res, cflags);
1913 io_commit_cqring(ctx);
1914 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1915
1916 io_cqring_ev_posted(ctx);
1917 }
1918
1919 static void io_submit_flush_completions(struct io_comp_state *cs)
1920 {
1921 struct io_ring_ctx *ctx = cs->ctx;
1922
1923 spin_lock_irq(&ctx->completion_lock);
1924 while (!list_empty(&cs->list)) {
1925 struct io_kiocb *req;
1926
1927 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1928 list_del(&req->compl.list);
1929 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1930
1931 /*
1932 * io_free_req() doesn't care about completion_lock unless one
1933 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1934 * because of a potential deadlock with req->work.fs->lock
1935 */
1936 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1937 |REQ_F_WORK_INITIALIZED)) {
1938 spin_unlock_irq(&ctx->completion_lock);
1939 io_put_req(req);
1940 spin_lock_irq(&ctx->completion_lock);
1941 } else {
1942 io_put_req(req);
1943 }
1944 }
1945 io_commit_cqring(ctx);
1946 spin_unlock_irq(&ctx->completion_lock);
1947
1948 io_cqring_ev_posted(ctx);
1949 cs->nr = 0;
1950 }
1951
1952 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1953 struct io_comp_state *cs)
1954 {
1955 if (!cs) {
1956 io_cqring_add_event(req, res, cflags);
1957 io_put_req(req);
1958 } else {
1959 io_clean_op(req);
1960 req->result = res;
1961 req->compl.cflags = cflags;
1962 list_add_tail(&req->compl.list, &cs->list);
1963 if (++cs->nr >= 32)
1964 io_submit_flush_completions(cs);
1965 }
1966 }
1967
1968 static void io_req_complete(struct io_kiocb *req, long res)
1969 {
1970 __io_req_complete(req, res, 0, NULL);
1971 }
1972
1973 static inline bool io_is_fallback_req(struct io_kiocb *req)
1974 {
1975 return req == (struct io_kiocb *)
1976 ((unsigned long) req->ctx->fallback_req & ~1UL);
1977 }
1978
1979 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1980 {
1981 struct io_kiocb *req;
1982
1983 req = ctx->fallback_req;
1984 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1985 return req;
1986
1987 return NULL;
1988 }
1989
1990 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1991 struct io_submit_state *state)
1992 {
1993 if (!state->free_reqs) {
1994 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1995 size_t sz;
1996 int ret;
1997
1998 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1999 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
2000
2001 /*
2002 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2003 * retry single alloc to be on the safe side.
2004 */
2005 if (unlikely(ret <= 0)) {
2006 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2007 if (!state->reqs[0])
2008 goto fallback;
2009 ret = 1;
2010 }
2011 state->free_reqs = ret;
2012 }
2013
2014 state->free_reqs--;
2015 return state->reqs[state->free_reqs];
2016 fallback:
2017 return io_get_fallback_req(ctx);
2018 }
2019
2020 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2021 bool fixed)
2022 {
2023 if (!fixed)
2024 fput(file);
2025 }
2026
2027 static void io_dismantle_req(struct io_kiocb *req)
2028 {
2029 io_clean_op(req);
2030
2031 if (req->async_data)
2032 kfree(req->async_data);
2033 if (req->file)
2034 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2035 if (req->fixed_file_refs)
2036 percpu_ref_put(req->fixed_file_refs);
2037 io_req_clean_work(req);
2038 }
2039
2040 static void __io_free_req(struct io_kiocb *req)
2041 {
2042 struct io_uring_task *tctx = req->task->io_uring;
2043 struct io_ring_ctx *ctx = req->ctx;
2044
2045 io_dismantle_req(req);
2046
2047 percpu_counter_dec(&tctx->inflight);
2048 if (atomic_read(&tctx->in_idle))
2049 wake_up(&tctx->wait);
2050 put_task_struct(req->task);
2051
2052 if (likely(!io_is_fallback_req(req)))
2053 kmem_cache_free(req_cachep, req);
2054 else
2055 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2056 percpu_ref_put(&ctx->refs);
2057 }
2058
2059 static inline void io_remove_next_linked(struct io_kiocb *req)
2060 {
2061 struct io_kiocb *nxt = req->link;
2062
2063 req->link = nxt->link;
2064 nxt->link = NULL;
2065 }
2066
2067 static void io_kill_linked_timeout(struct io_kiocb *req)
2068 {
2069 struct io_ring_ctx *ctx = req->ctx;
2070 struct io_kiocb *link;
2071 bool cancelled = false;
2072 unsigned long flags;
2073
2074 spin_lock_irqsave(&ctx->completion_lock, flags);
2075 link = req->link;
2076
2077 /*
2078 * Can happen if a linked timeout fired and link had been like
2079 * req -> link t-out -> link t-out [-> ...]
2080 */
2081 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2082 struct io_timeout_data *io = link->async_data;
2083 int ret;
2084
2085 io_remove_next_linked(req);
2086 link->timeout.head = NULL;
2087 ret = hrtimer_try_to_cancel(&io->timer);
2088 if (ret != -1) {
2089 io_cqring_fill_event(link, -ECANCELED);
2090 io_commit_cqring(ctx);
2091 cancelled = true;
2092 }
2093 }
2094 req->flags &= ~REQ_F_LINK_TIMEOUT;
2095 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2096
2097 if (cancelled) {
2098 io_cqring_ev_posted(ctx);
2099 io_put_req(link);
2100 }
2101 }
2102
2103
2104 static void io_fail_links(struct io_kiocb *req)
2105 {
2106 struct io_kiocb *link, *nxt;
2107 struct io_ring_ctx *ctx = req->ctx;
2108 unsigned long flags;
2109
2110 spin_lock_irqsave(&ctx->completion_lock, flags);
2111 link = req->link;
2112 req->link = NULL;
2113
2114 while (link) {
2115 nxt = link->link;
2116 link->link = NULL;
2117
2118 trace_io_uring_fail_link(req, link);
2119 io_cqring_fill_event(link, -ECANCELED);
2120
2121 /*
2122 * It's ok to free under spinlock as they're not linked anymore,
2123 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2124 * work.fs->lock.
2125 */
2126 if (link->flags & REQ_F_WORK_INITIALIZED)
2127 io_put_req_deferred(link, 2);
2128 else
2129 io_double_put_req(link);
2130 link = nxt;
2131 }
2132 io_commit_cqring(ctx);
2133 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2134
2135 io_cqring_ev_posted(ctx);
2136 }
2137
2138 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2139 {
2140 if (req->flags & REQ_F_LINK_TIMEOUT)
2141 io_kill_linked_timeout(req);
2142
2143 /*
2144 * If LINK is set, we have dependent requests in this chain. If we
2145 * didn't fail this request, queue the first one up, moving any other
2146 * dependencies to the next request. In case of failure, fail the rest
2147 * of the chain.
2148 */
2149 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2150 struct io_kiocb *nxt = req->link;
2151
2152 req->link = NULL;
2153 return nxt;
2154 }
2155 io_fail_links(req);
2156 return NULL;
2157 }
2158
2159 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2160 {
2161 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2162 return NULL;
2163 return __io_req_find_next(req);
2164 }
2165
2166 static int io_req_task_work_add(struct io_kiocb *req)
2167 {
2168 struct task_struct *tsk = req->task;
2169 struct io_ring_ctx *ctx = req->ctx;
2170 enum task_work_notify_mode notify;
2171 int ret;
2172
2173 if (tsk->flags & PF_EXITING)
2174 return -ESRCH;
2175
2176 /*
2177 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2178 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2179 * processing task_work. There's no reliable way to tell if TWA_RESUME
2180 * will do the job.
2181 */
2182 notify = TWA_NONE;
2183 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2184 notify = TWA_SIGNAL;
2185
2186 ret = task_work_add(tsk, &req->task_work, notify);
2187 if (!ret)
2188 wake_up_process(tsk);
2189
2190 return ret;
2191 }
2192
2193 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2194 void (*cb)(struct callback_head *))
2195 {
2196 struct task_struct *tsk = io_wq_get_task(req->ctx->io_wq);
2197
2198 init_task_work(&req->task_work, cb);
2199 task_work_add(tsk, &req->task_work, TWA_NONE);
2200 wake_up_process(tsk);
2201 }
2202
2203 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2204 {
2205 struct io_ring_ctx *ctx = req->ctx;
2206
2207 spin_lock_irq(&ctx->completion_lock);
2208 io_cqring_fill_event(req, error);
2209 io_commit_cqring(ctx);
2210 spin_unlock_irq(&ctx->completion_lock);
2211
2212 io_cqring_ev_posted(ctx);
2213 req_set_fail_links(req);
2214 io_double_put_req(req);
2215 }
2216
2217 static void io_req_task_cancel(struct callback_head *cb)
2218 {
2219 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2220 struct io_ring_ctx *ctx = req->ctx;
2221
2222 mutex_lock(&ctx->uring_lock);
2223 __io_req_task_cancel(req, -ECANCELED);
2224 mutex_unlock(&ctx->uring_lock);
2225 percpu_ref_put(&ctx->refs);
2226 }
2227
2228 static void __io_req_task_submit(struct io_kiocb *req)
2229 {
2230 struct io_ring_ctx *ctx = req->ctx;
2231
2232 mutex_lock(&ctx->uring_lock);
2233 if (!ctx->sqo_dead &&
2234 !__io_sq_thread_acquire_mm(ctx) &&
2235 !__io_sq_thread_acquire_files(ctx))
2236 __io_queue_sqe(req, NULL);
2237 else
2238 __io_req_task_cancel(req, -EFAULT);
2239 mutex_unlock(&ctx->uring_lock);
2240
2241 if (ctx->flags & IORING_SETUP_SQPOLL)
2242 io_sq_thread_drop_mm_files();
2243 }
2244
2245 static void io_req_task_submit(struct callback_head *cb)
2246 {
2247 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2248 struct io_ring_ctx *ctx = req->ctx;
2249
2250 __io_req_task_submit(req);
2251 percpu_ref_put(&ctx->refs);
2252 }
2253
2254 static void io_req_task_queue(struct io_kiocb *req)
2255 {
2256 int ret;
2257
2258 init_task_work(&req->task_work, io_req_task_submit);
2259 percpu_ref_get(&req->ctx->refs);
2260
2261 ret = io_req_task_work_add(req);
2262 if (unlikely(ret))
2263 io_req_task_work_add_fallback(req, io_req_task_cancel);
2264 }
2265
2266 static inline void io_queue_next(struct io_kiocb *req)
2267 {
2268 struct io_kiocb *nxt = io_req_find_next(req);
2269
2270 if (nxt)
2271 io_req_task_queue(nxt);
2272 }
2273
2274 static void io_free_req(struct io_kiocb *req)
2275 {
2276 io_queue_next(req);
2277 __io_free_req(req);
2278 }
2279
2280 struct req_batch {
2281 void *reqs[IO_IOPOLL_BATCH];
2282 int to_free;
2283
2284 struct task_struct *task;
2285 int task_refs;
2286 };
2287
2288 static inline void io_init_req_batch(struct req_batch *rb)
2289 {
2290 rb->to_free = 0;
2291 rb->task_refs = 0;
2292 rb->task = NULL;
2293 }
2294
2295 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2296 struct req_batch *rb)
2297 {
2298 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2299 percpu_ref_put_many(&ctx->refs, rb->to_free);
2300 rb->to_free = 0;
2301 }
2302
2303 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2304 struct req_batch *rb)
2305 {
2306 if (rb->to_free)
2307 __io_req_free_batch_flush(ctx, rb);
2308 if (rb->task) {
2309 struct io_uring_task *tctx = rb->task->io_uring;
2310
2311 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2312 if (atomic_read(&tctx->in_idle))
2313 wake_up(&tctx->wait);
2314 put_task_struct_many(rb->task, rb->task_refs);
2315 rb->task = NULL;
2316 }
2317 }
2318
2319 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2320 {
2321 if (unlikely(io_is_fallback_req(req))) {
2322 io_free_req(req);
2323 return;
2324 }
2325 io_queue_next(req);
2326
2327 if (req->task != rb->task) {
2328 if (rb->task) {
2329 struct io_uring_task *tctx = rb->task->io_uring;
2330
2331 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2332 if (atomic_read(&tctx->in_idle))
2333 wake_up(&tctx->wait);
2334 put_task_struct_many(rb->task, rb->task_refs);
2335 }
2336 rb->task = req->task;
2337 rb->task_refs = 0;
2338 }
2339 rb->task_refs++;
2340
2341 io_dismantle_req(req);
2342 rb->reqs[rb->to_free++] = req;
2343 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2344 __io_req_free_batch_flush(req->ctx, rb);
2345 }
2346
2347 /*
2348 * Drop reference to request, return next in chain (if there is one) if this
2349 * was the last reference to this request.
2350 */
2351 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2352 {
2353 struct io_kiocb *nxt = NULL;
2354
2355 if (refcount_dec_and_test(&req->refs)) {
2356 nxt = io_req_find_next(req);
2357 __io_free_req(req);
2358 }
2359 return nxt;
2360 }
2361
2362 static void io_put_req(struct io_kiocb *req)
2363 {
2364 if (refcount_dec_and_test(&req->refs))
2365 io_free_req(req);
2366 }
2367
2368 static void io_put_req_deferred_cb(struct callback_head *cb)
2369 {
2370 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2371
2372 io_free_req(req);
2373 }
2374
2375 static void io_free_req_deferred(struct io_kiocb *req)
2376 {
2377 int ret;
2378
2379 init_task_work(&req->task_work, io_put_req_deferred_cb);
2380 ret = io_req_task_work_add(req);
2381 if (unlikely(ret))
2382 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2383 }
2384
2385 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2386 {
2387 if (refcount_sub_and_test(refs, &req->refs))
2388 io_free_req_deferred(req);
2389 }
2390
2391 static void io_double_put_req(struct io_kiocb *req)
2392 {
2393 /* drop both submit and complete references */
2394 if (refcount_sub_and_test(2, &req->refs))
2395 io_free_req(req);
2396 }
2397
2398 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2399 {
2400 /* See comment at the top of this file */
2401 smp_rmb();
2402 return __io_cqring_events(ctx);
2403 }
2404
2405 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2406 {
2407 struct io_rings *rings = ctx->rings;
2408
2409 /* make sure SQ entry isn't read before tail */
2410 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2411 }
2412
2413 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2414 {
2415 unsigned int cflags;
2416
2417 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2418 cflags |= IORING_CQE_F_BUFFER;
2419 req->flags &= ~REQ_F_BUFFER_SELECTED;
2420 kfree(kbuf);
2421 return cflags;
2422 }
2423
2424 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2425 {
2426 struct io_buffer *kbuf;
2427
2428 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2429 return io_put_kbuf(req, kbuf);
2430 }
2431
2432 static inline bool io_run_task_work(void)
2433 {
2434 /*
2435 * Not safe to run on exiting task, and the task_work handling will
2436 * not add work to such a task.
2437 */
2438 if (unlikely(current->flags & PF_EXITING))
2439 return false;
2440 if (current->task_works) {
2441 __set_current_state(TASK_RUNNING);
2442 task_work_run();
2443 return true;
2444 }
2445
2446 return false;
2447 }
2448
2449 static void io_iopoll_queue(struct list_head *again)
2450 {
2451 struct io_kiocb *req;
2452
2453 do {
2454 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2455 list_del(&req->inflight_entry);
2456 __io_complete_rw(req, -EAGAIN, 0, NULL);
2457 } while (!list_empty(again));
2458 }
2459
2460 /*
2461 * Find and free completed poll iocbs
2462 */
2463 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2464 struct list_head *done)
2465 {
2466 struct req_batch rb;
2467 struct io_kiocb *req;
2468 LIST_HEAD(again);
2469
2470 /* order with ->result store in io_complete_rw_iopoll() */
2471 smp_rmb();
2472
2473 io_init_req_batch(&rb);
2474 while (!list_empty(done)) {
2475 int cflags = 0;
2476
2477 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2478 if (READ_ONCE(req->result) == -EAGAIN) {
2479 req->result = 0;
2480 req->iopoll_completed = 0;
2481 list_move_tail(&req->inflight_entry, &again);
2482 continue;
2483 }
2484 list_del(&req->inflight_entry);
2485
2486 if (req->flags & REQ_F_BUFFER_SELECTED)
2487 cflags = io_put_rw_kbuf(req);
2488
2489 __io_cqring_fill_event(req, req->result, cflags);
2490 (*nr_events)++;
2491
2492 if (refcount_dec_and_test(&req->refs))
2493 io_req_free_batch(&rb, req);
2494 }
2495
2496 io_commit_cqring(ctx);
2497 io_cqring_ev_posted_iopoll(ctx);
2498 io_req_free_batch_finish(ctx, &rb);
2499
2500 if (!list_empty(&again))
2501 io_iopoll_queue(&again);
2502 }
2503
2504 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2505 long min)
2506 {
2507 struct io_kiocb *req, *tmp;
2508 LIST_HEAD(done);
2509 bool spin;
2510 int ret;
2511
2512 /*
2513 * Only spin for completions if we don't have multiple devices hanging
2514 * off our complete list, and we're under the requested amount.
2515 */
2516 spin = !ctx->poll_multi_file && *nr_events < min;
2517
2518 ret = 0;
2519 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2520 struct kiocb *kiocb = &req->rw.kiocb;
2521
2522 /*
2523 * Move completed and retryable entries to our local lists.
2524 * If we find a request that requires polling, break out
2525 * and complete those lists first, if we have entries there.
2526 */
2527 if (READ_ONCE(req->iopoll_completed)) {
2528 list_move_tail(&req->inflight_entry, &done);
2529 continue;
2530 }
2531 if (!list_empty(&done))
2532 break;
2533
2534 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2535 if (ret < 0)
2536 break;
2537
2538 /* iopoll may have completed current req */
2539 if (READ_ONCE(req->iopoll_completed))
2540 list_move_tail(&req->inflight_entry, &done);
2541
2542 if (ret && spin)
2543 spin = false;
2544 ret = 0;
2545 }
2546
2547 if (!list_empty(&done))
2548 io_iopoll_complete(ctx, nr_events, &done);
2549
2550 return ret;
2551 }
2552
2553 /*
2554 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2555 * non-spinning poll check - we'll still enter the driver poll loop, but only
2556 * as a non-spinning completion check.
2557 */
2558 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2559 long min)
2560 {
2561 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2562 int ret;
2563
2564 ret = io_do_iopoll(ctx, nr_events, min);
2565 if (ret < 0)
2566 return ret;
2567 if (*nr_events >= min)
2568 return 0;
2569 }
2570
2571 return 1;
2572 }
2573
2574 /*
2575 * We can't just wait for polled events to come to us, we have to actively
2576 * find and complete them.
2577 */
2578 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2579 {
2580 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2581 return;
2582
2583 mutex_lock(&ctx->uring_lock);
2584 while (!list_empty(&ctx->iopoll_list)) {
2585 unsigned int nr_events = 0;
2586
2587 io_do_iopoll(ctx, &nr_events, 0);
2588
2589 /* let it sleep and repeat later if can't complete a request */
2590 if (nr_events == 0)
2591 break;
2592 /*
2593 * Ensure we allow local-to-the-cpu processing to take place,
2594 * in this case we need to ensure that we reap all events.
2595 * Also let task_work, etc. to progress by releasing the mutex
2596 */
2597 if (need_resched()) {
2598 mutex_unlock(&ctx->uring_lock);
2599 cond_resched();
2600 mutex_lock(&ctx->uring_lock);
2601 }
2602 }
2603 mutex_unlock(&ctx->uring_lock);
2604 }
2605
2606 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2607 {
2608 unsigned int nr_events = 0;
2609 int iters = 0, ret = 0;
2610
2611 /*
2612 * We disallow the app entering submit/complete with polling, but we
2613 * still need to lock the ring to prevent racing with polled issue
2614 * that got punted to a workqueue.
2615 */
2616 mutex_lock(&ctx->uring_lock);
2617 do {
2618 /*
2619 * Don't enter poll loop if we already have events pending.
2620 * If we do, we can potentially be spinning for commands that
2621 * already triggered a CQE (eg in error).
2622 */
2623 if (test_bit(0, &ctx->cq_check_overflow))
2624 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2625 if (io_cqring_events(ctx))
2626 break;
2627
2628 /*
2629 * If a submit got punted to a workqueue, we can have the
2630 * application entering polling for a command before it gets
2631 * issued. That app will hold the uring_lock for the duration
2632 * of the poll right here, so we need to take a breather every
2633 * now and then to ensure that the issue has a chance to add
2634 * the poll to the issued list. Otherwise we can spin here
2635 * forever, while the workqueue is stuck trying to acquire the
2636 * very same mutex.
2637 */
2638 if (!(++iters & 7)) {
2639 mutex_unlock(&ctx->uring_lock);
2640 io_run_task_work();
2641 mutex_lock(&ctx->uring_lock);
2642 }
2643
2644 ret = io_iopoll_getevents(ctx, &nr_events, min);
2645 if (ret <= 0)
2646 break;
2647 ret = 0;
2648 } while (min && !nr_events && !need_resched());
2649
2650 mutex_unlock(&ctx->uring_lock);
2651 return ret;
2652 }
2653
2654 static void kiocb_end_write(struct io_kiocb *req)
2655 {
2656 /*
2657 * Tell lockdep we inherited freeze protection from submission
2658 * thread.
2659 */
2660 if (req->flags & REQ_F_ISREG) {
2661 struct inode *inode = file_inode(req->file);
2662
2663 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2664 }
2665 file_end_write(req->file);
2666 }
2667
2668 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2669 struct io_comp_state *cs)
2670 {
2671 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2672 int cflags = 0;
2673
2674 if (kiocb->ki_flags & IOCB_WRITE)
2675 kiocb_end_write(req);
2676
2677 if (res != req->result)
2678 req_set_fail_links(req);
2679 if (req->flags & REQ_F_BUFFER_SELECTED)
2680 cflags = io_put_rw_kbuf(req);
2681 __io_req_complete(req, res, cflags, cs);
2682 }
2683
2684 #ifdef CONFIG_BLOCK
2685 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2686 {
2687 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2688 ssize_t ret = -ECANCELED;
2689 struct iov_iter iter;
2690 int rw;
2691
2692 if (error) {
2693 ret = error;
2694 goto end_req;
2695 }
2696
2697 switch (req->opcode) {
2698 case IORING_OP_READV:
2699 case IORING_OP_READ_FIXED:
2700 case IORING_OP_READ:
2701 rw = READ;
2702 break;
2703 case IORING_OP_WRITEV:
2704 case IORING_OP_WRITE_FIXED:
2705 case IORING_OP_WRITE:
2706 rw = WRITE;
2707 break;
2708 default:
2709 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2710 req->opcode);
2711 goto end_req;
2712 }
2713
2714 if (!req->async_data) {
2715 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2716 if (ret < 0)
2717 goto end_req;
2718 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2719 if (!ret)
2720 return true;
2721 kfree(iovec);
2722 } else {
2723 return true;
2724 }
2725 end_req:
2726 req_set_fail_links(req);
2727 return false;
2728 }
2729 #endif
2730
2731 static bool io_rw_reissue(struct io_kiocb *req, long res)
2732 {
2733 #ifdef CONFIG_BLOCK
2734 umode_t mode = file_inode(req->file)->i_mode;
2735 int ret;
2736
2737 if (!S_ISBLK(mode) && !S_ISREG(mode))
2738 return false;
2739 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2740 return false;
2741 /*
2742 * If ref is dying, we might be running poll reap from the exit work.
2743 * Don't attempt to reissue from that path, just let it fail with
2744 * -EAGAIN.
2745 */
2746 if (percpu_ref_is_dying(&req->ctx->refs))
2747 return false;
2748
2749 lockdep_assert_held(&req->ctx->uring_lock);
2750
2751 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2752
2753 if (io_resubmit_prep(req, ret)) {
2754 refcount_inc(&req->refs);
2755 io_queue_async_work(req);
2756 return true;
2757 }
2758
2759 #endif
2760 return false;
2761 }
2762
2763 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2764 struct io_comp_state *cs)
2765 {
2766 if (!io_rw_reissue(req, res))
2767 io_complete_rw_common(&req->rw.kiocb, res, cs);
2768 }
2769
2770 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2771 {
2772 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2773
2774 __io_complete_rw(req, res, res2, NULL);
2775 }
2776
2777 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2778 {
2779 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2780
2781 if (kiocb->ki_flags & IOCB_WRITE)
2782 kiocb_end_write(req);
2783
2784 if (res != -EAGAIN && res != req->result)
2785 req_set_fail_links(req);
2786
2787 WRITE_ONCE(req->result, res);
2788 /* order with io_poll_complete() checking ->result */
2789 smp_wmb();
2790 WRITE_ONCE(req->iopoll_completed, 1);
2791 }
2792
2793 /*
2794 * After the iocb has been issued, it's safe to be found on the poll list.
2795 * Adding the kiocb to the list AFTER submission ensures that we don't
2796 * find it from a io_iopoll_getevents() thread before the issuer is done
2797 * accessing the kiocb cookie.
2798 */
2799 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2800 {
2801 struct io_ring_ctx *ctx = req->ctx;
2802
2803 /*
2804 * Track whether we have multiple files in our lists. This will impact
2805 * how we do polling eventually, not spinning if we're on potentially
2806 * different devices.
2807 */
2808 if (list_empty(&ctx->iopoll_list)) {
2809 ctx->poll_multi_file = false;
2810 } else if (!ctx->poll_multi_file) {
2811 struct io_kiocb *list_req;
2812
2813 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2814 inflight_entry);
2815 if (list_req->file != req->file)
2816 ctx->poll_multi_file = true;
2817 }
2818
2819 /*
2820 * For fast devices, IO may have already completed. If it has, add
2821 * it to the front so we find it first.
2822 */
2823 if (READ_ONCE(req->iopoll_completed))
2824 list_add(&req->inflight_entry, &ctx->iopoll_list);
2825 else
2826 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2827
2828 /*
2829 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2830 * task context or in io worker task context. If current task context is
2831 * sq thread, we don't need to check whether should wake up sq thread.
2832 */
2833 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2834 wq_has_sleeper(&ctx->sq_data->wait))
2835 wake_up(&ctx->sq_data->wait);
2836 }
2837
2838 static inline void __io_state_file_put(struct io_submit_state *state)
2839 {
2840 fput_many(state->file, state->file_refs);
2841 state->file_refs = 0;
2842 }
2843
2844 static inline void io_state_file_put(struct io_submit_state *state)
2845 {
2846 if (state->file_refs)
2847 __io_state_file_put(state);
2848 }
2849
2850 /*
2851 * Get as many references to a file as we have IOs left in this submission,
2852 * assuming most submissions are for one file, or at least that each file
2853 * has more than one submission.
2854 */
2855 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2856 {
2857 if (!state)
2858 return fget(fd);
2859
2860 if (state->file_refs) {
2861 if (state->fd == fd) {
2862 state->file_refs--;
2863 return state->file;
2864 }
2865 __io_state_file_put(state);
2866 }
2867 state->file = fget_many(fd, state->ios_left);
2868 if (unlikely(!state->file))
2869 return NULL;
2870
2871 state->fd = fd;
2872 state->file_refs = state->ios_left - 1;
2873 return state->file;
2874 }
2875
2876 static bool io_bdev_nowait(struct block_device *bdev)
2877 {
2878 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2879 }
2880
2881 /*
2882 * If we tracked the file through the SCM inflight mechanism, we could support
2883 * any file. For now, just ensure that anything potentially problematic is done
2884 * inline.
2885 */
2886 static bool io_file_supports_async(struct file *file, int rw)
2887 {
2888 umode_t mode = file_inode(file)->i_mode;
2889
2890 if (S_ISBLK(mode)) {
2891 if (IS_ENABLED(CONFIG_BLOCK) &&
2892 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2893 return true;
2894 return false;
2895 }
2896 if (S_ISSOCK(mode))
2897 return true;
2898 if (S_ISREG(mode)) {
2899 if (IS_ENABLED(CONFIG_BLOCK) &&
2900 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2901 file->f_op != &io_uring_fops)
2902 return true;
2903 return false;
2904 }
2905
2906 /* any ->read/write should understand O_NONBLOCK */
2907 if (file->f_flags & O_NONBLOCK)
2908 return true;
2909
2910 if (!(file->f_mode & FMODE_NOWAIT))
2911 return false;
2912
2913 if (rw == READ)
2914 return file->f_op->read_iter != NULL;
2915
2916 return file->f_op->write_iter != NULL;
2917 }
2918
2919 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2920 {
2921 struct io_ring_ctx *ctx = req->ctx;
2922 struct kiocb *kiocb = &req->rw.kiocb;
2923 unsigned ioprio;
2924 int ret;
2925
2926 if (S_ISREG(file_inode(req->file)->i_mode))
2927 req->flags |= REQ_F_ISREG;
2928
2929 kiocb->ki_pos = READ_ONCE(sqe->off);
2930 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2931 req->flags |= REQ_F_CUR_POS;
2932 kiocb->ki_pos = req->file->f_pos;
2933 }
2934 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2935 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2936 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2937 if (unlikely(ret))
2938 return ret;
2939
2940 ioprio = READ_ONCE(sqe->ioprio);
2941 if (ioprio) {
2942 ret = ioprio_check_cap(ioprio);
2943 if (ret)
2944 return ret;
2945
2946 kiocb->ki_ioprio = ioprio;
2947 } else
2948 kiocb->ki_ioprio = get_current_ioprio();
2949
2950 /* don't allow async punt if RWF_NOWAIT was requested */
2951 if (kiocb->ki_flags & IOCB_NOWAIT)
2952 req->flags |= REQ_F_NOWAIT;
2953
2954 if (ctx->flags & IORING_SETUP_IOPOLL) {
2955 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2956 !kiocb->ki_filp->f_op->iopoll)
2957 return -EOPNOTSUPP;
2958
2959 kiocb->ki_flags |= IOCB_HIPRI;
2960 kiocb->ki_complete = io_complete_rw_iopoll;
2961 req->iopoll_completed = 0;
2962 } else {
2963 if (kiocb->ki_flags & IOCB_HIPRI)
2964 return -EINVAL;
2965 kiocb->ki_complete = io_complete_rw;
2966 }
2967
2968 req->rw.addr = READ_ONCE(sqe->addr);
2969 req->rw.len = READ_ONCE(sqe->len);
2970 req->buf_index = READ_ONCE(sqe->buf_index);
2971 return 0;
2972 }
2973
2974 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2975 {
2976 switch (ret) {
2977 case -EIOCBQUEUED:
2978 break;
2979 case -ERESTARTSYS:
2980 case -ERESTARTNOINTR:
2981 case -ERESTARTNOHAND:
2982 case -ERESTART_RESTARTBLOCK:
2983 /*
2984 * We can't just restart the syscall, since previously
2985 * submitted sqes may already be in progress. Just fail this
2986 * IO with EINTR.
2987 */
2988 ret = -EINTR;
2989 fallthrough;
2990 default:
2991 kiocb->ki_complete(kiocb, ret, 0);
2992 }
2993 }
2994
2995 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2996 struct io_comp_state *cs)
2997 {
2998 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2999 struct io_async_rw *io = req->async_data;
3000
3001 /* add previously done IO, if any */
3002 if (io && io->bytes_done > 0) {
3003 if (ret < 0)
3004 ret = io->bytes_done;
3005 else
3006 ret += io->bytes_done;
3007 }
3008
3009 if (req->flags & REQ_F_CUR_POS)
3010 req->file->f_pos = kiocb->ki_pos;
3011 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
3012 __io_complete_rw(req, ret, 0, cs);
3013 else
3014 io_rw_done(kiocb, ret);
3015 }
3016
3017 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
3018 struct iov_iter *iter)
3019 {
3020 struct io_ring_ctx *ctx = req->ctx;
3021 size_t len = req->rw.len;
3022 struct io_mapped_ubuf *imu;
3023 u16 index, buf_index = req->buf_index;
3024 size_t offset;
3025 u64 buf_addr;
3026
3027 if (unlikely(buf_index >= ctx->nr_user_bufs))
3028 return -EFAULT;
3029 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3030 imu = &ctx->user_bufs[index];
3031 buf_addr = req->rw.addr;
3032
3033 /* overflow */
3034 if (buf_addr + len < buf_addr)
3035 return -EFAULT;
3036 /* not inside the mapped region */
3037 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3038 return -EFAULT;
3039
3040 /*
3041 * May not be a start of buffer, set size appropriately
3042 * and advance us to the beginning.
3043 */
3044 offset = buf_addr - imu->ubuf;
3045 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3046
3047 if (offset) {
3048 /*
3049 * Don't use iov_iter_advance() here, as it's really slow for
3050 * using the latter parts of a big fixed buffer - it iterates
3051 * over each segment manually. We can cheat a bit here, because
3052 * we know that:
3053 *
3054 * 1) it's a BVEC iter, we set it up
3055 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3056 * first and last bvec
3057 *
3058 * So just find our index, and adjust the iterator afterwards.
3059 * If the offset is within the first bvec (or the whole first
3060 * bvec, just use iov_iter_advance(). This makes it easier
3061 * since we can just skip the first segment, which may not
3062 * be PAGE_SIZE aligned.
3063 */
3064 const struct bio_vec *bvec = imu->bvec;
3065
3066 if (offset <= bvec->bv_len) {
3067 iov_iter_advance(iter, offset);
3068 } else {
3069 unsigned long seg_skip;
3070
3071 /* skip first vec */
3072 offset -= bvec->bv_len;
3073 seg_skip = 1 + (offset >> PAGE_SHIFT);
3074
3075 iter->bvec = bvec + seg_skip;
3076 iter->nr_segs -= seg_skip;
3077 iter->count -= bvec->bv_len + offset;
3078 iter->iov_offset = offset & ~PAGE_MASK;
3079 }
3080 }
3081
3082 return len;
3083 }
3084
3085 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3086 {
3087 if (needs_lock)
3088 mutex_unlock(&ctx->uring_lock);
3089 }
3090
3091 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3092 {
3093 /*
3094 * "Normal" inline submissions always hold the uring_lock, since we
3095 * grab it from the system call. Same is true for the SQPOLL offload.
3096 * The only exception is when we've detached the request and issue it
3097 * from an async worker thread, grab the lock for that case.
3098 */
3099 if (needs_lock)
3100 mutex_lock(&ctx->uring_lock);
3101 }
3102
3103 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3104 int bgid, struct io_buffer *kbuf,
3105 bool needs_lock)
3106 {
3107 struct io_buffer *head;
3108
3109 if (req->flags & REQ_F_BUFFER_SELECTED)
3110 return kbuf;
3111
3112 io_ring_submit_lock(req->ctx, needs_lock);
3113
3114 lockdep_assert_held(&req->ctx->uring_lock);
3115
3116 head = xa_load(&req->ctx->io_buffers, bgid);
3117 if (head) {
3118 if (!list_empty(&head->list)) {
3119 kbuf = list_last_entry(&head->list, struct io_buffer,
3120 list);
3121 list_del(&kbuf->list);
3122 } else {
3123 kbuf = head;
3124 xa_erase(&req->ctx->io_buffers, bgid);
3125 }
3126 if (*len > kbuf->len)
3127 *len = kbuf->len;
3128 } else {
3129 kbuf = ERR_PTR(-ENOBUFS);
3130 }
3131
3132 io_ring_submit_unlock(req->ctx, needs_lock);
3133
3134 return kbuf;
3135 }
3136
3137 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3138 bool needs_lock)
3139 {
3140 struct io_buffer *kbuf;
3141 u16 bgid;
3142
3143 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3144 bgid = req->buf_index;
3145 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3146 if (IS_ERR(kbuf))
3147 return kbuf;
3148 req->rw.addr = (u64) (unsigned long) kbuf;
3149 req->flags |= REQ_F_BUFFER_SELECTED;
3150 return u64_to_user_ptr(kbuf->addr);
3151 }
3152
3153 #ifdef CONFIG_COMPAT
3154 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3155 bool needs_lock)
3156 {
3157 struct compat_iovec __user *uiov;
3158 compat_ssize_t clen;
3159 void __user *buf;
3160 ssize_t len;
3161
3162 uiov = u64_to_user_ptr(req->rw.addr);
3163 if (!access_ok(uiov, sizeof(*uiov)))
3164 return -EFAULT;
3165 if (__get_user(clen, &uiov->iov_len))
3166 return -EFAULT;
3167 if (clen < 0)
3168 return -EINVAL;
3169
3170 len = clen;
3171 buf = io_rw_buffer_select(req, &len, needs_lock);
3172 if (IS_ERR(buf))
3173 return PTR_ERR(buf);
3174 iov[0].iov_base = buf;
3175 iov[0].iov_len = (compat_size_t) len;
3176 return 0;
3177 }
3178 #endif
3179
3180 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3181 bool needs_lock)
3182 {
3183 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3184 void __user *buf;
3185 ssize_t len;
3186
3187 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3188 return -EFAULT;
3189
3190 len = iov[0].iov_len;
3191 if (len < 0)
3192 return -EINVAL;
3193 buf = io_rw_buffer_select(req, &len, needs_lock);
3194 if (IS_ERR(buf))
3195 return PTR_ERR(buf);
3196 iov[0].iov_base = buf;
3197 iov[0].iov_len = len;
3198 return 0;
3199 }
3200
3201 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3202 bool needs_lock)
3203 {
3204 if (req->flags & REQ_F_BUFFER_SELECTED) {
3205 struct io_buffer *kbuf;
3206
3207 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3208 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3209 iov[0].iov_len = kbuf->len;
3210 return 0;
3211 }
3212 if (req->rw.len != 1)
3213 return -EINVAL;
3214
3215 #ifdef CONFIG_COMPAT
3216 if (req->ctx->compat)
3217 return io_compat_import(req, iov, needs_lock);
3218 #endif
3219
3220 return __io_iov_buffer_select(req, iov, needs_lock);
3221 }
3222
3223 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3224 struct iovec **iovec, struct iov_iter *iter,
3225 bool needs_lock)
3226 {
3227 void __user *buf = u64_to_user_ptr(req->rw.addr);
3228 size_t sqe_len = req->rw.len;
3229 ssize_t ret;
3230 u8 opcode;
3231
3232 opcode = req->opcode;
3233 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3234 *iovec = NULL;
3235 return io_import_fixed(req, rw, iter);
3236 }
3237
3238 /* buffer index only valid with fixed read/write, or buffer select */
3239 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3240 return -EINVAL;
3241
3242 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3243 if (req->flags & REQ_F_BUFFER_SELECT) {
3244 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3245 if (IS_ERR(buf))
3246 return PTR_ERR(buf);
3247 req->rw.len = sqe_len;
3248 }
3249
3250 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3251 *iovec = NULL;
3252 return ret;
3253 }
3254
3255 if (req->flags & REQ_F_BUFFER_SELECT) {
3256 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3257 if (!ret) {
3258 ret = (*iovec)->iov_len;
3259 iov_iter_init(iter, rw, *iovec, 1, ret);
3260 }
3261 *iovec = NULL;
3262 return ret;
3263 }
3264
3265 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3266 req->ctx->compat);
3267 }
3268
3269 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3270 {
3271 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3272 }
3273
3274 /*
3275 * For files that don't have ->read_iter() and ->write_iter(), handle them
3276 * by looping over ->read() or ->write() manually.
3277 */
3278 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3279 {
3280 struct kiocb *kiocb = &req->rw.kiocb;
3281 struct file *file = req->file;
3282 ssize_t ret = 0;
3283
3284 /*
3285 * Don't support polled IO through this interface, and we can't
3286 * support non-blocking either. For the latter, this just causes
3287 * the kiocb to be handled from an async context.
3288 */
3289 if (kiocb->ki_flags & IOCB_HIPRI)
3290 return -EOPNOTSUPP;
3291 if (kiocb->ki_flags & IOCB_NOWAIT)
3292 return -EAGAIN;
3293
3294 while (iov_iter_count(iter)) {
3295 struct iovec iovec;
3296 ssize_t nr;
3297
3298 if (!iov_iter_is_bvec(iter)) {
3299 iovec = iov_iter_iovec(iter);
3300 } else {
3301 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3302 iovec.iov_len = req->rw.len;
3303 }
3304
3305 if (rw == READ) {
3306 nr = file->f_op->read(file, iovec.iov_base,
3307 iovec.iov_len, io_kiocb_ppos(kiocb));
3308 } else {
3309 nr = file->f_op->write(file, iovec.iov_base,
3310 iovec.iov_len, io_kiocb_ppos(kiocb));
3311 }
3312
3313 if (nr < 0) {
3314 if (!ret)
3315 ret = nr;
3316 break;
3317 }
3318 if (!iov_iter_is_bvec(iter)) {
3319 iov_iter_advance(iter, nr);
3320 } else {
3321 req->rw.len -= nr;
3322 req->rw.addr += nr;
3323 }
3324 ret += nr;
3325 if (nr != iovec.iov_len)
3326 break;
3327 }
3328
3329 return ret;
3330 }
3331
3332 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3333 const struct iovec *fast_iov, struct iov_iter *iter)
3334 {
3335 struct io_async_rw *rw = req->async_data;
3336
3337 memcpy(&rw->iter, iter, sizeof(*iter));
3338 rw->free_iovec = iovec;
3339 rw->bytes_done = 0;
3340 /* can only be fixed buffers, no need to do anything */
3341 if (iov_iter_is_bvec(iter))
3342 return;
3343 if (!iovec) {
3344 unsigned iov_off = 0;
3345
3346 rw->iter.iov = rw->fast_iov;
3347 if (iter->iov != fast_iov) {
3348 iov_off = iter->iov - fast_iov;
3349 rw->iter.iov += iov_off;
3350 }
3351 if (rw->fast_iov != fast_iov)
3352 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3353 sizeof(struct iovec) * iter->nr_segs);
3354 } else {
3355 req->flags |= REQ_F_NEED_CLEANUP;
3356 }
3357 }
3358
3359 static inline int __io_alloc_async_data(struct io_kiocb *req)
3360 {
3361 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3362 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3363 return req->async_data == NULL;
3364 }
3365
3366 static int io_alloc_async_data(struct io_kiocb *req)
3367 {
3368 if (!io_op_defs[req->opcode].needs_async_data)
3369 return 0;
3370
3371 return __io_alloc_async_data(req);
3372 }
3373
3374 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3375 const struct iovec *fast_iov,
3376 struct iov_iter *iter, bool force)
3377 {
3378 if (!force && !io_op_defs[req->opcode].needs_async_data)
3379 return 0;
3380 if (!req->async_data) {
3381 if (__io_alloc_async_data(req))
3382 return -ENOMEM;
3383
3384 io_req_map_rw(req, iovec, fast_iov, iter);
3385 }
3386 return 0;
3387 }
3388
3389 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3390 {
3391 struct io_async_rw *iorw = req->async_data;
3392 struct iovec *iov = iorw->fast_iov;
3393 ssize_t ret;
3394
3395 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3396 if (unlikely(ret < 0))
3397 return ret;
3398
3399 iorw->bytes_done = 0;
3400 iorw->free_iovec = iov;
3401 if (iov)
3402 req->flags |= REQ_F_NEED_CLEANUP;
3403 return 0;
3404 }
3405
3406 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3407 {
3408 ssize_t ret;
3409
3410 ret = io_prep_rw(req, sqe);
3411 if (ret)
3412 return ret;
3413
3414 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3415 return -EBADF;
3416
3417 /* either don't need iovec imported or already have it */
3418 if (!req->async_data)
3419 return 0;
3420 return io_rw_prep_async(req, READ);
3421 }
3422
3423 /*
3424 * This is our waitqueue callback handler, registered through lock_page_async()
3425 * when we initially tried to do the IO with the iocb armed our waitqueue.
3426 * This gets called when the page is unlocked, and we generally expect that to
3427 * happen when the page IO is completed and the page is now uptodate. This will
3428 * queue a task_work based retry of the operation, attempting to copy the data
3429 * again. If the latter fails because the page was NOT uptodate, then we will
3430 * do a thread based blocking retry of the operation. That's the unexpected
3431 * slow path.
3432 */
3433 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3434 int sync, void *arg)
3435 {
3436 struct wait_page_queue *wpq;
3437 struct io_kiocb *req = wait->private;
3438 struct wait_page_key *key = arg;
3439 int ret;
3440
3441 wpq = container_of(wait, struct wait_page_queue, wait);
3442
3443 if (!wake_page_match(wpq, key))
3444 return 0;
3445
3446 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3447 list_del_init(&wait->entry);
3448
3449 init_task_work(&req->task_work, io_req_task_submit);
3450 percpu_ref_get(&req->ctx->refs);
3451
3452 /* submit ref gets dropped, acquire a new one */
3453 refcount_inc(&req->refs);
3454 ret = io_req_task_work_add(req);
3455 if (unlikely(ret))
3456 io_req_task_work_add_fallback(req, io_req_task_cancel);
3457 return 1;
3458 }
3459
3460 /*
3461 * This controls whether a given IO request should be armed for async page
3462 * based retry. If we return false here, the request is handed to the async
3463 * worker threads for retry. If we're doing buffered reads on a regular file,
3464 * we prepare a private wait_page_queue entry and retry the operation. This
3465 * will either succeed because the page is now uptodate and unlocked, or it
3466 * will register a callback when the page is unlocked at IO completion. Through
3467 * that callback, io_uring uses task_work to setup a retry of the operation.
3468 * That retry will attempt the buffered read again. The retry will generally
3469 * succeed, or in rare cases where it fails, we then fall back to using the
3470 * async worker threads for a blocking retry.
3471 */
3472 static bool io_rw_should_retry(struct io_kiocb *req)
3473 {
3474 struct io_async_rw *rw = req->async_data;
3475 struct wait_page_queue *wait = &rw->wpq;
3476 struct kiocb *kiocb = &req->rw.kiocb;
3477
3478 /* never retry for NOWAIT, we just complete with -EAGAIN */
3479 if (req->flags & REQ_F_NOWAIT)
3480 return false;
3481
3482 /* Only for buffered IO */
3483 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3484 return false;
3485
3486 /*
3487 * just use poll if we can, and don't attempt if the fs doesn't
3488 * support callback based unlocks
3489 */
3490 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3491 return false;
3492
3493 wait->wait.func = io_async_buf_func;
3494 wait->wait.private = req;
3495 wait->wait.flags = 0;
3496 INIT_LIST_HEAD(&wait->wait.entry);
3497 kiocb->ki_flags |= IOCB_WAITQ;
3498 kiocb->ki_flags &= ~IOCB_NOWAIT;
3499 kiocb->ki_waitq = wait;
3500 return true;
3501 }
3502
3503 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3504 {
3505 if (req->file->f_op->read_iter)
3506 return call_read_iter(req->file, &req->rw.kiocb, iter);
3507 else if (req->file->f_op->read)
3508 return loop_rw_iter(READ, req, iter);
3509 else
3510 return -EINVAL;
3511 }
3512
3513 static int io_read(struct io_kiocb *req, bool force_nonblock,
3514 struct io_comp_state *cs)
3515 {
3516 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3517 struct kiocb *kiocb = &req->rw.kiocb;
3518 struct iov_iter __iter, *iter = &__iter;
3519 struct io_async_rw *rw = req->async_data;
3520 ssize_t io_size, ret, ret2;
3521 bool no_async;
3522
3523 if (rw) {
3524 iter = &rw->iter;
3525 iovec = NULL;
3526 } else {
3527 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3528 if (ret < 0)
3529 return ret;
3530 }
3531 io_size = iov_iter_count(iter);
3532 req->result = io_size;
3533 ret = 0;
3534
3535 /* Ensure we clear previously set non-block flag */
3536 if (!force_nonblock)
3537 kiocb->ki_flags &= ~IOCB_NOWAIT;
3538 else
3539 kiocb->ki_flags |= IOCB_NOWAIT;
3540
3541 /* If the file doesn't support async, just async punt */
3542 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3543 if (no_async)
3544 goto copy_iov;
3545
3546 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3547 if (unlikely(ret))
3548 goto out_free;
3549
3550 ret = io_iter_do_read(req, iter);
3551
3552 if (ret == -EIOCBQUEUED) {
3553 ret = 0;
3554 goto out_free;
3555 } else if (ret == -EAGAIN) {
3556 /* IOPOLL retry should happen for io-wq threads */
3557 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3558 goto done;
3559 /* no retry on NONBLOCK marked file */
3560 if (req->file->f_flags & O_NONBLOCK)
3561 goto done;
3562 /* some cases will consume bytes even on error returns */
3563 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3564 ret = 0;
3565 goto copy_iov;
3566 } else if (ret <= 0) {
3567 /* make sure -ERESTARTSYS -> -EINTR is done */
3568 goto done;
3569 }
3570
3571 /* read it all, or we did blocking attempt. no retry. */
3572 if (!iov_iter_count(iter) || !force_nonblock ||
3573 (req->file->f_flags & O_NONBLOCK) || !(req->flags & REQ_F_ISREG))
3574 goto done;
3575
3576 io_size -= ret;
3577 copy_iov:
3578 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3579 if (ret2) {
3580 ret = ret2;
3581 goto out_free;
3582 }
3583 if (no_async)
3584 return -EAGAIN;
3585 rw = req->async_data;
3586 /* it's copied and will be cleaned with ->io */
3587 iovec = NULL;
3588 /* now use our persistent iterator, if we aren't already */
3589 iter = &rw->iter;
3590 retry:
3591 rw->bytes_done += ret;
3592 /* if we can retry, do so with the callbacks armed */
3593 if (!io_rw_should_retry(req)) {
3594 kiocb->ki_flags &= ~IOCB_WAITQ;
3595 return -EAGAIN;
3596 }
3597
3598 /*
3599 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3600 * get -EIOCBQUEUED, then we'll get a notification when the desired
3601 * page gets unlocked. We can also get a partial read here, and if we
3602 * do, then just retry at the new offset.
3603 */
3604 ret = io_iter_do_read(req, iter);
3605 if (ret == -EIOCBQUEUED) {
3606 ret = 0;
3607 goto out_free;
3608 } else if (ret > 0 && ret < io_size) {
3609 /* we got some bytes, but not all. retry. */
3610 kiocb->ki_flags &= ~IOCB_WAITQ;
3611 goto retry;
3612 }
3613 done:
3614 kiocb_done(kiocb, ret, cs);
3615 ret = 0;
3616 out_free:
3617 /* it's reportedly faster than delegating the null check to kfree() */
3618 if (iovec)
3619 kfree(iovec);
3620 return ret;
3621 }
3622
3623 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3624 {
3625 ssize_t ret;
3626
3627 ret = io_prep_rw(req, sqe);
3628 if (ret)
3629 return ret;
3630
3631 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3632 return -EBADF;
3633
3634 /* either don't need iovec imported or already have it */
3635 if (!req->async_data)
3636 return 0;
3637 return io_rw_prep_async(req, WRITE);
3638 }
3639
3640 static int io_write(struct io_kiocb *req, bool force_nonblock,
3641 struct io_comp_state *cs)
3642 {
3643 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3644 struct kiocb *kiocb = &req->rw.kiocb;
3645 struct iov_iter __iter, *iter = &__iter;
3646 struct io_async_rw *rw = req->async_data;
3647 ssize_t ret, ret2, io_size;
3648
3649 if (rw) {
3650 iter = &rw->iter;
3651 iovec = NULL;
3652 } else {
3653 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3654 if (ret < 0)
3655 return ret;
3656 }
3657 io_size = iov_iter_count(iter);
3658 req->result = io_size;
3659
3660 /* Ensure we clear previously set non-block flag */
3661 if (!force_nonblock)
3662 kiocb->ki_flags &= ~IOCB_NOWAIT;
3663 else
3664 kiocb->ki_flags |= IOCB_NOWAIT;
3665
3666 /* If the file doesn't support async, just async punt */
3667 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3668 goto copy_iov;
3669
3670 /* file path doesn't support NOWAIT for non-direct_IO */
3671 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3672 (req->flags & REQ_F_ISREG))
3673 goto copy_iov;
3674
3675 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3676 if (unlikely(ret))
3677 goto out_free;
3678
3679 /*
3680 * Open-code file_start_write here to grab freeze protection,
3681 * which will be released by another thread in
3682 * io_complete_rw(). Fool lockdep by telling it the lock got
3683 * released so that it doesn't complain about the held lock when
3684 * we return to userspace.
3685 */
3686 if (req->flags & REQ_F_ISREG) {
3687 sb_start_write(file_inode(req->file)->i_sb);
3688 __sb_writers_release(file_inode(req->file)->i_sb,
3689 SB_FREEZE_WRITE);
3690 }
3691 kiocb->ki_flags |= IOCB_WRITE;
3692
3693 if (req->file->f_op->write_iter)
3694 ret2 = call_write_iter(req->file, kiocb, iter);
3695 else if (req->file->f_op->write)
3696 ret2 = loop_rw_iter(WRITE, req, iter);
3697 else
3698 ret2 = -EINVAL;
3699
3700 /*
3701 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3702 * retry them without IOCB_NOWAIT.
3703 */
3704 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3705 ret2 = -EAGAIN;
3706 /* no retry on NONBLOCK marked file */
3707 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3708 goto done;
3709 if (!force_nonblock || ret2 != -EAGAIN) {
3710 /* IOPOLL retry should happen for io-wq threads */
3711 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3712 goto copy_iov;
3713 done:
3714 kiocb_done(kiocb, ret2, cs);
3715 } else {
3716 copy_iov:
3717 /* some cases will consume bytes even on error returns */
3718 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3719 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3720 if (!ret)
3721 return -EAGAIN;
3722 }
3723 out_free:
3724 /* it's reportedly faster than delegating the null check to kfree() */
3725 if (iovec)
3726 kfree(iovec);
3727 return ret;
3728 }
3729
3730 static int io_renameat_prep(struct io_kiocb *req,
3731 const struct io_uring_sqe *sqe)
3732 {
3733 struct io_rename *ren = &req->rename;
3734 const char __user *oldf, *newf;
3735
3736 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3737 return -EBADF;
3738
3739 ren->old_dfd = READ_ONCE(sqe->fd);
3740 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3741 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3742 ren->new_dfd = READ_ONCE(sqe->len);
3743 ren->flags = READ_ONCE(sqe->rename_flags);
3744
3745 ren->oldpath = getname(oldf);
3746 if (IS_ERR(ren->oldpath))
3747 return PTR_ERR(ren->oldpath);
3748
3749 ren->newpath = getname(newf);
3750 if (IS_ERR(ren->newpath)) {
3751 putname(ren->oldpath);
3752 return PTR_ERR(ren->newpath);
3753 }
3754
3755 req->flags |= REQ_F_NEED_CLEANUP;
3756 return 0;
3757 }
3758
3759 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3760 {
3761 struct io_rename *ren = &req->rename;
3762 int ret;
3763
3764 if (force_nonblock)
3765 return -EAGAIN;
3766
3767 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3768 ren->newpath, ren->flags);
3769
3770 req->flags &= ~REQ_F_NEED_CLEANUP;
3771 if (ret < 0)
3772 req_set_fail_links(req);
3773 io_req_complete(req, ret);
3774 return 0;
3775 }
3776
3777 static int io_unlinkat_prep(struct io_kiocb *req,
3778 const struct io_uring_sqe *sqe)
3779 {
3780 struct io_unlink *un = &req->unlink;
3781 const char __user *fname;
3782
3783 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3784 return -EBADF;
3785
3786 un->dfd = READ_ONCE(sqe->fd);
3787
3788 un->flags = READ_ONCE(sqe->unlink_flags);
3789 if (un->flags & ~AT_REMOVEDIR)
3790 return -EINVAL;
3791
3792 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3793 un->filename = getname(fname);
3794 if (IS_ERR(un->filename))
3795 return PTR_ERR(un->filename);
3796
3797 req->flags |= REQ_F_NEED_CLEANUP;
3798 return 0;
3799 }
3800
3801 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3802 {
3803 struct io_unlink *un = &req->unlink;
3804 int ret;
3805
3806 if (force_nonblock)
3807 return -EAGAIN;
3808
3809 if (un->flags & AT_REMOVEDIR)
3810 ret = do_rmdir(un->dfd, un->filename);
3811 else
3812 ret = do_unlinkat(un->dfd, un->filename);
3813
3814 req->flags &= ~REQ_F_NEED_CLEANUP;
3815 if (ret < 0)
3816 req_set_fail_links(req);
3817 io_req_complete(req, ret);
3818 return 0;
3819 }
3820
3821 static int io_shutdown_prep(struct io_kiocb *req,
3822 const struct io_uring_sqe *sqe)
3823 {
3824 #if defined(CONFIG_NET)
3825 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3826 return -EINVAL;
3827 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3828 sqe->buf_index)
3829 return -EINVAL;
3830
3831 req->shutdown.how = READ_ONCE(sqe->len);
3832 return 0;
3833 #else
3834 return -EOPNOTSUPP;
3835 #endif
3836 }
3837
3838 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3839 {
3840 #if defined(CONFIG_NET)
3841 struct socket *sock;
3842 int ret;
3843
3844 if (force_nonblock)
3845 return -EAGAIN;
3846
3847 sock = sock_from_file(req->file);
3848 if (unlikely(!sock))
3849 return -ENOTSOCK;
3850
3851 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3852 if (ret < 0)
3853 req_set_fail_links(req);
3854 io_req_complete(req, ret);
3855 return 0;
3856 #else
3857 return -EOPNOTSUPP;
3858 #endif
3859 }
3860
3861 static int __io_splice_prep(struct io_kiocb *req,
3862 const struct io_uring_sqe *sqe)
3863 {
3864 struct io_splice *sp = &req->splice;
3865 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3866
3867 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3868 return -EINVAL;
3869
3870 sp->file_in = NULL;
3871 sp->len = READ_ONCE(sqe->len);
3872 sp->flags = READ_ONCE(sqe->splice_flags);
3873
3874 if (unlikely(sp->flags & ~valid_flags))
3875 return -EINVAL;
3876
3877 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3878 (sp->flags & SPLICE_F_FD_IN_FIXED));
3879 if (!sp->file_in)
3880 return -EBADF;
3881 req->flags |= REQ_F_NEED_CLEANUP;
3882
3883 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3884 /*
3885 * Splice operation will be punted aync, and here need to
3886 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3887 */
3888 io_req_init_async(req);
3889 req->work.flags |= IO_WQ_WORK_UNBOUND;
3890 }
3891
3892 return 0;
3893 }
3894
3895 static int io_tee_prep(struct io_kiocb *req,
3896 const struct io_uring_sqe *sqe)
3897 {
3898 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3899 return -EINVAL;
3900 return __io_splice_prep(req, sqe);
3901 }
3902
3903 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3904 {
3905 struct io_splice *sp = &req->splice;
3906 struct file *in = sp->file_in;
3907 struct file *out = sp->file_out;
3908 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3909 long ret = 0;
3910
3911 if (force_nonblock)
3912 return -EAGAIN;
3913 if (sp->len)
3914 ret = do_tee(in, out, sp->len, flags);
3915
3916 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3917 req->flags &= ~REQ_F_NEED_CLEANUP;
3918
3919 if (ret != sp->len)
3920 req_set_fail_links(req);
3921 io_req_complete(req, ret);
3922 return 0;
3923 }
3924
3925 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3926 {
3927 struct io_splice *sp = &req->splice;
3928
3929 sp->off_in = READ_ONCE(sqe->splice_off_in);
3930 sp->off_out = READ_ONCE(sqe->off);
3931 return __io_splice_prep(req, sqe);
3932 }
3933
3934 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3935 {
3936 struct io_splice *sp = &req->splice;
3937 struct file *in = sp->file_in;
3938 struct file *out = sp->file_out;
3939 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3940 loff_t *poff_in, *poff_out;
3941 long ret = 0;
3942
3943 if (force_nonblock)
3944 return -EAGAIN;
3945
3946 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3947 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3948
3949 if (sp->len)
3950 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3951
3952 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3953 req->flags &= ~REQ_F_NEED_CLEANUP;
3954
3955 if (ret != sp->len)
3956 req_set_fail_links(req);
3957 io_req_complete(req, ret);
3958 return 0;
3959 }
3960
3961 /*
3962 * IORING_OP_NOP just posts a completion event, nothing else.
3963 */
3964 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3965 {
3966 struct io_ring_ctx *ctx = req->ctx;
3967
3968 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3969 return -EINVAL;
3970
3971 __io_req_complete(req, 0, 0, cs);
3972 return 0;
3973 }
3974
3975 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3976 {
3977 struct io_ring_ctx *ctx = req->ctx;
3978
3979 if (!req->file)
3980 return -EBADF;
3981
3982 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3983 return -EINVAL;
3984 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
3985 sqe->splice_fd_in))
3986 return -EINVAL;
3987
3988 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3989 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3990 return -EINVAL;
3991
3992 req->sync.off = READ_ONCE(sqe->off);
3993 req->sync.len = READ_ONCE(sqe->len);
3994 return 0;
3995 }
3996
3997 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3998 {
3999 loff_t end = req->sync.off + req->sync.len;
4000 int ret;
4001
4002 /* fsync always requires a blocking context */
4003 if (force_nonblock)
4004 return -EAGAIN;
4005
4006 ret = vfs_fsync_range(req->file, req->sync.off,
4007 end > 0 ? end : LLONG_MAX,
4008 req->sync.flags & IORING_FSYNC_DATASYNC);
4009 if (ret < 0)
4010 req_set_fail_links(req);
4011 io_req_complete(req, ret);
4012 return 0;
4013 }
4014
4015 static int io_fallocate_prep(struct io_kiocb *req,
4016 const struct io_uring_sqe *sqe)
4017 {
4018 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4019 sqe->splice_fd_in)
4020 return -EINVAL;
4021 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4022 return -EINVAL;
4023
4024 req->sync.off = READ_ONCE(sqe->off);
4025 req->sync.len = READ_ONCE(sqe->addr);
4026 req->sync.mode = READ_ONCE(sqe->len);
4027 return 0;
4028 }
4029
4030 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
4031 {
4032 int ret;
4033
4034 /* fallocate always requiring blocking context */
4035 if (force_nonblock)
4036 return -EAGAIN;
4037 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4038 req->sync.len);
4039 if (ret < 0)
4040 req_set_fail_links(req);
4041 io_req_complete(req, ret);
4042 return 0;
4043 }
4044
4045 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4046 {
4047 const char __user *fname;
4048 int ret;
4049
4050 if (unlikely(sqe->ioprio || sqe->buf_index || sqe->splice_fd_in))
4051 return -EINVAL;
4052 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4053 return -EBADF;
4054
4055 /* open.how should be already initialised */
4056 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4057 req->open.how.flags |= O_LARGEFILE;
4058
4059 req->open.dfd = READ_ONCE(sqe->fd);
4060 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4061 req->open.filename = getname(fname);
4062 if (IS_ERR(req->open.filename)) {
4063 ret = PTR_ERR(req->open.filename);
4064 req->open.filename = NULL;
4065 return ret;
4066 }
4067 req->open.nofile = rlimit(RLIMIT_NOFILE);
4068 req->open.ignore_nonblock = false;
4069 req->flags |= REQ_F_NEED_CLEANUP;
4070 return 0;
4071 }
4072
4073 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4074 {
4075 u64 flags, mode;
4076
4077 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4078 return -EINVAL;
4079 mode = READ_ONCE(sqe->len);
4080 flags = READ_ONCE(sqe->open_flags);
4081 req->open.how = build_open_how(flags, mode);
4082 return __io_openat_prep(req, sqe);
4083 }
4084
4085 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4086 {
4087 struct open_how __user *how;
4088 size_t len;
4089 int ret;
4090
4091 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4092 return -EINVAL;
4093 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4094 len = READ_ONCE(sqe->len);
4095 if (len < OPEN_HOW_SIZE_VER0)
4096 return -EINVAL;
4097
4098 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4099 len);
4100 if (ret)
4101 return ret;
4102
4103 return __io_openat_prep(req, sqe);
4104 }
4105
4106 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4107 {
4108 struct open_flags op;
4109 struct file *file;
4110 int ret;
4111
4112 if (force_nonblock && !req->open.ignore_nonblock)
4113 return -EAGAIN;
4114
4115 ret = build_open_flags(&req->open.how, &op);
4116 if (ret)
4117 goto err;
4118
4119 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4120 if (ret < 0)
4121 goto err;
4122
4123 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4124 if (IS_ERR(file)) {
4125 put_unused_fd(ret);
4126 ret = PTR_ERR(file);
4127 /*
4128 * A work-around to ensure that /proc/self works that way
4129 * that it should - if we get -EOPNOTSUPP back, then assume
4130 * that proc_self_get_link() failed us because we're in async
4131 * context. We should be safe to retry this from the task
4132 * itself with force_nonblock == false set, as it should not
4133 * block on lookup. Would be nice to know this upfront and
4134 * avoid the async dance, but doesn't seem feasible.
4135 */
4136 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4137 req->open.ignore_nonblock = true;
4138 refcount_inc(&req->refs);
4139 io_req_task_queue(req);
4140 return 0;
4141 }
4142 } else {
4143 fsnotify_open(file);
4144 fd_install(ret, file);
4145 }
4146 err:
4147 putname(req->open.filename);
4148 req->flags &= ~REQ_F_NEED_CLEANUP;
4149 if (ret < 0)
4150 req_set_fail_links(req);
4151 io_req_complete(req, ret);
4152 return 0;
4153 }
4154
4155 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4156 {
4157 return io_openat2(req, force_nonblock);
4158 }
4159
4160 static int io_remove_buffers_prep(struct io_kiocb *req,
4161 const struct io_uring_sqe *sqe)
4162 {
4163 struct io_provide_buf *p = &req->pbuf;
4164 u64 tmp;
4165
4166 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4167 sqe->splice_fd_in)
4168 return -EINVAL;
4169
4170 tmp = READ_ONCE(sqe->fd);
4171 if (!tmp || tmp > USHRT_MAX)
4172 return -EINVAL;
4173
4174 memset(p, 0, sizeof(*p));
4175 p->nbufs = tmp;
4176 p->bgid = READ_ONCE(sqe->buf_group);
4177 return 0;
4178 }
4179
4180 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4181 int bgid, unsigned nbufs)
4182 {
4183 unsigned i = 0;
4184
4185 /* shouldn't happen */
4186 if (!nbufs)
4187 return 0;
4188
4189 /* the head kbuf is the list itself */
4190 while (!list_empty(&buf->list)) {
4191 struct io_buffer *nxt;
4192
4193 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4194 list_del(&nxt->list);
4195 kfree(nxt);
4196 if (++i == nbufs)
4197 return i;
4198 }
4199 i++;
4200 kfree(buf);
4201 xa_erase(&ctx->io_buffers, bgid);
4202
4203 return i;
4204 }
4205
4206 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4207 struct io_comp_state *cs)
4208 {
4209 struct io_provide_buf *p = &req->pbuf;
4210 struct io_ring_ctx *ctx = req->ctx;
4211 struct io_buffer *head;
4212 int ret = 0;
4213
4214 io_ring_submit_lock(ctx, !force_nonblock);
4215
4216 lockdep_assert_held(&ctx->uring_lock);
4217
4218 ret = -ENOENT;
4219 head = xa_load(&ctx->io_buffers, p->bgid);
4220 if (head)
4221 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4222 if (ret < 0)
4223 req_set_fail_links(req);
4224
4225 /* need to hold the lock to complete IOPOLL requests */
4226 if (ctx->flags & IORING_SETUP_IOPOLL) {
4227 __io_req_complete(req, ret, 0, cs);
4228 io_ring_submit_unlock(ctx, !force_nonblock);
4229 } else {
4230 io_ring_submit_unlock(ctx, !force_nonblock);
4231 __io_req_complete(req, ret, 0, cs);
4232 }
4233 return 0;
4234 }
4235
4236 static int io_provide_buffers_prep(struct io_kiocb *req,
4237 const struct io_uring_sqe *sqe)
4238 {
4239 unsigned long size, tmp_check;
4240 struct io_provide_buf *p = &req->pbuf;
4241 u64 tmp;
4242
4243 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4244 return -EINVAL;
4245
4246 tmp = READ_ONCE(sqe->fd);
4247 if (!tmp || tmp > USHRT_MAX)
4248 return -E2BIG;
4249 p->nbufs = tmp;
4250 p->addr = READ_ONCE(sqe->addr);
4251 p->len = READ_ONCE(sqe->len);
4252
4253 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4254 &size))
4255 return -EOVERFLOW;
4256 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4257 return -EOVERFLOW;
4258
4259 size = (unsigned long)p->len * p->nbufs;
4260 if (!access_ok(u64_to_user_ptr(p->addr), size))
4261 return -EFAULT;
4262
4263 p->bgid = READ_ONCE(sqe->buf_group);
4264 tmp = READ_ONCE(sqe->off);
4265 if (tmp > USHRT_MAX)
4266 return -E2BIG;
4267 p->bid = tmp;
4268 return 0;
4269 }
4270
4271 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4272 {
4273 struct io_buffer *buf;
4274 u64 addr = pbuf->addr;
4275 int i, bid = pbuf->bid;
4276
4277 for (i = 0; i < pbuf->nbufs; i++) {
4278 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4279 if (!buf)
4280 break;
4281
4282 buf->addr = addr;
4283 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4284 buf->bid = bid;
4285 addr += pbuf->len;
4286 bid++;
4287 if (!*head) {
4288 INIT_LIST_HEAD(&buf->list);
4289 *head = buf;
4290 } else {
4291 list_add_tail(&buf->list, &(*head)->list);
4292 }
4293 }
4294
4295 return i ? i : -ENOMEM;
4296 }
4297
4298 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4299 struct io_comp_state *cs)
4300 {
4301 struct io_provide_buf *p = &req->pbuf;
4302 struct io_ring_ctx *ctx = req->ctx;
4303 struct io_buffer *head, *list;
4304 int ret = 0;
4305
4306 io_ring_submit_lock(ctx, !force_nonblock);
4307
4308 lockdep_assert_held(&ctx->uring_lock);
4309
4310 list = head = xa_load(&ctx->io_buffers, p->bgid);
4311
4312 ret = io_add_buffers(p, &head);
4313 if (ret >= 0 && !list) {
4314 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4315 if (ret < 0)
4316 __io_remove_buffers(ctx, head, p->bgid, -1U);
4317 }
4318 if (ret < 0)
4319 req_set_fail_links(req);
4320
4321 /* need to hold the lock to complete IOPOLL requests */
4322 if (ctx->flags & IORING_SETUP_IOPOLL) {
4323 __io_req_complete(req, ret, 0, cs);
4324 io_ring_submit_unlock(ctx, !force_nonblock);
4325 } else {
4326 io_ring_submit_unlock(ctx, !force_nonblock);
4327 __io_req_complete(req, ret, 0, cs);
4328 }
4329 return 0;
4330 }
4331
4332 static int io_epoll_ctl_prep(struct io_kiocb *req,
4333 const struct io_uring_sqe *sqe)
4334 {
4335 #if defined(CONFIG_EPOLL)
4336 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4337 return -EINVAL;
4338 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4339 return -EINVAL;
4340
4341 req->epoll.epfd = READ_ONCE(sqe->fd);
4342 req->epoll.op = READ_ONCE(sqe->len);
4343 req->epoll.fd = READ_ONCE(sqe->off);
4344
4345 if (ep_op_has_event(req->epoll.op)) {
4346 struct epoll_event __user *ev;
4347
4348 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4349 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4350 return -EFAULT;
4351 }
4352
4353 return 0;
4354 #else
4355 return -EOPNOTSUPP;
4356 #endif
4357 }
4358
4359 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4360 struct io_comp_state *cs)
4361 {
4362 #if defined(CONFIG_EPOLL)
4363 struct io_epoll *ie = &req->epoll;
4364 int ret;
4365
4366 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4367 if (force_nonblock && ret == -EAGAIN)
4368 return -EAGAIN;
4369
4370 if (ret < 0)
4371 req_set_fail_links(req);
4372 __io_req_complete(req, ret, 0, cs);
4373 return 0;
4374 #else
4375 return -EOPNOTSUPP;
4376 #endif
4377 }
4378
4379 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4380 {
4381 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4382 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4383 return -EINVAL;
4384 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4385 return -EINVAL;
4386
4387 req->madvise.addr = READ_ONCE(sqe->addr);
4388 req->madvise.len = READ_ONCE(sqe->len);
4389 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4390 return 0;
4391 #else
4392 return -EOPNOTSUPP;
4393 #endif
4394 }
4395
4396 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4397 {
4398 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4399 struct io_madvise *ma = &req->madvise;
4400 int ret;
4401
4402 if (force_nonblock)
4403 return -EAGAIN;
4404
4405 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4406 if (ret < 0)
4407 req_set_fail_links(req);
4408 io_req_complete(req, ret);
4409 return 0;
4410 #else
4411 return -EOPNOTSUPP;
4412 #endif
4413 }
4414
4415 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4416 {
4417 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4418 return -EINVAL;
4419 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4420 return -EINVAL;
4421
4422 req->fadvise.offset = READ_ONCE(sqe->off);
4423 req->fadvise.len = READ_ONCE(sqe->len);
4424 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4425 return 0;
4426 }
4427
4428 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4429 {
4430 struct io_fadvise *fa = &req->fadvise;
4431 int ret;
4432
4433 if (force_nonblock) {
4434 switch (fa->advice) {
4435 case POSIX_FADV_NORMAL:
4436 case POSIX_FADV_RANDOM:
4437 case POSIX_FADV_SEQUENTIAL:
4438 break;
4439 default:
4440 return -EAGAIN;
4441 }
4442 }
4443
4444 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4445 if (ret < 0)
4446 req_set_fail_links(req);
4447 io_req_complete(req, ret);
4448 return 0;
4449 }
4450
4451 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4452 {
4453 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4454 return -EINVAL;
4455 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4456 return -EINVAL;
4457 if (req->flags & REQ_F_FIXED_FILE)
4458 return -EBADF;
4459
4460 req->statx.dfd = READ_ONCE(sqe->fd);
4461 req->statx.mask = READ_ONCE(sqe->len);
4462 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4463 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4464 req->statx.flags = READ_ONCE(sqe->statx_flags);
4465
4466 return 0;
4467 }
4468
4469 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4470 {
4471 struct io_statx *ctx = &req->statx;
4472 int ret;
4473
4474 if (force_nonblock) {
4475 /* only need file table for an actual valid fd */
4476 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4477 req->flags |= REQ_F_NO_FILE_TABLE;
4478 return -EAGAIN;
4479 }
4480
4481 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4482 ctx->buffer);
4483
4484 if (ret < 0)
4485 req_set_fail_links(req);
4486 io_req_complete(req, ret);
4487 return 0;
4488 }
4489
4490 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4491 {
4492 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4493 return -EINVAL;
4494 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4495 sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
4496 return -EINVAL;
4497 if (req->flags & REQ_F_FIXED_FILE)
4498 return -EBADF;
4499
4500 req->close.fd = READ_ONCE(sqe->fd);
4501 return 0;
4502 }
4503
4504 static int io_close(struct io_kiocb *req, bool force_nonblock,
4505 struct io_comp_state *cs)
4506 {
4507 struct files_struct *files = current->files;
4508 struct io_close *close = &req->close;
4509 struct fdtable *fdt;
4510 struct file *file;
4511 int ret;
4512
4513 file = NULL;
4514 ret = -EBADF;
4515 spin_lock(&files->file_lock);
4516 fdt = files_fdtable(files);
4517 if (close->fd >= fdt->max_fds) {
4518 spin_unlock(&files->file_lock);
4519 goto err;
4520 }
4521 file = fdt->fd[close->fd];
4522 if (!file) {
4523 spin_unlock(&files->file_lock);
4524 goto err;
4525 }
4526
4527 if (file->f_op == &io_uring_fops) {
4528 spin_unlock(&files->file_lock);
4529 file = NULL;
4530 goto err;
4531 }
4532
4533 /* if the file has a flush method, be safe and punt to async */
4534 if (file->f_op->flush && force_nonblock) {
4535 spin_unlock(&files->file_lock);
4536 return -EAGAIN;
4537 }
4538
4539 ret = __close_fd_get_file(close->fd, &file);
4540 spin_unlock(&files->file_lock);
4541 if (ret < 0) {
4542 if (ret == -ENOENT)
4543 ret = -EBADF;
4544 goto err;
4545 }
4546
4547 /* No ->flush() or already async, safely close from here */
4548 ret = filp_close(file, current->files);
4549 err:
4550 if (ret < 0)
4551 req_set_fail_links(req);
4552 if (file)
4553 fput(file);
4554 __io_req_complete(req, ret, 0, cs);
4555 return 0;
4556 }
4557
4558 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4559 {
4560 struct io_ring_ctx *ctx = req->ctx;
4561
4562 if (!req->file)
4563 return -EBADF;
4564
4565 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4566 return -EINVAL;
4567 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4568 sqe->splice_fd_in))
4569 return -EINVAL;
4570
4571 req->sync.off = READ_ONCE(sqe->off);
4572 req->sync.len = READ_ONCE(sqe->len);
4573 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4574 return 0;
4575 }
4576
4577 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4578 {
4579 int ret;
4580
4581 /* sync_file_range always requires a blocking context */
4582 if (force_nonblock)
4583 return -EAGAIN;
4584
4585 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4586 req->sync.flags);
4587 if (ret < 0)
4588 req_set_fail_links(req);
4589 io_req_complete(req, ret);
4590 return 0;
4591 }
4592
4593 #if defined(CONFIG_NET)
4594 static int io_setup_async_msg(struct io_kiocb *req,
4595 struct io_async_msghdr *kmsg)
4596 {
4597 struct io_async_msghdr *async_msg = req->async_data;
4598
4599 if (async_msg)
4600 return -EAGAIN;
4601 if (io_alloc_async_data(req)) {
4602 if (kmsg->iov != kmsg->fast_iov)
4603 kfree(kmsg->iov);
4604 return -ENOMEM;
4605 }
4606 async_msg = req->async_data;
4607 req->flags |= REQ_F_NEED_CLEANUP;
4608 memcpy(async_msg, kmsg, sizeof(*kmsg));
4609 return -EAGAIN;
4610 }
4611
4612 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4613 struct io_async_msghdr *iomsg)
4614 {
4615 iomsg->iov = iomsg->fast_iov;
4616 iomsg->msg.msg_name = &iomsg->addr;
4617 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4618 req->sr_msg.msg_flags, &iomsg->iov);
4619 }
4620
4621 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4622 {
4623 struct io_async_msghdr *async_msg = req->async_data;
4624 struct io_sr_msg *sr = &req->sr_msg;
4625 int ret;
4626
4627 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4628 return -EINVAL;
4629
4630 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4631 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4632 sr->len = READ_ONCE(sqe->len);
4633
4634 #ifdef CONFIG_COMPAT
4635 if (req->ctx->compat)
4636 sr->msg_flags |= MSG_CMSG_COMPAT;
4637 #endif
4638
4639 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4640 return 0;
4641 ret = io_sendmsg_copy_hdr(req, async_msg);
4642 if (!ret)
4643 req->flags |= REQ_F_NEED_CLEANUP;
4644 return ret;
4645 }
4646
4647 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4648 struct io_comp_state *cs)
4649 {
4650 struct io_async_msghdr iomsg, *kmsg;
4651 struct socket *sock;
4652 unsigned flags;
4653 int min_ret = 0;
4654 int ret;
4655
4656 sock = sock_from_file(req->file);
4657 if (unlikely(!sock))
4658 return -ENOTSOCK;
4659
4660 if (req->async_data) {
4661 kmsg = req->async_data;
4662 kmsg->msg.msg_name = &kmsg->addr;
4663 /* if iov is set, it's allocated already */
4664 if (!kmsg->iov)
4665 kmsg->iov = kmsg->fast_iov;
4666 kmsg->msg.msg_iter.iov = kmsg->iov;
4667 } else {
4668 ret = io_sendmsg_copy_hdr(req, &iomsg);
4669 if (ret)
4670 return ret;
4671 kmsg = &iomsg;
4672 }
4673
4674 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4675 if (flags & MSG_DONTWAIT)
4676 req->flags |= REQ_F_NOWAIT;
4677 else if (force_nonblock)
4678 flags |= MSG_DONTWAIT;
4679
4680 if (flags & MSG_WAITALL)
4681 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4682
4683 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4684 if (force_nonblock && ret == -EAGAIN)
4685 return io_setup_async_msg(req, kmsg);
4686 if (ret == -ERESTARTSYS)
4687 ret = -EINTR;
4688
4689 if (kmsg->iov != kmsg->fast_iov)
4690 kfree(kmsg->iov);
4691 req->flags &= ~REQ_F_NEED_CLEANUP;
4692 if (ret < min_ret)
4693 req_set_fail_links(req);
4694 __io_req_complete(req, ret, 0, cs);
4695 return 0;
4696 }
4697
4698 static int io_send(struct io_kiocb *req, bool force_nonblock,
4699 struct io_comp_state *cs)
4700 {
4701 struct io_sr_msg *sr = &req->sr_msg;
4702 struct msghdr msg;
4703 struct iovec iov;
4704 struct socket *sock;
4705 unsigned flags;
4706 int min_ret = 0;
4707 int ret;
4708
4709 sock = sock_from_file(req->file);
4710 if (unlikely(!sock))
4711 return -ENOTSOCK;
4712
4713 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4714 if (unlikely(ret))
4715 return ret;
4716
4717 msg.msg_name = NULL;
4718 msg.msg_control = NULL;
4719 msg.msg_controllen = 0;
4720 msg.msg_namelen = 0;
4721
4722 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4723 if (flags & MSG_DONTWAIT)
4724 req->flags |= REQ_F_NOWAIT;
4725 else if (force_nonblock)
4726 flags |= MSG_DONTWAIT;
4727
4728 if (flags & MSG_WAITALL)
4729 min_ret = iov_iter_count(&msg.msg_iter);
4730
4731 msg.msg_flags = flags;
4732 ret = sock_sendmsg(sock, &msg);
4733 if (force_nonblock && ret == -EAGAIN)
4734 return -EAGAIN;
4735 if (ret == -ERESTARTSYS)
4736 ret = -EINTR;
4737
4738 if (ret < min_ret)
4739 req_set_fail_links(req);
4740 __io_req_complete(req, ret, 0, cs);
4741 return 0;
4742 }
4743
4744 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4745 struct io_async_msghdr *iomsg)
4746 {
4747 struct io_sr_msg *sr = &req->sr_msg;
4748 struct iovec __user *uiov;
4749 size_t iov_len;
4750 int ret;
4751
4752 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4753 &iomsg->uaddr, &uiov, &iov_len);
4754 if (ret)
4755 return ret;
4756
4757 if (req->flags & REQ_F_BUFFER_SELECT) {
4758 if (iov_len > 1)
4759 return -EINVAL;
4760 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4761 return -EFAULT;
4762 sr->len = iomsg->iov[0].iov_len;
4763 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4764 sr->len);
4765 iomsg->iov = NULL;
4766 } else {
4767 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4768 &iomsg->iov, &iomsg->msg.msg_iter,
4769 false);
4770 if (ret > 0)
4771 ret = 0;
4772 }
4773
4774 return ret;
4775 }
4776
4777 #ifdef CONFIG_COMPAT
4778 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4779 struct io_async_msghdr *iomsg)
4780 {
4781 struct compat_msghdr __user *msg_compat;
4782 struct io_sr_msg *sr = &req->sr_msg;
4783 struct compat_iovec __user *uiov;
4784 compat_uptr_t ptr;
4785 compat_size_t len;
4786 int ret;
4787
4788 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4789 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4790 &ptr, &len);
4791 if (ret)
4792 return ret;
4793
4794 uiov = compat_ptr(ptr);
4795 if (req->flags & REQ_F_BUFFER_SELECT) {
4796 compat_ssize_t clen;
4797
4798 if (len > 1)
4799 return -EINVAL;
4800 if (!access_ok(uiov, sizeof(*uiov)))
4801 return -EFAULT;
4802 if (__get_user(clen, &uiov->iov_len))
4803 return -EFAULT;
4804 if (clen < 0)
4805 return -EINVAL;
4806 sr->len = clen;
4807 iomsg->iov[0].iov_len = clen;
4808 iomsg->iov = NULL;
4809 } else {
4810 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4811 UIO_FASTIOV, &iomsg->iov,
4812 &iomsg->msg.msg_iter, true);
4813 if (ret < 0)
4814 return ret;
4815 }
4816
4817 return 0;
4818 }
4819 #endif
4820
4821 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4822 struct io_async_msghdr *iomsg)
4823 {
4824 iomsg->msg.msg_name = &iomsg->addr;
4825 iomsg->iov = iomsg->fast_iov;
4826
4827 #ifdef CONFIG_COMPAT
4828 if (req->ctx->compat)
4829 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4830 #endif
4831
4832 return __io_recvmsg_copy_hdr(req, iomsg);
4833 }
4834
4835 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4836 bool needs_lock)
4837 {
4838 struct io_sr_msg *sr = &req->sr_msg;
4839 struct io_buffer *kbuf;
4840
4841 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4842 if (IS_ERR(kbuf))
4843 return kbuf;
4844
4845 sr->kbuf = kbuf;
4846 req->flags |= REQ_F_BUFFER_SELECTED;
4847 return kbuf;
4848 }
4849
4850 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4851 {
4852 return io_put_kbuf(req, req->sr_msg.kbuf);
4853 }
4854
4855 static int io_recvmsg_prep(struct io_kiocb *req,
4856 const struct io_uring_sqe *sqe)
4857 {
4858 struct io_async_msghdr *async_msg = req->async_data;
4859 struct io_sr_msg *sr = &req->sr_msg;
4860 int ret;
4861
4862 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4863 return -EINVAL;
4864
4865 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4866 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4867 sr->len = READ_ONCE(sqe->len);
4868 sr->bgid = READ_ONCE(sqe->buf_group);
4869
4870 #ifdef CONFIG_COMPAT
4871 if (req->ctx->compat)
4872 sr->msg_flags |= MSG_CMSG_COMPAT;
4873 #endif
4874
4875 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4876 return 0;
4877 ret = io_recvmsg_copy_hdr(req, async_msg);
4878 if (!ret)
4879 req->flags |= REQ_F_NEED_CLEANUP;
4880 return ret;
4881 }
4882
4883 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4884 struct io_comp_state *cs)
4885 {
4886 struct io_async_msghdr iomsg, *kmsg;
4887 struct socket *sock;
4888 struct io_buffer *kbuf;
4889 unsigned flags;
4890 int min_ret = 0;
4891 int ret, cflags = 0;
4892
4893 sock = sock_from_file(req->file);
4894 if (unlikely(!sock))
4895 return -ENOTSOCK;
4896
4897 if (req->async_data) {
4898 kmsg = req->async_data;
4899 kmsg->msg.msg_name = &kmsg->addr;
4900 /* if iov is set, it's allocated already */
4901 if (!kmsg->iov)
4902 kmsg->iov = kmsg->fast_iov;
4903 kmsg->msg.msg_iter.iov = kmsg->iov;
4904 } else {
4905 ret = io_recvmsg_copy_hdr(req, &iomsg);
4906 if (ret)
4907 return ret;
4908 kmsg = &iomsg;
4909 }
4910
4911 if (req->flags & REQ_F_BUFFER_SELECT) {
4912 kbuf = io_recv_buffer_select(req, !force_nonblock);
4913 if (IS_ERR(kbuf))
4914 return PTR_ERR(kbuf);
4915 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4916 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4917 1, req->sr_msg.len);
4918 }
4919
4920 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4921 if (flags & MSG_DONTWAIT)
4922 req->flags |= REQ_F_NOWAIT;
4923 else if (force_nonblock)
4924 flags |= MSG_DONTWAIT;
4925
4926 if (flags & MSG_WAITALL)
4927 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4928
4929 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4930 kmsg->uaddr, flags);
4931 if (force_nonblock && ret == -EAGAIN)
4932 return io_setup_async_msg(req, kmsg);
4933 if (ret == -ERESTARTSYS)
4934 ret = -EINTR;
4935
4936 if (req->flags & REQ_F_BUFFER_SELECTED)
4937 cflags = io_put_recv_kbuf(req);
4938 if (kmsg->iov != kmsg->fast_iov)
4939 kfree(kmsg->iov);
4940 req->flags &= ~REQ_F_NEED_CLEANUP;
4941 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4942 req_set_fail_links(req);
4943 __io_req_complete(req, ret, cflags, cs);
4944 return 0;
4945 }
4946
4947 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4948 struct io_comp_state *cs)
4949 {
4950 struct io_buffer *kbuf;
4951 struct io_sr_msg *sr = &req->sr_msg;
4952 struct msghdr msg;
4953 void __user *buf = sr->buf;
4954 struct socket *sock;
4955 struct iovec iov;
4956 unsigned flags;
4957 int min_ret = 0;
4958 int ret, cflags = 0;
4959
4960 sock = sock_from_file(req->file);
4961 if (unlikely(!sock))
4962 return -ENOTSOCK;
4963
4964 if (req->flags & REQ_F_BUFFER_SELECT) {
4965 kbuf = io_recv_buffer_select(req, !force_nonblock);
4966 if (IS_ERR(kbuf))
4967 return PTR_ERR(kbuf);
4968 buf = u64_to_user_ptr(kbuf->addr);
4969 }
4970
4971 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4972 if (unlikely(ret))
4973 goto out_free;
4974
4975 msg.msg_name = NULL;
4976 msg.msg_control = NULL;
4977 msg.msg_controllen = 0;
4978 msg.msg_namelen = 0;
4979 msg.msg_iocb = NULL;
4980 msg.msg_flags = 0;
4981
4982 flags = req->sr_msg.msg_flags | MSG_NOSIGNAL;
4983 if (flags & MSG_DONTWAIT)
4984 req->flags |= REQ_F_NOWAIT;
4985 else if (force_nonblock)
4986 flags |= MSG_DONTWAIT;
4987
4988 if (flags & MSG_WAITALL)
4989 min_ret = iov_iter_count(&msg.msg_iter);
4990
4991 ret = sock_recvmsg(sock, &msg, flags);
4992 if (force_nonblock && ret == -EAGAIN)
4993 return -EAGAIN;
4994 if (ret == -ERESTARTSYS)
4995 ret = -EINTR;
4996 out_free:
4997 if (req->flags & REQ_F_BUFFER_SELECTED)
4998 cflags = io_put_recv_kbuf(req);
4999 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5000 req_set_fail_links(req);
5001 __io_req_complete(req, ret, cflags, cs);
5002 return 0;
5003 }
5004
5005 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5006 {
5007 struct io_accept *accept = &req->accept;
5008
5009 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5010 return -EINVAL;
5011 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->splice_fd_in)
5012 return -EINVAL;
5013
5014 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5015 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5016 accept->flags = READ_ONCE(sqe->accept_flags);
5017 accept->nofile = rlimit(RLIMIT_NOFILE);
5018 return 0;
5019 }
5020
5021 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5022 struct io_comp_state *cs)
5023 {
5024 struct io_accept *accept = &req->accept;
5025 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5026 int ret;
5027
5028 if (req->file->f_flags & O_NONBLOCK)
5029 req->flags |= REQ_F_NOWAIT;
5030
5031 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
5032 accept->addr_len, accept->flags,
5033 accept->nofile);
5034 if (ret == -EAGAIN && force_nonblock)
5035 return -EAGAIN;
5036 if (ret < 0) {
5037 if (ret == -ERESTARTSYS)
5038 ret = -EINTR;
5039 req_set_fail_links(req);
5040 }
5041 __io_req_complete(req, ret, 0, cs);
5042 return 0;
5043 }
5044
5045 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5046 {
5047 struct io_connect *conn = &req->connect;
5048 struct io_async_connect *io = req->async_data;
5049
5050 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5051 return -EINVAL;
5052 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5053 sqe->splice_fd_in)
5054 return -EINVAL;
5055
5056 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5057 conn->addr_len = READ_ONCE(sqe->addr2);
5058
5059 if (!io)
5060 return 0;
5061
5062 return move_addr_to_kernel(conn->addr, conn->addr_len,
5063 &io->address);
5064 }
5065
5066 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5067 struct io_comp_state *cs)
5068 {
5069 struct io_async_connect __io, *io;
5070 unsigned file_flags;
5071 int ret;
5072
5073 if (req->async_data) {
5074 io = req->async_data;
5075 } else {
5076 ret = move_addr_to_kernel(req->connect.addr,
5077 req->connect.addr_len,
5078 &__io.address);
5079 if (ret)
5080 goto out;
5081 io = &__io;
5082 }
5083
5084 file_flags = force_nonblock ? O_NONBLOCK : 0;
5085
5086 ret = __sys_connect_file(req->file, &io->address,
5087 req->connect.addr_len, file_flags);
5088 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5089 if (req->async_data)
5090 return -EAGAIN;
5091 if (io_alloc_async_data(req)) {
5092 ret = -ENOMEM;
5093 goto out;
5094 }
5095 io = req->async_data;
5096 memcpy(req->async_data, &__io, sizeof(__io));
5097 return -EAGAIN;
5098 }
5099 if (ret == -ERESTARTSYS)
5100 ret = -EINTR;
5101 out:
5102 if (ret < 0)
5103 req_set_fail_links(req);
5104 __io_req_complete(req, ret, 0, cs);
5105 return 0;
5106 }
5107 #else /* !CONFIG_NET */
5108 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5109 {
5110 return -EOPNOTSUPP;
5111 }
5112
5113 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5114 struct io_comp_state *cs)
5115 {
5116 return -EOPNOTSUPP;
5117 }
5118
5119 static int io_send(struct io_kiocb *req, bool force_nonblock,
5120 struct io_comp_state *cs)
5121 {
5122 return -EOPNOTSUPP;
5123 }
5124
5125 static int io_recvmsg_prep(struct io_kiocb *req,
5126 const struct io_uring_sqe *sqe)
5127 {
5128 return -EOPNOTSUPP;
5129 }
5130
5131 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5132 struct io_comp_state *cs)
5133 {
5134 return -EOPNOTSUPP;
5135 }
5136
5137 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5138 struct io_comp_state *cs)
5139 {
5140 return -EOPNOTSUPP;
5141 }
5142
5143 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5144 {
5145 return -EOPNOTSUPP;
5146 }
5147
5148 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5149 struct io_comp_state *cs)
5150 {
5151 return -EOPNOTSUPP;
5152 }
5153
5154 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5155 {
5156 return -EOPNOTSUPP;
5157 }
5158
5159 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5160 struct io_comp_state *cs)
5161 {
5162 return -EOPNOTSUPP;
5163 }
5164 #endif /* CONFIG_NET */
5165
5166 struct io_poll_table {
5167 struct poll_table_struct pt;
5168 struct io_kiocb *req;
5169 int nr_entries;
5170 int error;
5171 };
5172
5173 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5174 __poll_t mask, task_work_func_t func)
5175 {
5176 int ret;
5177
5178 /* for instances that support it check for an event match first: */
5179 if (mask && !(mask & poll->events))
5180 return 0;
5181
5182 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5183
5184 list_del_init(&poll->wait.entry);
5185
5186 req->result = mask;
5187 init_task_work(&req->task_work, func);
5188 percpu_ref_get(&req->ctx->refs);
5189
5190 /*
5191 * If this fails, then the task is exiting. When a task exits, the
5192 * work gets canceled, so just cancel this request as well instead
5193 * of executing it. We can't safely execute it anyway, as we may not
5194 * have the needed state needed for it anyway.
5195 */
5196 ret = io_req_task_work_add(req);
5197 if (unlikely(ret)) {
5198 WRITE_ONCE(poll->canceled, true);
5199 io_req_task_work_add_fallback(req, func);
5200 }
5201 return 1;
5202 }
5203
5204 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5205 __acquires(&req->ctx->completion_lock)
5206 {
5207 struct io_ring_ctx *ctx = req->ctx;
5208
5209 if (!req->result && !READ_ONCE(poll->canceled)) {
5210 struct poll_table_struct pt = { ._key = poll->events };
5211
5212 req->result = vfs_poll(req->file, &pt) & poll->events;
5213 }
5214
5215 spin_lock_irq(&ctx->completion_lock);
5216 if (!req->result && !READ_ONCE(poll->canceled)) {
5217 add_wait_queue(poll->head, &poll->wait);
5218 return true;
5219 }
5220
5221 return false;
5222 }
5223
5224 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5225 {
5226 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5227 if (req->opcode == IORING_OP_POLL_ADD)
5228 return req->async_data;
5229 return req->apoll->double_poll;
5230 }
5231
5232 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5233 {
5234 if (req->opcode == IORING_OP_POLL_ADD)
5235 return &req->poll;
5236 return &req->apoll->poll;
5237 }
5238
5239 static void io_poll_remove_double(struct io_kiocb *req)
5240 {
5241 struct io_poll_iocb *poll = io_poll_get_double(req);
5242
5243 lockdep_assert_held(&req->ctx->completion_lock);
5244
5245 if (poll && poll->head) {
5246 struct wait_queue_head *head = poll->head;
5247
5248 spin_lock(&head->lock);
5249 list_del_init(&poll->wait.entry);
5250 if (poll->wait.private)
5251 refcount_dec(&req->refs);
5252 poll->head = NULL;
5253 spin_unlock(&head->lock);
5254 }
5255 }
5256
5257 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5258 {
5259 struct io_ring_ctx *ctx = req->ctx;
5260
5261 io_poll_remove_double(req);
5262 req->poll.done = true;
5263 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5264 io_commit_cqring(ctx);
5265 }
5266
5267 static void io_poll_task_func(struct callback_head *cb)
5268 {
5269 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5270 struct io_ring_ctx *ctx = req->ctx;
5271 struct io_kiocb *nxt;
5272
5273 if (io_poll_rewait(req, &req->poll)) {
5274 spin_unlock_irq(&ctx->completion_lock);
5275 } else {
5276 hash_del(&req->hash_node);
5277 io_poll_complete(req, req->result, 0);
5278 spin_unlock_irq(&ctx->completion_lock);
5279
5280 nxt = io_put_req_find_next(req);
5281 io_cqring_ev_posted(ctx);
5282 if (nxt)
5283 __io_req_task_submit(nxt);
5284 }
5285
5286 percpu_ref_put(&ctx->refs);
5287 }
5288
5289 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5290 int sync, void *key)
5291 {
5292 struct io_kiocb *req = wait->private;
5293 struct io_poll_iocb *poll = io_poll_get_single(req);
5294 __poll_t mask = key_to_poll(key);
5295
5296 /* for instances that support it check for an event match first: */
5297 if (mask && !(mask & poll->events))
5298 return 0;
5299
5300 list_del_init(&wait->entry);
5301
5302 if (poll && poll->head) {
5303 bool done;
5304
5305 spin_lock(&poll->head->lock);
5306 done = list_empty(&poll->wait.entry);
5307 if (!done)
5308 list_del_init(&poll->wait.entry);
5309 /* make sure double remove sees this as being gone */
5310 wait->private = NULL;
5311 spin_unlock(&poll->head->lock);
5312 if (!done) {
5313 /* use wait func handler, so it matches the rq type */
5314 poll->wait.func(&poll->wait, mode, sync, key);
5315 }
5316 }
5317 refcount_dec(&req->refs);
5318 return 1;
5319 }
5320
5321 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5322 wait_queue_func_t wake_func)
5323 {
5324 poll->head = NULL;
5325 poll->done = false;
5326 poll->canceled = false;
5327 poll->events = events;
5328 INIT_LIST_HEAD(&poll->wait.entry);
5329 init_waitqueue_func_entry(&poll->wait, wake_func);
5330 }
5331
5332 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5333 struct wait_queue_head *head,
5334 struct io_poll_iocb **poll_ptr)
5335 {
5336 struct io_kiocb *req = pt->req;
5337
5338 /*
5339 * The file being polled uses multiple waitqueues for poll handling
5340 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5341 * if this happens.
5342 */
5343 if (unlikely(pt->nr_entries)) {
5344 struct io_poll_iocb *poll_one = poll;
5345
5346 /* already have a 2nd entry, fail a third attempt */
5347 if (*poll_ptr) {
5348 pt->error = -EINVAL;
5349 return;
5350 }
5351 /* double add on the same waitqueue head, ignore */
5352 if (poll->head == head)
5353 return;
5354 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5355 if (!poll) {
5356 pt->error = -ENOMEM;
5357 return;
5358 }
5359 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5360 refcount_inc(&req->refs);
5361 poll->wait.private = req;
5362 *poll_ptr = poll;
5363 }
5364
5365 pt->nr_entries++;
5366 poll->head = head;
5367
5368 if (poll->events & EPOLLEXCLUSIVE)
5369 add_wait_queue_exclusive(head, &poll->wait);
5370 else
5371 add_wait_queue(head, &poll->wait);
5372 }
5373
5374 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5375 struct poll_table_struct *p)
5376 {
5377 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5378 struct async_poll *apoll = pt->req->apoll;
5379
5380 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5381 }
5382
5383 static void io_async_task_func(struct callback_head *cb)
5384 {
5385 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5386 struct async_poll *apoll = req->apoll;
5387 struct io_ring_ctx *ctx = req->ctx;
5388
5389 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5390
5391 if (io_poll_rewait(req, &apoll->poll)) {
5392 spin_unlock_irq(&ctx->completion_lock);
5393 percpu_ref_put(&ctx->refs);
5394 return;
5395 }
5396
5397 /* If req is still hashed, it cannot have been canceled. Don't check. */
5398 if (hash_hashed(&req->hash_node))
5399 hash_del(&req->hash_node);
5400
5401 io_poll_remove_double(req);
5402 spin_unlock_irq(&ctx->completion_lock);
5403
5404 if (!READ_ONCE(apoll->poll.canceled))
5405 __io_req_task_submit(req);
5406 else
5407 __io_req_task_cancel(req, -ECANCELED);
5408
5409 percpu_ref_put(&ctx->refs);
5410 kfree(apoll->double_poll);
5411 kfree(apoll);
5412 }
5413
5414 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5415 void *key)
5416 {
5417 struct io_kiocb *req = wait->private;
5418 struct io_poll_iocb *poll = &req->apoll->poll;
5419
5420 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5421 key_to_poll(key));
5422
5423 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5424 }
5425
5426 static void io_poll_req_insert(struct io_kiocb *req)
5427 {
5428 struct io_ring_ctx *ctx = req->ctx;
5429 struct hlist_head *list;
5430
5431 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5432 hlist_add_head(&req->hash_node, list);
5433 }
5434
5435 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5436 struct io_poll_iocb *poll,
5437 struct io_poll_table *ipt, __poll_t mask,
5438 wait_queue_func_t wake_func)
5439 __acquires(&ctx->completion_lock)
5440 {
5441 struct io_ring_ctx *ctx = req->ctx;
5442 bool cancel = false;
5443
5444 INIT_HLIST_NODE(&req->hash_node);
5445 io_init_poll_iocb(poll, mask, wake_func);
5446 poll->file = req->file;
5447 poll->wait.private = req;
5448
5449 ipt->pt._key = mask;
5450 ipt->req = req;
5451 ipt->error = 0;
5452 ipt->nr_entries = 0;
5453
5454 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5455 if (unlikely(!ipt->nr_entries) && !ipt->error)
5456 ipt->error = -EINVAL;
5457
5458 spin_lock_irq(&ctx->completion_lock);
5459 if (ipt->error)
5460 io_poll_remove_double(req);
5461 if (likely(poll->head)) {
5462 spin_lock(&poll->head->lock);
5463 if (unlikely(list_empty(&poll->wait.entry))) {
5464 if (ipt->error)
5465 cancel = true;
5466 ipt->error = 0;
5467 mask = 0;
5468 }
5469 if (mask || ipt->error)
5470 list_del_init(&poll->wait.entry);
5471 else if (cancel)
5472 WRITE_ONCE(poll->canceled, true);
5473 else if (!poll->done) /* actually waiting for an event */
5474 io_poll_req_insert(req);
5475 spin_unlock(&poll->head->lock);
5476 }
5477
5478 return mask;
5479 }
5480
5481 static bool io_arm_poll_handler(struct io_kiocb *req)
5482 {
5483 const struct io_op_def *def = &io_op_defs[req->opcode];
5484 struct io_ring_ctx *ctx = req->ctx;
5485 struct async_poll *apoll;
5486 struct io_poll_table ipt;
5487 __poll_t mask, ret;
5488 int rw;
5489
5490 if (!req->file || !file_can_poll(req->file))
5491 return false;
5492 if (req->flags & REQ_F_POLLED)
5493 return false;
5494 if (def->pollin)
5495 rw = READ;
5496 else if (def->pollout)
5497 rw = WRITE;
5498 else
5499 return false;
5500 /* if we can't nonblock try, then no point in arming a poll handler */
5501 if (!io_file_supports_async(req->file, rw))
5502 return false;
5503
5504 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5505 if (unlikely(!apoll))
5506 return false;
5507 apoll->double_poll = NULL;
5508
5509 req->flags |= REQ_F_POLLED;
5510 req->apoll = apoll;
5511
5512 mask = 0;
5513 if (def->pollin)
5514 mask |= POLLIN | POLLRDNORM;
5515 if (def->pollout)
5516 mask |= POLLOUT | POLLWRNORM;
5517
5518 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5519 if ((req->opcode == IORING_OP_RECVMSG) &&
5520 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5521 mask &= ~POLLIN;
5522
5523 mask |= POLLERR | POLLPRI;
5524
5525 ipt.pt._qproc = io_async_queue_proc;
5526
5527 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5528 io_async_wake);
5529 if (ret || ipt.error) {
5530 io_poll_remove_double(req);
5531 spin_unlock_irq(&ctx->completion_lock);
5532 kfree(apoll->double_poll);
5533 kfree(apoll);
5534 return false;
5535 }
5536 spin_unlock_irq(&ctx->completion_lock);
5537 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5538 apoll->poll.events);
5539 return true;
5540 }
5541
5542 static bool __io_poll_remove_one(struct io_kiocb *req,
5543 struct io_poll_iocb *poll)
5544 {
5545 bool do_complete = false;
5546
5547 spin_lock(&poll->head->lock);
5548 WRITE_ONCE(poll->canceled, true);
5549 if (!list_empty(&poll->wait.entry)) {
5550 list_del_init(&poll->wait.entry);
5551 do_complete = true;
5552 }
5553 spin_unlock(&poll->head->lock);
5554 hash_del(&req->hash_node);
5555 return do_complete;
5556 }
5557
5558 static bool io_poll_remove_one(struct io_kiocb *req)
5559 {
5560 bool do_complete;
5561
5562 io_poll_remove_double(req);
5563
5564 if (req->opcode == IORING_OP_POLL_ADD) {
5565 do_complete = __io_poll_remove_one(req, &req->poll);
5566 } else {
5567 struct async_poll *apoll = req->apoll;
5568
5569 /* non-poll requests have submit ref still */
5570 do_complete = __io_poll_remove_one(req, &apoll->poll);
5571 if (do_complete) {
5572 io_put_req(req);
5573 kfree(apoll->double_poll);
5574 kfree(apoll);
5575 }
5576 }
5577
5578 if (do_complete) {
5579 io_cqring_fill_event(req, -ECANCELED);
5580 io_commit_cqring(req->ctx);
5581 req_set_fail_links(req);
5582 io_put_req_deferred(req, 1);
5583 }
5584
5585 return do_complete;
5586 }
5587
5588 /*
5589 * Returns true if we found and killed one or more poll requests
5590 */
5591 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5592 struct files_struct *files)
5593 {
5594 struct hlist_node *tmp;
5595 struct io_kiocb *req;
5596 int posted = 0, i;
5597
5598 spin_lock_irq(&ctx->completion_lock);
5599 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5600 struct hlist_head *list;
5601
5602 list = &ctx->cancel_hash[i];
5603 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5604 if (io_match_task(req, tsk, files))
5605 posted += io_poll_remove_one(req);
5606 }
5607 }
5608 spin_unlock_irq(&ctx->completion_lock);
5609
5610 if (posted)
5611 io_cqring_ev_posted(ctx);
5612
5613 return posted != 0;
5614 }
5615
5616 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5617 {
5618 struct hlist_head *list;
5619 struct io_kiocb *req;
5620
5621 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5622 hlist_for_each_entry(req, list, hash_node) {
5623 if (sqe_addr != req->user_data)
5624 continue;
5625 if (io_poll_remove_one(req))
5626 return 0;
5627 return -EALREADY;
5628 }
5629
5630 return -ENOENT;
5631 }
5632
5633 static int io_poll_remove_prep(struct io_kiocb *req,
5634 const struct io_uring_sqe *sqe)
5635 {
5636 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5637 return -EINVAL;
5638 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5639 sqe->poll_events)
5640 return -EINVAL;
5641
5642 req->poll_remove.addr = READ_ONCE(sqe->addr);
5643 return 0;
5644 }
5645
5646 /*
5647 * Find a running poll command that matches one specified in sqe->addr,
5648 * and remove it if found.
5649 */
5650 static int io_poll_remove(struct io_kiocb *req)
5651 {
5652 struct io_ring_ctx *ctx = req->ctx;
5653 int ret;
5654
5655 spin_lock_irq(&ctx->completion_lock);
5656 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5657 spin_unlock_irq(&ctx->completion_lock);
5658
5659 if (ret < 0)
5660 req_set_fail_links(req);
5661 io_req_complete(req, ret);
5662 return 0;
5663 }
5664
5665 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5666 void *key)
5667 {
5668 struct io_kiocb *req = wait->private;
5669 struct io_poll_iocb *poll = &req->poll;
5670
5671 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5672 }
5673
5674 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5675 struct poll_table_struct *p)
5676 {
5677 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5678
5679 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5680 }
5681
5682 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5683 {
5684 struct io_poll_iocb *poll = &req->poll;
5685 u32 events;
5686
5687 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5688 return -EINVAL;
5689 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5690 return -EINVAL;
5691
5692 events = READ_ONCE(sqe->poll32_events);
5693 #ifdef __BIG_ENDIAN
5694 events = swahw32(events);
5695 #endif
5696 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5697 (events & EPOLLEXCLUSIVE);
5698 return 0;
5699 }
5700
5701 static int io_poll_add(struct io_kiocb *req)
5702 {
5703 struct io_poll_iocb *poll = &req->poll;
5704 struct io_ring_ctx *ctx = req->ctx;
5705 struct io_poll_table ipt;
5706 __poll_t mask;
5707
5708 ipt.pt._qproc = io_poll_queue_proc;
5709
5710 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5711 io_poll_wake);
5712
5713 if (mask) { /* no async, we'd stolen it */
5714 ipt.error = 0;
5715 io_poll_complete(req, mask, 0);
5716 }
5717 spin_unlock_irq(&ctx->completion_lock);
5718
5719 if (mask) {
5720 io_cqring_ev_posted(ctx);
5721 io_put_req(req);
5722 }
5723 return ipt.error;
5724 }
5725
5726 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5727 {
5728 struct io_timeout_data *data = container_of(timer,
5729 struct io_timeout_data, timer);
5730 struct io_kiocb *req = data->req;
5731 struct io_ring_ctx *ctx = req->ctx;
5732 unsigned long flags;
5733
5734 spin_lock_irqsave(&ctx->completion_lock, flags);
5735 list_del_init(&req->timeout.list);
5736 atomic_set(&req->ctx->cq_timeouts,
5737 atomic_read(&req->ctx->cq_timeouts) + 1);
5738
5739 io_cqring_fill_event(req, -ETIME);
5740 io_commit_cqring(ctx);
5741 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5742
5743 io_cqring_ev_posted(ctx);
5744 req_set_fail_links(req);
5745 io_put_req(req);
5746 return HRTIMER_NORESTART;
5747 }
5748
5749 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5750 __u64 user_data)
5751 {
5752 struct io_timeout_data *io;
5753 struct io_kiocb *req;
5754 int ret = -ENOENT;
5755
5756 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5757 if (user_data == req->user_data) {
5758 ret = 0;
5759 break;
5760 }
5761 }
5762
5763 if (ret == -ENOENT)
5764 return ERR_PTR(ret);
5765
5766 io = req->async_data;
5767 ret = hrtimer_try_to_cancel(&io->timer);
5768 if (ret == -1)
5769 return ERR_PTR(-EALREADY);
5770 list_del_init(&req->timeout.list);
5771 return req;
5772 }
5773
5774 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5775 {
5776 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5777
5778 if (IS_ERR(req))
5779 return PTR_ERR(req);
5780
5781 req_set_fail_links(req);
5782 io_cqring_fill_event(req, -ECANCELED);
5783 io_put_req_deferred(req, 1);
5784 return 0;
5785 }
5786
5787 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5788 struct timespec64 *ts, enum hrtimer_mode mode)
5789 {
5790 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5791 struct io_timeout_data *data;
5792
5793 if (IS_ERR(req))
5794 return PTR_ERR(req);
5795
5796 req->timeout.off = 0; /* noseq */
5797 data = req->async_data;
5798 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5799 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5800 data->timer.function = io_timeout_fn;
5801 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5802 return 0;
5803 }
5804
5805 static int io_timeout_remove_prep(struct io_kiocb *req,
5806 const struct io_uring_sqe *sqe)
5807 {
5808 struct io_timeout_rem *tr = &req->timeout_rem;
5809
5810 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5811 return -EINVAL;
5812 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5813 return -EINVAL;
5814 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
5815 return -EINVAL;
5816
5817 tr->addr = READ_ONCE(sqe->addr);
5818 tr->flags = READ_ONCE(sqe->timeout_flags);
5819 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5820 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5821 return -EINVAL;
5822 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5823 return -EFAULT;
5824 } else if (tr->flags) {
5825 /* timeout removal doesn't support flags */
5826 return -EINVAL;
5827 }
5828
5829 return 0;
5830 }
5831
5832 /*
5833 * Remove or update an existing timeout command
5834 */
5835 static int io_timeout_remove(struct io_kiocb *req)
5836 {
5837 struct io_timeout_rem *tr = &req->timeout_rem;
5838 struct io_ring_ctx *ctx = req->ctx;
5839 int ret;
5840
5841 spin_lock_irq(&ctx->completion_lock);
5842 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5843 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5844 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5845
5846 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5847 } else {
5848 ret = io_timeout_cancel(ctx, tr->addr);
5849 }
5850
5851 io_cqring_fill_event(req, ret);
5852 io_commit_cqring(ctx);
5853 spin_unlock_irq(&ctx->completion_lock);
5854 io_cqring_ev_posted(ctx);
5855 if (ret < 0)
5856 req_set_fail_links(req);
5857 io_put_req(req);
5858 return 0;
5859 }
5860
5861 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5862 bool is_timeout_link)
5863 {
5864 struct io_timeout_data *data;
5865 unsigned flags;
5866 u32 off = READ_ONCE(sqe->off);
5867
5868 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5869 return -EINVAL;
5870 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
5871 sqe->splice_fd_in)
5872 return -EINVAL;
5873 if (off && is_timeout_link)
5874 return -EINVAL;
5875 flags = READ_ONCE(sqe->timeout_flags);
5876 if (flags & ~IORING_TIMEOUT_ABS)
5877 return -EINVAL;
5878
5879 req->timeout.off = off;
5880
5881 if (!req->async_data && io_alloc_async_data(req))
5882 return -ENOMEM;
5883
5884 data = req->async_data;
5885 data->req = req;
5886
5887 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5888 return -EFAULT;
5889
5890 if (flags & IORING_TIMEOUT_ABS)
5891 data->mode = HRTIMER_MODE_ABS;
5892 else
5893 data->mode = HRTIMER_MODE_REL;
5894
5895 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5896 return 0;
5897 }
5898
5899 static int io_timeout(struct io_kiocb *req)
5900 {
5901 struct io_ring_ctx *ctx = req->ctx;
5902 struct io_timeout_data *data = req->async_data;
5903 struct list_head *entry;
5904 u32 tail, off = req->timeout.off;
5905
5906 spin_lock_irq(&ctx->completion_lock);
5907
5908 /*
5909 * sqe->off holds how many events that need to occur for this
5910 * timeout event to be satisfied. If it isn't set, then this is
5911 * a pure timeout request, sequence isn't used.
5912 */
5913 if (io_is_timeout_noseq(req)) {
5914 entry = ctx->timeout_list.prev;
5915 goto add;
5916 }
5917
5918 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5919 req->timeout.target_seq = tail + off;
5920
5921 /* Update the last seq here in case io_flush_timeouts() hasn't.
5922 * This is safe because ->completion_lock is held, and submissions
5923 * and completions are never mixed in the same ->completion_lock section.
5924 */
5925 ctx->cq_last_tm_flush = tail;
5926
5927 /*
5928 * Insertion sort, ensuring the first entry in the list is always
5929 * the one we need first.
5930 */
5931 list_for_each_prev(entry, &ctx->timeout_list) {
5932 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5933 timeout.list);
5934
5935 if (io_is_timeout_noseq(nxt))
5936 continue;
5937 /* nxt.seq is behind @tail, otherwise would've been completed */
5938 if (off >= nxt->timeout.target_seq - tail)
5939 break;
5940 }
5941 add:
5942 list_add(&req->timeout.list, entry);
5943 data->timer.function = io_timeout_fn;
5944 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5945 spin_unlock_irq(&ctx->completion_lock);
5946 return 0;
5947 }
5948
5949 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5950 {
5951 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5952
5953 return req->user_data == (unsigned long) data;
5954 }
5955
5956 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5957 {
5958 enum io_wq_cancel cancel_ret;
5959 int ret = 0;
5960
5961 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5962 switch (cancel_ret) {
5963 case IO_WQ_CANCEL_OK:
5964 ret = 0;
5965 break;
5966 case IO_WQ_CANCEL_RUNNING:
5967 ret = -EALREADY;
5968 break;
5969 case IO_WQ_CANCEL_NOTFOUND:
5970 ret = -ENOENT;
5971 break;
5972 }
5973
5974 return ret;
5975 }
5976
5977 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5978 struct io_kiocb *req, __u64 sqe_addr,
5979 int success_ret)
5980 {
5981 unsigned long flags;
5982 int ret;
5983
5984 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5985 if (ret != -ENOENT) {
5986 spin_lock_irqsave(&ctx->completion_lock, flags);
5987 goto done;
5988 }
5989
5990 spin_lock_irqsave(&ctx->completion_lock, flags);
5991 ret = io_timeout_cancel(ctx, sqe_addr);
5992 if (ret != -ENOENT)
5993 goto done;
5994 ret = io_poll_cancel(ctx, sqe_addr);
5995 done:
5996 if (!ret)
5997 ret = success_ret;
5998 io_cqring_fill_event(req, ret);
5999 io_commit_cqring(ctx);
6000 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6001 io_cqring_ev_posted(ctx);
6002
6003 if (ret < 0)
6004 req_set_fail_links(req);
6005 io_put_req(req);
6006 }
6007
6008 static int io_async_cancel_prep(struct io_kiocb *req,
6009 const struct io_uring_sqe *sqe)
6010 {
6011 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6012 return -EINVAL;
6013 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6014 return -EINVAL;
6015 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6016 sqe->splice_fd_in)
6017 return -EINVAL;
6018
6019 req->cancel.addr = READ_ONCE(sqe->addr);
6020 return 0;
6021 }
6022
6023 static int io_async_cancel(struct io_kiocb *req)
6024 {
6025 struct io_ring_ctx *ctx = req->ctx;
6026
6027 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
6028 return 0;
6029 }
6030
6031 static int io_files_update_prep(struct io_kiocb *req,
6032 const struct io_uring_sqe *sqe)
6033 {
6034 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
6035 return -EINVAL;
6036 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6037 return -EINVAL;
6038 if (sqe->ioprio || sqe->rw_flags)
6039 return -EINVAL;
6040
6041 req->files_update.offset = READ_ONCE(sqe->off);
6042 req->files_update.nr_args = READ_ONCE(sqe->len);
6043 if (!req->files_update.nr_args)
6044 return -EINVAL;
6045 req->files_update.arg = READ_ONCE(sqe->addr);
6046 return 0;
6047 }
6048
6049 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
6050 struct io_comp_state *cs)
6051 {
6052 struct io_ring_ctx *ctx = req->ctx;
6053 struct io_uring_files_update up;
6054 int ret;
6055
6056 if (force_nonblock)
6057 return -EAGAIN;
6058
6059 up.offset = req->files_update.offset;
6060 up.fds = req->files_update.arg;
6061
6062 mutex_lock(&ctx->uring_lock);
6063 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
6064 mutex_unlock(&ctx->uring_lock);
6065
6066 if (ret < 0)
6067 req_set_fail_links(req);
6068 __io_req_complete(req, ret, 0, cs);
6069 return 0;
6070 }
6071
6072 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6073 {
6074 switch (req->opcode) {
6075 case IORING_OP_NOP:
6076 return 0;
6077 case IORING_OP_READV:
6078 case IORING_OP_READ_FIXED:
6079 case IORING_OP_READ:
6080 return io_read_prep(req, sqe);
6081 case IORING_OP_WRITEV:
6082 case IORING_OP_WRITE_FIXED:
6083 case IORING_OP_WRITE:
6084 return io_write_prep(req, sqe);
6085 case IORING_OP_POLL_ADD:
6086 return io_poll_add_prep(req, sqe);
6087 case IORING_OP_POLL_REMOVE:
6088 return io_poll_remove_prep(req, sqe);
6089 case IORING_OP_FSYNC:
6090 return io_prep_fsync(req, sqe);
6091 case IORING_OP_SYNC_FILE_RANGE:
6092 return io_prep_sfr(req, sqe);
6093 case IORING_OP_SENDMSG:
6094 case IORING_OP_SEND:
6095 return io_sendmsg_prep(req, sqe);
6096 case IORING_OP_RECVMSG:
6097 case IORING_OP_RECV:
6098 return io_recvmsg_prep(req, sqe);
6099 case IORING_OP_CONNECT:
6100 return io_connect_prep(req, sqe);
6101 case IORING_OP_TIMEOUT:
6102 return io_timeout_prep(req, sqe, false);
6103 case IORING_OP_TIMEOUT_REMOVE:
6104 return io_timeout_remove_prep(req, sqe);
6105 case IORING_OP_ASYNC_CANCEL:
6106 return io_async_cancel_prep(req, sqe);
6107 case IORING_OP_LINK_TIMEOUT:
6108 return io_timeout_prep(req, sqe, true);
6109 case IORING_OP_ACCEPT:
6110 return io_accept_prep(req, sqe);
6111 case IORING_OP_FALLOCATE:
6112 return io_fallocate_prep(req, sqe);
6113 case IORING_OP_OPENAT:
6114 return io_openat_prep(req, sqe);
6115 case IORING_OP_CLOSE:
6116 return io_close_prep(req, sqe);
6117 case IORING_OP_FILES_UPDATE:
6118 return io_files_update_prep(req, sqe);
6119 case IORING_OP_STATX:
6120 return io_statx_prep(req, sqe);
6121 case IORING_OP_FADVISE:
6122 return io_fadvise_prep(req, sqe);
6123 case IORING_OP_MADVISE:
6124 return io_madvise_prep(req, sqe);
6125 case IORING_OP_OPENAT2:
6126 return io_openat2_prep(req, sqe);
6127 case IORING_OP_EPOLL_CTL:
6128 return io_epoll_ctl_prep(req, sqe);
6129 case IORING_OP_SPLICE:
6130 return io_splice_prep(req, sqe);
6131 case IORING_OP_PROVIDE_BUFFERS:
6132 return io_provide_buffers_prep(req, sqe);
6133 case IORING_OP_REMOVE_BUFFERS:
6134 return io_remove_buffers_prep(req, sqe);
6135 case IORING_OP_TEE:
6136 return io_tee_prep(req, sqe);
6137 case IORING_OP_SHUTDOWN:
6138 return io_shutdown_prep(req, sqe);
6139 case IORING_OP_RENAMEAT:
6140 return io_renameat_prep(req, sqe);
6141 case IORING_OP_UNLINKAT:
6142 return io_unlinkat_prep(req, sqe);
6143 }
6144
6145 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6146 req->opcode);
6147 return-EINVAL;
6148 }
6149
6150 static int io_req_defer_prep(struct io_kiocb *req,
6151 const struct io_uring_sqe *sqe)
6152 {
6153 if (!sqe)
6154 return 0;
6155 if (io_alloc_async_data(req))
6156 return -EAGAIN;
6157 return io_req_prep(req, sqe);
6158 }
6159
6160 static u32 io_get_sequence(struct io_kiocb *req)
6161 {
6162 struct io_kiocb *pos;
6163 struct io_ring_ctx *ctx = req->ctx;
6164 u32 total_submitted, nr_reqs = 0;
6165
6166 io_for_each_link(pos, req)
6167 nr_reqs++;
6168
6169 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6170 return total_submitted - nr_reqs;
6171 }
6172
6173 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6174 {
6175 struct io_ring_ctx *ctx = req->ctx;
6176 struct io_defer_entry *de;
6177 int ret;
6178 u32 seq;
6179
6180 /* Still need defer if there is pending req in defer list. */
6181 if (likely(list_empty_careful(&ctx->defer_list) &&
6182 !(req->flags & REQ_F_IO_DRAIN)))
6183 return 0;
6184
6185 seq = io_get_sequence(req);
6186 /* Still a chance to pass the sequence check */
6187 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6188 return 0;
6189
6190 if (!req->async_data) {
6191 ret = io_req_defer_prep(req, sqe);
6192 if (ret)
6193 return ret;
6194 }
6195 io_prep_async_link(req);
6196 de = kmalloc(sizeof(*de), GFP_KERNEL);
6197 if (!de)
6198 return -ENOMEM;
6199
6200 spin_lock_irq(&ctx->completion_lock);
6201 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6202 spin_unlock_irq(&ctx->completion_lock);
6203 kfree(de);
6204 io_queue_async_work(req);
6205 return -EIOCBQUEUED;
6206 }
6207
6208 trace_io_uring_defer(ctx, req, req->user_data);
6209 de->req = req;
6210 de->seq = seq;
6211 list_add_tail(&de->list, &ctx->defer_list);
6212 spin_unlock_irq(&ctx->completion_lock);
6213 return -EIOCBQUEUED;
6214 }
6215
6216 static void io_req_drop_files(struct io_kiocb *req)
6217 {
6218 struct io_ring_ctx *ctx = req->ctx;
6219 struct io_uring_task *tctx = req->task->io_uring;
6220 unsigned long flags;
6221
6222 if (req->work.flags & IO_WQ_WORK_FILES) {
6223 put_files_struct(req->work.identity->files);
6224 put_nsproxy(req->work.identity->nsproxy);
6225 }
6226 spin_lock_irqsave(&ctx->inflight_lock, flags);
6227 list_del(&req->inflight_entry);
6228 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6229 req->flags &= ~REQ_F_INFLIGHT;
6230 req->work.flags &= ~IO_WQ_WORK_FILES;
6231 if (atomic_read(&tctx->in_idle))
6232 wake_up(&tctx->wait);
6233 }
6234
6235 static void __io_clean_op(struct io_kiocb *req)
6236 {
6237 if (req->flags & REQ_F_BUFFER_SELECTED) {
6238 switch (req->opcode) {
6239 case IORING_OP_READV:
6240 case IORING_OP_READ_FIXED:
6241 case IORING_OP_READ:
6242 kfree((void *)(unsigned long)req->rw.addr);
6243 break;
6244 case IORING_OP_RECVMSG:
6245 case IORING_OP_RECV:
6246 kfree(req->sr_msg.kbuf);
6247 break;
6248 }
6249 req->flags &= ~REQ_F_BUFFER_SELECTED;
6250 }
6251
6252 if (req->flags & REQ_F_NEED_CLEANUP) {
6253 switch (req->opcode) {
6254 case IORING_OP_READV:
6255 case IORING_OP_READ_FIXED:
6256 case IORING_OP_READ:
6257 case IORING_OP_WRITEV:
6258 case IORING_OP_WRITE_FIXED:
6259 case IORING_OP_WRITE: {
6260 struct io_async_rw *io = req->async_data;
6261 if (io->free_iovec)
6262 kfree(io->free_iovec);
6263 break;
6264 }
6265 case IORING_OP_RECVMSG:
6266 case IORING_OP_SENDMSG: {
6267 struct io_async_msghdr *io = req->async_data;
6268 if (io->iov != io->fast_iov)
6269 kfree(io->iov);
6270 break;
6271 }
6272 case IORING_OP_SPLICE:
6273 case IORING_OP_TEE:
6274 io_put_file(req, req->splice.file_in,
6275 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6276 break;
6277 case IORING_OP_OPENAT:
6278 case IORING_OP_OPENAT2:
6279 if (req->open.filename)
6280 putname(req->open.filename);
6281 break;
6282 case IORING_OP_RENAMEAT:
6283 putname(req->rename.oldpath);
6284 putname(req->rename.newpath);
6285 break;
6286 case IORING_OP_UNLINKAT:
6287 putname(req->unlink.filename);
6288 break;
6289 }
6290 req->flags &= ~REQ_F_NEED_CLEANUP;
6291 }
6292 }
6293
6294 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6295 struct io_comp_state *cs)
6296 {
6297 struct io_ring_ctx *ctx = req->ctx;
6298 int ret;
6299
6300 switch (req->opcode) {
6301 case IORING_OP_NOP:
6302 ret = io_nop(req, cs);
6303 break;
6304 case IORING_OP_READV:
6305 case IORING_OP_READ_FIXED:
6306 case IORING_OP_READ:
6307 ret = io_read(req, force_nonblock, cs);
6308 break;
6309 case IORING_OP_WRITEV:
6310 case IORING_OP_WRITE_FIXED:
6311 case IORING_OP_WRITE:
6312 ret = io_write(req, force_nonblock, cs);
6313 break;
6314 case IORING_OP_FSYNC:
6315 ret = io_fsync(req, force_nonblock);
6316 break;
6317 case IORING_OP_POLL_ADD:
6318 ret = io_poll_add(req);
6319 break;
6320 case IORING_OP_POLL_REMOVE:
6321 ret = io_poll_remove(req);
6322 break;
6323 case IORING_OP_SYNC_FILE_RANGE:
6324 ret = io_sync_file_range(req, force_nonblock);
6325 break;
6326 case IORING_OP_SENDMSG:
6327 ret = io_sendmsg(req, force_nonblock, cs);
6328 break;
6329 case IORING_OP_SEND:
6330 ret = io_send(req, force_nonblock, cs);
6331 break;
6332 case IORING_OP_RECVMSG:
6333 ret = io_recvmsg(req, force_nonblock, cs);
6334 break;
6335 case IORING_OP_RECV:
6336 ret = io_recv(req, force_nonblock, cs);
6337 break;
6338 case IORING_OP_TIMEOUT:
6339 ret = io_timeout(req);
6340 break;
6341 case IORING_OP_TIMEOUT_REMOVE:
6342 ret = io_timeout_remove(req);
6343 break;
6344 case IORING_OP_ACCEPT:
6345 ret = io_accept(req, force_nonblock, cs);
6346 break;
6347 case IORING_OP_CONNECT:
6348 ret = io_connect(req, force_nonblock, cs);
6349 break;
6350 case IORING_OP_ASYNC_CANCEL:
6351 ret = io_async_cancel(req);
6352 break;
6353 case IORING_OP_FALLOCATE:
6354 ret = io_fallocate(req, force_nonblock);
6355 break;
6356 case IORING_OP_OPENAT:
6357 ret = io_openat(req, force_nonblock);
6358 break;
6359 case IORING_OP_CLOSE:
6360 ret = io_close(req, force_nonblock, cs);
6361 break;
6362 case IORING_OP_FILES_UPDATE:
6363 ret = io_files_update(req, force_nonblock, cs);
6364 break;
6365 case IORING_OP_STATX:
6366 ret = io_statx(req, force_nonblock);
6367 break;
6368 case IORING_OP_FADVISE:
6369 ret = io_fadvise(req, force_nonblock);
6370 break;
6371 case IORING_OP_MADVISE:
6372 ret = io_madvise(req, force_nonblock);
6373 break;
6374 case IORING_OP_OPENAT2:
6375 ret = io_openat2(req, force_nonblock);
6376 break;
6377 case IORING_OP_EPOLL_CTL:
6378 ret = io_epoll_ctl(req, force_nonblock, cs);
6379 break;
6380 case IORING_OP_SPLICE:
6381 ret = io_splice(req, force_nonblock);
6382 break;
6383 case IORING_OP_PROVIDE_BUFFERS:
6384 ret = io_provide_buffers(req, force_nonblock, cs);
6385 break;
6386 case IORING_OP_REMOVE_BUFFERS:
6387 ret = io_remove_buffers(req, force_nonblock, cs);
6388 break;
6389 case IORING_OP_TEE:
6390 ret = io_tee(req, force_nonblock);
6391 break;
6392 case IORING_OP_SHUTDOWN:
6393 ret = io_shutdown(req, force_nonblock);
6394 break;
6395 case IORING_OP_RENAMEAT:
6396 ret = io_renameat(req, force_nonblock);
6397 break;
6398 case IORING_OP_UNLINKAT:
6399 ret = io_unlinkat(req, force_nonblock);
6400 break;
6401 default:
6402 ret = -EINVAL;
6403 break;
6404 }
6405
6406 if (ret)
6407 return ret;
6408
6409 /* If the op doesn't have a file, we're not polling for it */
6410 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6411 const bool in_async = io_wq_current_is_worker();
6412
6413 /* workqueue context doesn't hold uring_lock, grab it now */
6414 if (in_async)
6415 mutex_lock(&ctx->uring_lock);
6416
6417 io_iopoll_req_issued(req, in_async);
6418
6419 if (in_async)
6420 mutex_unlock(&ctx->uring_lock);
6421 }
6422
6423 return 0;
6424 }
6425
6426 static void io_wq_submit_work(struct io_wq_work *work)
6427 {
6428 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6429 struct io_kiocb *timeout;
6430 int ret = 0;
6431
6432 timeout = io_prep_linked_timeout(req);
6433 if (timeout)
6434 io_queue_linked_timeout(timeout);
6435
6436 if (work->flags & IO_WQ_WORK_CANCEL) {
6437 /* io-wq is going to take down one */
6438 refcount_inc(&req->refs);
6439 percpu_ref_get(&req->ctx->refs);
6440 io_req_task_work_add_fallback(req, io_req_task_cancel);
6441 return;
6442 }
6443
6444 if (!ret) {
6445 do {
6446 ret = io_issue_sqe(req, false, NULL);
6447 /*
6448 * We can get EAGAIN for polled IO even though we're
6449 * forcing a sync submission from here, since we can't
6450 * wait for request slots on the block side.
6451 */
6452 if (ret != -EAGAIN)
6453 break;
6454 cond_resched();
6455 } while (1);
6456 }
6457
6458 if (ret) {
6459 struct io_ring_ctx *lock_ctx = NULL;
6460
6461 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6462 lock_ctx = req->ctx;
6463
6464 /*
6465 * io_iopoll_complete() does not hold completion_lock to
6466 * complete polled io, so here for polled io, we can not call
6467 * io_req_complete() directly, otherwise there maybe concurrent
6468 * access to cqring, defer_list, etc, which is not safe. Given
6469 * that io_iopoll_complete() is always called under uring_lock,
6470 * so here for polled io, we also get uring_lock to complete
6471 * it.
6472 */
6473 if (lock_ctx)
6474 mutex_lock(&lock_ctx->uring_lock);
6475
6476 req_set_fail_links(req);
6477 io_req_complete(req, ret);
6478
6479 if (lock_ctx)
6480 mutex_unlock(&lock_ctx->uring_lock);
6481 }
6482 }
6483
6484 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6485 int index)
6486 {
6487 struct fixed_file_table *table;
6488
6489 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6490 return table->files[index & IORING_FILE_TABLE_MASK];
6491 }
6492
6493 static struct file *io_file_get(struct io_submit_state *state,
6494 struct io_kiocb *req, int fd, bool fixed)
6495 {
6496 struct io_ring_ctx *ctx = req->ctx;
6497 struct file *file;
6498
6499 if (fixed) {
6500 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6501 return NULL;
6502 fd = array_index_nospec(fd, ctx->nr_user_files);
6503 file = io_file_from_index(ctx, fd);
6504 io_set_resource_node(req);
6505 } else {
6506 trace_io_uring_file_get(ctx, fd);
6507 file = __io_file_get(state, fd);
6508 }
6509
6510 if (file && file->f_op == &io_uring_fops &&
6511 !(req->flags & REQ_F_INFLIGHT)) {
6512 io_req_init_async(req);
6513 req->flags |= REQ_F_INFLIGHT;
6514
6515 spin_lock_irq(&ctx->inflight_lock);
6516 list_add(&req->inflight_entry, &ctx->inflight_list);
6517 spin_unlock_irq(&ctx->inflight_lock);
6518 }
6519
6520 return file;
6521 }
6522
6523 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6524 {
6525 struct io_timeout_data *data = container_of(timer,
6526 struct io_timeout_data, timer);
6527 struct io_kiocb *prev, *req = data->req;
6528 struct io_ring_ctx *ctx = req->ctx;
6529 unsigned long flags;
6530
6531 spin_lock_irqsave(&ctx->completion_lock, flags);
6532 prev = req->timeout.head;
6533 req->timeout.head = NULL;
6534
6535 /*
6536 * We don't expect the list to be empty, that will only happen if we
6537 * race with the completion of the linked work.
6538 */
6539 if (prev) {
6540 io_remove_next_linked(prev);
6541 if (!refcount_inc_not_zero(&prev->refs))
6542 prev = NULL;
6543 }
6544 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6545
6546 if (prev) {
6547 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6548 io_put_req_deferred(prev, 1);
6549 } else {
6550 io_cqring_add_event(req, -ETIME, 0);
6551 io_put_req_deferred(req, 1);
6552 }
6553 return HRTIMER_NORESTART;
6554 }
6555
6556 static void __io_queue_linked_timeout(struct io_kiocb *req)
6557 {
6558 /*
6559 * If the back reference is NULL, then our linked request finished
6560 * before we got a chance to setup the timer
6561 */
6562 if (req->timeout.head) {
6563 struct io_timeout_data *data = req->async_data;
6564
6565 data->timer.function = io_link_timeout_fn;
6566 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6567 data->mode);
6568 }
6569 }
6570
6571 static void io_queue_linked_timeout(struct io_kiocb *req)
6572 {
6573 struct io_ring_ctx *ctx = req->ctx;
6574
6575 spin_lock_irq(&ctx->completion_lock);
6576 __io_queue_linked_timeout(req);
6577 spin_unlock_irq(&ctx->completion_lock);
6578
6579 /* drop submission reference */
6580 io_put_req(req);
6581 }
6582
6583 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6584 {
6585 struct io_kiocb *nxt = req->link;
6586
6587 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6588 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6589 return NULL;
6590
6591 nxt->timeout.head = req;
6592 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6593 req->flags |= REQ_F_LINK_TIMEOUT;
6594 return nxt;
6595 }
6596
6597 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6598 {
6599 struct io_kiocb *linked_timeout;
6600 const struct cred *old_creds = NULL;
6601 int ret;
6602
6603 again:
6604 linked_timeout = io_prep_linked_timeout(req);
6605
6606 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6607 (req->work.flags & IO_WQ_WORK_CREDS) &&
6608 req->work.identity->creds != current_cred()) {
6609 if (old_creds)
6610 revert_creds(old_creds);
6611 if (old_creds == req->work.identity->creds)
6612 old_creds = NULL; /* restored original creds */
6613 else
6614 old_creds = override_creds(req->work.identity->creds);
6615 }
6616
6617 ret = io_issue_sqe(req, true, cs);
6618
6619 /*
6620 * We async punt it if the file wasn't marked NOWAIT, or if the file
6621 * doesn't support non-blocking read/write attempts
6622 */
6623 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6624 if (!io_arm_poll_handler(req)) {
6625 /*
6626 * Queued up for async execution, worker will release
6627 * submit reference when the iocb is actually submitted.
6628 */
6629 io_queue_async_work(req);
6630 }
6631
6632 if (linked_timeout)
6633 io_queue_linked_timeout(linked_timeout);
6634 } else if (likely(!ret)) {
6635 /* drop submission reference */
6636 req = io_put_req_find_next(req);
6637 if (linked_timeout)
6638 io_queue_linked_timeout(linked_timeout);
6639
6640 if (req) {
6641 if (!(req->flags & REQ_F_FORCE_ASYNC))
6642 goto again;
6643 io_queue_async_work(req);
6644 }
6645 } else {
6646 /* un-prep timeout, so it'll be killed as any other linked */
6647 req->flags &= ~REQ_F_LINK_TIMEOUT;
6648 req_set_fail_links(req);
6649 io_put_req(req);
6650 io_req_complete(req, ret);
6651 }
6652
6653 if (old_creds)
6654 revert_creds(old_creds);
6655 }
6656
6657 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6658 struct io_comp_state *cs)
6659 {
6660 int ret;
6661
6662 ret = io_req_defer(req, sqe);
6663 if (ret) {
6664 if (ret != -EIOCBQUEUED) {
6665 fail_req:
6666 req_set_fail_links(req);
6667 io_put_req(req);
6668 io_req_complete(req, ret);
6669 }
6670 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6671 if (!req->async_data) {
6672 ret = io_req_defer_prep(req, sqe);
6673 if (unlikely(ret))
6674 goto fail_req;
6675 }
6676 io_queue_async_work(req);
6677 } else {
6678 if (sqe) {
6679 ret = io_req_prep(req, sqe);
6680 if (unlikely(ret))
6681 goto fail_req;
6682 }
6683 __io_queue_sqe(req, cs);
6684 }
6685 }
6686
6687 static inline void io_queue_link_head(struct io_kiocb *req,
6688 struct io_comp_state *cs)
6689 {
6690 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6691 io_put_req(req);
6692 io_req_complete(req, -ECANCELED);
6693 } else
6694 io_queue_sqe(req, NULL, cs);
6695 }
6696
6697 struct io_submit_link {
6698 struct io_kiocb *head;
6699 struct io_kiocb *last;
6700 };
6701
6702 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6703 struct io_submit_link *link, struct io_comp_state *cs)
6704 {
6705 struct io_ring_ctx *ctx = req->ctx;
6706 int ret;
6707
6708 /*
6709 * If we already have a head request, queue this one for async
6710 * submittal once the head completes. If we don't have a head but
6711 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6712 * submitted sync once the chain is complete. If none of those
6713 * conditions are true (normal request), then just queue it.
6714 */
6715 if (link->head) {
6716 struct io_kiocb *head = link->head;
6717
6718 /*
6719 * Taking sequential execution of a link, draining both sides
6720 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6721 * requests in the link. So, it drains the head and the
6722 * next after the link request. The last one is done via
6723 * drain_next flag to persist the effect across calls.
6724 */
6725 if (req->flags & REQ_F_IO_DRAIN) {
6726 head->flags |= REQ_F_IO_DRAIN;
6727 ctx->drain_next = 1;
6728 }
6729 ret = io_req_defer_prep(req, sqe);
6730 if (unlikely(ret)) {
6731 /* fail even hard links since we don't submit */
6732 head->flags |= REQ_F_FAIL_LINK;
6733 return ret;
6734 }
6735 trace_io_uring_link(ctx, req, head);
6736 link->last->link = req;
6737 link->last = req;
6738
6739 /* last request of a link, enqueue the link */
6740 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6741 io_queue_link_head(head, cs);
6742 link->head = NULL;
6743 }
6744 } else {
6745 if (unlikely(ctx->drain_next)) {
6746 req->flags |= REQ_F_IO_DRAIN;
6747 ctx->drain_next = 0;
6748 }
6749 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6750 ret = io_req_defer_prep(req, sqe);
6751 if (unlikely(ret))
6752 req->flags |= REQ_F_FAIL_LINK;
6753 link->head = req;
6754 link->last = req;
6755 } else {
6756 io_queue_sqe(req, sqe, cs);
6757 }
6758 }
6759
6760 return 0;
6761 }
6762
6763 /*
6764 * Batched submission is done, ensure local IO is flushed out.
6765 */
6766 static void io_submit_state_end(struct io_submit_state *state)
6767 {
6768 if (!list_empty(&state->comp.list))
6769 io_submit_flush_completions(&state->comp);
6770 if (state->plug_started)
6771 blk_finish_plug(&state->plug);
6772 io_state_file_put(state);
6773 if (state->free_reqs)
6774 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6775 }
6776
6777 /*
6778 * Start submission side cache.
6779 */
6780 static void io_submit_state_start(struct io_submit_state *state,
6781 struct io_ring_ctx *ctx, unsigned int max_ios)
6782 {
6783 state->plug_started = false;
6784 state->comp.nr = 0;
6785 INIT_LIST_HEAD(&state->comp.list);
6786 state->comp.ctx = ctx;
6787 state->free_reqs = 0;
6788 state->file_refs = 0;
6789 state->ios_left = max_ios;
6790 }
6791
6792 static void io_commit_sqring(struct io_ring_ctx *ctx)
6793 {
6794 struct io_rings *rings = ctx->rings;
6795
6796 /*
6797 * Ensure any loads from the SQEs are done at this point,
6798 * since once we write the new head, the application could
6799 * write new data to them.
6800 */
6801 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6802 }
6803
6804 /*
6805 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6806 * that is mapped by userspace. This means that care needs to be taken to
6807 * ensure that reads are stable, as we cannot rely on userspace always
6808 * being a good citizen. If members of the sqe are validated and then later
6809 * used, it's important that those reads are done through READ_ONCE() to
6810 * prevent a re-load down the line.
6811 */
6812 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6813 {
6814 u32 *sq_array = ctx->sq_array;
6815 unsigned head;
6816
6817 /*
6818 * The cached sq head (or cq tail) serves two purposes:
6819 *
6820 * 1) allows us to batch the cost of updating the user visible
6821 * head updates.
6822 * 2) allows the kernel side to track the head on its own, even
6823 * though the application is the one updating it.
6824 */
6825 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6826 if (likely(head < ctx->sq_entries))
6827 return &ctx->sq_sqes[head];
6828
6829 /* drop invalid entries */
6830 ctx->cached_sq_dropped++;
6831 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6832 return NULL;
6833 }
6834
6835 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6836 {
6837 ctx->cached_sq_head++;
6838 }
6839
6840 /*
6841 * Check SQE restrictions (opcode and flags).
6842 *
6843 * Returns 'true' if SQE is allowed, 'false' otherwise.
6844 */
6845 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6846 struct io_kiocb *req,
6847 unsigned int sqe_flags)
6848 {
6849 if (!ctx->restricted)
6850 return true;
6851
6852 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6853 return false;
6854
6855 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6856 ctx->restrictions.sqe_flags_required)
6857 return false;
6858
6859 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6860 ctx->restrictions.sqe_flags_required))
6861 return false;
6862
6863 return true;
6864 }
6865
6866 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6867 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6868 IOSQE_BUFFER_SELECT)
6869
6870 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6871 const struct io_uring_sqe *sqe,
6872 struct io_submit_state *state)
6873 {
6874 unsigned int sqe_flags;
6875 int id, ret;
6876
6877 req->opcode = READ_ONCE(sqe->opcode);
6878 req->user_data = READ_ONCE(sqe->user_data);
6879 req->async_data = NULL;
6880 req->file = NULL;
6881 req->ctx = ctx;
6882 req->flags = 0;
6883 req->link = NULL;
6884 req->fixed_file_refs = NULL;
6885 /* one is dropped after submission, the other at completion */
6886 refcount_set(&req->refs, 2);
6887 req->task = current;
6888 req->result = 0;
6889
6890 if (unlikely(req->opcode >= IORING_OP_LAST))
6891 return -EINVAL;
6892
6893 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6894 return -EFAULT;
6895
6896 sqe_flags = READ_ONCE(sqe->flags);
6897 /* enforce forwards compatibility on users */
6898 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6899 return -EINVAL;
6900
6901 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6902 return -EACCES;
6903
6904 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6905 !io_op_defs[req->opcode].buffer_select)
6906 return -EOPNOTSUPP;
6907
6908 id = READ_ONCE(sqe->personality);
6909 if (id) {
6910 struct io_identity *iod;
6911
6912 iod = xa_load(&ctx->personalities, id);
6913 if (unlikely(!iod))
6914 return -EINVAL;
6915 refcount_inc(&iod->count);
6916
6917 __io_req_init_async(req);
6918 get_cred(iod->creds);
6919 req->work.identity = iod;
6920 req->work.flags |= IO_WQ_WORK_CREDS;
6921 }
6922
6923 /* same numerical values with corresponding REQ_F_*, safe to copy */
6924 req->flags |= sqe_flags;
6925
6926 /*
6927 * Plug now if we have more than 1 IO left after this, and the target
6928 * is potentially a read/write to block based storage.
6929 */
6930 if (!state->plug_started && state->ios_left > 1 &&
6931 io_op_defs[req->opcode].plug) {
6932 blk_start_plug(&state->plug);
6933 state->plug_started = true;
6934 }
6935
6936 ret = 0;
6937 if (io_op_defs[req->opcode].needs_file) {
6938 bool fixed = req->flags & REQ_F_FIXED_FILE;
6939
6940 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6941 if (unlikely(!req->file &&
6942 !io_op_defs[req->opcode].needs_file_no_error))
6943 ret = -EBADF;
6944 }
6945
6946 state->ios_left--;
6947 return ret;
6948 }
6949
6950 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6951 {
6952 struct io_submit_state state;
6953 struct io_submit_link link;
6954 int i, submitted = 0;
6955
6956 /* if we have a backlog and couldn't flush it all, return BUSY */
6957 if (test_bit(0, &ctx->sq_check_overflow)) {
6958 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6959 return -EBUSY;
6960 }
6961
6962 /* make sure SQ entry isn't read before tail */
6963 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6964
6965 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6966 return -EAGAIN;
6967
6968 percpu_counter_add(&current->io_uring->inflight, nr);
6969 refcount_add(nr, &current->usage);
6970
6971 io_submit_state_start(&state, ctx, nr);
6972 link.head = NULL;
6973
6974 for (i = 0; i < nr; i++) {
6975 const struct io_uring_sqe *sqe;
6976 struct io_kiocb *req;
6977 int err;
6978
6979 sqe = io_get_sqe(ctx);
6980 if (unlikely(!sqe)) {
6981 io_consume_sqe(ctx);
6982 break;
6983 }
6984 req = io_alloc_req(ctx, &state);
6985 if (unlikely(!req)) {
6986 if (!submitted)
6987 submitted = -EAGAIN;
6988 break;
6989 }
6990 io_consume_sqe(ctx);
6991 /* will complete beyond this point, count as submitted */
6992 submitted++;
6993
6994 err = io_init_req(ctx, req, sqe, &state);
6995 if (unlikely(err)) {
6996 fail_req:
6997 io_put_req(req);
6998 io_req_complete(req, err);
6999 break;
7000 }
7001
7002 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
7003 true, io_async_submit(ctx));
7004 err = io_submit_sqe(req, sqe, &link, &state.comp);
7005 if (err)
7006 goto fail_req;
7007 }
7008
7009 if (unlikely(submitted != nr)) {
7010 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7011 struct io_uring_task *tctx = current->io_uring;
7012 int unused = nr - ref_used;
7013
7014 percpu_ref_put_many(&ctx->refs, unused);
7015 percpu_counter_sub(&tctx->inflight, unused);
7016 put_task_struct_many(current, unused);
7017 }
7018 if (link.head)
7019 io_queue_link_head(link.head, &state.comp);
7020 io_submit_state_end(&state);
7021
7022 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7023 io_commit_sqring(ctx);
7024
7025 return submitted;
7026 }
7027
7028 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7029 {
7030 /* Tell userspace we may need a wakeup call */
7031 spin_lock_irq(&ctx->completion_lock);
7032 WRITE_ONCE(ctx->rings->sq_flags,
7033 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7034 spin_unlock_irq(&ctx->completion_lock);
7035 }
7036
7037 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7038 {
7039 spin_lock_irq(&ctx->completion_lock);
7040 WRITE_ONCE(ctx->rings->sq_flags,
7041 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7042 spin_unlock_irq(&ctx->completion_lock);
7043 }
7044
7045 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7046 {
7047 unsigned int to_submit;
7048 int ret = 0;
7049
7050 to_submit = io_sqring_entries(ctx);
7051 /* if we're handling multiple rings, cap submit size for fairness */
7052 if (cap_entries && to_submit > 8)
7053 to_submit = 8;
7054
7055 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7056 unsigned nr_events = 0;
7057
7058 mutex_lock(&ctx->uring_lock);
7059 if (!list_empty(&ctx->iopoll_list))
7060 io_do_iopoll(ctx, &nr_events, 0);
7061
7062 if (to_submit && !ctx->sqo_dead &&
7063 likely(!percpu_ref_is_dying(&ctx->refs)))
7064 ret = io_submit_sqes(ctx, to_submit);
7065 mutex_unlock(&ctx->uring_lock);
7066 }
7067
7068 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
7069 wake_up(&ctx->sqo_sq_wait);
7070
7071 return ret;
7072 }
7073
7074 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7075 {
7076 struct io_ring_ctx *ctx;
7077 unsigned sq_thread_idle = 0;
7078
7079 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7080 if (sq_thread_idle < ctx->sq_thread_idle)
7081 sq_thread_idle = ctx->sq_thread_idle;
7082 }
7083
7084 sqd->sq_thread_idle = sq_thread_idle;
7085 }
7086
7087 static void io_sqd_init_new(struct io_sq_data *sqd)
7088 {
7089 struct io_ring_ctx *ctx;
7090
7091 while (!list_empty(&sqd->ctx_new_list)) {
7092 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7093 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7094 complete(&ctx->sq_thread_comp);
7095 }
7096
7097 io_sqd_update_thread_idle(sqd);
7098 }
7099
7100 static int io_sq_thread(void *data)
7101 {
7102 struct cgroup_subsys_state *cur_css = NULL;
7103 struct files_struct *old_files = current->files;
7104 struct nsproxy *old_nsproxy = current->nsproxy;
7105 const struct cred *old_cred = NULL;
7106 struct io_sq_data *sqd = data;
7107 struct io_ring_ctx *ctx;
7108 unsigned long timeout = 0;
7109 DEFINE_WAIT(wait);
7110
7111 task_lock(current);
7112 current->files = NULL;
7113 current->nsproxy = NULL;
7114 task_unlock(current);
7115
7116 while (!kthread_should_stop()) {
7117 int ret;
7118 bool cap_entries, sqt_spin, needs_sched;
7119
7120 /*
7121 * Any changes to the sqd lists are synchronized through the
7122 * kthread parking. This synchronizes the thread vs users,
7123 * the users are synchronized on the sqd->ctx_lock.
7124 */
7125 if (kthread_should_park()) {
7126 kthread_parkme();
7127 /*
7128 * When sq thread is unparked, in case the previous park operation
7129 * comes from io_put_sq_data(), which means that sq thread is going
7130 * to be stopped, so here needs to have a check.
7131 */
7132 if (kthread_should_stop())
7133 break;
7134 }
7135
7136 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7137 io_sqd_init_new(sqd);
7138 timeout = jiffies + sqd->sq_thread_idle;
7139 }
7140
7141 sqt_spin = false;
7142 cap_entries = !list_is_singular(&sqd->ctx_list);
7143 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7144 if (current->cred != ctx->creds) {
7145 if (old_cred)
7146 revert_creds(old_cred);
7147 old_cred = override_creds(ctx->creds);
7148 }
7149 io_sq_thread_associate_blkcg(ctx, &cur_css);
7150 #ifdef CONFIG_AUDIT
7151 current->loginuid = ctx->loginuid;
7152 current->sessionid = ctx->sessionid;
7153 #endif
7154
7155 ret = __io_sq_thread(ctx, cap_entries);
7156 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7157 sqt_spin = true;
7158
7159 io_sq_thread_drop_mm_files();
7160 }
7161
7162 if (sqt_spin || !time_after(jiffies, timeout)) {
7163 io_run_task_work();
7164 io_sq_thread_drop_mm_files();
7165 cond_resched();
7166 if (sqt_spin)
7167 timeout = jiffies + sqd->sq_thread_idle;
7168 continue;
7169 }
7170
7171 if (kthread_should_park())
7172 continue;
7173
7174 needs_sched = true;
7175 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7176 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7177 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7178 !list_empty_careful(&ctx->iopoll_list)) {
7179 needs_sched = false;
7180 break;
7181 }
7182 if (io_sqring_entries(ctx)) {
7183 needs_sched = false;
7184 break;
7185 }
7186 }
7187
7188 if (needs_sched) {
7189 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7190 io_ring_set_wakeup_flag(ctx);
7191
7192 schedule();
7193 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7194 io_ring_clear_wakeup_flag(ctx);
7195 }
7196
7197 finish_wait(&sqd->wait, &wait);
7198 timeout = jiffies + sqd->sq_thread_idle;
7199 }
7200
7201 io_run_task_work();
7202 io_sq_thread_drop_mm_files();
7203
7204 if (cur_css)
7205 io_sq_thread_unassociate_blkcg();
7206 if (old_cred)
7207 revert_creds(old_cred);
7208
7209 task_lock(current);
7210 current->files = old_files;
7211 current->nsproxy = old_nsproxy;
7212 task_unlock(current);
7213
7214 kthread_parkme();
7215
7216 return 0;
7217 }
7218
7219 struct io_wait_queue {
7220 struct wait_queue_entry wq;
7221 struct io_ring_ctx *ctx;
7222 unsigned to_wait;
7223 unsigned nr_timeouts;
7224 };
7225
7226 static inline bool io_should_wake(struct io_wait_queue *iowq)
7227 {
7228 struct io_ring_ctx *ctx = iowq->ctx;
7229
7230 /*
7231 * Wake up if we have enough events, or if a timeout occurred since we
7232 * started waiting. For timeouts, we always want to return to userspace,
7233 * regardless of event count.
7234 */
7235 return io_cqring_events(ctx) >= iowq->to_wait ||
7236 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7237 }
7238
7239 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7240 int wake_flags, void *key)
7241 {
7242 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7243 wq);
7244
7245 /*
7246 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7247 * the task, and the next invocation will do it.
7248 */
7249 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7250 return autoremove_wake_function(curr, mode, wake_flags, key);
7251 return -1;
7252 }
7253
7254 static int io_run_task_work_sig(void)
7255 {
7256 if (io_run_task_work())
7257 return 1;
7258 if (!signal_pending(current))
7259 return 0;
7260 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7261 return -ERESTARTSYS;
7262 return -EINTR;
7263 }
7264
7265 /* when returns >0, the caller should retry */
7266 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7267 struct io_wait_queue *iowq,
7268 signed long *timeout)
7269 {
7270 int ret;
7271
7272 /* make sure we run task_work before checking for signals */
7273 ret = io_run_task_work_sig();
7274 if (ret || io_should_wake(iowq))
7275 return ret;
7276 /* let the caller flush overflows, retry */
7277 if (test_bit(0, &ctx->cq_check_overflow))
7278 return 1;
7279
7280 *timeout = schedule_timeout(*timeout);
7281 return !*timeout ? -ETIME : 1;
7282 }
7283
7284 /*
7285 * Wait until events become available, if we don't already have some. The
7286 * application must reap them itself, as they reside on the shared cq ring.
7287 */
7288 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7289 const sigset_t __user *sig, size_t sigsz,
7290 struct __kernel_timespec __user *uts)
7291 {
7292 struct io_wait_queue iowq = {
7293 .wq = {
7294 .private = current,
7295 .func = io_wake_function,
7296 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7297 },
7298 .ctx = ctx,
7299 .to_wait = min_events,
7300 };
7301 struct io_rings *rings = ctx->rings;
7302 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7303 int ret;
7304
7305 do {
7306 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7307 if (io_cqring_events(ctx) >= min_events)
7308 return 0;
7309 if (!io_run_task_work())
7310 break;
7311 } while (1);
7312
7313 if (sig) {
7314 #ifdef CONFIG_COMPAT
7315 if (in_compat_syscall())
7316 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7317 sigsz);
7318 else
7319 #endif
7320 ret = set_user_sigmask(sig, sigsz);
7321
7322 if (ret)
7323 return ret;
7324 }
7325
7326 if (uts) {
7327 struct timespec64 ts;
7328
7329 if (get_timespec64(&ts, uts))
7330 return -EFAULT;
7331 timeout = timespec64_to_jiffies(&ts);
7332 }
7333
7334 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7335 trace_io_uring_cqring_wait(ctx, min_events);
7336 do {
7337 /* if we can't even flush overflow, don't wait for more */
7338 if (!io_cqring_overflow_flush(ctx, false, NULL, NULL)) {
7339 ret = -EBUSY;
7340 break;
7341 }
7342 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7343 TASK_INTERRUPTIBLE);
7344 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7345 finish_wait(&ctx->wait, &iowq.wq);
7346 cond_resched();
7347 } while (ret > 0);
7348
7349 restore_saved_sigmask_unless(ret == -EINTR);
7350
7351 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7352 }
7353
7354 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7355 {
7356 #if defined(CONFIG_UNIX)
7357 if (ctx->ring_sock) {
7358 struct sock *sock = ctx->ring_sock->sk;
7359 struct sk_buff *skb;
7360
7361 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7362 kfree_skb(skb);
7363 }
7364 #else
7365 int i;
7366
7367 for (i = 0; i < ctx->nr_user_files; i++) {
7368 struct file *file;
7369
7370 file = io_file_from_index(ctx, i);
7371 if (file)
7372 fput(file);
7373 }
7374 #endif
7375 }
7376
7377 static void io_file_ref_kill(struct percpu_ref *ref)
7378 {
7379 struct fixed_file_data *data;
7380
7381 data = container_of(ref, struct fixed_file_data, refs);
7382 complete(&data->done);
7383 }
7384
7385 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7386 struct fixed_file_ref_node *ref_node)
7387 {
7388 spin_lock_bh(&file_data->lock);
7389 file_data->node = ref_node;
7390 list_add_tail(&ref_node->node, &file_data->ref_list);
7391 spin_unlock_bh(&file_data->lock);
7392 percpu_ref_get(&file_data->refs);
7393 }
7394
7395 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7396 {
7397 struct fixed_file_data *data = ctx->file_data;
7398 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7399 unsigned nr_tables, i;
7400 int ret;
7401
7402 if (!data)
7403 return -ENXIO;
7404 backup_node = alloc_fixed_file_ref_node(ctx);
7405 if (!backup_node)
7406 return -ENOMEM;
7407
7408 spin_lock_bh(&data->lock);
7409 ref_node = data->node;
7410 spin_unlock_bh(&data->lock);
7411 if (ref_node)
7412 percpu_ref_kill(&ref_node->refs);
7413
7414 percpu_ref_kill(&data->refs);
7415
7416 /* wait for all refs nodes to complete */
7417 flush_delayed_work(&ctx->file_put_work);
7418 do {
7419 ret = wait_for_completion_interruptible(&data->done);
7420 if (!ret)
7421 break;
7422 ret = io_run_task_work_sig();
7423 if (ret < 0) {
7424 percpu_ref_resurrect(&data->refs);
7425 reinit_completion(&data->done);
7426 io_sqe_files_set_node(data, backup_node);
7427 return ret;
7428 }
7429 } while (1);
7430
7431 __io_sqe_files_unregister(ctx);
7432 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7433 for (i = 0; i < nr_tables; i++)
7434 kfree(data->table[i].files);
7435 kfree(data->table);
7436 percpu_ref_exit(&data->refs);
7437 kfree(data);
7438 ctx->file_data = NULL;
7439 ctx->nr_user_files = 0;
7440 destroy_fixed_file_ref_node(backup_node);
7441 return 0;
7442 }
7443
7444 static void io_put_sq_data(struct io_sq_data *sqd)
7445 {
7446 if (refcount_dec_and_test(&sqd->refs)) {
7447 /*
7448 * The park is a bit of a work-around, without it we get
7449 * warning spews on shutdown with SQPOLL set and affinity
7450 * set to a single CPU.
7451 */
7452 if (sqd->thread) {
7453 kthread_park(sqd->thread);
7454 kthread_stop(sqd->thread);
7455 }
7456
7457 kfree(sqd);
7458 }
7459 }
7460
7461 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7462 {
7463 struct io_ring_ctx *ctx_attach;
7464 struct io_sq_data *sqd;
7465 struct fd f;
7466
7467 f = fdget(p->wq_fd);
7468 if (!f.file)
7469 return ERR_PTR(-ENXIO);
7470 if (f.file->f_op != &io_uring_fops) {
7471 fdput(f);
7472 return ERR_PTR(-EINVAL);
7473 }
7474
7475 ctx_attach = f.file->private_data;
7476 sqd = ctx_attach->sq_data;
7477 if (!sqd) {
7478 fdput(f);
7479 return ERR_PTR(-EINVAL);
7480 }
7481
7482 refcount_inc(&sqd->refs);
7483 fdput(f);
7484 return sqd;
7485 }
7486
7487 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7488 {
7489 struct io_sq_data *sqd;
7490
7491 if (p->flags & IORING_SETUP_ATTACH_WQ)
7492 return io_attach_sq_data(p);
7493
7494 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7495 if (!sqd)
7496 return ERR_PTR(-ENOMEM);
7497
7498 refcount_set(&sqd->refs, 1);
7499 INIT_LIST_HEAD(&sqd->ctx_list);
7500 INIT_LIST_HEAD(&sqd->ctx_new_list);
7501 mutex_init(&sqd->ctx_lock);
7502 mutex_init(&sqd->lock);
7503 init_waitqueue_head(&sqd->wait);
7504 return sqd;
7505 }
7506
7507 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7508 __releases(&sqd->lock)
7509 {
7510 if (!sqd->thread)
7511 return;
7512 kthread_unpark(sqd->thread);
7513 mutex_unlock(&sqd->lock);
7514 }
7515
7516 static void io_sq_thread_park(struct io_sq_data *sqd)
7517 __acquires(&sqd->lock)
7518 {
7519 if (!sqd->thread)
7520 return;
7521 mutex_lock(&sqd->lock);
7522 kthread_park(sqd->thread);
7523 }
7524
7525 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7526 {
7527 struct io_sq_data *sqd = ctx->sq_data;
7528
7529 if (sqd) {
7530 if (sqd->thread) {
7531 /*
7532 * We may arrive here from the error branch in
7533 * io_sq_offload_create() where the kthread is created
7534 * without being waked up, thus wake it up now to make
7535 * sure the wait will complete.
7536 */
7537 wake_up_process(sqd->thread);
7538 wait_for_completion(&ctx->sq_thread_comp);
7539
7540 io_sq_thread_park(sqd);
7541 }
7542
7543 mutex_lock(&sqd->ctx_lock);
7544 list_del(&ctx->sqd_list);
7545 io_sqd_update_thread_idle(sqd);
7546 mutex_unlock(&sqd->ctx_lock);
7547
7548 if (sqd->thread)
7549 io_sq_thread_unpark(sqd);
7550
7551 io_put_sq_data(sqd);
7552 ctx->sq_data = NULL;
7553 }
7554 }
7555
7556 static void io_finish_async(struct io_ring_ctx *ctx)
7557 {
7558 io_sq_thread_stop(ctx);
7559
7560 if (ctx->io_wq) {
7561 io_wq_destroy(ctx->io_wq);
7562 ctx->io_wq = NULL;
7563 }
7564 }
7565
7566 #if defined(CONFIG_UNIX)
7567 /*
7568 * Ensure the UNIX gc is aware of our file set, so we are certain that
7569 * the io_uring can be safely unregistered on process exit, even if we have
7570 * loops in the file referencing.
7571 */
7572 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7573 {
7574 struct sock *sk = ctx->ring_sock->sk;
7575 struct scm_fp_list *fpl;
7576 struct sk_buff *skb;
7577 int i, nr_files;
7578
7579 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7580 if (!fpl)
7581 return -ENOMEM;
7582
7583 skb = alloc_skb(0, GFP_KERNEL);
7584 if (!skb) {
7585 kfree(fpl);
7586 return -ENOMEM;
7587 }
7588
7589 skb->sk = sk;
7590
7591 nr_files = 0;
7592 fpl->user = get_uid(ctx->user);
7593 for (i = 0; i < nr; i++) {
7594 struct file *file = io_file_from_index(ctx, i + offset);
7595
7596 if (!file)
7597 continue;
7598 fpl->fp[nr_files] = get_file(file);
7599 unix_inflight(fpl->user, fpl->fp[nr_files]);
7600 nr_files++;
7601 }
7602
7603 if (nr_files) {
7604 fpl->max = SCM_MAX_FD;
7605 fpl->count = nr_files;
7606 UNIXCB(skb).fp = fpl;
7607 skb->destructor = unix_destruct_scm;
7608 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7609 skb_queue_head(&sk->sk_receive_queue, skb);
7610
7611 for (i = 0; i < nr_files; i++)
7612 fput(fpl->fp[i]);
7613 } else {
7614 kfree_skb(skb);
7615 kfree(fpl);
7616 }
7617
7618 return 0;
7619 }
7620
7621 /*
7622 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7623 * causes regular reference counting to break down. We rely on the UNIX
7624 * garbage collection to take care of this problem for us.
7625 */
7626 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7627 {
7628 unsigned left, total;
7629 int ret = 0;
7630
7631 total = 0;
7632 left = ctx->nr_user_files;
7633 while (left) {
7634 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7635
7636 ret = __io_sqe_files_scm(ctx, this_files, total);
7637 if (ret)
7638 break;
7639 left -= this_files;
7640 total += this_files;
7641 }
7642
7643 if (!ret)
7644 return 0;
7645
7646 while (total < ctx->nr_user_files) {
7647 struct file *file = io_file_from_index(ctx, total);
7648
7649 if (file)
7650 fput(file);
7651 total++;
7652 }
7653
7654 return ret;
7655 }
7656 #else
7657 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7658 {
7659 return 0;
7660 }
7661 #endif
7662
7663 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7664 unsigned nr_tables, unsigned nr_files)
7665 {
7666 int i;
7667
7668 for (i = 0; i < nr_tables; i++) {
7669 struct fixed_file_table *table = &file_data->table[i];
7670 unsigned this_files;
7671
7672 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7673 table->files = kcalloc(this_files, sizeof(struct file *),
7674 GFP_KERNEL_ACCOUNT);
7675 if (!table->files)
7676 break;
7677 nr_files -= this_files;
7678 }
7679
7680 if (i == nr_tables)
7681 return 0;
7682
7683 for (i = 0; i < nr_tables; i++) {
7684 struct fixed_file_table *table = &file_data->table[i];
7685 kfree(table->files);
7686 }
7687 return 1;
7688 }
7689
7690 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7691 {
7692 #if defined(CONFIG_UNIX)
7693 struct sock *sock = ctx->ring_sock->sk;
7694 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7695 struct sk_buff *skb;
7696 int i;
7697
7698 __skb_queue_head_init(&list);
7699
7700 /*
7701 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7702 * remove this entry and rearrange the file array.
7703 */
7704 skb = skb_dequeue(head);
7705 while (skb) {
7706 struct scm_fp_list *fp;
7707
7708 fp = UNIXCB(skb).fp;
7709 for (i = 0; i < fp->count; i++) {
7710 int left;
7711
7712 if (fp->fp[i] != file)
7713 continue;
7714
7715 unix_notinflight(fp->user, fp->fp[i]);
7716 left = fp->count - 1 - i;
7717 if (left) {
7718 memmove(&fp->fp[i], &fp->fp[i + 1],
7719 left * sizeof(struct file *));
7720 }
7721 fp->count--;
7722 if (!fp->count) {
7723 kfree_skb(skb);
7724 skb = NULL;
7725 } else {
7726 __skb_queue_tail(&list, skb);
7727 }
7728 fput(file);
7729 file = NULL;
7730 break;
7731 }
7732
7733 if (!file)
7734 break;
7735
7736 __skb_queue_tail(&list, skb);
7737
7738 skb = skb_dequeue(head);
7739 }
7740
7741 if (skb_peek(&list)) {
7742 spin_lock_irq(&head->lock);
7743 while ((skb = __skb_dequeue(&list)) != NULL)
7744 __skb_queue_tail(head, skb);
7745 spin_unlock_irq(&head->lock);
7746 }
7747 #else
7748 fput(file);
7749 #endif
7750 }
7751
7752 struct io_file_put {
7753 struct list_head list;
7754 struct file *file;
7755 };
7756
7757 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7758 {
7759 struct fixed_file_data *file_data = ref_node->file_data;
7760 struct io_ring_ctx *ctx = file_data->ctx;
7761 struct io_file_put *pfile, *tmp;
7762
7763 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7764 list_del(&pfile->list);
7765 io_ring_file_put(ctx, pfile->file);
7766 kfree(pfile);
7767 }
7768
7769 percpu_ref_exit(&ref_node->refs);
7770 kfree(ref_node);
7771 percpu_ref_put(&file_data->refs);
7772 }
7773
7774 static void io_file_put_work(struct work_struct *work)
7775 {
7776 struct io_ring_ctx *ctx;
7777 struct llist_node *node;
7778
7779 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7780 node = llist_del_all(&ctx->file_put_llist);
7781
7782 while (node) {
7783 struct fixed_file_ref_node *ref_node;
7784 struct llist_node *next = node->next;
7785
7786 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7787 __io_file_put_work(ref_node);
7788 node = next;
7789 }
7790 }
7791
7792 static void io_file_data_ref_zero(struct percpu_ref *ref)
7793 {
7794 struct fixed_file_ref_node *ref_node;
7795 struct fixed_file_data *data;
7796 struct io_ring_ctx *ctx;
7797 bool first_add = false;
7798 int delay = HZ;
7799
7800 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7801 data = ref_node->file_data;
7802 ctx = data->ctx;
7803
7804 spin_lock_bh(&data->lock);
7805 ref_node->done = true;
7806
7807 while (!list_empty(&data->ref_list)) {
7808 ref_node = list_first_entry(&data->ref_list,
7809 struct fixed_file_ref_node, node);
7810 /* recycle ref nodes in order */
7811 if (!ref_node->done)
7812 break;
7813 list_del(&ref_node->node);
7814 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7815 }
7816 spin_unlock_bh(&data->lock);
7817
7818 if (percpu_ref_is_dying(&data->refs))
7819 delay = 0;
7820
7821 if (!delay)
7822 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7823 else if (first_add)
7824 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7825 }
7826
7827 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7828 struct io_ring_ctx *ctx)
7829 {
7830 struct fixed_file_ref_node *ref_node;
7831
7832 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7833 if (!ref_node)
7834 return NULL;
7835
7836 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7837 0, GFP_KERNEL)) {
7838 kfree(ref_node);
7839 return NULL;
7840 }
7841 INIT_LIST_HEAD(&ref_node->node);
7842 INIT_LIST_HEAD(&ref_node->file_list);
7843 ref_node->file_data = ctx->file_data;
7844 ref_node->done = false;
7845 return ref_node;
7846 }
7847
7848 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7849 {
7850 percpu_ref_exit(&ref_node->refs);
7851 kfree(ref_node);
7852 }
7853
7854 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7855 unsigned nr_args)
7856 {
7857 __s32 __user *fds = (__s32 __user *) arg;
7858 unsigned nr_tables, i;
7859 struct file *file;
7860 int fd, ret = -ENOMEM;
7861 struct fixed_file_ref_node *ref_node;
7862 struct fixed_file_data *file_data;
7863
7864 if (ctx->file_data)
7865 return -EBUSY;
7866 if (!nr_args)
7867 return -EINVAL;
7868 if (nr_args > IORING_MAX_FIXED_FILES)
7869 return -EMFILE;
7870 if (nr_args > rlimit(RLIMIT_NOFILE))
7871 return -EMFILE;
7872
7873 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL_ACCOUNT);
7874 if (!file_data)
7875 return -ENOMEM;
7876 file_data->ctx = ctx;
7877 init_completion(&file_data->done);
7878 INIT_LIST_HEAD(&file_data->ref_list);
7879 spin_lock_init(&file_data->lock);
7880
7881 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7882 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7883 GFP_KERNEL_ACCOUNT);
7884 if (!file_data->table)
7885 goto out_free;
7886
7887 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7888 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7889 goto out_free;
7890
7891 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7892 goto out_ref;
7893 ctx->file_data = file_data;
7894
7895 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7896 struct fixed_file_table *table;
7897 unsigned index;
7898
7899 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7900 ret = -EFAULT;
7901 goto out_fput;
7902 }
7903 /* allow sparse sets */
7904 if (fd == -1)
7905 continue;
7906
7907 file = fget(fd);
7908 ret = -EBADF;
7909 if (!file)
7910 goto out_fput;
7911
7912 /*
7913 * Don't allow io_uring instances to be registered. If UNIX
7914 * isn't enabled, then this causes a reference cycle and this
7915 * instance can never get freed. If UNIX is enabled we'll
7916 * handle it just fine, but there's still no point in allowing
7917 * a ring fd as it doesn't support regular read/write anyway.
7918 */
7919 if (file->f_op == &io_uring_fops) {
7920 fput(file);
7921 goto out_fput;
7922 }
7923 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7924 index = i & IORING_FILE_TABLE_MASK;
7925 table->files[index] = file;
7926 }
7927
7928 ret = io_sqe_files_scm(ctx);
7929 if (ret) {
7930 io_sqe_files_unregister(ctx);
7931 return ret;
7932 }
7933
7934 ref_node = alloc_fixed_file_ref_node(ctx);
7935 if (!ref_node) {
7936 io_sqe_files_unregister(ctx);
7937 return -ENOMEM;
7938 }
7939
7940 io_sqe_files_set_node(file_data, ref_node);
7941 return ret;
7942 out_fput:
7943 for (i = 0; i < ctx->nr_user_files; i++) {
7944 file = io_file_from_index(ctx, i);
7945 if (file)
7946 fput(file);
7947 }
7948 for (i = 0; i < nr_tables; i++)
7949 kfree(file_data->table[i].files);
7950 ctx->nr_user_files = 0;
7951 out_ref:
7952 percpu_ref_exit(&file_data->refs);
7953 out_free:
7954 kfree(file_data->table);
7955 kfree(file_data);
7956 ctx->file_data = NULL;
7957 return ret;
7958 }
7959
7960 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7961 int index)
7962 {
7963 #if defined(CONFIG_UNIX)
7964 struct sock *sock = ctx->ring_sock->sk;
7965 struct sk_buff_head *head = &sock->sk_receive_queue;
7966 struct sk_buff *skb;
7967
7968 /*
7969 * See if we can merge this file into an existing skb SCM_RIGHTS
7970 * file set. If there's no room, fall back to allocating a new skb
7971 * and filling it in.
7972 */
7973 spin_lock_irq(&head->lock);
7974 skb = skb_peek(head);
7975 if (skb) {
7976 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7977
7978 if (fpl->count < SCM_MAX_FD) {
7979 __skb_unlink(skb, head);
7980 spin_unlock_irq(&head->lock);
7981 fpl->fp[fpl->count] = get_file(file);
7982 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7983 fpl->count++;
7984 spin_lock_irq(&head->lock);
7985 __skb_queue_head(head, skb);
7986 } else {
7987 skb = NULL;
7988 }
7989 }
7990 spin_unlock_irq(&head->lock);
7991
7992 if (skb) {
7993 fput(file);
7994 return 0;
7995 }
7996
7997 return __io_sqe_files_scm(ctx, 1, index);
7998 #else
7999 return 0;
8000 #endif
8001 }
8002
8003 static int io_queue_file_removal(struct fixed_file_data *data,
8004 struct file *file)
8005 {
8006 struct io_file_put *pfile;
8007 struct fixed_file_ref_node *ref_node = data->node;
8008
8009 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
8010 if (!pfile)
8011 return -ENOMEM;
8012
8013 pfile->file = file;
8014 list_add(&pfile->list, &ref_node->file_list);
8015
8016 return 0;
8017 }
8018
8019 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8020 struct io_uring_files_update *up,
8021 unsigned nr_args)
8022 {
8023 struct fixed_file_data *data = ctx->file_data;
8024 struct fixed_file_ref_node *ref_node;
8025 struct file *file;
8026 __s32 __user *fds;
8027 int fd, i, err;
8028 __u32 done;
8029 bool needs_switch = false;
8030
8031 if (check_add_overflow(up->offset, nr_args, &done))
8032 return -EOVERFLOW;
8033 if (done > ctx->nr_user_files)
8034 return -EINVAL;
8035
8036 ref_node = alloc_fixed_file_ref_node(ctx);
8037 if (!ref_node)
8038 return -ENOMEM;
8039
8040 done = 0;
8041 fds = u64_to_user_ptr(up->fds);
8042 while (nr_args) {
8043 struct fixed_file_table *table;
8044 unsigned index;
8045
8046 err = 0;
8047 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
8048 err = -EFAULT;
8049 break;
8050 }
8051 i = array_index_nospec(up->offset, ctx->nr_user_files);
8052 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
8053 index = i & IORING_FILE_TABLE_MASK;
8054 if (table->files[index]) {
8055 file = table->files[index];
8056 err = io_queue_file_removal(data, file);
8057 if (err)
8058 break;
8059 table->files[index] = NULL;
8060 needs_switch = true;
8061 }
8062 if (fd != -1) {
8063 file = fget(fd);
8064 if (!file) {
8065 err = -EBADF;
8066 break;
8067 }
8068 /*
8069 * Don't allow io_uring instances to be registered. If
8070 * UNIX isn't enabled, then this causes a reference
8071 * cycle and this instance can never get freed. If UNIX
8072 * is enabled we'll handle it just fine, but there's
8073 * still no point in allowing a ring fd as it doesn't
8074 * support regular read/write anyway.
8075 */
8076 if (file->f_op == &io_uring_fops) {
8077 fput(file);
8078 err = -EBADF;
8079 break;
8080 }
8081 table->files[index] = file;
8082 err = io_sqe_file_register(ctx, file, i);
8083 if (err) {
8084 table->files[index] = NULL;
8085 fput(file);
8086 break;
8087 }
8088 }
8089 nr_args--;
8090 done++;
8091 up->offset++;
8092 }
8093
8094 if (needs_switch) {
8095 percpu_ref_kill(&data->node->refs);
8096 io_sqe_files_set_node(data, ref_node);
8097 } else
8098 destroy_fixed_file_ref_node(ref_node);
8099
8100 return done ? done : err;
8101 }
8102
8103 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8104 unsigned nr_args)
8105 {
8106 struct io_uring_files_update up;
8107
8108 if (!ctx->file_data)
8109 return -ENXIO;
8110 if (!nr_args)
8111 return -EINVAL;
8112 if (copy_from_user(&up, arg, sizeof(up)))
8113 return -EFAULT;
8114 if (up.resv)
8115 return -EINVAL;
8116
8117 return __io_sqe_files_update(ctx, &up, nr_args);
8118 }
8119
8120 static struct io_wq_work *io_free_work(struct io_wq_work *work)
8121 {
8122 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8123
8124 req = io_put_req_find_next(req);
8125 return req ? &req->work : NULL;
8126 }
8127
8128 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8129 struct io_uring_params *p)
8130 {
8131 struct io_wq_data data;
8132 struct fd f;
8133 struct io_ring_ctx *ctx_attach;
8134 unsigned int concurrency;
8135 int ret = 0;
8136
8137 data.user = ctx->user;
8138 data.free_work = io_free_work;
8139 data.do_work = io_wq_submit_work;
8140
8141 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8142 /* Do QD, or 4 * CPUS, whatever is smallest */
8143 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8144
8145 ctx->io_wq = io_wq_create(concurrency, &data);
8146 if (IS_ERR(ctx->io_wq)) {
8147 ret = PTR_ERR(ctx->io_wq);
8148 ctx->io_wq = NULL;
8149 }
8150 return ret;
8151 }
8152
8153 f = fdget(p->wq_fd);
8154 if (!f.file)
8155 return -EBADF;
8156
8157 if (f.file->f_op != &io_uring_fops) {
8158 ret = -EINVAL;
8159 goto out_fput;
8160 }
8161
8162 ctx_attach = f.file->private_data;
8163 /* @io_wq is protected by holding the fd */
8164 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8165 ret = -EINVAL;
8166 goto out_fput;
8167 }
8168
8169 ctx->io_wq = ctx_attach->io_wq;
8170 out_fput:
8171 fdput(f);
8172 return ret;
8173 }
8174
8175 static int io_uring_alloc_task_context(struct task_struct *task)
8176 {
8177 struct io_uring_task *tctx;
8178 int ret;
8179
8180 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8181 if (unlikely(!tctx))
8182 return -ENOMEM;
8183
8184 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8185 if (unlikely(ret)) {
8186 kfree(tctx);
8187 return ret;
8188 }
8189
8190 xa_init(&tctx->xa);
8191 init_waitqueue_head(&tctx->wait);
8192 tctx->last = NULL;
8193 atomic_set(&tctx->in_idle, 0);
8194 tctx->sqpoll = false;
8195 io_init_identity(&tctx->__identity);
8196 tctx->identity = &tctx->__identity;
8197 task->io_uring = tctx;
8198 return 0;
8199 }
8200
8201 void __io_uring_free(struct task_struct *tsk)
8202 {
8203 struct io_uring_task *tctx = tsk->io_uring;
8204
8205 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8206 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8207 if (tctx->identity != &tctx->__identity)
8208 kfree(tctx->identity);
8209 percpu_counter_destroy(&tctx->inflight);
8210 kfree(tctx);
8211 tsk->io_uring = NULL;
8212 }
8213
8214 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8215 struct io_uring_params *p)
8216 {
8217 int ret;
8218
8219 if (ctx->flags & IORING_SETUP_SQPOLL) {
8220 struct io_sq_data *sqd;
8221
8222 ret = -EPERM;
8223 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8224 goto err;
8225
8226 sqd = io_get_sq_data(p);
8227 if (IS_ERR(sqd)) {
8228 ret = PTR_ERR(sqd);
8229 goto err;
8230 }
8231
8232 ctx->sq_data = sqd;
8233 io_sq_thread_park(sqd);
8234 mutex_lock(&sqd->ctx_lock);
8235 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8236 mutex_unlock(&sqd->ctx_lock);
8237 io_sq_thread_unpark(sqd);
8238
8239 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8240 if (!ctx->sq_thread_idle)
8241 ctx->sq_thread_idle = HZ;
8242
8243 if (sqd->thread)
8244 goto done;
8245
8246 if (p->flags & IORING_SETUP_SQ_AFF) {
8247 int cpu = p->sq_thread_cpu;
8248
8249 ret = -EINVAL;
8250 if (cpu >= nr_cpu_ids)
8251 goto err;
8252 if (!cpu_online(cpu))
8253 goto err;
8254
8255 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8256 cpu, "io_uring-sq");
8257 } else {
8258 sqd->thread = kthread_create(io_sq_thread, sqd,
8259 "io_uring-sq");
8260 }
8261 if (IS_ERR(sqd->thread)) {
8262 ret = PTR_ERR(sqd->thread);
8263 sqd->thread = NULL;
8264 goto err;
8265 }
8266 ret = io_uring_alloc_task_context(sqd->thread);
8267 if (ret)
8268 goto err;
8269 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8270 /* Can't have SQ_AFF without SQPOLL */
8271 ret = -EINVAL;
8272 goto err;
8273 }
8274
8275 done:
8276 ret = io_init_wq_offload(ctx, p);
8277 if (ret)
8278 goto err;
8279
8280 return 0;
8281 err:
8282 io_finish_async(ctx);
8283 return ret;
8284 }
8285
8286 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8287 {
8288 struct io_sq_data *sqd = ctx->sq_data;
8289
8290 ctx->flags &= ~IORING_SETUP_R_DISABLED;
8291 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd && sqd->thread)
8292 wake_up_process(sqd->thread);
8293 }
8294
8295 static inline void __io_unaccount_mem(struct user_struct *user,
8296 unsigned long nr_pages)
8297 {
8298 atomic_long_sub(nr_pages, &user->locked_vm);
8299 }
8300
8301 static inline int __io_account_mem(struct user_struct *user,
8302 unsigned long nr_pages)
8303 {
8304 unsigned long page_limit, cur_pages, new_pages;
8305
8306 /* Don't allow more pages than we can safely lock */
8307 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8308
8309 do {
8310 cur_pages = atomic_long_read(&user->locked_vm);
8311 new_pages = cur_pages + nr_pages;
8312 if (new_pages > page_limit)
8313 return -ENOMEM;
8314 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8315 new_pages) != cur_pages);
8316
8317 return 0;
8318 }
8319
8320 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8321 enum io_mem_account acct)
8322 {
8323 if (ctx->limit_mem)
8324 __io_unaccount_mem(ctx->user, nr_pages);
8325
8326 if (ctx->mm_account) {
8327 if (acct == ACCT_LOCKED) {
8328 mmap_write_lock(ctx->mm_account);
8329 ctx->mm_account->locked_vm -= nr_pages;
8330 mmap_write_unlock(ctx->mm_account);
8331 }else if (acct == ACCT_PINNED) {
8332 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8333 }
8334 }
8335 }
8336
8337 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8338 enum io_mem_account acct)
8339 {
8340 int ret;
8341
8342 if (ctx->limit_mem) {
8343 ret = __io_account_mem(ctx->user, nr_pages);
8344 if (ret)
8345 return ret;
8346 }
8347
8348 if (ctx->mm_account) {
8349 if (acct == ACCT_LOCKED) {
8350 mmap_write_lock(ctx->mm_account);
8351 ctx->mm_account->locked_vm += nr_pages;
8352 mmap_write_unlock(ctx->mm_account);
8353 } else if (acct == ACCT_PINNED) {
8354 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8355 }
8356 }
8357
8358 return 0;
8359 }
8360
8361 static void io_mem_free(void *ptr)
8362 {
8363 struct page *page;
8364
8365 if (!ptr)
8366 return;
8367
8368 page = virt_to_head_page(ptr);
8369 if (put_page_testzero(page))
8370 free_compound_page(page);
8371 }
8372
8373 static void *io_mem_alloc(size_t size)
8374 {
8375 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8376 __GFP_NORETRY;
8377
8378 return (void *) __get_free_pages(gfp_flags, get_order(size));
8379 }
8380
8381 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8382 size_t *sq_offset)
8383 {
8384 struct io_rings *rings;
8385 size_t off, sq_array_size;
8386
8387 off = struct_size(rings, cqes, cq_entries);
8388 if (off == SIZE_MAX)
8389 return SIZE_MAX;
8390
8391 #ifdef CONFIG_SMP
8392 off = ALIGN(off, SMP_CACHE_BYTES);
8393 if (off == 0)
8394 return SIZE_MAX;
8395 #endif
8396
8397 if (sq_offset)
8398 *sq_offset = off;
8399
8400 sq_array_size = array_size(sizeof(u32), sq_entries);
8401 if (sq_array_size == SIZE_MAX)
8402 return SIZE_MAX;
8403
8404 if (check_add_overflow(off, sq_array_size, &off))
8405 return SIZE_MAX;
8406
8407 return off;
8408 }
8409
8410 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8411 {
8412 size_t pages;
8413
8414 pages = (size_t)1 << get_order(
8415 rings_size(sq_entries, cq_entries, NULL));
8416 pages += (size_t)1 << get_order(
8417 array_size(sizeof(struct io_uring_sqe), sq_entries));
8418
8419 return pages;
8420 }
8421
8422 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8423 {
8424 int i, j;
8425
8426 if (!ctx->user_bufs)
8427 return -ENXIO;
8428
8429 for (i = 0; i < ctx->nr_user_bufs; i++) {
8430 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8431
8432 for (j = 0; j < imu->nr_bvecs; j++)
8433 unpin_user_page(imu->bvec[j].bv_page);
8434
8435 if (imu->acct_pages)
8436 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8437 kvfree(imu->bvec);
8438 imu->nr_bvecs = 0;
8439 }
8440
8441 kfree(ctx->user_bufs);
8442 ctx->user_bufs = NULL;
8443 ctx->nr_user_bufs = 0;
8444 return 0;
8445 }
8446
8447 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8448 void __user *arg, unsigned index)
8449 {
8450 struct iovec __user *src;
8451
8452 #ifdef CONFIG_COMPAT
8453 if (ctx->compat) {
8454 struct compat_iovec __user *ciovs;
8455 struct compat_iovec ciov;
8456
8457 ciovs = (struct compat_iovec __user *) arg;
8458 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8459 return -EFAULT;
8460
8461 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8462 dst->iov_len = ciov.iov_len;
8463 return 0;
8464 }
8465 #endif
8466 src = (struct iovec __user *) arg;
8467 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8468 return -EFAULT;
8469 return 0;
8470 }
8471
8472 /*
8473 * Not super efficient, but this is just a registration time. And we do cache
8474 * the last compound head, so generally we'll only do a full search if we don't
8475 * match that one.
8476 *
8477 * We check if the given compound head page has already been accounted, to
8478 * avoid double accounting it. This allows us to account the full size of the
8479 * page, not just the constituent pages of a huge page.
8480 */
8481 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8482 int nr_pages, struct page *hpage)
8483 {
8484 int i, j;
8485
8486 /* check current page array */
8487 for (i = 0; i < nr_pages; i++) {
8488 if (!PageCompound(pages[i]))
8489 continue;
8490 if (compound_head(pages[i]) == hpage)
8491 return true;
8492 }
8493
8494 /* check previously registered pages */
8495 for (i = 0; i < ctx->nr_user_bufs; i++) {
8496 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8497
8498 for (j = 0; j < imu->nr_bvecs; j++) {
8499 if (!PageCompound(imu->bvec[j].bv_page))
8500 continue;
8501 if (compound_head(imu->bvec[j].bv_page) == hpage)
8502 return true;
8503 }
8504 }
8505
8506 return false;
8507 }
8508
8509 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8510 int nr_pages, struct io_mapped_ubuf *imu,
8511 struct page **last_hpage)
8512 {
8513 int i, ret;
8514
8515 for (i = 0; i < nr_pages; i++) {
8516 if (!PageCompound(pages[i])) {
8517 imu->acct_pages++;
8518 } else {
8519 struct page *hpage;
8520
8521 hpage = compound_head(pages[i]);
8522 if (hpage == *last_hpage)
8523 continue;
8524 *last_hpage = hpage;
8525 if (headpage_already_acct(ctx, pages, i, hpage))
8526 continue;
8527 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8528 }
8529 }
8530
8531 if (!imu->acct_pages)
8532 return 0;
8533
8534 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8535 if (ret)
8536 imu->acct_pages = 0;
8537 return ret;
8538 }
8539
8540 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8541 unsigned nr_args)
8542 {
8543 struct vm_area_struct **vmas = NULL;
8544 struct page **pages = NULL;
8545 struct page *last_hpage = NULL;
8546 int i, j, got_pages = 0;
8547 int ret = -EINVAL;
8548
8549 if (ctx->user_bufs)
8550 return -EBUSY;
8551 if (!nr_args || nr_args > UIO_MAXIOV)
8552 return -EINVAL;
8553
8554 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8555 GFP_KERNEL);
8556 if (!ctx->user_bufs)
8557 return -ENOMEM;
8558
8559 for (i = 0; i < nr_args; i++) {
8560 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8561 unsigned long off, start, end, ubuf;
8562 int pret, nr_pages;
8563 struct iovec iov;
8564 size_t size;
8565
8566 ret = io_copy_iov(ctx, &iov, arg, i);
8567 if (ret)
8568 goto err;
8569
8570 /*
8571 * Don't impose further limits on the size and buffer
8572 * constraints here, we'll -EINVAL later when IO is
8573 * submitted if they are wrong.
8574 */
8575 ret = -EFAULT;
8576 if (!iov.iov_base || !iov.iov_len)
8577 goto err;
8578
8579 /* arbitrary limit, but we need something */
8580 if (iov.iov_len > SZ_1G)
8581 goto err;
8582
8583 ubuf = (unsigned long) iov.iov_base;
8584 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8585 start = ubuf >> PAGE_SHIFT;
8586 nr_pages = end - start;
8587
8588 ret = 0;
8589 if (!pages || nr_pages > got_pages) {
8590 kvfree(vmas);
8591 kvfree(pages);
8592 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8593 GFP_KERNEL);
8594 vmas = kvmalloc_array(nr_pages,
8595 sizeof(struct vm_area_struct *),
8596 GFP_KERNEL);
8597 if (!pages || !vmas) {
8598 ret = -ENOMEM;
8599 goto err;
8600 }
8601 got_pages = nr_pages;
8602 }
8603
8604 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8605 GFP_KERNEL);
8606 ret = -ENOMEM;
8607 if (!imu->bvec)
8608 goto err;
8609
8610 ret = 0;
8611 mmap_read_lock(current->mm);
8612 pret = pin_user_pages(ubuf, nr_pages,
8613 FOLL_WRITE | FOLL_LONGTERM,
8614 pages, vmas);
8615 if (pret == nr_pages) {
8616 /* don't support file backed memory */
8617 for (j = 0; j < nr_pages; j++) {
8618 struct vm_area_struct *vma = vmas[j];
8619
8620 if (vma->vm_file &&
8621 !is_file_hugepages(vma->vm_file)) {
8622 ret = -EOPNOTSUPP;
8623 break;
8624 }
8625 }
8626 } else {
8627 ret = pret < 0 ? pret : -EFAULT;
8628 }
8629 mmap_read_unlock(current->mm);
8630 if (ret) {
8631 /*
8632 * if we did partial map, or found file backed vmas,
8633 * release any pages we did get
8634 */
8635 if (pret > 0)
8636 unpin_user_pages(pages, pret);
8637 kvfree(imu->bvec);
8638 goto err;
8639 }
8640
8641 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8642 if (ret) {
8643 unpin_user_pages(pages, pret);
8644 kvfree(imu->bvec);
8645 goto err;
8646 }
8647
8648 off = ubuf & ~PAGE_MASK;
8649 size = iov.iov_len;
8650 for (j = 0; j < nr_pages; j++) {
8651 size_t vec_len;
8652
8653 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8654 imu->bvec[j].bv_page = pages[j];
8655 imu->bvec[j].bv_len = vec_len;
8656 imu->bvec[j].bv_offset = off;
8657 off = 0;
8658 size -= vec_len;
8659 }
8660 /* store original address for later verification */
8661 imu->ubuf = ubuf;
8662 imu->len = iov.iov_len;
8663 imu->nr_bvecs = nr_pages;
8664
8665 ctx->nr_user_bufs++;
8666 }
8667 kvfree(pages);
8668 kvfree(vmas);
8669 return 0;
8670 err:
8671 kvfree(pages);
8672 kvfree(vmas);
8673 io_sqe_buffer_unregister(ctx);
8674 return ret;
8675 }
8676
8677 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8678 {
8679 __s32 __user *fds = arg;
8680 int fd;
8681
8682 if (ctx->cq_ev_fd)
8683 return -EBUSY;
8684
8685 if (copy_from_user(&fd, fds, sizeof(*fds)))
8686 return -EFAULT;
8687
8688 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8689 if (IS_ERR(ctx->cq_ev_fd)) {
8690 int ret = PTR_ERR(ctx->cq_ev_fd);
8691
8692 ctx->cq_ev_fd = NULL;
8693 return ret;
8694 }
8695
8696 return 0;
8697 }
8698
8699 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8700 {
8701 if (ctx->cq_ev_fd) {
8702 eventfd_ctx_put(ctx->cq_ev_fd);
8703 ctx->cq_ev_fd = NULL;
8704 return 0;
8705 }
8706
8707 return -ENXIO;
8708 }
8709
8710 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8711 {
8712 struct io_buffer *buf;
8713 unsigned long index;
8714
8715 xa_for_each(&ctx->io_buffers, index, buf)
8716 __io_remove_buffers(ctx, buf, index, -1U);
8717 }
8718
8719 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8720 {
8721 io_finish_async(ctx);
8722 io_sqe_buffer_unregister(ctx);
8723
8724 if (ctx->sqo_task) {
8725 put_task_struct(ctx->sqo_task);
8726 ctx->sqo_task = NULL;
8727 mmdrop(ctx->mm_account);
8728 ctx->mm_account = NULL;
8729 }
8730
8731 #ifdef CONFIG_BLK_CGROUP
8732 if (ctx->sqo_blkcg_css)
8733 css_put(ctx->sqo_blkcg_css);
8734 #endif
8735
8736 io_sqe_files_unregister(ctx);
8737 io_eventfd_unregister(ctx);
8738 io_destroy_buffers(ctx);
8739
8740 #if defined(CONFIG_UNIX)
8741 if (ctx->ring_sock) {
8742 ctx->ring_sock->file = NULL; /* so that iput() is called */
8743 sock_release(ctx->ring_sock);
8744 }
8745 #endif
8746
8747 io_mem_free(ctx->rings);
8748 io_mem_free(ctx->sq_sqes);
8749
8750 percpu_ref_exit(&ctx->refs);
8751 free_uid(ctx->user);
8752 put_cred(ctx->creds);
8753 kfree(ctx->cancel_hash);
8754 kmem_cache_free(req_cachep, ctx->fallback_req);
8755 kfree(ctx);
8756 }
8757
8758 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8759 {
8760 struct io_ring_ctx *ctx = file->private_data;
8761 __poll_t mask = 0;
8762
8763 poll_wait(file, &ctx->cq_wait, wait);
8764 /*
8765 * synchronizes with barrier from wq_has_sleeper call in
8766 * io_commit_cqring
8767 */
8768 smp_rmb();
8769 if (!io_sqring_full(ctx))
8770 mask |= EPOLLOUT | EPOLLWRNORM;
8771
8772 /* prevent SQPOLL from submitting new requests */
8773 if (ctx->sq_data) {
8774 io_sq_thread_park(ctx->sq_data);
8775 list_del_init(&ctx->sqd_list);
8776 io_sqd_update_thread_idle(ctx->sq_data);
8777 io_sq_thread_unpark(ctx->sq_data);
8778 }
8779
8780 /*
8781 * Don't flush cqring overflow list here, just do a simple check.
8782 * Otherwise there could possible be ABBA deadlock:
8783 * CPU0 CPU1
8784 * ---- ----
8785 * lock(&ctx->uring_lock);
8786 * lock(&ep->mtx);
8787 * lock(&ctx->uring_lock);
8788 * lock(&ep->mtx);
8789 *
8790 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8791 * pushs them to do the flush.
8792 */
8793 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8794 mask |= EPOLLIN | EPOLLRDNORM;
8795
8796 return mask;
8797 }
8798
8799 static int io_uring_fasync(int fd, struct file *file, int on)
8800 {
8801 struct io_ring_ctx *ctx = file->private_data;
8802
8803 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8804 }
8805
8806 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8807 {
8808 struct io_identity *iod;
8809
8810 iod = xa_erase(&ctx->personalities, id);
8811 if (iod) {
8812 put_cred(iod->creds);
8813 if (refcount_dec_and_test(&iod->count))
8814 kfree(iod);
8815 return 0;
8816 }
8817
8818 return -EINVAL;
8819 }
8820
8821 static void io_ring_exit_work(struct work_struct *work)
8822 {
8823 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8824 exit_work);
8825
8826 /*
8827 * If we're doing polled IO and end up having requests being
8828 * submitted async (out-of-line), then completions can come in while
8829 * we're waiting for refs to drop. We need to reap these manually,
8830 * as nobody else will be looking for them.
8831 */
8832 do {
8833 io_uring_try_cancel_requests(ctx, NULL, NULL);
8834 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8835 io_ring_ctx_free(ctx);
8836 }
8837
8838 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8839 {
8840 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8841
8842 return req->ctx == data;
8843 }
8844
8845 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8846 {
8847 unsigned long index;
8848 struct io_identify *iod;
8849
8850 mutex_lock(&ctx->uring_lock);
8851 percpu_ref_kill(&ctx->refs);
8852
8853 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8854 ctx->sqo_dead = 1;
8855
8856 /* if force is set, the ring is going away. always drop after that */
8857 ctx->cq_overflow_flushed = 1;
8858 if (ctx->rings)
8859 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8860 mutex_unlock(&ctx->uring_lock);
8861
8862 io_kill_timeouts(ctx, NULL, NULL);
8863 io_poll_remove_all(ctx, NULL, NULL);
8864
8865 if (ctx->io_wq)
8866 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8867
8868 /* if we failed setting up the ctx, we might not have any rings */
8869 io_iopoll_try_reap_events(ctx);
8870 xa_for_each(&ctx->personalities, index, iod)
8871 io_unregister_personality(ctx, index);
8872
8873 /*
8874 * Do this upfront, so we won't have a grace period where the ring
8875 * is closed but resources aren't reaped yet. This can cause
8876 * spurious failure in setting up a new ring.
8877 */
8878 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8879 ACCT_LOCKED);
8880
8881 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8882 /*
8883 * Use system_unbound_wq to avoid spawning tons of event kworkers
8884 * if we're exiting a ton of rings at the same time. It just adds
8885 * noise and overhead, there's no discernable change in runtime
8886 * over using system_wq.
8887 */
8888 queue_work(system_unbound_wq, &ctx->exit_work);
8889 }
8890
8891 static int io_uring_release(struct inode *inode, struct file *file)
8892 {
8893 struct io_ring_ctx *ctx = file->private_data;
8894
8895 file->private_data = NULL;
8896 io_ring_ctx_wait_and_kill(ctx);
8897 return 0;
8898 }
8899
8900 struct io_task_cancel {
8901 struct task_struct *task;
8902 struct files_struct *files;
8903 };
8904
8905 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8906 {
8907 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8908 struct io_task_cancel *cancel = data;
8909 bool ret;
8910
8911 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8912 unsigned long flags;
8913 struct io_ring_ctx *ctx = req->ctx;
8914
8915 /* protect against races with linked timeouts */
8916 spin_lock_irqsave(&ctx->completion_lock, flags);
8917 ret = io_match_task(req, cancel->task, cancel->files);
8918 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8919 } else {
8920 ret = io_match_task(req, cancel->task, cancel->files);
8921 }
8922 return ret;
8923 }
8924
8925 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8926 struct task_struct *task,
8927 struct files_struct *files)
8928 {
8929 struct io_defer_entry *de;
8930 LIST_HEAD(list);
8931
8932 spin_lock_irq(&ctx->completion_lock);
8933 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8934 if (io_match_task(de->req, task, files)) {
8935 list_cut_position(&list, &ctx->defer_list, &de->list);
8936 break;
8937 }
8938 }
8939 spin_unlock_irq(&ctx->completion_lock);
8940 if (list_empty(&list))
8941 return false;
8942
8943 while (!list_empty(&list)) {
8944 de = list_first_entry(&list, struct io_defer_entry, list);
8945 list_del_init(&de->list);
8946 req_set_fail_links(de->req);
8947 io_put_req(de->req);
8948 io_req_complete(de->req, -ECANCELED);
8949 kfree(de);
8950 }
8951 return true;
8952 }
8953
8954 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8955 struct task_struct *task,
8956 struct files_struct *files)
8957 {
8958 struct io_task_cancel cancel = { .task = task, .files = files, };
8959
8960 while (1) {
8961 enum io_wq_cancel cret;
8962 bool ret = false;
8963
8964 if (ctx->io_wq) {
8965 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8966 &cancel, true);
8967 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8968 }
8969
8970 /* SQPOLL thread does its own polling */
8971 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && !files) ||
8972 (ctx->sq_data && ctx->sq_data->thread == current)) {
8973 while (!list_empty_careful(&ctx->iopoll_list)) {
8974 io_iopoll_try_reap_events(ctx);
8975 ret = true;
8976 }
8977 }
8978
8979 ret |= io_cancel_defer_files(ctx, task, files);
8980 ret |= io_poll_remove_all(ctx, task, files);
8981 ret |= io_kill_timeouts(ctx, task, files);
8982 ret |= io_run_task_work();
8983 io_cqring_overflow_flush(ctx, true, task, files);
8984 if (!ret)
8985 break;
8986 cond_resched();
8987 }
8988 }
8989
8990 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8991 struct task_struct *task,
8992 struct files_struct *files)
8993 {
8994 struct io_kiocb *req;
8995 int cnt = 0;
8996
8997 spin_lock_irq(&ctx->inflight_lock);
8998 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8999 cnt += io_match_task(req, task, files);
9000 spin_unlock_irq(&ctx->inflight_lock);
9001 return cnt;
9002 }
9003
9004 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
9005 struct task_struct *task,
9006 struct files_struct *files)
9007 {
9008 while (!list_empty_careful(&ctx->inflight_list)) {
9009 DEFINE_WAIT(wait);
9010 int inflight;
9011
9012 inflight = io_uring_count_inflight(ctx, task, files);
9013 if (!inflight)
9014 break;
9015
9016 io_uring_try_cancel_requests(ctx, task, files);
9017
9018 if (ctx->sq_data)
9019 io_sq_thread_unpark(ctx->sq_data);
9020 prepare_to_wait(&task->io_uring->wait, &wait,
9021 TASK_UNINTERRUPTIBLE);
9022 if (inflight == io_uring_count_inflight(ctx, task, files))
9023 schedule();
9024 finish_wait(&task->io_uring->wait, &wait);
9025 if (ctx->sq_data)
9026 io_sq_thread_park(ctx->sq_data);
9027 }
9028 }
9029
9030 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
9031 {
9032 mutex_lock(&ctx->uring_lock);
9033 ctx->sqo_dead = 1;
9034 if (ctx->flags & IORING_SETUP_R_DISABLED)
9035 io_sq_offload_start(ctx);
9036 mutex_unlock(&ctx->uring_lock);
9037
9038 /* make sure callers enter the ring to get error */
9039 if (ctx->rings)
9040 io_ring_set_wakeup_flag(ctx);
9041 }
9042
9043 /*
9044 * We need to iteratively cancel requests, in case a request has dependent
9045 * hard links. These persist even for failure of cancelations, hence keep
9046 * looping until none are found.
9047 */
9048 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
9049 struct files_struct *files)
9050 {
9051 struct task_struct *task = current;
9052
9053 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9054 io_disable_sqo_submit(ctx);
9055 task = ctx->sq_data->thread;
9056 atomic_inc(&task->io_uring->in_idle);
9057 io_sq_thread_park(ctx->sq_data);
9058 }
9059
9060 io_uring_cancel_files(ctx, task, files);
9061 if (!files)
9062 io_uring_try_cancel_requests(ctx, task, NULL);
9063
9064 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9065 atomic_dec(&task->io_uring->in_idle);
9066 io_sq_thread_unpark(ctx->sq_data);
9067 }
9068 }
9069
9070 /*
9071 * Note that this task has used io_uring. We use it for cancelation purposes.
9072 */
9073 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
9074 {
9075 struct io_uring_task *tctx = current->io_uring;
9076 int ret;
9077
9078 if (unlikely(!tctx)) {
9079 ret = io_uring_alloc_task_context(current);
9080 if (unlikely(ret))
9081 return ret;
9082 tctx = current->io_uring;
9083 }
9084 if (tctx->last != file) {
9085 void *old = xa_load(&tctx->xa, (unsigned long)file);
9086
9087 if (!old) {
9088 get_file(file);
9089 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9090 file, GFP_KERNEL));
9091 if (ret) {
9092 fput(file);
9093 return ret;
9094 }
9095 }
9096 tctx->last = file;
9097 }
9098
9099 /*
9100 * This is race safe in that the task itself is doing this, hence it
9101 * cannot be going through the exit/cancel paths at the same time.
9102 * This cannot be modified while exit/cancel is running.
9103 */
9104 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9105 tctx->sqpoll = true;
9106
9107 return 0;
9108 }
9109
9110 /*
9111 * Remove this io_uring_file -> task mapping.
9112 */
9113 static void io_uring_del_task_file(struct file *file)
9114 {
9115 struct io_uring_task *tctx = current->io_uring;
9116
9117 if (tctx->last == file)
9118 tctx->last = NULL;
9119 file = xa_erase(&tctx->xa, (unsigned long)file);
9120 if (file)
9121 fput(file);
9122 }
9123
9124 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9125 {
9126 struct file *file;
9127 unsigned long index;
9128
9129 xa_for_each(&tctx->xa, index, file)
9130 io_uring_del_task_file(file);
9131 }
9132
9133 void __io_uring_files_cancel(struct files_struct *files)
9134 {
9135 struct io_uring_task *tctx = current->io_uring;
9136 struct file *file;
9137 unsigned long index;
9138
9139 /* make sure overflow events are dropped */
9140 atomic_inc(&tctx->in_idle);
9141 xa_for_each(&tctx->xa, index, file)
9142 io_uring_cancel_task_requests(file->private_data, files);
9143 atomic_dec(&tctx->in_idle);
9144
9145 if (files)
9146 io_uring_remove_task_files(tctx);
9147 }
9148
9149 static s64 tctx_inflight(struct io_uring_task *tctx)
9150 {
9151 unsigned long index;
9152 struct file *file;
9153 s64 inflight;
9154
9155 inflight = percpu_counter_sum(&tctx->inflight);
9156 if (!tctx->sqpoll)
9157 return inflight;
9158
9159 /*
9160 * If we have SQPOLL rings, then we need to iterate and find them, and
9161 * add the pending count for those.
9162 */
9163 xa_for_each(&tctx->xa, index, file) {
9164 struct io_ring_ctx *ctx = file->private_data;
9165
9166 if (ctx->flags & IORING_SETUP_SQPOLL) {
9167 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9168
9169 inflight += percpu_counter_sum(&__tctx->inflight);
9170 }
9171 }
9172
9173 return inflight;
9174 }
9175
9176 /*
9177 * Find any io_uring fd that this task has registered or done IO on, and cancel
9178 * requests.
9179 */
9180 void __io_uring_task_cancel(void)
9181 {
9182 struct io_uring_task *tctx = current->io_uring;
9183 DEFINE_WAIT(wait);
9184 s64 inflight;
9185
9186 /* make sure overflow events are dropped */
9187 atomic_inc(&tctx->in_idle);
9188
9189 /* trigger io_disable_sqo_submit() */
9190 if (tctx->sqpoll)
9191 __io_uring_files_cancel(NULL);
9192
9193 do {
9194 /* read completions before cancelations */
9195 inflight = tctx_inflight(tctx);
9196 if (!inflight)
9197 break;
9198 __io_uring_files_cancel(NULL);
9199
9200 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9201
9202 /*
9203 * If we've seen completions, retry without waiting. This
9204 * avoids a race where a completion comes in before we did
9205 * prepare_to_wait().
9206 */
9207 if (inflight == tctx_inflight(tctx))
9208 schedule();
9209 finish_wait(&tctx->wait, &wait);
9210 } while (1);
9211
9212 atomic_dec(&tctx->in_idle);
9213
9214 io_uring_remove_task_files(tctx);
9215 }
9216
9217 static int io_uring_flush(struct file *file, void *data)
9218 {
9219 struct io_uring_task *tctx = current->io_uring;
9220 struct io_ring_ctx *ctx = file->private_data;
9221
9222 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
9223 io_uring_cancel_task_requests(ctx, NULL);
9224
9225 if (!tctx)
9226 return 0;
9227
9228 /* we should have cancelled and erased it before PF_EXITING */
9229 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9230 xa_load(&tctx->xa, (unsigned long)file));
9231
9232 /*
9233 * fput() is pending, will be 2 if the only other ref is our potential
9234 * task file note. If the task is exiting, drop regardless of count.
9235 */
9236 if (atomic_long_read(&file->f_count) != 2)
9237 return 0;
9238
9239 if (ctx->flags & IORING_SETUP_SQPOLL) {
9240 /* there is only one file note, which is owned by sqo_task */
9241 WARN_ON_ONCE(ctx->sqo_task != current &&
9242 xa_load(&tctx->xa, (unsigned long)file));
9243 /* sqo_dead check is for when this happens after cancellation */
9244 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9245 !xa_load(&tctx->xa, (unsigned long)file));
9246
9247 io_disable_sqo_submit(ctx);
9248 }
9249
9250 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9251 io_uring_del_task_file(file);
9252 return 0;
9253 }
9254
9255 static void *io_uring_validate_mmap_request(struct file *file,
9256 loff_t pgoff, size_t sz)
9257 {
9258 struct io_ring_ctx *ctx = file->private_data;
9259 loff_t offset = pgoff << PAGE_SHIFT;
9260 struct page *page;
9261 void *ptr;
9262
9263 switch (offset) {
9264 case IORING_OFF_SQ_RING:
9265 case IORING_OFF_CQ_RING:
9266 ptr = ctx->rings;
9267 break;
9268 case IORING_OFF_SQES:
9269 ptr = ctx->sq_sqes;
9270 break;
9271 default:
9272 return ERR_PTR(-EINVAL);
9273 }
9274
9275 page = virt_to_head_page(ptr);
9276 if (sz > page_size(page))
9277 return ERR_PTR(-EINVAL);
9278
9279 return ptr;
9280 }
9281
9282 #ifdef CONFIG_MMU
9283
9284 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9285 {
9286 size_t sz = vma->vm_end - vma->vm_start;
9287 unsigned long pfn;
9288 void *ptr;
9289
9290 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9291 if (IS_ERR(ptr))
9292 return PTR_ERR(ptr);
9293
9294 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9295 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9296 }
9297
9298 #else /* !CONFIG_MMU */
9299
9300 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9301 {
9302 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9303 }
9304
9305 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9306 {
9307 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9308 }
9309
9310 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9311 unsigned long addr, unsigned long len,
9312 unsigned long pgoff, unsigned long flags)
9313 {
9314 void *ptr;
9315
9316 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9317 if (IS_ERR(ptr))
9318 return PTR_ERR(ptr);
9319
9320 return (unsigned long) ptr;
9321 }
9322
9323 #endif /* !CONFIG_MMU */
9324
9325 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9326 {
9327 int ret = 0;
9328 DEFINE_WAIT(wait);
9329
9330 do {
9331 if (!io_sqring_full(ctx))
9332 break;
9333
9334 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9335
9336 if (unlikely(ctx->sqo_dead)) {
9337 ret = -EOWNERDEAD;
9338 goto out;
9339 }
9340
9341 if (!io_sqring_full(ctx))
9342 break;
9343
9344 schedule();
9345 } while (!signal_pending(current));
9346
9347 finish_wait(&ctx->sqo_sq_wait, &wait);
9348 out:
9349 return ret;
9350 }
9351
9352 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9353 struct __kernel_timespec __user **ts,
9354 const sigset_t __user **sig)
9355 {
9356 struct io_uring_getevents_arg arg;
9357
9358 /*
9359 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9360 * is just a pointer to the sigset_t.
9361 */
9362 if (!(flags & IORING_ENTER_EXT_ARG)) {
9363 *sig = (const sigset_t __user *) argp;
9364 *ts = NULL;
9365 return 0;
9366 }
9367
9368 /*
9369 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9370 * timespec and sigset_t pointers if good.
9371 */
9372 if (*argsz != sizeof(arg))
9373 return -EINVAL;
9374 if (copy_from_user(&arg, argp, sizeof(arg)))
9375 return -EFAULT;
9376 *sig = u64_to_user_ptr(arg.sigmask);
9377 *argsz = arg.sigmask_sz;
9378 *ts = u64_to_user_ptr(arg.ts);
9379 return 0;
9380 }
9381
9382 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9383 u32, min_complete, u32, flags, const void __user *, argp,
9384 size_t, argsz)
9385 {
9386 struct io_ring_ctx *ctx;
9387 long ret = -EBADF;
9388 int submitted = 0;
9389 struct fd f;
9390
9391 io_run_task_work();
9392
9393 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9394 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9395 return -EINVAL;
9396
9397 f = fdget(fd);
9398 if (!f.file)
9399 return -EBADF;
9400
9401 ret = -EOPNOTSUPP;
9402 if (f.file->f_op != &io_uring_fops)
9403 goto out_fput;
9404
9405 ret = -ENXIO;
9406 ctx = f.file->private_data;
9407 if (!percpu_ref_tryget(&ctx->refs))
9408 goto out_fput;
9409
9410 ret = -EBADFD;
9411 if (ctx->flags & IORING_SETUP_R_DISABLED)
9412 goto out;
9413
9414 /*
9415 * For SQ polling, the thread will do all submissions and completions.
9416 * Just return the requested submit count, and wake the thread if
9417 * we were asked to.
9418 */
9419 ret = 0;
9420 if (ctx->flags & IORING_SETUP_SQPOLL) {
9421 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9422
9423 if (unlikely(ctx->sqo_dead)) {
9424 ret = -EOWNERDEAD;
9425 goto out;
9426 }
9427 if (flags & IORING_ENTER_SQ_WAKEUP)
9428 wake_up(&ctx->sq_data->wait);
9429 if (flags & IORING_ENTER_SQ_WAIT) {
9430 ret = io_sqpoll_wait_sq(ctx);
9431 if (ret)
9432 goto out;
9433 }
9434 submitted = to_submit;
9435 } else if (to_submit) {
9436 ret = io_uring_add_task_file(ctx, f.file);
9437 if (unlikely(ret))
9438 goto out;
9439 mutex_lock(&ctx->uring_lock);
9440 submitted = io_submit_sqes(ctx, to_submit);
9441 mutex_unlock(&ctx->uring_lock);
9442
9443 if (submitted != to_submit)
9444 goto out;
9445 }
9446 if (flags & IORING_ENTER_GETEVENTS) {
9447 const sigset_t __user *sig;
9448 struct __kernel_timespec __user *ts;
9449
9450 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9451 if (unlikely(ret))
9452 goto out;
9453
9454 min_complete = min(min_complete, ctx->cq_entries);
9455
9456 /*
9457 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9458 * space applications don't need to do io completion events
9459 * polling again, they can rely on io_sq_thread to do polling
9460 * work, which can reduce cpu usage and uring_lock contention.
9461 */
9462 if (ctx->flags & IORING_SETUP_IOPOLL &&
9463 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9464 ret = io_iopoll_check(ctx, min_complete);
9465 } else {
9466 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9467 }
9468 }
9469
9470 out:
9471 percpu_ref_put(&ctx->refs);
9472 out_fput:
9473 fdput(f);
9474 return submitted ? submitted : ret;
9475 }
9476
9477 #ifdef CONFIG_PROC_FS
9478 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9479 const struct io_identity *iod)
9480 {
9481 const struct cred *cred = iod->creds;
9482 struct user_namespace *uns = seq_user_ns(m);
9483 struct group_info *gi;
9484 kernel_cap_t cap;
9485 unsigned __capi;
9486 int g;
9487
9488 seq_printf(m, "%5d\n", id);
9489 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9490 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9491 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9492 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9493 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9494 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9495 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9496 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9497 seq_puts(m, "\n\tGroups:\t");
9498 gi = cred->group_info;
9499 for (g = 0; g < gi->ngroups; g++) {
9500 seq_put_decimal_ull(m, g ? " " : "",
9501 from_kgid_munged(uns, gi->gid[g]));
9502 }
9503 seq_puts(m, "\n\tCapEff:\t");
9504 cap = cred->cap_effective;
9505 CAP_FOR_EACH_U32(__capi)
9506 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9507 seq_putc(m, '\n');
9508 return 0;
9509 }
9510
9511 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9512 {
9513 struct io_sq_data *sq = NULL;
9514 bool has_lock;
9515 int i;
9516
9517 /*
9518 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9519 * since fdinfo case grabs it in the opposite direction of normal use
9520 * cases. If we fail to get the lock, we just don't iterate any
9521 * structures that could be going away outside the io_uring mutex.
9522 */
9523 has_lock = mutex_trylock(&ctx->uring_lock);
9524
9525 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9526 sq = ctx->sq_data;
9527
9528 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9529 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9530 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9531 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9532 struct fixed_file_table *table;
9533 struct file *f;
9534
9535 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9536 f = table->files[i & IORING_FILE_TABLE_MASK];
9537 if (f)
9538 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9539 else
9540 seq_printf(m, "%5u: <none>\n", i);
9541 }
9542 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9543 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9544 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9545
9546 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9547 (unsigned int) buf->len);
9548 }
9549 if (has_lock && !xa_empty(&ctx->personalities)) {
9550 unsigned long index;
9551 const struct io_identity *iod;
9552
9553 seq_printf(m, "Personalities:\n");
9554 xa_for_each(&ctx->personalities, index, iod)
9555 io_uring_show_cred(m, index, iod);
9556 }
9557 seq_printf(m, "PollList:\n");
9558 spin_lock_irq(&ctx->completion_lock);
9559 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9560 struct hlist_head *list = &ctx->cancel_hash[i];
9561 struct io_kiocb *req;
9562
9563 hlist_for_each_entry(req, list, hash_node)
9564 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9565 req->task->task_works != NULL);
9566 }
9567 spin_unlock_irq(&ctx->completion_lock);
9568 if (has_lock)
9569 mutex_unlock(&ctx->uring_lock);
9570 }
9571
9572 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9573 {
9574 struct io_ring_ctx *ctx = f->private_data;
9575
9576 if (percpu_ref_tryget(&ctx->refs)) {
9577 __io_uring_show_fdinfo(ctx, m);
9578 percpu_ref_put(&ctx->refs);
9579 }
9580 }
9581 #endif
9582
9583 static const struct file_operations io_uring_fops = {
9584 .release = io_uring_release,
9585 .flush = io_uring_flush,
9586 .mmap = io_uring_mmap,
9587 #ifndef CONFIG_MMU
9588 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9589 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9590 #endif
9591 .poll = io_uring_poll,
9592 .fasync = io_uring_fasync,
9593 #ifdef CONFIG_PROC_FS
9594 .show_fdinfo = io_uring_show_fdinfo,
9595 #endif
9596 };
9597
9598 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9599 struct io_uring_params *p)
9600 {
9601 struct io_rings *rings;
9602 size_t size, sq_array_offset;
9603
9604 /* make sure these are sane, as we already accounted them */
9605 ctx->sq_entries = p->sq_entries;
9606 ctx->cq_entries = p->cq_entries;
9607
9608 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9609 if (size == SIZE_MAX)
9610 return -EOVERFLOW;
9611
9612 rings = io_mem_alloc(size);
9613 if (!rings)
9614 return -ENOMEM;
9615
9616 ctx->rings = rings;
9617 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9618 rings->sq_ring_mask = p->sq_entries - 1;
9619 rings->cq_ring_mask = p->cq_entries - 1;
9620 rings->sq_ring_entries = p->sq_entries;
9621 rings->cq_ring_entries = p->cq_entries;
9622 ctx->sq_mask = rings->sq_ring_mask;
9623 ctx->cq_mask = rings->cq_ring_mask;
9624
9625 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9626 if (size == SIZE_MAX) {
9627 io_mem_free(ctx->rings);
9628 ctx->rings = NULL;
9629 return -EOVERFLOW;
9630 }
9631
9632 ctx->sq_sqes = io_mem_alloc(size);
9633 if (!ctx->sq_sqes) {
9634 io_mem_free(ctx->rings);
9635 ctx->rings = NULL;
9636 return -ENOMEM;
9637 }
9638
9639 return 0;
9640 }
9641
9642 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9643 {
9644 int ret, fd;
9645
9646 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9647 if (fd < 0)
9648 return fd;
9649
9650 ret = io_uring_add_task_file(ctx, file);
9651 if (ret) {
9652 put_unused_fd(fd);
9653 return ret;
9654 }
9655 fd_install(fd, file);
9656 return fd;
9657 }
9658
9659 /*
9660 * Allocate an anonymous fd, this is what constitutes the application
9661 * visible backing of an io_uring instance. The application mmaps this
9662 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9663 * we have to tie this fd to a socket for file garbage collection purposes.
9664 */
9665 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9666 {
9667 struct file *file;
9668 #if defined(CONFIG_UNIX)
9669 int ret;
9670
9671 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9672 &ctx->ring_sock);
9673 if (ret)
9674 return ERR_PTR(ret);
9675 #endif
9676
9677 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9678 O_RDWR | O_CLOEXEC);
9679 #if defined(CONFIG_UNIX)
9680 if (IS_ERR(file)) {
9681 sock_release(ctx->ring_sock);
9682 ctx->ring_sock = NULL;
9683 } else {
9684 ctx->ring_sock->file = file;
9685 }
9686 #endif
9687 return file;
9688 }
9689
9690 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9691 struct io_uring_params __user *params)
9692 {
9693 struct user_struct *user = NULL;
9694 struct io_ring_ctx *ctx;
9695 struct file *file;
9696 bool limit_mem;
9697 int ret;
9698
9699 if (!entries)
9700 return -EINVAL;
9701 if (entries > IORING_MAX_ENTRIES) {
9702 if (!(p->flags & IORING_SETUP_CLAMP))
9703 return -EINVAL;
9704 entries = IORING_MAX_ENTRIES;
9705 }
9706
9707 /*
9708 * Use twice as many entries for the CQ ring. It's possible for the
9709 * application to drive a higher depth than the size of the SQ ring,
9710 * since the sqes are only used at submission time. This allows for
9711 * some flexibility in overcommitting a bit. If the application has
9712 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9713 * of CQ ring entries manually.
9714 */
9715 p->sq_entries = roundup_pow_of_two(entries);
9716 if (p->flags & IORING_SETUP_CQSIZE) {
9717 /*
9718 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9719 * to a power-of-two, if it isn't already. We do NOT impose
9720 * any cq vs sq ring sizing.
9721 */
9722 if (!p->cq_entries)
9723 return -EINVAL;
9724 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9725 if (!(p->flags & IORING_SETUP_CLAMP))
9726 return -EINVAL;
9727 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9728 }
9729 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9730 if (p->cq_entries < p->sq_entries)
9731 return -EINVAL;
9732 } else {
9733 p->cq_entries = 2 * p->sq_entries;
9734 }
9735
9736 user = get_uid(current_user());
9737 limit_mem = !capable(CAP_IPC_LOCK);
9738
9739 if (limit_mem) {
9740 ret = __io_account_mem(user,
9741 ring_pages(p->sq_entries, p->cq_entries));
9742 if (ret) {
9743 free_uid(user);
9744 return ret;
9745 }
9746 }
9747
9748 ctx = io_ring_ctx_alloc(p);
9749 if (!ctx) {
9750 if (limit_mem)
9751 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9752 p->cq_entries));
9753 free_uid(user);
9754 return -ENOMEM;
9755 }
9756 ctx->compat = in_compat_syscall();
9757 ctx->user = user;
9758 ctx->creds = get_current_cred();
9759 #ifdef CONFIG_AUDIT
9760 ctx->loginuid = current->loginuid;
9761 ctx->sessionid = current->sessionid;
9762 #endif
9763 ctx->sqo_task = get_task_struct(current);
9764
9765 /*
9766 * This is just grabbed for accounting purposes. When a process exits,
9767 * the mm is exited and dropped before the files, hence we need to hang
9768 * on to this mm purely for the purposes of being able to unaccount
9769 * memory (locked/pinned vm). It's not used for anything else.
9770 */
9771 mmgrab(current->mm);
9772 ctx->mm_account = current->mm;
9773
9774 #ifdef CONFIG_BLK_CGROUP
9775 /*
9776 * The sq thread will belong to the original cgroup it was inited in.
9777 * If the cgroup goes offline (e.g. disabling the io controller), then
9778 * issued bios will be associated with the closest cgroup later in the
9779 * block layer.
9780 */
9781 rcu_read_lock();
9782 ctx->sqo_blkcg_css = blkcg_css();
9783 ret = css_tryget_online(ctx->sqo_blkcg_css);
9784 rcu_read_unlock();
9785 if (!ret) {
9786 /* don't init against a dying cgroup, have the user try again */
9787 ctx->sqo_blkcg_css = NULL;
9788 ret = -ENODEV;
9789 goto err;
9790 }
9791 #endif
9792
9793 /*
9794 * Account memory _before_ installing the file descriptor. Once
9795 * the descriptor is installed, it can get closed at any time. Also
9796 * do this before hitting the general error path, as ring freeing
9797 * will un-account as well.
9798 */
9799 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9800 ACCT_LOCKED);
9801 ctx->limit_mem = limit_mem;
9802
9803 ret = io_allocate_scq_urings(ctx, p);
9804 if (ret)
9805 goto err;
9806
9807 ret = io_sq_offload_create(ctx, p);
9808 if (ret)
9809 goto err;
9810
9811 if (!(p->flags & IORING_SETUP_R_DISABLED))
9812 io_sq_offload_start(ctx);
9813
9814 memset(&p->sq_off, 0, sizeof(p->sq_off));
9815 p->sq_off.head = offsetof(struct io_rings, sq.head);
9816 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9817 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9818 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9819 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9820 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9821 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9822
9823 memset(&p->cq_off, 0, sizeof(p->cq_off));
9824 p->cq_off.head = offsetof(struct io_rings, cq.head);
9825 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9826 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9827 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9828 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9829 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9830 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9831
9832 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9833 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9834 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9835 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9836 IORING_FEAT_EXT_ARG;
9837
9838 if (copy_to_user(params, p, sizeof(*p))) {
9839 ret = -EFAULT;
9840 goto err;
9841 }
9842
9843 file = io_uring_get_file(ctx);
9844 if (IS_ERR(file)) {
9845 ret = PTR_ERR(file);
9846 goto err;
9847 }
9848
9849 /*
9850 * Install ring fd as the very last thing, so we don't risk someone
9851 * having closed it before we finish setup
9852 */
9853 ret = io_uring_install_fd(ctx, file);
9854 if (ret < 0) {
9855 io_disable_sqo_submit(ctx);
9856 /* fput will clean it up */
9857 fput(file);
9858 return ret;
9859 }
9860
9861 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9862 return ret;
9863 err:
9864 io_disable_sqo_submit(ctx);
9865 io_ring_ctx_wait_and_kill(ctx);
9866 return ret;
9867 }
9868
9869 /*
9870 * Sets up an aio uring context, and returns the fd. Applications asks for a
9871 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9872 * params structure passed in.
9873 */
9874 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9875 {
9876 struct io_uring_params p;
9877 int i;
9878
9879 if (copy_from_user(&p, params, sizeof(p)))
9880 return -EFAULT;
9881 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9882 if (p.resv[i])
9883 return -EINVAL;
9884 }
9885
9886 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9887 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9888 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9889 IORING_SETUP_R_DISABLED))
9890 return -EINVAL;
9891
9892 return io_uring_create(entries, &p, params);
9893 }
9894
9895 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9896 struct io_uring_params __user *, params)
9897 {
9898 return io_uring_setup(entries, params);
9899 }
9900
9901 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9902 {
9903 struct io_uring_probe *p;
9904 size_t size;
9905 int i, ret;
9906
9907 size = struct_size(p, ops, nr_args);
9908 if (size == SIZE_MAX)
9909 return -EOVERFLOW;
9910 p = kzalloc(size, GFP_KERNEL);
9911 if (!p)
9912 return -ENOMEM;
9913
9914 ret = -EFAULT;
9915 if (copy_from_user(p, arg, size))
9916 goto out;
9917 ret = -EINVAL;
9918 if (memchr_inv(p, 0, size))
9919 goto out;
9920
9921 p->last_op = IORING_OP_LAST - 1;
9922 if (nr_args > IORING_OP_LAST)
9923 nr_args = IORING_OP_LAST;
9924
9925 for (i = 0; i < nr_args; i++) {
9926 p->ops[i].op = i;
9927 if (!io_op_defs[i].not_supported)
9928 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9929 }
9930 p->ops_len = i;
9931
9932 ret = 0;
9933 if (copy_to_user(arg, p, size))
9934 ret = -EFAULT;
9935 out:
9936 kfree(p);
9937 return ret;
9938 }
9939
9940 static int io_register_personality(struct io_ring_ctx *ctx)
9941 {
9942 struct io_identity *iod;
9943 u32 id;
9944 int ret;
9945
9946 iod = kmalloc(sizeof(*iod), GFP_KERNEL);
9947 if (unlikely(!iod))
9948 return -ENOMEM;
9949
9950 io_init_identity(iod);
9951 iod->creds = get_current_cred();
9952
9953 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)iod,
9954 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9955 if (ret < 0) {
9956 put_cred(iod->creds);
9957 kfree(iod);
9958 return ret;
9959 }
9960 return id;
9961 }
9962
9963 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9964 unsigned int nr_args)
9965 {
9966 struct io_uring_restriction *res;
9967 size_t size;
9968 int i, ret;
9969
9970 /* Restrictions allowed only if rings started disabled */
9971 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9972 return -EBADFD;
9973
9974 /* We allow only a single restrictions registration */
9975 if (ctx->restrictions.registered)
9976 return -EBUSY;
9977
9978 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9979 return -EINVAL;
9980
9981 size = array_size(nr_args, sizeof(*res));
9982 if (size == SIZE_MAX)
9983 return -EOVERFLOW;
9984
9985 res = memdup_user(arg, size);
9986 if (IS_ERR(res))
9987 return PTR_ERR(res);
9988
9989 ret = 0;
9990
9991 for (i = 0; i < nr_args; i++) {
9992 switch (res[i].opcode) {
9993 case IORING_RESTRICTION_REGISTER_OP:
9994 if (res[i].register_op >= IORING_REGISTER_LAST) {
9995 ret = -EINVAL;
9996 goto out;
9997 }
9998
9999 __set_bit(res[i].register_op,
10000 ctx->restrictions.register_op);
10001 break;
10002 case IORING_RESTRICTION_SQE_OP:
10003 if (res[i].sqe_op >= IORING_OP_LAST) {
10004 ret = -EINVAL;
10005 goto out;
10006 }
10007
10008 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10009 break;
10010 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10011 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10012 break;
10013 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10014 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10015 break;
10016 default:
10017 ret = -EINVAL;
10018 goto out;
10019 }
10020 }
10021
10022 out:
10023 /* Reset all restrictions if an error happened */
10024 if (ret != 0)
10025 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10026 else
10027 ctx->restrictions.registered = true;
10028
10029 kfree(res);
10030 return ret;
10031 }
10032
10033 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10034 {
10035 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10036 return -EBADFD;
10037
10038 if (ctx->restrictions.registered)
10039 ctx->restricted = 1;
10040
10041 io_sq_offload_start(ctx);
10042 return 0;
10043 }
10044
10045 static bool io_register_op_must_quiesce(int op)
10046 {
10047 switch (op) {
10048 case IORING_UNREGISTER_FILES:
10049 case IORING_REGISTER_FILES_UPDATE:
10050 case IORING_REGISTER_PROBE:
10051 case IORING_REGISTER_PERSONALITY:
10052 case IORING_UNREGISTER_PERSONALITY:
10053 return false;
10054 default:
10055 return true;
10056 }
10057 }
10058
10059 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10060 void __user *arg, unsigned nr_args)
10061 __releases(ctx->uring_lock)
10062 __acquires(ctx->uring_lock)
10063 {
10064 int ret;
10065
10066 /*
10067 * We're inside the ring mutex, if the ref is already dying, then
10068 * someone else killed the ctx or is already going through
10069 * io_uring_register().
10070 */
10071 if (percpu_ref_is_dying(&ctx->refs))
10072 return -ENXIO;
10073
10074 if (io_register_op_must_quiesce(opcode)) {
10075 percpu_ref_kill(&ctx->refs);
10076
10077 /*
10078 * Drop uring mutex before waiting for references to exit. If
10079 * another thread is currently inside io_uring_enter() it might
10080 * need to grab the uring_lock to make progress. If we hold it
10081 * here across the drain wait, then we can deadlock. It's safe
10082 * to drop the mutex here, since no new references will come in
10083 * after we've killed the percpu ref.
10084 */
10085 mutex_unlock(&ctx->uring_lock);
10086 do {
10087 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10088 if (!ret)
10089 break;
10090 ret = io_run_task_work_sig();
10091 if (ret < 0)
10092 break;
10093 } while (1);
10094
10095 mutex_lock(&ctx->uring_lock);
10096
10097 if (ret) {
10098 percpu_ref_resurrect(&ctx->refs);
10099 goto out_quiesce;
10100 }
10101 }
10102
10103 if (ctx->restricted) {
10104 if (opcode >= IORING_REGISTER_LAST) {
10105 ret = -EINVAL;
10106 goto out;
10107 }
10108
10109 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10110 ret = -EACCES;
10111 goto out;
10112 }
10113 }
10114
10115 switch (opcode) {
10116 case IORING_REGISTER_BUFFERS:
10117 ret = io_sqe_buffer_register(ctx, arg, nr_args);
10118 break;
10119 case IORING_UNREGISTER_BUFFERS:
10120 ret = -EINVAL;
10121 if (arg || nr_args)
10122 break;
10123 ret = io_sqe_buffer_unregister(ctx);
10124 break;
10125 case IORING_REGISTER_FILES:
10126 ret = io_sqe_files_register(ctx, arg, nr_args);
10127 break;
10128 case IORING_UNREGISTER_FILES:
10129 ret = -EINVAL;
10130 if (arg || nr_args)
10131 break;
10132 ret = io_sqe_files_unregister(ctx);
10133 break;
10134 case IORING_REGISTER_FILES_UPDATE:
10135 ret = io_sqe_files_update(ctx, arg, nr_args);
10136 break;
10137 case IORING_REGISTER_EVENTFD:
10138 case IORING_REGISTER_EVENTFD_ASYNC:
10139 ret = -EINVAL;
10140 if (nr_args != 1)
10141 break;
10142 ret = io_eventfd_register(ctx, arg);
10143 if (ret)
10144 break;
10145 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10146 ctx->eventfd_async = 1;
10147 else
10148 ctx->eventfd_async = 0;
10149 break;
10150 case IORING_UNREGISTER_EVENTFD:
10151 ret = -EINVAL;
10152 if (arg || nr_args)
10153 break;
10154 ret = io_eventfd_unregister(ctx);
10155 break;
10156 case IORING_REGISTER_PROBE:
10157 ret = -EINVAL;
10158 if (!arg || nr_args > 256)
10159 break;
10160 ret = io_probe(ctx, arg, nr_args);
10161 break;
10162 case IORING_REGISTER_PERSONALITY:
10163 ret = -EINVAL;
10164 if (arg || nr_args)
10165 break;
10166 ret = io_register_personality(ctx);
10167 break;
10168 case IORING_UNREGISTER_PERSONALITY:
10169 ret = -EINVAL;
10170 if (arg)
10171 break;
10172 ret = io_unregister_personality(ctx, nr_args);
10173 break;
10174 case IORING_REGISTER_ENABLE_RINGS:
10175 ret = -EINVAL;
10176 if (arg || nr_args)
10177 break;
10178 ret = io_register_enable_rings(ctx);
10179 break;
10180 case IORING_REGISTER_RESTRICTIONS:
10181 ret = io_register_restrictions(ctx, arg, nr_args);
10182 break;
10183 default:
10184 ret = -EINVAL;
10185 break;
10186 }
10187
10188 out:
10189 if (io_register_op_must_quiesce(opcode)) {
10190 /* bring the ctx back to life */
10191 percpu_ref_reinit(&ctx->refs);
10192 out_quiesce:
10193 reinit_completion(&ctx->ref_comp);
10194 }
10195 return ret;
10196 }
10197
10198 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10199 void __user *, arg, unsigned int, nr_args)
10200 {
10201 struct io_ring_ctx *ctx;
10202 long ret = -EBADF;
10203 struct fd f;
10204
10205 f = fdget(fd);
10206 if (!f.file)
10207 return -EBADF;
10208
10209 ret = -EOPNOTSUPP;
10210 if (f.file->f_op != &io_uring_fops)
10211 goto out_fput;
10212
10213 ctx = f.file->private_data;
10214
10215 mutex_lock(&ctx->uring_lock);
10216 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10217 mutex_unlock(&ctx->uring_lock);
10218 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10219 ctx->cq_ev_fd != NULL, ret);
10220 out_fput:
10221 fdput(f);
10222 return ret;
10223 }
10224
10225 static int __init io_uring_init(void)
10226 {
10227 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10228 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10229 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10230 } while (0)
10231
10232 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10233 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10234 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10235 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10236 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10237 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10238 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10239 BUILD_BUG_SQE_ELEM(8, __u64, off);
10240 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10241 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10242 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10243 BUILD_BUG_SQE_ELEM(24, __u32, len);
10244 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10245 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10246 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10247 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10248 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10249 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10250 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10251 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10252 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10253 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10254 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10255 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10256 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10257 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10258 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10259 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10260 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10261 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10262 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10263
10264 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10265 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
10266 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10267 return 0;
10268 };
10269 __initcall(io_uring_init);