]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
6ba101cd46618c53334c146e29852a50f4d34265
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/io_uring.h>
84
85 #include <uapi/linux/io_uring.h>
86
87 #include "internal.h"
88 #include "io-wq.h"
89
90 #define IORING_MAX_ENTRIES 32768
91 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
92 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
93
94 /*
95 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
96 */
97 #define IORING_FILE_TABLE_SHIFT 9
98 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
99 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
100 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
101 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
102 IORING_REGISTER_LAST + IORING_OP_LAST)
103
104 #define IO_RSRC_TAG_TABLE_SHIFT 9
105 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
106 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
107
108 #define IORING_MAX_REG_BUFFERS (1U << 14)
109
110 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
111 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
112 IOSQE_BUFFER_SELECT)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
115
116 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
117
118 struct io_uring {
119 u32 head ____cacheline_aligned_in_smp;
120 u32 tail ____cacheline_aligned_in_smp;
121 };
122
123 /*
124 * This data is shared with the application through the mmap at offsets
125 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
126 *
127 * The offsets to the member fields are published through struct
128 * io_sqring_offsets when calling io_uring_setup.
129 */
130 struct io_rings {
131 /*
132 * Head and tail offsets into the ring; the offsets need to be
133 * masked to get valid indices.
134 *
135 * The kernel controls head of the sq ring and the tail of the cq ring,
136 * and the application controls tail of the sq ring and the head of the
137 * cq ring.
138 */
139 struct io_uring sq, cq;
140 /*
141 * Bitmasks to apply to head and tail offsets (constant, equals
142 * ring_entries - 1)
143 */
144 u32 sq_ring_mask, cq_ring_mask;
145 /* Ring sizes (constant, power of 2) */
146 u32 sq_ring_entries, cq_ring_entries;
147 /*
148 * Number of invalid entries dropped by the kernel due to
149 * invalid index stored in array
150 *
151 * Written by the kernel, shouldn't be modified by the
152 * application (i.e. get number of "new events" by comparing to
153 * cached value).
154 *
155 * After a new SQ head value was read by the application this
156 * counter includes all submissions that were dropped reaching
157 * the new SQ head (and possibly more).
158 */
159 u32 sq_dropped;
160 /*
161 * Runtime SQ flags
162 *
163 * Written by the kernel, shouldn't be modified by the
164 * application.
165 *
166 * The application needs a full memory barrier before checking
167 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
168 */
169 u32 sq_flags;
170 /*
171 * Runtime CQ flags
172 *
173 * Written by the application, shouldn't be modified by the
174 * kernel.
175 */
176 u32 cq_flags;
177 /*
178 * Number of completion events lost because the queue was full;
179 * this should be avoided by the application by making sure
180 * there are not more requests pending than there is space in
181 * the completion queue.
182 *
183 * Written by the kernel, shouldn't be modified by the
184 * application (i.e. get number of "new events" by comparing to
185 * cached value).
186 *
187 * As completion events come in out of order this counter is not
188 * ordered with any other data.
189 */
190 u32 cq_overflow;
191 /*
192 * Ring buffer of completion events.
193 *
194 * The kernel writes completion events fresh every time they are
195 * produced, so the application is allowed to modify pending
196 * entries.
197 */
198 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
199 };
200
201 enum io_uring_cmd_flags {
202 IO_URING_F_NONBLOCK = 1,
203 IO_URING_F_COMPLETE_DEFER = 2,
204 };
205
206 struct io_mapped_ubuf {
207 u64 ubuf;
208 u64 ubuf_end;
209 unsigned int nr_bvecs;
210 unsigned long acct_pages;
211 struct bio_vec bvec[];
212 };
213
214 struct io_ring_ctx;
215
216 struct io_overflow_cqe {
217 struct io_uring_cqe cqe;
218 struct list_head list;
219 };
220
221 struct io_fixed_file {
222 /* file * with additional FFS_* flags */
223 unsigned long file_ptr;
224 };
225
226 struct io_rsrc_put {
227 struct list_head list;
228 u64 tag;
229 union {
230 void *rsrc;
231 struct file *file;
232 struct io_mapped_ubuf *buf;
233 };
234 };
235
236 struct io_file_table {
237 /* two level table */
238 struct io_fixed_file **files;
239 };
240
241 struct io_rsrc_node {
242 struct percpu_ref refs;
243 struct list_head node;
244 struct list_head rsrc_list;
245 struct io_rsrc_data *rsrc_data;
246 struct llist_node llist;
247 bool done;
248 };
249
250 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
251
252 struct io_rsrc_data {
253 struct io_ring_ctx *ctx;
254
255 u64 **tags;
256 unsigned int nr;
257 rsrc_put_fn *do_put;
258 atomic_t refs;
259 struct completion done;
260 bool quiesce;
261 };
262
263 struct io_buffer {
264 struct list_head list;
265 __u64 addr;
266 __u32 len;
267 __u16 bid;
268 };
269
270 struct io_restriction {
271 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
272 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
273 u8 sqe_flags_allowed;
274 u8 sqe_flags_required;
275 bool registered;
276 };
277
278 enum {
279 IO_SQ_THREAD_SHOULD_STOP = 0,
280 IO_SQ_THREAD_SHOULD_PARK,
281 };
282
283 struct io_sq_data {
284 refcount_t refs;
285 atomic_t park_pending;
286 struct mutex lock;
287
288 /* ctx's that are using this sqd */
289 struct list_head ctx_list;
290
291 struct task_struct *thread;
292 struct wait_queue_head wait;
293
294 unsigned sq_thread_idle;
295 int sq_cpu;
296 pid_t task_pid;
297 pid_t task_tgid;
298
299 unsigned long state;
300 struct completion exited;
301 };
302
303 #define IO_IOPOLL_BATCH 8
304 #define IO_COMPL_BATCH 32
305 #define IO_REQ_CACHE_SIZE 32
306 #define IO_REQ_ALLOC_BATCH 8
307
308 struct io_comp_state {
309 struct io_kiocb *reqs[IO_COMPL_BATCH];
310 unsigned int nr;
311 /* inline/task_work completion list, under ->uring_lock */
312 struct list_head free_list;
313 };
314
315 struct io_submit_link {
316 struct io_kiocb *head;
317 struct io_kiocb *last;
318 };
319
320 struct io_submit_state {
321 struct blk_plug plug;
322 struct io_submit_link link;
323
324 /*
325 * io_kiocb alloc cache
326 */
327 void *reqs[IO_REQ_CACHE_SIZE];
328 unsigned int free_reqs;
329
330 bool plug_started;
331
332 /*
333 * Batch completion logic
334 */
335 struct io_comp_state comp;
336
337 /*
338 * File reference cache
339 */
340 struct file *file;
341 unsigned int fd;
342 unsigned int file_refs;
343 unsigned int ios_left;
344 };
345
346 struct io_ring_ctx {
347 /* const or read-mostly hot data */
348 struct {
349 struct percpu_ref refs;
350
351 struct io_rings *rings;
352 unsigned int flags;
353 unsigned int compat: 1;
354 unsigned int drain_next: 1;
355 unsigned int eventfd_async: 1;
356 unsigned int restricted: 1;
357 unsigned int off_timeout_used: 1;
358 unsigned int drain_active: 1;
359 } ____cacheline_aligned_in_smp;
360
361 /* submission data */
362 struct {
363 struct mutex uring_lock;
364
365 /*
366 * Ring buffer of indices into array of io_uring_sqe, which is
367 * mmapped by the application using the IORING_OFF_SQES offset.
368 *
369 * This indirection could e.g. be used to assign fixed
370 * io_uring_sqe entries to operations and only submit them to
371 * the queue when needed.
372 *
373 * The kernel modifies neither the indices array nor the entries
374 * array.
375 */
376 u32 *sq_array;
377 struct io_uring_sqe *sq_sqes;
378 unsigned cached_sq_head;
379 unsigned sq_entries;
380 struct list_head defer_list;
381
382 /*
383 * Fixed resources fast path, should be accessed only under
384 * uring_lock, and updated through io_uring_register(2)
385 */
386 struct io_rsrc_node *rsrc_node;
387 struct io_file_table file_table;
388 unsigned nr_user_files;
389 unsigned nr_user_bufs;
390 struct io_mapped_ubuf **user_bufs;
391
392 struct io_submit_state submit_state;
393 struct list_head timeout_list;
394 struct list_head cq_overflow_list;
395 struct xarray io_buffers;
396 struct xarray personalities;
397 u32 pers_next;
398 unsigned sq_thread_idle;
399 } ____cacheline_aligned_in_smp;
400
401 /* IRQ completion list, under ->completion_lock */
402 struct list_head locked_free_list;
403 unsigned int locked_free_nr;
404
405 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
406 struct io_sq_data *sq_data; /* if using sq thread polling */
407
408 struct wait_queue_head sqo_sq_wait;
409 struct list_head sqd_list;
410
411 unsigned long check_cq_overflow;
412
413 struct {
414 unsigned cached_cq_tail;
415 unsigned cq_entries;
416 struct eventfd_ctx *cq_ev_fd;
417 struct wait_queue_head poll_wait;
418 struct wait_queue_head cq_wait;
419 unsigned cq_extra;
420 atomic_t cq_timeouts;
421 struct fasync_struct *cq_fasync;
422 unsigned cq_last_tm_flush;
423 } ____cacheline_aligned_in_smp;
424
425 struct {
426 spinlock_t completion_lock;
427
428 /*
429 * ->iopoll_list is protected by the ctx->uring_lock for
430 * io_uring instances that don't use IORING_SETUP_SQPOLL.
431 * For SQPOLL, only the single threaded io_sq_thread() will
432 * manipulate the list, hence no extra locking is needed there.
433 */
434 struct list_head iopoll_list;
435 struct hlist_head *cancel_hash;
436 unsigned cancel_hash_bits;
437 bool poll_multi_queue;
438 } ____cacheline_aligned_in_smp;
439
440 struct io_restriction restrictions;
441
442 /* slow path rsrc auxilary data, used by update/register */
443 struct {
444 struct io_rsrc_node *rsrc_backup_node;
445 struct io_mapped_ubuf *dummy_ubuf;
446 struct io_rsrc_data *file_data;
447 struct io_rsrc_data *buf_data;
448
449 struct delayed_work rsrc_put_work;
450 struct llist_head rsrc_put_llist;
451 struct list_head rsrc_ref_list;
452 spinlock_t rsrc_ref_lock;
453 };
454
455 /* Keep this last, we don't need it for the fast path */
456 struct {
457 #if defined(CONFIG_UNIX)
458 struct socket *ring_sock;
459 #endif
460 /* hashed buffered write serialization */
461 struct io_wq_hash *hash_map;
462
463 /* Only used for accounting purposes */
464 struct user_struct *user;
465 struct mm_struct *mm_account;
466
467 /* ctx exit and cancelation */
468 struct llist_head fallback_llist;
469 struct delayed_work fallback_work;
470 struct work_struct exit_work;
471 struct list_head tctx_list;
472 struct completion ref_comp;
473 };
474 };
475
476 struct io_uring_task {
477 /* submission side */
478 int cached_refs;
479 struct xarray xa;
480 struct wait_queue_head wait;
481 const struct io_ring_ctx *last;
482 struct io_wq *io_wq;
483 struct percpu_counter inflight;
484 atomic_t inflight_tracked;
485 atomic_t in_idle;
486
487 spinlock_t task_lock;
488 struct io_wq_work_list task_list;
489 unsigned long task_state;
490 struct callback_head task_work;
491 };
492
493 /*
494 * First field must be the file pointer in all the
495 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
496 */
497 struct io_poll_iocb {
498 struct file *file;
499 struct wait_queue_head *head;
500 __poll_t events;
501 bool done;
502 bool canceled;
503 struct wait_queue_entry wait;
504 };
505
506 struct io_poll_update {
507 struct file *file;
508 u64 old_user_data;
509 u64 new_user_data;
510 __poll_t events;
511 bool update_events;
512 bool update_user_data;
513 };
514
515 struct io_close {
516 struct file *file;
517 int fd;
518 };
519
520 struct io_timeout_data {
521 struct io_kiocb *req;
522 struct hrtimer timer;
523 struct timespec64 ts;
524 enum hrtimer_mode mode;
525 };
526
527 struct io_accept {
528 struct file *file;
529 struct sockaddr __user *addr;
530 int __user *addr_len;
531 int flags;
532 unsigned long nofile;
533 };
534
535 struct io_sync {
536 struct file *file;
537 loff_t len;
538 loff_t off;
539 int flags;
540 int mode;
541 };
542
543 struct io_cancel {
544 struct file *file;
545 u64 addr;
546 };
547
548 struct io_timeout {
549 struct file *file;
550 u32 off;
551 u32 target_seq;
552 struct list_head list;
553 /* head of the link, used by linked timeouts only */
554 struct io_kiocb *head;
555 };
556
557 struct io_timeout_rem {
558 struct file *file;
559 u64 addr;
560
561 /* timeout update */
562 struct timespec64 ts;
563 u32 flags;
564 };
565
566 struct io_rw {
567 /* NOTE: kiocb has the file as the first member, so don't do it here */
568 struct kiocb kiocb;
569 u64 addr;
570 u64 len;
571 };
572
573 struct io_connect {
574 struct file *file;
575 struct sockaddr __user *addr;
576 int addr_len;
577 };
578
579 struct io_sr_msg {
580 struct file *file;
581 union {
582 struct compat_msghdr __user *umsg_compat;
583 struct user_msghdr __user *umsg;
584 void __user *buf;
585 };
586 int msg_flags;
587 int bgid;
588 size_t len;
589 struct io_buffer *kbuf;
590 };
591
592 struct io_open {
593 struct file *file;
594 int dfd;
595 struct filename *filename;
596 struct open_how how;
597 unsigned long nofile;
598 };
599
600 struct io_rsrc_update {
601 struct file *file;
602 u64 arg;
603 u32 nr_args;
604 u32 offset;
605 };
606
607 struct io_fadvise {
608 struct file *file;
609 u64 offset;
610 u32 len;
611 u32 advice;
612 };
613
614 struct io_madvise {
615 struct file *file;
616 u64 addr;
617 u32 len;
618 u32 advice;
619 };
620
621 struct io_epoll {
622 struct file *file;
623 int epfd;
624 int op;
625 int fd;
626 struct epoll_event event;
627 };
628
629 struct io_splice {
630 struct file *file_out;
631 struct file *file_in;
632 loff_t off_out;
633 loff_t off_in;
634 u64 len;
635 unsigned int flags;
636 };
637
638 struct io_provide_buf {
639 struct file *file;
640 __u64 addr;
641 __u32 len;
642 __u32 bgid;
643 __u16 nbufs;
644 __u16 bid;
645 };
646
647 struct io_statx {
648 struct file *file;
649 int dfd;
650 unsigned int mask;
651 unsigned int flags;
652 const char __user *filename;
653 struct statx __user *buffer;
654 };
655
656 struct io_shutdown {
657 struct file *file;
658 int how;
659 };
660
661 struct io_rename {
662 struct file *file;
663 int old_dfd;
664 int new_dfd;
665 struct filename *oldpath;
666 struct filename *newpath;
667 int flags;
668 };
669
670 struct io_unlink {
671 struct file *file;
672 int dfd;
673 int flags;
674 struct filename *filename;
675 };
676
677 struct io_completion {
678 struct file *file;
679 struct list_head list;
680 u32 cflags;
681 };
682
683 struct io_async_connect {
684 struct sockaddr_storage address;
685 };
686
687 struct io_async_msghdr {
688 struct iovec fast_iov[UIO_FASTIOV];
689 /* points to an allocated iov, if NULL we use fast_iov instead */
690 struct iovec *free_iov;
691 struct sockaddr __user *uaddr;
692 struct msghdr msg;
693 struct sockaddr_storage addr;
694 };
695
696 struct io_async_rw {
697 struct iovec fast_iov[UIO_FASTIOV];
698 const struct iovec *free_iovec;
699 struct iov_iter iter;
700 size_t bytes_done;
701 struct wait_page_queue wpq;
702 };
703
704 enum {
705 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
706 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
707 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
708 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
709 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
710 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
711
712 /* first byte is taken by user flags, shift it to not overlap */
713 REQ_F_FAIL_BIT = 8,
714 REQ_F_INFLIGHT_BIT,
715 REQ_F_CUR_POS_BIT,
716 REQ_F_NOWAIT_BIT,
717 REQ_F_LINK_TIMEOUT_BIT,
718 REQ_F_NEED_CLEANUP_BIT,
719 REQ_F_POLLED_BIT,
720 REQ_F_BUFFER_SELECTED_BIT,
721 REQ_F_LTIMEOUT_ACTIVE_BIT,
722 REQ_F_COMPLETE_INLINE_BIT,
723 REQ_F_REISSUE_BIT,
724 REQ_F_DONT_REISSUE_BIT,
725 REQ_F_CREDS_BIT,
726 /* keep async read/write and isreg together and in order */
727 REQ_F_ASYNC_READ_BIT,
728 REQ_F_ASYNC_WRITE_BIT,
729 REQ_F_ISREG_BIT,
730
731 /* not a real bit, just to check we're not overflowing the space */
732 __REQ_F_LAST_BIT,
733 };
734
735 enum {
736 /* ctx owns file */
737 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
738 /* drain existing IO first */
739 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
740 /* linked sqes */
741 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
742 /* doesn't sever on completion < 0 */
743 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
744 /* IOSQE_ASYNC */
745 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
746 /* IOSQE_BUFFER_SELECT */
747 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
748
749 /* fail rest of links */
750 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
751 /* on inflight list, should be cancelled and waited on exit reliably */
752 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
753 /* read/write uses file position */
754 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
755 /* must not punt to workers */
756 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
757 /* has or had linked timeout */
758 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
759 /* needs cleanup */
760 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
761 /* already went through poll handler */
762 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
763 /* buffer already selected */
764 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
765 /* linked timeout is active, i.e. prepared by link's head */
766 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
767 /* completion is deferred through io_comp_state */
768 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
769 /* caller should reissue async */
770 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
771 /* don't attempt request reissue, see io_rw_reissue() */
772 REQ_F_DONT_REISSUE = BIT(REQ_F_DONT_REISSUE_BIT),
773 /* supports async reads */
774 REQ_F_ASYNC_READ = BIT(REQ_F_ASYNC_READ_BIT),
775 /* supports async writes */
776 REQ_F_ASYNC_WRITE = BIT(REQ_F_ASYNC_WRITE_BIT),
777 /* regular file */
778 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
779 /* has creds assigned */
780 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
781 };
782
783 struct async_poll {
784 struct io_poll_iocb poll;
785 struct io_poll_iocb *double_poll;
786 };
787
788 typedef void (*io_req_tw_func_t)(struct io_kiocb *req);
789
790 struct io_task_work {
791 union {
792 struct io_wq_work_node node;
793 struct llist_node fallback_node;
794 };
795 io_req_tw_func_t func;
796 };
797
798 enum {
799 IORING_RSRC_FILE = 0,
800 IORING_RSRC_BUFFER = 1,
801 };
802
803 /*
804 * NOTE! Each of the iocb union members has the file pointer
805 * as the first entry in their struct definition. So you can
806 * access the file pointer through any of the sub-structs,
807 * or directly as just 'ki_filp' in this struct.
808 */
809 struct io_kiocb {
810 union {
811 struct file *file;
812 struct io_rw rw;
813 struct io_poll_iocb poll;
814 struct io_poll_update poll_update;
815 struct io_accept accept;
816 struct io_sync sync;
817 struct io_cancel cancel;
818 struct io_timeout timeout;
819 struct io_timeout_rem timeout_rem;
820 struct io_connect connect;
821 struct io_sr_msg sr_msg;
822 struct io_open open;
823 struct io_close close;
824 struct io_rsrc_update rsrc_update;
825 struct io_fadvise fadvise;
826 struct io_madvise madvise;
827 struct io_epoll epoll;
828 struct io_splice splice;
829 struct io_provide_buf pbuf;
830 struct io_statx statx;
831 struct io_shutdown shutdown;
832 struct io_rename rename;
833 struct io_unlink unlink;
834 /* use only after cleaning per-op data, see io_clean_op() */
835 struct io_completion compl;
836 };
837
838 /* opcode allocated if it needs to store data for async defer */
839 void *async_data;
840 u8 opcode;
841 /* polled IO has completed */
842 u8 iopoll_completed;
843
844 u16 buf_index;
845 u32 result;
846
847 struct io_ring_ctx *ctx;
848 unsigned int flags;
849 atomic_t refs;
850 struct task_struct *task;
851 u64 user_data;
852
853 struct io_kiocb *link;
854 struct percpu_ref *fixed_rsrc_refs;
855
856 /* used with ctx->iopoll_list with reads/writes */
857 struct list_head inflight_entry;
858 struct io_task_work io_task_work;
859 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
860 struct hlist_node hash_node;
861 struct async_poll *apoll;
862 struct io_wq_work work;
863 const struct cred *creds;
864
865 /* store used ubuf, so we can prevent reloading */
866 struct io_mapped_ubuf *imu;
867 };
868
869 struct io_tctx_node {
870 struct list_head ctx_node;
871 struct task_struct *task;
872 struct io_ring_ctx *ctx;
873 };
874
875 struct io_defer_entry {
876 struct list_head list;
877 struct io_kiocb *req;
878 u32 seq;
879 };
880
881 struct io_op_def {
882 /* needs req->file assigned */
883 unsigned needs_file : 1;
884 /* hash wq insertion if file is a regular file */
885 unsigned hash_reg_file : 1;
886 /* unbound wq insertion if file is a non-regular file */
887 unsigned unbound_nonreg_file : 1;
888 /* opcode is not supported by this kernel */
889 unsigned not_supported : 1;
890 /* set if opcode supports polled "wait" */
891 unsigned pollin : 1;
892 unsigned pollout : 1;
893 /* op supports buffer selection */
894 unsigned buffer_select : 1;
895 /* do prep async if is going to be punted */
896 unsigned needs_async_setup : 1;
897 /* should block plug */
898 unsigned plug : 1;
899 /* size of async data needed, if any */
900 unsigned short async_size;
901 };
902
903 static const struct io_op_def io_op_defs[] = {
904 [IORING_OP_NOP] = {},
905 [IORING_OP_READV] = {
906 .needs_file = 1,
907 .unbound_nonreg_file = 1,
908 .pollin = 1,
909 .buffer_select = 1,
910 .needs_async_setup = 1,
911 .plug = 1,
912 .async_size = sizeof(struct io_async_rw),
913 },
914 [IORING_OP_WRITEV] = {
915 .needs_file = 1,
916 .hash_reg_file = 1,
917 .unbound_nonreg_file = 1,
918 .pollout = 1,
919 .needs_async_setup = 1,
920 .plug = 1,
921 .async_size = sizeof(struct io_async_rw),
922 },
923 [IORING_OP_FSYNC] = {
924 .needs_file = 1,
925 },
926 [IORING_OP_READ_FIXED] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .plug = 1,
931 .async_size = sizeof(struct io_async_rw),
932 },
933 [IORING_OP_WRITE_FIXED] = {
934 .needs_file = 1,
935 .hash_reg_file = 1,
936 .unbound_nonreg_file = 1,
937 .pollout = 1,
938 .plug = 1,
939 .async_size = sizeof(struct io_async_rw),
940 },
941 [IORING_OP_POLL_ADD] = {
942 .needs_file = 1,
943 .unbound_nonreg_file = 1,
944 },
945 [IORING_OP_POLL_REMOVE] = {},
946 [IORING_OP_SYNC_FILE_RANGE] = {
947 .needs_file = 1,
948 },
949 [IORING_OP_SENDMSG] = {
950 .needs_file = 1,
951 .unbound_nonreg_file = 1,
952 .pollout = 1,
953 .needs_async_setup = 1,
954 .async_size = sizeof(struct io_async_msghdr),
955 },
956 [IORING_OP_RECVMSG] = {
957 .needs_file = 1,
958 .unbound_nonreg_file = 1,
959 .pollin = 1,
960 .buffer_select = 1,
961 .needs_async_setup = 1,
962 .async_size = sizeof(struct io_async_msghdr),
963 },
964 [IORING_OP_TIMEOUT] = {
965 .async_size = sizeof(struct io_timeout_data),
966 },
967 [IORING_OP_TIMEOUT_REMOVE] = {
968 /* used by timeout updates' prep() */
969 },
970 [IORING_OP_ACCEPT] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollin = 1,
974 },
975 [IORING_OP_ASYNC_CANCEL] = {},
976 [IORING_OP_LINK_TIMEOUT] = {
977 .async_size = sizeof(struct io_timeout_data),
978 },
979 [IORING_OP_CONNECT] = {
980 .needs_file = 1,
981 .unbound_nonreg_file = 1,
982 .pollout = 1,
983 .needs_async_setup = 1,
984 .async_size = sizeof(struct io_async_connect),
985 },
986 [IORING_OP_FALLOCATE] = {
987 .needs_file = 1,
988 },
989 [IORING_OP_OPENAT] = {},
990 [IORING_OP_CLOSE] = {},
991 [IORING_OP_FILES_UPDATE] = {},
992 [IORING_OP_STATX] = {},
993 [IORING_OP_READ] = {
994 .needs_file = 1,
995 .unbound_nonreg_file = 1,
996 .pollin = 1,
997 .buffer_select = 1,
998 .plug = 1,
999 .async_size = sizeof(struct io_async_rw),
1000 },
1001 [IORING_OP_WRITE] = {
1002 .needs_file = 1,
1003 .unbound_nonreg_file = 1,
1004 .pollout = 1,
1005 .plug = 1,
1006 .async_size = sizeof(struct io_async_rw),
1007 },
1008 [IORING_OP_FADVISE] = {
1009 .needs_file = 1,
1010 },
1011 [IORING_OP_MADVISE] = {},
1012 [IORING_OP_SEND] = {
1013 .needs_file = 1,
1014 .unbound_nonreg_file = 1,
1015 .pollout = 1,
1016 },
1017 [IORING_OP_RECV] = {
1018 .needs_file = 1,
1019 .unbound_nonreg_file = 1,
1020 .pollin = 1,
1021 .buffer_select = 1,
1022 },
1023 [IORING_OP_OPENAT2] = {
1024 },
1025 [IORING_OP_EPOLL_CTL] = {
1026 .unbound_nonreg_file = 1,
1027 },
1028 [IORING_OP_SPLICE] = {
1029 .needs_file = 1,
1030 .hash_reg_file = 1,
1031 .unbound_nonreg_file = 1,
1032 },
1033 [IORING_OP_PROVIDE_BUFFERS] = {},
1034 [IORING_OP_REMOVE_BUFFERS] = {},
1035 [IORING_OP_TEE] = {
1036 .needs_file = 1,
1037 .hash_reg_file = 1,
1038 .unbound_nonreg_file = 1,
1039 },
1040 [IORING_OP_SHUTDOWN] = {
1041 .needs_file = 1,
1042 },
1043 [IORING_OP_RENAMEAT] = {},
1044 [IORING_OP_UNLINKAT] = {},
1045 };
1046
1047 static bool io_disarm_next(struct io_kiocb *req);
1048 static void io_uring_del_tctx_node(unsigned long index);
1049 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1050 struct task_struct *task,
1051 bool cancel_all);
1052 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1053 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx);
1054
1055 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1056 long res, unsigned int cflags);
1057 static void io_put_req(struct io_kiocb *req);
1058 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1059 static void io_dismantle_req(struct io_kiocb *req);
1060 static void io_put_task(struct task_struct *task, int nr);
1061 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1062 static void io_queue_linked_timeout(struct io_kiocb *req);
1063 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1064 struct io_uring_rsrc_update2 *up,
1065 unsigned nr_args);
1066 static void io_clean_op(struct io_kiocb *req);
1067 static struct file *io_file_get(struct io_submit_state *state,
1068 struct io_kiocb *req, int fd, bool fixed);
1069 static void __io_queue_sqe(struct io_kiocb *req);
1070 static void io_rsrc_put_work(struct work_struct *work);
1071
1072 static void io_req_task_queue(struct io_kiocb *req);
1073 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1074 static bool io_poll_remove_waitqs(struct io_kiocb *req);
1075 static int io_req_prep_async(struct io_kiocb *req);
1076
1077 static void io_fallback_req_func(struct work_struct *unused);
1078
1079 static struct kmem_cache *req_cachep;
1080
1081 static const struct file_operations io_uring_fops;
1082
1083 struct sock *io_uring_get_socket(struct file *file)
1084 {
1085 #if defined(CONFIG_UNIX)
1086 if (file->f_op == &io_uring_fops) {
1087 struct io_ring_ctx *ctx = file->private_data;
1088
1089 return ctx->ring_sock->sk;
1090 }
1091 #endif
1092 return NULL;
1093 }
1094 EXPORT_SYMBOL(io_uring_get_socket);
1095
1096 #define io_for_each_link(pos, head) \
1097 for (pos = (head); pos; pos = pos->link)
1098
1099 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1100 {
1101 struct io_ring_ctx *ctx = req->ctx;
1102
1103 if (!req->fixed_rsrc_refs) {
1104 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1105 percpu_ref_get(req->fixed_rsrc_refs);
1106 }
1107 }
1108
1109 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1110 {
1111 bool got = percpu_ref_tryget(ref);
1112
1113 /* already at zero, wait for ->release() */
1114 if (!got)
1115 wait_for_completion(compl);
1116 percpu_ref_resurrect(ref);
1117 if (got)
1118 percpu_ref_put(ref);
1119 }
1120
1121 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1122 bool cancel_all)
1123 {
1124 struct io_kiocb *req;
1125
1126 if (task && head->task != task)
1127 return false;
1128 if (cancel_all)
1129 return true;
1130
1131 io_for_each_link(req, head) {
1132 if (req->flags & REQ_F_INFLIGHT)
1133 return true;
1134 }
1135 return false;
1136 }
1137
1138 static inline void req_set_fail(struct io_kiocb *req)
1139 {
1140 req->flags |= REQ_F_FAIL;
1141 }
1142
1143 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1144 {
1145 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1146
1147 complete(&ctx->ref_comp);
1148 }
1149
1150 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1151 {
1152 return !req->timeout.off;
1153 }
1154
1155 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1156 {
1157 struct io_ring_ctx *ctx;
1158 int hash_bits;
1159
1160 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1161 if (!ctx)
1162 return NULL;
1163
1164 /*
1165 * Use 5 bits less than the max cq entries, that should give us around
1166 * 32 entries per hash list if totally full and uniformly spread.
1167 */
1168 hash_bits = ilog2(p->cq_entries);
1169 hash_bits -= 5;
1170 if (hash_bits <= 0)
1171 hash_bits = 1;
1172 ctx->cancel_hash_bits = hash_bits;
1173 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1174 GFP_KERNEL);
1175 if (!ctx->cancel_hash)
1176 goto err;
1177 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1178
1179 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1180 if (!ctx->dummy_ubuf)
1181 goto err;
1182 /* set invalid range, so io_import_fixed() fails meeting it */
1183 ctx->dummy_ubuf->ubuf = -1UL;
1184
1185 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1186 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1187 goto err;
1188
1189 ctx->flags = p->flags;
1190 init_waitqueue_head(&ctx->sqo_sq_wait);
1191 INIT_LIST_HEAD(&ctx->sqd_list);
1192 init_waitqueue_head(&ctx->poll_wait);
1193 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1194 init_completion(&ctx->ref_comp);
1195 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1196 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1197 mutex_init(&ctx->uring_lock);
1198 init_waitqueue_head(&ctx->cq_wait);
1199 spin_lock_init(&ctx->completion_lock);
1200 INIT_LIST_HEAD(&ctx->iopoll_list);
1201 INIT_LIST_HEAD(&ctx->defer_list);
1202 INIT_LIST_HEAD(&ctx->timeout_list);
1203 spin_lock_init(&ctx->rsrc_ref_lock);
1204 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1205 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1206 init_llist_head(&ctx->rsrc_put_llist);
1207 INIT_LIST_HEAD(&ctx->tctx_list);
1208 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1209 INIT_LIST_HEAD(&ctx->locked_free_list);
1210 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1211 return ctx;
1212 err:
1213 kfree(ctx->dummy_ubuf);
1214 kfree(ctx->cancel_hash);
1215 kfree(ctx);
1216 return NULL;
1217 }
1218
1219 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1220 {
1221 struct io_rings *r = ctx->rings;
1222
1223 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1224 ctx->cq_extra--;
1225 }
1226
1227 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1228 {
1229 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1230 struct io_ring_ctx *ctx = req->ctx;
1231
1232 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1233 }
1234
1235 return false;
1236 }
1237
1238 static void io_req_track_inflight(struct io_kiocb *req)
1239 {
1240 if (!(req->flags & REQ_F_INFLIGHT)) {
1241 req->flags |= REQ_F_INFLIGHT;
1242 atomic_inc(&current->io_uring->inflight_tracked);
1243 }
1244 }
1245
1246 static void io_prep_async_work(struct io_kiocb *req)
1247 {
1248 const struct io_op_def *def = &io_op_defs[req->opcode];
1249 struct io_ring_ctx *ctx = req->ctx;
1250
1251 if (!(req->flags & REQ_F_CREDS)) {
1252 req->flags |= REQ_F_CREDS;
1253 req->creds = get_current_cred();
1254 }
1255
1256 req->work.list.next = NULL;
1257 req->work.flags = 0;
1258 if (req->flags & REQ_F_FORCE_ASYNC)
1259 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1260
1261 if (req->flags & REQ_F_ISREG) {
1262 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1263 io_wq_hash_work(&req->work, file_inode(req->file));
1264 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1265 if (def->unbound_nonreg_file)
1266 req->work.flags |= IO_WQ_WORK_UNBOUND;
1267 }
1268
1269 switch (req->opcode) {
1270 case IORING_OP_SPLICE:
1271 case IORING_OP_TEE:
1272 if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1273 req->work.flags |= IO_WQ_WORK_UNBOUND;
1274 break;
1275 }
1276 }
1277
1278 static void io_prep_async_link(struct io_kiocb *req)
1279 {
1280 struct io_kiocb *cur;
1281
1282 if (req->flags & REQ_F_LINK_TIMEOUT) {
1283 struct io_ring_ctx *ctx = req->ctx;
1284
1285 spin_lock_irq(&ctx->completion_lock);
1286 io_for_each_link(cur, req)
1287 io_prep_async_work(cur);
1288 spin_unlock_irq(&ctx->completion_lock);
1289 } else {
1290 io_for_each_link(cur, req)
1291 io_prep_async_work(cur);
1292 }
1293 }
1294
1295 static void io_queue_async_work(struct io_kiocb *req)
1296 {
1297 struct io_ring_ctx *ctx = req->ctx;
1298 struct io_kiocb *link = io_prep_linked_timeout(req);
1299 struct io_uring_task *tctx = req->task->io_uring;
1300
1301 BUG_ON(!tctx);
1302 BUG_ON(!tctx->io_wq);
1303
1304 /* init ->work of the whole link before punting */
1305 io_prep_async_link(req);
1306
1307 /*
1308 * Not expected to happen, but if we do have a bug where this _can_
1309 * happen, catch it here and ensure the request is marked as
1310 * canceled. That will make io-wq go through the usual work cancel
1311 * procedure rather than attempt to run this request (or create a new
1312 * worker for it).
1313 */
1314 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1315 req->work.flags |= IO_WQ_WORK_CANCEL;
1316
1317 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1318 &req->work, req->flags);
1319 io_wq_enqueue(tctx->io_wq, &req->work);
1320 if (link)
1321 io_queue_linked_timeout(link);
1322 }
1323
1324 static void io_kill_timeout(struct io_kiocb *req, int status)
1325 __must_hold(&req->ctx->completion_lock)
1326 {
1327 struct io_timeout_data *io = req->async_data;
1328
1329 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1330 atomic_set(&req->ctx->cq_timeouts,
1331 atomic_read(&req->ctx->cq_timeouts) + 1);
1332 list_del_init(&req->timeout.list);
1333 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1334 io_put_req_deferred(req, 1);
1335 }
1336 }
1337
1338 static void io_queue_deferred(struct io_ring_ctx *ctx)
1339 {
1340 while (!list_empty(&ctx->defer_list)) {
1341 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1342 struct io_defer_entry, list);
1343
1344 if (req_need_defer(de->req, de->seq))
1345 break;
1346 list_del_init(&de->list);
1347 io_req_task_queue(de->req);
1348 kfree(de);
1349 }
1350 }
1351
1352 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1353 {
1354 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1355
1356 while (!list_empty(&ctx->timeout_list)) {
1357 u32 events_needed, events_got;
1358 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1359 struct io_kiocb, timeout.list);
1360
1361 if (io_is_timeout_noseq(req))
1362 break;
1363
1364 /*
1365 * Since seq can easily wrap around over time, subtract
1366 * the last seq at which timeouts were flushed before comparing.
1367 * Assuming not more than 2^31-1 events have happened since,
1368 * these subtractions won't have wrapped, so we can check if
1369 * target is in [last_seq, current_seq] by comparing the two.
1370 */
1371 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1372 events_got = seq - ctx->cq_last_tm_flush;
1373 if (events_got < events_needed)
1374 break;
1375
1376 list_del_init(&req->timeout.list);
1377 io_kill_timeout(req, 0);
1378 }
1379 ctx->cq_last_tm_flush = seq;
1380 }
1381
1382 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1383 {
1384 if (ctx->off_timeout_used)
1385 io_flush_timeouts(ctx);
1386 if (ctx->drain_active)
1387 io_queue_deferred(ctx);
1388 }
1389
1390 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1391 {
1392 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1393 __io_commit_cqring_flush(ctx);
1394 /* order cqe stores with ring update */
1395 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1396 }
1397
1398 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1399 {
1400 struct io_rings *r = ctx->rings;
1401
1402 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1403 }
1404
1405 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1406 {
1407 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1408 }
1409
1410 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1411 {
1412 struct io_rings *rings = ctx->rings;
1413 unsigned tail, mask = ctx->cq_entries - 1;
1414
1415 /*
1416 * writes to the cq entry need to come after reading head; the
1417 * control dependency is enough as we're using WRITE_ONCE to
1418 * fill the cq entry
1419 */
1420 if (__io_cqring_events(ctx) == ctx->cq_entries)
1421 return NULL;
1422
1423 tail = ctx->cached_cq_tail++;
1424 return &rings->cqes[tail & mask];
1425 }
1426
1427 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1428 {
1429 if (likely(!ctx->cq_ev_fd))
1430 return false;
1431 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1432 return false;
1433 return !ctx->eventfd_async || io_wq_current_is_worker();
1434 }
1435
1436 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1437 {
1438 /* see waitqueue_active() comment */
1439 smp_mb();
1440
1441 if (waitqueue_active(&ctx->cq_wait))
1442 wake_up(&ctx->cq_wait);
1443 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1444 wake_up(&ctx->sq_data->wait);
1445 if (io_should_trigger_evfd(ctx))
1446 eventfd_signal(ctx->cq_ev_fd, 1);
1447 if (waitqueue_active(&ctx->poll_wait)) {
1448 wake_up_interruptible(&ctx->poll_wait);
1449 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1450 }
1451 }
1452
1453 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1454 {
1455 /* see waitqueue_active() comment */
1456 smp_mb();
1457
1458 if (ctx->flags & IORING_SETUP_SQPOLL) {
1459 if (waitqueue_active(&ctx->cq_wait))
1460 wake_up(&ctx->cq_wait);
1461 }
1462 if (io_should_trigger_evfd(ctx))
1463 eventfd_signal(ctx->cq_ev_fd, 1);
1464 if (waitqueue_active(&ctx->poll_wait)) {
1465 wake_up_interruptible(&ctx->poll_wait);
1466 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1467 }
1468 }
1469
1470 /* Returns true if there are no backlogged entries after the flush */
1471 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1472 {
1473 unsigned long flags;
1474 bool all_flushed, posted;
1475
1476 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1477 return false;
1478
1479 posted = false;
1480 spin_lock_irqsave(&ctx->completion_lock, flags);
1481 while (!list_empty(&ctx->cq_overflow_list)) {
1482 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1483 struct io_overflow_cqe *ocqe;
1484
1485 if (!cqe && !force)
1486 break;
1487 ocqe = list_first_entry(&ctx->cq_overflow_list,
1488 struct io_overflow_cqe, list);
1489 if (cqe)
1490 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1491 else
1492 io_account_cq_overflow(ctx);
1493
1494 posted = true;
1495 list_del(&ocqe->list);
1496 kfree(ocqe);
1497 }
1498
1499 all_flushed = list_empty(&ctx->cq_overflow_list);
1500 if (all_flushed) {
1501 clear_bit(0, &ctx->check_cq_overflow);
1502 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1503 }
1504
1505 if (posted)
1506 io_commit_cqring(ctx);
1507 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1508 if (posted)
1509 io_cqring_ev_posted(ctx);
1510 return all_flushed;
1511 }
1512
1513 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1514 {
1515 bool ret = true;
1516
1517 if (test_bit(0, &ctx->check_cq_overflow)) {
1518 /* iopoll syncs against uring_lock, not completion_lock */
1519 if (ctx->flags & IORING_SETUP_IOPOLL)
1520 mutex_lock(&ctx->uring_lock);
1521 ret = __io_cqring_overflow_flush(ctx, force);
1522 if (ctx->flags & IORING_SETUP_IOPOLL)
1523 mutex_unlock(&ctx->uring_lock);
1524 }
1525
1526 return ret;
1527 }
1528
1529 /*
1530 * Shamelessly stolen from the mm implementation of page reference checking,
1531 * see commit f958d7b528b1 for details.
1532 */
1533 #define req_ref_zero_or_close_to_overflow(req) \
1534 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1535
1536 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1537 {
1538 return atomic_inc_not_zero(&req->refs);
1539 }
1540
1541 static inline bool req_ref_sub_and_test(struct io_kiocb *req, int refs)
1542 {
1543 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1544 return atomic_sub_and_test(refs, &req->refs);
1545 }
1546
1547 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1548 {
1549 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1550 return atomic_dec_and_test(&req->refs);
1551 }
1552
1553 static inline void req_ref_put(struct io_kiocb *req)
1554 {
1555 WARN_ON_ONCE(req_ref_put_and_test(req));
1556 }
1557
1558 static inline void req_ref_get(struct io_kiocb *req)
1559 {
1560 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1561 atomic_inc(&req->refs);
1562 }
1563
1564 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1565 long res, unsigned int cflags)
1566 {
1567 struct io_overflow_cqe *ocqe;
1568
1569 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1570 if (!ocqe) {
1571 /*
1572 * If we're in ring overflow flush mode, or in task cancel mode,
1573 * or cannot allocate an overflow entry, then we need to drop it
1574 * on the floor.
1575 */
1576 io_account_cq_overflow(ctx);
1577 return false;
1578 }
1579 if (list_empty(&ctx->cq_overflow_list)) {
1580 set_bit(0, &ctx->check_cq_overflow);
1581 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1582 }
1583 ocqe->cqe.user_data = user_data;
1584 ocqe->cqe.res = res;
1585 ocqe->cqe.flags = cflags;
1586 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1587 return true;
1588 }
1589
1590 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1591 long res, unsigned int cflags)
1592 {
1593 struct io_uring_cqe *cqe;
1594
1595 trace_io_uring_complete(ctx, user_data, res, cflags);
1596
1597 /*
1598 * If we can't get a cq entry, userspace overflowed the
1599 * submission (by quite a lot). Increment the overflow count in
1600 * the ring.
1601 */
1602 cqe = io_get_cqe(ctx);
1603 if (likely(cqe)) {
1604 WRITE_ONCE(cqe->user_data, user_data);
1605 WRITE_ONCE(cqe->res, res);
1606 WRITE_ONCE(cqe->flags, cflags);
1607 return true;
1608 }
1609 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1610 }
1611
1612 /* not as hot to bloat with inlining */
1613 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1614 long res, unsigned int cflags)
1615 {
1616 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1617 }
1618
1619 static void io_req_complete_post(struct io_kiocb *req, long res,
1620 unsigned int cflags)
1621 {
1622 struct io_ring_ctx *ctx = req->ctx;
1623 unsigned long flags;
1624
1625 spin_lock_irqsave(&ctx->completion_lock, flags);
1626 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1627 /*
1628 * If we're the last reference to this request, add to our locked
1629 * free_list cache.
1630 */
1631 if (req_ref_put_and_test(req)) {
1632 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1633 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL))
1634 io_disarm_next(req);
1635 if (req->link) {
1636 io_req_task_queue(req->link);
1637 req->link = NULL;
1638 }
1639 }
1640 io_dismantle_req(req);
1641 io_put_task(req->task, 1);
1642 list_add(&req->compl.list, &ctx->locked_free_list);
1643 ctx->locked_free_nr++;
1644 } else {
1645 if (!percpu_ref_tryget(&ctx->refs))
1646 req = NULL;
1647 }
1648 io_commit_cqring(ctx);
1649 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1650
1651 if (req) {
1652 io_cqring_ev_posted(ctx);
1653 percpu_ref_put(&ctx->refs);
1654 }
1655 }
1656
1657 static inline bool io_req_needs_clean(struct io_kiocb *req)
1658 {
1659 return req->flags & IO_REQ_CLEAN_FLAGS;
1660 }
1661
1662 static void io_req_complete_state(struct io_kiocb *req, long res,
1663 unsigned int cflags)
1664 {
1665 if (io_req_needs_clean(req))
1666 io_clean_op(req);
1667 req->result = res;
1668 req->compl.cflags = cflags;
1669 req->flags |= REQ_F_COMPLETE_INLINE;
1670 }
1671
1672 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1673 long res, unsigned cflags)
1674 {
1675 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1676 io_req_complete_state(req, res, cflags);
1677 else
1678 io_req_complete_post(req, res, cflags);
1679 }
1680
1681 static inline void io_req_complete(struct io_kiocb *req, long res)
1682 {
1683 __io_req_complete(req, 0, res, 0);
1684 }
1685
1686 static void io_req_complete_failed(struct io_kiocb *req, long res)
1687 {
1688 req_set_fail(req);
1689 io_put_req(req);
1690 io_req_complete_post(req, res, 0);
1691 }
1692
1693 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1694 struct io_comp_state *cs)
1695 {
1696 spin_lock_irq(&ctx->completion_lock);
1697 list_splice_init(&ctx->locked_free_list, &cs->free_list);
1698 ctx->locked_free_nr = 0;
1699 spin_unlock_irq(&ctx->completion_lock);
1700 }
1701
1702 /* Returns true IFF there are requests in the cache */
1703 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1704 {
1705 struct io_submit_state *state = &ctx->submit_state;
1706 struct io_comp_state *cs = &state->comp;
1707 int nr;
1708
1709 /*
1710 * If we have more than a batch's worth of requests in our IRQ side
1711 * locked cache, grab the lock and move them over to our submission
1712 * side cache.
1713 */
1714 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1715 io_flush_cached_locked_reqs(ctx, cs);
1716
1717 nr = state->free_reqs;
1718 while (!list_empty(&cs->free_list)) {
1719 struct io_kiocb *req = list_first_entry(&cs->free_list,
1720 struct io_kiocb, compl.list);
1721
1722 list_del(&req->compl.list);
1723 state->reqs[nr++] = req;
1724 if (nr == ARRAY_SIZE(state->reqs))
1725 break;
1726 }
1727
1728 state->free_reqs = nr;
1729 return nr != 0;
1730 }
1731
1732 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1733 {
1734 struct io_submit_state *state = &ctx->submit_state;
1735
1736 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1737
1738 if (!state->free_reqs) {
1739 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1740 int ret, i;
1741
1742 if (io_flush_cached_reqs(ctx))
1743 goto got_req;
1744
1745 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1746 state->reqs);
1747
1748 /*
1749 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1750 * retry single alloc to be on the safe side.
1751 */
1752 if (unlikely(ret <= 0)) {
1753 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1754 if (!state->reqs[0])
1755 return NULL;
1756 ret = 1;
1757 }
1758
1759 /*
1760 * Don't initialise the fields below on every allocation, but
1761 * do that in advance and keep valid on free.
1762 */
1763 for (i = 0; i < ret; i++) {
1764 struct io_kiocb *req = state->reqs[i];
1765
1766 req->ctx = ctx;
1767 req->link = NULL;
1768 req->async_data = NULL;
1769 /* not necessary, but safer to zero */
1770 req->result = 0;
1771 }
1772 state->free_reqs = ret;
1773 }
1774 got_req:
1775 state->free_reqs--;
1776 return state->reqs[state->free_reqs];
1777 }
1778
1779 static inline void io_put_file(struct file *file)
1780 {
1781 if (file)
1782 fput(file);
1783 }
1784
1785 static void io_dismantle_req(struct io_kiocb *req)
1786 {
1787 unsigned int flags = req->flags;
1788
1789 if (io_req_needs_clean(req))
1790 io_clean_op(req);
1791 if (!(flags & REQ_F_FIXED_FILE))
1792 io_put_file(req->file);
1793 if (req->fixed_rsrc_refs)
1794 percpu_ref_put(req->fixed_rsrc_refs);
1795 if (req->async_data) {
1796 kfree(req->async_data);
1797 req->async_data = NULL;
1798 }
1799 }
1800
1801 /* must to be called somewhat shortly after putting a request */
1802 static inline void io_put_task(struct task_struct *task, int nr)
1803 {
1804 struct io_uring_task *tctx = task->io_uring;
1805
1806 percpu_counter_sub(&tctx->inflight, nr);
1807 if (unlikely(atomic_read(&tctx->in_idle)))
1808 wake_up(&tctx->wait);
1809 put_task_struct_many(task, nr);
1810 }
1811
1812 static void __io_free_req(struct io_kiocb *req)
1813 {
1814 struct io_ring_ctx *ctx = req->ctx;
1815
1816 io_dismantle_req(req);
1817 io_put_task(req->task, 1);
1818
1819 kmem_cache_free(req_cachep, req);
1820 percpu_ref_put(&ctx->refs);
1821 }
1822
1823 static inline void io_remove_next_linked(struct io_kiocb *req)
1824 {
1825 struct io_kiocb *nxt = req->link;
1826
1827 req->link = nxt->link;
1828 nxt->link = NULL;
1829 }
1830
1831 static bool io_kill_linked_timeout(struct io_kiocb *req)
1832 __must_hold(&req->ctx->completion_lock)
1833 {
1834 struct io_kiocb *link = req->link;
1835
1836 /*
1837 * Can happen if a linked timeout fired and link had been like
1838 * req -> link t-out -> link t-out [-> ...]
1839 */
1840 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1841 struct io_timeout_data *io = link->async_data;
1842
1843 io_remove_next_linked(req);
1844 link->timeout.head = NULL;
1845 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1846 io_cqring_fill_event(link->ctx, link->user_data,
1847 -ECANCELED, 0);
1848 io_put_req_deferred(link, 1);
1849 return true;
1850 }
1851 }
1852 return false;
1853 }
1854
1855 static void io_fail_links(struct io_kiocb *req)
1856 __must_hold(&req->ctx->completion_lock)
1857 {
1858 struct io_kiocb *nxt, *link = req->link;
1859
1860 req->link = NULL;
1861 while (link) {
1862 nxt = link->link;
1863 link->link = NULL;
1864
1865 trace_io_uring_fail_link(req, link);
1866 io_cqring_fill_event(link->ctx, link->user_data, -ECANCELED, 0);
1867 io_put_req_deferred(link, 2);
1868 link = nxt;
1869 }
1870 }
1871
1872 static bool io_disarm_next(struct io_kiocb *req)
1873 __must_hold(&req->ctx->completion_lock)
1874 {
1875 bool posted = false;
1876
1877 if (likely(req->flags & REQ_F_LINK_TIMEOUT))
1878 posted = io_kill_linked_timeout(req);
1879 if (unlikely((req->flags & REQ_F_FAIL) &&
1880 !(req->flags & REQ_F_HARDLINK))) {
1881 posted |= (req->link != NULL);
1882 io_fail_links(req);
1883 }
1884 return posted;
1885 }
1886
1887 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1888 {
1889 struct io_kiocb *nxt;
1890
1891 /*
1892 * If LINK is set, we have dependent requests in this chain. If we
1893 * didn't fail this request, queue the first one up, moving any other
1894 * dependencies to the next request. In case of failure, fail the rest
1895 * of the chain.
1896 */
1897 if (req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_FAIL)) {
1898 struct io_ring_ctx *ctx = req->ctx;
1899 unsigned long flags;
1900 bool posted;
1901
1902 spin_lock_irqsave(&ctx->completion_lock, flags);
1903 posted = io_disarm_next(req);
1904 if (posted)
1905 io_commit_cqring(req->ctx);
1906 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1907 if (posted)
1908 io_cqring_ev_posted(ctx);
1909 }
1910 nxt = req->link;
1911 req->link = NULL;
1912 return nxt;
1913 }
1914
1915 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1916 {
1917 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
1918 return NULL;
1919 return __io_req_find_next(req);
1920 }
1921
1922 static void ctx_flush_and_put(struct io_ring_ctx *ctx)
1923 {
1924 if (!ctx)
1925 return;
1926 if (ctx->submit_state.comp.nr) {
1927 mutex_lock(&ctx->uring_lock);
1928 io_submit_flush_completions(ctx);
1929 mutex_unlock(&ctx->uring_lock);
1930 }
1931 percpu_ref_put(&ctx->refs);
1932 }
1933
1934 static void tctx_task_work(struct callback_head *cb)
1935 {
1936 struct io_ring_ctx *ctx = NULL;
1937 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
1938 task_work);
1939
1940 while (1) {
1941 struct io_wq_work_node *node;
1942
1943 spin_lock_irq(&tctx->task_lock);
1944 node = tctx->task_list.first;
1945 INIT_WQ_LIST(&tctx->task_list);
1946 spin_unlock_irq(&tctx->task_lock);
1947
1948 while (node) {
1949 struct io_wq_work_node *next = node->next;
1950 struct io_kiocb *req = container_of(node, struct io_kiocb,
1951 io_task_work.node);
1952
1953 if (req->ctx != ctx) {
1954 ctx_flush_and_put(ctx);
1955 ctx = req->ctx;
1956 percpu_ref_get(&ctx->refs);
1957 }
1958 req->io_task_work.func(req);
1959 node = next;
1960 }
1961 if (wq_list_empty(&tctx->task_list)) {
1962 spin_lock_irq(&tctx->task_lock);
1963 clear_bit(0, &tctx->task_state);
1964 if (wq_list_empty(&tctx->task_list)) {
1965 spin_unlock_irq(&tctx->task_lock);
1966 break;
1967 }
1968 spin_unlock_irq(&tctx->task_lock);
1969 /* another tctx_task_work() is enqueued, yield */
1970 if (test_and_set_bit(0, &tctx->task_state))
1971 break;
1972 }
1973 cond_resched();
1974 }
1975
1976 ctx_flush_and_put(ctx);
1977 }
1978
1979 static void io_req_task_work_add(struct io_kiocb *req)
1980 {
1981 struct task_struct *tsk = req->task;
1982 struct io_uring_task *tctx = tsk->io_uring;
1983 enum task_work_notify_mode notify;
1984 struct io_wq_work_node *node;
1985 unsigned long flags;
1986
1987 WARN_ON_ONCE(!tctx);
1988
1989 spin_lock_irqsave(&tctx->task_lock, flags);
1990 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
1991 spin_unlock_irqrestore(&tctx->task_lock, flags);
1992
1993 /* task_work already pending, we're done */
1994 if (test_bit(0, &tctx->task_state) ||
1995 test_and_set_bit(0, &tctx->task_state))
1996 return;
1997 if (unlikely(tsk->flags & PF_EXITING))
1998 goto fail;
1999
2000 /*
2001 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2002 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2003 * processing task_work. There's no reliable way to tell if TWA_RESUME
2004 * will do the job.
2005 */
2006 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2007 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2008 wake_up_process(tsk);
2009 return;
2010 }
2011 fail:
2012 clear_bit(0, &tctx->task_state);
2013 spin_lock_irqsave(&tctx->task_lock, flags);
2014 node = tctx->task_list.first;
2015 INIT_WQ_LIST(&tctx->task_list);
2016 spin_unlock_irqrestore(&tctx->task_lock, flags);
2017
2018 while (node) {
2019 req = container_of(node, struct io_kiocb, io_task_work.node);
2020 node = node->next;
2021 if (llist_add(&req->io_task_work.fallback_node,
2022 &req->ctx->fallback_llist))
2023 schedule_delayed_work(&req->ctx->fallback_work, 1);
2024 }
2025 }
2026
2027 static void io_req_task_cancel(struct io_kiocb *req)
2028 {
2029 struct io_ring_ctx *ctx = req->ctx;
2030
2031 /* ctx is guaranteed to stay alive while we hold uring_lock */
2032 mutex_lock(&ctx->uring_lock);
2033 io_req_complete_failed(req, req->result);
2034 mutex_unlock(&ctx->uring_lock);
2035 }
2036
2037 static void io_req_task_submit(struct io_kiocb *req)
2038 {
2039 struct io_ring_ctx *ctx = req->ctx;
2040
2041 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2042 mutex_lock(&ctx->uring_lock);
2043 if (!(req->task->flags & PF_EXITING) && !req->task->in_execve)
2044 __io_queue_sqe(req);
2045 else
2046 io_req_complete_failed(req, -EFAULT);
2047 mutex_unlock(&ctx->uring_lock);
2048 }
2049
2050 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2051 {
2052 req->result = ret;
2053 req->io_task_work.func = io_req_task_cancel;
2054 io_req_task_work_add(req);
2055 }
2056
2057 static void io_req_task_queue(struct io_kiocb *req)
2058 {
2059 req->io_task_work.func = io_req_task_submit;
2060 io_req_task_work_add(req);
2061 }
2062
2063 static void io_req_task_queue_reissue(struct io_kiocb *req)
2064 {
2065 req->io_task_work.func = io_queue_async_work;
2066 io_req_task_work_add(req);
2067 }
2068
2069 static inline void io_queue_next(struct io_kiocb *req)
2070 {
2071 struct io_kiocb *nxt = io_req_find_next(req);
2072
2073 if (nxt)
2074 io_req_task_queue(nxt);
2075 }
2076
2077 static void io_free_req(struct io_kiocb *req)
2078 {
2079 io_queue_next(req);
2080 __io_free_req(req);
2081 }
2082
2083 struct req_batch {
2084 struct task_struct *task;
2085 int task_refs;
2086 int ctx_refs;
2087 };
2088
2089 static inline void io_init_req_batch(struct req_batch *rb)
2090 {
2091 rb->task_refs = 0;
2092 rb->ctx_refs = 0;
2093 rb->task = NULL;
2094 }
2095
2096 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2097 struct req_batch *rb)
2098 {
2099 if (rb->task)
2100 io_put_task(rb->task, rb->task_refs);
2101 if (rb->ctx_refs)
2102 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2103 }
2104
2105 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2106 struct io_submit_state *state)
2107 {
2108 io_queue_next(req);
2109 io_dismantle_req(req);
2110
2111 if (req->task != rb->task) {
2112 if (rb->task)
2113 io_put_task(rb->task, rb->task_refs);
2114 rb->task = req->task;
2115 rb->task_refs = 0;
2116 }
2117 rb->task_refs++;
2118 rb->ctx_refs++;
2119
2120 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2121 state->reqs[state->free_reqs++] = req;
2122 else
2123 list_add(&req->compl.list, &state->comp.free_list);
2124 }
2125
2126 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2127 {
2128 struct io_comp_state *cs = &ctx->submit_state.comp;
2129 int i, nr = cs->nr;
2130 struct req_batch rb;
2131
2132 spin_lock_irq(&ctx->completion_lock);
2133 for (i = 0; i < nr; i++) {
2134 struct io_kiocb *req = cs->reqs[i];
2135
2136 __io_cqring_fill_event(ctx, req->user_data, req->result,
2137 req->compl.cflags);
2138 }
2139 io_commit_cqring(ctx);
2140 spin_unlock_irq(&ctx->completion_lock);
2141 io_cqring_ev_posted(ctx);
2142
2143 io_init_req_batch(&rb);
2144 for (i = 0; i < nr; i++) {
2145 struct io_kiocb *req = cs->reqs[i];
2146
2147 /* submission and completion refs */
2148 if (req_ref_sub_and_test(req, 2))
2149 io_req_free_batch(&rb, req, &ctx->submit_state);
2150 }
2151
2152 io_req_free_batch_finish(ctx, &rb);
2153 cs->nr = 0;
2154 }
2155
2156 /*
2157 * Drop reference to request, return next in chain (if there is one) if this
2158 * was the last reference to this request.
2159 */
2160 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2161 {
2162 struct io_kiocb *nxt = NULL;
2163
2164 if (req_ref_put_and_test(req)) {
2165 nxt = io_req_find_next(req);
2166 __io_free_req(req);
2167 }
2168 return nxt;
2169 }
2170
2171 static inline void io_put_req(struct io_kiocb *req)
2172 {
2173 if (req_ref_put_and_test(req))
2174 io_free_req(req);
2175 }
2176
2177 static void io_free_req_deferred(struct io_kiocb *req)
2178 {
2179 req->io_task_work.func = io_free_req;
2180 io_req_task_work_add(req);
2181 }
2182
2183 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2184 {
2185 if (req_ref_sub_and_test(req, refs))
2186 io_free_req_deferred(req);
2187 }
2188
2189 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2190 {
2191 /* See comment at the top of this file */
2192 smp_rmb();
2193 return __io_cqring_events(ctx);
2194 }
2195
2196 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2197 {
2198 struct io_rings *rings = ctx->rings;
2199
2200 /* make sure SQ entry isn't read before tail */
2201 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2202 }
2203
2204 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2205 {
2206 unsigned int cflags;
2207
2208 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2209 cflags |= IORING_CQE_F_BUFFER;
2210 req->flags &= ~REQ_F_BUFFER_SELECTED;
2211 kfree(kbuf);
2212 return cflags;
2213 }
2214
2215 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2216 {
2217 struct io_buffer *kbuf;
2218
2219 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2220 return io_put_kbuf(req, kbuf);
2221 }
2222
2223 static inline bool io_run_task_work(void)
2224 {
2225 if (current->task_works) {
2226 __set_current_state(TASK_RUNNING);
2227 task_work_run();
2228 return true;
2229 }
2230
2231 return false;
2232 }
2233
2234 /*
2235 * Find and free completed poll iocbs
2236 */
2237 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2238 struct list_head *done, bool resubmit)
2239 {
2240 struct req_batch rb;
2241 struct io_kiocb *req;
2242
2243 /* order with ->result store in io_complete_rw_iopoll() */
2244 smp_rmb();
2245
2246 io_init_req_batch(&rb);
2247 while (!list_empty(done)) {
2248 int cflags = 0;
2249
2250 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2251 list_del(&req->inflight_entry);
2252
2253 if (READ_ONCE(req->result) == -EAGAIN && resubmit &&
2254 !(req->flags & REQ_F_DONT_REISSUE)) {
2255 req->iopoll_completed = 0;
2256 req_ref_get(req);
2257 io_req_task_queue_reissue(req);
2258 continue;
2259 }
2260
2261 if (req->flags & REQ_F_BUFFER_SELECTED)
2262 cflags = io_put_rw_kbuf(req);
2263
2264 __io_cqring_fill_event(ctx, req->user_data, req->result, cflags);
2265 (*nr_events)++;
2266
2267 if (req_ref_put_and_test(req))
2268 io_req_free_batch(&rb, req, &ctx->submit_state);
2269 }
2270
2271 io_commit_cqring(ctx);
2272 io_cqring_ev_posted_iopoll(ctx);
2273 io_req_free_batch_finish(ctx, &rb);
2274 }
2275
2276 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2277 long min, bool resubmit)
2278 {
2279 struct io_kiocb *req, *tmp;
2280 LIST_HEAD(done);
2281 bool spin;
2282 int ret;
2283
2284 /*
2285 * Only spin for completions if we don't have multiple devices hanging
2286 * off our complete list, and we're under the requested amount.
2287 */
2288 spin = !ctx->poll_multi_queue && *nr_events < min;
2289
2290 ret = 0;
2291 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2292 struct kiocb *kiocb = &req->rw.kiocb;
2293
2294 /*
2295 * Move completed and retryable entries to our local lists.
2296 * If we find a request that requires polling, break out
2297 * and complete those lists first, if we have entries there.
2298 */
2299 if (READ_ONCE(req->iopoll_completed)) {
2300 list_move_tail(&req->inflight_entry, &done);
2301 continue;
2302 }
2303 if (!list_empty(&done))
2304 break;
2305
2306 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2307 if (ret < 0)
2308 break;
2309
2310 /* iopoll may have completed current req */
2311 if (READ_ONCE(req->iopoll_completed))
2312 list_move_tail(&req->inflight_entry, &done);
2313
2314 if (ret && spin)
2315 spin = false;
2316 ret = 0;
2317 }
2318
2319 if (!list_empty(&done))
2320 io_iopoll_complete(ctx, nr_events, &done, resubmit);
2321
2322 return ret;
2323 }
2324
2325 /*
2326 * We can't just wait for polled events to come to us, we have to actively
2327 * find and complete them.
2328 */
2329 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2330 {
2331 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2332 return;
2333
2334 mutex_lock(&ctx->uring_lock);
2335 while (!list_empty(&ctx->iopoll_list)) {
2336 unsigned int nr_events = 0;
2337
2338 io_do_iopoll(ctx, &nr_events, 0, false);
2339
2340 /* let it sleep and repeat later if can't complete a request */
2341 if (nr_events == 0)
2342 break;
2343 /*
2344 * Ensure we allow local-to-the-cpu processing to take place,
2345 * in this case we need to ensure that we reap all events.
2346 * Also let task_work, etc. to progress by releasing the mutex
2347 */
2348 if (need_resched()) {
2349 mutex_unlock(&ctx->uring_lock);
2350 cond_resched();
2351 mutex_lock(&ctx->uring_lock);
2352 }
2353 }
2354 mutex_unlock(&ctx->uring_lock);
2355 }
2356
2357 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2358 {
2359 unsigned int nr_events = 0;
2360 int ret = 0;
2361
2362 /*
2363 * We disallow the app entering submit/complete with polling, but we
2364 * still need to lock the ring to prevent racing with polled issue
2365 * that got punted to a workqueue.
2366 */
2367 mutex_lock(&ctx->uring_lock);
2368 /*
2369 * Don't enter poll loop if we already have events pending.
2370 * If we do, we can potentially be spinning for commands that
2371 * already triggered a CQE (eg in error).
2372 */
2373 if (test_bit(0, &ctx->check_cq_overflow))
2374 __io_cqring_overflow_flush(ctx, false);
2375 if (io_cqring_events(ctx))
2376 goto out;
2377 do {
2378 /*
2379 * If a submit got punted to a workqueue, we can have the
2380 * application entering polling for a command before it gets
2381 * issued. That app will hold the uring_lock for the duration
2382 * of the poll right here, so we need to take a breather every
2383 * now and then to ensure that the issue has a chance to add
2384 * the poll to the issued list. Otherwise we can spin here
2385 * forever, while the workqueue is stuck trying to acquire the
2386 * very same mutex.
2387 */
2388 if (list_empty(&ctx->iopoll_list)) {
2389 u32 tail = ctx->cached_cq_tail;
2390
2391 mutex_unlock(&ctx->uring_lock);
2392 io_run_task_work();
2393 mutex_lock(&ctx->uring_lock);
2394
2395 /* some requests don't go through iopoll_list */
2396 if (tail != ctx->cached_cq_tail ||
2397 list_empty(&ctx->iopoll_list))
2398 break;
2399 }
2400 ret = io_do_iopoll(ctx, &nr_events, min, true);
2401 } while (!ret && nr_events < min && !need_resched());
2402 out:
2403 mutex_unlock(&ctx->uring_lock);
2404 return ret;
2405 }
2406
2407 static void kiocb_end_write(struct io_kiocb *req)
2408 {
2409 /*
2410 * Tell lockdep we inherited freeze protection from submission
2411 * thread.
2412 */
2413 if (req->flags & REQ_F_ISREG) {
2414 struct super_block *sb = file_inode(req->file)->i_sb;
2415
2416 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2417 sb_end_write(sb);
2418 }
2419 }
2420
2421 #ifdef CONFIG_BLOCK
2422 static bool io_resubmit_prep(struct io_kiocb *req)
2423 {
2424 struct io_async_rw *rw = req->async_data;
2425
2426 if (!rw)
2427 return !io_req_prep_async(req);
2428 /* may have left rw->iter inconsistent on -EIOCBQUEUED */
2429 iov_iter_revert(&rw->iter, req->result - iov_iter_count(&rw->iter));
2430 return true;
2431 }
2432
2433 static bool io_rw_should_reissue(struct io_kiocb *req)
2434 {
2435 umode_t mode = file_inode(req->file)->i_mode;
2436 struct io_ring_ctx *ctx = req->ctx;
2437
2438 if (!S_ISBLK(mode) && !S_ISREG(mode))
2439 return false;
2440 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2441 !(ctx->flags & IORING_SETUP_IOPOLL)))
2442 return false;
2443 /*
2444 * If ref is dying, we might be running poll reap from the exit work.
2445 * Don't attempt to reissue from that path, just let it fail with
2446 * -EAGAIN.
2447 */
2448 if (percpu_ref_is_dying(&ctx->refs))
2449 return false;
2450 return true;
2451 }
2452 #else
2453 static bool io_resubmit_prep(struct io_kiocb *req)
2454 {
2455 return false;
2456 }
2457 static bool io_rw_should_reissue(struct io_kiocb *req)
2458 {
2459 return false;
2460 }
2461 #endif
2462
2463 static void io_fallback_req_func(struct work_struct *work)
2464 {
2465 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
2466 fallback_work.work);
2467 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
2468 struct io_kiocb *req, *tmp;
2469
2470 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
2471 req->io_task_work.func(req);
2472 }
2473
2474 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2475 unsigned int issue_flags)
2476 {
2477 int cflags = 0;
2478
2479 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2480 kiocb_end_write(req);
2481 if (res != req->result) {
2482 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2483 io_rw_should_reissue(req)) {
2484 req->flags |= REQ_F_REISSUE;
2485 return;
2486 }
2487 req_set_fail(req);
2488 }
2489 if (req->flags & REQ_F_BUFFER_SELECTED)
2490 cflags = io_put_rw_kbuf(req);
2491 __io_req_complete(req, issue_flags, res, cflags);
2492 }
2493
2494 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2495 {
2496 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2497
2498 __io_complete_rw(req, res, res2, 0);
2499 }
2500
2501 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2502 {
2503 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2504
2505 if (kiocb->ki_flags & IOCB_WRITE)
2506 kiocb_end_write(req);
2507 if (unlikely(res != req->result)) {
2508 if (!(res == -EAGAIN && io_rw_should_reissue(req) &&
2509 io_resubmit_prep(req))) {
2510 req_set_fail(req);
2511 req->flags |= REQ_F_DONT_REISSUE;
2512 }
2513 }
2514
2515 WRITE_ONCE(req->result, res);
2516 /* order with io_iopoll_complete() checking ->result */
2517 smp_wmb();
2518 WRITE_ONCE(req->iopoll_completed, 1);
2519 }
2520
2521 /*
2522 * After the iocb has been issued, it's safe to be found on the poll list.
2523 * Adding the kiocb to the list AFTER submission ensures that we don't
2524 * find it from a io_do_iopoll() thread before the issuer is done
2525 * accessing the kiocb cookie.
2526 */
2527 static void io_iopoll_req_issued(struct io_kiocb *req)
2528 {
2529 struct io_ring_ctx *ctx = req->ctx;
2530 const bool in_async = io_wq_current_is_worker();
2531
2532 /* workqueue context doesn't hold uring_lock, grab it now */
2533 if (unlikely(in_async))
2534 mutex_lock(&ctx->uring_lock);
2535
2536 /*
2537 * Track whether we have multiple files in our lists. This will impact
2538 * how we do polling eventually, not spinning if we're on potentially
2539 * different devices.
2540 */
2541 if (list_empty(&ctx->iopoll_list)) {
2542 ctx->poll_multi_queue = false;
2543 } else if (!ctx->poll_multi_queue) {
2544 struct io_kiocb *list_req;
2545 unsigned int queue_num0, queue_num1;
2546
2547 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2548 inflight_entry);
2549
2550 if (list_req->file != req->file) {
2551 ctx->poll_multi_queue = true;
2552 } else {
2553 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2554 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2555 if (queue_num0 != queue_num1)
2556 ctx->poll_multi_queue = true;
2557 }
2558 }
2559
2560 /*
2561 * For fast devices, IO may have already completed. If it has, add
2562 * it to the front so we find it first.
2563 */
2564 if (READ_ONCE(req->iopoll_completed))
2565 list_add(&req->inflight_entry, &ctx->iopoll_list);
2566 else
2567 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2568
2569 if (unlikely(in_async)) {
2570 /*
2571 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2572 * in sq thread task context or in io worker task context. If
2573 * current task context is sq thread, we don't need to check
2574 * whether should wake up sq thread.
2575 */
2576 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2577 wq_has_sleeper(&ctx->sq_data->wait))
2578 wake_up(&ctx->sq_data->wait);
2579
2580 mutex_unlock(&ctx->uring_lock);
2581 }
2582 }
2583
2584 static inline void io_state_file_put(struct io_submit_state *state)
2585 {
2586 if (state->file_refs) {
2587 fput_many(state->file, state->file_refs);
2588 state->file_refs = 0;
2589 }
2590 }
2591
2592 /*
2593 * Get as many references to a file as we have IOs left in this submission,
2594 * assuming most submissions are for one file, or at least that each file
2595 * has more than one submission.
2596 */
2597 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2598 {
2599 if (!state)
2600 return fget(fd);
2601
2602 if (state->file_refs) {
2603 if (state->fd == fd) {
2604 state->file_refs--;
2605 return state->file;
2606 }
2607 io_state_file_put(state);
2608 }
2609 state->file = fget_many(fd, state->ios_left);
2610 if (unlikely(!state->file))
2611 return NULL;
2612
2613 state->fd = fd;
2614 state->file_refs = state->ios_left - 1;
2615 return state->file;
2616 }
2617
2618 static bool io_bdev_nowait(struct block_device *bdev)
2619 {
2620 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2621 }
2622
2623 /*
2624 * If we tracked the file through the SCM inflight mechanism, we could support
2625 * any file. For now, just ensure that anything potentially problematic is done
2626 * inline.
2627 */
2628 static bool __io_file_supports_async(struct file *file, int rw)
2629 {
2630 umode_t mode = file_inode(file)->i_mode;
2631
2632 if (S_ISBLK(mode)) {
2633 if (IS_ENABLED(CONFIG_BLOCK) &&
2634 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2635 return true;
2636 return false;
2637 }
2638 if (S_ISSOCK(mode))
2639 return true;
2640 if (S_ISREG(mode)) {
2641 if (IS_ENABLED(CONFIG_BLOCK) &&
2642 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2643 file->f_op != &io_uring_fops)
2644 return true;
2645 return false;
2646 }
2647
2648 /* any ->read/write should understand O_NONBLOCK */
2649 if (file->f_flags & O_NONBLOCK)
2650 return true;
2651
2652 if (!(file->f_mode & FMODE_NOWAIT))
2653 return false;
2654
2655 if (rw == READ)
2656 return file->f_op->read_iter != NULL;
2657
2658 return file->f_op->write_iter != NULL;
2659 }
2660
2661 static bool io_file_supports_async(struct io_kiocb *req, int rw)
2662 {
2663 if (rw == READ && (req->flags & REQ_F_ASYNC_READ))
2664 return true;
2665 else if (rw == WRITE && (req->flags & REQ_F_ASYNC_WRITE))
2666 return true;
2667
2668 return __io_file_supports_async(req->file, rw);
2669 }
2670
2671 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2672 {
2673 struct io_ring_ctx *ctx = req->ctx;
2674 struct kiocb *kiocb = &req->rw.kiocb;
2675 struct file *file = req->file;
2676 unsigned ioprio;
2677 int ret;
2678
2679 if (!(req->flags & REQ_F_ISREG) && S_ISREG(file_inode(file)->i_mode))
2680 req->flags |= REQ_F_ISREG;
2681
2682 kiocb->ki_pos = READ_ONCE(sqe->off);
2683 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2684 req->flags |= REQ_F_CUR_POS;
2685 kiocb->ki_pos = file->f_pos;
2686 }
2687 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2688 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2689 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2690 if (unlikely(ret))
2691 return ret;
2692
2693 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
2694 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
2695 req->flags |= REQ_F_NOWAIT;
2696
2697 ioprio = READ_ONCE(sqe->ioprio);
2698 if (ioprio) {
2699 ret = ioprio_check_cap(ioprio);
2700 if (ret)
2701 return ret;
2702
2703 kiocb->ki_ioprio = ioprio;
2704 } else
2705 kiocb->ki_ioprio = get_current_ioprio();
2706
2707 if (ctx->flags & IORING_SETUP_IOPOLL) {
2708 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2709 !kiocb->ki_filp->f_op->iopoll)
2710 return -EOPNOTSUPP;
2711
2712 kiocb->ki_flags |= IOCB_HIPRI;
2713 kiocb->ki_complete = io_complete_rw_iopoll;
2714 req->iopoll_completed = 0;
2715 } else {
2716 if (kiocb->ki_flags & IOCB_HIPRI)
2717 return -EINVAL;
2718 kiocb->ki_complete = io_complete_rw;
2719 }
2720
2721 if (req->opcode == IORING_OP_READ_FIXED ||
2722 req->opcode == IORING_OP_WRITE_FIXED) {
2723 req->imu = NULL;
2724 io_req_set_rsrc_node(req);
2725 }
2726
2727 req->rw.addr = READ_ONCE(sqe->addr);
2728 req->rw.len = READ_ONCE(sqe->len);
2729 req->buf_index = READ_ONCE(sqe->buf_index);
2730 return 0;
2731 }
2732
2733 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2734 {
2735 switch (ret) {
2736 case -EIOCBQUEUED:
2737 break;
2738 case -ERESTARTSYS:
2739 case -ERESTARTNOINTR:
2740 case -ERESTARTNOHAND:
2741 case -ERESTART_RESTARTBLOCK:
2742 /*
2743 * We can't just restart the syscall, since previously
2744 * submitted sqes may already be in progress. Just fail this
2745 * IO with EINTR.
2746 */
2747 ret = -EINTR;
2748 fallthrough;
2749 default:
2750 kiocb->ki_complete(kiocb, ret, 0);
2751 }
2752 }
2753
2754 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2755 unsigned int issue_flags)
2756 {
2757 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2758 struct io_async_rw *io = req->async_data;
2759 bool check_reissue = kiocb->ki_complete == io_complete_rw;
2760
2761 /* add previously done IO, if any */
2762 if (io && io->bytes_done > 0) {
2763 if (ret < 0)
2764 ret = io->bytes_done;
2765 else
2766 ret += io->bytes_done;
2767 }
2768
2769 if (req->flags & REQ_F_CUR_POS)
2770 req->file->f_pos = kiocb->ki_pos;
2771 if (ret >= 0 && check_reissue)
2772 __io_complete_rw(req, ret, 0, issue_flags);
2773 else
2774 io_rw_done(kiocb, ret);
2775
2776 if (check_reissue && (req->flags & REQ_F_REISSUE)) {
2777 req->flags &= ~REQ_F_REISSUE;
2778 if (io_resubmit_prep(req)) {
2779 req_ref_get(req);
2780 io_req_task_queue_reissue(req);
2781 } else {
2782 int cflags = 0;
2783
2784 req_set_fail(req);
2785 if (req->flags & REQ_F_BUFFER_SELECTED)
2786 cflags = io_put_rw_kbuf(req);
2787 __io_req_complete(req, issue_flags, ret, cflags);
2788 }
2789 }
2790 }
2791
2792 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2793 struct io_mapped_ubuf *imu)
2794 {
2795 size_t len = req->rw.len;
2796 u64 buf_end, buf_addr = req->rw.addr;
2797 size_t offset;
2798
2799 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2800 return -EFAULT;
2801 /* not inside the mapped region */
2802 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2803 return -EFAULT;
2804
2805 /*
2806 * May not be a start of buffer, set size appropriately
2807 * and advance us to the beginning.
2808 */
2809 offset = buf_addr - imu->ubuf;
2810 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2811
2812 if (offset) {
2813 /*
2814 * Don't use iov_iter_advance() here, as it's really slow for
2815 * using the latter parts of a big fixed buffer - it iterates
2816 * over each segment manually. We can cheat a bit here, because
2817 * we know that:
2818 *
2819 * 1) it's a BVEC iter, we set it up
2820 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2821 * first and last bvec
2822 *
2823 * So just find our index, and adjust the iterator afterwards.
2824 * If the offset is within the first bvec (or the whole first
2825 * bvec, just use iov_iter_advance(). This makes it easier
2826 * since we can just skip the first segment, which may not
2827 * be PAGE_SIZE aligned.
2828 */
2829 const struct bio_vec *bvec = imu->bvec;
2830
2831 if (offset <= bvec->bv_len) {
2832 iov_iter_advance(iter, offset);
2833 } else {
2834 unsigned long seg_skip;
2835
2836 /* skip first vec */
2837 offset -= bvec->bv_len;
2838 seg_skip = 1 + (offset >> PAGE_SHIFT);
2839
2840 iter->bvec = bvec + seg_skip;
2841 iter->nr_segs -= seg_skip;
2842 iter->count -= bvec->bv_len + offset;
2843 iter->iov_offset = offset & ~PAGE_MASK;
2844 }
2845 }
2846
2847 return 0;
2848 }
2849
2850 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
2851 {
2852 struct io_ring_ctx *ctx = req->ctx;
2853 struct io_mapped_ubuf *imu = req->imu;
2854 u16 index, buf_index = req->buf_index;
2855
2856 if (likely(!imu)) {
2857 if (unlikely(buf_index >= ctx->nr_user_bufs))
2858 return -EFAULT;
2859 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2860 imu = READ_ONCE(ctx->user_bufs[index]);
2861 req->imu = imu;
2862 }
2863 return __io_import_fixed(req, rw, iter, imu);
2864 }
2865
2866 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2867 {
2868 if (needs_lock)
2869 mutex_unlock(&ctx->uring_lock);
2870 }
2871
2872 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2873 {
2874 /*
2875 * "Normal" inline submissions always hold the uring_lock, since we
2876 * grab it from the system call. Same is true for the SQPOLL offload.
2877 * The only exception is when we've detached the request and issue it
2878 * from an async worker thread, grab the lock for that case.
2879 */
2880 if (needs_lock)
2881 mutex_lock(&ctx->uring_lock);
2882 }
2883
2884 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2885 int bgid, struct io_buffer *kbuf,
2886 bool needs_lock)
2887 {
2888 struct io_buffer *head;
2889
2890 if (req->flags & REQ_F_BUFFER_SELECTED)
2891 return kbuf;
2892
2893 io_ring_submit_lock(req->ctx, needs_lock);
2894
2895 lockdep_assert_held(&req->ctx->uring_lock);
2896
2897 head = xa_load(&req->ctx->io_buffers, bgid);
2898 if (head) {
2899 if (!list_empty(&head->list)) {
2900 kbuf = list_last_entry(&head->list, struct io_buffer,
2901 list);
2902 list_del(&kbuf->list);
2903 } else {
2904 kbuf = head;
2905 xa_erase(&req->ctx->io_buffers, bgid);
2906 }
2907 if (*len > kbuf->len)
2908 *len = kbuf->len;
2909 } else {
2910 kbuf = ERR_PTR(-ENOBUFS);
2911 }
2912
2913 io_ring_submit_unlock(req->ctx, needs_lock);
2914
2915 return kbuf;
2916 }
2917
2918 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2919 bool needs_lock)
2920 {
2921 struct io_buffer *kbuf;
2922 u16 bgid;
2923
2924 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2925 bgid = req->buf_index;
2926 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2927 if (IS_ERR(kbuf))
2928 return kbuf;
2929 req->rw.addr = (u64) (unsigned long) kbuf;
2930 req->flags |= REQ_F_BUFFER_SELECTED;
2931 return u64_to_user_ptr(kbuf->addr);
2932 }
2933
2934 #ifdef CONFIG_COMPAT
2935 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2936 bool needs_lock)
2937 {
2938 struct compat_iovec __user *uiov;
2939 compat_ssize_t clen;
2940 void __user *buf;
2941 ssize_t len;
2942
2943 uiov = u64_to_user_ptr(req->rw.addr);
2944 if (!access_ok(uiov, sizeof(*uiov)))
2945 return -EFAULT;
2946 if (__get_user(clen, &uiov->iov_len))
2947 return -EFAULT;
2948 if (clen < 0)
2949 return -EINVAL;
2950
2951 len = clen;
2952 buf = io_rw_buffer_select(req, &len, needs_lock);
2953 if (IS_ERR(buf))
2954 return PTR_ERR(buf);
2955 iov[0].iov_base = buf;
2956 iov[0].iov_len = (compat_size_t) len;
2957 return 0;
2958 }
2959 #endif
2960
2961 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2962 bool needs_lock)
2963 {
2964 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2965 void __user *buf;
2966 ssize_t len;
2967
2968 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2969 return -EFAULT;
2970
2971 len = iov[0].iov_len;
2972 if (len < 0)
2973 return -EINVAL;
2974 buf = io_rw_buffer_select(req, &len, needs_lock);
2975 if (IS_ERR(buf))
2976 return PTR_ERR(buf);
2977 iov[0].iov_base = buf;
2978 iov[0].iov_len = len;
2979 return 0;
2980 }
2981
2982 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2983 bool needs_lock)
2984 {
2985 if (req->flags & REQ_F_BUFFER_SELECTED) {
2986 struct io_buffer *kbuf;
2987
2988 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2989 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
2990 iov[0].iov_len = kbuf->len;
2991 return 0;
2992 }
2993 if (req->rw.len != 1)
2994 return -EINVAL;
2995
2996 #ifdef CONFIG_COMPAT
2997 if (req->ctx->compat)
2998 return io_compat_import(req, iov, needs_lock);
2999 #endif
3000
3001 return __io_iov_buffer_select(req, iov, needs_lock);
3002 }
3003
3004 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3005 struct iov_iter *iter, bool needs_lock)
3006 {
3007 void __user *buf = u64_to_user_ptr(req->rw.addr);
3008 size_t sqe_len = req->rw.len;
3009 u8 opcode = req->opcode;
3010 ssize_t ret;
3011
3012 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3013 *iovec = NULL;
3014 return io_import_fixed(req, rw, iter);
3015 }
3016
3017 /* buffer index only valid with fixed read/write, or buffer select */
3018 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3019 return -EINVAL;
3020
3021 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3022 if (req->flags & REQ_F_BUFFER_SELECT) {
3023 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3024 if (IS_ERR(buf))
3025 return PTR_ERR(buf);
3026 req->rw.len = sqe_len;
3027 }
3028
3029 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3030 *iovec = NULL;
3031 return ret;
3032 }
3033
3034 if (req->flags & REQ_F_BUFFER_SELECT) {
3035 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3036 if (!ret)
3037 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3038 *iovec = NULL;
3039 return ret;
3040 }
3041
3042 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3043 req->ctx->compat);
3044 }
3045
3046 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3047 {
3048 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3049 }
3050
3051 /*
3052 * For files that don't have ->read_iter() and ->write_iter(), handle them
3053 * by looping over ->read() or ->write() manually.
3054 */
3055 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3056 {
3057 struct kiocb *kiocb = &req->rw.kiocb;
3058 struct file *file = req->file;
3059 ssize_t ret = 0;
3060
3061 /*
3062 * Don't support polled IO through this interface, and we can't
3063 * support non-blocking either. For the latter, this just causes
3064 * the kiocb to be handled from an async context.
3065 */
3066 if (kiocb->ki_flags & IOCB_HIPRI)
3067 return -EOPNOTSUPP;
3068 if (kiocb->ki_flags & IOCB_NOWAIT)
3069 return -EAGAIN;
3070
3071 while (iov_iter_count(iter)) {
3072 struct iovec iovec;
3073 ssize_t nr;
3074
3075 if (!iov_iter_is_bvec(iter)) {
3076 iovec = iov_iter_iovec(iter);
3077 } else {
3078 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3079 iovec.iov_len = req->rw.len;
3080 }
3081
3082 if (rw == READ) {
3083 nr = file->f_op->read(file, iovec.iov_base,
3084 iovec.iov_len, io_kiocb_ppos(kiocb));
3085 } else {
3086 nr = file->f_op->write(file, iovec.iov_base,
3087 iovec.iov_len, io_kiocb_ppos(kiocb));
3088 }
3089
3090 if (nr < 0) {
3091 if (!ret)
3092 ret = nr;
3093 break;
3094 }
3095 ret += nr;
3096 if (nr != iovec.iov_len)
3097 break;
3098 req->rw.len -= nr;
3099 req->rw.addr += nr;
3100 iov_iter_advance(iter, nr);
3101 }
3102
3103 return ret;
3104 }
3105
3106 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3107 const struct iovec *fast_iov, struct iov_iter *iter)
3108 {
3109 struct io_async_rw *rw = req->async_data;
3110
3111 memcpy(&rw->iter, iter, sizeof(*iter));
3112 rw->free_iovec = iovec;
3113 rw->bytes_done = 0;
3114 /* can only be fixed buffers, no need to do anything */
3115 if (iov_iter_is_bvec(iter))
3116 return;
3117 if (!iovec) {
3118 unsigned iov_off = 0;
3119
3120 rw->iter.iov = rw->fast_iov;
3121 if (iter->iov != fast_iov) {
3122 iov_off = iter->iov - fast_iov;
3123 rw->iter.iov += iov_off;
3124 }
3125 if (rw->fast_iov != fast_iov)
3126 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3127 sizeof(struct iovec) * iter->nr_segs);
3128 } else {
3129 req->flags |= REQ_F_NEED_CLEANUP;
3130 }
3131 }
3132
3133 static inline int io_alloc_async_data(struct io_kiocb *req)
3134 {
3135 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3136 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3137 return req->async_data == NULL;
3138 }
3139
3140 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3141 const struct iovec *fast_iov,
3142 struct iov_iter *iter, bool force)
3143 {
3144 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3145 return 0;
3146 if (!req->async_data) {
3147 if (io_alloc_async_data(req)) {
3148 kfree(iovec);
3149 return -ENOMEM;
3150 }
3151
3152 io_req_map_rw(req, iovec, fast_iov, iter);
3153 }
3154 return 0;
3155 }
3156
3157 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3158 {
3159 struct io_async_rw *iorw = req->async_data;
3160 struct iovec *iov = iorw->fast_iov;
3161 int ret;
3162
3163 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3164 if (unlikely(ret < 0))
3165 return ret;
3166
3167 iorw->bytes_done = 0;
3168 iorw->free_iovec = iov;
3169 if (iov)
3170 req->flags |= REQ_F_NEED_CLEANUP;
3171 return 0;
3172 }
3173
3174 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3175 {
3176 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3177 return -EBADF;
3178 return io_prep_rw(req, sqe);
3179 }
3180
3181 /*
3182 * This is our waitqueue callback handler, registered through lock_page_async()
3183 * when we initially tried to do the IO with the iocb armed our waitqueue.
3184 * This gets called when the page is unlocked, and we generally expect that to
3185 * happen when the page IO is completed and the page is now uptodate. This will
3186 * queue a task_work based retry of the operation, attempting to copy the data
3187 * again. If the latter fails because the page was NOT uptodate, then we will
3188 * do a thread based blocking retry of the operation. That's the unexpected
3189 * slow path.
3190 */
3191 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3192 int sync, void *arg)
3193 {
3194 struct wait_page_queue *wpq;
3195 struct io_kiocb *req = wait->private;
3196 struct wait_page_key *key = arg;
3197
3198 wpq = container_of(wait, struct wait_page_queue, wait);
3199
3200 if (!wake_page_match(wpq, key))
3201 return 0;
3202
3203 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3204 list_del_init(&wait->entry);
3205
3206 /* submit ref gets dropped, acquire a new one */
3207 req_ref_get(req);
3208 io_req_task_queue(req);
3209 return 1;
3210 }
3211
3212 /*
3213 * This controls whether a given IO request should be armed for async page
3214 * based retry. If we return false here, the request is handed to the async
3215 * worker threads for retry. If we're doing buffered reads on a regular file,
3216 * we prepare a private wait_page_queue entry and retry the operation. This
3217 * will either succeed because the page is now uptodate and unlocked, or it
3218 * will register a callback when the page is unlocked at IO completion. Through
3219 * that callback, io_uring uses task_work to setup a retry of the operation.
3220 * That retry will attempt the buffered read again. The retry will generally
3221 * succeed, or in rare cases where it fails, we then fall back to using the
3222 * async worker threads for a blocking retry.
3223 */
3224 static bool io_rw_should_retry(struct io_kiocb *req)
3225 {
3226 struct io_async_rw *rw = req->async_data;
3227 struct wait_page_queue *wait = &rw->wpq;
3228 struct kiocb *kiocb = &req->rw.kiocb;
3229
3230 /* never retry for NOWAIT, we just complete with -EAGAIN */
3231 if (req->flags & REQ_F_NOWAIT)
3232 return false;
3233
3234 /* Only for buffered IO */
3235 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3236 return false;
3237
3238 /*
3239 * just use poll if we can, and don't attempt if the fs doesn't
3240 * support callback based unlocks
3241 */
3242 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3243 return false;
3244
3245 wait->wait.func = io_async_buf_func;
3246 wait->wait.private = req;
3247 wait->wait.flags = 0;
3248 INIT_LIST_HEAD(&wait->wait.entry);
3249 kiocb->ki_flags |= IOCB_WAITQ;
3250 kiocb->ki_flags &= ~IOCB_NOWAIT;
3251 kiocb->ki_waitq = wait;
3252 return true;
3253 }
3254
3255 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3256 {
3257 if (req->file->f_op->read_iter)
3258 return call_read_iter(req->file, &req->rw.kiocb, iter);
3259 else if (req->file->f_op->read)
3260 return loop_rw_iter(READ, req, iter);
3261 else
3262 return -EINVAL;
3263 }
3264
3265 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3266 {
3267 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3268 struct kiocb *kiocb = &req->rw.kiocb;
3269 struct iov_iter __iter, *iter = &__iter;
3270 struct io_async_rw *rw = req->async_data;
3271 ssize_t io_size, ret, ret2;
3272 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3273
3274 if (rw) {
3275 iter = &rw->iter;
3276 iovec = NULL;
3277 } else {
3278 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3279 if (ret < 0)
3280 return ret;
3281 }
3282 io_size = iov_iter_count(iter);
3283 req->result = io_size;
3284
3285 /* Ensure we clear previously set non-block flag */
3286 if (!force_nonblock)
3287 kiocb->ki_flags &= ~IOCB_NOWAIT;
3288 else
3289 kiocb->ki_flags |= IOCB_NOWAIT;
3290
3291 /* If the file doesn't support async, just async punt */
3292 if (force_nonblock && !io_file_supports_async(req, READ)) {
3293 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3294 return ret ?: -EAGAIN;
3295 }
3296
3297 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3298 if (unlikely(ret)) {
3299 kfree(iovec);
3300 return ret;
3301 }
3302
3303 ret = io_iter_do_read(req, iter);
3304
3305 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3306 req->flags &= ~REQ_F_REISSUE;
3307 /* IOPOLL retry should happen for io-wq threads */
3308 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3309 goto done;
3310 /* no retry on NONBLOCK nor RWF_NOWAIT */
3311 if (req->flags & REQ_F_NOWAIT)
3312 goto done;
3313 /* some cases will consume bytes even on error returns */
3314 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3315 ret = 0;
3316 } else if (ret == -EIOCBQUEUED) {
3317 goto out_free;
3318 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3319 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3320 /* read all, failed, already did sync or don't want to retry */
3321 goto done;
3322 }
3323
3324 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3325 if (ret2)
3326 return ret2;
3327
3328 iovec = NULL;
3329 rw = req->async_data;
3330 /* now use our persistent iterator, if we aren't already */
3331 iter = &rw->iter;
3332
3333 do {
3334 io_size -= ret;
3335 rw->bytes_done += ret;
3336 /* if we can retry, do so with the callbacks armed */
3337 if (!io_rw_should_retry(req)) {
3338 kiocb->ki_flags &= ~IOCB_WAITQ;
3339 return -EAGAIN;
3340 }
3341
3342 /*
3343 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3344 * we get -EIOCBQUEUED, then we'll get a notification when the
3345 * desired page gets unlocked. We can also get a partial read
3346 * here, and if we do, then just retry at the new offset.
3347 */
3348 ret = io_iter_do_read(req, iter);
3349 if (ret == -EIOCBQUEUED)
3350 return 0;
3351 /* we got some bytes, but not all. retry. */
3352 kiocb->ki_flags &= ~IOCB_WAITQ;
3353 } while (ret > 0 && ret < io_size);
3354 done:
3355 kiocb_done(kiocb, ret, issue_flags);
3356 out_free:
3357 /* it's faster to check here then delegate to kfree */
3358 if (iovec)
3359 kfree(iovec);
3360 return 0;
3361 }
3362
3363 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3364 {
3365 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3366 return -EBADF;
3367 return io_prep_rw(req, sqe);
3368 }
3369
3370 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3371 {
3372 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3373 struct kiocb *kiocb = &req->rw.kiocb;
3374 struct iov_iter __iter, *iter = &__iter;
3375 struct io_async_rw *rw = req->async_data;
3376 ssize_t ret, ret2, io_size;
3377 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3378
3379 if (rw) {
3380 iter = &rw->iter;
3381 iovec = NULL;
3382 } else {
3383 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3384 if (ret < 0)
3385 return ret;
3386 }
3387 io_size = iov_iter_count(iter);
3388 req->result = io_size;
3389
3390 /* Ensure we clear previously set non-block flag */
3391 if (!force_nonblock)
3392 kiocb->ki_flags &= ~IOCB_NOWAIT;
3393 else
3394 kiocb->ki_flags |= IOCB_NOWAIT;
3395
3396 /* If the file doesn't support async, just async punt */
3397 if (force_nonblock && !io_file_supports_async(req, WRITE))
3398 goto copy_iov;
3399
3400 /* file path doesn't support NOWAIT for non-direct_IO */
3401 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3402 (req->flags & REQ_F_ISREG))
3403 goto copy_iov;
3404
3405 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3406 if (unlikely(ret))
3407 goto out_free;
3408
3409 /*
3410 * Open-code file_start_write here to grab freeze protection,
3411 * which will be released by another thread in
3412 * io_complete_rw(). Fool lockdep by telling it the lock got
3413 * released so that it doesn't complain about the held lock when
3414 * we return to userspace.
3415 */
3416 if (req->flags & REQ_F_ISREG) {
3417 sb_start_write(file_inode(req->file)->i_sb);
3418 __sb_writers_release(file_inode(req->file)->i_sb,
3419 SB_FREEZE_WRITE);
3420 }
3421 kiocb->ki_flags |= IOCB_WRITE;
3422
3423 if (req->file->f_op->write_iter)
3424 ret2 = call_write_iter(req->file, kiocb, iter);
3425 else if (req->file->f_op->write)
3426 ret2 = loop_rw_iter(WRITE, req, iter);
3427 else
3428 ret2 = -EINVAL;
3429
3430 if (req->flags & REQ_F_REISSUE) {
3431 req->flags &= ~REQ_F_REISSUE;
3432 ret2 = -EAGAIN;
3433 }
3434
3435 /*
3436 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3437 * retry them without IOCB_NOWAIT.
3438 */
3439 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3440 ret2 = -EAGAIN;
3441 /* no retry on NONBLOCK nor RWF_NOWAIT */
3442 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3443 goto done;
3444 if (!force_nonblock || ret2 != -EAGAIN) {
3445 /* IOPOLL retry should happen for io-wq threads */
3446 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3447 goto copy_iov;
3448 done:
3449 kiocb_done(kiocb, ret2, issue_flags);
3450 } else {
3451 copy_iov:
3452 /* some cases will consume bytes even on error returns */
3453 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3454 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3455 return ret ?: -EAGAIN;
3456 }
3457 out_free:
3458 /* it's reportedly faster than delegating the null check to kfree() */
3459 if (iovec)
3460 kfree(iovec);
3461 return ret;
3462 }
3463
3464 static int io_renameat_prep(struct io_kiocb *req,
3465 const struct io_uring_sqe *sqe)
3466 {
3467 struct io_rename *ren = &req->rename;
3468 const char __user *oldf, *newf;
3469
3470 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3471 return -EINVAL;
3472 if (sqe->ioprio || sqe->buf_index)
3473 return -EINVAL;
3474 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3475 return -EBADF;
3476
3477 ren->old_dfd = READ_ONCE(sqe->fd);
3478 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3479 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3480 ren->new_dfd = READ_ONCE(sqe->len);
3481 ren->flags = READ_ONCE(sqe->rename_flags);
3482
3483 ren->oldpath = getname(oldf);
3484 if (IS_ERR(ren->oldpath))
3485 return PTR_ERR(ren->oldpath);
3486
3487 ren->newpath = getname(newf);
3488 if (IS_ERR(ren->newpath)) {
3489 putname(ren->oldpath);
3490 return PTR_ERR(ren->newpath);
3491 }
3492
3493 req->flags |= REQ_F_NEED_CLEANUP;
3494 return 0;
3495 }
3496
3497 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3498 {
3499 struct io_rename *ren = &req->rename;
3500 int ret;
3501
3502 if (issue_flags & IO_URING_F_NONBLOCK)
3503 return -EAGAIN;
3504
3505 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3506 ren->newpath, ren->flags);
3507
3508 req->flags &= ~REQ_F_NEED_CLEANUP;
3509 if (ret < 0)
3510 req_set_fail(req);
3511 io_req_complete(req, ret);
3512 return 0;
3513 }
3514
3515 static int io_unlinkat_prep(struct io_kiocb *req,
3516 const struct io_uring_sqe *sqe)
3517 {
3518 struct io_unlink *un = &req->unlink;
3519 const char __user *fname;
3520
3521 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3522 return -EINVAL;
3523 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
3524 return -EINVAL;
3525 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3526 return -EBADF;
3527
3528 un->dfd = READ_ONCE(sqe->fd);
3529
3530 un->flags = READ_ONCE(sqe->unlink_flags);
3531 if (un->flags & ~AT_REMOVEDIR)
3532 return -EINVAL;
3533
3534 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3535 un->filename = getname(fname);
3536 if (IS_ERR(un->filename))
3537 return PTR_ERR(un->filename);
3538
3539 req->flags |= REQ_F_NEED_CLEANUP;
3540 return 0;
3541 }
3542
3543 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3544 {
3545 struct io_unlink *un = &req->unlink;
3546 int ret;
3547
3548 if (issue_flags & IO_URING_F_NONBLOCK)
3549 return -EAGAIN;
3550
3551 if (un->flags & AT_REMOVEDIR)
3552 ret = do_rmdir(un->dfd, un->filename);
3553 else
3554 ret = do_unlinkat(un->dfd, un->filename);
3555
3556 req->flags &= ~REQ_F_NEED_CLEANUP;
3557 if (ret < 0)
3558 req_set_fail(req);
3559 io_req_complete(req, ret);
3560 return 0;
3561 }
3562
3563 static int io_shutdown_prep(struct io_kiocb *req,
3564 const struct io_uring_sqe *sqe)
3565 {
3566 #if defined(CONFIG_NET)
3567 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3568 return -EINVAL;
3569 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3570 sqe->buf_index)
3571 return -EINVAL;
3572
3573 req->shutdown.how = READ_ONCE(sqe->len);
3574 return 0;
3575 #else
3576 return -EOPNOTSUPP;
3577 #endif
3578 }
3579
3580 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3581 {
3582 #if defined(CONFIG_NET)
3583 struct socket *sock;
3584 int ret;
3585
3586 if (issue_flags & IO_URING_F_NONBLOCK)
3587 return -EAGAIN;
3588
3589 sock = sock_from_file(req->file);
3590 if (unlikely(!sock))
3591 return -ENOTSOCK;
3592
3593 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3594 if (ret < 0)
3595 req_set_fail(req);
3596 io_req_complete(req, ret);
3597 return 0;
3598 #else
3599 return -EOPNOTSUPP;
3600 #endif
3601 }
3602
3603 static int __io_splice_prep(struct io_kiocb *req,
3604 const struct io_uring_sqe *sqe)
3605 {
3606 struct io_splice *sp = &req->splice;
3607 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3608
3609 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3610 return -EINVAL;
3611
3612 sp->file_in = NULL;
3613 sp->len = READ_ONCE(sqe->len);
3614 sp->flags = READ_ONCE(sqe->splice_flags);
3615
3616 if (unlikely(sp->flags & ~valid_flags))
3617 return -EINVAL;
3618
3619 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3620 (sp->flags & SPLICE_F_FD_IN_FIXED));
3621 if (!sp->file_in)
3622 return -EBADF;
3623 req->flags |= REQ_F_NEED_CLEANUP;
3624 return 0;
3625 }
3626
3627 static int io_tee_prep(struct io_kiocb *req,
3628 const struct io_uring_sqe *sqe)
3629 {
3630 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3631 return -EINVAL;
3632 return __io_splice_prep(req, sqe);
3633 }
3634
3635 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3636 {
3637 struct io_splice *sp = &req->splice;
3638 struct file *in = sp->file_in;
3639 struct file *out = sp->file_out;
3640 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3641 long ret = 0;
3642
3643 if (issue_flags & IO_URING_F_NONBLOCK)
3644 return -EAGAIN;
3645 if (sp->len)
3646 ret = do_tee(in, out, sp->len, flags);
3647
3648 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3649 io_put_file(in);
3650 req->flags &= ~REQ_F_NEED_CLEANUP;
3651
3652 if (ret != sp->len)
3653 req_set_fail(req);
3654 io_req_complete(req, ret);
3655 return 0;
3656 }
3657
3658 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3659 {
3660 struct io_splice *sp = &req->splice;
3661
3662 sp->off_in = READ_ONCE(sqe->splice_off_in);
3663 sp->off_out = READ_ONCE(sqe->off);
3664 return __io_splice_prep(req, sqe);
3665 }
3666
3667 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3668 {
3669 struct io_splice *sp = &req->splice;
3670 struct file *in = sp->file_in;
3671 struct file *out = sp->file_out;
3672 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3673 loff_t *poff_in, *poff_out;
3674 long ret = 0;
3675
3676 if (issue_flags & IO_URING_F_NONBLOCK)
3677 return -EAGAIN;
3678
3679 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3680 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3681
3682 if (sp->len)
3683 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3684
3685 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
3686 io_put_file(in);
3687 req->flags &= ~REQ_F_NEED_CLEANUP;
3688
3689 if (ret != sp->len)
3690 req_set_fail(req);
3691 io_req_complete(req, ret);
3692 return 0;
3693 }
3694
3695 /*
3696 * IORING_OP_NOP just posts a completion event, nothing else.
3697 */
3698 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
3699 {
3700 struct io_ring_ctx *ctx = req->ctx;
3701
3702 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3703 return -EINVAL;
3704
3705 __io_req_complete(req, issue_flags, 0, 0);
3706 return 0;
3707 }
3708
3709 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3710 {
3711 struct io_ring_ctx *ctx = req->ctx;
3712
3713 if (!req->file)
3714 return -EBADF;
3715
3716 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3717 return -EINVAL;
3718 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3719 return -EINVAL;
3720
3721 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3722 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3723 return -EINVAL;
3724
3725 req->sync.off = READ_ONCE(sqe->off);
3726 req->sync.len = READ_ONCE(sqe->len);
3727 return 0;
3728 }
3729
3730 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
3731 {
3732 loff_t end = req->sync.off + req->sync.len;
3733 int ret;
3734
3735 /* fsync always requires a blocking context */
3736 if (issue_flags & IO_URING_F_NONBLOCK)
3737 return -EAGAIN;
3738
3739 ret = vfs_fsync_range(req->file, req->sync.off,
3740 end > 0 ? end : LLONG_MAX,
3741 req->sync.flags & IORING_FSYNC_DATASYNC);
3742 if (ret < 0)
3743 req_set_fail(req);
3744 io_req_complete(req, ret);
3745 return 0;
3746 }
3747
3748 static int io_fallocate_prep(struct io_kiocb *req,
3749 const struct io_uring_sqe *sqe)
3750 {
3751 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3752 return -EINVAL;
3753 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3754 return -EINVAL;
3755
3756 req->sync.off = READ_ONCE(sqe->off);
3757 req->sync.len = READ_ONCE(sqe->addr);
3758 req->sync.mode = READ_ONCE(sqe->len);
3759 return 0;
3760 }
3761
3762 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
3763 {
3764 int ret;
3765
3766 /* fallocate always requiring blocking context */
3767 if (issue_flags & IO_URING_F_NONBLOCK)
3768 return -EAGAIN;
3769 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3770 req->sync.len);
3771 if (ret < 0)
3772 req_set_fail(req);
3773 io_req_complete(req, ret);
3774 return 0;
3775 }
3776
3777 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3778 {
3779 const char __user *fname;
3780 int ret;
3781
3782 if (unlikely(sqe->ioprio || sqe->buf_index))
3783 return -EINVAL;
3784 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3785 return -EBADF;
3786
3787 /* open.how should be already initialised */
3788 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3789 req->open.how.flags |= O_LARGEFILE;
3790
3791 req->open.dfd = READ_ONCE(sqe->fd);
3792 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3793 req->open.filename = getname(fname);
3794 if (IS_ERR(req->open.filename)) {
3795 ret = PTR_ERR(req->open.filename);
3796 req->open.filename = NULL;
3797 return ret;
3798 }
3799 req->open.nofile = rlimit(RLIMIT_NOFILE);
3800 req->flags |= REQ_F_NEED_CLEANUP;
3801 return 0;
3802 }
3803
3804 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3805 {
3806 u64 flags, mode;
3807
3808 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3809 return -EINVAL;
3810 mode = READ_ONCE(sqe->len);
3811 flags = READ_ONCE(sqe->open_flags);
3812 req->open.how = build_open_how(flags, mode);
3813 return __io_openat_prep(req, sqe);
3814 }
3815
3816 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3817 {
3818 struct open_how __user *how;
3819 size_t len;
3820 int ret;
3821
3822 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3823 return -EINVAL;
3824 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3825 len = READ_ONCE(sqe->len);
3826 if (len < OPEN_HOW_SIZE_VER0)
3827 return -EINVAL;
3828
3829 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3830 len);
3831 if (ret)
3832 return ret;
3833
3834 return __io_openat_prep(req, sqe);
3835 }
3836
3837 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
3838 {
3839 struct open_flags op;
3840 struct file *file;
3841 bool nonblock_set;
3842 bool resolve_nonblock;
3843 int ret;
3844
3845 ret = build_open_flags(&req->open.how, &op);
3846 if (ret)
3847 goto err;
3848 nonblock_set = op.open_flag & O_NONBLOCK;
3849 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
3850 if (issue_flags & IO_URING_F_NONBLOCK) {
3851 /*
3852 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
3853 * it'll always -EAGAIN
3854 */
3855 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
3856 return -EAGAIN;
3857 op.lookup_flags |= LOOKUP_CACHED;
3858 op.open_flag |= O_NONBLOCK;
3859 }
3860
3861 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3862 if (ret < 0)
3863 goto err;
3864
3865 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3866 if (IS_ERR(file)) {
3867 /*
3868 * We could hang on to this 'fd' on retrying, but seems like
3869 * marginal gain for something that is now known to be a slower
3870 * path. So just put it, and we'll get a new one when we retry.
3871 */
3872 put_unused_fd(ret);
3873
3874 ret = PTR_ERR(file);
3875 /* only retry if RESOLVE_CACHED wasn't already set by application */
3876 if (ret == -EAGAIN &&
3877 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
3878 return -EAGAIN;
3879 goto err;
3880 }
3881
3882 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
3883 file->f_flags &= ~O_NONBLOCK;
3884 fsnotify_open(file);
3885 fd_install(ret, file);
3886 err:
3887 putname(req->open.filename);
3888 req->flags &= ~REQ_F_NEED_CLEANUP;
3889 if (ret < 0)
3890 req_set_fail(req);
3891 __io_req_complete(req, issue_flags, ret, 0);
3892 return 0;
3893 }
3894
3895 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
3896 {
3897 return io_openat2(req, issue_flags);
3898 }
3899
3900 static int io_remove_buffers_prep(struct io_kiocb *req,
3901 const struct io_uring_sqe *sqe)
3902 {
3903 struct io_provide_buf *p = &req->pbuf;
3904 u64 tmp;
3905
3906 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3907 return -EINVAL;
3908
3909 tmp = READ_ONCE(sqe->fd);
3910 if (!tmp || tmp > USHRT_MAX)
3911 return -EINVAL;
3912
3913 memset(p, 0, sizeof(*p));
3914 p->nbufs = tmp;
3915 p->bgid = READ_ONCE(sqe->buf_group);
3916 return 0;
3917 }
3918
3919 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3920 int bgid, unsigned nbufs)
3921 {
3922 unsigned i = 0;
3923
3924 /* shouldn't happen */
3925 if (!nbufs)
3926 return 0;
3927
3928 /* the head kbuf is the list itself */
3929 while (!list_empty(&buf->list)) {
3930 struct io_buffer *nxt;
3931
3932 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3933 list_del(&nxt->list);
3934 kfree(nxt);
3935 if (++i == nbufs)
3936 return i;
3937 }
3938 i++;
3939 kfree(buf);
3940 xa_erase(&ctx->io_buffers, bgid);
3941
3942 return i;
3943 }
3944
3945 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
3946 {
3947 struct io_provide_buf *p = &req->pbuf;
3948 struct io_ring_ctx *ctx = req->ctx;
3949 struct io_buffer *head;
3950 int ret = 0;
3951 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3952
3953 io_ring_submit_lock(ctx, !force_nonblock);
3954
3955 lockdep_assert_held(&ctx->uring_lock);
3956
3957 ret = -ENOENT;
3958 head = xa_load(&ctx->io_buffers, p->bgid);
3959 if (head)
3960 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3961 if (ret < 0)
3962 req_set_fail(req);
3963
3964 /* complete before unlock, IOPOLL may need the lock */
3965 __io_req_complete(req, issue_flags, ret, 0);
3966 io_ring_submit_unlock(ctx, !force_nonblock);
3967 return 0;
3968 }
3969
3970 static int io_provide_buffers_prep(struct io_kiocb *req,
3971 const struct io_uring_sqe *sqe)
3972 {
3973 unsigned long size, tmp_check;
3974 struct io_provide_buf *p = &req->pbuf;
3975 u64 tmp;
3976
3977 if (sqe->ioprio || sqe->rw_flags)
3978 return -EINVAL;
3979
3980 tmp = READ_ONCE(sqe->fd);
3981 if (!tmp || tmp > USHRT_MAX)
3982 return -E2BIG;
3983 p->nbufs = tmp;
3984 p->addr = READ_ONCE(sqe->addr);
3985 p->len = READ_ONCE(sqe->len);
3986
3987 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
3988 &size))
3989 return -EOVERFLOW;
3990 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
3991 return -EOVERFLOW;
3992
3993 size = (unsigned long)p->len * p->nbufs;
3994 if (!access_ok(u64_to_user_ptr(p->addr), size))
3995 return -EFAULT;
3996
3997 p->bgid = READ_ONCE(sqe->buf_group);
3998 tmp = READ_ONCE(sqe->off);
3999 if (tmp > USHRT_MAX)
4000 return -E2BIG;
4001 p->bid = tmp;
4002 return 0;
4003 }
4004
4005 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4006 {
4007 struct io_buffer *buf;
4008 u64 addr = pbuf->addr;
4009 int i, bid = pbuf->bid;
4010
4011 for (i = 0; i < pbuf->nbufs; i++) {
4012 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4013 if (!buf)
4014 break;
4015
4016 buf->addr = addr;
4017 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4018 buf->bid = bid;
4019 addr += pbuf->len;
4020 bid++;
4021 if (!*head) {
4022 INIT_LIST_HEAD(&buf->list);
4023 *head = buf;
4024 } else {
4025 list_add_tail(&buf->list, &(*head)->list);
4026 }
4027 }
4028
4029 return i ? i : -ENOMEM;
4030 }
4031
4032 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4033 {
4034 struct io_provide_buf *p = &req->pbuf;
4035 struct io_ring_ctx *ctx = req->ctx;
4036 struct io_buffer *head, *list;
4037 int ret = 0;
4038 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4039
4040 io_ring_submit_lock(ctx, !force_nonblock);
4041
4042 lockdep_assert_held(&ctx->uring_lock);
4043
4044 list = head = xa_load(&ctx->io_buffers, p->bgid);
4045
4046 ret = io_add_buffers(p, &head);
4047 if (ret >= 0 && !list) {
4048 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4049 if (ret < 0)
4050 __io_remove_buffers(ctx, head, p->bgid, -1U);
4051 }
4052 if (ret < 0)
4053 req_set_fail(req);
4054 /* complete before unlock, IOPOLL may need the lock */
4055 __io_req_complete(req, issue_flags, ret, 0);
4056 io_ring_submit_unlock(ctx, !force_nonblock);
4057 return 0;
4058 }
4059
4060 static int io_epoll_ctl_prep(struct io_kiocb *req,
4061 const struct io_uring_sqe *sqe)
4062 {
4063 #if defined(CONFIG_EPOLL)
4064 if (sqe->ioprio || sqe->buf_index)
4065 return -EINVAL;
4066 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4067 return -EINVAL;
4068
4069 req->epoll.epfd = READ_ONCE(sqe->fd);
4070 req->epoll.op = READ_ONCE(sqe->len);
4071 req->epoll.fd = READ_ONCE(sqe->off);
4072
4073 if (ep_op_has_event(req->epoll.op)) {
4074 struct epoll_event __user *ev;
4075
4076 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4077 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4078 return -EFAULT;
4079 }
4080
4081 return 0;
4082 #else
4083 return -EOPNOTSUPP;
4084 #endif
4085 }
4086
4087 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4088 {
4089 #if defined(CONFIG_EPOLL)
4090 struct io_epoll *ie = &req->epoll;
4091 int ret;
4092 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4093
4094 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4095 if (force_nonblock && ret == -EAGAIN)
4096 return -EAGAIN;
4097
4098 if (ret < 0)
4099 req_set_fail(req);
4100 __io_req_complete(req, issue_flags, ret, 0);
4101 return 0;
4102 #else
4103 return -EOPNOTSUPP;
4104 #endif
4105 }
4106
4107 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4108 {
4109 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4110 if (sqe->ioprio || sqe->buf_index || sqe->off)
4111 return -EINVAL;
4112 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4113 return -EINVAL;
4114
4115 req->madvise.addr = READ_ONCE(sqe->addr);
4116 req->madvise.len = READ_ONCE(sqe->len);
4117 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4118 return 0;
4119 #else
4120 return -EOPNOTSUPP;
4121 #endif
4122 }
4123
4124 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4125 {
4126 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4127 struct io_madvise *ma = &req->madvise;
4128 int ret;
4129
4130 if (issue_flags & IO_URING_F_NONBLOCK)
4131 return -EAGAIN;
4132
4133 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4134 if (ret < 0)
4135 req_set_fail(req);
4136 io_req_complete(req, ret);
4137 return 0;
4138 #else
4139 return -EOPNOTSUPP;
4140 #endif
4141 }
4142
4143 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4144 {
4145 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4146 return -EINVAL;
4147 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4148 return -EINVAL;
4149
4150 req->fadvise.offset = READ_ONCE(sqe->off);
4151 req->fadvise.len = READ_ONCE(sqe->len);
4152 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4153 return 0;
4154 }
4155
4156 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4157 {
4158 struct io_fadvise *fa = &req->fadvise;
4159 int ret;
4160
4161 if (issue_flags & IO_URING_F_NONBLOCK) {
4162 switch (fa->advice) {
4163 case POSIX_FADV_NORMAL:
4164 case POSIX_FADV_RANDOM:
4165 case POSIX_FADV_SEQUENTIAL:
4166 break;
4167 default:
4168 return -EAGAIN;
4169 }
4170 }
4171
4172 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4173 if (ret < 0)
4174 req_set_fail(req);
4175 __io_req_complete(req, issue_flags, ret, 0);
4176 return 0;
4177 }
4178
4179 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4180 {
4181 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4182 return -EINVAL;
4183 if (sqe->ioprio || sqe->buf_index)
4184 return -EINVAL;
4185 if (req->flags & REQ_F_FIXED_FILE)
4186 return -EBADF;
4187
4188 req->statx.dfd = READ_ONCE(sqe->fd);
4189 req->statx.mask = READ_ONCE(sqe->len);
4190 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4191 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4192 req->statx.flags = READ_ONCE(sqe->statx_flags);
4193
4194 return 0;
4195 }
4196
4197 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4198 {
4199 struct io_statx *ctx = &req->statx;
4200 int ret;
4201
4202 if (issue_flags & IO_URING_F_NONBLOCK)
4203 return -EAGAIN;
4204
4205 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4206 ctx->buffer);
4207
4208 if (ret < 0)
4209 req_set_fail(req);
4210 io_req_complete(req, ret);
4211 return 0;
4212 }
4213
4214 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4215 {
4216 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4217 return -EINVAL;
4218 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4219 sqe->rw_flags || sqe->buf_index)
4220 return -EINVAL;
4221 if (req->flags & REQ_F_FIXED_FILE)
4222 return -EBADF;
4223
4224 req->close.fd = READ_ONCE(sqe->fd);
4225 return 0;
4226 }
4227
4228 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4229 {
4230 struct files_struct *files = current->files;
4231 struct io_close *close = &req->close;
4232 struct fdtable *fdt;
4233 struct file *file = NULL;
4234 int ret = -EBADF;
4235
4236 spin_lock(&files->file_lock);
4237 fdt = files_fdtable(files);
4238 if (close->fd >= fdt->max_fds) {
4239 spin_unlock(&files->file_lock);
4240 goto err;
4241 }
4242 file = fdt->fd[close->fd];
4243 if (!file || file->f_op == &io_uring_fops) {
4244 spin_unlock(&files->file_lock);
4245 file = NULL;
4246 goto err;
4247 }
4248
4249 /* if the file has a flush method, be safe and punt to async */
4250 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4251 spin_unlock(&files->file_lock);
4252 return -EAGAIN;
4253 }
4254
4255 ret = __close_fd_get_file(close->fd, &file);
4256 spin_unlock(&files->file_lock);
4257 if (ret < 0) {
4258 if (ret == -ENOENT)
4259 ret = -EBADF;
4260 goto err;
4261 }
4262
4263 /* No ->flush() or already async, safely close from here */
4264 ret = filp_close(file, current->files);
4265 err:
4266 if (ret < 0)
4267 req_set_fail(req);
4268 if (file)
4269 fput(file);
4270 __io_req_complete(req, issue_flags, ret, 0);
4271 return 0;
4272 }
4273
4274 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4275 {
4276 struct io_ring_ctx *ctx = req->ctx;
4277
4278 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4279 return -EINVAL;
4280 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4281 return -EINVAL;
4282
4283 req->sync.off = READ_ONCE(sqe->off);
4284 req->sync.len = READ_ONCE(sqe->len);
4285 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4286 return 0;
4287 }
4288
4289 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4290 {
4291 int ret;
4292
4293 /* sync_file_range always requires a blocking context */
4294 if (issue_flags & IO_URING_F_NONBLOCK)
4295 return -EAGAIN;
4296
4297 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4298 req->sync.flags);
4299 if (ret < 0)
4300 req_set_fail(req);
4301 io_req_complete(req, ret);
4302 return 0;
4303 }
4304
4305 #if defined(CONFIG_NET)
4306 static int io_setup_async_msg(struct io_kiocb *req,
4307 struct io_async_msghdr *kmsg)
4308 {
4309 struct io_async_msghdr *async_msg = req->async_data;
4310
4311 if (async_msg)
4312 return -EAGAIN;
4313 if (io_alloc_async_data(req)) {
4314 kfree(kmsg->free_iov);
4315 return -ENOMEM;
4316 }
4317 async_msg = req->async_data;
4318 req->flags |= REQ_F_NEED_CLEANUP;
4319 memcpy(async_msg, kmsg, sizeof(*kmsg));
4320 async_msg->msg.msg_name = &async_msg->addr;
4321 /* if were using fast_iov, set it to the new one */
4322 if (!async_msg->free_iov)
4323 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4324
4325 return -EAGAIN;
4326 }
4327
4328 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4329 struct io_async_msghdr *iomsg)
4330 {
4331 iomsg->msg.msg_name = &iomsg->addr;
4332 iomsg->free_iov = iomsg->fast_iov;
4333 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4334 req->sr_msg.msg_flags, &iomsg->free_iov);
4335 }
4336
4337 static int io_sendmsg_prep_async(struct io_kiocb *req)
4338 {
4339 int ret;
4340
4341 ret = io_sendmsg_copy_hdr(req, req->async_data);
4342 if (!ret)
4343 req->flags |= REQ_F_NEED_CLEANUP;
4344 return ret;
4345 }
4346
4347 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4348 {
4349 struct io_sr_msg *sr = &req->sr_msg;
4350
4351 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4352 return -EINVAL;
4353
4354 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4355 sr->len = READ_ONCE(sqe->len);
4356 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4357 if (sr->msg_flags & MSG_DONTWAIT)
4358 req->flags |= REQ_F_NOWAIT;
4359
4360 #ifdef CONFIG_COMPAT
4361 if (req->ctx->compat)
4362 sr->msg_flags |= MSG_CMSG_COMPAT;
4363 #endif
4364 return 0;
4365 }
4366
4367 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4368 {
4369 struct io_async_msghdr iomsg, *kmsg;
4370 struct socket *sock;
4371 unsigned flags;
4372 int min_ret = 0;
4373 int ret;
4374
4375 sock = sock_from_file(req->file);
4376 if (unlikely(!sock))
4377 return -ENOTSOCK;
4378
4379 kmsg = req->async_data;
4380 if (!kmsg) {
4381 ret = io_sendmsg_copy_hdr(req, &iomsg);
4382 if (ret)
4383 return ret;
4384 kmsg = &iomsg;
4385 }
4386
4387 flags = req->sr_msg.msg_flags;
4388 if (issue_flags & IO_URING_F_NONBLOCK)
4389 flags |= MSG_DONTWAIT;
4390 if (flags & MSG_WAITALL)
4391 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4392
4393 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4394 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4395 return io_setup_async_msg(req, kmsg);
4396 if (ret == -ERESTARTSYS)
4397 ret = -EINTR;
4398
4399 /* fast path, check for non-NULL to avoid function call */
4400 if (kmsg->free_iov)
4401 kfree(kmsg->free_iov);
4402 req->flags &= ~REQ_F_NEED_CLEANUP;
4403 if (ret < min_ret)
4404 req_set_fail(req);
4405 __io_req_complete(req, issue_flags, ret, 0);
4406 return 0;
4407 }
4408
4409 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4410 {
4411 struct io_sr_msg *sr = &req->sr_msg;
4412 struct msghdr msg;
4413 struct iovec iov;
4414 struct socket *sock;
4415 unsigned flags;
4416 int min_ret = 0;
4417 int ret;
4418
4419 sock = sock_from_file(req->file);
4420 if (unlikely(!sock))
4421 return -ENOTSOCK;
4422
4423 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4424 if (unlikely(ret))
4425 return ret;
4426
4427 msg.msg_name = NULL;
4428 msg.msg_control = NULL;
4429 msg.msg_controllen = 0;
4430 msg.msg_namelen = 0;
4431
4432 flags = req->sr_msg.msg_flags;
4433 if (issue_flags & IO_URING_F_NONBLOCK)
4434 flags |= MSG_DONTWAIT;
4435 if (flags & MSG_WAITALL)
4436 min_ret = iov_iter_count(&msg.msg_iter);
4437
4438 msg.msg_flags = flags;
4439 ret = sock_sendmsg(sock, &msg);
4440 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4441 return -EAGAIN;
4442 if (ret == -ERESTARTSYS)
4443 ret = -EINTR;
4444
4445 if (ret < min_ret)
4446 req_set_fail(req);
4447 __io_req_complete(req, issue_flags, ret, 0);
4448 return 0;
4449 }
4450
4451 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4452 struct io_async_msghdr *iomsg)
4453 {
4454 struct io_sr_msg *sr = &req->sr_msg;
4455 struct iovec __user *uiov;
4456 size_t iov_len;
4457 int ret;
4458
4459 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4460 &iomsg->uaddr, &uiov, &iov_len);
4461 if (ret)
4462 return ret;
4463
4464 if (req->flags & REQ_F_BUFFER_SELECT) {
4465 if (iov_len > 1)
4466 return -EINVAL;
4467 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4468 return -EFAULT;
4469 sr->len = iomsg->fast_iov[0].iov_len;
4470 iomsg->free_iov = NULL;
4471 } else {
4472 iomsg->free_iov = iomsg->fast_iov;
4473 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4474 &iomsg->free_iov, &iomsg->msg.msg_iter,
4475 false);
4476 if (ret > 0)
4477 ret = 0;
4478 }
4479
4480 return ret;
4481 }
4482
4483 #ifdef CONFIG_COMPAT
4484 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4485 struct io_async_msghdr *iomsg)
4486 {
4487 struct io_sr_msg *sr = &req->sr_msg;
4488 struct compat_iovec __user *uiov;
4489 compat_uptr_t ptr;
4490 compat_size_t len;
4491 int ret;
4492
4493 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4494 &ptr, &len);
4495 if (ret)
4496 return ret;
4497
4498 uiov = compat_ptr(ptr);
4499 if (req->flags & REQ_F_BUFFER_SELECT) {
4500 compat_ssize_t clen;
4501
4502 if (len > 1)
4503 return -EINVAL;
4504 if (!access_ok(uiov, sizeof(*uiov)))
4505 return -EFAULT;
4506 if (__get_user(clen, &uiov->iov_len))
4507 return -EFAULT;
4508 if (clen < 0)
4509 return -EINVAL;
4510 sr->len = clen;
4511 iomsg->free_iov = NULL;
4512 } else {
4513 iomsg->free_iov = iomsg->fast_iov;
4514 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4515 UIO_FASTIOV, &iomsg->free_iov,
4516 &iomsg->msg.msg_iter, true);
4517 if (ret < 0)
4518 return ret;
4519 }
4520
4521 return 0;
4522 }
4523 #endif
4524
4525 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4526 struct io_async_msghdr *iomsg)
4527 {
4528 iomsg->msg.msg_name = &iomsg->addr;
4529
4530 #ifdef CONFIG_COMPAT
4531 if (req->ctx->compat)
4532 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4533 #endif
4534
4535 return __io_recvmsg_copy_hdr(req, iomsg);
4536 }
4537
4538 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4539 bool needs_lock)
4540 {
4541 struct io_sr_msg *sr = &req->sr_msg;
4542 struct io_buffer *kbuf;
4543
4544 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4545 if (IS_ERR(kbuf))
4546 return kbuf;
4547
4548 sr->kbuf = kbuf;
4549 req->flags |= REQ_F_BUFFER_SELECTED;
4550 return kbuf;
4551 }
4552
4553 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4554 {
4555 return io_put_kbuf(req, req->sr_msg.kbuf);
4556 }
4557
4558 static int io_recvmsg_prep_async(struct io_kiocb *req)
4559 {
4560 int ret;
4561
4562 ret = io_recvmsg_copy_hdr(req, req->async_data);
4563 if (!ret)
4564 req->flags |= REQ_F_NEED_CLEANUP;
4565 return ret;
4566 }
4567
4568 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4569 {
4570 struct io_sr_msg *sr = &req->sr_msg;
4571
4572 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4573 return -EINVAL;
4574
4575 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4576 sr->len = READ_ONCE(sqe->len);
4577 sr->bgid = READ_ONCE(sqe->buf_group);
4578 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4579 if (sr->msg_flags & MSG_DONTWAIT)
4580 req->flags |= REQ_F_NOWAIT;
4581
4582 #ifdef CONFIG_COMPAT
4583 if (req->ctx->compat)
4584 sr->msg_flags |= MSG_CMSG_COMPAT;
4585 #endif
4586 return 0;
4587 }
4588
4589 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4590 {
4591 struct io_async_msghdr iomsg, *kmsg;
4592 struct socket *sock;
4593 struct io_buffer *kbuf;
4594 unsigned flags;
4595 int min_ret = 0;
4596 int ret, cflags = 0;
4597 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4598
4599 sock = sock_from_file(req->file);
4600 if (unlikely(!sock))
4601 return -ENOTSOCK;
4602
4603 kmsg = req->async_data;
4604 if (!kmsg) {
4605 ret = io_recvmsg_copy_hdr(req, &iomsg);
4606 if (ret)
4607 return ret;
4608 kmsg = &iomsg;
4609 }
4610
4611 if (req->flags & REQ_F_BUFFER_SELECT) {
4612 kbuf = io_recv_buffer_select(req, !force_nonblock);
4613 if (IS_ERR(kbuf))
4614 return PTR_ERR(kbuf);
4615 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4616 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4617 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4618 1, req->sr_msg.len);
4619 }
4620
4621 flags = req->sr_msg.msg_flags;
4622 if (force_nonblock)
4623 flags |= MSG_DONTWAIT;
4624 if (flags & MSG_WAITALL)
4625 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4626
4627 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4628 kmsg->uaddr, flags);
4629 if (force_nonblock && ret == -EAGAIN)
4630 return io_setup_async_msg(req, kmsg);
4631 if (ret == -ERESTARTSYS)
4632 ret = -EINTR;
4633
4634 if (req->flags & REQ_F_BUFFER_SELECTED)
4635 cflags = io_put_recv_kbuf(req);
4636 /* fast path, check for non-NULL to avoid function call */
4637 if (kmsg->free_iov)
4638 kfree(kmsg->free_iov);
4639 req->flags &= ~REQ_F_NEED_CLEANUP;
4640 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4641 req_set_fail(req);
4642 __io_req_complete(req, issue_flags, ret, cflags);
4643 return 0;
4644 }
4645
4646 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4647 {
4648 struct io_buffer *kbuf;
4649 struct io_sr_msg *sr = &req->sr_msg;
4650 struct msghdr msg;
4651 void __user *buf = sr->buf;
4652 struct socket *sock;
4653 struct iovec iov;
4654 unsigned flags;
4655 int min_ret = 0;
4656 int ret, cflags = 0;
4657 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4658
4659 sock = sock_from_file(req->file);
4660 if (unlikely(!sock))
4661 return -ENOTSOCK;
4662
4663 if (req->flags & REQ_F_BUFFER_SELECT) {
4664 kbuf = io_recv_buffer_select(req, !force_nonblock);
4665 if (IS_ERR(kbuf))
4666 return PTR_ERR(kbuf);
4667 buf = u64_to_user_ptr(kbuf->addr);
4668 }
4669
4670 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4671 if (unlikely(ret))
4672 goto out_free;
4673
4674 msg.msg_name = NULL;
4675 msg.msg_control = NULL;
4676 msg.msg_controllen = 0;
4677 msg.msg_namelen = 0;
4678 msg.msg_iocb = NULL;
4679 msg.msg_flags = 0;
4680
4681 flags = req->sr_msg.msg_flags;
4682 if (force_nonblock)
4683 flags |= MSG_DONTWAIT;
4684 if (flags & MSG_WAITALL)
4685 min_ret = iov_iter_count(&msg.msg_iter);
4686
4687 ret = sock_recvmsg(sock, &msg, flags);
4688 if (force_nonblock && ret == -EAGAIN)
4689 return -EAGAIN;
4690 if (ret == -ERESTARTSYS)
4691 ret = -EINTR;
4692 out_free:
4693 if (req->flags & REQ_F_BUFFER_SELECTED)
4694 cflags = io_put_recv_kbuf(req);
4695 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
4696 req_set_fail(req);
4697 __io_req_complete(req, issue_flags, ret, cflags);
4698 return 0;
4699 }
4700
4701 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4702 {
4703 struct io_accept *accept = &req->accept;
4704
4705 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4706 return -EINVAL;
4707 if (sqe->ioprio || sqe->len || sqe->buf_index)
4708 return -EINVAL;
4709
4710 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4711 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4712 accept->flags = READ_ONCE(sqe->accept_flags);
4713 accept->nofile = rlimit(RLIMIT_NOFILE);
4714 return 0;
4715 }
4716
4717 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
4718 {
4719 struct io_accept *accept = &req->accept;
4720 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4721 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4722 int ret;
4723
4724 if (req->file->f_flags & O_NONBLOCK)
4725 req->flags |= REQ_F_NOWAIT;
4726
4727 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4728 accept->addr_len, accept->flags,
4729 accept->nofile);
4730 if (ret == -EAGAIN && force_nonblock)
4731 return -EAGAIN;
4732 if (ret < 0) {
4733 if (ret == -ERESTARTSYS)
4734 ret = -EINTR;
4735 req_set_fail(req);
4736 }
4737 __io_req_complete(req, issue_flags, ret, 0);
4738 return 0;
4739 }
4740
4741 static int io_connect_prep_async(struct io_kiocb *req)
4742 {
4743 struct io_async_connect *io = req->async_data;
4744 struct io_connect *conn = &req->connect;
4745
4746 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
4747 }
4748
4749 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4750 {
4751 struct io_connect *conn = &req->connect;
4752
4753 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4754 return -EINVAL;
4755 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4756 return -EINVAL;
4757
4758 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4759 conn->addr_len = READ_ONCE(sqe->addr2);
4760 return 0;
4761 }
4762
4763 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
4764 {
4765 struct io_async_connect __io, *io;
4766 unsigned file_flags;
4767 int ret;
4768 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4769
4770 if (req->async_data) {
4771 io = req->async_data;
4772 } else {
4773 ret = move_addr_to_kernel(req->connect.addr,
4774 req->connect.addr_len,
4775 &__io.address);
4776 if (ret)
4777 goto out;
4778 io = &__io;
4779 }
4780
4781 file_flags = force_nonblock ? O_NONBLOCK : 0;
4782
4783 ret = __sys_connect_file(req->file, &io->address,
4784 req->connect.addr_len, file_flags);
4785 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4786 if (req->async_data)
4787 return -EAGAIN;
4788 if (io_alloc_async_data(req)) {
4789 ret = -ENOMEM;
4790 goto out;
4791 }
4792 memcpy(req->async_data, &__io, sizeof(__io));
4793 return -EAGAIN;
4794 }
4795 if (ret == -ERESTARTSYS)
4796 ret = -EINTR;
4797 out:
4798 if (ret < 0)
4799 req_set_fail(req);
4800 __io_req_complete(req, issue_flags, ret, 0);
4801 return 0;
4802 }
4803 #else /* !CONFIG_NET */
4804 #define IO_NETOP_FN(op) \
4805 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
4806 { \
4807 return -EOPNOTSUPP; \
4808 }
4809
4810 #define IO_NETOP_PREP(op) \
4811 IO_NETOP_FN(op) \
4812 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
4813 { \
4814 return -EOPNOTSUPP; \
4815 } \
4816
4817 #define IO_NETOP_PREP_ASYNC(op) \
4818 IO_NETOP_PREP(op) \
4819 static int io_##op##_prep_async(struct io_kiocb *req) \
4820 { \
4821 return -EOPNOTSUPP; \
4822 }
4823
4824 IO_NETOP_PREP_ASYNC(sendmsg);
4825 IO_NETOP_PREP_ASYNC(recvmsg);
4826 IO_NETOP_PREP_ASYNC(connect);
4827 IO_NETOP_PREP(accept);
4828 IO_NETOP_FN(send);
4829 IO_NETOP_FN(recv);
4830 #endif /* CONFIG_NET */
4831
4832 struct io_poll_table {
4833 struct poll_table_struct pt;
4834 struct io_kiocb *req;
4835 int nr_entries;
4836 int error;
4837 };
4838
4839 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4840 __poll_t mask, io_req_tw_func_t func)
4841 {
4842 /* for instances that support it check for an event match first: */
4843 if (mask && !(mask & poll->events))
4844 return 0;
4845
4846 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4847
4848 list_del_init(&poll->wait.entry);
4849
4850 req->result = mask;
4851 req->io_task_work.func = func;
4852
4853 /*
4854 * If this fails, then the task is exiting. When a task exits, the
4855 * work gets canceled, so just cancel this request as well instead
4856 * of executing it. We can't safely execute it anyway, as we may not
4857 * have the needed state needed for it anyway.
4858 */
4859 io_req_task_work_add(req);
4860 return 1;
4861 }
4862
4863 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4864 __acquires(&req->ctx->completion_lock)
4865 {
4866 struct io_ring_ctx *ctx = req->ctx;
4867
4868 if (unlikely(req->task->flags & PF_EXITING))
4869 WRITE_ONCE(poll->canceled, true);
4870
4871 if (!req->result && !READ_ONCE(poll->canceled)) {
4872 struct poll_table_struct pt = { ._key = poll->events };
4873
4874 req->result = vfs_poll(req->file, &pt) & poll->events;
4875 }
4876
4877 spin_lock_irq(&ctx->completion_lock);
4878 if (!req->result && !READ_ONCE(poll->canceled)) {
4879 add_wait_queue(poll->head, &poll->wait);
4880 return true;
4881 }
4882
4883 return false;
4884 }
4885
4886 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4887 {
4888 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4889 if (req->opcode == IORING_OP_POLL_ADD)
4890 return req->async_data;
4891 return req->apoll->double_poll;
4892 }
4893
4894 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4895 {
4896 if (req->opcode == IORING_OP_POLL_ADD)
4897 return &req->poll;
4898 return &req->apoll->poll;
4899 }
4900
4901 static void io_poll_remove_double(struct io_kiocb *req)
4902 __must_hold(&req->ctx->completion_lock)
4903 {
4904 struct io_poll_iocb *poll = io_poll_get_double(req);
4905
4906 lockdep_assert_held(&req->ctx->completion_lock);
4907
4908 if (poll && poll->head) {
4909 struct wait_queue_head *head = poll->head;
4910
4911 spin_lock(&head->lock);
4912 list_del_init(&poll->wait.entry);
4913 if (poll->wait.private)
4914 req_ref_put(req);
4915 poll->head = NULL;
4916 spin_unlock(&head->lock);
4917 }
4918 }
4919
4920 static bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
4921 __must_hold(&req->ctx->completion_lock)
4922 {
4923 struct io_ring_ctx *ctx = req->ctx;
4924 unsigned flags = IORING_CQE_F_MORE;
4925 int error;
4926
4927 if (READ_ONCE(req->poll.canceled)) {
4928 error = -ECANCELED;
4929 req->poll.events |= EPOLLONESHOT;
4930 } else {
4931 error = mangle_poll(mask);
4932 }
4933 if (req->poll.events & EPOLLONESHOT)
4934 flags = 0;
4935 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
4936 io_poll_remove_waitqs(req);
4937 req->poll.done = true;
4938 flags = 0;
4939 }
4940 if (flags & IORING_CQE_F_MORE)
4941 ctx->cq_extra++;
4942
4943 io_commit_cqring(ctx);
4944 return !(flags & IORING_CQE_F_MORE);
4945 }
4946
4947 static void io_poll_task_func(struct io_kiocb *req)
4948 {
4949 struct io_ring_ctx *ctx = req->ctx;
4950 struct io_kiocb *nxt;
4951
4952 if (io_poll_rewait(req, &req->poll)) {
4953 spin_unlock_irq(&ctx->completion_lock);
4954 } else {
4955 bool done;
4956
4957 done = io_poll_complete(req, req->result);
4958 if (done) {
4959 hash_del(&req->hash_node);
4960 } else {
4961 req->result = 0;
4962 add_wait_queue(req->poll.head, &req->poll.wait);
4963 }
4964 spin_unlock_irq(&ctx->completion_lock);
4965 io_cqring_ev_posted(ctx);
4966
4967 if (done) {
4968 nxt = io_put_req_find_next(req);
4969 if (nxt)
4970 io_req_task_submit(nxt);
4971 }
4972 }
4973 }
4974
4975 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4976 int sync, void *key)
4977 {
4978 struct io_kiocb *req = wait->private;
4979 struct io_poll_iocb *poll = io_poll_get_single(req);
4980 __poll_t mask = key_to_poll(key);
4981
4982 /* for instances that support it check for an event match first: */
4983 if (mask && !(mask & poll->events))
4984 return 0;
4985 if (!(poll->events & EPOLLONESHOT))
4986 return poll->wait.func(&poll->wait, mode, sync, key);
4987
4988 list_del_init(&wait->entry);
4989
4990 if (poll->head) {
4991 bool done;
4992
4993 spin_lock(&poll->head->lock);
4994 done = list_empty(&poll->wait.entry);
4995 if (!done)
4996 list_del_init(&poll->wait.entry);
4997 /* make sure double remove sees this as being gone */
4998 wait->private = NULL;
4999 spin_unlock(&poll->head->lock);
5000 if (!done) {
5001 /* use wait func handler, so it matches the rq type */
5002 poll->wait.func(&poll->wait, mode, sync, key);
5003 }
5004 }
5005 req_ref_put(req);
5006 return 1;
5007 }
5008
5009 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5010 wait_queue_func_t wake_func)
5011 {
5012 poll->head = NULL;
5013 poll->done = false;
5014 poll->canceled = false;
5015 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5016 /* mask in events that we always want/need */
5017 poll->events = events | IO_POLL_UNMASK;
5018 INIT_LIST_HEAD(&poll->wait.entry);
5019 init_waitqueue_func_entry(&poll->wait, wake_func);
5020 }
5021
5022 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5023 struct wait_queue_head *head,
5024 struct io_poll_iocb **poll_ptr)
5025 {
5026 struct io_kiocb *req = pt->req;
5027
5028 /*
5029 * The file being polled uses multiple waitqueues for poll handling
5030 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5031 * if this happens.
5032 */
5033 if (unlikely(pt->nr_entries)) {
5034 struct io_poll_iocb *poll_one = poll;
5035
5036 /* already have a 2nd entry, fail a third attempt */
5037 if (*poll_ptr) {
5038 pt->error = -EINVAL;
5039 return;
5040 }
5041 /*
5042 * Can't handle multishot for double wait for now, turn it
5043 * into one-shot mode.
5044 */
5045 if (!(poll_one->events & EPOLLONESHOT))
5046 poll_one->events |= EPOLLONESHOT;
5047 /* double add on the same waitqueue head, ignore */
5048 if (poll_one->head == head)
5049 return;
5050 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5051 if (!poll) {
5052 pt->error = -ENOMEM;
5053 return;
5054 }
5055 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5056 req_ref_get(req);
5057 poll->wait.private = req;
5058 *poll_ptr = poll;
5059 }
5060
5061 pt->nr_entries++;
5062 poll->head = head;
5063
5064 if (poll->events & EPOLLEXCLUSIVE)
5065 add_wait_queue_exclusive(head, &poll->wait);
5066 else
5067 add_wait_queue(head, &poll->wait);
5068 }
5069
5070 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5071 struct poll_table_struct *p)
5072 {
5073 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5074 struct async_poll *apoll = pt->req->apoll;
5075
5076 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5077 }
5078
5079 static void io_async_task_func(struct io_kiocb *req)
5080 {
5081 struct async_poll *apoll = req->apoll;
5082 struct io_ring_ctx *ctx = req->ctx;
5083
5084 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5085
5086 if (io_poll_rewait(req, &apoll->poll)) {
5087 spin_unlock_irq(&ctx->completion_lock);
5088 return;
5089 }
5090
5091 hash_del(&req->hash_node);
5092 io_poll_remove_double(req);
5093 spin_unlock_irq(&ctx->completion_lock);
5094
5095 if (!READ_ONCE(apoll->poll.canceled))
5096 io_req_task_submit(req);
5097 else
5098 io_req_complete_failed(req, -ECANCELED);
5099 }
5100
5101 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5102 void *key)
5103 {
5104 struct io_kiocb *req = wait->private;
5105 struct io_poll_iocb *poll = &req->apoll->poll;
5106
5107 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5108 key_to_poll(key));
5109
5110 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5111 }
5112
5113 static void io_poll_req_insert(struct io_kiocb *req)
5114 {
5115 struct io_ring_ctx *ctx = req->ctx;
5116 struct hlist_head *list;
5117
5118 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5119 hlist_add_head(&req->hash_node, list);
5120 }
5121
5122 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5123 struct io_poll_iocb *poll,
5124 struct io_poll_table *ipt, __poll_t mask,
5125 wait_queue_func_t wake_func)
5126 __acquires(&ctx->completion_lock)
5127 {
5128 struct io_ring_ctx *ctx = req->ctx;
5129 bool cancel = false;
5130
5131 INIT_HLIST_NODE(&req->hash_node);
5132 io_init_poll_iocb(poll, mask, wake_func);
5133 poll->file = req->file;
5134 poll->wait.private = req;
5135
5136 ipt->pt._key = mask;
5137 ipt->req = req;
5138 ipt->error = 0;
5139 ipt->nr_entries = 0;
5140
5141 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5142 if (unlikely(!ipt->nr_entries) && !ipt->error)
5143 ipt->error = -EINVAL;
5144
5145 spin_lock_irq(&ctx->completion_lock);
5146 if (ipt->error)
5147 io_poll_remove_double(req);
5148 if (likely(poll->head)) {
5149 spin_lock(&poll->head->lock);
5150 if (unlikely(list_empty(&poll->wait.entry))) {
5151 if (ipt->error)
5152 cancel = true;
5153 ipt->error = 0;
5154 mask = 0;
5155 }
5156 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5157 list_del_init(&poll->wait.entry);
5158 else if (cancel)
5159 WRITE_ONCE(poll->canceled, true);
5160 else if (!poll->done) /* actually waiting for an event */
5161 io_poll_req_insert(req);
5162 spin_unlock(&poll->head->lock);
5163 }
5164
5165 return mask;
5166 }
5167
5168 enum {
5169 IO_APOLL_OK,
5170 IO_APOLL_ABORTED,
5171 IO_APOLL_READY
5172 };
5173
5174 static int io_arm_poll_handler(struct io_kiocb *req)
5175 {
5176 const struct io_op_def *def = &io_op_defs[req->opcode];
5177 struct io_ring_ctx *ctx = req->ctx;
5178 struct async_poll *apoll;
5179 struct io_poll_table ipt;
5180 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5181 int rw;
5182
5183 if (!req->file || !file_can_poll(req->file))
5184 return IO_APOLL_ABORTED;
5185 if (req->flags & REQ_F_POLLED)
5186 return IO_APOLL_ABORTED;
5187 if (!def->pollin && !def->pollout)
5188 return IO_APOLL_ABORTED;
5189
5190 if (def->pollin) {
5191 rw = READ;
5192 mask |= POLLIN | POLLRDNORM;
5193
5194 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5195 if ((req->opcode == IORING_OP_RECVMSG) &&
5196 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5197 mask &= ~POLLIN;
5198 } else {
5199 rw = WRITE;
5200 mask |= POLLOUT | POLLWRNORM;
5201 }
5202
5203 /* if we can't nonblock try, then no point in arming a poll handler */
5204 if (!io_file_supports_async(req, rw))
5205 return IO_APOLL_ABORTED;
5206
5207 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5208 if (unlikely(!apoll))
5209 return IO_APOLL_ABORTED;
5210 apoll->double_poll = NULL;
5211 req->apoll = apoll;
5212 req->flags |= REQ_F_POLLED;
5213 ipt.pt._qproc = io_async_queue_proc;
5214
5215 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5216 io_async_wake);
5217 if (ret || ipt.error) {
5218 io_poll_remove_double(req);
5219 spin_unlock_irq(&ctx->completion_lock);
5220 if (ret)
5221 return IO_APOLL_READY;
5222 return IO_APOLL_ABORTED;
5223 }
5224 spin_unlock_irq(&ctx->completion_lock);
5225 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5226 mask, apoll->poll.events);
5227 return IO_APOLL_OK;
5228 }
5229
5230 static bool __io_poll_remove_one(struct io_kiocb *req,
5231 struct io_poll_iocb *poll, bool do_cancel)
5232 __must_hold(&req->ctx->completion_lock)
5233 {
5234 bool do_complete = false;
5235
5236 if (!poll->head)
5237 return false;
5238 spin_lock(&poll->head->lock);
5239 if (do_cancel)
5240 WRITE_ONCE(poll->canceled, true);
5241 if (!list_empty(&poll->wait.entry)) {
5242 list_del_init(&poll->wait.entry);
5243 do_complete = true;
5244 }
5245 spin_unlock(&poll->head->lock);
5246 hash_del(&req->hash_node);
5247 return do_complete;
5248 }
5249
5250 static bool io_poll_remove_waitqs(struct io_kiocb *req)
5251 __must_hold(&req->ctx->completion_lock)
5252 {
5253 bool do_complete;
5254
5255 io_poll_remove_double(req);
5256 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5257
5258 if (req->opcode != IORING_OP_POLL_ADD && do_complete) {
5259 /* non-poll requests have submit ref still */
5260 req_ref_put(req);
5261 }
5262 return do_complete;
5263 }
5264
5265 static bool io_poll_remove_one(struct io_kiocb *req)
5266 __must_hold(&req->ctx->completion_lock)
5267 {
5268 bool do_complete;
5269
5270 do_complete = io_poll_remove_waitqs(req);
5271 if (do_complete) {
5272 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5273 io_commit_cqring(req->ctx);
5274 req_set_fail(req);
5275 io_put_req_deferred(req, 1);
5276 }
5277
5278 return do_complete;
5279 }
5280
5281 /*
5282 * Returns true if we found and killed one or more poll requests
5283 */
5284 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5285 bool cancel_all)
5286 {
5287 struct hlist_node *tmp;
5288 struct io_kiocb *req;
5289 int posted = 0, i;
5290
5291 spin_lock_irq(&ctx->completion_lock);
5292 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5293 struct hlist_head *list;
5294
5295 list = &ctx->cancel_hash[i];
5296 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5297 if (io_match_task(req, tsk, cancel_all))
5298 posted += io_poll_remove_one(req);
5299 }
5300 }
5301 spin_unlock_irq(&ctx->completion_lock);
5302
5303 if (posted)
5304 io_cqring_ev_posted(ctx);
5305
5306 return posted != 0;
5307 }
5308
5309 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5310 bool poll_only)
5311 __must_hold(&ctx->completion_lock)
5312 {
5313 struct hlist_head *list;
5314 struct io_kiocb *req;
5315
5316 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5317 hlist_for_each_entry(req, list, hash_node) {
5318 if (sqe_addr != req->user_data)
5319 continue;
5320 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5321 continue;
5322 return req;
5323 }
5324 return NULL;
5325 }
5326
5327 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5328 bool poll_only)
5329 __must_hold(&ctx->completion_lock)
5330 {
5331 struct io_kiocb *req;
5332
5333 req = io_poll_find(ctx, sqe_addr, poll_only);
5334 if (!req)
5335 return -ENOENT;
5336 if (io_poll_remove_one(req))
5337 return 0;
5338
5339 return -EALREADY;
5340 }
5341
5342 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5343 unsigned int flags)
5344 {
5345 u32 events;
5346
5347 events = READ_ONCE(sqe->poll32_events);
5348 #ifdef __BIG_ENDIAN
5349 events = swahw32(events);
5350 #endif
5351 if (!(flags & IORING_POLL_ADD_MULTI))
5352 events |= EPOLLONESHOT;
5353 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5354 }
5355
5356 static int io_poll_update_prep(struct io_kiocb *req,
5357 const struct io_uring_sqe *sqe)
5358 {
5359 struct io_poll_update *upd = &req->poll_update;
5360 u32 flags;
5361
5362 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5363 return -EINVAL;
5364 if (sqe->ioprio || sqe->buf_index)
5365 return -EINVAL;
5366 flags = READ_ONCE(sqe->len);
5367 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5368 IORING_POLL_ADD_MULTI))
5369 return -EINVAL;
5370 /* meaningless without update */
5371 if (flags == IORING_POLL_ADD_MULTI)
5372 return -EINVAL;
5373
5374 upd->old_user_data = READ_ONCE(sqe->addr);
5375 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5376 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5377
5378 upd->new_user_data = READ_ONCE(sqe->off);
5379 if (!upd->update_user_data && upd->new_user_data)
5380 return -EINVAL;
5381 if (upd->update_events)
5382 upd->events = io_poll_parse_events(sqe, flags);
5383 else if (sqe->poll32_events)
5384 return -EINVAL;
5385
5386 return 0;
5387 }
5388
5389 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5390 void *key)
5391 {
5392 struct io_kiocb *req = wait->private;
5393 struct io_poll_iocb *poll = &req->poll;
5394
5395 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5396 }
5397
5398 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5399 struct poll_table_struct *p)
5400 {
5401 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5402
5403 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5404 }
5405
5406 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5407 {
5408 struct io_poll_iocb *poll = &req->poll;
5409 u32 flags;
5410
5411 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5412 return -EINVAL;
5413 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5414 return -EINVAL;
5415 flags = READ_ONCE(sqe->len);
5416 if (flags & ~IORING_POLL_ADD_MULTI)
5417 return -EINVAL;
5418
5419 poll->events = io_poll_parse_events(sqe, flags);
5420 return 0;
5421 }
5422
5423 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5424 {
5425 struct io_poll_iocb *poll = &req->poll;
5426 struct io_ring_ctx *ctx = req->ctx;
5427 struct io_poll_table ipt;
5428 __poll_t mask;
5429
5430 ipt.pt._qproc = io_poll_queue_proc;
5431
5432 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5433 io_poll_wake);
5434
5435 if (mask) { /* no async, we'd stolen it */
5436 ipt.error = 0;
5437 io_poll_complete(req, mask);
5438 }
5439 spin_unlock_irq(&ctx->completion_lock);
5440
5441 if (mask) {
5442 io_cqring_ev_posted(ctx);
5443 if (poll->events & EPOLLONESHOT)
5444 io_put_req(req);
5445 }
5446 return ipt.error;
5447 }
5448
5449 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5450 {
5451 struct io_ring_ctx *ctx = req->ctx;
5452 struct io_kiocb *preq;
5453 bool completing;
5454 int ret;
5455
5456 spin_lock_irq(&ctx->completion_lock);
5457 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5458 if (!preq) {
5459 ret = -ENOENT;
5460 goto err;
5461 }
5462
5463 if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5464 completing = true;
5465 ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5466 goto err;
5467 }
5468
5469 /*
5470 * Don't allow racy completion with singleshot, as we cannot safely
5471 * update those. For multishot, if we're racing with completion, just
5472 * let completion re-add it.
5473 */
5474 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5475 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5476 ret = -EALREADY;
5477 goto err;
5478 }
5479 /* we now have a detached poll request. reissue. */
5480 ret = 0;
5481 err:
5482 if (ret < 0) {
5483 spin_unlock_irq(&ctx->completion_lock);
5484 req_set_fail(req);
5485 io_req_complete(req, ret);
5486 return 0;
5487 }
5488 /* only mask one event flags, keep behavior flags */
5489 if (req->poll_update.update_events) {
5490 preq->poll.events &= ~0xffff;
5491 preq->poll.events |= req->poll_update.events & 0xffff;
5492 preq->poll.events |= IO_POLL_UNMASK;
5493 }
5494 if (req->poll_update.update_user_data)
5495 preq->user_data = req->poll_update.new_user_data;
5496 spin_unlock_irq(&ctx->completion_lock);
5497
5498 /* complete update request, we're done with it */
5499 io_req_complete(req, ret);
5500
5501 if (!completing) {
5502 ret = io_poll_add(preq, issue_flags);
5503 if (ret < 0) {
5504 req_set_fail(preq);
5505 io_req_complete(preq, ret);
5506 }
5507 }
5508 return 0;
5509 }
5510
5511 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5512 {
5513 struct io_timeout_data *data = container_of(timer,
5514 struct io_timeout_data, timer);
5515 struct io_kiocb *req = data->req;
5516 struct io_ring_ctx *ctx = req->ctx;
5517 unsigned long flags;
5518
5519 spin_lock_irqsave(&ctx->completion_lock, flags);
5520 list_del_init(&req->timeout.list);
5521 atomic_set(&req->ctx->cq_timeouts,
5522 atomic_read(&req->ctx->cq_timeouts) + 1);
5523
5524 io_cqring_fill_event(ctx, req->user_data, -ETIME, 0);
5525 io_commit_cqring(ctx);
5526 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5527
5528 io_cqring_ev_posted(ctx);
5529 req_set_fail(req);
5530 io_put_req(req);
5531 return HRTIMER_NORESTART;
5532 }
5533
5534 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5535 __u64 user_data)
5536 __must_hold(&ctx->completion_lock)
5537 {
5538 struct io_timeout_data *io;
5539 struct io_kiocb *req;
5540 bool found = false;
5541
5542 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5543 found = user_data == req->user_data;
5544 if (found)
5545 break;
5546 }
5547 if (!found)
5548 return ERR_PTR(-ENOENT);
5549
5550 io = req->async_data;
5551 if (hrtimer_try_to_cancel(&io->timer) == -1)
5552 return ERR_PTR(-EALREADY);
5553 list_del_init(&req->timeout.list);
5554 return req;
5555 }
5556
5557 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5558 __must_hold(&ctx->completion_lock)
5559 {
5560 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5561
5562 if (IS_ERR(req))
5563 return PTR_ERR(req);
5564
5565 req_set_fail(req);
5566 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5567 io_put_req_deferred(req, 1);
5568 return 0;
5569 }
5570
5571 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5572 struct timespec64 *ts, enum hrtimer_mode mode)
5573 __must_hold(&ctx->completion_lock)
5574 {
5575 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5576 struct io_timeout_data *data;
5577
5578 if (IS_ERR(req))
5579 return PTR_ERR(req);
5580
5581 req->timeout.off = 0; /* noseq */
5582 data = req->async_data;
5583 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5584 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5585 data->timer.function = io_timeout_fn;
5586 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5587 return 0;
5588 }
5589
5590 static int io_timeout_remove_prep(struct io_kiocb *req,
5591 const struct io_uring_sqe *sqe)
5592 {
5593 struct io_timeout_rem *tr = &req->timeout_rem;
5594
5595 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5596 return -EINVAL;
5597 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5598 return -EINVAL;
5599 if (sqe->ioprio || sqe->buf_index || sqe->len)
5600 return -EINVAL;
5601
5602 tr->addr = READ_ONCE(sqe->addr);
5603 tr->flags = READ_ONCE(sqe->timeout_flags);
5604 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5605 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5606 return -EINVAL;
5607 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5608 return -EFAULT;
5609 } else if (tr->flags) {
5610 /* timeout removal doesn't support flags */
5611 return -EINVAL;
5612 }
5613
5614 return 0;
5615 }
5616
5617 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5618 {
5619 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5620 : HRTIMER_MODE_REL;
5621 }
5622
5623 /*
5624 * Remove or update an existing timeout command
5625 */
5626 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5627 {
5628 struct io_timeout_rem *tr = &req->timeout_rem;
5629 struct io_ring_ctx *ctx = req->ctx;
5630 int ret;
5631
5632 spin_lock_irq(&ctx->completion_lock);
5633 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5634 ret = io_timeout_cancel(ctx, tr->addr);
5635 else
5636 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5637 io_translate_timeout_mode(tr->flags));
5638
5639 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5640 io_commit_cqring(ctx);
5641 spin_unlock_irq(&ctx->completion_lock);
5642 io_cqring_ev_posted(ctx);
5643 if (ret < 0)
5644 req_set_fail(req);
5645 io_put_req(req);
5646 return 0;
5647 }
5648
5649 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5650 bool is_timeout_link)
5651 {
5652 struct io_timeout_data *data;
5653 unsigned flags;
5654 u32 off = READ_ONCE(sqe->off);
5655
5656 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5657 return -EINVAL;
5658 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5659 return -EINVAL;
5660 if (off && is_timeout_link)
5661 return -EINVAL;
5662 flags = READ_ONCE(sqe->timeout_flags);
5663 if (flags & ~IORING_TIMEOUT_ABS)
5664 return -EINVAL;
5665
5666 req->timeout.off = off;
5667 if (unlikely(off && !req->ctx->off_timeout_used))
5668 req->ctx->off_timeout_used = true;
5669
5670 if (!req->async_data && io_alloc_async_data(req))
5671 return -ENOMEM;
5672
5673 data = req->async_data;
5674 data->req = req;
5675
5676 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5677 return -EFAULT;
5678
5679 data->mode = io_translate_timeout_mode(flags);
5680 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5681 if (is_timeout_link)
5682 io_req_track_inflight(req);
5683 return 0;
5684 }
5685
5686 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5687 {
5688 struct io_ring_ctx *ctx = req->ctx;
5689 struct io_timeout_data *data = req->async_data;
5690 struct list_head *entry;
5691 u32 tail, off = req->timeout.off;
5692
5693 spin_lock_irq(&ctx->completion_lock);
5694
5695 /*
5696 * sqe->off holds how many events that need to occur for this
5697 * timeout event to be satisfied. If it isn't set, then this is
5698 * a pure timeout request, sequence isn't used.
5699 */
5700 if (io_is_timeout_noseq(req)) {
5701 entry = ctx->timeout_list.prev;
5702 goto add;
5703 }
5704
5705 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5706 req->timeout.target_seq = tail + off;
5707
5708 /* Update the last seq here in case io_flush_timeouts() hasn't.
5709 * This is safe because ->completion_lock is held, and submissions
5710 * and completions are never mixed in the same ->completion_lock section.
5711 */
5712 ctx->cq_last_tm_flush = tail;
5713
5714 /*
5715 * Insertion sort, ensuring the first entry in the list is always
5716 * the one we need first.
5717 */
5718 list_for_each_prev(entry, &ctx->timeout_list) {
5719 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5720 timeout.list);
5721
5722 if (io_is_timeout_noseq(nxt))
5723 continue;
5724 /* nxt.seq is behind @tail, otherwise would've been completed */
5725 if (off >= nxt->timeout.target_seq - tail)
5726 break;
5727 }
5728 add:
5729 list_add(&req->timeout.list, entry);
5730 data->timer.function = io_timeout_fn;
5731 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5732 spin_unlock_irq(&ctx->completion_lock);
5733 return 0;
5734 }
5735
5736 struct io_cancel_data {
5737 struct io_ring_ctx *ctx;
5738 u64 user_data;
5739 };
5740
5741 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5742 {
5743 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5744 struct io_cancel_data *cd = data;
5745
5746 return req->ctx == cd->ctx && req->user_data == cd->user_data;
5747 }
5748
5749 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
5750 struct io_ring_ctx *ctx)
5751 {
5752 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
5753 enum io_wq_cancel cancel_ret;
5754 int ret = 0;
5755
5756 if (!tctx || !tctx->io_wq)
5757 return -ENOENT;
5758
5759 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
5760 switch (cancel_ret) {
5761 case IO_WQ_CANCEL_OK:
5762 ret = 0;
5763 break;
5764 case IO_WQ_CANCEL_RUNNING:
5765 ret = -EALREADY;
5766 break;
5767 case IO_WQ_CANCEL_NOTFOUND:
5768 ret = -ENOENT;
5769 break;
5770 }
5771
5772 return ret;
5773 }
5774
5775 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5776 struct io_kiocb *req, __u64 sqe_addr,
5777 int success_ret)
5778 {
5779 unsigned long flags;
5780 int ret;
5781
5782 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5783 spin_lock_irqsave(&ctx->completion_lock, flags);
5784 if (ret != -ENOENT)
5785 goto done;
5786 ret = io_timeout_cancel(ctx, sqe_addr);
5787 if (ret != -ENOENT)
5788 goto done;
5789 ret = io_poll_cancel(ctx, sqe_addr, false);
5790 done:
5791 if (!ret)
5792 ret = success_ret;
5793 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5794 io_commit_cqring(ctx);
5795 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5796 io_cqring_ev_posted(ctx);
5797
5798 if (ret < 0)
5799 req_set_fail(req);
5800 }
5801
5802 static int io_async_cancel_prep(struct io_kiocb *req,
5803 const struct io_uring_sqe *sqe)
5804 {
5805 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5806 return -EINVAL;
5807 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5808 return -EINVAL;
5809 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5810 return -EINVAL;
5811
5812 req->cancel.addr = READ_ONCE(sqe->addr);
5813 return 0;
5814 }
5815
5816 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
5817 {
5818 struct io_ring_ctx *ctx = req->ctx;
5819 u64 sqe_addr = req->cancel.addr;
5820 struct io_tctx_node *node;
5821 int ret;
5822
5823 /* tasks should wait for their io-wq threads, so safe w/o sync */
5824 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
5825 spin_lock_irq(&ctx->completion_lock);
5826 if (ret != -ENOENT)
5827 goto done;
5828 ret = io_timeout_cancel(ctx, sqe_addr);
5829 if (ret != -ENOENT)
5830 goto done;
5831 ret = io_poll_cancel(ctx, sqe_addr, false);
5832 if (ret != -ENOENT)
5833 goto done;
5834 spin_unlock_irq(&ctx->completion_lock);
5835
5836 /* slow path, try all io-wq's */
5837 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5838 ret = -ENOENT;
5839 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
5840 struct io_uring_task *tctx = node->task->io_uring;
5841
5842 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
5843 if (ret != -ENOENT)
5844 break;
5845 }
5846 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
5847
5848 spin_lock_irq(&ctx->completion_lock);
5849 done:
5850 io_cqring_fill_event(ctx, req->user_data, ret, 0);
5851 io_commit_cqring(ctx);
5852 spin_unlock_irq(&ctx->completion_lock);
5853 io_cqring_ev_posted(ctx);
5854
5855 if (ret < 0)
5856 req_set_fail(req);
5857 io_put_req(req);
5858 return 0;
5859 }
5860
5861 static int io_rsrc_update_prep(struct io_kiocb *req,
5862 const struct io_uring_sqe *sqe)
5863 {
5864 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5865 return -EINVAL;
5866 if (sqe->ioprio || sqe->rw_flags)
5867 return -EINVAL;
5868
5869 req->rsrc_update.offset = READ_ONCE(sqe->off);
5870 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
5871 if (!req->rsrc_update.nr_args)
5872 return -EINVAL;
5873 req->rsrc_update.arg = READ_ONCE(sqe->addr);
5874 return 0;
5875 }
5876
5877 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
5878 {
5879 struct io_ring_ctx *ctx = req->ctx;
5880 struct io_uring_rsrc_update2 up;
5881 int ret;
5882
5883 if (issue_flags & IO_URING_F_NONBLOCK)
5884 return -EAGAIN;
5885
5886 up.offset = req->rsrc_update.offset;
5887 up.data = req->rsrc_update.arg;
5888 up.nr = 0;
5889 up.tags = 0;
5890 up.resv = 0;
5891
5892 mutex_lock(&ctx->uring_lock);
5893 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
5894 &up, req->rsrc_update.nr_args);
5895 mutex_unlock(&ctx->uring_lock);
5896
5897 if (ret < 0)
5898 req_set_fail(req);
5899 __io_req_complete(req, issue_flags, ret, 0);
5900 return 0;
5901 }
5902
5903 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5904 {
5905 switch (req->opcode) {
5906 case IORING_OP_NOP:
5907 return 0;
5908 case IORING_OP_READV:
5909 case IORING_OP_READ_FIXED:
5910 case IORING_OP_READ:
5911 return io_read_prep(req, sqe);
5912 case IORING_OP_WRITEV:
5913 case IORING_OP_WRITE_FIXED:
5914 case IORING_OP_WRITE:
5915 return io_write_prep(req, sqe);
5916 case IORING_OP_POLL_ADD:
5917 return io_poll_add_prep(req, sqe);
5918 case IORING_OP_POLL_REMOVE:
5919 return io_poll_update_prep(req, sqe);
5920 case IORING_OP_FSYNC:
5921 return io_fsync_prep(req, sqe);
5922 case IORING_OP_SYNC_FILE_RANGE:
5923 return io_sfr_prep(req, sqe);
5924 case IORING_OP_SENDMSG:
5925 case IORING_OP_SEND:
5926 return io_sendmsg_prep(req, sqe);
5927 case IORING_OP_RECVMSG:
5928 case IORING_OP_RECV:
5929 return io_recvmsg_prep(req, sqe);
5930 case IORING_OP_CONNECT:
5931 return io_connect_prep(req, sqe);
5932 case IORING_OP_TIMEOUT:
5933 return io_timeout_prep(req, sqe, false);
5934 case IORING_OP_TIMEOUT_REMOVE:
5935 return io_timeout_remove_prep(req, sqe);
5936 case IORING_OP_ASYNC_CANCEL:
5937 return io_async_cancel_prep(req, sqe);
5938 case IORING_OP_LINK_TIMEOUT:
5939 return io_timeout_prep(req, sqe, true);
5940 case IORING_OP_ACCEPT:
5941 return io_accept_prep(req, sqe);
5942 case IORING_OP_FALLOCATE:
5943 return io_fallocate_prep(req, sqe);
5944 case IORING_OP_OPENAT:
5945 return io_openat_prep(req, sqe);
5946 case IORING_OP_CLOSE:
5947 return io_close_prep(req, sqe);
5948 case IORING_OP_FILES_UPDATE:
5949 return io_rsrc_update_prep(req, sqe);
5950 case IORING_OP_STATX:
5951 return io_statx_prep(req, sqe);
5952 case IORING_OP_FADVISE:
5953 return io_fadvise_prep(req, sqe);
5954 case IORING_OP_MADVISE:
5955 return io_madvise_prep(req, sqe);
5956 case IORING_OP_OPENAT2:
5957 return io_openat2_prep(req, sqe);
5958 case IORING_OP_EPOLL_CTL:
5959 return io_epoll_ctl_prep(req, sqe);
5960 case IORING_OP_SPLICE:
5961 return io_splice_prep(req, sqe);
5962 case IORING_OP_PROVIDE_BUFFERS:
5963 return io_provide_buffers_prep(req, sqe);
5964 case IORING_OP_REMOVE_BUFFERS:
5965 return io_remove_buffers_prep(req, sqe);
5966 case IORING_OP_TEE:
5967 return io_tee_prep(req, sqe);
5968 case IORING_OP_SHUTDOWN:
5969 return io_shutdown_prep(req, sqe);
5970 case IORING_OP_RENAMEAT:
5971 return io_renameat_prep(req, sqe);
5972 case IORING_OP_UNLINKAT:
5973 return io_unlinkat_prep(req, sqe);
5974 }
5975
5976 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5977 req->opcode);
5978 return -EINVAL;
5979 }
5980
5981 static int io_req_prep_async(struct io_kiocb *req)
5982 {
5983 if (!io_op_defs[req->opcode].needs_async_setup)
5984 return 0;
5985 if (WARN_ON_ONCE(req->async_data))
5986 return -EFAULT;
5987 if (io_alloc_async_data(req))
5988 return -EAGAIN;
5989
5990 switch (req->opcode) {
5991 case IORING_OP_READV:
5992 return io_rw_prep_async(req, READ);
5993 case IORING_OP_WRITEV:
5994 return io_rw_prep_async(req, WRITE);
5995 case IORING_OP_SENDMSG:
5996 return io_sendmsg_prep_async(req);
5997 case IORING_OP_RECVMSG:
5998 return io_recvmsg_prep_async(req);
5999 case IORING_OP_CONNECT:
6000 return io_connect_prep_async(req);
6001 }
6002 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6003 req->opcode);
6004 return -EFAULT;
6005 }
6006
6007 static u32 io_get_sequence(struct io_kiocb *req)
6008 {
6009 u32 seq = req->ctx->cached_sq_head;
6010
6011 /* need original cached_sq_head, but it was increased for each req */
6012 io_for_each_link(req, req)
6013 seq--;
6014 return seq;
6015 }
6016
6017 static bool io_drain_req(struct io_kiocb *req)
6018 {
6019 struct io_kiocb *pos;
6020 struct io_ring_ctx *ctx = req->ctx;
6021 struct io_defer_entry *de;
6022 int ret;
6023 u32 seq;
6024
6025 /*
6026 * If we need to drain a request in the middle of a link, drain the
6027 * head request and the next request/link after the current link.
6028 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6029 * maintained for every request of our link.
6030 */
6031 if (ctx->drain_next) {
6032 req->flags |= REQ_F_IO_DRAIN;
6033 ctx->drain_next = false;
6034 }
6035 /* not interested in head, start from the first linked */
6036 io_for_each_link(pos, req->link) {
6037 if (pos->flags & REQ_F_IO_DRAIN) {
6038 ctx->drain_next = true;
6039 req->flags |= REQ_F_IO_DRAIN;
6040 break;
6041 }
6042 }
6043
6044 /* Still need defer if there is pending req in defer list. */
6045 if (likely(list_empty_careful(&ctx->defer_list) &&
6046 !(req->flags & REQ_F_IO_DRAIN))) {
6047 ctx->drain_active = false;
6048 return false;
6049 }
6050
6051 seq = io_get_sequence(req);
6052 /* Still a chance to pass the sequence check */
6053 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6054 return false;
6055
6056 ret = io_req_prep_async(req);
6057 if (ret)
6058 goto fail;
6059 io_prep_async_link(req);
6060 de = kmalloc(sizeof(*de), GFP_KERNEL);
6061 if (!de) {
6062 ret = -ENOMEM;
6063 fail:
6064 io_req_complete_failed(req, ret);
6065 return true;
6066 }
6067
6068 spin_lock_irq(&ctx->completion_lock);
6069 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6070 spin_unlock_irq(&ctx->completion_lock);
6071 kfree(de);
6072 io_queue_async_work(req);
6073 return true;
6074 }
6075
6076 trace_io_uring_defer(ctx, req, req->user_data);
6077 de->req = req;
6078 de->seq = seq;
6079 list_add_tail(&de->list, &ctx->defer_list);
6080 spin_unlock_irq(&ctx->completion_lock);
6081 return true;
6082 }
6083
6084 static void io_clean_op(struct io_kiocb *req)
6085 {
6086 if (req->flags & REQ_F_BUFFER_SELECTED) {
6087 switch (req->opcode) {
6088 case IORING_OP_READV:
6089 case IORING_OP_READ_FIXED:
6090 case IORING_OP_READ:
6091 kfree((void *)(unsigned long)req->rw.addr);
6092 break;
6093 case IORING_OP_RECVMSG:
6094 case IORING_OP_RECV:
6095 kfree(req->sr_msg.kbuf);
6096 break;
6097 }
6098 }
6099
6100 if (req->flags & REQ_F_NEED_CLEANUP) {
6101 switch (req->opcode) {
6102 case IORING_OP_READV:
6103 case IORING_OP_READ_FIXED:
6104 case IORING_OP_READ:
6105 case IORING_OP_WRITEV:
6106 case IORING_OP_WRITE_FIXED:
6107 case IORING_OP_WRITE: {
6108 struct io_async_rw *io = req->async_data;
6109
6110 kfree(io->free_iovec);
6111 break;
6112 }
6113 case IORING_OP_RECVMSG:
6114 case IORING_OP_SENDMSG: {
6115 struct io_async_msghdr *io = req->async_data;
6116
6117 kfree(io->free_iov);
6118 break;
6119 }
6120 case IORING_OP_SPLICE:
6121 case IORING_OP_TEE:
6122 if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6123 io_put_file(req->splice.file_in);
6124 break;
6125 case IORING_OP_OPENAT:
6126 case IORING_OP_OPENAT2:
6127 if (req->open.filename)
6128 putname(req->open.filename);
6129 break;
6130 case IORING_OP_RENAMEAT:
6131 putname(req->rename.oldpath);
6132 putname(req->rename.newpath);
6133 break;
6134 case IORING_OP_UNLINKAT:
6135 putname(req->unlink.filename);
6136 break;
6137 }
6138 }
6139 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6140 kfree(req->apoll->double_poll);
6141 kfree(req->apoll);
6142 req->apoll = NULL;
6143 }
6144 if (req->flags & REQ_F_INFLIGHT) {
6145 struct io_uring_task *tctx = req->task->io_uring;
6146
6147 atomic_dec(&tctx->inflight_tracked);
6148 }
6149 if (req->flags & REQ_F_CREDS)
6150 put_cred(req->creds);
6151
6152 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6153 }
6154
6155 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6156 {
6157 struct io_ring_ctx *ctx = req->ctx;
6158 const struct cred *creds = NULL;
6159 int ret;
6160
6161 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6162 creds = override_creds(req->creds);
6163
6164 switch (req->opcode) {
6165 case IORING_OP_NOP:
6166 ret = io_nop(req, issue_flags);
6167 break;
6168 case IORING_OP_READV:
6169 case IORING_OP_READ_FIXED:
6170 case IORING_OP_READ:
6171 ret = io_read(req, issue_flags);
6172 break;
6173 case IORING_OP_WRITEV:
6174 case IORING_OP_WRITE_FIXED:
6175 case IORING_OP_WRITE:
6176 ret = io_write(req, issue_flags);
6177 break;
6178 case IORING_OP_FSYNC:
6179 ret = io_fsync(req, issue_flags);
6180 break;
6181 case IORING_OP_POLL_ADD:
6182 ret = io_poll_add(req, issue_flags);
6183 break;
6184 case IORING_OP_POLL_REMOVE:
6185 ret = io_poll_update(req, issue_flags);
6186 break;
6187 case IORING_OP_SYNC_FILE_RANGE:
6188 ret = io_sync_file_range(req, issue_flags);
6189 break;
6190 case IORING_OP_SENDMSG:
6191 ret = io_sendmsg(req, issue_flags);
6192 break;
6193 case IORING_OP_SEND:
6194 ret = io_send(req, issue_flags);
6195 break;
6196 case IORING_OP_RECVMSG:
6197 ret = io_recvmsg(req, issue_flags);
6198 break;
6199 case IORING_OP_RECV:
6200 ret = io_recv(req, issue_flags);
6201 break;
6202 case IORING_OP_TIMEOUT:
6203 ret = io_timeout(req, issue_flags);
6204 break;
6205 case IORING_OP_TIMEOUT_REMOVE:
6206 ret = io_timeout_remove(req, issue_flags);
6207 break;
6208 case IORING_OP_ACCEPT:
6209 ret = io_accept(req, issue_flags);
6210 break;
6211 case IORING_OP_CONNECT:
6212 ret = io_connect(req, issue_flags);
6213 break;
6214 case IORING_OP_ASYNC_CANCEL:
6215 ret = io_async_cancel(req, issue_flags);
6216 break;
6217 case IORING_OP_FALLOCATE:
6218 ret = io_fallocate(req, issue_flags);
6219 break;
6220 case IORING_OP_OPENAT:
6221 ret = io_openat(req, issue_flags);
6222 break;
6223 case IORING_OP_CLOSE:
6224 ret = io_close(req, issue_flags);
6225 break;
6226 case IORING_OP_FILES_UPDATE:
6227 ret = io_files_update(req, issue_flags);
6228 break;
6229 case IORING_OP_STATX:
6230 ret = io_statx(req, issue_flags);
6231 break;
6232 case IORING_OP_FADVISE:
6233 ret = io_fadvise(req, issue_flags);
6234 break;
6235 case IORING_OP_MADVISE:
6236 ret = io_madvise(req, issue_flags);
6237 break;
6238 case IORING_OP_OPENAT2:
6239 ret = io_openat2(req, issue_flags);
6240 break;
6241 case IORING_OP_EPOLL_CTL:
6242 ret = io_epoll_ctl(req, issue_flags);
6243 break;
6244 case IORING_OP_SPLICE:
6245 ret = io_splice(req, issue_flags);
6246 break;
6247 case IORING_OP_PROVIDE_BUFFERS:
6248 ret = io_provide_buffers(req, issue_flags);
6249 break;
6250 case IORING_OP_REMOVE_BUFFERS:
6251 ret = io_remove_buffers(req, issue_flags);
6252 break;
6253 case IORING_OP_TEE:
6254 ret = io_tee(req, issue_flags);
6255 break;
6256 case IORING_OP_SHUTDOWN:
6257 ret = io_shutdown(req, issue_flags);
6258 break;
6259 case IORING_OP_RENAMEAT:
6260 ret = io_renameat(req, issue_flags);
6261 break;
6262 case IORING_OP_UNLINKAT:
6263 ret = io_unlinkat(req, issue_flags);
6264 break;
6265 default:
6266 ret = -EINVAL;
6267 break;
6268 }
6269
6270 if (creds)
6271 revert_creds(creds);
6272 if (ret)
6273 return ret;
6274 /* If the op doesn't have a file, we're not polling for it */
6275 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6276 io_iopoll_req_issued(req);
6277
6278 return 0;
6279 }
6280
6281 static void io_wq_submit_work(struct io_wq_work *work)
6282 {
6283 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6284 struct io_kiocb *timeout;
6285 int ret = 0;
6286
6287 timeout = io_prep_linked_timeout(req);
6288 if (timeout)
6289 io_queue_linked_timeout(timeout);
6290
6291 if (work->flags & IO_WQ_WORK_CANCEL)
6292 ret = -ECANCELED;
6293
6294 if (!ret) {
6295 do {
6296 ret = io_issue_sqe(req, 0);
6297 /*
6298 * We can get EAGAIN for polled IO even though we're
6299 * forcing a sync submission from here, since we can't
6300 * wait for request slots on the block side.
6301 */
6302 if (ret != -EAGAIN)
6303 break;
6304 cond_resched();
6305 } while (1);
6306 }
6307
6308 /* avoid locking problems by failing it from a clean context */
6309 if (ret) {
6310 /* io-wq is going to take one down */
6311 req_ref_get(req);
6312 io_req_task_queue_fail(req, ret);
6313 }
6314 }
6315
6316 #define FFS_ASYNC_READ 0x1UL
6317 #define FFS_ASYNC_WRITE 0x2UL
6318 #ifdef CONFIG_64BIT
6319 #define FFS_ISREG 0x4UL
6320 #else
6321 #define FFS_ISREG 0x0UL
6322 #endif
6323 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
6324
6325 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6326 unsigned i)
6327 {
6328 struct io_fixed_file *table_l2;
6329
6330 table_l2 = table->files[i >> IORING_FILE_TABLE_SHIFT];
6331 return &table_l2[i & IORING_FILE_TABLE_MASK];
6332 }
6333
6334 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6335 int index)
6336 {
6337 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6338
6339 return (struct file *) (slot->file_ptr & FFS_MASK);
6340 }
6341
6342 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6343 {
6344 unsigned long file_ptr = (unsigned long) file;
6345
6346 if (__io_file_supports_async(file, READ))
6347 file_ptr |= FFS_ASYNC_READ;
6348 if (__io_file_supports_async(file, WRITE))
6349 file_ptr |= FFS_ASYNC_WRITE;
6350 if (S_ISREG(file_inode(file)->i_mode))
6351 file_ptr |= FFS_ISREG;
6352 file_slot->file_ptr = file_ptr;
6353 }
6354
6355 static struct file *io_file_get(struct io_submit_state *state,
6356 struct io_kiocb *req, int fd, bool fixed)
6357 {
6358 struct io_ring_ctx *ctx = req->ctx;
6359 struct file *file;
6360
6361 if (fixed) {
6362 unsigned long file_ptr;
6363
6364 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6365 return NULL;
6366 fd = array_index_nospec(fd, ctx->nr_user_files);
6367 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6368 file = (struct file *) (file_ptr & FFS_MASK);
6369 file_ptr &= ~FFS_MASK;
6370 /* mask in overlapping REQ_F and FFS bits */
6371 req->flags |= (file_ptr << REQ_F_ASYNC_READ_BIT);
6372 io_req_set_rsrc_node(req);
6373 } else {
6374 trace_io_uring_file_get(ctx, fd);
6375 file = __io_file_get(state, fd);
6376
6377 /* we don't allow fixed io_uring files */
6378 if (file && unlikely(file->f_op == &io_uring_fops))
6379 io_req_track_inflight(req);
6380 }
6381
6382 return file;
6383 }
6384
6385 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6386 {
6387 struct io_timeout_data *data = container_of(timer,
6388 struct io_timeout_data, timer);
6389 struct io_kiocb *prev, *req = data->req;
6390 struct io_ring_ctx *ctx = req->ctx;
6391 unsigned long flags;
6392
6393 spin_lock_irqsave(&ctx->completion_lock, flags);
6394 prev = req->timeout.head;
6395 req->timeout.head = NULL;
6396
6397 /*
6398 * We don't expect the list to be empty, that will only happen if we
6399 * race with the completion of the linked work.
6400 */
6401 if (prev) {
6402 io_remove_next_linked(prev);
6403 if (!req_ref_inc_not_zero(prev))
6404 prev = NULL;
6405 }
6406 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6407
6408 if (prev) {
6409 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6410 io_put_req_deferred(prev, 1);
6411 io_put_req_deferred(req, 1);
6412 } else {
6413 io_req_complete_post(req, -ETIME, 0);
6414 }
6415 return HRTIMER_NORESTART;
6416 }
6417
6418 static void io_queue_linked_timeout(struct io_kiocb *req)
6419 {
6420 struct io_ring_ctx *ctx = req->ctx;
6421
6422 spin_lock_irq(&ctx->completion_lock);
6423 /*
6424 * If the back reference is NULL, then our linked request finished
6425 * before we got a chance to setup the timer
6426 */
6427 if (req->timeout.head) {
6428 struct io_timeout_data *data = req->async_data;
6429
6430 data->timer.function = io_link_timeout_fn;
6431 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6432 data->mode);
6433 }
6434 spin_unlock_irq(&ctx->completion_lock);
6435 /* drop submission reference */
6436 io_put_req(req);
6437 }
6438
6439 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6440 {
6441 struct io_kiocb *nxt = req->link;
6442
6443 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6444 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6445 return NULL;
6446
6447 nxt->timeout.head = req;
6448 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6449 req->flags |= REQ_F_LINK_TIMEOUT;
6450 return nxt;
6451 }
6452
6453 static void __io_queue_sqe(struct io_kiocb *req)
6454 {
6455 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6456 int ret;
6457
6458 issue_sqe:
6459 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6460
6461 /*
6462 * We async punt it if the file wasn't marked NOWAIT, or if the file
6463 * doesn't support non-blocking read/write attempts
6464 */
6465 if (likely(!ret)) {
6466 /* drop submission reference */
6467 if (req->flags & REQ_F_COMPLETE_INLINE) {
6468 struct io_ring_ctx *ctx = req->ctx;
6469 struct io_comp_state *cs = &ctx->submit_state.comp;
6470
6471 cs->reqs[cs->nr++] = req;
6472 if (cs->nr == ARRAY_SIZE(cs->reqs))
6473 io_submit_flush_completions(ctx);
6474 } else {
6475 io_put_req(req);
6476 }
6477 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6478 switch (io_arm_poll_handler(req)) {
6479 case IO_APOLL_READY:
6480 goto issue_sqe;
6481 case IO_APOLL_ABORTED:
6482 /*
6483 * Queued up for async execution, worker will release
6484 * submit reference when the iocb is actually submitted.
6485 */
6486 io_queue_async_work(req);
6487 break;
6488 }
6489 } else {
6490 io_req_complete_failed(req, ret);
6491 }
6492 if (linked_timeout)
6493 io_queue_linked_timeout(linked_timeout);
6494 }
6495
6496 static inline void io_queue_sqe(struct io_kiocb *req)
6497 {
6498 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
6499 return;
6500
6501 if (likely(!(req->flags & REQ_F_FORCE_ASYNC))) {
6502 __io_queue_sqe(req);
6503 } else {
6504 int ret = io_req_prep_async(req);
6505
6506 if (unlikely(ret))
6507 io_req_complete_failed(req, ret);
6508 else
6509 io_queue_async_work(req);
6510 }
6511 }
6512
6513 /*
6514 * Check SQE restrictions (opcode and flags).
6515 *
6516 * Returns 'true' if SQE is allowed, 'false' otherwise.
6517 */
6518 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6519 struct io_kiocb *req,
6520 unsigned int sqe_flags)
6521 {
6522 if (likely(!ctx->restricted))
6523 return true;
6524
6525 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6526 return false;
6527
6528 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6529 ctx->restrictions.sqe_flags_required)
6530 return false;
6531
6532 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6533 ctx->restrictions.sqe_flags_required))
6534 return false;
6535
6536 return true;
6537 }
6538
6539 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6540 const struct io_uring_sqe *sqe)
6541 {
6542 struct io_submit_state *state;
6543 unsigned int sqe_flags;
6544 int personality, ret = 0;
6545
6546 req->opcode = READ_ONCE(sqe->opcode);
6547 /* same numerical values with corresponding REQ_F_*, safe to copy */
6548 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6549 req->user_data = READ_ONCE(sqe->user_data);
6550 req->file = NULL;
6551 req->fixed_rsrc_refs = NULL;
6552 /* one is dropped after submission, the other at completion */
6553 atomic_set(&req->refs, 2);
6554 req->task = current;
6555
6556 /* enforce forwards compatibility on users */
6557 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6558 return -EINVAL;
6559 if (unlikely(req->opcode >= IORING_OP_LAST))
6560 return -EINVAL;
6561 if (!io_check_restriction(ctx, req, sqe_flags))
6562 return -EACCES;
6563
6564 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6565 !io_op_defs[req->opcode].buffer_select)
6566 return -EOPNOTSUPP;
6567 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
6568 ctx->drain_active = true;
6569
6570 personality = READ_ONCE(sqe->personality);
6571 if (personality) {
6572 req->creds = xa_load(&ctx->personalities, personality);
6573 if (!req->creds)
6574 return -EINVAL;
6575 get_cred(req->creds);
6576 req->flags |= REQ_F_CREDS;
6577 }
6578 state = &ctx->submit_state;
6579
6580 /*
6581 * Plug now if we have more than 1 IO left after this, and the target
6582 * is potentially a read/write to block based storage.
6583 */
6584 if (!state->plug_started && state->ios_left > 1 &&
6585 io_op_defs[req->opcode].plug) {
6586 blk_start_plug(&state->plug);
6587 state->plug_started = true;
6588 }
6589
6590 if (io_op_defs[req->opcode].needs_file) {
6591 bool fixed = req->flags & REQ_F_FIXED_FILE;
6592
6593 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6594 if (unlikely(!req->file))
6595 ret = -EBADF;
6596 }
6597
6598 state->ios_left--;
6599 return ret;
6600 }
6601
6602 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6603 const struct io_uring_sqe *sqe)
6604 {
6605 struct io_submit_link *link = &ctx->submit_state.link;
6606 int ret;
6607
6608 ret = io_init_req(ctx, req, sqe);
6609 if (unlikely(ret)) {
6610 fail_req:
6611 if (link->head) {
6612 /* fail even hard links since we don't submit */
6613 req_set_fail(link->head);
6614 io_req_complete_failed(link->head, -ECANCELED);
6615 link->head = NULL;
6616 }
6617 io_req_complete_failed(req, ret);
6618 return ret;
6619 }
6620
6621 ret = io_req_prep(req, sqe);
6622 if (unlikely(ret))
6623 goto fail_req;
6624
6625 /* don't need @sqe from now on */
6626 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
6627 req->flags, true,
6628 ctx->flags & IORING_SETUP_SQPOLL);
6629
6630 /*
6631 * If we already have a head request, queue this one for async
6632 * submittal once the head completes. If we don't have a head but
6633 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6634 * submitted sync once the chain is complete. If none of those
6635 * conditions are true (normal request), then just queue it.
6636 */
6637 if (link->head) {
6638 struct io_kiocb *head = link->head;
6639
6640 ret = io_req_prep_async(req);
6641 if (unlikely(ret))
6642 goto fail_req;
6643 trace_io_uring_link(ctx, req, head);
6644 link->last->link = req;
6645 link->last = req;
6646
6647 /* last request of a link, enqueue the link */
6648 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6649 link->head = NULL;
6650 io_queue_sqe(head);
6651 }
6652 } else {
6653 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6654 link->head = req;
6655 link->last = req;
6656 } else {
6657 io_queue_sqe(req);
6658 }
6659 }
6660
6661 return 0;
6662 }
6663
6664 /*
6665 * Batched submission is done, ensure local IO is flushed out.
6666 */
6667 static void io_submit_state_end(struct io_submit_state *state,
6668 struct io_ring_ctx *ctx)
6669 {
6670 if (state->link.head)
6671 io_queue_sqe(state->link.head);
6672 if (state->comp.nr)
6673 io_submit_flush_completions(ctx);
6674 if (state->plug_started)
6675 blk_finish_plug(&state->plug);
6676 io_state_file_put(state);
6677 }
6678
6679 /*
6680 * Start submission side cache.
6681 */
6682 static void io_submit_state_start(struct io_submit_state *state,
6683 unsigned int max_ios)
6684 {
6685 state->plug_started = false;
6686 state->ios_left = max_ios;
6687 /* set only head, no need to init link_last in advance */
6688 state->link.head = NULL;
6689 }
6690
6691 static void io_commit_sqring(struct io_ring_ctx *ctx)
6692 {
6693 struct io_rings *rings = ctx->rings;
6694
6695 /*
6696 * Ensure any loads from the SQEs are done at this point,
6697 * since once we write the new head, the application could
6698 * write new data to them.
6699 */
6700 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6701 }
6702
6703 /*
6704 * Fetch an sqe, if one is available. Note this returns a pointer to memory
6705 * that is mapped by userspace. This means that care needs to be taken to
6706 * ensure that reads are stable, as we cannot rely on userspace always
6707 * being a good citizen. If members of the sqe are validated and then later
6708 * used, it's important that those reads are done through READ_ONCE() to
6709 * prevent a re-load down the line.
6710 */
6711 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6712 {
6713 unsigned head, mask = ctx->sq_entries - 1;
6714 unsigned sq_idx = ctx->cached_sq_head++ & mask;
6715
6716 /*
6717 * The cached sq head (or cq tail) serves two purposes:
6718 *
6719 * 1) allows us to batch the cost of updating the user visible
6720 * head updates.
6721 * 2) allows the kernel side to track the head on its own, even
6722 * though the application is the one updating it.
6723 */
6724 head = READ_ONCE(ctx->sq_array[sq_idx]);
6725 if (likely(head < ctx->sq_entries))
6726 return &ctx->sq_sqes[head];
6727
6728 /* drop invalid entries */
6729 ctx->cq_extra--;
6730 WRITE_ONCE(ctx->rings->sq_dropped,
6731 READ_ONCE(ctx->rings->sq_dropped) + 1);
6732 return NULL;
6733 }
6734
6735 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6736 {
6737 struct io_uring_task *tctx;
6738 int submitted = 0;
6739
6740 /* make sure SQ entry isn't read before tail */
6741 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6742 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6743 return -EAGAIN;
6744
6745 tctx = current->io_uring;
6746 tctx->cached_refs -= nr;
6747 if (unlikely(tctx->cached_refs < 0)) {
6748 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
6749
6750 percpu_counter_add(&tctx->inflight, refill);
6751 refcount_add(refill, &current->usage);
6752 tctx->cached_refs += refill;
6753 }
6754 io_submit_state_start(&ctx->submit_state, nr);
6755
6756 while (submitted < nr) {
6757 const struct io_uring_sqe *sqe;
6758 struct io_kiocb *req;
6759
6760 req = io_alloc_req(ctx);
6761 if (unlikely(!req)) {
6762 if (!submitted)
6763 submitted = -EAGAIN;
6764 break;
6765 }
6766 sqe = io_get_sqe(ctx);
6767 if (unlikely(!sqe)) {
6768 kmem_cache_free(req_cachep, req);
6769 break;
6770 }
6771 /* will complete beyond this point, count as submitted */
6772 submitted++;
6773 if (io_submit_sqe(ctx, req, sqe))
6774 break;
6775 }
6776
6777 if (unlikely(submitted != nr)) {
6778 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6779 int unused = nr - ref_used;
6780
6781 current->io_uring->cached_refs += unused;
6782 percpu_ref_put_many(&ctx->refs, unused);
6783 }
6784
6785 io_submit_state_end(&ctx->submit_state, ctx);
6786 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6787 io_commit_sqring(ctx);
6788
6789 return submitted;
6790 }
6791
6792 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
6793 {
6794 return READ_ONCE(sqd->state);
6795 }
6796
6797 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6798 {
6799 /* Tell userspace we may need a wakeup call */
6800 spin_lock_irq(&ctx->completion_lock);
6801 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6802 spin_unlock_irq(&ctx->completion_lock);
6803 }
6804
6805 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6806 {
6807 spin_lock_irq(&ctx->completion_lock);
6808 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6809 spin_unlock_irq(&ctx->completion_lock);
6810 }
6811
6812 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6813 {
6814 unsigned int to_submit;
6815 int ret = 0;
6816
6817 to_submit = io_sqring_entries(ctx);
6818 /* if we're handling multiple rings, cap submit size for fairness */
6819 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
6820 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
6821
6822 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6823 unsigned nr_events = 0;
6824 const struct cred *creds = NULL;
6825
6826 if (ctx->sq_creds != current_cred())
6827 creds = override_creds(ctx->sq_creds);
6828
6829 mutex_lock(&ctx->uring_lock);
6830 if (!list_empty(&ctx->iopoll_list))
6831 io_do_iopoll(ctx, &nr_events, 0, true);
6832
6833 /*
6834 * Don't submit if refs are dying, good for io_uring_register(),
6835 * but also it is relied upon by io_ring_exit_work()
6836 */
6837 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
6838 !(ctx->flags & IORING_SETUP_R_DISABLED))
6839 ret = io_submit_sqes(ctx, to_submit);
6840 mutex_unlock(&ctx->uring_lock);
6841
6842 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
6843 wake_up(&ctx->sqo_sq_wait);
6844 if (creds)
6845 revert_creds(creds);
6846 }
6847
6848 return ret;
6849 }
6850
6851 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6852 {
6853 struct io_ring_ctx *ctx;
6854 unsigned sq_thread_idle = 0;
6855
6856 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6857 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
6858 sqd->sq_thread_idle = sq_thread_idle;
6859 }
6860
6861 static bool io_sqd_handle_event(struct io_sq_data *sqd)
6862 {
6863 bool did_sig = false;
6864 struct ksignal ksig;
6865
6866 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
6867 signal_pending(current)) {
6868 mutex_unlock(&sqd->lock);
6869 if (signal_pending(current))
6870 did_sig = get_signal(&ksig);
6871 cond_resched();
6872 mutex_lock(&sqd->lock);
6873 }
6874 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
6875 }
6876
6877 static int io_sq_thread(void *data)
6878 {
6879 struct io_sq_data *sqd = data;
6880 struct io_ring_ctx *ctx;
6881 unsigned long timeout = 0;
6882 char buf[TASK_COMM_LEN];
6883 DEFINE_WAIT(wait);
6884
6885 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
6886 set_task_comm(current, buf);
6887
6888 if (sqd->sq_cpu != -1)
6889 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
6890 else
6891 set_cpus_allowed_ptr(current, cpu_online_mask);
6892 current->flags |= PF_NO_SETAFFINITY;
6893
6894 mutex_lock(&sqd->lock);
6895 while (1) {
6896 bool cap_entries, sqt_spin = false;
6897
6898 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
6899 if (io_sqd_handle_event(sqd))
6900 break;
6901 timeout = jiffies + sqd->sq_thread_idle;
6902 }
6903
6904 cap_entries = !list_is_singular(&sqd->ctx_list);
6905 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6906 int ret = __io_sq_thread(ctx, cap_entries);
6907
6908 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
6909 sqt_spin = true;
6910 }
6911 if (io_run_task_work())
6912 sqt_spin = true;
6913
6914 if (sqt_spin || !time_after(jiffies, timeout)) {
6915 cond_resched();
6916 if (sqt_spin)
6917 timeout = jiffies + sqd->sq_thread_idle;
6918 continue;
6919 }
6920
6921 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
6922 if (!io_sqd_events_pending(sqd) && !current->task_works) {
6923 bool needs_sched = true;
6924
6925 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6926 io_ring_set_wakeup_flag(ctx);
6927
6928 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6929 !list_empty_careful(&ctx->iopoll_list)) {
6930 needs_sched = false;
6931 break;
6932 }
6933 if (io_sqring_entries(ctx)) {
6934 needs_sched = false;
6935 break;
6936 }
6937 }
6938
6939 if (needs_sched) {
6940 mutex_unlock(&sqd->lock);
6941 schedule();
6942 mutex_lock(&sqd->lock);
6943 }
6944 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6945 io_ring_clear_wakeup_flag(ctx);
6946 }
6947
6948 finish_wait(&sqd->wait, &wait);
6949 timeout = jiffies + sqd->sq_thread_idle;
6950 }
6951
6952 io_uring_cancel_generic(true, sqd);
6953 sqd->thread = NULL;
6954 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6955 io_ring_set_wakeup_flag(ctx);
6956 io_run_task_work();
6957 mutex_unlock(&sqd->lock);
6958
6959 complete(&sqd->exited);
6960 do_exit(0);
6961 }
6962
6963 struct io_wait_queue {
6964 struct wait_queue_entry wq;
6965 struct io_ring_ctx *ctx;
6966 unsigned to_wait;
6967 unsigned nr_timeouts;
6968 };
6969
6970 static inline bool io_should_wake(struct io_wait_queue *iowq)
6971 {
6972 struct io_ring_ctx *ctx = iowq->ctx;
6973
6974 /*
6975 * Wake up if we have enough events, or if a timeout occurred since we
6976 * started waiting. For timeouts, we always want to return to userspace,
6977 * regardless of event count.
6978 */
6979 return io_cqring_events(ctx) >= iowq->to_wait ||
6980 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6981 }
6982
6983 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6984 int wake_flags, void *key)
6985 {
6986 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6987 wq);
6988
6989 /*
6990 * Cannot safely flush overflowed CQEs from here, ensure we wake up
6991 * the task, and the next invocation will do it.
6992 */
6993 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
6994 return autoremove_wake_function(curr, mode, wake_flags, key);
6995 return -1;
6996 }
6997
6998 static int io_run_task_work_sig(void)
6999 {
7000 if (io_run_task_work())
7001 return 1;
7002 if (!signal_pending(current))
7003 return 0;
7004 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7005 return -ERESTARTSYS;
7006 return -EINTR;
7007 }
7008
7009 /* when returns >0, the caller should retry */
7010 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7011 struct io_wait_queue *iowq,
7012 signed long *timeout)
7013 {
7014 int ret;
7015
7016 /* make sure we run task_work before checking for signals */
7017 ret = io_run_task_work_sig();
7018 if (ret || io_should_wake(iowq))
7019 return ret;
7020 /* let the caller flush overflows, retry */
7021 if (test_bit(0, &ctx->check_cq_overflow))
7022 return 1;
7023
7024 *timeout = schedule_timeout(*timeout);
7025 return !*timeout ? -ETIME : 1;
7026 }
7027
7028 /*
7029 * Wait until events become available, if we don't already have some. The
7030 * application must reap them itself, as they reside on the shared cq ring.
7031 */
7032 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7033 const sigset_t __user *sig, size_t sigsz,
7034 struct __kernel_timespec __user *uts)
7035 {
7036 struct io_wait_queue iowq = {
7037 .wq = {
7038 .private = current,
7039 .func = io_wake_function,
7040 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7041 },
7042 .ctx = ctx,
7043 .to_wait = min_events,
7044 };
7045 struct io_rings *rings = ctx->rings;
7046 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7047 int ret;
7048
7049 do {
7050 io_cqring_overflow_flush(ctx, false);
7051 if (io_cqring_events(ctx) >= min_events)
7052 return 0;
7053 if (!io_run_task_work())
7054 break;
7055 } while (1);
7056
7057 if (sig) {
7058 #ifdef CONFIG_COMPAT
7059 if (in_compat_syscall())
7060 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7061 sigsz);
7062 else
7063 #endif
7064 ret = set_user_sigmask(sig, sigsz);
7065
7066 if (ret)
7067 return ret;
7068 }
7069
7070 if (uts) {
7071 struct timespec64 ts;
7072
7073 if (get_timespec64(&ts, uts))
7074 return -EFAULT;
7075 timeout = timespec64_to_jiffies(&ts);
7076 }
7077
7078 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7079 trace_io_uring_cqring_wait(ctx, min_events);
7080 do {
7081 /* if we can't even flush overflow, don't wait for more */
7082 if (!io_cqring_overflow_flush(ctx, false)) {
7083 ret = -EBUSY;
7084 break;
7085 }
7086 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7087 TASK_INTERRUPTIBLE);
7088 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7089 finish_wait(&ctx->cq_wait, &iowq.wq);
7090 cond_resched();
7091 } while (ret > 0);
7092
7093 restore_saved_sigmask_unless(ret == -EINTR);
7094
7095 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7096 }
7097
7098 static void io_free_page_table(void **table, size_t size)
7099 {
7100 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7101
7102 for (i = 0; i < nr_tables; i++)
7103 kfree(table[i]);
7104 kfree(table);
7105 }
7106
7107 static void **io_alloc_page_table(size_t size)
7108 {
7109 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7110 size_t init_size = size;
7111 void **table;
7112
7113 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL);
7114 if (!table)
7115 return NULL;
7116
7117 for (i = 0; i < nr_tables; i++) {
7118 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7119
7120 table[i] = kzalloc(this_size, GFP_KERNEL);
7121 if (!table[i]) {
7122 io_free_page_table(table, init_size);
7123 return NULL;
7124 }
7125 size -= this_size;
7126 }
7127 return table;
7128 }
7129
7130 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7131 {
7132 spin_lock_bh(&ctx->rsrc_ref_lock);
7133 }
7134
7135 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7136 {
7137 spin_unlock_bh(&ctx->rsrc_ref_lock);
7138 }
7139
7140 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7141 {
7142 percpu_ref_exit(&ref_node->refs);
7143 kfree(ref_node);
7144 }
7145
7146 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7147 struct io_rsrc_data *data_to_kill)
7148 {
7149 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7150 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7151
7152 if (data_to_kill) {
7153 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7154
7155 rsrc_node->rsrc_data = data_to_kill;
7156 io_rsrc_ref_lock(ctx);
7157 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7158 io_rsrc_ref_unlock(ctx);
7159
7160 atomic_inc(&data_to_kill->refs);
7161 percpu_ref_kill(&rsrc_node->refs);
7162 ctx->rsrc_node = NULL;
7163 }
7164
7165 if (!ctx->rsrc_node) {
7166 ctx->rsrc_node = ctx->rsrc_backup_node;
7167 ctx->rsrc_backup_node = NULL;
7168 }
7169 }
7170
7171 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7172 {
7173 if (ctx->rsrc_backup_node)
7174 return 0;
7175 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7176 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7177 }
7178
7179 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7180 {
7181 int ret;
7182
7183 /* As we may drop ->uring_lock, other task may have started quiesce */
7184 if (data->quiesce)
7185 return -ENXIO;
7186
7187 data->quiesce = true;
7188 do {
7189 ret = io_rsrc_node_switch_start(ctx);
7190 if (ret)
7191 break;
7192 io_rsrc_node_switch(ctx, data);
7193
7194 /* kill initial ref, already quiesced if zero */
7195 if (atomic_dec_and_test(&data->refs))
7196 break;
7197 flush_delayed_work(&ctx->rsrc_put_work);
7198 ret = wait_for_completion_interruptible(&data->done);
7199 if (!ret)
7200 break;
7201
7202 atomic_inc(&data->refs);
7203 /* wait for all works potentially completing data->done */
7204 flush_delayed_work(&ctx->rsrc_put_work);
7205 reinit_completion(&data->done);
7206
7207 mutex_unlock(&ctx->uring_lock);
7208 ret = io_run_task_work_sig();
7209 mutex_lock(&ctx->uring_lock);
7210 } while (ret >= 0);
7211 data->quiesce = false;
7212
7213 return ret;
7214 }
7215
7216 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7217 {
7218 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7219 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7220
7221 return &data->tags[table_idx][off];
7222 }
7223
7224 static void io_rsrc_data_free(struct io_rsrc_data *data)
7225 {
7226 size_t size = data->nr * sizeof(data->tags[0][0]);
7227
7228 if (data->tags)
7229 io_free_page_table((void **)data->tags, size);
7230 kfree(data);
7231 }
7232
7233 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7234 u64 __user *utags, unsigned nr,
7235 struct io_rsrc_data **pdata)
7236 {
7237 struct io_rsrc_data *data;
7238 int ret = -ENOMEM;
7239 unsigned i;
7240
7241 data = kzalloc(sizeof(*data), GFP_KERNEL);
7242 if (!data)
7243 return -ENOMEM;
7244 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7245 if (!data->tags) {
7246 kfree(data);
7247 return -ENOMEM;
7248 }
7249
7250 data->nr = nr;
7251 data->ctx = ctx;
7252 data->do_put = do_put;
7253 if (utags) {
7254 ret = -EFAULT;
7255 for (i = 0; i < nr; i++) {
7256 u64 *tag_slot = io_get_tag_slot(data, i);
7257
7258 if (copy_from_user(tag_slot, &utags[i],
7259 sizeof(*tag_slot)))
7260 goto fail;
7261 }
7262 }
7263
7264 atomic_set(&data->refs, 1);
7265 init_completion(&data->done);
7266 *pdata = data;
7267 return 0;
7268 fail:
7269 io_rsrc_data_free(data);
7270 return ret;
7271 }
7272
7273 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7274 {
7275 size_t size = nr_files * sizeof(struct io_fixed_file);
7276
7277 table->files = (struct io_fixed_file **)io_alloc_page_table(size);
7278 return !!table->files;
7279 }
7280
7281 static void io_free_file_tables(struct io_file_table *table, unsigned nr_files)
7282 {
7283 size_t size = nr_files * sizeof(struct io_fixed_file);
7284
7285 io_free_page_table((void **)table->files, size);
7286 table->files = NULL;
7287 }
7288
7289 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7290 {
7291 #if defined(CONFIG_UNIX)
7292 if (ctx->ring_sock) {
7293 struct sock *sock = ctx->ring_sock->sk;
7294 struct sk_buff *skb;
7295
7296 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7297 kfree_skb(skb);
7298 }
7299 #else
7300 int i;
7301
7302 for (i = 0; i < ctx->nr_user_files; i++) {
7303 struct file *file;
7304
7305 file = io_file_from_index(ctx, i);
7306 if (file)
7307 fput(file);
7308 }
7309 #endif
7310 io_free_file_tables(&ctx->file_table, ctx->nr_user_files);
7311 io_rsrc_data_free(ctx->file_data);
7312 ctx->file_data = NULL;
7313 ctx->nr_user_files = 0;
7314 }
7315
7316 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7317 {
7318 int ret;
7319
7320 if (!ctx->file_data)
7321 return -ENXIO;
7322 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7323 if (!ret)
7324 __io_sqe_files_unregister(ctx);
7325 return ret;
7326 }
7327
7328 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7329 __releases(&sqd->lock)
7330 {
7331 WARN_ON_ONCE(sqd->thread == current);
7332
7333 /*
7334 * Do the dance but not conditional clear_bit() because it'd race with
7335 * other threads incrementing park_pending and setting the bit.
7336 */
7337 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7338 if (atomic_dec_return(&sqd->park_pending))
7339 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7340 mutex_unlock(&sqd->lock);
7341 }
7342
7343 static void io_sq_thread_park(struct io_sq_data *sqd)
7344 __acquires(&sqd->lock)
7345 {
7346 WARN_ON_ONCE(sqd->thread == current);
7347
7348 atomic_inc(&sqd->park_pending);
7349 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7350 mutex_lock(&sqd->lock);
7351 if (sqd->thread)
7352 wake_up_process(sqd->thread);
7353 }
7354
7355 static void io_sq_thread_stop(struct io_sq_data *sqd)
7356 {
7357 WARN_ON_ONCE(sqd->thread == current);
7358 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7359
7360 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7361 mutex_lock(&sqd->lock);
7362 if (sqd->thread)
7363 wake_up_process(sqd->thread);
7364 mutex_unlock(&sqd->lock);
7365 wait_for_completion(&sqd->exited);
7366 }
7367
7368 static void io_put_sq_data(struct io_sq_data *sqd)
7369 {
7370 if (refcount_dec_and_test(&sqd->refs)) {
7371 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7372
7373 io_sq_thread_stop(sqd);
7374 kfree(sqd);
7375 }
7376 }
7377
7378 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7379 {
7380 struct io_sq_data *sqd = ctx->sq_data;
7381
7382 if (sqd) {
7383 io_sq_thread_park(sqd);
7384 list_del_init(&ctx->sqd_list);
7385 io_sqd_update_thread_idle(sqd);
7386 io_sq_thread_unpark(sqd);
7387
7388 io_put_sq_data(sqd);
7389 ctx->sq_data = NULL;
7390 }
7391 }
7392
7393 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7394 {
7395 struct io_ring_ctx *ctx_attach;
7396 struct io_sq_data *sqd;
7397 struct fd f;
7398
7399 f = fdget(p->wq_fd);
7400 if (!f.file)
7401 return ERR_PTR(-ENXIO);
7402 if (f.file->f_op != &io_uring_fops) {
7403 fdput(f);
7404 return ERR_PTR(-EINVAL);
7405 }
7406
7407 ctx_attach = f.file->private_data;
7408 sqd = ctx_attach->sq_data;
7409 if (!sqd) {
7410 fdput(f);
7411 return ERR_PTR(-EINVAL);
7412 }
7413 if (sqd->task_tgid != current->tgid) {
7414 fdput(f);
7415 return ERR_PTR(-EPERM);
7416 }
7417
7418 refcount_inc(&sqd->refs);
7419 fdput(f);
7420 return sqd;
7421 }
7422
7423 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7424 bool *attached)
7425 {
7426 struct io_sq_data *sqd;
7427
7428 *attached = false;
7429 if (p->flags & IORING_SETUP_ATTACH_WQ) {
7430 sqd = io_attach_sq_data(p);
7431 if (!IS_ERR(sqd)) {
7432 *attached = true;
7433 return sqd;
7434 }
7435 /* fall through for EPERM case, setup new sqd/task */
7436 if (PTR_ERR(sqd) != -EPERM)
7437 return sqd;
7438 }
7439
7440 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7441 if (!sqd)
7442 return ERR_PTR(-ENOMEM);
7443
7444 atomic_set(&sqd->park_pending, 0);
7445 refcount_set(&sqd->refs, 1);
7446 INIT_LIST_HEAD(&sqd->ctx_list);
7447 mutex_init(&sqd->lock);
7448 init_waitqueue_head(&sqd->wait);
7449 init_completion(&sqd->exited);
7450 return sqd;
7451 }
7452
7453 #if defined(CONFIG_UNIX)
7454 /*
7455 * Ensure the UNIX gc is aware of our file set, so we are certain that
7456 * the io_uring can be safely unregistered on process exit, even if we have
7457 * loops in the file referencing.
7458 */
7459 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7460 {
7461 struct sock *sk = ctx->ring_sock->sk;
7462 struct scm_fp_list *fpl;
7463 struct sk_buff *skb;
7464 int i, nr_files;
7465
7466 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7467 if (!fpl)
7468 return -ENOMEM;
7469
7470 skb = alloc_skb(0, GFP_KERNEL);
7471 if (!skb) {
7472 kfree(fpl);
7473 return -ENOMEM;
7474 }
7475
7476 skb->sk = sk;
7477
7478 nr_files = 0;
7479 fpl->user = get_uid(current_user());
7480 for (i = 0; i < nr; i++) {
7481 struct file *file = io_file_from_index(ctx, i + offset);
7482
7483 if (!file)
7484 continue;
7485 fpl->fp[nr_files] = get_file(file);
7486 unix_inflight(fpl->user, fpl->fp[nr_files]);
7487 nr_files++;
7488 }
7489
7490 if (nr_files) {
7491 fpl->max = SCM_MAX_FD;
7492 fpl->count = nr_files;
7493 UNIXCB(skb).fp = fpl;
7494 skb->destructor = unix_destruct_scm;
7495 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7496 skb_queue_head(&sk->sk_receive_queue, skb);
7497
7498 for (i = 0; i < nr_files; i++)
7499 fput(fpl->fp[i]);
7500 } else {
7501 kfree_skb(skb);
7502 kfree(fpl);
7503 }
7504
7505 return 0;
7506 }
7507
7508 /*
7509 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7510 * causes regular reference counting to break down. We rely on the UNIX
7511 * garbage collection to take care of this problem for us.
7512 */
7513 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7514 {
7515 unsigned left, total;
7516 int ret = 0;
7517
7518 total = 0;
7519 left = ctx->nr_user_files;
7520 while (left) {
7521 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7522
7523 ret = __io_sqe_files_scm(ctx, this_files, total);
7524 if (ret)
7525 break;
7526 left -= this_files;
7527 total += this_files;
7528 }
7529
7530 if (!ret)
7531 return 0;
7532
7533 while (total < ctx->nr_user_files) {
7534 struct file *file = io_file_from_index(ctx, total);
7535
7536 if (file)
7537 fput(file);
7538 total++;
7539 }
7540
7541 return ret;
7542 }
7543 #else
7544 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7545 {
7546 return 0;
7547 }
7548 #endif
7549
7550 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7551 {
7552 struct file *file = prsrc->file;
7553 #if defined(CONFIG_UNIX)
7554 struct sock *sock = ctx->ring_sock->sk;
7555 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7556 struct sk_buff *skb;
7557 int i;
7558
7559 __skb_queue_head_init(&list);
7560
7561 /*
7562 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7563 * remove this entry and rearrange the file array.
7564 */
7565 skb = skb_dequeue(head);
7566 while (skb) {
7567 struct scm_fp_list *fp;
7568
7569 fp = UNIXCB(skb).fp;
7570 for (i = 0; i < fp->count; i++) {
7571 int left;
7572
7573 if (fp->fp[i] != file)
7574 continue;
7575
7576 unix_notinflight(fp->user, fp->fp[i]);
7577 left = fp->count - 1 - i;
7578 if (left) {
7579 memmove(&fp->fp[i], &fp->fp[i + 1],
7580 left * sizeof(struct file *));
7581 }
7582 fp->count--;
7583 if (!fp->count) {
7584 kfree_skb(skb);
7585 skb = NULL;
7586 } else {
7587 __skb_queue_tail(&list, skb);
7588 }
7589 fput(file);
7590 file = NULL;
7591 break;
7592 }
7593
7594 if (!file)
7595 break;
7596
7597 __skb_queue_tail(&list, skb);
7598
7599 skb = skb_dequeue(head);
7600 }
7601
7602 if (skb_peek(&list)) {
7603 spin_lock_irq(&head->lock);
7604 while ((skb = __skb_dequeue(&list)) != NULL)
7605 __skb_queue_tail(head, skb);
7606 spin_unlock_irq(&head->lock);
7607 }
7608 #else
7609 fput(file);
7610 #endif
7611 }
7612
7613 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
7614 {
7615 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
7616 struct io_ring_ctx *ctx = rsrc_data->ctx;
7617 struct io_rsrc_put *prsrc, *tmp;
7618
7619 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7620 list_del(&prsrc->list);
7621
7622 if (prsrc->tag) {
7623 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
7624
7625 io_ring_submit_lock(ctx, lock_ring);
7626 spin_lock_irq(&ctx->completion_lock);
7627 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
7628 ctx->cq_extra++;
7629 io_commit_cqring(ctx);
7630 spin_unlock_irq(&ctx->completion_lock);
7631 io_cqring_ev_posted(ctx);
7632 io_ring_submit_unlock(ctx, lock_ring);
7633 }
7634
7635 rsrc_data->do_put(ctx, prsrc);
7636 kfree(prsrc);
7637 }
7638
7639 io_rsrc_node_destroy(ref_node);
7640 if (atomic_dec_and_test(&rsrc_data->refs))
7641 complete(&rsrc_data->done);
7642 }
7643
7644 static void io_rsrc_put_work(struct work_struct *work)
7645 {
7646 struct io_ring_ctx *ctx;
7647 struct llist_node *node;
7648
7649 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7650 node = llist_del_all(&ctx->rsrc_put_llist);
7651
7652 while (node) {
7653 struct io_rsrc_node *ref_node;
7654 struct llist_node *next = node->next;
7655
7656 ref_node = llist_entry(node, struct io_rsrc_node, llist);
7657 __io_rsrc_put_work(ref_node);
7658 node = next;
7659 }
7660 }
7661
7662 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7663 {
7664 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7665 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7666 bool first_add = false;
7667
7668 io_rsrc_ref_lock(ctx);
7669 node->done = true;
7670
7671 while (!list_empty(&ctx->rsrc_ref_list)) {
7672 node = list_first_entry(&ctx->rsrc_ref_list,
7673 struct io_rsrc_node, node);
7674 /* recycle ref nodes in order */
7675 if (!node->done)
7676 break;
7677 list_del(&node->node);
7678 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7679 }
7680 io_rsrc_ref_unlock(ctx);
7681
7682 if (first_add)
7683 mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7684 }
7685
7686 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7687 {
7688 struct io_rsrc_node *ref_node;
7689
7690 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7691 if (!ref_node)
7692 return NULL;
7693
7694 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7695 0, GFP_KERNEL)) {
7696 kfree(ref_node);
7697 return NULL;
7698 }
7699 INIT_LIST_HEAD(&ref_node->node);
7700 INIT_LIST_HEAD(&ref_node->rsrc_list);
7701 ref_node->done = false;
7702 return ref_node;
7703 }
7704
7705 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7706 unsigned nr_args, u64 __user *tags)
7707 {
7708 __s32 __user *fds = (__s32 __user *) arg;
7709 struct file *file;
7710 int fd, ret;
7711 unsigned i;
7712
7713 if (ctx->file_data)
7714 return -EBUSY;
7715 if (!nr_args)
7716 return -EINVAL;
7717 if (nr_args > IORING_MAX_FIXED_FILES)
7718 return -EMFILE;
7719 ret = io_rsrc_node_switch_start(ctx);
7720 if (ret)
7721 return ret;
7722 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
7723 &ctx->file_data);
7724 if (ret)
7725 return ret;
7726
7727 ret = -ENOMEM;
7728 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
7729 goto out_free;
7730
7731 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7732 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7733 ret = -EFAULT;
7734 goto out_fput;
7735 }
7736 /* allow sparse sets */
7737 if (fd == -1) {
7738 ret = -EINVAL;
7739 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
7740 goto out_fput;
7741 continue;
7742 }
7743
7744 file = fget(fd);
7745 ret = -EBADF;
7746 if (unlikely(!file))
7747 goto out_fput;
7748
7749 /*
7750 * Don't allow io_uring instances to be registered. If UNIX
7751 * isn't enabled, then this causes a reference cycle and this
7752 * instance can never get freed. If UNIX is enabled we'll
7753 * handle it just fine, but there's still no point in allowing
7754 * a ring fd as it doesn't support regular read/write anyway.
7755 */
7756 if (file->f_op == &io_uring_fops) {
7757 fput(file);
7758 goto out_fput;
7759 }
7760 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
7761 }
7762
7763 ret = io_sqe_files_scm(ctx);
7764 if (ret) {
7765 __io_sqe_files_unregister(ctx);
7766 return ret;
7767 }
7768
7769 io_rsrc_node_switch(ctx, NULL);
7770 return ret;
7771 out_fput:
7772 for (i = 0; i < ctx->nr_user_files; i++) {
7773 file = io_file_from_index(ctx, i);
7774 if (file)
7775 fput(file);
7776 }
7777 io_free_file_tables(&ctx->file_table, nr_args);
7778 ctx->nr_user_files = 0;
7779 out_free:
7780 io_rsrc_data_free(ctx->file_data);
7781 ctx->file_data = NULL;
7782 return ret;
7783 }
7784
7785 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7786 int index)
7787 {
7788 #if defined(CONFIG_UNIX)
7789 struct sock *sock = ctx->ring_sock->sk;
7790 struct sk_buff_head *head = &sock->sk_receive_queue;
7791 struct sk_buff *skb;
7792
7793 /*
7794 * See if we can merge this file into an existing skb SCM_RIGHTS
7795 * file set. If there's no room, fall back to allocating a new skb
7796 * and filling it in.
7797 */
7798 spin_lock_irq(&head->lock);
7799 skb = skb_peek(head);
7800 if (skb) {
7801 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7802
7803 if (fpl->count < SCM_MAX_FD) {
7804 __skb_unlink(skb, head);
7805 spin_unlock_irq(&head->lock);
7806 fpl->fp[fpl->count] = get_file(file);
7807 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7808 fpl->count++;
7809 spin_lock_irq(&head->lock);
7810 __skb_queue_head(head, skb);
7811 } else {
7812 skb = NULL;
7813 }
7814 }
7815 spin_unlock_irq(&head->lock);
7816
7817 if (skb) {
7818 fput(file);
7819 return 0;
7820 }
7821
7822 return __io_sqe_files_scm(ctx, 1, index);
7823 #else
7824 return 0;
7825 #endif
7826 }
7827
7828 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
7829 struct io_rsrc_node *node, void *rsrc)
7830 {
7831 struct io_rsrc_put *prsrc;
7832
7833 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7834 if (!prsrc)
7835 return -ENOMEM;
7836
7837 prsrc->tag = *io_get_tag_slot(data, idx);
7838 prsrc->rsrc = rsrc;
7839 list_add(&prsrc->list, &node->rsrc_list);
7840 return 0;
7841 }
7842
7843 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7844 struct io_uring_rsrc_update2 *up,
7845 unsigned nr_args)
7846 {
7847 u64 __user *tags = u64_to_user_ptr(up->tags);
7848 __s32 __user *fds = u64_to_user_ptr(up->data);
7849 struct io_rsrc_data *data = ctx->file_data;
7850 struct io_fixed_file *file_slot;
7851 struct file *file;
7852 int fd, i, err = 0;
7853 unsigned int done;
7854 bool needs_switch = false;
7855
7856 if (!ctx->file_data)
7857 return -ENXIO;
7858 if (up->offset + nr_args > ctx->nr_user_files)
7859 return -EINVAL;
7860
7861 for (done = 0; done < nr_args; done++) {
7862 u64 tag = 0;
7863
7864 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
7865 copy_from_user(&fd, &fds[done], sizeof(fd))) {
7866 err = -EFAULT;
7867 break;
7868 }
7869 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
7870 err = -EINVAL;
7871 break;
7872 }
7873 if (fd == IORING_REGISTER_FILES_SKIP)
7874 continue;
7875
7876 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
7877 file_slot = io_fixed_file_slot(&ctx->file_table, i);
7878
7879 if (file_slot->file_ptr) {
7880 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
7881 err = io_queue_rsrc_removal(data, up->offset + done,
7882 ctx->rsrc_node, file);
7883 if (err)
7884 break;
7885 file_slot->file_ptr = 0;
7886 needs_switch = true;
7887 }
7888 if (fd != -1) {
7889 file = fget(fd);
7890 if (!file) {
7891 err = -EBADF;
7892 break;
7893 }
7894 /*
7895 * Don't allow io_uring instances to be registered. If
7896 * UNIX isn't enabled, then this causes a reference
7897 * cycle and this instance can never get freed. If UNIX
7898 * is enabled we'll handle it just fine, but there's
7899 * still no point in allowing a ring fd as it doesn't
7900 * support regular read/write anyway.
7901 */
7902 if (file->f_op == &io_uring_fops) {
7903 fput(file);
7904 err = -EBADF;
7905 break;
7906 }
7907 *io_get_tag_slot(data, up->offset + done) = tag;
7908 io_fixed_file_set(file_slot, file);
7909 err = io_sqe_file_register(ctx, file, i);
7910 if (err) {
7911 file_slot->file_ptr = 0;
7912 fput(file);
7913 break;
7914 }
7915 }
7916 }
7917
7918 if (needs_switch)
7919 io_rsrc_node_switch(ctx, data);
7920 return done ? done : err;
7921 }
7922
7923 static struct io_wq_work *io_free_work(struct io_wq_work *work)
7924 {
7925 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7926
7927 req = io_put_req_find_next(req);
7928 return req ? &req->work : NULL;
7929 }
7930
7931 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
7932 struct task_struct *task)
7933 {
7934 struct io_wq_hash *hash;
7935 struct io_wq_data data;
7936 unsigned int concurrency;
7937
7938 mutex_lock(&ctx->uring_lock);
7939 hash = ctx->hash_map;
7940 if (!hash) {
7941 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
7942 if (!hash) {
7943 mutex_unlock(&ctx->uring_lock);
7944 return ERR_PTR(-ENOMEM);
7945 }
7946 refcount_set(&hash->refs, 1);
7947 init_waitqueue_head(&hash->wait);
7948 ctx->hash_map = hash;
7949 }
7950 mutex_unlock(&ctx->uring_lock);
7951
7952 data.hash = hash;
7953 data.task = task;
7954 data.free_work = io_free_work;
7955 data.do_work = io_wq_submit_work;
7956
7957 /* Do QD, or 4 * CPUS, whatever is smallest */
7958 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7959
7960 return io_wq_create(concurrency, &data);
7961 }
7962
7963 static int io_uring_alloc_task_context(struct task_struct *task,
7964 struct io_ring_ctx *ctx)
7965 {
7966 struct io_uring_task *tctx;
7967 int ret;
7968
7969 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
7970 if (unlikely(!tctx))
7971 return -ENOMEM;
7972
7973 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7974 if (unlikely(ret)) {
7975 kfree(tctx);
7976 return ret;
7977 }
7978
7979 tctx->io_wq = io_init_wq_offload(ctx, task);
7980 if (IS_ERR(tctx->io_wq)) {
7981 ret = PTR_ERR(tctx->io_wq);
7982 percpu_counter_destroy(&tctx->inflight);
7983 kfree(tctx);
7984 return ret;
7985 }
7986
7987 xa_init(&tctx->xa);
7988 init_waitqueue_head(&tctx->wait);
7989 atomic_set(&tctx->in_idle, 0);
7990 atomic_set(&tctx->inflight_tracked, 0);
7991 task->io_uring = tctx;
7992 spin_lock_init(&tctx->task_lock);
7993 INIT_WQ_LIST(&tctx->task_list);
7994 init_task_work(&tctx->task_work, tctx_task_work);
7995 return 0;
7996 }
7997
7998 void __io_uring_free(struct task_struct *tsk)
7999 {
8000 struct io_uring_task *tctx = tsk->io_uring;
8001
8002 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8003 WARN_ON_ONCE(tctx->io_wq);
8004 WARN_ON_ONCE(tctx->cached_refs);
8005
8006 percpu_counter_destroy(&tctx->inflight);
8007 kfree(tctx);
8008 tsk->io_uring = NULL;
8009 }
8010
8011 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8012 struct io_uring_params *p)
8013 {
8014 int ret;
8015
8016 /* Retain compatibility with failing for an invalid attach attempt */
8017 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8018 IORING_SETUP_ATTACH_WQ) {
8019 struct fd f;
8020
8021 f = fdget(p->wq_fd);
8022 if (!f.file)
8023 return -ENXIO;
8024 if (f.file->f_op != &io_uring_fops) {
8025 fdput(f);
8026 return -EINVAL;
8027 }
8028 fdput(f);
8029 }
8030 if (ctx->flags & IORING_SETUP_SQPOLL) {
8031 struct task_struct *tsk;
8032 struct io_sq_data *sqd;
8033 bool attached;
8034
8035 sqd = io_get_sq_data(p, &attached);
8036 if (IS_ERR(sqd)) {
8037 ret = PTR_ERR(sqd);
8038 goto err;
8039 }
8040
8041 ctx->sq_creds = get_current_cred();
8042 ctx->sq_data = sqd;
8043 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8044 if (!ctx->sq_thread_idle)
8045 ctx->sq_thread_idle = HZ;
8046
8047 io_sq_thread_park(sqd);
8048 list_add(&ctx->sqd_list, &sqd->ctx_list);
8049 io_sqd_update_thread_idle(sqd);
8050 /* don't attach to a dying SQPOLL thread, would be racy */
8051 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8052 io_sq_thread_unpark(sqd);
8053
8054 if (ret < 0)
8055 goto err;
8056 if (attached)
8057 return 0;
8058
8059 if (p->flags & IORING_SETUP_SQ_AFF) {
8060 int cpu = p->sq_thread_cpu;
8061
8062 ret = -EINVAL;
8063 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8064 goto err_sqpoll;
8065 sqd->sq_cpu = cpu;
8066 } else {
8067 sqd->sq_cpu = -1;
8068 }
8069
8070 sqd->task_pid = current->pid;
8071 sqd->task_tgid = current->tgid;
8072 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8073 if (IS_ERR(tsk)) {
8074 ret = PTR_ERR(tsk);
8075 goto err_sqpoll;
8076 }
8077
8078 sqd->thread = tsk;
8079 ret = io_uring_alloc_task_context(tsk, ctx);
8080 wake_up_new_task(tsk);
8081 if (ret)
8082 goto err;
8083 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8084 /* Can't have SQ_AFF without SQPOLL */
8085 ret = -EINVAL;
8086 goto err;
8087 }
8088
8089 return 0;
8090 err_sqpoll:
8091 complete(&ctx->sq_data->exited);
8092 err:
8093 io_sq_thread_finish(ctx);
8094 return ret;
8095 }
8096
8097 static inline void __io_unaccount_mem(struct user_struct *user,
8098 unsigned long nr_pages)
8099 {
8100 atomic_long_sub(nr_pages, &user->locked_vm);
8101 }
8102
8103 static inline int __io_account_mem(struct user_struct *user,
8104 unsigned long nr_pages)
8105 {
8106 unsigned long page_limit, cur_pages, new_pages;
8107
8108 /* Don't allow more pages than we can safely lock */
8109 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8110
8111 do {
8112 cur_pages = atomic_long_read(&user->locked_vm);
8113 new_pages = cur_pages + nr_pages;
8114 if (new_pages > page_limit)
8115 return -ENOMEM;
8116 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8117 new_pages) != cur_pages);
8118
8119 return 0;
8120 }
8121
8122 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8123 {
8124 if (ctx->user)
8125 __io_unaccount_mem(ctx->user, nr_pages);
8126
8127 if (ctx->mm_account)
8128 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8129 }
8130
8131 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8132 {
8133 int ret;
8134
8135 if (ctx->user) {
8136 ret = __io_account_mem(ctx->user, nr_pages);
8137 if (ret)
8138 return ret;
8139 }
8140
8141 if (ctx->mm_account)
8142 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8143
8144 return 0;
8145 }
8146
8147 static void io_mem_free(void *ptr)
8148 {
8149 struct page *page;
8150
8151 if (!ptr)
8152 return;
8153
8154 page = virt_to_head_page(ptr);
8155 if (put_page_testzero(page))
8156 free_compound_page(page);
8157 }
8158
8159 static void *io_mem_alloc(size_t size)
8160 {
8161 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8162 __GFP_NORETRY | __GFP_ACCOUNT;
8163
8164 return (void *) __get_free_pages(gfp_flags, get_order(size));
8165 }
8166
8167 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8168 size_t *sq_offset)
8169 {
8170 struct io_rings *rings;
8171 size_t off, sq_array_size;
8172
8173 off = struct_size(rings, cqes, cq_entries);
8174 if (off == SIZE_MAX)
8175 return SIZE_MAX;
8176
8177 #ifdef CONFIG_SMP
8178 off = ALIGN(off, SMP_CACHE_BYTES);
8179 if (off == 0)
8180 return SIZE_MAX;
8181 #endif
8182
8183 if (sq_offset)
8184 *sq_offset = off;
8185
8186 sq_array_size = array_size(sizeof(u32), sq_entries);
8187 if (sq_array_size == SIZE_MAX)
8188 return SIZE_MAX;
8189
8190 if (check_add_overflow(off, sq_array_size, &off))
8191 return SIZE_MAX;
8192
8193 return off;
8194 }
8195
8196 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8197 {
8198 struct io_mapped_ubuf *imu = *slot;
8199 unsigned int i;
8200
8201 if (imu != ctx->dummy_ubuf) {
8202 for (i = 0; i < imu->nr_bvecs; i++)
8203 unpin_user_page(imu->bvec[i].bv_page);
8204 if (imu->acct_pages)
8205 io_unaccount_mem(ctx, imu->acct_pages);
8206 kvfree(imu);
8207 }
8208 *slot = NULL;
8209 }
8210
8211 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8212 {
8213 io_buffer_unmap(ctx, &prsrc->buf);
8214 prsrc->buf = NULL;
8215 }
8216
8217 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8218 {
8219 unsigned int i;
8220
8221 for (i = 0; i < ctx->nr_user_bufs; i++)
8222 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8223 kfree(ctx->user_bufs);
8224 io_rsrc_data_free(ctx->buf_data);
8225 ctx->user_bufs = NULL;
8226 ctx->buf_data = NULL;
8227 ctx->nr_user_bufs = 0;
8228 }
8229
8230 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8231 {
8232 int ret;
8233
8234 if (!ctx->buf_data)
8235 return -ENXIO;
8236
8237 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8238 if (!ret)
8239 __io_sqe_buffers_unregister(ctx);
8240 return ret;
8241 }
8242
8243 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8244 void __user *arg, unsigned index)
8245 {
8246 struct iovec __user *src;
8247
8248 #ifdef CONFIG_COMPAT
8249 if (ctx->compat) {
8250 struct compat_iovec __user *ciovs;
8251 struct compat_iovec ciov;
8252
8253 ciovs = (struct compat_iovec __user *) arg;
8254 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8255 return -EFAULT;
8256
8257 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8258 dst->iov_len = ciov.iov_len;
8259 return 0;
8260 }
8261 #endif
8262 src = (struct iovec __user *) arg;
8263 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8264 return -EFAULT;
8265 return 0;
8266 }
8267
8268 /*
8269 * Not super efficient, but this is just a registration time. And we do cache
8270 * the last compound head, so generally we'll only do a full search if we don't
8271 * match that one.
8272 *
8273 * We check if the given compound head page has already been accounted, to
8274 * avoid double accounting it. This allows us to account the full size of the
8275 * page, not just the constituent pages of a huge page.
8276 */
8277 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8278 int nr_pages, struct page *hpage)
8279 {
8280 int i, j;
8281
8282 /* check current page array */
8283 for (i = 0; i < nr_pages; i++) {
8284 if (!PageCompound(pages[i]))
8285 continue;
8286 if (compound_head(pages[i]) == hpage)
8287 return true;
8288 }
8289
8290 /* check previously registered pages */
8291 for (i = 0; i < ctx->nr_user_bufs; i++) {
8292 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8293
8294 for (j = 0; j < imu->nr_bvecs; j++) {
8295 if (!PageCompound(imu->bvec[j].bv_page))
8296 continue;
8297 if (compound_head(imu->bvec[j].bv_page) == hpage)
8298 return true;
8299 }
8300 }
8301
8302 return false;
8303 }
8304
8305 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8306 int nr_pages, struct io_mapped_ubuf *imu,
8307 struct page **last_hpage)
8308 {
8309 int i, ret;
8310
8311 imu->acct_pages = 0;
8312 for (i = 0; i < nr_pages; i++) {
8313 if (!PageCompound(pages[i])) {
8314 imu->acct_pages++;
8315 } else {
8316 struct page *hpage;
8317
8318 hpage = compound_head(pages[i]);
8319 if (hpage == *last_hpage)
8320 continue;
8321 *last_hpage = hpage;
8322 if (headpage_already_acct(ctx, pages, i, hpage))
8323 continue;
8324 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8325 }
8326 }
8327
8328 if (!imu->acct_pages)
8329 return 0;
8330
8331 ret = io_account_mem(ctx, imu->acct_pages);
8332 if (ret)
8333 imu->acct_pages = 0;
8334 return ret;
8335 }
8336
8337 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8338 struct io_mapped_ubuf **pimu,
8339 struct page **last_hpage)
8340 {
8341 struct io_mapped_ubuf *imu = NULL;
8342 struct vm_area_struct **vmas = NULL;
8343 struct page **pages = NULL;
8344 unsigned long off, start, end, ubuf;
8345 size_t size;
8346 int ret, pret, nr_pages, i;
8347
8348 if (!iov->iov_base) {
8349 *pimu = ctx->dummy_ubuf;
8350 return 0;
8351 }
8352
8353 ubuf = (unsigned long) iov->iov_base;
8354 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8355 start = ubuf >> PAGE_SHIFT;
8356 nr_pages = end - start;
8357
8358 *pimu = NULL;
8359 ret = -ENOMEM;
8360
8361 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8362 if (!pages)
8363 goto done;
8364
8365 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8366 GFP_KERNEL);
8367 if (!vmas)
8368 goto done;
8369
8370 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8371 if (!imu)
8372 goto done;
8373
8374 ret = 0;
8375 mmap_read_lock(current->mm);
8376 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8377 pages, vmas);
8378 if (pret == nr_pages) {
8379 /* don't support file backed memory */
8380 for (i = 0; i < nr_pages; i++) {
8381 struct vm_area_struct *vma = vmas[i];
8382
8383 if (vma_is_shmem(vma))
8384 continue;
8385 if (vma->vm_file &&
8386 !is_file_hugepages(vma->vm_file)) {
8387 ret = -EOPNOTSUPP;
8388 break;
8389 }
8390 }
8391 } else {
8392 ret = pret < 0 ? pret : -EFAULT;
8393 }
8394 mmap_read_unlock(current->mm);
8395 if (ret) {
8396 /*
8397 * if we did partial map, or found file backed vmas,
8398 * release any pages we did get
8399 */
8400 if (pret > 0)
8401 unpin_user_pages(pages, pret);
8402 goto done;
8403 }
8404
8405 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8406 if (ret) {
8407 unpin_user_pages(pages, pret);
8408 goto done;
8409 }
8410
8411 off = ubuf & ~PAGE_MASK;
8412 size = iov->iov_len;
8413 for (i = 0; i < nr_pages; i++) {
8414 size_t vec_len;
8415
8416 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8417 imu->bvec[i].bv_page = pages[i];
8418 imu->bvec[i].bv_len = vec_len;
8419 imu->bvec[i].bv_offset = off;
8420 off = 0;
8421 size -= vec_len;
8422 }
8423 /* store original address for later verification */
8424 imu->ubuf = ubuf;
8425 imu->ubuf_end = ubuf + iov->iov_len;
8426 imu->nr_bvecs = nr_pages;
8427 *pimu = imu;
8428 ret = 0;
8429 done:
8430 if (ret)
8431 kvfree(imu);
8432 kvfree(pages);
8433 kvfree(vmas);
8434 return ret;
8435 }
8436
8437 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8438 {
8439 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
8440 return ctx->user_bufs ? 0 : -ENOMEM;
8441 }
8442
8443 static int io_buffer_validate(struct iovec *iov)
8444 {
8445 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
8446
8447 /*
8448 * Don't impose further limits on the size and buffer
8449 * constraints here, we'll -EINVAL later when IO is
8450 * submitted if they are wrong.
8451 */
8452 if (!iov->iov_base)
8453 return iov->iov_len ? -EFAULT : 0;
8454 if (!iov->iov_len)
8455 return -EFAULT;
8456
8457 /* arbitrary limit, but we need something */
8458 if (iov->iov_len > SZ_1G)
8459 return -EFAULT;
8460
8461 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
8462 return -EOVERFLOW;
8463
8464 return 0;
8465 }
8466
8467 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8468 unsigned int nr_args, u64 __user *tags)
8469 {
8470 struct page *last_hpage = NULL;
8471 struct io_rsrc_data *data;
8472 int i, ret;
8473 struct iovec iov;
8474
8475 if (ctx->user_bufs)
8476 return -EBUSY;
8477 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
8478 return -EINVAL;
8479 ret = io_rsrc_node_switch_start(ctx);
8480 if (ret)
8481 return ret;
8482 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
8483 if (ret)
8484 return ret;
8485 ret = io_buffers_map_alloc(ctx, nr_args);
8486 if (ret) {
8487 io_rsrc_data_free(data);
8488 return ret;
8489 }
8490
8491 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
8492 ret = io_copy_iov(ctx, &iov, arg, i);
8493 if (ret)
8494 break;
8495 ret = io_buffer_validate(&iov);
8496 if (ret)
8497 break;
8498 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
8499 ret = -EINVAL;
8500 break;
8501 }
8502
8503 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
8504 &last_hpage);
8505 if (ret)
8506 break;
8507 }
8508
8509 WARN_ON_ONCE(ctx->buf_data);
8510
8511 ctx->buf_data = data;
8512 if (ret)
8513 __io_sqe_buffers_unregister(ctx);
8514 else
8515 io_rsrc_node_switch(ctx, NULL);
8516 return ret;
8517 }
8518
8519 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
8520 struct io_uring_rsrc_update2 *up,
8521 unsigned int nr_args)
8522 {
8523 u64 __user *tags = u64_to_user_ptr(up->tags);
8524 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
8525 struct page *last_hpage = NULL;
8526 bool needs_switch = false;
8527 __u32 done;
8528 int i, err;
8529
8530 if (!ctx->buf_data)
8531 return -ENXIO;
8532 if (up->offset + nr_args > ctx->nr_user_bufs)
8533 return -EINVAL;
8534
8535 for (done = 0; done < nr_args; done++) {
8536 struct io_mapped_ubuf *imu;
8537 int offset = up->offset + done;
8538 u64 tag = 0;
8539
8540 err = io_copy_iov(ctx, &iov, iovs, done);
8541 if (err)
8542 break;
8543 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
8544 err = -EFAULT;
8545 break;
8546 }
8547 err = io_buffer_validate(&iov);
8548 if (err)
8549 break;
8550 if (!iov.iov_base && tag) {
8551 err = -EINVAL;
8552 break;
8553 }
8554 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
8555 if (err)
8556 break;
8557
8558 i = array_index_nospec(offset, ctx->nr_user_bufs);
8559 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
8560 err = io_queue_rsrc_removal(ctx->buf_data, offset,
8561 ctx->rsrc_node, ctx->user_bufs[i]);
8562 if (unlikely(err)) {
8563 io_buffer_unmap(ctx, &imu);
8564 break;
8565 }
8566 ctx->user_bufs[i] = NULL;
8567 needs_switch = true;
8568 }
8569
8570 ctx->user_bufs[i] = imu;
8571 *io_get_tag_slot(ctx->buf_data, offset) = tag;
8572 }
8573
8574 if (needs_switch)
8575 io_rsrc_node_switch(ctx, ctx->buf_data);
8576 return done ? done : err;
8577 }
8578
8579 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8580 {
8581 __s32 __user *fds = arg;
8582 int fd;
8583
8584 if (ctx->cq_ev_fd)
8585 return -EBUSY;
8586
8587 if (copy_from_user(&fd, fds, sizeof(*fds)))
8588 return -EFAULT;
8589
8590 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8591 if (IS_ERR(ctx->cq_ev_fd)) {
8592 int ret = PTR_ERR(ctx->cq_ev_fd);
8593
8594 ctx->cq_ev_fd = NULL;
8595 return ret;
8596 }
8597
8598 return 0;
8599 }
8600
8601 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8602 {
8603 if (ctx->cq_ev_fd) {
8604 eventfd_ctx_put(ctx->cq_ev_fd);
8605 ctx->cq_ev_fd = NULL;
8606 return 0;
8607 }
8608
8609 return -ENXIO;
8610 }
8611
8612 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8613 {
8614 struct io_buffer *buf;
8615 unsigned long index;
8616
8617 xa_for_each(&ctx->io_buffers, index, buf)
8618 __io_remove_buffers(ctx, buf, index, -1U);
8619 }
8620
8621 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8622 {
8623 struct io_kiocb *req, *nxt;
8624
8625 list_for_each_entry_safe(req, nxt, list, compl.list) {
8626 if (tsk && req->task != tsk)
8627 continue;
8628 list_del(&req->compl.list);
8629 kmem_cache_free(req_cachep, req);
8630 }
8631 }
8632
8633 static void io_req_caches_free(struct io_ring_ctx *ctx)
8634 {
8635 struct io_submit_state *submit_state = &ctx->submit_state;
8636 struct io_comp_state *cs = &ctx->submit_state.comp;
8637
8638 mutex_lock(&ctx->uring_lock);
8639
8640 if (submit_state->free_reqs) {
8641 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8642 submit_state->reqs);
8643 submit_state->free_reqs = 0;
8644 }
8645
8646 io_flush_cached_locked_reqs(ctx, cs);
8647 io_req_cache_free(&cs->free_list, NULL);
8648 mutex_unlock(&ctx->uring_lock);
8649 }
8650
8651 static bool io_wait_rsrc_data(struct io_rsrc_data *data)
8652 {
8653 if (!data)
8654 return false;
8655 if (!atomic_dec_and_test(&data->refs))
8656 wait_for_completion(&data->done);
8657 return true;
8658 }
8659
8660 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8661 {
8662 io_sq_thread_finish(ctx);
8663
8664 if (ctx->mm_account) {
8665 mmdrop(ctx->mm_account);
8666 ctx->mm_account = NULL;
8667 }
8668
8669 mutex_lock(&ctx->uring_lock);
8670 if (io_wait_rsrc_data(ctx->buf_data))
8671 __io_sqe_buffers_unregister(ctx);
8672 if (io_wait_rsrc_data(ctx->file_data))
8673 __io_sqe_files_unregister(ctx);
8674 if (ctx->rings)
8675 __io_cqring_overflow_flush(ctx, true);
8676 mutex_unlock(&ctx->uring_lock);
8677 io_eventfd_unregister(ctx);
8678 io_destroy_buffers(ctx);
8679 if (ctx->sq_creds)
8680 put_cred(ctx->sq_creds);
8681
8682 /* there are no registered resources left, nobody uses it */
8683 if (ctx->rsrc_node)
8684 io_rsrc_node_destroy(ctx->rsrc_node);
8685 if (ctx->rsrc_backup_node)
8686 io_rsrc_node_destroy(ctx->rsrc_backup_node);
8687 flush_delayed_work(&ctx->rsrc_put_work);
8688
8689 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
8690 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
8691
8692 #if defined(CONFIG_UNIX)
8693 if (ctx->ring_sock) {
8694 ctx->ring_sock->file = NULL; /* so that iput() is called */
8695 sock_release(ctx->ring_sock);
8696 }
8697 #endif
8698
8699 io_mem_free(ctx->rings);
8700 io_mem_free(ctx->sq_sqes);
8701
8702 percpu_ref_exit(&ctx->refs);
8703 free_uid(ctx->user);
8704 io_req_caches_free(ctx);
8705 if (ctx->hash_map)
8706 io_wq_put_hash(ctx->hash_map);
8707 kfree(ctx->cancel_hash);
8708 kfree(ctx->dummy_ubuf);
8709 kfree(ctx);
8710 }
8711
8712 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8713 {
8714 struct io_ring_ctx *ctx = file->private_data;
8715 __poll_t mask = 0;
8716
8717 poll_wait(file, &ctx->poll_wait, wait);
8718 /*
8719 * synchronizes with barrier from wq_has_sleeper call in
8720 * io_commit_cqring
8721 */
8722 smp_rmb();
8723 if (!io_sqring_full(ctx))
8724 mask |= EPOLLOUT | EPOLLWRNORM;
8725
8726 /*
8727 * Don't flush cqring overflow list here, just do a simple check.
8728 * Otherwise there could possible be ABBA deadlock:
8729 * CPU0 CPU1
8730 * ---- ----
8731 * lock(&ctx->uring_lock);
8732 * lock(&ep->mtx);
8733 * lock(&ctx->uring_lock);
8734 * lock(&ep->mtx);
8735 *
8736 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8737 * pushs them to do the flush.
8738 */
8739 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
8740 mask |= EPOLLIN | EPOLLRDNORM;
8741
8742 return mask;
8743 }
8744
8745 static int io_uring_fasync(int fd, struct file *file, int on)
8746 {
8747 struct io_ring_ctx *ctx = file->private_data;
8748
8749 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8750 }
8751
8752 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8753 {
8754 const struct cred *creds;
8755
8756 creds = xa_erase(&ctx->personalities, id);
8757 if (creds) {
8758 put_cred(creds);
8759 return 0;
8760 }
8761
8762 return -EINVAL;
8763 }
8764
8765 struct io_tctx_exit {
8766 struct callback_head task_work;
8767 struct completion completion;
8768 struct io_ring_ctx *ctx;
8769 };
8770
8771 static void io_tctx_exit_cb(struct callback_head *cb)
8772 {
8773 struct io_uring_task *tctx = current->io_uring;
8774 struct io_tctx_exit *work;
8775
8776 work = container_of(cb, struct io_tctx_exit, task_work);
8777 /*
8778 * When @in_idle, we're in cancellation and it's racy to remove the
8779 * node. It'll be removed by the end of cancellation, just ignore it.
8780 */
8781 if (!atomic_read(&tctx->in_idle))
8782 io_uring_del_tctx_node((unsigned long)work->ctx);
8783 complete(&work->completion);
8784 }
8785
8786 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8787 {
8788 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8789
8790 return req->ctx == data;
8791 }
8792
8793 static void io_ring_exit_work(struct work_struct *work)
8794 {
8795 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
8796 unsigned long timeout = jiffies + HZ * 60 * 5;
8797 struct io_tctx_exit exit;
8798 struct io_tctx_node *node;
8799 int ret;
8800
8801 /*
8802 * If we're doing polled IO and end up having requests being
8803 * submitted async (out-of-line), then completions can come in while
8804 * we're waiting for refs to drop. We need to reap these manually,
8805 * as nobody else will be looking for them.
8806 */
8807 do {
8808 io_uring_try_cancel_requests(ctx, NULL, true);
8809 if (ctx->sq_data) {
8810 struct io_sq_data *sqd = ctx->sq_data;
8811 struct task_struct *tsk;
8812
8813 io_sq_thread_park(sqd);
8814 tsk = sqd->thread;
8815 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
8816 io_wq_cancel_cb(tsk->io_uring->io_wq,
8817 io_cancel_ctx_cb, ctx, true);
8818 io_sq_thread_unpark(sqd);
8819 }
8820
8821 WARN_ON_ONCE(time_after(jiffies, timeout));
8822 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8823
8824 init_completion(&exit.completion);
8825 init_task_work(&exit.task_work, io_tctx_exit_cb);
8826 exit.ctx = ctx;
8827 /*
8828 * Some may use context even when all refs and requests have been put,
8829 * and they are free to do so while still holding uring_lock or
8830 * completion_lock, see io_req_task_submit(). Apart from other work,
8831 * this lock/unlock section also waits them to finish.
8832 */
8833 mutex_lock(&ctx->uring_lock);
8834 while (!list_empty(&ctx->tctx_list)) {
8835 WARN_ON_ONCE(time_after(jiffies, timeout));
8836
8837 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
8838 ctx_node);
8839 /* don't spin on a single task if cancellation failed */
8840 list_rotate_left(&ctx->tctx_list);
8841 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
8842 if (WARN_ON_ONCE(ret))
8843 continue;
8844 wake_up_process(node->task);
8845
8846 mutex_unlock(&ctx->uring_lock);
8847 wait_for_completion(&exit.completion);
8848 mutex_lock(&ctx->uring_lock);
8849 }
8850 mutex_unlock(&ctx->uring_lock);
8851 spin_lock_irq(&ctx->completion_lock);
8852 spin_unlock_irq(&ctx->completion_lock);
8853
8854 io_ring_ctx_free(ctx);
8855 }
8856
8857 /* Returns true if we found and killed one or more timeouts */
8858 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
8859 bool cancel_all)
8860 {
8861 struct io_kiocb *req, *tmp;
8862 int canceled = 0;
8863
8864 spin_lock_irq(&ctx->completion_lock);
8865 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
8866 if (io_match_task(req, tsk, cancel_all)) {
8867 io_kill_timeout(req, -ECANCELED);
8868 canceled++;
8869 }
8870 }
8871 if (canceled != 0)
8872 io_commit_cqring(ctx);
8873 spin_unlock_irq(&ctx->completion_lock);
8874 if (canceled != 0)
8875 io_cqring_ev_posted(ctx);
8876 return canceled != 0;
8877 }
8878
8879 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8880 {
8881 unsigned long index;
8882 struct creds *creds;
8883
8884 mutex_lock(&ctx->uring_lock);
8885 percpu_ref_kill(&ctx->refs);
8886 if (ctx->rings)
8887 __io_cqring_overflow_flush(ctx, true);
8888 xa_for_each(&ctx->personalities, index, creds)
8889 io_unregister_personality(ctx, index);
8890 mutex_unlock(&ctx->uring_lock);
8891
8892 io_kill_timeouts(ctx, NULL, true);
8893 io_poll_remove_all(ctx, NULL, true);
8894
8895 /* if we failed setting up the ctx, we might not have any rings */
8896 io_iopoll_try_reap_events(ctx);
8897
8898 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8899 /*
8900 * Use system_unbound_wq to avoid spawning tons of event kworkers
8901 * if we're exiting a ton of rings at the same time. It just adds
8902 * noise and overhead, there's no discernable change in runtime
8903 * over using system_wq.
8904 */
8905 queue_work(system_unbound_wq, &ctx->exit_work);
8906 }
8907
8908 static int io_uring_release(struct inode *inode, struct file *file)
8909 {
8910 struct io_ring_ctx *ctx = file->private_data;
8911
8912 file->private_data = NULL;
8913 io_ring_ctx_wait_and_kill(ctx);
8914 return 0;
8915 }
8916
8917 struct io_task_cancel {
8918 struct task_struct *task;
8919 bool all;
8920 };
8921
8922 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8923 {
8924 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8925 struct io_task_cancel *cancel = data;
8926 bool ret;
8927
8928 if (!cancel->all && (req->flags & REQ_F_LINK_TIMEOUT)) {
8929 unsigned long flags;
8930 struct io_ring_ctx *ctx = req->ctx;
8931
8932 /* protect against races with linked timeouts */
8933 spin_lock_irqsave(&ctx->completion_lock, flags);
8934 ret = io_match_task(req, cancel->task, cancel->all);
8935 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8936 } else {
8937 ret = io_match_task(req, cancel->task, cancel->all);
8938 }
8939 return ret;
8940 }
8941
8942 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
8943 struct task_struct *task, bool cancel_all)
8944 {
8945 struct io_defer_entry *de;
8946 LIST_HEAD(list);
8947
8948 spin_lock_irq(&ctx->completion_lock);
8949 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8950 if (io_match_task(de->req, task, cancel_all)) {
8951 list_cut_position(&list, &ctx->defer_list, &de->list);
8952 break;
8953 }
8954 }
8955 spin_unlock_irq(&ctx->completion_lock);
8956 if (list_empty(&list))
8957 return false;
8958
8959 while (!list_empty(&list)) {
8960 de = list_first_entry(&list, struct io_defer_entry, list);
8961 list_del_init(&de->list);
8962 io_req_complete_failed(de->req, -ECANCELED);
8963 kfree(de);
8964 }
8965 return true;
8966 }
8967
8968 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
8969 {
8970 struct io_tctx_node *node;
8971 enum io_wq_cancel cret;
8972 bool ret = false;
8973
8974 mutex_lock(&ctx->uring_lock);
8975 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
8976 struct io_uring_task *tctx = node->task->io_uring;
8977
8978 /*
8979 * io_wq will stay alive while we hold uring_lock, because it's
8980 * killed after ctx nodes, which requires to take the lock.
8981 */
8982 if (!tctx || !tctx->io_wq)
8983 continue;
8984 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
8985 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8986 }
8987 mutex_unlock(&ctx->uring_lock);
8988
8989 return ret;
8990 }
8991
8992 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8993 struct task_struct *task,
8994 bool cancel_all)
8995 {
8996 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
8997 struct io_uring_task *tctx = task ? task->io_uring : NULL;
8998
8999 while (1) {
9000 enum io_wq_cancel cret;
9001 bool ret = false;
9002
9003 if (!task) {
9004 ret |= io_uring_try_cancel_iowq(ctx);
9005 } else if (tctx && tctx->io_wq) {
9006 /*
9007 * Cancels requests of all rings, not only @ctx, but
9008 * it's fine as the task is in exit/exec.
9009 */
9010 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9011 &cancel, true);
9012 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9013 }
9014
9015 /* SQPOLL thread does its own polling */
9016 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9017 (ctx->sq_data && ctx->sq_data->thread == current)) {
9018 while (!list_empty_careful(&ctx->iopoll_list)) {
9019 io_iopoll_try_reap_events(ctx);
9020 ret = true;
9021 }
9022 }
9023
9024 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9025 ret |= io_poll_remove_all(ctx, task, cancel_all);
9026 ret |= io_kill_timeouts(ctx, task, cancel_all);
9027 if (task)
9028 ret |= io_run_task_work();
9029 if (!ret)
9030 break;
9031 cond_resched();
9032 }
9033 }
9034
9035 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9036 {
9037 struct io_uring_task *tctx = current->io_uring;
9038 struct io_tctx_node *node;
9039 int ret;
9040
9041 if (unlikely(!tctx)) {
9042 ret = io_uring_alloc_task_context(current, ctx);
9043 if (unlikely(ret))
9044 return ret;
9045 tctx = current->io_uring;
9046 }
9047 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9048 node = kmalloc(sizeof(*node), GFP_KERNEL);
9049 if (!node)
9050 return -ENOMEM;
9051 node->ctx = ctx;
9052 node->task = current;
9053
9054 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9055 node, GFP_KERNEL));
9056 if (ret) {
9057 kfree(node);
9058 return ret;
9059 }
9060
9061 mutex_lock(&ctx->uring_lock);
9062 list_add(&node->ctx_node, &ctx->tctx_list);
9063 mutex_unlock(&ctx->uring_lock);
9064 }
9065 tctx->last = ctx;
9066 return 0;
9067 }
9068
9069 /*
9070 * Note that this task has used io_uring. We use it for cancelation purposes.
9071 */
9072 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9073 {
9074 struct io_uring_task *tctx = current->io_uring;
9075
9076 if (likely(tctx && tctx->last == ctx))
9077 return 0;
9078 return __io_uring_add_tctx_node(ctx);
9079 }
9080
9081 /*
9082 * Remove this io_uring_file -> task mapping.
9083 */
9084 static void io_uring_del_tctx_node(unsigned long index)
9085 {
9086 struct io_uring_task *tctx = current->io_uring;
9087 struct io_tctx_node *node;
9088
9089 if (!tctx)
9090 return;
9091 node = xa_erase(&tctx->xa, index);
9092 if (!node)
9093 return;
9094
9095 WARN_ON_ONCE(current != node->task);
9096 WARN_ON_ONCE(list_empty(&node->ctx_node));
9097
9098 mutex_lock(&node->ctx->uring_lock);
9099 list_del(&node->ctx_node);
9100 mutex_unlock(&node->ctx->uring_lock);
9101
9102 if (tctx->last == node->ctx)
9103 tctx->last = NULL;
9104 kfree(node);
9105 }
9106
9107 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9108 {
9109 struct io_wq *wq = tctx->io_wq;
9110 struct io_tctx_node *node;
9111 unsigned long index;
9112
9113 xa_for_each(&tctx->xa, index, node)
9114 io_uring_del_tctx_node(index);
9115 if (wq) {
9116 /*
9117 * Must be after io_uring_del_task_file() (removes nodes under
9118 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9119 */
9120 tctx->io_wq = NULL;
9121 io_wq_put_and_exit(wq);
9122 }
9123 }
9124
9125 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9126 {
9127 if (tracked)
9128 return atomic_read(&tctx->inflight_tracked);
9129 return percpu_counter_sum(&tctx->inflight);
9130 }
9131
9132 static void io_uring_drop_tctx_refs(struct task_struct *task)
9133 {
9134 struct io_uring_task *tctx = task->io_uring;
9135 unsigned int refs = tctx->cached_refs;
9136
9137 tctx->cached_refs = 0;
9138 percpu_counter_sub(&tctx->inflight, refs);
9139 put_task_struct_many(task, refs);
9140 }
9141
9142 /*
9143 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9144 * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9145 */
9146 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9147 {
9148 struct io_uring_task *tctx = current->io_uring;
9149 struct io_ring_ctx *ctx;
9150 s64 inflight;
9151 DEFINE_WAIT(wait);
9152
9153 WARN_ON_ONCE(sqd && sqd->thread != current);
9154
9155 if (!current->io_uring)
9156 return;
9157 if (tctx->io_wq)
9158 io_wq_exit_start(tctx->io_wq);
9159
9160 io_uring_drop_tctx_refs(current);
9161 atomic_inc(&tctx->in_idle);
9162 do {
9163 /* read completions before cancelations */
9164 inflight = tctx_inflight(tctx, !cancel_all);
9165 if (!inflight)
9166 break;
9167
9168 if (!sqd) {
9169 struct io_tctx_node *node;
9170 unsigned long index;
9171
9172 xa_for_each(&tctx->xa, index, node) {
9173 /* sqpoll task will cancel all its requests */
9174 if (node->ctx->sq_data)
9175 continue;
9176 io_uring_try_cancel_requests(node->ctx, current,
9177 cancel_all);
9178 }
9179 } else {
9180 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9181 io_uring_try_cancel_requests(ctx, current,
9182 cancel_all);
9183 }
9184
9185 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9186 /*
9187 * If we've seen completions, retry without waiting. This
9188 * avoids a race where a completion comes in before we did
9189 * prepare_to_wait().
9190 */
9191 if (inflight == tctx_inflight(tctx, !cancel_all))
9192 schedule();
9193 finish_wait(&tctx->wait, &wait);
9194 } while (1);
9195 atomic_dec(&tctx->in_idle);
9196
9197 io_uring_clean_tctx(tctx);
9198 if (cancel_all) {
9199 /* for exec all current's requests should be gone, kill tctx */
9200 __io_uring_free(current);
9201 }
9202 }
9203
9204 void __io_uring_cancel(struct files_struct *files)
9205 {
9206 io_uring_cancel_generic(!files, NULL);
9207 }
9208
9209 static void *io_uring_validate_mmap_request(struct file *file,
9210 loff_t pgoff, size_t sz)
9211 {
9212 struct io_ring_ctx *ctx = file->private_data;
9213 loff_t offset = pgoff << PAGE_SHIFT;
9214 struct page *page;
9215 void *ptr;
9216
9217 switch (offset) {
9218 case IORING_OFF_SQ_RING:
9219 case IORING_OFF_CQ_RING:
9220 ptr = ctx->rings;
9221 break;
9222 case IORING_OFF_SQES:
9223 ptr = ctx->sq_sqes;
9224 break;
9225 default:
9226 return ERR_PTR(-EINVAL);
9227 }
9228
9229 page = virt_to_head_page(ptr);
9230 if (sz > page_size(page))
9231 return ERR_PTR(-EINVAL);
9232
9233 return ptr;
9234 }
9235
9236 #ifdef CONFIG_MMU
9237
9238 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9239 {
9240 size_t sz = vma->vm_end - vma->vm_start;
9241 unsigned long pfn;
9242 void *ptr;
9243
9244 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9245 if (IS_ERR(ptr))
9246 return PTR_ERR(ptr);
9247
9248 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9249 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9250 }
9251
9252 #else /* !CONFIG_MMU */
9253
9254 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9255 {
9256 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9257 }
9258
9259 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9260 {
9261 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9262 }
9263
9264 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9265 unsigned long addr, unsigned long len,
9266 unsigned long pgoff, unsigned long flags)
9267 {
9268 void *ptr;
9269
9270 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9271 if (IS_ERR(ptr))
9272 return PTR_ERR(ptr);
9273
9274 return (unsigned long) ptr;
9275 }
9276
9277 #endif /* !CONFIG_MMU */
9278
9279 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9280 {
9281 DEFINE_WAIT(wait);
9282
9283 do {
9284 if (!io_sqring_full(ctx))
9285 break;
9286 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9287
9288 if (!io_sqring_full(ctx))
9289 break;
9290 schedule();
9291 } while (!signal_pending(current));
9292
9293 finish_wait(&ctx->sqo_sq_wait, &wait);
9294 return 0;
9295 }
9296
9297 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9298 struct __kernel_timespec __user **ts,
9299 const sigset_t __user **sig)
9300 {
9301 struct io_uring_getevents_arg arg;
9302
9303 /*
9304 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9305 * is just a pointer to the sigset_t.
9306 */
9307 if (!(flags & IORING_ENTER_EXT_ARG)) {
9308 *sig = (const sigset_t __user *) argp;
9309 *ts = NULL;
9310 return 0;
9311 }
9312
9313 /*
9314 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9315 * timespec and sigset_t pointers if good.
9316 */
9317 if (*argsz != sizeof(arg))
9318 return -EINVAL;
9319 if (copy_from_user(&arg, argp, sizeof(arg)))
9320 return -EFAULT;
9321 *sig = u64_to_user_ptr(arg.sigmask);
9322 *argsz = arg.sigmask_sz;
9323 *ts = u64_to_user_ptr(arg.ts);
9324 return 0;
9325 }
9326
9327 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9328 u32, min_complete, u32, flags, const void __user *, argp,
9329 size_t, argsz)
9330 {
9331 struct io_ring_ctx *ctx;
9332 int submitted = 0;
9333 struct fd f;
9334 long ret;
9335
9336 io_run_task_work();
9337
9338 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9339 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9340 return -EINVAL;
9341
9342 f = fdget(fd);
9343 if (unlikely(!f.file))
9344 return -EBADF;
9345
9346 ret = -EOPNOTSUPP;
9347 if (unlikely(f.file->f_op != &io_uring_fops))
9348 goto out_fput;
9349
9350 ret = -ENXIO;
9351 ctx = f.file->private_data;
9352 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9353 goto out_fput;
9354
9355 ret = -EBADFD;
9356 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9357 goto out;
9358
9359 /*
9360 * For SQ polling, the thread will do all submissions and completions.
9361 * Just return the requested submit count, and wake the thread if
9362 * we were asked to.
9363 */
9364 ret = 0;
9365 if (ctx->flags & IORING_SETUP_SQPOLL) {
9366 io_cqring_overflow_flush(ctx, false);
9367
9368 ret = -EOWNERDEAD;
9369 if (unlikely(ctx->sq_data->thread == NULL))
9370 goto out;
9371 if (flags & IORING_ENTER_SQ_WAKEUP)
9372 wake_up(&ctx->sq_data->wait);
9373 if (flags & IORING_ENTER_SQ_WAIT) {
9374 ret = io_sqpoll_wait_sq(ctx);
9375 if (ret)
9376 goto out;
9377 }
9378 submitted = to_submit;
9379 } else if (to_submit) {
9380 ret = io_uring_add_tctx_node(ctx);
9381 if (unlikely(ret))
9382 goto out;
9383 mutex_lock(&ctx->uring_lock);
9384 submitted = io_submit_sqes(ctx, to_submit);
9385 mutex_unlock(&ctx->uring_lock);
9386
9387 if (submitted != to_submit)
9388 goto out;
9389 }
9390 if (flags & IORING_ENTER_GETEVENTS) {
9391 const sigset_t __user *sig;
9392 struct __kernel_timespec __user *ts;
9393
9394 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9395 if (unlikely(ret))
9396 goto out;
9397
9398 min_complete = min(min_complete, ctx->cq_entries);
9399
9400 /*
9401 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9402 * space applications don't need to do io completion events
9403 * polling again, they can rely on io_sq_thread to do polling
9404 * work, which can reduce cpu usage and uring_lock contention.
9405 */
9406 if (ctx->flags & IORING_SETUP_IOPOLL &&
9407 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9408 ret = io_iopoll_check(ctx, min_complete);
9409 } else {
9410 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9411 }
9412 }
9413
9414 out:
9415 percpu_ref_put(&ctx->refs);
9416 out_fput:
9417 fdput(f);
9418 return submitted ? submitted : ret;
9419 }
9420
9421 #ifdef CONFIG_PROC_FS
9422 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
9423 const struct cred *cred)
9424 {
9425 struct user_namespace *uns = seq_user_ns(m);
9426 struct group_info *gi;
9427 kernel_cap_t cap;
9428 unsigned __capi;
9429 int g;
9430
9431 seq_printf(m, "%5d\n", id);
9432 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9433 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9434 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9435 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9436 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9437 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9438 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9439 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9440 seq_puts(m, "\n\tGroups:\t");
9441 gi = cred->group_info;
9442 for (g = 0; g < gi->ngroups; g++) {
9443 seq_put_decimal_ull(m, g ? " " : "",
9444 from_kgid_munged(uns, gi->gid[g]));
9445 }
9446 seq_puts(m, "\n\tCapEff:\t");
9447 cap = cred->cap_effective;
9448 CAP_FOR_EACH_U32(__capi)
9449 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9450 seq_putc(m, '\n');
9451 return 0;
9452 }
9453
9454 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9455 {
9456 struct io_sq_data *sq = NULL;
9457 bool has_lock;
9458 int i;
9459
9460 /*
9461 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9462 * since fdinfo case grabs it in the opposite direction of normal use
9463 * cases. If we fail to get the lock, we just don't iterate any
9464 * structures that could be going away outside the io_uring mutex.
9465 */
9466 has_lock = mutex_trylock(&ctx->uring_lock);
9467
9468 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
9469 sq = ctx->sq_data;
9470 if (!sq->thread)
9471 sq = NULL;
9472 }
9473
9474 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9475 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9476 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9477 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9478 struct file *f = io_file_from_index(ctx, i);
9479
9480 if (f)
9481 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9482 else
9483 seq_printf(m, "%5u: <none>\n", i);
9484 }
9485 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9486 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9487 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
9488 unsigned int len = buf->ubuf_end - buf->ubuf;
9489
9490 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
9491 }
9492 if (has_lock && !xa_empty(&ctx->personalities)) {
9493 unsigned long index;
9494 const struct cred *cred;
9495
9496 seq_printf(m, "Personalities:\n");
9497 xa_for_each(&ctx->personalities, index, cred)
9498 io_uring_show_cred(m, index, cred);
9499 }
9500 seq_printf(m, "PollList:\n");
9501 spin_lock_irq(&ctx->completion_lock);
9502 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9503 struct hlist_head *list = &ctx->cancel_hash[i];
9504 struct io_kiocb *req;
9505
9506 hlist_for_each_entry(req, list, hash_node)
9507 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9508 req->task->task_works != NULL);
9509 }
9510 spin_unlock_irq(&ctx->completion_lock);
9511 if (has_lock)
9512 mutex_unlock(&ctx->uring_lock);
9513 }
9514
9515 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9516 {
9517 struct io_ring_ctx *ctx = f->private_data;
9518
9519 if (percpu_ref_tryget(&ctx->refs)) {
9520 __io_uring_show_fdinfo(ctx, m);
9521 percpu_ref_put(&ctx->refs);
9522 }
9523 }
9524 #endif
9525
9526 static const struct file_operations io_uring_fops = {
9527 .release = io_uring_release,
9528 .mmap = io_uring_mmap,
9529 #ifndef CONFIG_MMU
9530 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9531 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9532 #endif
9533 .poll = io_uring_poll,
9534 .fasync = io_uring_fasync,
9535 #ifdef CONFIG_PROC_FS
9536 .show_fdinfo = io_uring_show_fdinfo,
9537 #endif
9538 };
9539
9540 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9541 struct io_uring_params *p)
9542 {
9543 struct io_rings *rings;
9544 size_t size, sq_array_offset;
9545
9546 /* make sure these are sane, as we already accounted them */
9547 ctx->sq_entries = p->sq_entries;
9548 ctx->cq_entries = p->cq_entries;
9549
9550 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9551 if (size == SIZE_MAX)
9552 return -EOVERFLOW;
9553
9554 rings = io_mem_alloc(size);
9555 if (!rings)
9556 return -ENOMEM;
9557
9558 ctx->rings = rings;
9559 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9560 rings->sq_ring_mask = p->sq_entries - 1;
9561 rings->cq_ring_mask = p->cq_entries - 1;
9562 rings->sq_ring_entries = p->sq_entries;
9563 rings->cq_ring_entries = p->cq_entries;
9564
9565 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9566 if (size == SIZE_MAX) {
9567 io_mem_free(ctx->rings);
9568 ctx->rings = NULL;
9569 return -EOVERFLOW;
9570 }
9571
9572 ctx->sq_sqes = io_mem_alloc(size);
9573 if (!ctx->sq_sqes) {
9574 io_mem_free(ctx->rings);
9575 ctx->rings = NULL;
9576 return -ENOMEM;
9577 }
9578
9579 return 0;
9580 }
9581
9582 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9583 {
9584 int ret, fd;
9585
9586 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9587 if (fd < 0)
9588 return fd;
9589
9590 ret = io_uring_add_tctx_node(ctx);
9591 if (ret) {
9592 put_unused_fd(fd);
9593 return ret;
9594 }
9595 fd_install(fd, file);
9596 return fd;
9597 }
9598
9599 /*
9600 * Allocate an anonymous fd, this is what constitutes the application
9601 * visible backing of an io_uring instance. The application mmaps this
9602 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9603 * we have to tie this fd to a socket for file garbage collection purposes.
9604 */
9605 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9606 {
9607 struct file *file;
9608 #if defined(CONFIG_UNIX)
9609 int ret;
9610
9611 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9612 &ctx->ring_sock);
9613 if (ret)
9614 return ERR_PTR(ret);
9615 #endif
9616
9617 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9618 O_RDWR | O_CLOEXEC);
9619 #if defined(CONFIG_UNIX)
9620 if (IS_ERR(file)) {
9621 sock_release(ctx->ring_sock);
9622 ctx->ring_sock = NULL;
9623 } else {
9624 ctx->ring_sock->file = file;
9625 }
9626 #endif
9627 return file;
9628 }
9629
9630 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9631 struct io_uring_params __user *params)
9632 {
9633 struct io_ring_ctx *ctx;
9634 struct file *file;
9635 int ret;
9636
9637 if (!entries)
9638 return -EINVAL;
9639 if (entries > IORING_MAX_ENTRIES) {
9640 if (!(p->flags & IORING_SETUP_CLAMP))
9641 return -EINVAL;
9642 entries = IORING_MAX_ENTRIES;
9643 }
9644
9645 /*
9646 * Use twice as many entries for the CQ ring. It's possible for the
9647 * application to drive a higher depth than the size of the SQ ring,
9648 * since the sqes are only used at submission time. This allows for
9649 * some flexibility in overcommitting a bit. If the application has
9650 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9651 * of CQ ring entries manually.
9652 */
9653 p->sq_entries = roundup_pow_of_two(entries);
9654 if (p->flags & IORING_SETUP_CQSIZE) {
9655 /*
9656 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9657 * to a power-of-two, if it isn't already. We do NOT impose
9658 * any cq vs sq ring sizing.
9659 */
9660 if (!p->cq_entries)
9661 return -EINVAL;
9662 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9663 if (!(p->flags & IORING_SETUP_CLAMP))
9664 return -EINVAL;
9665 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9666 }
9667 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9668 if (p->cq_entries < p->sq_entries)
9669 return -EINVAL;
9670 } else {
9671 p->cq_entries = 2 * p->sq_entries;
9672 }
9673
9674 ctx = io_ring_ctx_alloc(p);
9675 if (!ctx)
9676 return -ENOMEM;
9677 ctx->compat = in_compat_syscall();
9678 if (!capable(CAP_IPC_LOCK))
9679 ctx->user = get_uid(current_user());
9680
9681 /*
9682 * This is just grabbed for accounting purposes. When a process exits,
9683 * the mm is exited and dropped before the files, hence we need to hang
9684 * on to this mm purely for the purposes of being able to unaccount
9685 * memory (locked/pinned vm). It's not used for anything else.
9686 */
9687 mmgrab(current->mm);
9688 ctx->mm_account = current->mm;
9689
9690 ret = io_allocate_scq_urings(ctx, p);
9691 if (ret)
9692 goto err;
9693
9694 ret = io_sq_offload_create(ctx, p);
9695 if (ret)
9696 goto err;
9697 /* always set a rsrc node */
9698 ret = io_rsrc_node_switch_start(ctx);
9699 if (ret)
9700 goto err;
9701 io_rsrc_node_switch(ctx, NULL);
9702
9703 memset(&p->sq_off, 0, sizeof(p->sq_off));
9704 p->sq_off.head = offsetof(struct io_rings, sq.head);
9705 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9706 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9707 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9708 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9709 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9710 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9711
9712 memset(&p->cq_off, 0, sizeof(p->cq_off));
9713 p->cq_off.head = offsetof(struct io_rings, cq.head);
9714 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9715 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9716 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9717 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9718 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9719 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9720
9721 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9722 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9723 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9724 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9725 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
9726 IORING_FEAT_RSRC_TAGS;
9727
9728 if (copy_to_user(params, p, sizeof(*p))) {
9729 ret = -EFAULT;
9730 goto err;
9731 }
9732
9733 file = io_uring_get_file(ctx);
9734 if (IS_ERR(file)) {
9735 ret = PTR_ERR(file);
9736 goto err;
9737 }
9738
9739 /*
9740 * Install ring fd as the very last thing, so we don't risk someone
9741 * having closed it before we finish setup
9742 */
9743 ret = io_uring_install_fd(ctx, file);
9744 if (ret < 0) {
9745 /* fput will clean it up */
9746 fput(file);
9747 return ret;
9748 }
9749
9750 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9751 return ret;
9752 err:
9753 io_ring_ctx_wait_and_kill(ctx);
9754 return ret;
9755 }
9756
9757 /*
9758 * Sets up an aio uring context, and returns the fd. Applications asks for a
9759 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9760 * params structure passed in.
9761 */
9762 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9763 {
9764 struct io_uring_params p;
9765 int i;
9766
9767 if (copy_from_user(&p, params, sizeof(p)))
9768 return -EFAULT;
9769 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9770 if (p.resv[i])
9771 return -EINVAL;
9772 }
9773
9774 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9775 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9776 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9777 IORING_SETUP_R_DISABLED))
9778 return -EINVAL;
9779
9780 return io_uring_create(entries, &p, params);
9781 }
9782
9783 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9784 struct io_uring_params __user *, params)
9785 {
9786 return io_uring_setup(entries, params);
9787 }
9788
9789 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9790 {
9791 struct io_uring_probe *p;
9792 size_t size;
9793 int i, ret;
9794
9795 size = struct_size(p, ops, nr_args);
9796 if (size == SIZE_MAX)
9797 return -EOVERFLOW;
9798 p = kzalloc(size, GFP_KERNEL);
9799 if (!p)
9800 return -ENOMEM;
9801
9802 ret = -EFAULT;
9803 if (copy_from_user(p, arg, size))
9804 goto out;
9805 ret = -EINVAL;
9806 if (memchr_inv(p, 0, size))
9807 goto out;
9808
9809 p->last_op = IORING_OP_LAST - 1;
9810 if (nr_args > IORING_OP_LAST)
9811 nr_args = IORING_OP_LAST;
9812
9813 for (i = 0; i < nr_args; i++) {
9814 p->ops[i].op = i;
9815 if (!io_op_defs[i].not_supported)
9816 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9817 }
9818 p->ops_len = i;
9819
9820 ret = 0;
9821 if (copy_to_user(arg, p, size))
9822 ret = -EFAULT;
9823 out:
9824 kfree(p);
9825 return ret;
9826 }
9827
9828 static int io_register_personality(struct io_ring_ctx *ctx)
9829 {
9830 const struct cred *creds;
9831 u32 id;
9832 int ret;
9833
9834 creds = get_current_cred();
9835
9836 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
9837 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
9838 if (!ret)
9839 return id;
9840 put_cred(creds);
9841 return ret;
9842 }
9843
9844 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9845 unsigned int nr_args)
9846 {
9847 struct io_uring_restriction *res;
9848 size_t size;
9849 int i, ret;
9850
9851 /* Restrictions allowed only if rings started disabled */
9852 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9853 return -EBADFD;
9854
9855 /* We allow only a single restrictions registration */
9856 if (ctx->restrictions.registered)
9857 return -EBUSY;
9858
9859 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9860 return -EINVAL;
9861
9862 size = array_size(nr_args, sizeof(*res));
9863 if (size == SIZE_MAX)
9864 return -EOVERFLOW;
9865
9866 res = memdup_user(arg, size);
9867 if (IS_ERR(res))
9868 return PTR_ERR(res);
9869
9870 ret = 0;
9871
9872 for (i = 0; i < nr_args; i++) {
9873 switch (res[i].opcode) {
9874 case IORING_RESTRICTION_REGISTER_OP:
9875 if (res[i].register_op >= IORING_REGISTER_LAST) {
9876 ret = -EINVAL;
9877 goto out;
9878 }
9879
9880 __set_bit(res[i].register_op,
9881 ctx->restrictions.register_op);
9882 break;
9883 case IORING_RESTRICTION_SQE_OP:
9884 if (res[i].sqe_op >= IORING_OP_LAST) {
9885 ret = -EINVAL;
9886 goto out;
9887 }
9888
9889 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9890 break;
9891 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9892 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9893 break;
9894 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9895 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9896 break;
9897 default:
9898 ret = -EINVAL;
9899 goto out;
9900 }
9901 }
9902
9903 out:
9904 /* Reset all restrictions if an error happened */
9905 if (ret != 0)
9906 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9907 else
9908 ctx->restrictions.registered = true;
9909
9910 kfree(res);
9911 return ret;
9912 }
9913
9914 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9915 {
9916 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9917 return -EBADFD;
9918
9919 if (ctx->restrictions.registered)
9920 ctx->restricted = 1;
9921
9922 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9923 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
9924 wake_up(&ctx->sq_data->wait);
9925 return 0;
9926 }
9927
9928 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
9929 struct io_uring_rsrc_update2 *up,
9930 unsigned nr_args)
9931 {
9932 __u32 tmp;
9933 int err;
9934
9935 if (up->resv)
9936 return -EINVAL;
9937 if (check_add_overflow(up->offset, nr_args, &tmp))
9938 return -EOVERFLOW;
9939 err = io_rsrc_node_switch_start(ctx);
9940 if (err)
9941 return err;
9942
9943 switch (type) {
9944 case IORING_RSRC_FILE:
9945 return __io_sqe_files_update(ctx, up, nr_args);
9946 case IORING_RSRC_BUFFER:
9947 return __io_sqe_buffers_update(ctx, up, nr_args);
9948 }
9949 return -EINVAL;
9950 }
9951
9952 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
9953 unsigned nr_args)
9954 {
9955 struct io_uring_rsrc_update2 up;
9956
9957 if (!nr_args)
9958 return -EINVAL;
9959 memset(&up, 0, sizeof(up));
9960 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
9961 return -EFAULT;
9962 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
9963 }
9964
9965 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
9966 unsigned size, unsigned type)
9967 {
9968 struct io_uring_rsrc_update2 up;
9969
9970 if (size != sizeof(up))
9971 return -EINVAL;
9972 if (copy_from_user(&up, arg, sizeof(up)))
9973 return -EFAULT;
9974 if (!up.nr || up.resv)
9975 return -EINVAL;
9976 return __io_register_rsrc_update(ctx, type, &up, up.nr);
9977 }
9978
9979 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
9980 unsigned int size, unsigned int type)
9981 {
9982 struct io_uring_rsrc_register rr;
9983
9984 /* keep it extendible */
9985 if (size != sizeof(rr))
9986 return -EINVAL;
9987
9988 memset(&rr, 0, sizeof(rr));
9989 if (copy_from_user(&rr, arg, size))
9990 return -EFAULT;
9991 if (!rr.nr || rr.resv || rr.resv2)
9992 return -EINVAL;
9993
9994 switch (type) {
9995 case IORING_RSRC_FILE:
9996 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
9997 rr.nr, u64_to_user_ptr(rr.tags));
9998 case IORING_RSRC_BUFFER:
9999 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10000 rr.nr, u64_to_user_ptr(rr.tags));
10001 }
10002 return -EINVAL;
10003 }
10004
10005 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10006 unsigned len)
10007 {
10008 struct io_uring_task *tctx = current->io_uring;
10009 cpumask_var_t new_mask;
10010 int ret;
10011
10012 if (!tctx || !tctx->io_wq)
10013 return -EINVAL;
10014
10015 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10016 return -ENOMEM;
10017
10018 cpumask_clear(new_mask);
10019 if (len > cpumask_size())
10020 len = cpumask_size();
10021
10022 if (copy_from_user(new_mask, arg, len)) {
10023 free_cpumask_var(new_mask);
10024 return -EFAULT;
10025 }
10026
10027 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10028 free_cpumask_var(new_mask);
10029 return ret;
10030 }
10031
10032 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10033 {
10034 struct io_uring_task *tctx = current->io_uring;
10035
10036 if (!tctx || !tctx->io_wq)
10037 return -EINVAL;
10038
10039 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10040 }
10041
10042 static bool io_register_op_must_quiesce(int op)
10043 {
10044 switch (op) {
10045 case IORING_REGISTER_BUFFERS:
10046 case IORING_UNREGISTER_BUFFERS:
10047 case IORING_REGISTER_FILES:
10048 case IORING_UNREGISTER_FILES:
10049 case IORING_REGISTER_FILES_UPDATE:
10050 case IORING_REGISTER_PROBE:
10051 case IORING_REGISTER_PERSONALITY:
10052 case IORING_UNREGISTER_PERSONALITY:
10053 case IORING_REGISTER_FILES2:
10054 case IORING_REGISTER_FILES_UPDATE2:
10055 case IORING_REGISTER_BUFFERS2:
10056 case IORING_REGISTER_BUFFERS_UPDATE:
10057 case IORING_REGISTER_IOWQ_AFF:
10058 case IORING_UNREGISTER_IOWQ_AFF:
10059 return false;
10060 default:
10061 return true;
10062 }
10063 }
10064
10065 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10066 void __user *arg, unsigned nr_args)
10067 __releases(ctx->uring_lock)
10068 __acquires(ctx->uring_lock)
10069 {
10070 int ret;
10071
10072 /*
10073 * We're inside the ring mutex, if the ref is already dying, then
10074 * someone else killed the ctx or is already going through
10075 * io_uring_register().
10076 */
10077 if (percpu_ref_is_dying(&ctx->refs))
10078 return -ENXIO;
10079
10080 if (ctx->restricted) {
10081 if (opcode >= IORING_REGISTER_LAST)
10082 return -EINVAL;
10083 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10084 if (!test_bit(opcode, ctx->restrictions.register_op))
10085 return -EACCES;
10086 }
10087
10088 if (io_register_op_must_quiesce(opcode)) {
10089 percpu_ref_kill(&ctx->refs);
10090
10091 /*
10092 * Drop uring mutex before waiting for references to exit. If
10093 * another thread is currently inside io_uring_enter() it might
10094 * need to grab the uring_lock to make progress. If we hold it
10095 * here across the drain wait, then we can deadlock. It's safe
10096 * to drop the mutex here, since no new references will come in
10097 * after we've killed the percpu ref.
10098 */
10099 mutex_unlock(&ctx->uring_lock);
10100 do {
10101 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10102 if (!ret)
10103 break;
10104 ret = io_run_task_work_sig();
10105 if (ret < 0)
10106 break;
10107 } while (1);
10108 mutex_lock(&ctx->uring_lock);
10109
10110 if (ret) {
10111 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10112 return ret;
10113 }
10114 }
10115
10116 switch (opcode) {
10117 case IORING_REGISTER_BUFFERS:
10118 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10119 break;
10120 case IORING_UNREGISTER_BUFFERS:
10121 ret = -EINVAL;
10122 if (arg || nr_args)
10123 break;
10124 ret = io_sqe_buffers_unregister(ctx);
10125 break;
10126 case IORING_REGISTER_FILES:
10127 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10128 break;
10129 case IORING_UNREGISTER_FILES:
10130 ret = -EINVAL;
10131 if (arg || nr_args)
10132 break;
10133 ret = io_sqe_files_unregister(ctx);
10134 break;
10135 case IORING_REGISTER_FILES_UPDATE:
10136 ret = io_register_files_update(ctx, arg, nr_args);
10137 break;
10138 case IORING_REGISTER_EVENTFD:
10139 case IORING_REGISTER_EVENTFD_ASYNC:
10140 ret = -EINVAL;
10141 if (nr_args != 1)
10142 break;
10143 ret = io_eventfd_register(ctx, arg);
10144 if (ret)
10145 break;
10146 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10147 ctx->eventfd_async = 1;
10148 else
10149 ctx->eventfd_async = 0;
10150 break;
10151 case IORING_UNREGISTER_EVENTFD:
10152 ret = -EINVAL;
10153 if (arg || nr_args)
10154 break;
10155 ret = io_eventfd_unregister(ctx);
10156 break;
10157 case IORING_REGISTER_PROBE:
10158 ret = -EINVAL;
10159 if (!arg || nr_args > 256)
10160 break;
10161 ret = io_probe(ctx, arg, nr_args);
10162 break;
10163 case IORING_REGISTER_PERSONALITY:
10164 ret = -EINVAL;
10165 if (arg || nr_args)
10166 break;
10167 ret = io_register_personality(ctx);
10168 break;
10169 case IORING_UNREGISTER_PERSONALITY:
10170 ret = -EINVAL;
10171 if (arg)
10172 break;
10173 ret = io_unregister_personality(ctx, nr_args);
10174 break;
10175 case IORING_REGISTER_ENABLE_RINGS:
10176 ret = -EINVAL;
10177 if (arg || nr_args)
10178 break;
10179 ret = io_register_enable_rings(ctx);
10180 break;
10181 case IORING_REGISTER_RESTRICTIONS:
10182 ret = io_register_restrictions(ctx, arg, nr_args);
10183 break;
10184 case IORING_REGISTER_FILES2:
10185 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10186 break;
10187 case IORING_REGISTER_FILES_UPDATE2:
10188 ret = io_register_rsrc_update(ctx, arg, nr_args,
10189 IORING_RSRC_FILE);
10190 break;
10191 case IORING_REGISTER_BUFFERS2:
10192 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10193 break;
10194 case IORING_REGISTER_BUFFERS_UPDATE:
10195 ret = io_register_rsrc_update(ctx, arg, nr_args,
10196 IORING_RSRC_BUFFER);
10197 break;
10198 case IORING_REGISTER_IOWQ_AFF:
10199 ret = -EINVAL;
10200 if (!arg || !nr_args)
10201 break;
10202 ret = io_register_iowq_aff(ctx, arg, nr_args);
10203 break;
10204 case IORING_UNREGISTER_IOWQ_AFF:
10205 ret = -EINVAL;
10206 if (arg || nr_args)
10207 break;
10208 ret = io_unregister_iowq_aff(ctx);
10209 break;
10210 default:
10211 ret = -EINVAL;
10212 break;
10213 }
10214
10215 if (io_register_op_must_quiesce(opcode)) {
10216 /* bring the ctx back to life */
10217 percpu_ref_reinit(&ctx->refs);
10218 reinit_completion(&ctx->ref_comp);
10219 }
10220 return ret;
10221 }
10222
10223 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10224 void __user *, arg, unsigned int, nr_args)
10225 {
10226 struct io_ring_ctx *ctx;
10227 long ret = -EBADF;
10228 struct fd f;
10229
10230 f = fdget(fd);
10231 if (!f.file)
10232 return -EBADF;
10233
10234 ret = -EOPNOTSUPP;
10235 if (f.file->f_op != &io_uring_fops)
10236 goto out_fput;
10237
10238 ctx = f.file->private_data;
10239
10240 io_run_task_work();
10241
10242 mutex_lock(&ctx->uring_lock);
10243 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10244 mutex_unlock(&ctx->uring_lock);
10245 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10246 ctx->cq_ev_fd != NULL, ret);
10247 out_fput:
10248 fdput(f);
10249 return ret;
10250 }
10251
10252 static int __init io_uring_init(void)
10253 {
10254 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10255 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10256 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10257 } while (0)
10258
10259 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10260 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10261 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10262 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10263 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10264 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10265 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10266 BUILD_BUG_SQE_ELEM(8, __u64, off);
10267 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10268 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10269 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10270 BUILD_BUG_SQE_ELEM(24, __u32, len);
10271 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10272 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10273 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10274 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10275 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10276 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10277 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10278 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10279 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10280 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10281 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10282 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10283 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10284 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10285 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10286 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10287 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10288 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
10289 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10290 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10291
10292 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10293 sizeof(struct io_uring_rsrc_update));
10294 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10295 sizeof(struct io_uring_rsrc_update2));
10296 /* should fit into one byte */
10297 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
10298
10299 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10300 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10301
10302 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10303 SLAB_ACCOUNT);
10304 return 0;
10305 };
10306 __initcall(io_uring_init);