]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
gfs2_atomic_open(): fix O_EXCL|O_CREAT handling on cold dcache
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/fdtable.h>
55 #include <linux/mm.h>
56 #include <linux/mman.h>
57 #include <linux/mmu_context.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78
79 #define CREATE_TRACE_POINTS
80 #include <trace/events/io_uring.h>
81
82 #include <uapi/linux/io_uring.h>
83
84 #include "internal.h"
85 #include "io-wq.h"
86
87 #define IORING_MAX_ENTRIES 32768
88 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
89
90 /*
91 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
92 */
93 #define IORING_FILE_TABLE_SHIFT 9
94 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
95 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
96 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
97
98 struct io_uring {
99 u32 head ____cacheline_aligned_in_smp;
100 u32 tail ____cacheline_aligned_in_smp;
101 };
102
103 /*
104 * This data is shared with the application through the mmap at offsets
105 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
106 *
107 * The offsets to the member fields are published through struct
108 * io_sqring_offsets when calling io_uring_setup.
109 */
110 struct io_rings {
111 /*
112 * Head and tail offsets into the ring; the offsets need to be
113 * masked to get valid indices.
114 *
115 * The kernel controls head of the sq ring and the tail of the cq ring,
116 * and the application controls tail of the sq ring and the head of the
117 * cq ring.
118 */
119 struct io_uring sq, cq;
120 /*
121 * Bitmasks to apply to head and tail offsets (constant, equals
122 * ring_entries - 1)
123 */
124 u32 sq_ring_mask, cq_ring_mask;
125 /* Ring sizes (constant, power of 2) */
126 u32 sq_ring_entries, cq_ring_entries;
127 /*
128 * Number of invalid entries dropped by the kernel due to
129 * invalid index stored in array
130 *
131 * Written by the kernel, shouldn't be modified by the
132 * application (i.e. get number of "new events" by comparing to
133 * cached value).
134 *
135 * After a new SQ head value was read by the application this
136 * counter includes all submissions that were dropped reaching
137 * the new SQ head (and possibly more).
138 */
139 u32 sq_dropped;
140 /*
141 * Runtime flags
142 *
143 * Written by the kernel, shouldn't be modified by the
144 * application.
145 *
146 * The application needs a full memory barrier before checking
147 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
148 */
149 u32 sq_flags;
150 /*
151 * Number of completion events lost because the queue was full;
152 * this should be avoided by the application by making sure
153 * there are not more requests pending than there is space in
154 * the completion queue.
155 *
156 * Written by the kernel, shouldn't be modified by the
157 * application (i.e. get number of "new events" by comparing to
158 * cached value).
159 *
160 * As completion events come in out of order this counter is not
161 * ordered with any other data.
162 */
163 u32 cq_overflow;
164 /*
165 * Ring buffer of completion events.
166 *
167 * The kernel writes completion events fresh every time they are
168 * produced, so the application is allowed to modify pending
169 * entries.
170 */
171 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
172 };
173
174 struct io_mapped_ubuf {
175 u64 ubuf;
176 size_t len;
177 struct bio_vec *bvec;
178 unsigned int nr_bvecs;
179 };
180
181 struct fixed_file_table {
182 struct file **files;
183 };
184
185 enum {
186 FFD_F_ATOMIC,
187 };
188
189 struct fixed_file_data {
190 struct fixed_file_table *table;
191 struct io_ring_ctx *ctx;
192
193 struct percpu_ref refs;
194 struct llist_head put_llist;
195 unsigned long state;
196 struct work_struct ref_work;
197 struct completion done;
198 };
199
200 struct io_ring_ctx {
201 struct {
202 struct percpu_ref refs;
203 } ____cacheline_aligned_in_smp;
204
205 struct {
206 unsigned int flags;
207 int compat: 1;
208 int account_mem: 1;
209 int cq_overflow_flushed: 1;
210 int drain_next: 1;
211 int eventfd_async: 1;
212
213 /*
214 * Ring buffer of indices into array of io_uring_sqe, which is
215 * mmapped by the application using the IORING_OFF_SQES offset.
216 *
217 * This indirection could e.g. be used to assign fixed
218 * io_uring_sqe entries to operations and only submit them to
219 * the queue when needed.
220 *
221 * The kernel modifies neither the indices array nor the entries
222 * array.
223 */
224 u32 *sq_array;
225 unsigned cached_sq_head;
226 unsigned sq_entries;
227 unsigned sq_mask;
228 unsigned sq_thread_idle;
229 unsigned cached_sq_dropped;
230 atomic_t cached_cq_overflow;
231 unsigned long sq_check_overflow;
232
233 struct list_head defer_list;
234 struct list_head timeout_list;
235 struct list_head cq_overflow_list;
236
237 wait_queue_head_t inflight_wait;
238 struct io_uring_sqe *sq_sqes;
239 } ____cacheline_aligned_in_smp;
240
241 struct io_rings *rings;
242
243 /* IO offload */
244 struct io_wq *io_wq;
245 struct task_struct *sqo_thread; /* if using sq thread polling */
246 struct mm_struct *sqo_mm;
247 wait_queue_head_t sqo_wait;
248
249 /*
250 * If used, fixed file set. Writers must ensure that ->refs is dead,
251 * readers must ensure that ->refs is alive as long as the file* is
252 * used. Only updated through io_uring_register(2).
253 */
254 struct fixed_file_data *file_data;
255 unsigned nr_user_files;
256 int ring_fd;
257 struct file *ring_file;
258
259 /* if used, fixed mapped user buffers */
260 unsigned nr_user_bufs;
261 struct io_mapped_ubuf *user_bufs;
262
263 struct user_struct *user;
264
265 const struct cred *creds;
266
267 /* 0 is for ctx quiesce/reinit/free, 1 is for sqo_thread started */
268 struct completion *completions;
269
270 /* if all else fails... */
271 struct io_kiocb *fallback_req;
272
273 #if defined(CONFIG_UNIX)
274 struct socket *ring_sock;
275 #endif
276
277 struct idr personality_idr;
278
279 struct {
280 unsigned cached_cq_tail;
281 unsigned cq_entries;
282 unsigned cq_mask;
283 atomic_t cq_timeouts;
284 unsigned long cq_check_overflow;
285 struct wait_queue_head cq_wait;
286 struct fasync_struct *cq_fasync;
287 struct eventfd_ctx *cq_ev_fd;
288 } ____cacheline_aligned_in_smp;
289
290 struct {
291 struct mutex uring_lock;
292 wait_queue_head_t wait;
293 } ____cacheline_aligned_in_smp;
294
295 struct {
296 spinlock_t completion_lock;
297 struct llist_head poll_llist;
298
299 /*
300 * ->poll_list is protected by the ctx->uring_lock for
301 * io_uring instances that don't use IORING_SETUP_SQPOLL.
302 * For SQPOLL, only the single threaded io_sq_thread() will
303 * manipulate the list, hence no extra locking is needed there.
304 */
305 struct list_head poll_list;
306 struct hlist_head *cancel_hash;
307 unsigned cancel_hash_bits;
308 bool poll_multi_file;
309
310 spinlock_t inflight_lock;
311 struct list_head inflight_list;
312 } ____cacheline_aligned_in_smp;
313 };
314
315 /*
316 * First field must be the file pointer in all the
317 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
318 */
319 struct io_poll_iocb {
320 struct file *file;
321 union {
322 struct wait_queue_head *head;
323 u64 addr;
324 };
325 __poll_t events;
326 bool done;
327 bool canceled;
328 struct wait_queue_entry wait;
329 };
330
331 struct io_close {
332 struct file *file;
333 struct file *put_file;
334 int fd;
335 };
336
337 struct io_timeout_data {
338 struct io_kiocb *req;
339 struct hrtimer timer;
340 struct timespec64 ts;
341 enum hrtimer_mode mode;
342 u32 seq_offset;
343 };
344
345 struct io_accept {
346 struct file *file;
347 struct sockaddr __user *addr;
348 int __user *addr_len;
349 int flags;
350 };
351
352 struct io_sync {
353 struct file *file;
354 loff_t len;
355 loff_t off;
356 int flags;
357 int mode;
358 };
359
360 struct io_cancel {
361 struct file *file;
362 u64 addr;
363 };
364
365 struct io_timeout {
366 struct file *file;
367 u64 addr;
368 int flags;
369 unsigned count;
370 };
371
372 struct io_rw {
373 /* NOTE: kiocb has the file as the first member, so don't do it here */
374 struct kiocb kiocb;
375 u64 addr;
376 u64 len;
377 };
378
379 struct io_connect {
380 struct file *file;
381 struct sockaddr __user *addr;
382 int addr_len;
383 };
384
385 struct io_sr_msg {
386 struct file *file;
387 union {
388 struct user_msghdr __user *msg;
389 void __user *buf;
390 };
391 int msg_flags;
392 size_t len;
393 };
394
395 struct io_open {
396 struct file *file;
397 int dfd;
398 union {
399 unsigned mask;
400 };
401 struct filename *filename;
402 struct statx __user *buffer;
403 struct open_how how;
404 };
405
406 struct io_files_update {
407 struct file *file;
408 u64 arg;
409 u32 nr_args;
410 u32 offset;
411 };
412
413 struct io_fadvise {
414 struct file *file;
415 u64 offset;
416 u32 len;
417 u32 advice;
418 };
419
420 struct io_madvise {
421 struct file *file;
422 u64 addr;
423 u32 len;
424 u32 advice;
425 };
426
427 struct io_epoll {
428 struct file *file;
429 int epfd;
430 int op;
431 int fd;
432 struct epoll_event event;
433 };
434
435 struct io_async_connect {
436 struct sockaddr_storage address;
437 };
438
439 struct io_async_msghdr {
440 struct iovec fast_iov[UIO_FASTIOV];
441 struct iovec *iov;
442 struct sockaddr __user *uaddr;
443 struct msghdr msg;
444 };
445
446 struct io_async_rw {
447 struct iovec fast_iov[UIO_FASTIOV];
448 struct iovec *iov;
449 ssize_t nr_segs;
450 ssize_t size;
451 };
452
453 struct io_async_open {
454 struct filename *filename;
455 };
456
457 struct io_async_ctx {
458 union {
459 struct io_async_rw rw;
460 struct io_async_msghdr msg;
461 struct io_async_connect connect;
462 struct io_timeout_data timeout;
463 struct io_async_open open;
464 };
465 };
466
467 enum {
468 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
469 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
470 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
471 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
472 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
473
474 REQ_F_LINK_NEXT_BIT,
475 REQ_F_FAIL_LINK_BIT,
476 REQ_F_INFLIGHT_BIT,
477 REQ_F_CUR_POS_BIT,
478 REQ_F_NOWAIT_BIT,
479 REQ_F_IOPOLL_COMPLETED_BIT,
480 REQ_F_LINK_TIMEOUT_BIT,
481 REQ_F_TIMEOUT_BIT,
482 REQ_F_ISREG_BIT,
483 REQ_F_MUST_PUNT_BIT,
484 REQ_F_TIMEOUT_NOSEQ_BIT,
485 REQ_F_COMP_LOCKED_BIT,
486 };
487
488 enum {
489 /* ctx owns file */
490 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
491 /* drain existing IO first */
492 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
493 /* linked sqes */
494 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
495 /* doesn't sever on completion < 0 */
496 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
497 /* IOSQE_ASYNC */
498 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
499
500 /* already grabbed next link */
501 REQ_F_LINK_NEXT = BIT(REQ_F_LINK_NEXT_BIT),
502 /* fail rest of links */
503 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
504 /* on inflight list */
505 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
506 /* read/write uses file position */
507 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
508 /* must not punt to workers */
509 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
510 /* polled IO has completed */
511 REQ_F_IOPOLL_COMPLETED = BIT(REQ_F_IOPOLL_COMPLETED_BIT),
512 /* has linked timeout */
513 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
514 /* timeout request */
515 REQ_F_TIMEOUT = BIT(REQ_F_TIMEOUT_BIT),
516 /* regular file */
517 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
518 /* must be punted even for NONBLOCK */
519 REQ_F_MUST_PUNT = BIT(REQ_F_MUST_PUNT_BIT),
520 /* no timeout sequence */
521 REQ_F_TIMEOUT_NOSEQ = BIT(REQ_F_TIMEOUT_NOSEQ_BIT),
522 /* completion under lock */
523 REQ_F_COMP_LOCKED = BIT(REQ_F_COMP_LOCKED_BIT),
524 };
525
526 /*
527 * NOTE! Each of the iocb union members has the file pointer
528 * as the first entry in their struct definition. So you can
529 * access the file pointer through any of the sub-structs,
530 * or directly as just 'ki_filp' in this struct.
531 */
532 struct io_kiocb {
533 union {
534 struct file *file;
535 struct io_rw rw;
536 struct io_poll_iocb poll;
537 struct io_accept accept;
538 struct io_sync sync;
539 struct io_cancel cancel;
540 struct io_timeout timeout;
541 struct io_connect connect;
542 struct io_sr_msg sr_msg;
543 struct io_open open;
544 struct io_close close;
545 struct io_files_update files_update;
546 struct io_fadvise fadvise;
547 struct io_madvise madvise;
548 struct io_epoll epoll;
549 };
550
551 struct io_async_ctx *io;
552 /*
553 * llist_node is only used for poll deferred completions
554 */
555 struct llist_node llist_node;
556 bool has_user;
557 bool in_async;
558 bool needs_fixed_file;
559 u8 opcode;
560
561 struct io_ring_ctx *ctx;
562 union {
563 struct list_head list;
564 struct hlist_node hash_node;
565 };
566 struct list_head link_list;
567 unsigned int flags;
568 refcount_t refs;
569 u64 user_data;
570 u32 result;
571 u32 sequence;
572
573 struct list_head inflight_entry;
574
575 struct io_wq_work work;
576 };
577
578 #define IO_PLUG_THRESHOLD 2
579 #define IO_IOPOLL_BATCH 8
580
581 struct io_submit_state {
582 struct blk_plug plug;
583
584 /*
585 * io_kiocb alloc cache
586 */
587 void *reqs[IO_IOPOLL_BATCH];
588 unsigned int free_reqs;
589
590 /*
591 * File reference cache
592 */
593 struct file *file;
594 unsigned int fd;
595 unsigned int has_refs;
596 unsigned int used_refs;
597 unsigned int ios_left;
598 };
599
600 struct io_op_def {
601 /* needs req->io allocated for deferral/async */
602 unsigned async_ctx : 1;
603 /* needs current->mm setup, does mm access */
604 unsigned needs_mm : 1;
605 /* needs req->file assigned */
606 unsigned needs_file : 1;
607 /* needs req->file assigned IFF fd is >= 0 */
608 unsigned fd_non_neg : 1;
609 /* hash wq insertion if file is a regular file */
610 unsigned hash_reg_file : 1;
611 /* unbound wq insertion if file is a non-regular file */
612 unsigned unbound_nonreg_file : 1;
613 /* opcode is not supported by this kernel */
614 unsigned not_supported : 1;
615 /* needs file table */
616 unsigned file_table : 1;
617 };
618
619 static const struct io_op_def io_op_defs[] = {
620 [IORING_OP_NOP] = {},
621 [IORING_OP_READV] = {
622 .async_ctx = 1,
623 .needs_mm = 1,
624 .needs_file = 1,
625 .unbound_nonreg_file = 1,
626 },
627 [IORING_OP_WRITEV] = {
628 .async_ctx = 1,
629 .needs_mm = 1,
630 .needs_file = 1,
631 .hash_reg_file = 1,
632 .unbound_nonreg_file = 1,
633 },
634 [IORING_OP_FSYNC] = {
635 .needs_file = 1,
636 },
637 [IORING_OP_READ_FIXED] = {
638 .needs_file = 1,
639 .unbound_nonreg_file = 1,
640 },
641 [IORING_OP_WRITE_FIXED] = {
642 .needs_file = 1,
643 .hash_reg_file = 1,
644 .unbound_nonreg_file = 1,
645 },
646 [IORING_OP_POLL_ADD] = {
647 .needs_file = 1,
648 .unbound_nonreg_file = 1,
649 },
650 [IORING_OP_POLL_REMOVE] = {},
651 [IORING_OP_SYNC_FILE_RANGE] = {
652 .needs_file = 1,
653 },
654 [IORING_OP_SENDMSG] = {
655 .async_ctx = 1,
656 .needs_mm = 1,
657 .needs_file = 1,
658 .unbound_nonreg_file = 1,
659 },
660 [IORING_OP_RECVMSG] = {
661 .async_ctx = 1,
662 .needs_mm = 1,
663 .needs_file = 1,
664 .unbound_nonreg_file = 1,
665 },
666 [IORING_OP_TIMEOUT] = {
667 .async_ctx = 1,
668 .needs_mm = 1,
669 },
670 [IORING_OP_TIMEOUT_REMOVE] = {},
671 [IORING_OP_ACCEPT] = {
672 .needs_mm = 1,
673 .needs_file = 1,
674 .unbound_nonreg_file = 1,
675 .file_table = 1,
676 },
677 [IORING_OP_ASYNC_CANCEL] = {},
678 [IORING_OP_LINK_TIMEOUT] = {
679 .async_ctx = 1,
680 .needs_mm = 1,
681 },
682 [IORING_OP_CONNECT] = {
683 .async_ctx = 1,
684 .needs_mm = 1,
685 .needs_file = 1,
686 .unbound_nonreg_file = 1,
687 },
688 [IORING_OP_FALLOCATE] = {
689 .needs_file = 1,
690 },
691 [IORING_OP_OPENAT] = {
692 .needs_file = 1,
693 .fd_non_neg = 1,
694 .file_table = 1,
695 },
696 [IORING_OP_CLOSE] = {
697 .needs_file = 1,
698 .file_table = 1,
699 },
700 [IORING_OP_FILES_UPDATE] = {
701 .needs_mm = 1,
702 .file_table = 1,
703 },
704 [IORING_OP_STATX] = {
705 .needs_mm = 1,
706 .needs_file = 1,
707 .fd_non_neg = 1,
708 },
709 [IORING_OP_READ] = {
710 .needs_mm = 1,
711 .needs_file = 1,
712 .unbound_nonreg_file = 1,
713 },
714 [IORING_OP_WRITE] = {
715 .needs_mm = 1,
716 .needs_file = 1,
717 .unbound_nonreg_file = 1,
718 },
719 [IORING_OP_FADVISE] = {
720 .needs_file = 1,
721 },
722 [IORING_OP_MADVISE] = {
723 .needs_mm = 1,
724 },
725 [IORING_OP_SEND] = {
726 .needs_mm = 1,
727 .needs_file = 1,
728 .unbound_nonreg_file = 1,
729 },
730 [IORING_OP_RECV] = {
731 .needs_mm = 1,
732 .needs_file = 1,
733 .unbound_nonreg_file = 1,
734 },
735 [IORING_OP_OPENAT2] = {
736 .needs_file = 1,
737 .fd_non_neg = 1,
738 .file_table = 1,
739 },
740 [IORING_OP_EPOLL_CTL] = {
741 .unbound_nonreg_file = 1,
742 .file_table = 1,
743 },
744 };
745
746 static void io_wq_submit_work(struct io_wq_work **workptr);
747 static void io_cqring_fill_event(struct io_kiocb *req, long res);
748 static void io_put_req(struct io_kiocb *req);
749 static void __io_double_put_req(struct io_kiocb *req);
750 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
751 static void io_queue_linked_timeout(struct io_kiocb *req);
752 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
753 struct io_uring_files_update *ip,
754 unsigned nr_args);
755 static int io_grab_files(struct io_kiocb *req);
756 static void io_ring_file_ref_flush(struct fixed_file_data *data);
757
758 static struct kmem_cache *req_cachep;
759
760 static const struct file_operations io_uring_fops;
761
762 struct sock *io_uring_get_socket(struct file *file)
763 {
764 #if defined(CONFIG_UNIX)
765 if (file->f_op == &io_uring_fops) {
766 struct io_ring_ctx *ctx = file->private_data;
767
768 return ctx->ring_sock->sk;
769 }
770 #endif
771 return NULL;
772 }
773 EXPORT_SYMBOL(io_uring_get_socket);
774
775 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
776 {
777 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
778
779 complete(&ctx->completions[0]);
780 }
781
782 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
783 {
784 struct io_ring_ctx *ctx;
785 int hash_bits;
786
787 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
788 if (!ctx)
789 return NULL;
790
791 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
792 if (!ctx->fallback_req)
793 goto err;
794
795 ctx->completions = kmalloc(2 * sizeof(struct completion), GFP_KERNEL);
796 if (!ctx->completions)
797 goto err;
798
799 /*
800 * Use 5 bits less than the max cq entries, that should give us around
801 * 32 entries per hash list if totally full and uniformly spread.
802 */
803 hash_bits = ilog2(p->cq_entries);
804 hash_bits -= 5;
805 if (hash_bits <= 0)
806 hash_bits = 1;
807 ctx->cancel_hash_bits = hash_bits;
808 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
809 GFP_KERNEL);
810 if (!ctx->cancel_hash)
811 goto err;
812 __hash_init(ctx->cancel_hash, 1U << hash_bits);
813
814 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
815 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
816 goto err;
817
818 ctx->flags = p->flags;
819 init_waitqueue_head(&ctx->cq_wait);
820 INIT_LIST_HEAD(&ctx->cq_overflow_list);
821 init_completion(&ctx->completions[0]);
822 init_completion(&ctx->completions[1]);
823 idr_init(&ctx->personality_idr);
824 mutex_init(&ctx->uring_lock);
825 init_waitqueue_head(&ctx->wait);
826 spin_lock_init(&ctx->completion_lock);
827 init_llist_head(&ctx->poll_llist);
828 INIT_LIST_HEAD(&ctx->poll_list);
829 INIT_LIST_HEAD(&ctx->defer_list);
830 INIT_LIST_HEAD(&ctx->timeout_list);
831 init_waitqueue_head(&ctx->inflight_wait);
832 spin_lock_init(&ctx->inflight_lock);
833 INIT_LIST_HEAD(&ctx->inflight_list);
834 return ctx;
835 err:
836 if (ctx->fallback_req)
837 kmem_cache_free(req_cachep, ctx->fallback_req);
838 kfree(ctx->completions);
839 kfree(ctx->cancel_hash);
840 kfree(ctx);
841 return NULL;
842 }
843
844 static inline bool __req_need_defer(struct io_kiocb *req)
845 {
846 struct io_ring_ctx *ctx = req->ctx;
847
848 return req->sequence != ctx->cached_cq_tail + ctx->cached_sq_dropped
849 + atomic_read(&ctx->cached_cq_overflow);
850 }
851
852 static inline bool req_need_defer(struct io_kiocb *req)
853 {
854 if (unlikely(req->flags & REQ_F_IO_DRAIN))
855 return __req_need_defer(req);
856
857 return false;
858 }
859
860 static struct io_kiocb *io_get_deferred_req(struct io_ring_ctx *ctx)
861 {
862 struct io_kiocb *req;
863
864 req = list_first_entry_or_null(&ctx->defer_list, struct io_kiocb, list);
865 if (req && !req_need_defer(req)) {
866 list_del_init(&req->list);
867 return req;
868 }
869
870 return NULL;
871 }
872
873 static struct io_kiocb *io_get_timeout_req(struct io_ring_ctx *ctx)
874 {
875 struct io_kiocb *req;
876
877 req = list_first_entry_or_null(&ctx->timeout_list, struct io_kiocb, list);
878 if (req) {
879 if (req->flags & REQ_F_TIMEOUT_NOSEQ)
880 return NULL;
881 if (!__req_need_defer(req)) {
882 list_del_init(&req->list);
883 return req;
884 }
885 }
886
887 return NULL;
888 }
889
890 static void __io_commit_cqring(struct io_ring_ctx *ctx)
891 {
892 struct io_rings *rings = ctx->rings;
893
894 /* order cqe stores with ring update */
895 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
896
897 if (wq_has_sleeper(&ctx->cq_wait)) {
898 wake_up_interruptible(&ctx->cq_wait);
899 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
900 }
901 }
902
903 static inline void io_req_work_grab_env(struct io_kiocb *req,
904 const struct io_op_def *def)
905 {
906 if (!req->work.mm && def->needs_mm) {
907 mmgrab(current->mm);
908 req->work.mm = current->mm;
909 }
910 if (!req->work.creds)
911 req->work.creds = get_current_cred();
912 }
913
914 static inline void io_req_work_drop_env(struct io_kiocb *req)
915 {
916 if (req->work.mm) {
917 mmdrop(req->work.mm);
918 req->work.mm = NULL;
919 }
920 if (req->work.creds) {
921 put_cred(req->work.creds);
922 req->work.creds = NULL;
923 }
924 }
925
926 static inline bool io_prep_async_work(struct io_kiocb *req,
927 struct io_kiocb **link)
928 {
929 const struct io_op_def *def = &io_op_defs[req->opcode];
930 bool do_hashed = false;
931
932 if (req->flags & REQ_F_ISREG) {
933 if (def->hash_reg_file)
934 do_hashed = true;
935 } else {
936 if (def->unbound_nonreg_file)
937 req->work.flags |= IO_WQ_WORK_UNBOUND;
938 }
939
940 io_req_work_grab_env(req, def);
941
942 *link = io_prep_linked_timeout(req);
943 return do_hashed;
944 }
945
946 static inline void io_queue_async_work(struct io_kiocb *req)
947 {
948 struct io_ring_ctx *ctx = req->ctx;
949 struct io_kiocb *link;
950 bool do_hashed;
951
952 do_hashed = io_prep_async_work(req, &link);
953
954 trace_io_uring_queue_async_work(ctx, do_hashed, req, &req->work,
955 req->flags);
956 if (!do_hashed) {
957 io_wq_enqueue(ctx->io_wq, &req->work);
958 } else {
959 io_wq_enqueue_hashed(ctx->io_wq, &req->work,
960 file_inode(req->file));
961 }
962
963 if (link)
964 io_queue_linked_timeout(link);
965 }
966
967 static void io_kill_timeout(struct io_kiocb *req)
968 {
969 int ret;
970
971 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
972 if (ret != -1) {
973 atomic_inc(&req->ctx->cq_timeouts);
974 list_del_init(&req->list);
975 io_cqring_fill_event(req, 0);
976 io_put_req(req);
977 }
978 }
979
980 static void io_kill_timeouts(struct io_ring_ctx *ctx)
981 {
982 struct io_kiocb *req, *tmp;
983
984 spin_lock_irq(&ctx->completion_lock);
985 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, list)
986 io_kill_timeout(req);
987 spin_unlock_irq(&ctx->completion_lock);
988 }
989
990 static void io_commit_cqring(struct io_ring_ctx *ctx)
991 {
992 struct io_kiocb *req;
993
994 while ((req = io_get_timeout_req(ctx)) != NULL)
995 io_kill_timeout(req);
996
997 __io_commit_cqring(ctx);
998
999 while ((req = io_get_deferred_req(ctx)) != NULL)
1000 io_queue_async_work(req);
1001 }
1002
1003 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1004 {
1005 struct io_rings *rings = ctx->rings;
1006 unsigned tail;
1007
1008 tail = ctx->cached_cq_tail;
1009 /*
1010 * writes to the cq entry need to come after reading head; the
1011 * control dependency is enough as we're using WRITE_ONCE to
1012 * fill the cq entry
1013 */
1014 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1015 return NULL;
1016
1017 ctx->cached_cq_tail++;
1018 return &rings->cqes[tail & ctx->cq_mask];
1019 }
1020
1021 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1022 {
1023 if (!ctx->cq_ev_fd)
1024 return false;
1025 if (!ctx->eventfd_async)
1026 return true;
1027 return io_wq_current_is_worker() || in_interrupt();
1028 }
1029
1030 static void __io_cqring_ev_posted(struct io_ring_ctx *ctx, bool trigger_ev)
1031 {
1032 if (waitqueue_active(&ctx->wait))
1033 wake_up(&ctx->wait);
1034 if (waitqueue_active(&ctx->sqo_wait))
1035 wake_up(&ctx->sqo_wait);
1036 if (trigger_ev)
1037 eventfd_signal(ctx->cq_ev_fd, 1);
1038 }
1039
1040 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1041 {
1042 __io_cqring_ev_posted(ctx, io_should_trigger_evfd(ctx));
1043 }
1044
1045 /* Returns true if there are no backlogged entries after the flush */
1046 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1047 {
1048 struct io_rings *rings = ctx->rings;
1049 struct io_uring_cqe *cqe;
1050 struct io_kiocb *req;
1051 unsigned long flags;
1052 LIST_HEAD(list);
1053
1054 if (!force) {
1055 if (list_empty_careful(&ctx->cq_overflow_list))
1056 return true;
1057 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1058 rings->cq_ring_entries))
1059 return false;
1060 }
1061
1062 spin_lock_irqsave(&ctx->completion_lock, flags);
1063
1064 /* if force is set, the ring is going away. always drop after that */
1065 if (force)
1066 ctx->cq_overflow_flushed = 1;
1067
1068 cqe = NULL;
1069 while (!list_empty(&ctx->cq_overflow_list)) {
1070 cqe = io_get_cqring(ctx);
1071 if (!cqe && !force)
1072 break;
1073
1074 req = list_first_entry(&ctx->cq_overflow_list, struct io_kiocb,
1075 list);
1076 list_move(&req->list, &list);
1077 if (cqe) {
1078 WRITE_ONCE(cqe->user_data, req->user_data);
1079 WRITE_ONCE(cqe->res, req->result);
1080 WRITE_ONCE(cqe->flags, 0);
1081 } else {
1082 WRITE_ONCE(ctx->rings->cq_overflow,
1083 atomic_inc_return(&ctx->cached_cq_overflow));
1084 }
1085 }
1086
1087 io_commit_cqring(ctx);
1088 if (cqe) {
1089 clear_bit(0, &ctx->sq_check_overflow);
1090 clear_bit(0, &ctx->cq_check_overflow);
1091 }
1092 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1093 io_cqring_ev_posted(ctx);
1094
1095 while (!list_empty(&list)) {
1096 req = list_first_entry(&list, struct io_kiocb, list);
1097 list_del(&req->list);
1098 io_put_req(req);
1099 }
1100
1101 return cqe != NULL;
1102 }
1103
1104 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1105 {
1106 struct io_ring_ctx *ctx = req->ctx;
1107 struct io_uring_cqe *cqe;
1108
1109 trace_io_uring_complete(ctx, req->user_data, res);
1110
1111 /*
1112 * If we can't get a cq entry, userspace overflowed the
1113 * submission (by quite a lot). Increment the overflow count in
1114 * the ring.
1115 */
1116 cqe = io_get_cqring(ctx);
1117 if (likely(cqe)) {
1118 WRITE_ONCE(cqe->user_data, req->user_data);
1119 WRITE_ONCE(cqe->res, res);
1120 WRITE_ONCE(cqe->flags, 0);
1121 } else if (ctx->cq_overflow_flushed) {
1122 WRITE_ONCE(ctx->rings->cq_overflow,
1123 atomic_inc_return(&ctx->cached_cq_overflow));
1124 } else {
1125 if (list_empty(&ctx->cq_overflow_list)) {
1126 set_bit(0, &ctx->sq_check_overflow);
1127 set_bit(0, &ctx->cq_check_overflow);
1128 }
1129 refcount_inc(&req->refs);
1130 req->result = res;
1131 list_add_tail(&req->list, &ctx->cq_overflow_list);
1132 }
1133 }
1134
1135 static void io_cqring_add_event(struct io_kiocb *req, long res)
1136 {
1137 struct io_ring_ctx *ctx = req->ctx;
1138 unsigned long flags;
1139
1140 spin_lock_irqsave(&ctx->completion_lock, flags);
1141 io_cqring_fill_event(req, res);
1142 io_commit_cqring(ctx);
1143 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1144
1145 io_cqring_ev_posted(ctx);
1146 }
1147
1148 static inline bool io_is_fallback_req(struct io_kiocb *req)
1149 {
1150 return req == (struct io_kiocb *)
1151 ((unsigned long) req->ctx->fallback_req & ~1UL);
1152 }
1153
1154 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1155 {
1156 struct io_kiocb *req;
1157
1158 req = ctx->fallback_req;
1159 if (!test_and_set_bit_lock(0, (unsigned long *) ctx->fallback_req))
1160 return req;
1161
1162 return NULL;
1163 }
1164
1165 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
1166 struct io_submit_state *state)
1167 {
1168 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1169 struct io_kiocb *req;
1170
1171 if (!state) {
1172 req = kmem_cache_alloc(req_cachep, gfp);
1173 if (unlikely(!req))
1174 goto fallback;
1175 } else if (!state->free_reqs) {
1176 size_t sz;
1177 int ret;
1178
1179 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1180 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1181
1182 /*
1183 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1184 * retry single alloc to be on the safe side.
1185 */
1186 if (unlikely(ret <= 0)) {
1187 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1188 if (!state->reqs[0])
1189 goto fallback;
1190 ret = 1;
1191 }
1192 state->free_reqs = ret - 1;
1193 req = state->reqs[ret - 1];
1194 } else {
1195 state->free_reqs--;
1196 req = state->reqs[state->free_reqs];
1197 }
1198
1199 got_it:
1200 req->io = NULL;
1201 req->file = NULL;
1202 req->ctx = ctx;
1203 req->flags = 0;
1204 /* one is dropped after submission, the other at completion */
1205 refcount_set(&req->refs, 2);
1206 req->result = 0;
1207 INIT_IO_WORK(&req->work, io_wq_submit_work);
1208 return req;
1209 fallback:
1210 req = io_get_fallback_req(ctx);
1211 if (req)
1212 goto got_it;
1213 percpu_ref_put(&ctx->refs);
1214 return NULL;
1215 }
1216
1217 static void __io_req_do_free(struct io_kiocb *req)
1218 {
1219 if (likely(!io_is_fallback_req(req)))
1220 kmem_cache_free(req_cachep, req);
1221 else
1222 clear_bit_unlock(0, (unsigned long *) req->ctx->fallback_req);
1223 }
1224
1225 static void __io_req_aux_free(struct io_kiocb *req)
1226 {
1227 struct io_ring_ctx *ctx = req->ctx;
1228
1229 kfree(req->io);
1230 if (req->file) {
1231 if (req->flags & REQ_F_FIXED_FILE)
1232 percpu_ref_put(&ctx->file_data->refs);
1233 else
1234 fput(req->file);
1235 }
1236
1237 io_req_work_drop_env(req);
1238 }
1239
1240 static void __io_free_req(struct io_kiocb *req)
1241 {
1242 __io_req_aux_free(req);
1243
1244 if (req->flags & REQ_F_INFLIGHT) {
1245 struct io_ring_ctx *ctx = req->ctx;
1246 unsigned long flags;
1247
1248 spin_lock_irqsave(&ctx->inflight_lock, flags);
1249 list_del(&req->inflight_entry);
1250 if (waitqueue_active(&ctx->inflight_wait))
1251 wake_up(&ctx->inflight_wait);
1252 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1253 }
1254
1255 percpu_ref_put(&req->ctx->refs);
1256 __io_req_do_free(req);
1257 }
1258
1259 struct req_batch {
1260 void *reqs[IO_IOPOLL_BATCH];
1261 int to_free;
1262 int need_iter;
1263 };
1264
1265 static void io_free_req_many(struct io_ring_ctx *ctx, struct req_batch *rb)
1266 {
1267 int fixed_refs = rb->to_free;
1268
1269 if (!rb->to_free)
1270 return;
1271 if (rb->need_iter) {
1272 int i, inflight = 0;
1273 unsigned long flags;
1274
1275 fixed_refs = 0;
1276 for (i = 0; i < rb->to_free; i++) {
1277 struct io_kiocb *req = rb->reqs[i];
1278
1279 if (req->flags & REQ_F_FIXED_FILE) {
1280 req->file = NULL;
1281 fixed_refs++;
1282 }
1283 if (req->flags & REQ_F_INFLIGHT)
1284 inflight++;
1285 __io_req_aux_free(req);
1286 }
1287 if (!inflight)
1288 goto do_free;
1289
1290 spin_lock_irqsave(&ctx->inflight_lock, flags);
1291 for (i = 0; i < rb->to_free; i++) {
1292 struct io_kiocb *req = rb->reqs[i];
1293
1294 if (req->flags & REQ_F_INFLIGHT) {
1295 list_del(&req->inflight_entry);
1296 if (!--inflight)
1297 break;
1298 }
1299 }
1300 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1301
1302 if (waitqueue_active(&ctx->inflight_wait))
1303 wake_up(&ctx->inflight_wait);
1304 }
1305 do_free:
1306 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
1307 if (fixed_refs)
1308 percpu_ref_put_many(&ctx->file_data->refs, fixed_refs);
1309 percpu_ref_put_many(&ctx->refs, rb->to_free);
1310 rb->to_free = rb->need_iter = 0;
1311 }
1312
1313 static bool io_link_cancel_timeout(struct io_kiocb *req)
1314 {
1315 struct io_ring_ctx *ctx = req->ctx;
1316 int ret;
1317
1318 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
1319 if (ret != -1) {
1320 io_cqring_fill_event(req, -ECANCELED);
1321 io_commit_cqring(ctx);
1322 req->flags &= ~REQ_F_LINK;
1323 io_put_req(req);
1324 return true;
1325 }
1326
1327 return false;
1328 }
1329
1330 static void io_req_link_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1331 {
1332 struct io_ring_ctx *ctx = req->ctx;
1333 bool wake_ev = false;
1334
1335 /* Already got next link */
1336 if (req->flags & REQ_F_LINK_NEXT)
1337 return;
1338
1339 /*
1340 * The list should never be empty when we are called here. But could
1341 * potentially happen if the chain is messed up, check to be on the
1342 * safe side.
1343 */
1344 while (!list_empty(&req->link_list)) {
1345 struct io_kiocb *nxt = list_first_entry(&req->link_list,
1346 struct io_kiocb, link_list);
1347
1348 if (unlikely((req->flags & REQ_F_LINK_TIMEOUT) &&
1349 (nxt->flags & REQ_F_TIMEOUT))) {
1350 list_del_init(&nxt->link_list);
1351 wake_ev |= io_link_cancel_timeout(nxt);
1352 req->flags &= ~REQ_F_LINK_TIMEOUT;
1353 continue;
1354 }
1355
1356 list_del_init(&req->link_list);
1357 if (!list_empty(&nxt->link_list))
1358 nxt->flags |= REQ_F_LINK;
1359 *nxtptr = nxt;
1360 break;
1361 }
1362
1363 req->flags |= REQ_F_LINK_NEXT;
1364 if (wake_ev)
1365 io_cqring_ev_posted(ctx);
1366 }
1367
1368 /*
1369 * Called if REQ_F_LINK is set, and we fail the head request
1370 */
1371 static void io_fail_links(struct io_kiocb *req)
1372 {
1373 struct io_ring_ctx *ctx = req->ctx;
1374 unsigned long flags;
1375
1376 spin_lock_irqsave(&ctx->completion_lock, flags);
1377
1378 while (!list_empty(&req->link_list)) {
1379 struct io_kiocb *link = list_first_entry(&req->link_list,
1380 struct io_kiocb, link_list);
1381
1382 list_del_init(&link->link_list);
1383 trace_io_uring_fail_link(req, link);
1384
1385 if ((req->flags & REQ_F_LINK_TIMEOUT) &&
1386 link->opcode == IORING_OP_LINK_TIMEOUT) {
1387 io_link_cancel_timeout(link);
1388 } else {
1389 io_cqring_fill_event(link, -ECANCELED);
1390 __io_double_put_req(link);
1391 }
1392 req->flags &= ~REQ_F_LINK_TIMEOUT;
1393 }
1394
1395 io_commit_cqring(ctx);
1396 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1397 io_cqring_ev_posted(ctx);
1398 }
1399
1400 static void io_req_find_next(struct io_kiocb *req, struct io_kiocb **nxt)
1401 {
1402 if (likely(!(req->flags & REQ_F_LINK)))
1403 return;
1404
1405 /*
1406 * If LINK is set, we have dependent requests in this chain. If we
1407 * didn't fail this request, queue the first one up, moving any other
1408 * dependencies to the next request. In case of failure, fail the rest
1409 * of the chain.
1410 */
1411 if (req->flags & REQ_F_FAIL_LINK) {
1412 io_fail_links(req);
1413 } else if ((req->flags & (REQ_F_LINK_TIMEOUT | REQ_F_COMP_LOCKED)) ==
1414 REQ_F_LINK_TIMEOUT) {
1415 struct io_ring_ctx *ctx = req->ctx;
1416 unsigned long flags;
1417
1418 /*
1419 * If this is a timeout link, we could be racing with the
1420 * timeout timer. Grab the completion lock for this case to
1421 * protect against that.
1422 */
1423 spin_lock_irqsave(&ctx->completion_lock, flags);
1424 io_req_link_next(req, nxt);
1425 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1426 } else {
1427 io_req_link_next(req, nxt);
1428 }
1429 }
1430
1431 static void io_free_req(struct io_kiocb *req)
1432 {
1433 struct io_kiocb *nxt = NULL;
1434
1435 io_req_find_next(req, &nxt);
1436 __io_free_req(req);
1437
1438 if (nxt)
1439 io_queue_async_work(nxt);
1440 }
1441
1442 /*
1443 * Drop reference to request, return next in chain (if there is one) if this
1444 * was the last reference to this request.
1445 */
1446 __attribute__((nonnull))
1447 static void io_put_req_find_next(struct io_kiocb *req, struct io_kiocb **nxtptr)
1448 {
1449 io_req_find_next(req, nxtptr);
1450
1451 if (refcount_dec_and_test(&req->refs))
1452 __io_free_req(req);
1453 }
1454
1455 static void io_put_req(struct io_kiocb *req)
1456 {
1457 if (refcount_dec_and_test(&req->refs))
1458 io_free_req(req);
1459 }
1460
1461 /*
1462 * Must only be used if we don't need to care about links, usually from
1463 * within the completion handling itself.
1464 */
1465 static void __io_double_put_req(struct io_kiocb *req)
1466 {
1467 /* drop both submit and complete references */
1468 if (refcount_sub_and_test(2, &req->refs))
1469 __io_free_req(req);
1470 }
1471
1472 static void io_double_put_req(struct io_kiocb *req)
1473 {
1474 /* drop both submit and complete references */
1475 if (refcount_sub_and_test(2, &req->refs))
1476 io_free_req(req);
1477 }
1478
1479 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
1480 {
1481 struct io_rings *rings = ctx->rings;
1482
1483 if (test_bit(0, &ctx->cq_check_overflow)) {
1484 /*
1485 * noflush == true is from the waitqueue handler, just ensure
1486 * we wake up the task, and the next invocation will flush the
1487 * entries. We cannot safely to it from here.
1488 */
1489 if (noflush && !list_empty(&ctx->cq_overflow_list))
1490 return -1U;
1491
1492 io_cqring_overflow_flush(ctx, false);
1493 }
1494
1495 /* See comment at the top of this file */
1496 smp_rmb();
1497 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
1498 }
1499
1500 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
1501 {
1502 struct io_rings *rings = ctx->rings;
1503
1504 /* make sure SQ entry isn't read before tail */
1505 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
1506 }
1507
1508 static inline bool io_req_multi_free(struct req_batch *rb, struct io_kiocb *req)
1509 {
1510 if ((req->flags & REQ_F_LINK) || io_is_fallback_req(req))
1511 return false;
1512
1513 if (!(req->flags & REQ_F_FIXED_FILE) || req->io)
1514 rb->need_iter++;
1515
1516 rb->reqs[rb->to_free++] = req;
1517 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
1518 io_free_req_many(req->ctx, rb);
1519 return true;
1520 }
1521
1522 /*
1523 * Find and free completed poll iocbs
1524 */
1525 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
1526 struct list_head *done)
1527 {
1528 struct req_batch rb;
1529 struct io_kiocb *req;
1530
1531 rb.to_free = rb.need_iter = 0;
1532 while (!list_empty(done)) {
1533 req = list_first_entry(done, struct io_kiocb, list);
1534 list_del(&req->list);
1535
1536 io_cqring_fill_event(req, req->result);
1537 (*nr_events)++;
1538
1539 if (refcount_dec_and_test(&req->refs) &&
1540 !io_req_multi_free(&rb, req))
1541 io_free_req(req);
1542 }
1543
1544 io_commit_cqring(ctx);
1545 io_free_req_many(ctx, &rb);
1546 }
1547
1548 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
1549 long min)
1550 {
1551 struct io_kiocb *req, *tmp;
1552 LIST_HEAD(done);
1553 bool spin;
1554 int ret;
1555
1556 /*
1557 * Only spin for completions if we don't have multiple devices hanging
1558 * off our complete list, and we're under the requested amount.
1559 */
1560 spin = !ctx->poll_multi_file && *nr_events < min;
1561
1562 ret = 0;
1563 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
1564 struct kiocb *kiocb = &req->rw.kiocb;
1565
1566 /*
1567 * Move completed entries to our local list. If we find a
1568 * request that requires polling, break out and complete
1569 * the done list first, if we have entries there.
1570 */
1571 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
1572 list_move_tail(&req->list, &done);
1573 continue;
1574 }
1575 if (!list_empty(&done))
1576 break;
1577
1578 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
1579 if (ret < 0)
1580 break;
1581
1582 if (ret && spin)
1583 spin = false;
1584 ret = 0;
1585 }
1586
1587 if (!list_empty(&done))
1588 io_iopoll_complete(ctx, nr_events, &done);
1589
1590 return ret;
1591 }
1592
1593 /*
1594 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
1595 * non-spinning poll check - we'll still enter the driver poll loop, but only
1596 * as a non-spinning completion check.
1597 */
1598 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
1599 long min)
1600 {
1601 while (!list_empty(&ctx->poll_list) && !need_resched()) {
1602 int ret;
1603
1604 ret = io_do_iopoll(ctx, nr_events, min);
1605 if (ret < 0)
1606 return ret;
1607 if (!min || *nr_events >= min)
1608 return 0;
1609 }
1610
1611 return 1;
1612 }
1613
1614 /*
1615 * We can't just wait for polled events to come to us, we have to actively
1616 * find and complete them.
1617 */
1618 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
1619 {
1620 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1621 return;
1622
1623 mutex_lock(&ctx->uring_lock);
1624 while (!list_empty(&ctx->poll_list)) {
1625 unsigned int nr_events = 0;
1626
1627 io_iopoll_getevents(ctx, &nr_events, 1);
1628
1629 /*
1630 * Ensure we allow local-to-the-cpu processing to take place,
1631 * in this case we need to ensure that we reap all events.
1632 */
1633 cond_resched();
1634 }
1635 mutex_unlock(&ctx->uring_lock);
1636 }
1637
1638 static int __io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1639 long min)
1640 {
1641 int iters = 0, ret = 0;
1642
1643 do {
1644 int tmin = 0;
1645
1646 /*
1647 * Don't enter poll loop if we already have events pending.
1648 * If we do, we can potentially be spinning for commands that
1649 * already triggered a CQE (eg in error).
1650 */
1651 if (io_cqring_events(ctx, false))
1652 break;
1653
1654 /*
1655 * If a submit got punted to a workqueue, we can have the
1656 * application entering polling for a command before it gets
1657 * issued. That app will hold the uring_lock for the duration
1658 * of the poll right here, so we need to take a breather every
1659 * now and then to ensure that the issue has a chance to add
1660 * the poll to the issued list. Otherwise we can spin here
1661 * forever, while the workqueue is stuck trying to acquire the
1662 * very same mutex.
1663 */
1664 if (!(++iters & 7)) {
1665 mutex_unlock(&ctx->uring_lock);
1666 mutex_lock(&ctx->uring_lock);
1667 }
1668
1669 if (*nr_events < min)
1670 tmin = min - *nr_events;
1671
1672 ret = io_iopoll_getevents(ctx, nr_events, tmin);
1673 if (ret <= 0)
1674 break;
1675 ret = 0;
1676 } while (min && !*nr_events && !need_resched());
1677
1678 return ret;
1679 }
1680
1681 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
1682 long min)
1683 {
1684 int ret;
1685
1686 /*
1687 * We disallow the app entering submit/complete with polling, but we
1688 * still need to lock the ring to prevent racing with polled issue
1689 * that got punted to a workqueue.
1690 */
1691 mutex_lock(&ctx->uring_lock);
1692 ret = __io_iopoll_check(ctx, nr_events, min);
1693 mutex_unlock(&ctx->uring_lock);
1694 return ret;
1695 }
1696
1697 static void kiocb_end_write(struct io_kiocb *req)
1698 {
1699 /*
1700 * Tell lockdep we inherited freeze protection from submission
1701 * thread.
1702 */
1703 if (req->flags & REQ_F_ISREG) {
1704 struct inode *inode = file_inode(req->file);
1705
1706 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1707 }
1708 file_end_write(req->file);
1709 }
1710
1711 static inline void req_set_fail_links(struct io_kiocb *req)
1712 {
1713 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1714 req->flags |= REQ_F_FAIL_LINK;
1715 }
1716
1717 static void io_complete_rw_common(struct kiocb *kiocb, long res)
1718 {
1719 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1720
1721 if (kiocb->ki_flags & IOCB_WRITE)
1722 kiocb_end_write(req);
1723
1724 if (res != req->result)
1725 req_set_fail_links(req);
1726 io_cqring_add_event(req, res);
1727 }
1728
1729 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
1730 {
1731 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1732
1733 io_complete_rw_common(kiocb, res);
1734 io_put_req(req);
1735 }
1736
1737 static struct io_kiocb *__io_complete_rw(struct kiocb *kiocb, long res)
1738 {
1739 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1740 struct io_kiocb *nxt = NULL;
1741
1742 io_complete_rw_common(kiocb, res);
1743 io_put_req_find_next(req, &nxt);
1744
1745 return nxt;
1746 }
1747
1748 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
1749 {
1750 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1751
1752 if (kiocb->ki_flags & IOCB_WRITE)
1753 kiocb_end_write(req);
1754
1755 if (res != req->result)
1756 req_set_fail_links(req);
1757 req->result = res;
1758 if (res != -EAGAIN)
1759 req->flags |= REQ_F_IOPOLL_COMPLETED;
1760 }
1761
1762 /*
1763 * After the iocb has been issued, it's safe to be found on the poll list.
1764 * Adding the kiocb to the list AFTER submission ensures that we don't
1765 * find it from a io_iopoll_getevents() thread before the issuer is done
1766 * accessing the kiocb cookie.
1767 */
1768 static void io_iopoll_req_issued(struct io_kiocb *req)
1769 {
1770 struct io_ring_ctx *ctx = req->ctx;
1771
1772 /*
1773 * Track whether we have multiple files in our lists. This will impact
1774 * how we do polling eventually, not spinning if we're on potentially
1775 * different devices.
1776 */
1777 if (list_empty(&ctx->poll_list)) {
1778 ctx->poll_multi_file = false;
1779 } else if (!ctx->poll_multi_file) {
1780 struct io_kiocb *list_req;
1781
1782 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
1783 list);
1784 if (list_req->file != req->file)
1785 ctx->poll_multi_file = true;
1786 }
1787
1788 /*
1789 * For fast devices, IO may have already completed. If it has, add
1790 * it to the front so we find it first.
1791 */
1792 if (req->flags & REQ_F_IOPOLL_COMPLETED)
1793 list_add(&req->list, &ctx->poll_list);
1794 else
1795 list_add_tail(&req->list, &ctx->poll_list);
1796 }
1797
1798 static void io_file_put(struct io_submit_state *state)
1799 {
1800 if (state->file) {
1801 int diff = state->has_refs - state->used_refs;
1802
1803 if (diff)
1804 fput_many(state->file, diff);
1805 state->file = NULL;
1806 }
1807 }
1808
1809 /*
1810 * Get as many references to a file as we have IOs left in this submission,
1811 * assuming most submissions are for one file, or at least that each file
1812 * has more than one submission.
1813 */
1814 static struct file *io_file_get(struct io_submit_state *state, int fd)
1815 {
1816 if (!state)
1817 return fget(fd);
1818
1819 if (state->file) {
1820 if (state->fd == fd) {
1821 state->used_refs++;
1822 state->ios_left--;
1823 return state->file;
1824 }
1825 io_file_put(state);
1826 }
1827 state->file = fget_many(fd, state->ios_left);
1828 if (!state->file)
1829 return NULL;
1830
1831 state->fd = fd;
1832 state->has_refs = state->ios_left;
1833 state->used_refs = 1;
1834 state->ios_left--;
1835 return state->file;
1836 }
1837
1838 /*
1839 * If we tracked the file through the SCM inflight mechanism, we could support
1840 * any file. For now, just ensure that anything potentially problematic is done
1841 * inline.
1842 */
1843 static bool io_file_supports_async(struct file *file)
1844 {
1845 umode_t mode = file_inode(file)->i_mode;
1846
1847 if (S_ISBLK(mode) || S_ISCHR(mode) || S_ISSOCK(mode))
1848 return true;
1849 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
1850 return true;
1851
1852 return false;
1853 }
1854
1855 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1856 bool force_nonblock)
1857 {
1858 struct io_ring_ctx *ctx = req->ctx;
1859 struct kiocb *kiocb = &req->rw.kiocb;
1860 unsigned ioprio;
1861 int ret;
1862
1863 if (S_ISREG(file_inode(req->file)->i_mode))
1864 req->flags |= REQ_F_ISREG;
1865
1866 kiocb->ki_pos = READ_ONCE(sqe->off);
1867 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
1868 req->flags |= REQ_F_CUR_POS;
1869 kiocb->ki_pos = req->file->f_pos;
1870 }
1871 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
1872 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
1873 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
1874 if (unlikely(ret))
1875 return ret;
1876
1877 ioprio = READ_ONCE(sqe->ioprio);
1878 if (ioprio) {
1879 ret = ioprio_check_cap(ioprio);
1880 if (ret)
1881 return ret;
1882
1883 kiocb->ki_ioprio = ioprio;
1884 } else
1885 kiocb->ki_ioprio = get_current_ioprio();
1886
1887 /* don't allow async punt if RWF_NOWAIT was requested */
1888 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
1889 (req->file->f_flags & O_NONBLOCK))
1890 req->flags |= REQ_F_NOWAIT;
1891
1892 if (force_nonblock)
1893 kiocb->ki_flags |= IOCB_NOWAIT;
1894
1895 if (ctx->flags & IORING_SETUP_IOPOLL) {
1896 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
1897 !kiocb->ki_filp->f_op->iopoll)
1898 return -EOPNOTSUPP;
1899
1900 kiocb->ki_flags |= IOCB_HIPRI;
1901 kiocb->ki_complete = io_complete_rw_iopoll;
1902 req->result = 0;
1903 } else {
1904 if (kiocb->ki_flags & IOCB_HIPRI)
1905 return -EINVAL;
1906 kiocb->ki_complete = io_complete_rw;
1907 }
1908
1909 req->rw.addr = READ_ONCE(sqe->addr);
1910 req->rw.len = READ_ONCE(sqe->len);
1911 /* we own ->private, reuse it for the buffer index */
1912 req->rw.kiocb.private = (void *) (unsigned long)
1913 READ_ONCE(sqe->buf_index);
1914 return 0;
1915 }
1916
1917 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
1918 {
1919 switch (ret) {
1920 case -EIOCBQUEUED:
1921 break;
1922 case -ERESTARTSYS:
1923 case -ERESTARTNOINTR:
1924 case -ERESTARTNOHAND:
1925 case -ERESTART_RESTARTBLOCK:
1926 /*
1927 * We can't just restart the syscall, since previously
1928 * submitted sqes may already be in progress. Just fail this
1929 * IO with EINTR.
1930 */
1931 ret = -EINTR;
1932 /* fall through */
1933 default:
1934 kiocb->ki_complete(kiocb, ret, 0);
1935 }
1936 }
1937
1938 static void kiocb_done(struct kiocb *kiocb, ssize_t ret, struct io_kiocb **nxt,
1939 bool in_async)
1940 {
1941 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
1942
1943 if (req->flags & REQ_F_CUR_POS)
1944 req->file->f_pos = kiocb->ki_pos;
1945 if (in_async && ret >= 0 && kiocb->ki_complete == io_complete_rw)
1946 *nxt = __io_complete_rw(kiocb, ret);
1947 else
1948 io_rw_done(kiocb, ret);
1949 }
1950
1951 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
1952 struct iov_iter *iter)
1953 {
1954 struct io_ring_ctx *ctx = req->ctx;
1955 size_t len = req->rw.len;
1956 struct io_mapped_ubuf *imu;
1957 unsigned index, buf_index;
1958 size_t offset;
1959 u64 buf_addr;
1960
1961 /* attempt to use fixed buffers without having provided iovecs */
1962 if (unlikely(!ctx->user_bufs))
1963 return -EFAULT;
1964
1965 buf_index = (unsigned long) req->rw.kiocb.private;
1966 if (unlikely(buf_index >= ctx->nr_user_bufs))
1967 return -EFAULT;
1968
1969 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
1970 imu = &ctx->user_bufs[index];
1971 buf_addr = req->rw.addr;
1972
1973 /* overflow */
1974 if (buf_addr + len < buf_addr)
1975 return -EFAULT;
1976 /* not inside the mapped region */
1977 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
1978 return -EFAULT;
1979
1980 /*
1981 * May not be a start of buffer, set size appropriately
1982 * and advance us to the beginning.
1983 */
1984 offset = buf_addr - imu->ubuf;
1985 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
1986
1987 if (offset) {
1988 /*
1989 * Don't use iov_iter_advance() here, as it's really slow for
1990 * using the latter parts of a big fixed buffer - it iterates
1991 * over each segment manually. We can cheat a bit here, because
1992 * we know that:
1993 *
1994 * 1) it's a BVEC iter, we set it up
1995 * 2) all bvecs are PAGE_SIZE in size, except potentially the
1996 * first and last bvec
1997 *
1998 * So just find our index, and adjust the iterator afterwards.
1999 * If the offset is within the first bvec (or the whole first
2000 * bvec, just use iov_iter_advance(). This makes it easier
2001 * since we can just skip the first segment, which may not
2002 * be PAGE_SIZE aligned.
2003 */
2004 const struct bio_vec *bvec = imu->bvec;
2005
2006 if (offset <= bvec->bv_len) {
2007 iov_iter_advance(iter, offset);
2008 } else {
2009 unsigned long seg_skip;
2010
2011 /* skip first vec */
2012 offset -= bvec->bv_len;
2013 seg_skip = 1 + (offset >> PAGE_SHIFT);
2014
2015 iter->bvec = bvec + seg_skip;
2016 iter->nr_segs -= seg_skip;
2017 iter->count -= bvec->bv_len + offset;
2018 iter->iov_offset = offset & ~PAGE_MASK;
2019 }
2020 }
2021
2022 return len;
2023 }
2024
2025 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
2026 struct iovec **iovec, struct iov_iter *iter)
2027 {
2028 void __user *buf = u64_to_user_ptr(req->rw.addr);
2029 size_t sqe_len = req->rw.len;
2030 u8 opcode;
2031
2032 opcode = req->opcode;
2033 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
2034 *iovec = NULL;
2035 return io_import_fixed(req, rw, iter);
2036 }
2037
2038 /* buffer index only valid with fixed read/write */
2039 if (req->rw.kiocb.private)
2040 return -EINVAL;
2041
2042 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
2043 ssize_t ret;
2044 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
2045 *iovec = NULL;
2046 return ret;
2047 }
2048
2049 if (req->io) {
2050 struct io_async_rw *iorw = &req->io->rw;
2051
2052 *iovec = iorw->iov;
2053 iov_iter_init(iter, rw, *iovec, iorw->nr_segs, iorw->size);
2054 if (iorw->iov == iorw->fast_iov)
2055 *iovec = NULL;
2056 return iorw->size;
2057 }
2058
2059 if (!req->has_user)
2060 return -EFAULT;
2061
2062 #ifdef CONFIG_COMPAT
2063 if (req->ctx->compat)
2064 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
2065 iovec, iter);
2066 #endif
2067
2068 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
2069 }
2070
2071 /*
2072 * For files that don't have ->read_iter() and ->write_iter(), handle them
2073 * by looping over ->read() or ->write() manually.
2074 */
2075 static ssize_t loop_rw_iter(int rw, struct file *file, struct kiocb *kiocb,
2076 struct iov_iter *iter)
2077 {
2078 ssize_t ret = 0;
2079
2080 /*
2081 * Don't support polled IO through this interface, and we can't
2082 * support non-blocking either. For the latter, this just causes
2083 * the kiocb to be handled from an async context.
2084 */
2085 if (kiocb->ki_flags & IOCB_HIPRI)
2086 return -EOPNOTSUPP;
2087 if (kiocb->ki_flags & IOCB_NOWAIT)
2088 return -EAGAIN;
2089
2090 while (iov_iter_count(iter)) {
2091 struct iovec iovec;
2092 ssize_t nr;
2093
2094 if (!iov_iter_is_bvec(iter)) {
2095 iovec = iov_iter_iovec(iter);
2096 } else {
2097 /* fixed buffers import bvec */
2098 iovec.iov_base = kmap(iter->bvec->bv_page)
2099 + iter->iov_offset;
2100 iovec.iov_len = min(iter->count,
2101 iter->bvec->bv_len - iter->iov_offset);
2102 }
2103
2104 if (rw == READ) {
2105 nr = file->f_op->read(file, iovec.iov_base,
2106 iovec.iov_len, &kiocb->ki_pos);
2107 } else {
2108 nr = file->f_op->write(file, iovec.iov_base,
2109 iovec.iov_len, &kiocb->ki_pos);
2110 }
2111
2112 if (iov_iter_is_bvec(iter))
2113 kunmap(iter->bvec->bv_page);
2114
2115 if (nr < 0) {
2116 if (!ret)
2117 ret = nr;
2118 break;
2119 }
2120 ret += nr;
2121 if (nr != iovec.iov_len)
2122 break;
2123 iov_iter_advance(iter, nr);
2124 }
2125
2126 return ret;
2127 }
2128
2129 static void io_req_map_rw(struct io_kiocb *req, ssize_t io_size,
2130 struct iovec *iovec, struct iovec *fast_iov,
2131 struct iov_iter *iter)
2132 {
2133 req->io->rw.nr_segs = iter->nr_segs;
2134 req->io->rw.size = io_size;
2135 req->io->rw.iov = iovec;
2136 if (!req->io->rw.iov) {
2137 req->io->rw.iov = req->io->rw.fast_iov;
2138 memcpy(req->io->rw.iov, fast_iov,
2139 sizeof(struct iovec) * iter->nr_segs);
2140 }
2141 }
2142
2143 static int io_alloc_async_ctx(struct io_kiocb *req)
2144 {
2145 if (!io_op_defs[req->opcode].async_ctx)
2146 return 0;
2147 req->io = kmalloc(sizeof(*req->io), GFP_KERNEL);
2148 return req->io == NULL;
2149 }
2150
2151 static void io_rw_async(struct io_wq_work **workptr)
2152 {
2153 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2154 struct iovec *iov = NULL;
2155
2156 if (req->io->rw.iov != req->io->rw.fast_iov)
2157 iov = req->io->rw.iov;
2158 io_wq_submit_work(workptr);
2159 kfree(iov);
2160 }
2161
2162 static int io_setup_async_rw(struct io_kiocb *req, ssize_t io_size,
2163 struct iovec *iovec, struct iovec *fast_iov,
2164 struct iov_iter *iter)
2165 {
2166 if (!io_op_defs[req->opcode].async_ctx)
2167 return 0;
2168 if (!req->io) {
2169 if (io_alloc_async_ctx(req))
2170 return -ENOMEM;
2171
2172 io_req_map_rw(req, io_size, iovec, fast_iov, iter);
2173 }
2174 req->work.func = io_rw_async;
2175 return 0;
2176 }
2177
2178 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2179 bool force_nonblock)
2180 {
2181 struct io_async_ctx *io;
2182 struct iov_iter iter;
2183 ssize_t ret;
2184
2185 ret = io_prep_rw(req, sqe, force_nonblock);
2186 if (ret)
2187 return ret;
2188
2189 if (unlikely(!(req->file->f_mode & FMODE_READ)))
2190 return -EBADF;
2191
2192 if (!req->io)
2193 return 0;
2194
2195 io = req->io;
2196 io->rw.iov = io->rw.fast_iov;
2197 req->io = NULL;
2198 ret = io_import_iovec(READ, req, &io->rw.iov, &iter);
2199 req->io = io;
2200 if (ret < 0)
2201 return ret;
2202
2203 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2204 return 0;
2205 }
2206
2207 static int io_read(struct io_kiocb *req, struct io_kiocb **nxt,
2208 bool force_nonblock)
2209 {
2210 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2211 struct kiocb *kiocb = &req->rw.kiocb;
2212 struct iov_iter iter;
2213 size_t iov_count;
2214 ssize_t io_size, ret;
2215
2216 ret = io_import_iovec(READ, req, &iovec, &iter);
2217 if (ret < 0)
2218 return ret;
2219
2220 /* Ensure we clear previously set non-block flag */
2221 if (!force_nonblock)
2222 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2223
2224 req->result = 0;
2225 io_size = ret;
2226 if (req->flags & REQ_F_LINK)
2227 req->result = io_size;
2228
2229 /*
2230 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2231 * we know to async punt it even if it was opened O_NONBLOCK
2232 */
2233 if (force_nonblock && !io_file_supports_async(req->file)) {
2234 req->flags |= REQ_F_MUST_PUNT;
2235 goto copy_iov;
2236 }
2237
2238 iov_count = iov_iter_count(&iter);
2239 ret = rw_verify_area(READ, req->file, &kiocb->ki_pos, iov_count);
2240 if (!ret) {
2241 ssize_t ret2;
2242
2243 if (req->file->f_op->read_iter)
2244 ret2 = call_read_iter(req->file, kiocb, &iter);
2245 else
2246 ret2 = loop_rw_iter(READ, req->file, kiocb, &iter);
2247
2248 /* Catch -EAGAIN return for forced non-blocking submission */
2249 if (!force_nonblock || ret2 != -EAGAIN) {
2250 kiocb_done(kiocb, ret2, nxt, req->in_async);
2251 } else {
2252 copy_iov:
2253 ret = io_setup_async_rw(req, io_size, iovec,
2254 inline_vecs, &iter);
2255 if (ret)
2256 goto out_free;
2257 return -EAGAIN;
2258 }
2259 }
2260 out_free:
2261 if (!io_wq_current_is_worker())
2262 kfree(iovec);
2263 return ret;
2264 }
2265
2266 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2267 bool force_nonblock)
2268 {
2269 struct io_async_ctx *io;
2270 struct iov_iter iter;
2271 ssize_t ret;
2272
2273 ret = io_prep_rw(req, sqe, force_nonblock);
2274 if (ret)
2275 return ret;
2276
2277 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
2278 return -EBADF;
2279
2280 if (!req->io)
2281 return 0;
2282
2283 io = req->io;
2284 io->rw.iov = io->rw.fast_iov;
2285 req->io = NULL;
2286 ret = io_import_iovec(WRITE, req, &io->rw.iov, &iter);
2287 req->io = io;
2288 if (ret < 0)
2289 return ret;
2290
2291 io_req_map_rw(req, ret, io->rw.iov, io->rw.fast_iov, &iter);
2292 return 0;
2293 }
2294
2295 static int io_write(struct io_kiocb *req, struct io_kiocb **nxt,
2296 bool force_nonblock)
2297 {
2298 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2299 struct kiocb *kiocb = &req->rw.kiocb;
2300 struct iov_iter iter;
2301 size_t iov_count;
2302 ssize_t ret, io_size;
2303
2304 ret = io_import_iovec(WRITE, req, &iovec, &iter);
2305 if (ret < 0)
2306 return ret;
2307
2308 /* Ensure we clear previously set non-block flag */
2309 if (!force_nonblock)
2310 req->rw.kiocb.ki_flags &= ~IOCB_NOWAIT;
2311
2312 req->result = 0;
2313 io_size = ret;
2314 if (req->flags & REQ_F_LINK)
2315 req->result = io_size;
2316
2317 /*
2318 * If the file doesn't support async, mark it as REQ_F_MUST_PUNT so
2319 * we know to async punt it even if it was opened O_NONBLOCK
2320 */
2321 if (force_nonblock && !io_file_supports_async(req->file)) {
2322 req->flags |= REQ_F_MUST_PUNT;
2323 goto copy_iov;
2324 }
2325
2326 /* file path doesn't support NOWAIT for non-direct_IO */
2327 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
2328 (req->flags & REQ_F_ISREG))
2329 goto copy_iov;
2330
2331 iov_count = iov_iter_count(&iter);
2332 ret = rw_verify_area(WRITE, req->file, &kiocb->ki_pos, iov_count);
2333 if (!ret) {
2334 ssize_t ret2;
2335
2336 /*
2337 * Open-code file_start_write here to grab freeze protection,
2338 * which will be released by another thread in
2339 * io_complete_rw(). Fool lockdep by telling it the lock got
2340 * released so that it doesn't complain about the held lock when
2341 * we return to userspace.
2342 */
2343 if (req->flags & REQ_F_ISREG) {
2344 __sb_start_write(file_inode(req->file)->i_sb,
2345 SB_FREEZE_WRITE, true);
2346 __sb_writers_release(file_inode(req->file)->i_sb,
2347 SB_FREEZE_WRITE);
2348 }
2349 kiocb->ki_flags |= IOCB_WRITE;
2350
2351 if (req->file->f_op->write_iter)
2352 ret2 = call_write_iter(req->file, kiocb, &iter);
2353 else
2354 ret2 = loop_rw_iter(WRITE, req->file, kiocb, &iter);
2355 if (!force_nonblock || ret2 != -EAGAIN) {
2356 kiocb_done(kiocb, ret2, nxt, req->in_async);
2357 } else {
2358 copy_iov:
2359 ret = io_setup_async_rw(req, io_size, iovec,
2360 inline_vecs, &iter);
2361 if (ret)
2362 goto out_free;
2363 return -EAGAIN;
2364 }
2365 }
2366 out_free:
2367 if (!io_wq_current_is_worker())
2368 kfree(iovec);
2369 return ret;
2370 }
2371
2372 /*
2373 * IORING_OP_NOP just posts a completion event, nothing else.
2374 */
2375 static int io_nop(struct io_kiocb *req)
2376 {
2377 struct io_ring_ctx *ctx = req->ctx;
2378
2379 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2380 return -EINVAL;
2381
2382 io_cqring_add_event(req, 0);
2383 io_put_req(req);
2384 return 0;
2385 }
2386
2387 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2388 {
2389 struct io_ring_ctx *ctx = req->ctx;
2390
2391 if (!req->file)
2392 return -EBADF;
2393
2394 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2395 return -EINVAL;
2396 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2397 return -EINVAL;
2398
2399 req->sync.flags = READ_ONCE(sqe->fsync_flags);
2400 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
2401 return -EINVAL;
2402
2403 req->sync.off = READ_ONCE(sqe->off);
2404 req->sync.len = READ_ONCE(sqe->len);
2405 return 0;
2406 }
2407
2408 static bool io_req_cancelled(struct io_kiocb *req)
2409 {
2410 if (req->work.flags & IO_WQ_WORK_CANCEL) {
2411 req_set_fail_links(req);
2412 io_cqring_add_event(req, -ECANCELED);
2413 io_put_req(req);
2414 return true;
2415 }
2416
2417 return false;
2418 }
2419
2420 static void io_link_work_cb(struct io_wq_work **workptr)
2421 {
2422 struct io_wq_work *work = *workptr;
2423 struct io_kiocb *link = work->data;
2424
2425 io_queue_linked_timeout(link);
2426 work->func = io_wq_submit_work;
2427 }
2428
2429 static void io_wq_assign_next(struct io_wq_work **workptr, struct io_kiocb *nxt)
2430 {
2431 struct io_kiocb *link;
2432
2433 io_prep_async_work(nxt, &link);
2434 *workptr = &nxt->work;
2435 if (link) {
2436 nxt->work.flags |= IO_WQ_WORK_CB;
2437 nxt->work.func = io_link_work_cb;
2438 nxt->work.data = link;
2439 }
2440 }
2441
2442 static void io_fsync_finish(struct io_wq_work **workptr)
2443 {
2444 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2445 loff_t end = req->sync.off + req->sync.len;
2446 struct io_kiocb *nxt = NULL;
2447 int ret;
2448
2449 if (io_req_cancelled(req))
2450 return;
2451
2452 ret = vfs_fsync_range(req->file, req->sync.off,
2453 end > 0 ? end : LLONG_MAX,
2454 req->sync.flags & IORING_FSYNC_DATASYNC);
2455 if (ret < 0)
2456 req_set_fail_links(req);
2457 io_cqring_add_event(req, ret);
2458 io_put_req_find_next(req, &nxt);
2459 if (nxt)
2460 io_wq_assign_next(workptr, nxt);
2461 }
2462
2463 static int io_fsync(struct io_kiocb *req, struct io_kiocb **nxt,
2464 bool force_nonblock)
2465 {
2466 struct io_wq_work *work, *old_work;
2467
2468 /* fsync always requires a blocking context */
2469 if (force_nonblock) {
2470 io_put_req(req);
2471 req->work.func = io_fsync_finish;
2472 return -EAGAIN;
2473 }
2474
2475 work = old_work = &req->work;
2476 io_fsync_finish(&work);
2477 if (work && work != old_work)
2478 *nxt = container_of(work, struct io_kiocb, work);
2479 return 0;
2480 }
2481
2482 static void io_fallocate_finish(struct io_wq_work **workptr)
2483 {
2484 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2485 struct io_kiocb *nxt = NULL;
2486 int ret;
2487
2488 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
2489 req->sync.len);
2490 if (ret < 0)
2491 req_set_fail_links(req);
2492 io_cqring_add_event(req, ret);
2493 io_put_req_find_next(req, &nxt);
2494 if (nxt)
2495 io_wq_assign_next(workptr, nxt);
2496 }
2497
2498 static int io_fallocate_prep(struct io_kiocb *req,
2499 const struct io_uring_sqe *sqe)
2500 {
2501 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
2502 return -EINVAL;
2503
2504 req->sync.off = READ_ONCE(sqe->off);
2505 req->sync.len = READ_ONCE(sqe->addr);
2506 req->sync.mode = READ_ONCE(sqe->len);
2507 return 0;
2508 }
2509
2510 static int io_fallocate(struct io_kiocb *req, struct io_kiocb **nxt,
2511 bool force_nonblock)
2512 {
2513 struct io_wq_work *work, *old_work;
2514
2515 /* fallocate always requiring blocking context */
2516 if (force_nonblock) {
2517 io_put_req(req);
2518 req->work.func = io_fallocate_finish;
2519 return -EAGAIN;
2520 }
2521
2522 work = old_work = &req->work;
2523 io_fallocate_finish(&work);
2524 if (work && work != old_work)
2525 *nxt = container_of(work, struct io_kiocb, work);
2526
2527 return 0;
2528 }
2529
2530 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2531 {
2532 const char __user *fname;
2533 int ret;
2534
2535 if (sqe->ioprio || sqe->buf_index)
2536 return -EINVAL;
2537
2538 req->open.dfd = READ_ONCE(sqe->fd);
2539 req->open.how.mode = READ_ONCE(sqe->len);
2540 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2541 req->open.how.flags = READ_ONCE(sqe->open_flags);
2542
2543 req->open.filename = getname(fname);
2544 if (IS_ERR(req->open.filename)) {
2545 ret = PTR_ERR(req->open.filename);
2546 req->open.filename = NULL;
2547 return ret;
2548 }
2549
2550 return 0;
2551 }
2552
2553 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2554 {
2555 struct open_how __user *how;
2556 const char __user *fname;
2557 size_t len;
2558 int ret;
2559
2560 if (sqe->ioprio || sqe->buf_index)
2561 return -EINVAL;
2562
2563 req->open.dfd = READ_ONCE(sqe->fd);
2564 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2565 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2566 len = READ_ONCE(sqe->len);
2567
2568 if (len < OPEN_HOW_SIZE_VER0)
2569 return -EINVAL;
2570
2571 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
2572 len);
2573 if (ret)
2574 return ret;
2575
2576 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
2577 req->open.how.flags |= O_LARGEFILE;
2578
2579 req->open.filename = getname(fname);
2580 if (IS_ERR(req->open.filename)) {
2581 ret = PTR_ERR(req->open.filename);
2582 req->open.filename = NULL;
2583 return ret;
2584 }
2585
2586 return 0;
2587 }
2588
2589 static int io_openat2(struct io_kiocb *req, struct io_kiocb **nxt,
2590 bool force_nonblock)
2591 {
2592 struct open_flags op;
2593 struct file *file;
2594 int ret;
2595
2596 if (force_nonblock)
2597 return -EAGAIN;
2598
2599 ret = build_open_flags(&req->open.how, &op);
2600 if (ret)
2601 goto err;
2602
2603 ret = get_unused_fd_flags(req->open.how.flags);
2604 if (ret < 0)
2605 goto err;
2606
2607 file = do_filp_open(req->open.dfd, req->open.filename, &op);
2608 if (IS_ERR(file)) {
2609 put_unused_fd(ret);
2610 ret = PTR_ERR(file);
2611 } else {
2612 fsnotify_open(file);
2613 fd_install(ret, file);
2614 }
2615 err:
2616 putname(req->open.filename);
2617 if (ret < 0)
2618 req_set_fail_links(req);
2619 io_cqring_add_event(req, ret);
2620 io_put_req_find_next(req, nxt);
2621 return 0;
2622 }
2623
2624 static int io_openat(struct io_kiocb *req, struct io_kiocb **nxt,
2625 bool force_nonblock)
2626 {
2627 req->open.how = build_open_how(req->open.how.flags, req->open.how.mode);
2628 return io_openat2(req, nxt, force_nonblock);
2629 }
2630
2631 static int io_epoll_ctl_prep(struct io_kiocb *req,
2632 const struct io_uring_sqe *sqe)
2633 {
2634 #if defined(CONFIG_EPOLL)
2635 if (sqe->ioprio || sqe->buf_index)
2636 return -EINVAL;
2637
2638 req->epoll.epfd = READ_ONCE(sqe->fd);
2639 req->epoll.op = READ_ONCE(sqe->len);
2640 req->epoll.fd = READ_ONCE(sqe->off);
2641
2642 if (ep_op_has_event(req->epoll.op)) {
2643 struct epoll_event __user *ev;
2644
2645 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
2646 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
2647 return -EFAULT;
2648 }
2649
2650 return 0;
2651 #else
2652 return -EOPNOTSUPP;
2653 #endif
2654 }
2655
2656 static int io_epoll_ctl(struct io_kiocb *req, struct io_kiocb **nxt,
2657 bool force_nonblock)
2658 {
2659 #if defined(CONFIG_EPOLL)
2660 struct io_epoll *ie = &req->epoll;
2661 int ret;
2662
2663 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
2664 if (force_nonblock && ret == -EAGAIN)
2665 return -EAGAIN;
2666
2667 if (ret < 0)
2668 req_set_fail_links(req);
2669 io_cqring_add_event(req, ret);
2670 io_put_req_find_next(req, nxt);
2671 return 0;
2672 #else
2673 return -EOPNOTSUPP;
2674 #endif
2675 }
2676
2677 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2678 {
2679 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
2680 if (sqe->ioprio || sqe->buf_index || sqe->off)
2681 return -EINVAL;
2682
2683 req->madvise.addr = READ_ONCE(sqe->addr);
2684 req->madvise.len = READ_ONCE(sqe->len);
2685 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
2686 return 0;
2687 #else
2688 return -EOPNOTSUPP;
2689 #endif
2690 }
2691
2692 static int io_madvise(struct io_kiocb *req, struct io_kiocb **nxt,
2693 bool force_nonblock)
2694 {
2695 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
2696 struct io_madvise *ma = &req->madvise;
2697 int ret;
2698
2699 if (force_nonblock)
2700 return -EAGAIN;
2701
2702 ret = do_madvise(ma->addr, ma->len, ma->advice);
2703 if (ret < 0)
2704 req_set_fail_links(req);
2705 io_cqring_add_event(req, ret);
2706 io_put_req_find_next(req, nxt);
2707 return 0;
2708 #else
2709 return -EOPNOTSUPP;
2710 #endif
2711 }
2712
2713 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2714 {
2715 if (sqe->ioprio || sqe->buf_index || sqe->addr)
2716 return -EINVAL;
2717
2718 req->fadvise.offset = READ_ONCE(sqe->off);
2719 req->fadvise.len = READ_ONCE(sqe->len);
2720 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
2721 return 0;
2722 }
2723
2724 static int io_fadvise(struct io_kiocb *req, struct io_kiocb **nxt,
2725 bool force_nonblock)
2726 {
2727 struct io_fadvise *fa = &req->fadvise;
2728 int ret;
2729
2730 if (force_nonblock) {
2731 switch (fa->advice) {
2732 case POSIX_FADV_NORMAL:
2733 case POSIX_FADV_RANDOM:
2734 case POSIX_FADV_SEQUENTIAL:
2735 break;
2736 default:
2737 return -EAGAIN;
2738 }
2739 }
2740
2741 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
2742 if (ret < 0)
2743 req_set_fail_links(req);
2744 io_cqring_add_event(req, ret);
2745 io_put_req_find_next(req, nxt);
2746 return 0;
2747 }
2748
2749 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2750 {
2751 const char __user *fname;
2752 unsigned lookup_flags;
2753 int ret;
2754
2755 if (sqe->ioprio || sqe->buf_index)
2756 return -EINVAL;
2757
2758 req->open.dfd = READ_ONCE(sqe->fd);
2759 req->open.mask = READ_ONCE(sqe->len);
2760 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
2761 req->open.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
2762 req->open.how.flags = READ_ONCE(sqe->statx_flags);
2763
2764 if (vfs_stat_set_lookup_flags(&lookup_flags, req->open.how.flags))
2765 return -EINVAL;
2766
2767 req->open.filename = getname_flags(fname, lookup_flags, NULL);
2768 if (IS_ERR(req->open.filename)) {
2769 ret = PTR_ERR(req->open.filename);
2770 req->open.filename = NULL;
2771 return ret;
2772 }
2773
2774 return 0;
2775 }
2776
2777 static int io_statx(struct io_kiocb *req, struct io_kiocb **nxt,
2778 bool force_nonblock)
2779 {
2780 struct io_open *ctx = &req->open;
2781 unsigned lookup_flags;
2782 struct path path;
2783 struct kstat stat;
2784 int ret;
2785
2786 if (force_nonblock)
2787 return -EAGAIN;
2788
2789 if (vfs_stat_set_lookup_flags(&lookup_flags, ctx->how.flags))
2790 return -EINVAL;
2791
2792 retry:
2793 /* filename_lookup() drops it, keep a reference */
2794 ctx->filename->refcnt++;
2795
2796 ret = filename_lookup(ctx->dfd, ctx->filename, lookup_flags, &path,
2797 NULL);
2798 if (ret)
2799 goto err;
2800
2801 ret = vfs_getattr(&path, &stat, ctx->mask, ctx->how.flags);
2802 path_put(&path);
2803 if (retry_estale(ret, lookup_flags)) {
2804 lookup_flags |= LOOKUP_REVAL;
2805 goto retry;
2806 }
2807 if (!ret)
2808 ret = cp_statx(&stat, ctx->buffer);
2809 err:
2810 putname(ctx->filename);
2811 if (ret < 0)
2812 req_set_fail_links(req);
2813 io_cqring_add_event(req, ret);
2814 io_put_req_find_next(req, nxt);
2815 return 0;
2816 }
2817
2818 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2819 {
2820 /*
2821 * If we queue this for async, it must not be cancellable. That would
2822 * leave the 'file' in an undeterminate state.
2823 */
2824 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
2825
2826 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
2827 sqe->rw_flags || sqe->buf_index)
2828 return -EINVAL;
2829 if (sqe->flags & IOSQE_FIXED_FILE)
2830 return -EINVAL;
2831
2832 req->close.fd = READ_ONCE(sqe->fd);
2833 if (req->file->f_op == &io_uring_fops ||
2834 req->close.fd == req->ctx->ring_fd)
2835 return -EBADF;
2836
2837 return 0;
2838 }
2839
2840 static void io_close_finish(struct io_wq_work **workptr)
2841 {
2842 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2843 struct io_kiocb *nxt = NULL;
2844
2845 /* Invoked with files, we need to do the close */
2846 if (req->work.files) {
2847 int ret;
2848
2849 ret = filp_close(req->close.put_file, req->work.files);
2850 if (ret < 0)
2851 req_set_fail_links(req);
2852 io_cqring_add_event(req, ret);
2853 }
2854
2855 fput(req->close.put_file);
2856
2857 io_put_req_find_next(req, &nxt);
2858 if (nxt)
2859 io_wq_assign_next(workptr, nxt);
2860 }
2861
2862 static int io_close(struct io_kiocb *req, struct io_kiocb **nxt,
2863 bool force_nonblock)
2864 {
2865 int ret;
2866
2867 req->close.put_file = NULL;
2868 ret = __close_fd_get_file(req->close.fd, &req->close.put_file);
2869 if (ret < 0)
2870 return ret;
2871
2872 /* if the file has a flush method, be safe and punt to async */
2873 if (req->close.put_file->f_op->flush && !io_wq_current_is_worker())
2874 goto eagain;
2875
2876 /*
2877 * No ->flush(), safely close from here and just punt the
2878 * fput() to async context.
2879 */
2880 ret = filp_close(req->close.put_file, current->files);
2881
2882 if (ret < 0)
2883 req_set_fail_links(req);
2884 io_cqring_add_event(req, ret);
2885
2886 if (io_wq_current_is_worker()) {
2887 struct io_wq_work *old_work, *work;
2888
2889 old_work = work = &req->work;
2890 io_close_finish(&work);
2891 if (work && work != old_work)
2892 *nxt = container_of(work, struct io_kiocb, work);
2893 return 0;
2894 }
2895
2896 eagain:
2897 req->work.func = io_close_finish;
2898 /*
2899 * Do manual async queue here to avoid grabbing files - we don't
2900 * need the files, and it'll cause io_close_finish() to close
2901 * the file again and cause a double CQE entry for this request
2902 */
2903 io_queue_async_work(req);
2904 return 0;
2905 }
2906
2907 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2908 {
2909 struct io_ring_ctx *ctx = req->ctx;
2910
2911 if (!req->file)
2912 return -EBADF;
2913
2914 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
2915 return -EINVAL;
2916 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
2917 return -EINVAL;
2918
2919 req->sync.off = READ_ONCE(sqe->off);
2920 req->sync.len = READ_ONCE(sqe->len);
2921 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
2922 return 0;
2923 }
2924
2925 static void io_sync_file_range_finish(struct io_wq_work **workptr)
2926 {
2927 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2928 struct io_kiocb *nxt = NULL;
2929 int ret;
2930
2931 if (io_req_cancelled(req))
2932 return;
2933
2934 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
2935 req->sync.flags);
2936 if (ret < 0)
2937 req_set_fail_links(req);
2938 io_cqring_add_event(req, ret);
2939 io_put_req_find_next(req, &nxt);
2940 if (nxt)
2941 io_wq_assign_next(workptr, nxt);
2942 }
2943
2944 static int io_sync_file_range(struct io_kiocb *req, struct io_kiocb **nxt,
2945 bool force_nonblock)
2946 {
2947 struct io_wq_work *work, *old_work;
2948
2949 /* sync_file_range always requires a blocking context */
2950 if (force_nonblock) {
2951 io_put_req(req);
2952 req->work.func = io_sync_file_range_finish;
2953 return -EAGAIN;
2954 }
2955
2956 work = old_work = &req->work;
2957 io_sync_file_range_finish(&work);
2958 if (work && work != old_work)
2959 *nxt = container_of(work, struct io_kiocb, work);
2960 return 0;
2961 }
2962
2963 #if defined(CONFIG_NET)
2964 static void io_sendrecv_async(struct io_wq_work **workptr)
2965 {
2966 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
2967 struct iovec *iov = NULL;
2968
2969 if (req->io->rw.iov != req->io->rw.fast_iov)
2970 iov = req->io->msg.iov;
2971 io_wq_submit_work(workptr);
2972 kfree(iov);
2973 }
2974 #endif
2975
2976 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2977 {
2978 #if defined(CONFIG_NET)
2979 struct io_sr_msg *sr = &req->sr_msg;
2980 struct io_async_ctx *io = req->io;
2981
2982 sr->msg_flags = READ_ONCE(sqe->msg_flags);
2983 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
2984 sr->len = READ_ONCE(sqe->len);
2985
2986 if (!io || req->opcode == IORING_OP_SEND)
2987 return 0;
2988
2989 io->msg.iov = io->msg.fast_iov;
2990 return sendmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
2991 &io->msg.iov);
2992 #else
2993 return -EOPNOTSUPP;
2994 #endif
2995 }
2996
2997 static int io_sendmsg(struct io_kiocb *req, struct io_kiocb **nxt,
2998 bool force_nonblock)
2999 {
3000 #if defined(CONFIG_NET)
3001 struct io_async_msghdr *kmsg = NULL;
3002 struct socket *sock;
3003 int ret;
3004
3005 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3006 return -EINVAL;
3007
3008 sock = sock_from_file(req->file, &ret);
3009 if (sock) {
3010 struct io_async_ctx io;
3011 struct sockaddr_storage addr;
3012 unsigned flags;
3013
3014 if (req->io) {
3015 kmsg = &req->io->msg;
3016 kmsg->msg.msg_name = &addr;
3017 /* if iov is set, it's allocated already */
3018 if (!kmsg->iov)
3019 kmsg->iov = kmsg->fast_iov;
3020 kmsg->msg.msg_iter.iov = kmsg->iov;
3021 } else {
3022 struct io_sr_msg *sr = &req->sr_msg;
3023
3024 kmsg = &io.msg;
3025 kmsg->msg.msg_name = &addr;
3026
3027 io.msg.iov = io.msg.fast_iov;
3028 ret = sendmsg_copy_msghdr(&io.msg.msg, sr->msg,
3029 sr->msg_flags, &io.msg.iov);
3030 if (ret)
3031 return ret;
3032 }
3033
3034 flags = req->sr_msg.msg_flags;
3035 if (flags & MSG_DONTWAIT)
3036 req->flags |= REQ_F_NOWAIT;
3037 else if (force_nonblock)
3038 flags |= MSG_DONTWAIT;
3039
3040 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
3041 if (force_nonblock && ret == -EAGAIN) {
3042 if (req->io)
3043 return -EAGAIN;
3044 if (io_alloc_async_ctx(req))
3045 return -ENOMEM;
3046 memcpy(&req->io->msg, &io.msg, sizeof(io.msg));
3047 req->work.func = io_sendrecv_async;
3048 return -EAGAIN;
3049 }
3050 if (ret == -ERESTARTSYS)
3051 ret = -EINTR;
3052 }
3053
3054 if (!io_wq_current_is_worker() && kmsg && kmsg->iov != kmsg->fast_iov)
3055 kfree(kmsg->iov);
3056 io_cqring_add_event(req, ret);
3057 if (ret < 0)
3058 req_set_fail_links(req);
3059 io_put_req_find_next(req, nxt);
3060 return 0;
3061 #else
3062 return -EOPNOTSUPP;
3063 #endif
3064 }
3065
3066 static int io_send(struct io_kiocb *req, struct io_kiocb **nxt,
3067 bool force_nonblock)
3068 {
3069 #if defined(CONFIG_NET)
3070 struct socket *sock;
3071 int ret;
3072
3073 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3074 return -EINVAL;
3075
3076 sock = sock_from_file(req->file, &ret);
3077 if (sock) {
3078 struct io_sr_msg *sr = &req->sr_msg;
3079 struct msghdr msg;
3080 struct iovec iov;
3081 unsigned flags;
3082
3083 ret = import_single_range(WRITE, sr->buf, sr->len, &iov,
3084 &msg.msg_iter);
3085 if (ret)
3086 return ret;
3087
3088 msg.msg_name = NULL;
3089 msg.msg_control = NULL;
3090 msg.msg_controllen = 0;
3091 msg.msg_namelen = 0;
3092
3093 flags = req->sr_msg.msg_flags;
3094 if (flags & MSG_DONTWAIT)
3095 req->flags |= REQ_F_NOWAIT;
3096 else if (force_nonblock)
3097 flags |= MSG_DONTWAIT;
3098
3099 msg.msg_flags = flags;
3100 ret = sock_sendmsg(sock, &msg);
3101 if (force_nonblock && ret == -EAGAIN)
3102 return -EAGAIN;
3103 if (ret == -ERESTARTSYS)
3104 ret = -EINTR;
3105 }
3106
3107 io_cqring_add_event(req, ret);
3108 if (ret < 0)
3109 req_set_fail_links(req);
3110 io_put_req_find_next(req, nxt);
3111 return 0;
3112 #else
3113 return -EOPNOTSUPP;
3114 #endif
3115 }
3116
3117 static int io_recvmsg_prep(struct io_kiocb *req,
3118 const struct io_uring_sqe *sqe)
3119 {
3120 #if defined(CONFIG_NET)
3121 struct io_sr_msg *sr = &req->sr_msg;
3122 struct io_async_ctx *io = req->io;
3123
3124 sr->msg_flags = READ_ONCE(sqe->msg_flags);
3125 sr->msg = u64_to_user_ptr(READ_ONCE(sqe->addr));
3126 sr->len = READ_ONCE(sqe->len);
3127
3128 if (!io || req->opcode == IORING_OP_RECV)
3129 return 0;
3130
3131 io->msg.iov = io->msg.fast_iov;
3132 return recvmsg_copy_msghdr(&io->msg.msg, sr->msg, sr->msg_flags,
3133 &io->msg.uaddr, &io->msg.iov);
3134 #else
3135 return -EOPNOTSUPP;
3136 #endif
3137 }
3138
3139 static int io_recvmsg(struct io_kiocb *req, struct io_kiocb **nxt,
3140 bool force_nonblock)
3141 {
3142 #if defined(CONFIG_NET)
3143 struct io_async_msghdr *kmsg = NULL;
3144 struct socket *sock;
3145 int ret;
3146
3147 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3148 return -EINVAL;
3149
3150 sock = sock_from_file(req->file, &ret);
3151 if (sock) {
3152 struct io_async_ctx io;
3153 struct sockaddr_storage addr;
3154 unsigned flags;
3155
3156 if (req->io) {
3157 kmsg = &req->io->msg;
3158 kmsg->msg.msg_name = &addr;
3159 /* if iov is set, it's allocated already */
3160 if (!kmsg->iov)
3161 kmsg->iov = kmsg->fast_iov;
3162 kmsg->msg.msg_iter.iov = kmsg->iov;
3163 } else {
3164 struct io_sr_msg *sr = &req->sr_msg;
3165
3166 kmsg = &io.msg;
3167 kmsg->msg.msg_name = &addr;
3168
3169 io.msg.iov = io.msg.fast_iov;
3170 ret = recvmsg_copy_msghdr(&io.msg.msg, sr->msg,
3171 sr->msg_flags, &io.msg.uaddr,
3172 &io.msg.iov);
3173 if (ret)
3174 return ret;
3175 }
3176
3177 flags = req->sr_msg.msg_flags;
3178 if (flags & MSG_DONTWAIT)
3179 req->flags |= REQ_F_NOWAIT;
3180 else if (force_nonblock)
3181 flags |= MSG_DONTWAIT;
3182
3183 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.msg,
3184 kmsg->uaddr, flags);
3185 if (force_nonblock && ret == -EAGAIN) {
3186 if (req->io)
3187 return -EAGAIN;
3188 if (io_alloc_async_ctx(req))
3189 return -ENOMEM;
3190 memcpy(&req->io->msg, &io.msg, sizeof(io.msg));
3191 req->work.func = io_sendrecv_async;
3192 return -EAGAIN;
3193 }
3194 if (ret == -ERESTARTSYS)
3195 ret = -EINTR;
3196 }
3197
3198 if (!io_wq_current_is_worker() && kmsg && kmsg->iov != kmsg->fast_iov)
3199 kfree(kmsg->iov);
3200 io_cqring_add_event(req, ret);
3201 if (ret < 0)
3202 req_set_fail_links(req);
3203 io_put_req_find_next(req, nxt);
3204 return 0;
3205 #else
3206 return -EOPNOTSUPP;
3207 #endif
3208 }
3209
3210 static int io_recv(struct io_kiocb *req, struct io_kiocb **nxt,
3211 bool force_nonblock)
3212 {
3213 #if defined(CONFIG_NET)
3214 struct socket *sock;
3215 int ret;
3216
3217 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3218 return -EINVAL;
3219
3220 sock = sock_from_file(req->file, &ret);
3221 if (sock) {
3222 struct io_sr_msg *sr = &req->sr_msg;
3223 struct msghdr msg;
3224 struct iovec iov;
3225 unsigned flags;
3226
3227 ret = import_single_range(READ, sr->buf, sr->len, &iov,
3228 &msg.msg_iter);
3229 if (ret)
3230 return ret;
3231
3232 msg.msg_name = NULL;
3233 msg.msg_control = NULL;
3234 msg.msg_controllen = 0;
3235 msg.msg_namelen = 0;
3236 msg.msg_iocb = NULL;
3237 msg.msg_flags = 0;
3238
3239 flags = req->sr_msg.msg_flags;
3240 if (flags & MSG_DONTWAIT)
3241 req->flags |= REQ_F_NOWAIT;
3242 else if (force_nonblock)
3243 flags |= MSG_DONTWAIT;
3244
3245 ret = sock_recvmsg(sock, &msg, flags);
3246 if (force_nonblock && ret == -EAGAIN)
3247 return -EAGAIN;
3248 if (ret == -ERESTARTSYS)
3249 ret = -EINTR;
3250 }
3251
3252 io_cqring_add_event(req, ret);
3253 if (ret < 0)
3254 req_set_fail_links(req);
3255 io_put_req_find_next(req, nxt);
3256 return 0;
3257 #else
3258 return -EOPNOTSUPP;
3259 #endif
3260 }
3261
3262
3263 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3264 {
3265 #if defined(CONFIG_NET)
3266 struct io_accept *accept = &req->accept;
3267
3268 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3269 return -EINVAL;
3270 if (sqe->ioprio || sqe->len || sqe->buf_index)
3271 return -EINVAL;
3272
3273 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3274 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3275 accept->flags = READ_ONCE(sqe->accept_flags);
3276 return 0;
3277 #else
3278 return -EOPNOTSUPP;
3279 #endif
3280 }
3281
3282 #if defined(CONFIG_NET)
3283 static int __io_accept(struct io_kiocb *req, struct io_kiocb **nxt,
3284 bool force_nonblock)
3285 {
3286 struct io_accept *accept = &req->accept;
3287 unsigned file_flags;
3288 int ret;
3289
3290 file_flags = force_nonblock ? O_NONBLOCK : 0;
3291 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
3292 accept->addr_len, accept->flags);
3293 if (ret == -EAGAIN && force_nonblock)
3294 return -EAGAIN;
3295 if (ret == -ERESTARTSYS)
3296 ret = -EINTR;
3297 if (ret < 0)
3298 req_set_fail_links(req);
3299 io_cqring_add_event(req, ret);
3300 io_put_req_find_next(req, nxt);
3301 return 0;
3302 }
3303
3304 static void io_accept_finish(struct io_wq_work **workptr)
3305 {
3306 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3307 struct io_kiocb *nxt = NULL;
3308
3309 if (io_req_cancelled(req))
3310 return;
3311 __io_accept(req, &nxt, false);
3312 if (nxt)
3313 io_wq_assign_next(workptr, nxt);
3314 }
3315 #endif
3316
3317 static int io_accept(struct io_kiocb *req, struct io_kiocb **nxt,
3318 bool force_nonblock)
3319 {
3320 #if defined(CONFIG_NET)
3321 int ret;
3322
3323 ret = __io_accept(req, nxt, force_nonblock);
3324 if (ret == -EAGAIN && force_nonblock) {
3325 req->work.func = io_accept_finish;
3326 io_put_req(req);
3327 return -EAGAIN;
3328 }
3329 return 0;
3330 #else
3331 return -EOPNOTSUPP;
3332 #endif
3333 }
3334
3335 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3336 {
3337 #if defined(CONFIG_NET)
3338 struct io_connect *conn = &req->connect;
3339 struct io_async_ctx *io = req->io;
3340
3341 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3342 return -EINVAL;
3343 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
3344 return -EINVAL;
3345
3346 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
3347 conn->addr_len = READ_ONCE(sqe->addr2);
3348
3349 if (!io)
3350 return 0;
3351
3352 return move_addr_to_kernel(conn->addr, conn->addr_len,
3353 &io->connect.address);
3354 #else
3355 return -EOPNOTSUPP;
3356 #endif
3357 }
3358
3359 static int io_connect(struct io_kiocb *req, struct io_kiocb **nxt,
3360 bool force_nonblock)
3361 {
3362 #if defined(CONFIG_NET)
3363 struct io_async_ctx __io, *io;
3364 unsigned file_flags;
3365 int ret;
3366
3367 if (req->io) {
3368 io = req->io;
3369 } else {
3370 ret = move_addr_to_kernel(req->connect.addr,
3371 req->connect.addr_len,
3372 &__io.connect.address);
3373 if (ret)
3374 goto out;
3375 io = &__io;
3376 }
3377
3378 file_flags = force_nonblock ? O_NONBLOCK : 0;
3379
3380 ret = __sys_connect_file(req->file, &io->connect.address,
3381 req->connect.addr_len, file_flags);
3382 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
3383 if (req->io)
3384 return -EAGAIN;
3385 if (io_alloc_async_ctx(req)) {
3386 ret = -ENOMEM;
3387 goto out;
3388 }
3389 memcpy(&req->io->connect, &__io.connect, sizeof(__io.connect));
3390 return -EAGAIN;
3391 }
3392 if (ret == -ERESTARTSYS)
3393 ret = -EINTR;
3394 out:
3395 if (ret < 0)
3396 req_set_fail_links(req);
3397 io_cqring_add_event(req, ret);
3398 io_put_req_find_next(req, nxt);
3399 return 0;
3400 #else
3401 return -EOPNOTSUPP;
3402 #endif
3403 }
3404
3405 static void io_poll_remove_one(struct io_kiocb *req)
3406 {
3407 struct io_poll_iocb *poll = &req->poll;
3408
3409 spin_lock(&poll->head->lock);
3410 WRITE_ONCE(poll->canceled, true);
3411 if (!list_empty(&poll->wait.entry)) {
3412 list_del_init(&poll->wait.entry);
3413 io_queue_async_work(req);
3414 }
3415 spin_unlock(&poll->head->lock);
3416 hash_del(&req->hash_node);
3417 }
3418
3419 static void io_poll_remove_all(struct io_ring_ctx *ctx)
3420 {
3421 struct hlist_node *tmp;
3422 struct io_kiocb *req;
3423 int i;
3424
3425 spin_lock_irq(&ctx->completion_lock);
3426 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
3427 struct hlist_head *list;
3428
3429 list = &ctx->cancel_hash[i];
3430 hlist_for_each_entry_safe(req, tmp, list, hash_node)
3431 io_poll_remove_one(req);
3432 }
3433 spin_unlock_irq(&ctx->completion_lock);
3434 }
3435
3436 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
3437 {
3438 struct hlist_head *list;
3439 struct io_kiocb *req;
3440
3441 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
3442 hlist_for_each_entry(req, list, hash_node) {
3443 if (sqe_addr == req->user_data) {
3444 io_poll_remove_one(req);
3445 return 0;
3446 }
3447 }
3448
3449 return -ENOENT;
3450 }
3451
3452 static int io_poll_remove_prep(struct io_kiocb *req,
3453 const struct io_uring_sqe *sqe)
3454 {
3455 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3456 return -EINVAL;
3457 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3458 sqe->poll_events)
3459 return -EINVAL;
3460
3461 req->poll.addr = READ_ONCE(sqe->addr);
3462 return 0;
3463 }
3464
3465 /*
3466 * Find a running poll command that matches one specified in sqe->addr,
3467 * and remove it if found.
3468 */
3469 static int io_poll_remove(struct io_kiocb *req)
3470 {
3471 struct io_ring_ctx *ctx = req->ctx;
3472 u64 addr;
3473 int ret;
3474
3475 addr = req->poll.addr;
3476 spin_lock_irq(&ctx->completion_lock);
3477 ret = io_poll_cancel(ctx, addr);
3478 spin_unlock_irq(&ctx->completion_lock);
3479
3480 io_cqring_add_event(req, ret);
3481 if (ret < 0)
3482 req_set_fail_links(req);
3483 io_put_req(req);
3484 return 0;
3485 }
3486
3487 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
3488 {
3489 struct io_ring_ctx *ctx = req->ctx;
3490
3491 req->poll.done = true;
3492 if (error)
3493 io_cqring_fill_event(req, error);
3494 else
3495 io_cqring_fill_event(req, mangle_poll(mask));
3496 io_commit_cqring(ctx);
3497 }
3498
3499 static void io_poll_complete_work(struct io_wq_work **workptr)
3500 {
3501 struct io_wq_work *work = *workptr;
3502 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3503 struct io_poll_iocb *poll = &req->poll;
3504 struct poll_table_struct pt = { ._key = poll->events };
3505 struct io_ring_ctx *ctx = req->ctx;
3506 struct io_kiocb *nxt = NULL;
3507 __poll_t mask = 0;
3508 int ret = 0;
3509
3510 if (work->flags & IO_WQ_WORK_CANCEL) {
3511 WRITE_ONCE(poll->canceled, true);
3512 ret = -ECANCELED;
3513 } else if (READ_ONCE(poll->canceled)) {
3514 ret = -ECANCELED;
3515 }
3516
3517 if (ret != -ECANCELED)
3518 mask = vfs_poll(poll->file, &pt) & poll->events;
3519
3520 /*
3521 * Note that ->ki_cancel callers also delete iocb from active_reqs after
3522 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
3523 * synchronize with them. In the cancellation case the list_del_init
3524 * itself is not actually needed, but harmless so we keep it in to
3525 * avoid further branches in the fast path.
3526 */
3527 spin_lock_irq(&ctx->completion_lock);
3528 if (!mask && ret != -ECANCELED) {
3529 add_wait_queue(poll->head, &poll->wait);
3530 spin_unlock_irq(&ctx->completion_lock);
3531 return;
3532 }
3533 hash_del(&req->hash_node);
3534 io_poll_complete(req, mask, ret);
3535 spin_unlock_irq(&ctx->completion_lock);
3536
3537 io_cqring_ev_posted(ctx);
3538
3539 if (ret < 0)
3540 req_set_fail_links(req);
3541 io_put_req_find_next(req, &nxt);
3542 if (nxt)
3543 io_wq_assign_next(workptr, nxt);
3544 }
3545
3546 static void __io_poll_flush(struct io_ring_ctx *ctx, struct llist_node *nodes)
3547 {
3548 struct io_kiocb *req, *tmp;
3549 struct req_batch rb;
3550
3551 rb.to_free = rb.need_iter = 0;
3552 spin_lock_irq(&ctx->completion_lock);
3553 llist_for_each_entry_safe(req, tmp, nodes, llist_node) {
3554 hash_del(&req->hash_node);
3555 io_poll_complete(req, req->result, 0);
3556
3557 if (refcount_dec_and_test(&req->refs) &&
3558 !io_req_multi_free(&rb, req)) {
3559 req->flags |= REQ_F_COMP_LOCKED;
3560 io_free_req(req);
3561 }
3562 }
3563 spin_unlock_irq(&ctx->completion_lock);
3564
3565 io_cqring_ev_posted(ctx);
3566 io_free_req_many(ctx, &rb);
3567 }
3568
3569 static void io_poll_flush(struct io_wq_work **workptr)
3570 {
3571 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3572 struct llist_node *nodes;
3573
3574 nodes = llist_del_all(&req->ctx->poll_llist);
3575 if (nodes)
3576 __io_poll_flush(req->ctx, nodes);
3577 }
3578
3579 static void io_poll_trigger_evfd(struct io_wq_work **workptr)
3580 {
3581 struct io_kiocb *req = container_of(*workptr, struct io_kiocb, work);
3582
3583 eventfd_signal(req->ctx->cq_ev_fd, 1);
3584 io_put_req(req);
3585 }
3586
3587 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
3588 void *key)
3589 {
3590 struct io_poll_iocb *poll = wait->private;
3591 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
3592 struct io_ring_ctx *ctx = req->ctx;
3593 __poll_t mask = key_to_poll(key);
3594
3595 /* for instances that support it check for an event match first: */
3596 if (mask && !(mask & poll->events))
3597 return 0;
3598
3599 list_del_init(&poll->wait.entry);
3600
3601 /*
3602 * Run completion inline if we can. We're using trylock here because
3603 * we are violating the completion_lock -> poll wq lock ordering.
3604 * If we have a link timeout we're going to need the completion_lock
3605 * for finalizing the request, mark us as having grabbed that already.
3606 */
3607 if (mask) {
3608 unsigned long flags;
3609
3610 if (llist_empty(&ctx->poll_llist) &&
3611 spin_trylock_irqsave(&ctx->completion_lock, flags)) {
3612 bool trigger_ev;
3613
3614 hash_del(&req->hash_node);
3615 io_poll_complete(req, mask, 0);
3616
3617 trigger_ev = io_should_trigger_evfd(ctx);
3618 if (trigger_ev && eventfd_signal_count()) {
3619 trigger_ev = false;
3620 req->work.func = io_poll_trigger_evfd;
3621 } else {
3622 req->flags |= REQ_F_COMP_LOCKED;
3623 io_put_req(req);
3624 req = NULL;
3625 }
3626 spin_unlock_irqrestore(&ctx->completion_lock, flags);
3627 __io_cqring_ev_posted(ctx, trigger_ev);
3628 } else {
3629 req->result = mask;
3630 req->llist_node.next = NULL;
3631 /* if the list wasn't empty, we're done */
3632 if (!llist_add(&req->llist_node, &ctx->poll_llist))
3633 req = NULL;
3634 else
3635 req->work.func = io_poll_flush;
3636 }
3637 }
3638 if (req)
3639 io_queue_async_work(req);
3640
3641 return 1;
3642 }
3643
3644 struct io_poll_table {
3645 struct poll_table_struct pt;
3646 struct io_kiocb *req;
3647 int error;
3648 };
3649
3650 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
3651 struct poll_table_struct *p)
3652 {
3653 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
3654
3655 if (unlikely(pt->req->poll.head)) {
3656 pt->error = -EINVAL;
3657 return;
3658 }
3659
3660 pt->error = 0;
3661 pt->req->poll.head = head;
3662 add_wait_queue(head, &pt->req->poll.wait);
3663 }
3664
3665 static void io_poll_req_insert(struct io_kiocb *req)
3666 {
3667 struct io_ring_ctx *ctx = req->ctx;
3668 struct hlist_head *list;
3669
3670 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
3671 hlist_add_head(&req->hash_node, list);
3672 }
3673
3674 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3675 {
3676 struct io_poll_iocb *poll = &req->poll;
3677 u16 events;
3678
3679 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3680 return -EINVAL;
3681 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
3682 return -EINVAL;
3683 if (!poll->file)
3684 return -EBADF;
3685
3686 events = READ_ONCE(sqe->poll_events);
3687 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
3688 return 0;
3689 }
3690
3691 static int io_poll_add(struct io_kiocb *req, struct io_kiocb **nxt)
3692 {
3693 struct io_poll_iocb *poll = &req->poll;
3694 struct io_ring_ctx *ctx = req->ctx;
3695 struct io_poll_table ipt;
3696 bool cancel = false;
3697 __poll_t mask;
3698
3699 INIT_IO_WORK(&req->work, io_poll_complete_work);
3700 INIT_HLIST_NODE(&req->hash_node);
3701
3702 poll->head = NULL;
3703 poll->done = false;
3704 poll->canceled = false;
3705
3706 ipt.pt._qproc = io_poll_queue_proc;
3707 ipt.pt._key = poll->events;
3708 ipt.req = req;
3709 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
3710
3711 /* initialized the list so that we can do list_empty checks */
3712 INIT_LIST_HEAD(&poll->wait.entry);
3713 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
3714 poll->wait.private = poll;
3715
3716 INIT_LIST_HEAD(&req->list);
3717
3718 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
3719
3720 spin_lock_irq(&ctx->completion_lock);
3721 if (likely(poll->head)) {
3722 spin_lock(&poll->head->lock);
3723 if (unlikely(list_empty(&poll->wait.entry))) {
3724 if (ipt.error)
3725 cancel = true;
3726 ipt.error = 0;
3727 mask = 0;
3728 }
3729 if (mask || ipt.error)
3730 list_del_init(&poll->wait.entry);
3731 else if (cancel)
3732 WRITE_ONCE(poll->canceled, true);
3733 else if (!poll->done) /* actually waiting for an event */
3734 io_poll_req_insert(req);
3735 spin_unlock(&poll->head->lock);
3736 }
3737 if (mask) { /* no async, we'd stolen it */
3738 ipt.error = 0;
3739 io_poll_complete(req, mask, 0);
3740 }
3741 spin_unlock_irq(&ctx->completion_lock);
3742
3743 if (mask) {
3744 io_cqring_ev_posted(ctx);
3745 io_put_req_find_next(req, nxt);
3746 }
3747 return ipt.error;
3748 }
3749
3750 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
3751 {
3752 struct io_timeout_data *data = container_of(timer,
3753 struct io_timeout_data, timer);
3754 struct io_kiocb *req = data->req;
3755 struct io_ring_ctx *ctx = req->ctx;
3756 unsigned long flags;
3757
3758 atomic_inc(&ctx->cq_timeouts);
3759
3760 spin_lock_irqsave(&ctx->completion_lock, flags);
3761 /*
3762 * We could be racing with timeout deletion. If the list is empty,
3763 * then timeout lookup already found it and will be handling it.
3764 */
3765 if (!list_empty(&req->list)) {
3766 struct io_kiocb *prev;
3767
3768 /*
3769 * Adjust the reqs sequence before the current one because it
3770 * will consume a slot in the cq_ring and the cq_tail
3771 * pointer will be increased, otherwise other timeout reqs may
3772 * return in advance without waiting for enough wait_nr.
3773 */
3774 prev = req;
3775 list_for_each_entry_continue_reverse(prev, &ctx->timeout_list, list)
3776 prev->sequence++;
3777 list_del_init(&req->list);
3778 }
3779
3780 io_cqring_fill_event(req, -ETIME);
3781 io_commit_cqring(ctx);
3782 spin_unlock_irqrestore(&ctx->completion_lock, flags);
3783
3784 io_cqring_ev_posted(ctx);
3785 req_set_fail_links(req);
3786 io_put_req(req);
3787 return HRTIMER_NORESTART;
3788 }
3789
3790 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
3791 {
3792 struct io_kiocb *req;
3793 int ret = -ENOENT;
3794
3795 list_for_each_entry(req, &ctx->timeout_list, list) {
3796 if (user_data == req->user_data) {
3797 list_del_init(&req->list);
3798 ret = 0;
3799 break;
3800 }
3801 }
3802
3803 if (ret == -ENOENT)
3804 return ret;
3805
3806 ret = hrtimer_try_to_cancel(&req->io->timeout.timer);
3807 if (ret == -1)
3808 return -EALREADY;
3809
3810 req_set_fail_links(req);
3811 io_cqring_fill_event(req, -ECANCELED);
3812 io_put_req(req);
3813 return 0;
3814 }
3815
3816 static int io_timeout_remove_prep(struct io_kiocb *req,
3817 const struct io_uring_sqe *sqe)
3818 {
3819 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3820 return -EINVAL;
3821 if (sqe->flags || sqe->ioprio || sqe->buf_index || sqe->len)
3822 return -EINVAL;
3823
3824 req->timeout.addr = READ_ONCE(sqe->addr);
3825 req->timeout.flags = READ_ONCE(sqe->timeout_flags);
3826 if (req->timeout.flags)
3827 return -EINVAL;
3828
3829 return 0;
3830 }
3831
3832 /*
3833 * Remove or update an existing timeout command
3834 */
3835 static int io_timeout_remove(struct io_kiocb *req)
3836 {
3837 struct io_ring_ctx *ctx = req->ctx;
3838 int ret;
3839
3840 spin_lock_irq(&ctx->completion_lock);
3841 ret = io_timeout_cancel(ctx, req->timeout.addr);
3842
3843 io_cqring_fill_event(req, ret);
3844 io_commit_cqring(ctx);
3845 spin_unlock_irq(&ctx->completion_lock);
3846 io_cqring_ev_posted(ctx);
3847 if (ret < 0)
3848 req_set_fail_links(req);
3849 io_put_req(req);
3850 return 0;
3851 }
3852
3853 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
3854 bool is_timeout_link)
3855 {
3856 struct io_timeout_data *data;
3857 unsigned flags;
3858
3859 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3860 return -EINVAL;
3861 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
3862 return -EINVAL;
3863 if (sqe->off && is_timeout_link)
3864 return -EINVAL;
3865 flags = READ_ONCE(sqe->timeout_flags);
3866 if (flags & ~IORING_TIMEOUT_ABS)
3867 return -EINVAL;
3868
3869 req->timeout.count = READ_ONCE(sqe->off);
3870
3871 if (!req->io && io_alloc_async_ctx(req))
3872 return -ENOMEM;
3873
3874 data = &req->io->timeout;
3875 data->req = req;
3876 req->flags |= REQ_F_TIMEOUT;
3877
3878 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
3879 return -EFAULT;
3880
3881 if (flags & IORING_TIMEOUT_ABS)
3882 data->mode = HRTIMER_MODE_ABS;
3883 else
3884 data->mode = HRTIMER_MODE_REL;
3885
3886 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
3887 return 0;
3888 }
3889
3890 static int io_timeout(struct io_kiocb *req)
3891 {
3892 unsigned count;
3893 struct io_ring_ctx *ctx = req->ctx;
3894 struct io_timeout_data *data;
3895 struct list_head *entry;
3896 unsigned span = 0;
3897
3898 data = &req->io->timeout;
3899
3900 /*
3901 * sqe->off holds how many events that need to occur for this
3902 * timeout event to be satisfied. If it isn't set, then this is
3903 * a pure timeout request, sequence isn't used.
3904 */
3905 count = req->timeout.count;
3906 if (!count) {
3907 req->flags |= REQ_F_TIMEOUT_NOSEQ;
3908 spin_lock_irq(&ctx->completion_lock);
3909 entry = ctx->timeout_list.prev;
3910 goto add;
3911 }
3912
3913 req->sequence = ctx->cached_sq_head + count - 1;
3914 data->seq_offset = count;
3915
3916 /*
3917 * Insertion sort, ensuring the first entry in the list is always
3918 * the one we need first.
3919 */
3920 spin_lock_irq(&ctx->completion_lock);
3921 list_for_each_prev(entry, &ctx->timeout_list) {
3922 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb, list);
3923 unsigned nxt_sq_head;
3924 long long tmp, tmp_nxt;
3925 u32 nxt_offset = nxt->io->timeout.seq_offset;
3926
3927 if (nxt->flags & REQ_F_TIMEOUT_NOSEQ)
3928 continue;
3929
3930 /*
3931 * Since cached_sq_head + count - 1 can overflow, use type long
3932 * long to store it.
3933 */
3934 tmp = (long long)ctx->cached_sq_head + count - 1;
3935 nxt_sq_head = nxt->sequence - nxt_offset + 1;
3936 tmp_nxt = (long long)nxt_sq_head + nxt_offset - 1;
3937
3938 /*
3939 * cached_sq_head may overflow, and it will never overflow twice
3940 * once there is some timeout req still be valid.
3941 */
3942 if (ctx->cached_sq_head < nxt_sq_head)
3943 tmp += UINT_MAX;
3944
3945 if (tmp > tmp_nxt)
3946 break;
3947
3948 /*
3949 * Sequence of reqs after the insert one and itself should
3950 * be adjusted because each timeout req consumes a slot.
3951 */
3952 span++;
3953 nxt->sequence++;
3954 }
3955 req->sequence -= span;
3956 add:
3957 list_add(&req->list, entry);
3958 data->timer.function = io_timeout_fn;
3959 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
3960 spin_unlock_irq(&ctx->completion_lock);
3961 return 0;
3962 }
3963
3964 static bool io_cancel_cb(struct io_wq_work *work, void *data)
3965 {
3966 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3967
3968 return req->user_data == (unsigned long) data;
3969 }
3970
3971 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
3972 {
3973 enum io_wq_cancel cancel_ret;
3974 int ret = 0;
3975
3976 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr);
3977 switch (cancel_ret) {
3978 case IO_WQ_CANCEL_OK:
3979 ret = 0;
3980 break;
3981 case IO_WQ_CANCEL_RUNNING:
3982 ret = -EALREADY;
3983 break;
3984 case IO_WQ_CANCEL_NOTFOUND:
3985 ret = -ENOENT;
3986 break;
3987 }
3988
3989 return ret;
3990 }
3991
3992 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
3993 struct io_kiocb *req, __u64 sqe_addr,
3994 struct io_kiocb **nxt, int success_ret)
3995 {
3996 unsigned long flags;
3997 int ret;
3998
3999 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
4000 if (ret != -ENOENT) {
4001 spin_lock_irqsave(&ctx->completion_lock, flags);
4002 goto done;
4003 }
4004
4005 spin_lock_irqsave(&ctx->completion_lock, flags);
4006 ret = io_timeout_cancel(ctx, sqe_addr);
4007 if (ret != -ENOENT)
4008 goto done;
4009 ret = io_poll_cancel(ctx, sqe_addr);
4010 done:
4011 if (!ret)
4012 ret = success_ret;
4013 io_cqring_fill_event(req, ret);
4014 io_commit_cqring(ctx);
4015 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4016 io_cqring_ev_posted(ctx);
4017
4018 if (ret < 0)
4019 req_set_fail_links(req);
4020 io_put_req_find_next(req, nxt);
4021 }
4022
4023 static int io_async_cancel_prep(struct io_kiocb *req,
4024 const struct io_uring_sqe *sqe)
4025 {
4026 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4027 return -EINVAL;
4028 if (sqe->flags || sqe->ioprio || sqe->off || sqe->len ||
4029 sqe->cancel_flags)
4030 return -EINVAL;
4031
4032 req->cancel.addr = READ_ONCE(sqe->addr);
4033 return 0;
4034 }
4035
4036 static int io_async_cancel(struct io_kiocb *req, struct io_kiocb **nxt)
4037 {
4038 struct io_ring_ctx *ctx = req->ctx;
4039
4040 io_async_find_and_cancel(ctx, req, req->cancel.addr, nxt, 0);
4041 return 0;
4042 }
4043
4044 static int io_files_update_prep(struct io_kiocb *req,
4045 const struct io_uring_sqe *sqe)
4046 {
4047 if (sqe->flags || sqe->ioprio || sqe->rw_flags)
4048 return -EINVAL;
4049
4050 req->files_update.offset = READ_ONCE(sqe->off);
4051 req->files_update.nr_args = READ_ONCE(sqe->len);
4052 if (!req->files_update.nr_args)
4053 return -EINVAL;
4054 req->files_update.arg = READ_ONCE(sqe->addr);
4055 return 0;
4056 }
4057
4058 static int io_files_update(struct io_kiocb *req, bool force_nonblock)
4059 {
4060 struct io_ring_ctx *ctx = req->ctx;
4061 struct io_uring_files_update up;
4062 int ret;
4063
4064 if (force_nonblock)
4065 return -EAGAIN;
4066
4067 up.offset = req->files_update.offset;
4068 up.fds = req->files_update.arg;
4069
4070 mutex_lock(&ctx->uring_lock);
4071 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
4072 mutex_unlock(&ctx->uring_lock);
4073
4074 if (ret < 0)
4075 req_set_fail_links(req);
4076 io_cqring_add_event(req, ret);
4077 io_put_req(req);
4078 return 0;
4079 }
4080
4081 static int io_req_defer_prep(struct io_kiocb *req,
4082 const struct io_uring_sqe *sqe)
4083 {
4084 ssize_t ret = 0;
4085
4086 if (io_op_defs[req->opcode].file_table) {
4087 ret = io_grab_files(req);
4088 if (unlikely(ret))
4089 return ret;
4090 }
4091
4092 io_req_work_grab_env(req, &io_op_defs[req->opcode]);
4093
4094 switch (req->opcode) {
4095 case IORING_OP_NOP:
4096 break;
4097 case IORING_OP_READV:
4098 case IORING_OP_READ_FIXED:
4099 case IORING_OP_READ:
4100 ret = io_read_prep(req, sqe, true);
4101 break;
4102 case IORING_OP_WRITEV:
4103 case IORING_OP_WRITE_FIXED:
4104 case IORING_OP_WRITE:
4105 ret = io_write_prep(req, sqe, true);
4106 break;
4107 case IORING_OP_POLL_ADD:
4108 ret = io_poll_add_prep(req, sqe);
4109 break;
4110 case IORING_OP_POLL_REMOVE:
4111 ret = io_poll_remove_prep(req, sqe);
4112 break;
4113 case IORING_OP_FSYNC:
4114 ret = io_prep_fsync(req, sqe);
4115 break;
4116 case IORING_OP_SYNC_FILE_RANGE:
4117 ret = io_prep_sfr(req, sqe);
4118 break;
4119 case IORING_OP_SENDMSG:
4120 case IORING_OP_SEND:
4121 ret = io_sendmsg_prep(req, sqe);
4122 break;
4123 case IORING_OP_RECVMSG:
4124 case IORING_OP_RECV:
4125 ret = io_recvmsg_prep(req, sqe);
4126 break;
4127 case IORING_OP_CONNECT:
4128 ret = io_connect_prep(req, sqe);
4129 break;
4130 case IORING_OP_TIMEOUT:
4131 ret = io_timeout_prep(req, sqe, false);
4132 break;
4133 case IORING_OP_TIMEOUT_REMOVE:
4134 ret = io_timeout_remove_prep(req, sqe);
4135 break;
4136 case IORING_OP_ASYNC_CANCEL:
4137 ret = io_async_cancel_prep(req, sqe);
4138 break;
4139 case IORING_OP_LINK_TIMEOUT:
4140 ret = io_timeout_prep(req, sqe, true);
4141 break;
4142 case IORING_OP_ACCEPT:
4143 ret = io_accept_prep(req, sqe);
4144 break;
4145 case IORING_OP_FALLOCATE:
4146 ret = io_fallocate_prep(req, sqe);
4147 break;
4148 case IORING_OP_OPENAT:
4149 ret = io_openat_prep(req, sqe);
4150 break;
4151 case IORING_OP_CLOSE:
4152 ret = io_close_prep(req, sqe);
4153 break;
4154 case IORING_OP_FILES_UPDATE:
4155 ret = io_files_update_prep(req, sqe);
4156 break;
4157 case IORING_OP_STATX:
4158 ret = io_statx_prep(req, sqe);
4159 break;
4160 case IORING_OP_FADVISE:
4161 ret = io_fadvise_prep(req, sqe);
4162 break;
4163 case IORING_OP_MADVISE:
4164 ret = io_madvise_prep(req, sqe);
4165 break;
4166 case IORING_OP_OPENAT2:
4167 ret = io_openat2_prep(req, sqe);
4168 break;
4169 case IORING_OP_EPOLL_CTL:
4170 ret = io_epoll_ctl_prep(req, sqe);
4171 break;
4172 default:
4173 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
4174 req->opcode);
4175 ret = -EINVAL;
4176 break;
4177 }
4178
4179 return ret;
4180 }
4181
4182 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4183 {
4184 struct io_ring_ctx *ctx = req->ctx;
4185 int ret;
4186
4187 /* Still need defer if there is pending req in defer list. */
4188 if (!req_need_defer(req) && list_empty(&ctx->defer_list))
4189 return 0;
4190
4191 if (!req->io && io_alloc_async_ctx(req))
4192 return -EAGAIN;
4193
4194 ret = io_req_defer_prep(req, sqe);
4195 if (ret < 0)
4196 return ret;
4197
4198 spin_lock_irq(&ctx->completion_lock);
4199 if (!req_need_defer(req) && list_empty(&ctx->defer_list)) {
4200 spin_unlock_irq(&ctx->completion_lock);
4201 return 0;
4202 }
4203
4204 trace_io_uring_defer(ctx, req, req->user_data);
4205 list_add_tail(&req->list, &ctx->defer_list);
4206 spin_unlock_irq(&ctx->completion_lock);
4207 return -EIOCBQUEUED;
4208 }
4209
4210 static int io_issue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4211 struct io_kiocb **nxt, bool force_nonblock)
4212 {
4213 struct io_ring_ctx *ctx = req->ctx;
4214 int ret;
4215
4216 switch (req->opcode) {
4217 case IORING_OP_NOP:
4218 ret = io_nop(req);
4219 break;
4220 case IORING_OP_READV:
4221 case IORING_OP_READ_FIXED:
4222 case IORING_OP_READ:
4223 if (sqe) {
4224 ret = io_read_prep(req, sqe, force_nonblock);
4225 if (ret < 0)
4226 break;
4227 }
4228 ret = io_read(req, nxt, force_nonblock);
4229 break;
4230 case IORING_OP_WRITEV:
4231 case IORING_OP_WRITE_FIXED:
4232 case IORING_OP_WRITE:
4233 if (sqe) {
4234 ret = io_write_prep(req, sqe, force_nonblock);
4235 if (ret < 0)
4236 break;
4237 }
4238 ret = io_write(req, nxt, force_nonblock);
4239 break;
4240 case IORING_OP_FSYNC:
4241 if (sqe) {
4242 ret = io_prep_fsync(req, sqe);
4243 if (ret < 0)
4244 break;
4245 }
4246 ret = io_fsync(req, nxt, force_nonblock);
4247 break;
4248 case IORING_OP_POLL_ADD:
4249 if (sqe) {
4250 ret = io_poll_add_prep(req, sqe);
4251 if (ret)
4252 break;
4253 }
4254 ret = io_poll_add(req, nxt);
4255 break;
4256 case IORING_OP_POLL_REMOVE:
4257 if (sqe) {
4258 ret = io_poll_remove_prep(req, sqe);
4259 if (ret < 0)
4260 break;
4261 }
4262 ret = io_poll_remove(req);
4263 break;
4264 case IORING_OP_SYNC_FILE_RANGE:
4265 if (sqe) {
4266 ret = io_prep_sfr(req, sqe);
4267 if (ret < 0)
4268 break;
4269 }
4270 ret = io_sync_file_range(req, nxt, force_nonblock);
4271 break;
4272 case IORING_OP_SENDMSG:
4273 case IORING_OP_SEND:
4274 if (sqe) {
4275 ret = io_sendmsg_prep(req, sqe);
4276 if (ret < 0)
4277 break;
4278 }
4279 if (req->opcode == IORING_OP_SENDMSG)
4280 ret = io_sendmsg(req, nxt, force_nonblock);
4281 else
4282 ret = io_send(req, nxt, force_nonblock);
4283 break;
4284 case IORING_OP_RECVMSG:
4285 case IORING_OP_RECV:
4286 if (sqe) {
4287 ret = io_recvmsg_prep(req, sqe);
4288 if (ret)
4289 break;
4290 }
4291 if (req->opcode == IORING_OP_RECVMSG)
4292 ret = io_recvmsg(req, nxt, force_nonblock);
4293 else
4294 ret = io_recv(req, nxt, force_nonblock);
4295 break;
4296 case IORING_OP_TIMEOUT:
4297 if (sqe) {
4298 ret = io_timeout_prep(req, sqe, false);
4299 if (ret)
4300 break;
4301 }
4302 ret = io_timeout(req);
4303 break;
4304 case IORING_OP_TIMEOUT_REMOVE:
4305 if (sqe) {
4306 ret = io_timeout_remove_prep(req, sqe);
4307 if (ret)
4308 break;
4309 }
4310 ret = io_timeout_remove(req);
4311 break;
4312 case IORING_OP_ACCEPT:
4313 if (sqe) {
4314 ret = io_accept_prep(req, sqe);
4315 if (ret)
4316 break;
4317 }
4318 ret = io_accept(req, nxt, force_nonblock);
4319 break;
4320 case IORING_OP_CONNECT:
4321 if (sqe) {
4322 ret = io_connect_prep(req, sqe);
4323 if (ret)
4324 break;
4325 }
4326 ret = io_connect(req, nxt, force_nonblock);
4327 break;
4328 case IORING_OP_ASYNC_CANCEL:
4329 if (sqe) {
4330 ret = io_async_cancel_prep(req, sqe);
4331 if (ret)
4332 break;
4333 }
4334 ret = io_async_cancel(req, nxt);
4335 break;
4336 case IORING_OP_FALLOCATE:
4337 if (sqe) {
4338 ret = io_fallocate_prep(req, sqe);
4339 if (ret)
4340 break;
4341 }
4342 ret = io_fallocate(req, nxt, force_nonblock);
4343 break;
4344 case IORING_OP_OPENAT:
4345 if (sqe) {
4346 ret = io_openat_prep(req, sqe);
4347 if (ret)
4348 break;
4349 }
4350 ret = io_openat(req, nxt, force_nonblock);
4351 break;
4352 case IORING_OP_CLOSE:
4353 if (sqe) {
4354 ret = io_close_prep(req, sqe);
4355 if (ret)
4356 break;
4357 }
4358 ret = io_close(req, nxt, force_nonblock);
4359 break;
4360 case IORING_OP_FILES_UPDATE:
4361 if (sqe) {
4362 ret = io_files_update_prep(req, sqe);
4363 if (ret)
4364 break;
4365 }
4366 ret = io_files_update(req, force_nonblock);
4367 break;
4368 case IORING_OP_STATX:
4369 if (sqe) {
4370 ret = io_statx_prep(req, sqe);
4371 if (ret)
4372 break;
4373 }
4374 ret = io_statx(req, nxt, force_nonblock);
4375 break;
4376 case IORING_OP_FADVISE:
4377 if (sqe) {
4378 ret = io_fadvise_prep(req, sqe);
4379 if (ret)
4380 break;
4381 }
4382 ret = io_fadvise(req, nxt, force_nonblock);
4383 break;
4384 case IORING_OP_MADVISE:
4385 if (sqe) {
4386 ret = io_madvise_prep(req, sqe);
4387 if (ret)
4388 break;
4389 }
4390 ret = io_madvise(req, nxt, force_nonblock);
4391 break;
4392 case IORING_OP_OPENAT2:
4393 if (sqe) {
4394 ret = io_openat2_prep(req, sqe);
4395 if (ret)
4396 break;
4397 }
4398 ret = io_openat2(req, nxt, force_nonblock);
4399 break;
4400 case IORING_OP_EPOLL_CTL:
4401 if (sqe) {
4402 ret = io_epoll_ctl_prep(req, sqe);
4403 if (ret)
4404 break;
4405 }
4406 ret = io_epoll_ctl(req, nxt, force_nonblock);
4407 break;
4408 default:
4409 ret = -EINVAL;
4410 break;
4411 }
4412
4413 if (ret)
4414 return ret;
4415
4416 if (ctx->flags & IORING_SETUP_IOPOLL) {
4417 const bool in_async = io_wq_current_is_worker();
4418
4419 if (req->result == -EAGAIN)
4420 return -EAGAIN;
4421
4422 /* workqueue context doesn't hold uring_lock, grab it now */
4423 if (in_async)
4424 mutex_lock(&ctx->uring_lock);
4425
4426 io_iopoll_req_issued(req);
4427
4428 if (in_async)
4429 mutex_unlock(&ctx->uring_lock);
4430 }
4431
4432 return 0;
4433 }
4434
4435 static void io_wq_submit_work(struct io_wq_work **workptr)
4436 {
4437 struct io_wq_work *work = *workptr;
4438 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
4439 struct io_kiocb *nxt = NULL;
4440 int ret = 0;
4441
4442 /* if NO_CANCEL is set, we must still run the work */
4443 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
4444 IO_WQ_WORK_CANCEL) {
4445 ret = -ECANCELED;
4446 }
4447
4448 if (!ret) {
4449 req->has_user = (work->flags & IO_WQ_WORK_HAS_MM) != 0;
4450 req->in_async = true;
4451 do {
4452 ret = io_issue_sqe(req, NULL, &nxt, false);
4453 /*
4454 * We can get EAGAIN for polled IO even though we're
4455 * forcing a sync submission from here, since we can't
4456 * wait for request slots on the block side.
4457 */
4458 if (ret != -EAGAIN)
4459 break;
4460 cond_resched();
4461 } while (1);
4462 }
4463
4464 /* drop submission reference */
4465 io_put_req(req);
4466
4467 if (ret) {
4468 req_set_fail_links(req);
4469 io_cqring_add_event(req, ret);
4470 io_put_req(req);
4471 }
4472
4473 /* if a dependent link is ready, pass it back */
4474 if (!ret && nxt)
4475 io_wq_assign_next(workptr, nxt);
4476 }
4477
4478 static int io_req_needs_file(struct io_kiocb *req, int fd)
4479 {
4480 if (!io_op_defs[req->opcode].needs_file)
4481 return 0;
4482 if (fd == -1 && io_op_defs[req->opcode].fd_non_neg)
4483 return 0;
4484 return 1;
4485 }
4486
4487 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
4488 int index)
4489 {
4490 struct fixed_file_table *table;
4491
4492 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
4493 return table->files[index & IORING_FILE_TABLE_MASK];;
4494 }
4495
4496 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
4497 const struct io_uring_sqe *sqe)
4498 {
4499 struct io_ring_ctx *ctx = req->ctx;
4500 unsigned flags;
4501 int fd;
4502
4503 flags = READ_ONCE(sqe->flags);
4504 fd = READ_ONCE(sqe->fd);
4505
4506 if (!io_req_needs_file(req, fd))
4507 return 0;
4508
4509 if (flags & IOSQE_FIXED_FILE) {
4510 if (unlikely(!ctx->file_data ||
4511 (unsigned) fd >= ctx->nr_user_files))
4512 return -EBADF;
4513 fd = array_index_nospec(fd, ctx->nr_user_files);
4514 req->file = io_file_from_index(ctx, fd);
4515 if (!req->file)
4516 return -EBADF;
4517 req->flags |= REQ_F_FIXED_FILE;
4518 percpu_ref_get(&ctx->file_data->refs);
4519 } else {
4520 if (req->needs_fixed_file)
4521 return -EBADF;
4522 trace_io_uring_file_get(ctx, fd);
4523 req->file = io_file_get(state, fd);
4524 if (unlikely(!req->file))
4525 return -EBADF;
4526 }
4527
4528 return 0;
4529 }
4530
4531 static int io_grab_files(struct io_kiocb *req)
4532 {
4533 int ret = -EBADF;
4534 struct io_ring_ctx *ctx = req->ctx;
4535
4536 if (req->work.files)
4537 return 0;
4538 if (!ctx->ring_file)
4539 return -EBADF;
4540
4541 rcu_read_lock();
4542 spin_lock_irq(&ctx->inflight_lock);
4543 /*
4544 * We use the f_ops->flush() handler to ensure that we can flush
4545 * out work accessing these files if the fd is closed. Check if
4546 * the fd has changed since we started down this path, and disallow
4547 * this operation if it has.
4548 */
4549 if (fcheck(ctx->ring_fd) == ctx->ring_file) {
4550 list_add(&req->inflight_entry, &ctx->inflight_list);
4551 req->flags |= REQ_F_INFLIGHT;
4552 req->work.files = current->files;
4553 ret = 0;
4554 }
4555 spin_unlock_irq(&ctx->inflight_lock);
4556 rcu_read_unlock();
4557
4558 return ret;
4559 }
4560
4561 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
4562 {
4563 struct io_timeout_data *data = container_of(timer,
4564 struct io_timeout_data, timer);
4565 struct io_kiocb *req = data->req;
4566 struct io_ring_ctx *ctx = req->ctx;
4567 struct io_kiocb *prev = NULL;
4568 unsigned long flags;
4569
4570 spin_lock_irqsave(&ctx->completion_lock, flags);
4571
4572 /*
4573 * We don't expect the list to be empty, that will only happen if we
4574 * race with the completion of the linked work.
4575 */
4576 if (!list_empty(&req->link_list)) {
4577 prev = list_entry(req->link_list.prev, struct io_kiocb,
4578 link_list);
4579 if (refcount_inc_not_zero(&prev->refs)) {
4580 list_del_init(&req->link_list);
4581 prev->flags &= ~REQ_F_LINK_TIMEOUT;
4582 } else
4583 prev = NULL;
4584 }
4585
4586 spin_unlock_irqrestore(&ctx->completion_lock, flags);
4587
4588 if (prev) {
4589 req_set_fail_links(prev);
4590 io_async_find_and_cancel(ctx, req, prev->user_data, NULL,
4591 -ETIME);
4592 io_put_req(prev);
4593 } else {
4594 io_cqring_add_event(req, -ETIME);
4595 io_put_req(req);
4596 }
4597 return HRTIMER_NORESTART;
4598 }
4599
4600 static void io_queue_linked_timeout(struct io_kiocb *req)
4601 {
4602 struct io_ring_ctx *ctx = req->ctx;
4603
4604 /*
4605 * If the list is now empty, then our linked request finished before
4606 * we got a chance to setup the timer
4607 */
4608 spin_lock_irq(&ctx->completion_lock);
4609 if (!list_empty(&req->link_list)) {
4610 struct io_timeout_data *data = &req->io->timeout;
4611
4612 data->timer.function = io_link_timeout_fn;
4613 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
4614 data->mode);
4615 }
4616 spin_unlock_irq(&ctx->completion_lock);
4617
4618 /* drop submission reference */
4619 io_put_req(req);
4620 }
4621
4622 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
4623 {
4624 struct io_kiocb *nxt;
4625
4626 if (!(req->flags & REQ_F_LINK))
4627 return NULL;
4628
4629 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
4630 link_list);
4631 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
4632 return NULL;
4633
4634 req->flags |= REQ_F_LINK_TIMEOUT;
4635 return nxt;
4636 }
4637
4638 static void __io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4639 {
4640 struct io_kiocb *linked_timeout;
4641 struct io_kiocb *nxt = NULL;
4642 int ret;
4643
4644 again:
4645 linked_timeout = io_prep_linked_timeout(req);
4646
4647 ret = io_issue_sqe(req, sqe, &nxt, true);
4648
4649 /*
4650 * We async punt it if the file wasn't marked NOWAIT, or if the file
4651 * doesn't support non-blocking read/write attempts
4652 */
4653 if (ret == -EAGAIN && (!(req->flags & REQ_F_NOWAIT) ||
4654 (req->flags & REQ_F_MUST_PUNT))) {
4655 punt:
4656 if (io_op_defs[req->opcode].file_table) {
4657 ret = io_grab_files(req);
4658 if (ret)
4659 goto err;
4660 }
4661
4662 /*
4663 * Queued up for async execution, worker will release
4664 * submit reference when the iocb is actually submitted.
4665 */
4666 io_queue_async_work(req);
4667 goto done_req;
4668 }
4669
4670 err:
4671 /* drop submission reference */
4672 io_put_req(req);
4673
4674 if (linked_timeout) {
4675 if (!ret)
4676 io_queue_linked_timeout(linked_timeout);
4677 else
4678 io_put_req(linked_timeout);
4679 }
4680
4681 /* and drop final reference, if we failed */
4682 if (ret) {
4683 io_cqring_add_event(req, ret);
4684 req_set_fail_links(req);
4685 io_put_req(req);
4686 }
4687 done_req:
4688 if (nxt) {
4689 req = nxt;
4690 nxt = NULL;
4691
4692 if (req->flags & REQ_F_FORCE_ASYNC)
4693 goto punt;
4694 goto again;
4695 }
4696 }
4697
4698 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4699 {
4700 int ret;
4701
4702 ret = io_req_defer(req, sqe);
4703 if (ret) {
4704 if (ret != -EIOCBQUEUED) {
4705 fail_req:
4706 io_cqring_add_event(req, ret);
4707 req_set_fail_links(req);
4708 io_double_put_req(req);
4709 }
4710 } else if (req->flags & REQ_F_FORCE_ASYNC) {
4711 ret = io_req_defer_prep(req, sqe);
4712 if (unlikely(ret < 0))
4713 goto fail_req;
4714 /*
4715 * Never try inline submit of IOSQE_ASYNC is set, go straight
4716 * to async execution.
4717 */
4718 req->work.flags |= IO_WQ_WORK_CONCURRENT;
4719 io_queue_async_work(req);
4720 } else {
4721 __io_queue_sqe(req, sqe);
4722 }
4723 }
4724
4725 static inline void io_queue_link_head(struct io_kiocb *req)
4726 {
4727 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
4728 io_cqring_add_event(req, -ECANCELED);
4729 io_double_put_req(req);
4730 } else
4731 io_queue_sqe(req, NULL);
4732 }
4733
4734 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
4735 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
4736
4737 static bool io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
4738 struct io_submit_state *state, struct io_kiocb **link)
4739 {
4740 const struct cred *old_creds = NULL;
4741 struct io_ring_ctx *ctx = req->ctx;
4742 unsigned int sqe_flags;
4743 int ret, id;
4744
4745 sqe_flags = READ_ONCE(sqe->flags);
4746
4747 /* enforce forwards compatibility on users */
4748 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
4749 ret = -EINVAL;
4750 goto err_req;
4751 }
4752
4753 id = READ_ONCE(sqe->personality);
4754 if (id) {
4755 const struct cred *personality_creds;
4756
4757 personality_creds = idr_find(&ctx->personality_idr, id);
4758 if (unlikely(!personality_creds)) {
4759 ret = -EINVAL;
4760 goto err_req;
4761 }
4762 old_creds = override_creds(personality_creds);
4763 }
4764
4765 /* same numerical values with corresponding REQ_F_*, safe to copy */
4766 req->flags |= sqe_flags & (IOSQE_IO_DRAIN|IOSQE_IO_HARDLINK|
4767 IOSQE_ASYNC);
4768
4769 ret = io_req_set_file(state, req, sqe);
4770 if (unlikely(ret)) {
4771 err_req:
4772 io_cqring_add_event(req, ret);
4773 io_double_put_req(req);
4774 if (old_creds)
4775 revert_creds(old_creds);
4776 return false;
4777 }
4778
4779 /*
4780 * If we already have a head request, queue this one for async
4781 * submittal once the head completes. If we don't have a head but
4782 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
4783 * submitted sync once the chain is complete. If none of those
4784 * conditions are true (normal request), then just queue it.
4785 */
4786 if (*link) {
4787 struct io_kiocb *head = *link;
4788
4789 /*
4790 * Taking sequential execution of a link, draining both sides
4791 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
4792 * requests in the link. So, it drains the head and the
4793 * next after the link request. The last one is done via
4794 * drain_next flag to persist the effect across calls.
4795 */
4796 if (sqe_flags & IOSQE_IO_DRAIN) {
4797 head->flags |= REQ_F_IO_DRAIN;
4798 ctx->drain_next = 1;
4799 }
4800 if (io_alloc_async_ctx(req)) {
4801 ret = -EAGAIN;
4802 goto err_req;
4803 }
4804
4805 ret = io_req_defer_prep(req, sqe);
4806 if (ret) {
4807 /* fail even hard links since we don't submit */
4808 head->flags |= REQ_F_FAIL_LINK;
4809 goto err_req;
4810 }
4811 trace_io_uring_link(ctx, req, head);
4812 list_add_tail(&req->link_list, &head->link_list);
4813
4814 /* last request of a link, enqueue the link */
4815 if (!(sqe_flags & (IOSQE_IO_LINK|IOSQE_IO_HARDLINK))) {
4816 io_queue_link_head(head);
4817 *link = NULL;
4818 }
4819 } else {
4820 if (unlikely(ctx->drain_next)) {
4821 req->flags |= REQ_F_IO_DRAIN;
4822 req->ctx->drain_next = 0;
4823 }
4824 if (sqe_flags & (IOSQE_IO_LINK|IOSQE_IO_HARDLINK)) {
4825 req->flags |= REQ_F_LINK;
4826 INIT_LIST_HEAD(&req->link_list);
4827 ret = io_req_defer_prep(req, sqe);
4828 if (ret)
4829 req->flags |= REQ_F_FAIL_LINK;
4830 *link = req;
4831 } else {
4832 io_queue_sqe(req, sqe);
4833 }
4834 }
4835
4836 if (old_creds)
4837 revert_creds(old_creds);
4838 return true;
4839 }
4840
4841 /*
4842 * Batched submission is done, ensure local IO is flushed out.
4843 */
4844 static void io_submit_state_end(struct io_submit_state *state)
4845 {
4846 blk_finish_plug(&state->plug);
4847 io_file_put(state);
4848 if (state->free_reqs)
4849 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
4850 }
4851
4852 /*
4853 * Start submission side cache.
4854 */
4855 static void io_submit_state_start(struct io_submit_state *state,
4856 unsigned int max_ios)
4857 {
4858 blk_start_plug(&state->plug);
4859 state->free_reqs = 0;
4860 state->file = NULL;
4861 state->ios_left = max_ios;
4862 }
4863
4864 static void io_commit_sqring(struct io_ring_ctx *ctx)
4865 {
4866 struct io_rings *rings = ctx->rings;
4867
4868 /*
4869 * Ensure any loads from the SQEs are done at this point,
4870 * since once we write the new head, the application could
4871 * write new data to them.
4872 */
4873 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
4874 }
4875
4876 /*
4877 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
4878 * that is mapped by userspace. This means that care needs to be taken to
4879 * ensure that reads are stable, as we cannot rely on userspace always
4880 * being a good citizen. If members of the sqe are validated and then later
4881 * used, it's important that those reads are done through READ_ONCE() to
4882 * prevent a re-load down the line.
4883 */
4884 static bool io_get_sqring(struct io_ring_ctx *ctx, struct io_kiocb *req,
4885 const struct io_uring_sqe **sqe_ptr)
4886 {
4887 u32 *sq_array = ctx->sq_array;
4888 unsigned head;
4889
4890 /*
4891 * The cached sq head (or cq tail) serves two purposes:
4892 *
4893 * 1) allows us to batch the cost of updating the user visible
4894 * head updates.
4895 * 2) allows the kernel side to track the head on its own, even
4896 * though the application is the one updating it.
4897 */
4898 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
4899 if (likely(head < ctx->sq_entries)) {
4900 /*
4901 * All io need record the previous position, if LINK vs DARIN,
4902 * it can be used to mark the position of the first IO in the
4903 * link list.
4904 */
4905 req->sequence = ctx->cached_sq_head;
4906 *sqe_ptr = &ctx->sq_sqes[head];
4907 req->opcode = READ_ONCE((*sqe_ptr)->opcode);
4908 req->user_data = READ_ONCE((*sqe_ptr)->user_data);
4909 ctx->cached_sq_head++;
4910 return true;
4911 }
4912
4913 /* drop invalid entries */
4914 ctx->cached_sq_head++;
4915 ctx->cached_sq_dropped++;
4916 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
4917 return false;
4918 }
4919
4920 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr,
4921 struct file *ring_file, int ring_fd,
4922 struct mm_struct **mm, bool async)
4923 {
4924 struct io_submit_state state, *statep = NULL;
4925 struct io_kiocb *link = NULL;
4926 int i, submitted = 0;
4927 bool mm_fault = false;
4928
4929 /* if we have a backlog and couldn't flush it all, return BUSY */
4930 if (test_bit(0, &ctx->sq_check_overflow)) {
4931 if (!list_empty(&ctx->cq_overflow_list) &&
4932 !io_cqring_overflow_flush(ctx, false))
4933 return -EBUSY;
4934 }
4935
4936 /* make sure SQ entry isn't read before tail */
4937 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
4938
4939 if (!percpu_ref_tryget_many(&ctx->refs, nr))
4940 return -EAGAIN;
4941
4942 if (nr > IO_PLUG_THRESHOLD) {
4943 io_submit_state_start(&state, nr);
4944 statep = &state;
4945 }
4946
4947 ctx->ring_fd = ring_fd;
4948 ctx->ring_file = ring_file;
4949
4950 for (i = 0; i < nr; i++) {
4951 const struct io_uring_sqe *sqe;
4952 struct io_kiocb *req;
4953
4954 req = io_get_req(ctx, statep);
4955 if (unlikely(!req)) {
4956 if (!submitted)
4957 submitted = -EAGAIN;
4958 break;
4959 }
4960 if (!io_get_sqring(ctx, req, &sqe)) {
4961 __io_req_do_free(req);
4962 break;
4963 }
4964
4965 /* will complete beyond this point, count as submitted */
4966 submitted++;
4967
4968 if (unlikely(req->opcode >= IORING_OP_LAST)) {
4969 io_cqring_add_event(req, -EINVAL);
4970 io_double_put_req(req);
4971 break;
4972 }
4973
4974 if (io_op_defs[req->opcode].needs_mm && !*mm) {
4975 mm_fault = mm_fault || !mmget_not_zero(ctx->sqo_mm);
4976 if (!mm_fault) {
4977 use_mm(ctx->sqo_mm);
4978 *mm = ctx->sqo_mm;
4979 }
4980 }
4981
4982 req->has_user = *mm != NULL;
4983 req->in_async = async;
4984 req->needs_fixed_file = async;
4985 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
4986 true, async);
4987 if (!io_submit_sqe(req, sqe, statep, &link))
4988 break;
4989 }
4990
4991 if (unlikely(submitted != nr)) {
4992 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
4993
4994 percpu_ref_put_many(&ctx->refs, nr - ref_used);
4995 }
4996 if (link)
4997 io_queue_link_head(link);
4998 if (statep)
4999 io_submit_state_end(&state);
5000
5001 /* Commit SQ ring head once we've consumed and submitted all SQEs */
5002 io_commit_sqring(ctx);
5003
5004 return submitted;
5005 }
5006
5007 static int io_sq_thread(void *data)
5008 {
5009 struct io_ring_ctx *ctx = data;
5010 struct mm_struct *cur_mm = NULL;
5011 const struct cred *old_cred;
5012 mm_segment_t old_fs;
5013 DEFINE_WAIT(wait);
5014 unsigned inflight;
5015 unsigned long timeout;
5016 int ret;
5017
5018 complete(&ctx->completions[1]);
5019
5020 old_fs = get_fs();
5021 set_fs(USER_DS);
5022 old_cred = override_creds(ctx->creds);
5023
5024 ret = timeout = inflight = 0;
5025 while (!kthread_should_park()) {
5026 unsigned int to_submit;
5027
5028 if (inflight) {
5029 unsigned nr_events = 0;
5030
5031 if (ctx->flags & IORING_SETUP_IOPOLL) {
5032 /*
5033 * inflight is the count of the maximum possible
5034 * entries we submitted, but it can be smaller
5035 * if we dropped some of them. If we don't have
5036 * poll entries available, then we know that we
5037 * have nothing left to poll for. Reset the
5038 * inflight count to zero in that case.
5039 */
5040 mutex_lock(&ctx->uring_lock);
5041 if (!list_empty(&ctx->poll_list))
5042 __io_iopoll_check(ctx, &nr_events, 0);
5043 else
5044 inflight = 0;
5045 mutex_unlock(&ctx->uring_lock);
5046 } else {
5047 /*
5048 * Normal IO, just pretend everything completed.
5049 * We don't have to poll completions for that.
5050 */
5051 nr_events = inflight;
5052 }
5053
5054 inflight -= nr_events;
5055 if (!inflight)
5056 timeout = jiffies + ctx->sq_thread_idle;
5057 }
5058
5059 to_submit = io_sqring_entries(ctx);
5060
5061 /*
5062 * If submit got -EBUSY, flag us as needing the application
5063 * to enter the kernel to reap and flush events.
5064 */
5065 if (!to_submit || ret == -EBUSY) {
5066 /*
5067 * We're polling. If we're within the defined idle
5068 * period, then let us spin without work before going
5069 * to sleep. The exception is if we got EBUSY doing
5070 * more IO, we should wait for the application to
5071 * reap events and wake us up.
5072 */
5073 if (inflight ||
5074 (!time_after(jiffies, timeout) && ret != -EBUSY &&
5075 !percpu_ref_is_dying(&ctx->refs))) {
5076 cond_resched();
5077 continue;
5078 }
5079
5080 /*
5081 * Drop cur_mm before scheduling, we can't hold it for
5082 * long periods (or over schedule()). Do this before
5083 * adding ourselves to the waitqueue, as the unuse/drop
5084 * may sleep.
5085 */
5086 if (cur_mm) {
5087 unuse_mm(cur_mm);
5088 mmput(cur_mm);
5089 cur_mm = NULL;
5090 }
5091
5092 prepare_to_wait(&ctx->sqo_wait, &wait,
5093 TASK_INTERRUPTIBLE);
5094
5095 /* Tell userspace we may need a wakeup call */
5096 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
5097 /* make sure to read SQ tail after writing flags */
5098 smp_mb();
5099
5100 to_submit = io_sqring_entries(ctx);
5101 if (!to_submit || ret == -EBUSY) {
5102 if (kthread_should_park()) {
5103 finish_wait(&ctx->sqo_wait, &wait);
5104 break;
5105 }
5106 if (signal_pending(current))
5107 flush_signals(current);
5108 schedule();
5109 finish_wait(&ctx->sqo_wait, &wait);
5110
5111 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
5112 continue;
5113 }
5114 finish_wait(&ctx->sqo_wait, &wait);
5115
5116 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
5117 }
5118
5119 mutex_lock(&ctx->uring_lock);
5120 ret = io_submit_sqes(ctx, to_submit, NULL, -1, &cur_mm, true);
5121 mutex_unlock(&ctx->uring_lock);
5122 if (ret > 0)
5123 inflight += ret;
5124 }
5125
5126 set_fs(old_fs);
5127 if (cur_mm) {
5128 unuse_mm(cur_mm);
5129 mmput(cur_mm);
5130 }
5131 revert_creds(old_cred);
5132
5133 kthread_parkme();
5134
5135 return 0;
5136 }
5137
5138 struct io_wait_queue {
5139 struct wait_queue_entry wq;
5140 struct io_ring_ctx *ctx;
5141 unsigned to_wait;
5142 unsigned nr_timeouts;
5143 };
5144
5145 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
5146 {
5147 struct io_ring_ctx *ctx = iowq->ctx;
5148
5149 /*
5150 * Wake up if we have enough events, or if a timeout occurred since we
5151 * started waiting. For timeouts, we always want to return to userspace,
5152 * regardless of event count.
5153 */
5154 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
5155 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
5156 }
5157
5158 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
5159 int wake_flags, void *key)
5160 {
5161 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
5162 wq);
5163
5164 /* use noflush == true, as we can't safely rely on locking context */
5165 if (!io_should_wake(iowq, true))
5166 return -1;
5167
5168 return autoremove_wake_function(curr, mode, wake_flags, key);
5169 }
5170
5171 /*
5172 * Wait until events become available, if we don't already have some. The
5173 * application must reap them itself, as they reside on the shared cq ring.
5174 */
5175 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
5176 const sigset_t __user *sig, size_t sigsz)
5177 {
5178 struct io_wait_queue iowq = {
5179 .wq = {
5180 .private = current,
5181 .func = io_wake_function,
5182 .entry = LIST_HEAD_INIT(iowq.wq.entry),
5183 },
5184 .ctx = ctx,
5185 .to_wait = min_events,
5186 };
5187 struct io_rings *rings = ctx->rings;
5188 int ret = 0;
5189
5190 if (io_cqring_events(ctx, false) >= min_events)
5191 return 0;
5192
5193 if (sig) {
5194 #ifdef CONFIG_COMPAT
5195 if (in_compat_syscall())
5196 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
5197 sigsz);
5198 else
5199 #endif
5200 ret = set_user_sigmask(sig, sigsz);
5201
5202 if (ret)
5203 return ret;
5204 }
5205
5206 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
5207 trace_io_uring_cqring_wait(ctx, min_events);
5208 do {
5209 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
5210 TASK_INTERRUPTIBLE);
5211 if (io_should_wake(&iowq, false))
5212 break;
5213 schedule();
5214 if (signal_pending(current)) {
5215 ret = -EINTR;
5216 break;
5217 }
5218 } while (1);
5219 finish_wait(&ctx->wait, &iowq.wq);
5220
5221 restore_saved_sigmask_unless(ret == -EINTR);
5222
5223 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
5224 }
5225
5226 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
5227 {
5228 #if defined(CONFIG_UNIX)
5229 if (ctx->ring_sock) {
5230 struct sock *sock = ctx->ring_sock->sk;
5231 struct sk_buff *skb;
5232
5233 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
5234 kfree_skb(skb);
5235 }
5236 #else
5237 int i;
5238
5239 for (i = 0; i < ctx->nr_user_files; i++) {
5240 struct file *file;
5241
5242 file = io_file_from_index(ctx, i);
5243 if (file)
5244 fput(file);
5245 }
5246 #endif
5247 }
5248
5249 static void io_file_ref_kill(struct percpu_ref *ref)
5250 {
5251 struct fixed_file_data *data;
5252
5253 data = container_of(ref, struct fixed_file_data, refs);
5254 complete(&data->done);
5255 }
5256
5257 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
5258 {
5259 struct fixed_file_data *data = ctx->file_data;
5260 unsigned nr_tables, i;
5261
5262 if (!data)
5263 return -ENXIO;
5264
5265 percpu_ref_kill_and_confirm(&data->refs, io_file_ref_kill);
5266 flush_work(&data->ref_work);
5267 wait_for_completion(&data->done);
5268 io_ring_file_ref_flush(data);
5269 percpu_ref_exit(&data->refs);
5270
5271 __io_sqe_files_unregister(ctx);
5272 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
5273 for (i = 0; i < nr_tables; i++)
5274 kfree(data->table[i].files);
5275 kfree(data->table);
5276 kfree(data);
5277 ctx->file_data = NULL;
5278 ctx->nr_user_files = 0;
5279 return 0;
5280 }
5281
5282 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
5283 {
5284 if (ctx->sqo_thread) {
5285 wait_for_completion(&ctx->completions[1]);
5286 /*
5287 * The park is a bit of a work-around, without it we get
5288 * warning spews on shutdown with SQPOLL set and affinity
5289 * set to a single CPU.
5290 */
5291 kthread_park(ctx->sqo_thread);
5292 kthread_stop(ctx->sqo_thread);
5293 ctx->sqo_thread = NULL;
5294 }
5295 }
5296
5297 static void io_finish_async(struct io_ring_ctx *ctx)
5298 {
5299 io_sq_thread_stop(ctx);
5300
5301 if (ctx->io_wq) {
5302 io_wq_destroy(ctx->io_wq);
5303 ctx->io_wq = NULL;
5304 }
5305 }
5306
5307 #if defined(CONFIG_UNIX)
5308 /*
5309 * Ensure the UNIX gc is aware of our file set, so we are certain that
5310 * the io_uring can be safely unregistered on process exit, even if we have
5311 * loops in the file referencing.
5312 */
5313 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
5314 {
5315 struct sock *sk = ctx->ring_sock->sk;
5316 struct scm_fp_list *fpl;
5317 struct sk_buff *skb;
5318 int i, nr_files;
5319
5320 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
5321 unsigned long inflight = ctx->user->unix_inflight + nr;
5322
5323 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
5324 return -EMFILE;
5325 }
5326
5327 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
5328 if (!fpl)
5329 return -ENOMEM;
5330
5331 skb = alloc_skb(0, GFP_KERNEL);
5332 if (!skb) {
5333 kfree(fpl);
5334 return -ENOMEM;
5335 }
5336
5337 skb->sk = sk;
5338
5339 nr_files = 0;
5340 fpl->user = get_uid(ctx->user);
5341 for (i = 0; i < nr; i++) {
5342 struct file *file = io_file_from_index(ctx, i + offset);
5343
5344 if (!file)
5345 continue;
5346 fpl->fp[nr_files] = get_file(file);
5347 unix_inflight(fpl->user, fpl->fp[nr_files]);
5348 nr_files++;
5349 }
5350
5351 if (nr_files) {
5352 fpl->max = SCM_MAX_FD;
5353 fpl->count = nr_files;
5354 UNIXCB(skb).fp = fpl;
5355 skb->destructor = unix_destruct_scm;
5356 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
5357 skb_queue_head(&sk->sk_receive_queue, skb);
5358
5359 for (i = 0; i < nr_files; i++)
5360 fput(fpl->fp[i]);
5361 } else {
5362 kfree_skb(skb);
5363 kfree(fpl);
5364 }
5365
5366 return 0;
5367 }
5368
5369 /*
5370 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
5371 * causes regular reference counting to break down. We rely on the UNIX
5372 * garbage collection to take care of this problem for us.
5373 */
5374 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
5375 {
5376 unsigned left, total;
5377 int ret = 0;
5378
5379 total = 0;
5380 left = ctx->nr_user_files;
5381 while (left) {
5382 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
5383
5384 ret = __io_sqe_files_scm(ctx, this_files, total);
5385 if (ret)
5386 break;
5387 left -= this_files;
5388 total += this_files;
5389 }
5390
5391 if (!ret)
5392 return 0;
5393
5394 while (total < ctx->nr_user_files) {
5395 struct file *file = io_file_from_index(ctx, total);
5396
5397 if (file)
5398 fput(file);
5399 total++;
5400 }
5401
5402 return ret;
5403 }
5404 #else
5405 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
5406 {
5407 return 0;
5408 }
5409 #endif
5410
5411 static int io_sqe_alloc_file_tables(struct io_ring_ctx *ctx, unsigned nr_tables,
5412 unsigned nr_files)
5413 {
5414 int i;
5415
5416 for (i = 0; i < nr_tables; i++) {
5417 struct fixed_file_table *table = &ctx->file_data->table[i];
5418 unsigned this_files;
5419
5420 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
5421 table->files = kcalloc(this_files, sizeof(struct file *),
5422 GFP_KERNEL);
5423 if (!table->files)
5424 break;
5425 nr_files -= this_files;
5426 }
5427
5428 if (i == nr_tables)
5429 return 0;
5430
5431 for (i = 0; i < nr_tables; i++) {
5432 struct fixed_file_table *table = &ctx->file_data->table[i];
5433 kfree(table->files);
5434 }
5435 return 1;
5436 }
5437
5438 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
5439 {
5440 #if defined(CONFIG_UNIX)
5441 struct sock *sock = ctx->ring_sock->sk;
5442 struct sk_buff_head list, *head = &sock->sk_receive_queue;
5443 struct sk_buff *skb;
5444 int i;
5445
5446 __skb_queue_head_init(&list);
5447
5448 /*
5449 * Find the skb that holds this file in its SCM_RIGHTS. When found,
5450 * remove this entry and rearrange the file array.
5451 */
5452 skb = skb_dequeue(head);
5453 while (skb) {
5454 struct scm_fp_list *fp;
5455
5456 fp = UNIXCB(skb).fp;
5457 for (i = 0; i < fp->count; i++) {
5458 int left;
5459
5460 if (fp->fp[i] != file)
5461 continue;
5462
5463 unix_notinflight(fp->user, fp->fp[i]);
5464 left = fp->count - 1 - i;
5465 if (left) {
5466 memmove(&fp->fp[i], &fp->fp[i + 1],
5467 left * sizeof(struct file *));
5468 }
5469 fp->count--;
5470 if (!fp->count) {
5471 kfree_skb(skb);
5472 skb = NULL;
5473 } else {
5474 __skb_queue_tail(&list, skb);
5475 }
5476 fput(file);
5477 file = NULL;
5478 break;
5479 }
5480
5481 if (!file)
5482 break;
5483
5484 __skb_queue_tail(&list, skb);
5485
5486 skb = skb_dequeue(head);
5487 }
5488
5489 if (skb_peek(&list)) {
5490 spin_lock_irq(&head->lock);
5491 while ((skb = __skb_dequeue(&list)) != NULL)
5492 __skb_queue_tail(head, skb);
5493 spin_unlock_irq(&head->lock);
5494 }
5495 #else
5496 fput(file);
5497 #endif
5498 }
5499
5500 struct io_file_put {
5501 struct llist_node llist;
5502 struct file *file;
5503 struct completion *done;
5504 };
5505
5506 static void io_ring_file_ref_flush(struct fixed_file_data *data)
5507 {
5508 struct io_file_put *pfile, *tmp;
5509 struct llist_node *node;
5510
5511 while ((node = llist_del_all(&data->put_llist)) != NULL) {
5512 llist_for_each_entry_safe(pfile, tmp, node, llist) {
5513 io_ring_file_put(data->ctx, pfile->file);
5514 if (pfile->done)
5515 complete(pfile->done);
5516 else
5517 kfree(pfile);
5518 }
5519 }
5520 }
5521
5522 static void io_ring_file_ref_switch(struct work_struct *work)
5523 {
5524 struct fixed_file_data *data;
5525
5526 data = container_of(work, struct fixed_file_data, ref_work);
5527 io_ring_file_ref_flush(data);
5528 percpu_ref_get(&data->refs);
5529 percpu_ref_switch_to_percpu(&data->refs);
5530 }
5531
5532 static void io_file_data_ref_zero(struct percpu_ref *ref)
5533 {
5534 struct fixed_file_data *data;
5535
5536 data = container_of(ref, struct fixed_file_data, refs);
5537
5538 /*
5539 * We can't safely switch from inside this context, punt to wq. If
5540 * the table ref is going away, the table is being unregistered.
5541 * Don't queue up the async work for that case, the caller will
5542 * handle it.
5543 */
5544 if (!percpu_ref_is_dying(&data->refs))
5545 queue_work(system_wq, &data->ref_work);
5546 }
5547
5548 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
5549 unsigned nr_args)
5550 {
5551 __s32 __user *fds = (__s32 __user *) arg;
5552 unsigned nr_tables;
5553 struct file *file;
5554 int fd, ret = 0;
5555 unsigned i;
5556
5557 if (ctx->file_data)
5558 return -EBUSY;
5559 if (!nr_args)
5560 return -EINVAL;
5561 if (nr_args > IORING_MAX_FIXED_FILES)
5562 return -EMFILE;
5563
5564 ctx->file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
5565 if (!ctx->file_data)
5566 return -ENOMEM;
5567 ctx->file_data->ctx = ctx;
5568 init_completion(&ctx->file_data->done);
5569
5570 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
5571 ctx->file_data->table = kcalloc(nr_tables,
5572 sizeof(struct fixed_file_table),
5573 GFP_KERNEL);
5574 if (!ctx->file_data->table) {
5575 kfree(ctx->file_data);
5576 ctx->file_data = NULL;
5577 return -ENOMEM;
5578 }
5579
5580 if (percpu_ref_init(&ctx->file_data->refs, io_file_data_ref_zero,
5581 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
5582 kfree(ctx->file_data->table);
5583 kfree(ctx->file_data);
5584 ctx->file_data = NULL;
5585 return -ENOMEM;
5586 }
5587 ctx->file_data->put_llist.first = NULL;
5588 INIT_WORK(&ctx->file_data->ref_work, io_ring_file_ref_switch);
5589
5590 if (io_sqe_alloc_file_tables(ctx, nr_tables, nr_args)) {
5591 percpu_ref_exit(&ctx->file_data->refs);
5592 kfree(ctx->file_data->table);
5593 kfree(ctx->file_data);
5594 ctx->file_data = NULL;
5595 return -ENOMEM;
5596 }
5597
5598 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
5599 struct fixed_file_table *table;
5600 unsigned index;
5601
5602 ret = -EFAULT;
5603 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
5604 break;
5605 /* allow sparse sets */
5606 if (fd == -1) {
5607 ret = 0;
5608 continue;
5609 }
5610
5611 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
5612 index = i & IORING_FILE_TABLE_MASK;
5613 file = fget(fd);
5614
5615 ret = -EBADF;
5616 if (!file)
5617 break;
5618
5619 /*
5620 * Don't allow io_uring instances to be registered. If UNIX
5621 * isn't enabled, then this causes a reference cycle and this
5622 * instance can never get freed. If UNIX is enabled we'll
5623 * handle it just fine, but there's still no point in allowing
5624 * a ring fd as it doesn't support regular read/write anyway.
5625 */
5626 if (file->f_op == &io_uring_fops) {
5627 fput(file);
5628 break;
5629 }
5630 ret = 0;
5631 table->files[index] = file;
5632 }
5633
5634 if (ret) {
5635 for (i = 0; i < ctx->nr_user_files; i++) {
5636 file = io_file_from_index(ctx, i);
5637 if (file)
5638 fput(file);
5639 }
5640 for (i = 0; i < nr_tables; i++)
5641 kfree(ctx->file_data->table[i].files);
5642
5643 kfree(ctx->file_data->table);
5644 kfree(ctx->file_data);
5645 ctx->file_data = NULL;
5646 ctx->nr_user_files = 0;
5647 return ret;
5648 }
5649
5650 ret = io_sqe_files_scm(ctx);
5651 if (ret)
5652 io_sqe_files_unregister(ctx);
5653
5654 return ret;
5655 }
5656
5657 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
5658 int index)
5659 {
5660 #if defined(CONFIG_UNIX)
5661 struct sock *sock = ctx->ring_sock->sk;
5662 struct sk_buff_head *head = &sock->sk_receive_queue;
5663 struct sk_buff *skb;
5664
5665 /*
5666 * See if we can merge this file into an existing skb SCM_RIGHTS
5667 * file set. If there's no room, fall back to allocating a new skb
5668 * and filling it in.
5669 */
5670 spin_lock_irq(&head->lock);
5671 skb = skb_peek(head);
5672 if (skb) {
5673 struct scm_fp_list *fpl = UNIXCB(skb).fp;
5674
5675 if (fpl->count < SCM_MAX_FD) {
5676 __skb_unlink(skb, head);
5677 spin_unlock_irq(&head->lock);
5678 fpl->fp[fpl->count] = get_file(file);
5679 unix_inflight(fpl->user, fpl->fp[fpl->count]);
5680 fpl->count++;
5681 spin_lock_irq(&head->lock);
5682 __skb_queue_head(head, skb);
5683 } else {
5684 skb = NULL;
5685 }
5686 }
5687 spin_unlock_irq(&head->lock);
5688
5689 if (skb) {
5690 fput(file);
5691 return 0;
5692 }
5693
5694 return __io_sqe_files_scm(ctx, 1, index);
5695 #else
5696 return 0;
5697 #endif
5698 }
5699
5700 static void io_atomic_switch(struct percpu_ref *ref)
5701 {
5702 struct fixed_file_data *data;
5703
5704 data = container_of(ref, struct fixed_file_data, refs);
5705 clear_bit(FFD_F_ATOMIC, &data->state);
5706 }
5707
5708 static bool io_queue_file_removal(struct fixed_file_data *data,
5709 struct file *file)
5710 {
5711 struct io_file_put *pfile, pfile_stack;
5712 DECLARE_COMPLETION_ONSTACK(done);
5713
5714 /*
5715 * If we fail allocating the struct we need for doing async reomval
5716 * of this file, just punt to sync and wait for it.
5717 */
5718 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
5719 if (!pfile) {
5720 pfile = &pfile_stack;
5721 pfile->done = &done;
5722 }
5723
5724 pfile->file = file;
5725 llist_add(&pfile->llist, &data->put_llist);
5726
5727 if (pfile == &pfile_stack) {
5728 if (!test_and_set_bit(FFD_F_ATOMIC, &data->state)) {
5729 percpu_ref_put(&data->refs);
5730 percpu_ref_switch_to_atomic(&data->refs,
5731 io_atomic_switch);
5732 }
5733 wait_for_completion(&done);
5734 flush_work(&data->ref_work);
5735 return false;
5736 }
5737
5738 return true;
5739 }
5740
5741 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
5742 struct io_uring_files_update *up,
5743 unsigned nr_args)
5744 {
5745 struct fixed_file_data *data = ctx->file_data;
5746 bool ref_switch = false;
5747 struct file *file;
5748 __s32 __user *fds;
5749 int fd, i, err;
5750 __u32 done;
5751
5752 if (check_add_overflow(up->offset, nr_args, &done))
5753 return -EOVERFLOW;
5754 if (done > ctx->nr_user_files)
5755 return -EINVAL;
5756
5757 done = 0;
5758 fds = u64_to_user_ptr(up->fds);
5759 while (nr_args) {
5760 struct fixed_file_table *table;
5761 unsigned index;
5762
5763 err = 0;
5764 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
5765 err = -EFAULT;
5766 break;
5767 }
5768 i = array_index_nospec(up->offset, ctx->nr_user_files);
5769 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
5770 index = i & IORING_FILE_TABLE_MASK;
5771 if (table->files[index]) {
5772 file = io_file_from_index(ctx, index);
5773 table->files[index] = NULL;
5774 if (io_queue_file_removal(data, file))
5775 ref_switch = true;
5776 }
5777 if (fd != -1) {
5778 file = fget(fd);
5779 if (!file) {
5780 err = -EBADF;
5781 break;
5782 }
5783 /*
5784 * Don't allow io_uring instances to be registered. If
5785 * UNIX isn't enabled, then this causes a reference
5786 * cycle and this instance can never get freed. If UNIX
5787 * is enabled we'll handle it just fine, but there's
5788 * still no point in allowing a ring fd as it doesn't
5789 * support regular read/write anyway.
5790 */
5791 if (file->f_op == &io_uring_fops) {
5792 fput(file);
5793 err = -EBADF;
5794 break;
5795 }
5796 table->files[index] = file;
5797 err = io_sqe_file_register(ctx, file, i);
5798 if (err)
5799 break;
5800 }
5801 nr_args--;
5802 done++;
5803 up->offset++;
5804 }
5805
5806 if (ref_switch && !test_and_set_bit(FFD_F_ATOMIC, &data->state)) {
5807 percpu_ref_put(&data->refs);
5808 percpu_ref_switch_to_atomic(&data->refs, io_atomic_switch);
5809 }
5810
5811 return done ? done : err;
5812 }
5813 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
5814 unsigned nr_args)
5815 {
5816 struct io_uring_files_update up;
5817
5818 if (!ctx->file_data)
5819 return -ENXIO;
5820 if (!nr_args)
5821 return -EINVAL;
5822 if (copy_from_user(&up, arg, sizeof(up)))
5823 return -EFAULT;
5824 if (up.resv)
5825 return -EINVAL;
5826
5827 return __io_sqe_files_update(ctx, &up, nr_args);
5828 }
5829
5830 static void io_put_work(struct io_wq_work *work)
5831 {
5832 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5833
5834 io_put_req(req);
5835 }
5836
5837 static void io_get_work(struct io_wq_work *work)
5838 {
5839 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5840
5841 refcount_inc(&req->refs);
5842 }
5843
5844 static int io_init_wq_offload(struct io_ring_ctx *ctx,
5845 struct io_uring_params *p)
5846 {
5847 struct io_wq_data data;
5848 struct fd f;
5849 struct io_ring_ctx *ctx_attach;
5850 unsigned int concurrency;
5851 int ret = 0;
5852
5853 data.user = ctx->user;
5854 data.get_work = io_get_work;
5855 data.put_work = io_put_work;
5856
5857 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
5858 /* Do QD, or 4 * CPUS, whatever is smallest */
5859 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
5860
5861 ctx->io_wq = io_wq_create(concurrency, &data);
5862 if (IS_ERR(ctx->io_wq)) {
5863 ret = PTR_ERR(ctx->io_wq);
5864 ctx->io_wq = NULL;
5865 }
5866 return ret;
5867 }
5868
5869 f = fdget(p->wq_fd);
5870 if (!f.file)
5871 return -EBADF;
5872
5873 if (f.file->f_op != &io_uring_fops) {
5874 ret = -EINVAL;
5875 goto out_fput;
5876 }
5877
5878 ctx_attach = f.file->private_data;
5879 /* @io_wq is protected by holding the fd */
5880 if (!io_wq_get(ctx_attach->io_wq, &data)) {
5881 ret = -EINVAL;
5882 goto out_fput;
5883 }
5884
5885 ctx->io_wq = ctx_attach->io_wq;
5886 out_fput:
5887 fdput(f);
5888 return ret;
5889 }
5890
5891 static int io_sq_offload_start(struct io_ring_ctx *ctx,
5892 struct io_uring_params *p)
5893 {
5894 int ret;
5895
5896 init_waitqueue_head(&ctx->sqo_wait);
5897 mmgrab(current->mm);
5898 ctx->sqo_mm = current->mm;
5899
5900 if (ctx->flags & IORING_SETUP_SQPOLL) {
5901 ret = -EPERM;
5902 if (!capable(CAP_SYS_ADMIN))
5903 goto err;
5904
5905 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
5906 if (!ctx->sq_thread_idle)
5907 ctx->sq_thread_idle = HZ;
5908
5909 if (p->flags & IORING_SETUP_SQ_AFF) {
5910 int cpu = p->sq_thread_cpu;
5911
5912 ret = -EINVAL;
5913 if (cpu >= nr_cpu_ids)
5914 goto err;
5915 if (!cpu_online(cpu))
5916 goto err;
5917
5918 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
5919 ctx, cpu,
5920 "io_uring-sq");
5921 } else {
5922 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
5923 "io_uring-sq");
5924 }
5925 if (IS_ERR(ctx->sqo_thread)) {
5926 ret = PTR_ERR(ctx->sqo_thread);
5927 ctx->sqo_thread = NULL;
5928 goto err;
5929 }
5930 wake_up_process(ctx->sqo_thread);
5931 } else if (p->flags & IORING_SETUP_SQ_AFF) {
5932 /* Can't have SQ_AFF without SQPOLL */
5933 ret = -EINVAL;
5934 goto err;
5935 }
5936
5937 ret = io_init_wq_offload(ctx, p);
5938 if (ret)
5939 goto err;
5940
5941 return 0;
5942 err:
5943 io_finish_async(ctx);
5944 mmdrop(ctx->sqo_mm);
5945 ctx->sqo_mm = NULL;
5946 return ret;
5947 }
5948
5949 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
5950 {
5951 atomic_long_sub(nr_pages, &user->locked_vm);
5952 }
5953
5954 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
5955 {
5956 unsigned long page_limit, cur_pages, new_pages;
5957
5958 /* Don't allow more pages than we can safely lock */
5959 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
5960
5961 do {
5962 cur_pages = atomic_long_read(&user->locked_vm);
5963 new_pages = cur_pages + nr_pages;
5964 if (new_pages > page_limit)
5965 return -ENOMEM;
5966 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
5967 new_pages) != cur_pages);
5968
5969 return 0;
5970 }
5971
5972 static void io_mem_free(void *ptr)
5973 {
5974 struct page *page;
5975
5976 if (!ptr)
5977 return;
5978
5979 page = virt_to_head_page(ptr);
5980 if (put_page_testzero(page))
5981 free_compound_page(page);
5982 }
5983
5984 static void *io_mem_alloc(size_t size)
5985 {
5986 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
5987 __GFP_NORETRY;
5988
5989 return (void *) __get_free_pages(gfp_flags, get_order(size));
5990 }
5991
5992 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
5993 size_t *sq_offset)
5994 {
5995 struct io_rings *rings;
5996 size_t off, sq_array_size;
5997
5998 off = struct_size(rings, cqes, cq_entries);
5999 if (off == SIZE_MAX)
6000 return SIZE_MAX;
6001
6002 #ifdef CONFIG_SMP
6003 off = ALIGN(off, SMP_CACHE_BYTES);
6004 if (off == 0)
6005 return SIZE_MAX;
6006 #endif
6007
6008 sq_array_size = array_size(sizeof(u32), sq_entries);
6009 if (sq_array_size == SIZE_MAX)
6010 return SIZE_MAX;
6011
6012 if (check_add_overflow(off, sq_array_size, &off))
6013 return SIZE_MAX;
6014
6015 if (sq_offset)
6016 *sq_offset = off;
6017
6018 return off;
6019 }
6020
6021 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
6022 {
6023 size_t pages;
6024
6025 pages = (size_t)1 << get_order(
6026 rings_size(sq_entries, cq_entries, NULL));
6027 pages += (size_t)1 << get_order(
6028 array_size(sizeof(struct io_uring_sqe), sq_entries));
6029
6030 return pages;
6031 }
6032
6033 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
6034 {
6035 int i, j;
6036
6037 if (!ctx->user_bufs)
6038 return -ENXIO;
6039
6040 for (i = 0; i < ctx->nr_user_bufs; i++) {
6041 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6042
6043 for (j = 0; j < imu->nr_bvecs; j++)
6044 unpin_user_page(imu->bvec[j].bv_page);
6045
6046 if (ctx->account_mem)
6047 io_unaccount_mem(ctx->user, imu->nr_bvecs);
6048 kvfree(imu->bvec);
6049 imu->nr_bvecs = 0;
6050 }
6051
6052 kfree(ctx->user_bufs);
6053 ctx->user_bufs = NULL;
6054 ctx->nr_user_bufs = 0;
6055 return 0;
6056 }
6057
6058 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
6059 void __user *arg, unsigned index)
6060 {
6061 struct iovec __user *src;
6062
6063 #ifdef CONFIG_COMPAT
6064 if (ctx->compat) {
6065 struct compat_iovec __user *ciovs;
6066 struct compat_iovec ciov;
6067
6068 ciovs = (struct compat_iovec __user *) arg;
6069 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
6070 return -EFAULT;
6071
6072 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
6073 dst->iov_len = ciov.iov_len;
6074 return 0;
6075 }
6076 #endif
6077 src = (struct iovec __user *) arg;
6078 if (copy_from_user(dst, &src[index], sizeof(*dst)))
6079 return -EFAULT;
6080 return 0;
6081 }
6082
6083 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
6084 unsigned nr_args)
6085 {
6086 struct vm_area_struct **vmas = NULL;
6087 struct page **pages = NULL;
6088 int i, j, got_pages = 0;
6089 int ret = -EINVAL;
6090
6091 if (ctx->user_bufs)
6092 return -EBUSY;
6093 if (!nr_args || nr_args > UIO_MAXIOV)
6094 return -EINVAL;
6095
6096 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
6097 GFP_KERNEL);
6098 if (!ctx->user_bufs)
6099 return -ENOMEM;
6100
6101 for (i = 0; i < nr_args; i++) {
6102 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
6103 unsigned long off, start, end, ubuf;
6104 int pret, nr_pages;
6105 struct iovec iov;
6106 size_t size;
6107
6108 ret = io_copy_iov(ctx, &iov, arg, i);
6109 if (ret)
6110 goto err;
6111
6112 /*
6113 * Don't impose further limits on the size and buffer
6114 * constraints here, we'll -EINVAL later when IO is
6115 * submitted if they are wrong.
6116 */
6117 ret = -EFAULT;
6118 if (!iov.iov_base || !iov.iov_len)
6119 goto err;
6120
6121 /* arbitrary limit, but we need something */
6122 if (iov.iov_len > SZ_1G)
6123 goto err;
6124
6125 ubuf = (unsigned long) iov.iov_base;
6126 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
6127 start = ubuf >> PAGE_SHIFT;
6128 nr_pages = end - start;
6129
6130 if (ctx->account_mem) {
6131 ret = io_account_mem(ctx->user, nr_pages);
6132 if (ret)
6133 goto err;
6134 }
6135
6136 ret = 0;
6137 if (!pages || nr_pages > got_pages) {
6138 kfree(vmas);
6139 kfree(pages);
6140 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
6141 GFP_KERNEL);
6142 vmas = kvmalloc_array(nr_pages,
6143 sizeof(struct vm_area_struct *),
6144 GFP_KERNEL);
6145 if (!pages || !vmas) {
6146 ret = -ENOMEM;
6147 if (ctx->account_mem)
6148 io_unaccount_mem(ctx->user, nr_pages);
6149 goto err;
6150 }
6151 got_pages = nr_pages;
6152 }
6153
6154 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
6155 GFP_KERNEL);
6156 ret = -ENOMEM;
6157 if (!imu->bvec) {
6158 if (ctx->account_mem)
6159 io_unaccount_mem(ctx->user, nr_pages);
6160 goto err;
6161 }
6162
6163 ret = 0;
6164 down_read(&current->mm->mmap_sem);
6165 pret = pin_user_pages(ubuf, nr_pages,
6166 FOLL_WRITE | FOLL_LONGTERM,
6167 pages, vmas);
6168 if (pret == nr_pages) {
6169 /* don't support file backed memory */
6170 for (j = 0; j < nr_pages; j++) {
6171 struct vm_area_struct *vma = vmas[j];
6172
6173 if (vma->vm_file &&
6174 !is_file_hugepages(vma->vm_file)) {
6175 ret = -EOPNOTSUPP;
6176 break;
6177 }
6178 }
6179 } else {
6180 ret = pret < 0 ? pret : -EFAULT;
6181 }
6182 up_read(&current->mm->mmap_sem);
6183 if (ret) {
6184 /*
6185 * if we did partial map, or found file backed vmas,
6186 * release any pages we did get
6187 */
6188 if (pret > 0)
6189 unpin_user_pages(pages, pret);
6190 if (ctx->account_mem)
6191 io_unaccount_mem(ctx->user, nr_pages);
6192 kvfree(imu->bvec);
6193 goto err;
6194 }
6195
6196 off = ubuf & ~PAGE_MASK;
6197 size = iov.iov_len;
6198 for (j = 0; j < nr_pages; j++) {
6199 size_t vec_len;
6200
6201 vec_len = min_t(size_t, size, PAGE_SIZE - off);
6202 imu->bvec[j].bv_page = pages[j];
6203 imu->bvec[j].bv_len = vec_len;
6204 imu->bvec[j].bv_offset = off;
6205 off = 0;
6206 size -= vec_len;
6207 }
6208 /* store original address for later verification */
6209 imu->ubuf = ubuf;
6210 imu->len = iov.iov_len;
6211 imu->nr_bvecs = nr_pages;
6212
6213 ctx->nr_user_bufs++;
6214 }
6215 kvfree(pages);
6216 kvfree(vmas);
6217 return 0;
6218 err:
6219 kvfree(pages);
6220 kvfree(vmas);
6221 io_sqe_buffer_unregister(ctx);
6222 return ret;
6223 }
6224
6225 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
6226 {
6227 __s32 __user *fds = arg;
6228 int fd;
6229
6230 if (ctx->cq_ev_fd)
6231 return -EBUSY;
6232
6233 if (copy_from_user(&fd, fds, sizeof(*fds)))
6234 return -EFAULT;
6235
6236 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
6237 if (IS_ERR(ctx->cq_ev_fd)) {
6238 int ret = PTR_ERR(ctx->cq_ev_fd);
6239 ctx->cq_ev_fd = NULL;
6240 return ret;
6241 }
6242
6243 return 0;
6244 }
6245
6246 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
6247 {
6248 if (ctx->cq_ev_fd) {
6249 eventfd_ctx_put(ctx->cq_ev_fd);
6250 ctx->cq_ev_fd = NULL;
6251 return 0;
6252 }
6253
6254 return -ENXIO;
6255 }
6256
6257 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
6258 {
6259 io_finish_async(ctx);
6260 if (ctx->sqo_mm)
6261 mmdrop(ctx->sqo_mm);
6262
6263 io_iopoll_reap_events(ctx);
6264 io_sqe_buffer_unregister(ctx);
6265 io_sqe_files_unregister(ctx);
6266 io_eventfd_unregister(ctx);
6267
6268 #if defined(CONFIG_UNIX)
6269 if (ctx->ring_sock) {
6270 ctx->ring_sock->file = NULL; /* so that iput() is called */
6271 sock_release(ctx->ring_sock);
6272 }
6273 #endif
6274
6275 io_mem_free(ctx->rings);
6276 io_mem_free(ctx->sq_sqes);
6277
6278 percpu_ref_exit(&ctx->refs);
6279 if (ctx->account_mem)
6280 io_unaccount_mem(ctx->user,
6281 ring_pages(ctx->sq_entries, ctx->cq_entries));
6282 free_uid(ctx->user);
6283 put_cred(ctx->creds);
6284 kfree(ctx->completions);
6285 kfree(ctx->cancel_hash);
6286 kmem_cache_free(req_cachep, ctx->fallback_req);
6287 kfree(ctx);
6288 }
6289
6290 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
6291 {
6292 struct io_ring_ctx *ctx = file->private_data;
6293 __poll_t mask = 0;
6294
6295 poll_wait(file, &ctx->cq_wait, wait);
6296 /*
6297 * synchronizes with barrier from wq_has_sleeper call in
6298 * io_commit_cqring
6299 */
6300 smp_rmb();
6301 if (READ_ONCE(ctx->rings->sq.tail) - ctx->cached_sq_head !=
6302 ctx->rings->sq_ring_entries)
6303 mask |= EPOLLOUT | EPOLLWRNORM;
6304 if (READ_ONCE(ctx->rings->cq.head) != ctx->cached_cq_tail)
6305 mask |= EPOLLIN | EPOLLRDNORM;
6306
6307 return mask;
6308 }
6309
6310 static int io_uring_fasync(int fd, struct file *file, int on)
6311 {
6312 struct io_ring_ctx *ctx = file->private_data;
6313
6314 return fasync_helper(fd, file, on, &ctx->cq_fasync);
6315 }
6316
6317 static int io_remove_personalities(int id, void *p, void *data)
6318 {
6319 struct io_ring_ctx *ctx = data;
6320 const struct cred *cred;
6321
6322 cred = idr_remove(&ctx->personality_idr, id);
6323 if (cred)
6324 put_cred(cred);
6325 return 0;
6326 }
6327
6328 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
6329 {
6330 mutex_lock(&ctx->uring_lock);
6331 percpu_ref_kill(&ctx->refs);
6332 mutex_unlock(&ctx->uring_lock);
6333
6334 /*
6335 * Wait for sq thread to idle, if we have one. It won't spin on new
6336 * work after we've killed the ctx ref above. This is important to do
6337 * before we cancel existing commands, as the thread could otherwise
6338 * be queueing new work post that. If that's work we need to cancel,
6339 * it could cause shutdown to hang.
6340 */
6341 while (ctx->sqo_thread && !wq_has_sleeper(&ctx->sqo_wait))
6342 cpu_relax();
6343
6344 io_kill_timeouts(ctx);
6345 io_poll_remove_all(ctx);
6346
6347 if (ctx->io_wq)
6348 io_wq_cancel_all(ctx->io_wq);
6349
6350 io_iopoll_reap_events(ctx);
6351 /* if we failed setting up the ctx, we might not have any rings */
6352 if (ctx->rings)
6353 io_cqring_overflow_flush(ctx, true);
6354 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
6355 wait_for_completion(&ctx->completions[0]);
6356 io_ring_ctx_free(ctx);
6357 }
6358
6359 static int io_uring_release(struct inode *inode, struct file *file)
6360 {
6361 struct io_ring_ctx *ctx = file->private_data;
6362
6363 file->private_data = NULL;
6364 io_ring_ctx_wait_and_kill(ctx);
6365 return 0;
6366 }
6367
6368 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
6369 struct files_struct *files)
6370 {
6371 struct io_kiocb *req;
6372 DEFINE_WAIT(wait);
6373
6374 while (!list_empty_careful(&ctx->inflight_list)) {
6375 struct io_kiocb *cancel_req = NULL;
6376
6377 spin_lock_irq(&ctx->inflight_lock);
6378 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
6379 if (req->work.files != files)
6380 continue;
6381 /* req is being completed, ignore */
6382 if (!refcount_inc_not_zero(&req->refs))
6383 continue;
6384 cancel_req = req;
6385 break;
6386 }
6387 if (cancel_req)
6388 prepare_to_wait(&ctx->inflight_wait, &wait,
6389 TASK_UNINTERRUPTIBLE);
6390 spin_unlock_irq(&ctx->inflight_lock);
6391
6392 /* We need to keep going until we don't find a matching req */
6393 if (!cancel_req)
6394 break;
6395
6396 io_wq_cancel_work(ctx->io_wq, &cancel_req->work);
6397 io_put_req(cancel_req);
6398 schedule();
6399 }
6400 finish_wait(&ctx->inflight_wait, &wait);
6401 }
6402
6403 static int io_uring_flush(struct file *file, void *data)
6404 {
6405 struct io_ring_ctx *ctx = file->private_data;
6406
6407 io_uring_cancel_files(ctx, data);
6408 return 0;
6409 }
6410
6411 static void *io_uring_validate_mmap_request(struct file *file,
6412 loff_t pgoff, size_t sz)
6413 {
6414 struct io_ring_ctx *ctx = file->private_data;
6415 loff_t offset = pgoff << PAGE_SHIFT;
6416 struct page *page;
6417 void *ptr;
6418
6419 switch (offset) {
6420 case IORING_OFF_SQ_RING:
6421 case IORING_OFF_CQ_RING:
6422 ptr = ctx->rings;
6423 break;
6424 case IORING_OFF_SQES:
6425 ptr = ctx->sq_sqes;
6426 break;
6427 default:
6428 return ERR_PTR(-EINVAL);
6429 }
6430
6431 page = virt_to_head_page(ptr);
6432 if (sz > page_size(page))
6433 return ERR_PTR(-EINVAL);
6434
6435 return ptr;
6436 }
6437
6438 #ifdef CONFIG_MMU
6439
6440 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
6441 {
6442 size_t sz = vma->vm_end - vma->vm_start;
6443 unsigned long pfn;
6444 void *ptr;
6445
6446 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
6447 if (IS_ERR(ptr))
6448 return PTR_ERR(ptr);
6449
6450 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
6451 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
6452 }
6453
6454 #else /* !CONFIG_MMU */
6455
6456 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
6457 {
6458 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
6459 }
6460
6461 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
6462 {
6463 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
6464 }
6465
6466 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
6467 unsigned long addr, unsigned long len,
6468 unsigned long pgoff, unsigned long flags)
6469 {
6470 void *ptr;
6471
6472 ptr = io_uring_validate_mmap_request(file, pgoff, len);
6473 if (IS_ERR(ptr))
6474 return PTR_ERR(ptr);
6475
6476 return (unsigned long) ptr;
6477 }
6478
6479 #endif /* !CONFIG_MMU */
6480
6481 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
6482 u32, min_complete, u32, flags, const sigset_t __user *, sig,
6483 size_t, sigsz)
6484 {
6485 struct io_ring_ctx *ctx;
6486 long ret = -EBADF;
6487 int submitted = 0;
6488 struct fd f;
6489
6490 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
6491 return -EINVAL;
6492
6493 f = fdget(fd);
6494 if (!f.file)
6495 return -EBADF;
6496
6497 ret = -EOPNOTSUPP;
6498 if (f.file->f_op != &io_uring_fops)
6499 goto out_fput;
6500
6501 ret = -ENXIO;
6502 ctx = f.file->private_data;
6503 if (!percpu_ref_tryget(&ctx->refs))
6504 goto out_fput;
6505
6506 /*
6507 * For SQ polling, the thread will do all submissions and completions.
6508 * Just return the requested submit count, and wake the thread if
6509 * we were asked to.
6510 */
6511 ret = 0;
6512 if (ctx->flags & IORING_SETUP_SQPOLL) {
6513 if (!list_empty_careful(&ctx->cq_overflow_list))
6514 io_cqring_overflow_flush(ctx, false);
6515 if (flags & IORING_ENTER_SQ_WAKEUP)
6516 wake_up(&ctx->sqo_wait);
6517 submitted = to_submit;
6518 } else if (to_submit) {
6519 struct mm_struct *cur_mm;
6520
6521 mutex_lock(&ctx->uring_lock);
6522 /* already have mm, so io_submit_sqes() won't try to grab it */
6523 cur_mm = ctx->sqo_mm;
6524 submitted = io_submit_sqes(ctx, to_submit, f.file, fd,
6525 &cur_mm, false);
6526 mutex_unlock(&ctx->uring_lock);
6527
6528 if (submitted != to_submit)
6529 goto out;
6530 }
6531 if (flags & IORING_ENTER_GETEVENTS) {
6532 unsigned nr_events = 0;
6533
6534 min_complete = min(min_complete, ctx->cq_entries);
6535
6536 if (ctx->flags & IORING_SETUP_IOPOLL) {
6537 ret = io_iopoll_check(ctx, &nr_events, min_complete);
6538 } else {
6539 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
6540 }
6541 }
6542
6543 out:
6544 percpu_ref_put(&ctx->refs);
6545 out_fput:
6546 fdput(f);
6547 return submitted ? submitted : ret;
6548 }
6549
6550 static int io_uring_show_cred(int id, void *p, void *data)
6551 {
6552 const struct cred *cred = p;
6553 struct seq_file *m = data;
6554 struct user_namespace *uns = seq_user_ns(m);
6555 struct group_info *gi;
6556 kernel_cap_t cap;
6557 unsigned __capi;
6558 int g;
6559
6560 seq_printf(m, "%5d\n", id);
6561 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
6562 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
6563 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
6564 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
6565 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
6566 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
6567 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
6568 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
6569 seq_puts(m, "\n\tGroups:\t");
6570 gi = cred->group_info;
6571 for (g = 0; g < gi->ngroups; g++) {
6572 seq_put_decimal_ull(m, g ? " " : "",
6573 from_kgid_munged(uns, gi->gid[g]));
6574 }
6575 seq_puts(m, "\n\tCapEff:\t");
6576 cap = cred->cap_effective;
6577 CAP_FOR_EACH_U32(__capi)
6578 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
6579 seq_putc(m, '\n');
6580 return 0;
6581 }
6582
6583 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
6584 {
6585 int i;
6586
6587 mutex_lock(&ctx->uring_lock);
6588 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
6589 for (i = 0; i < ctx->nr_user_files; i++) {
6590 struct fixed_file_table *table;
6591 struct file *f;
6592
6593 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
6594 f = table->files[i & IORING_FILE_TABLE_MASK];
6595 if (f)
6596 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
6597 else
6598 seq_printf(m, "%5u: <none>\n", i);
6599 }
6600 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
6601 for (i = 0; i < ctx->nr_user_bufs; i++) {
6602 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
6603
6604 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
6605 (unsigned int) buf->len);
6606 }
6607 if (!idr_is_empty(&ctx->personality_idr)) {
6608 seq_printf(m, "Personalities:\n");
6609 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
6610 }
6611 mutex_unlock(&ctx->uring_lock);
6612 }
6613
6614 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
6615 {
6616 struct io_ring_ctx *ctx = f->private_data;
6617
6618 if (percpu_ref_tryget(&ctx->refs)) {
6619 __io_uring_show_fdinfo(ctx, m);
6620 percpu_ref_put(&ctx->refs);
6621 }
6622 }
6623
6624 static const struct file_operations io_uring_fops = {
6625 .release = io_uring_release,
6626 .flush = io_uring_flush,
6627 .mmap = io_uring_mmap,
6628 #ifndef CONFIG_MMU
6629 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
6630 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
6631 #endif
6632 .poll = io_uring_poll,
6633 .fasync = io_uring_fasync,
6634 .show_fdinfo = io_uring_show_fdinfo,
6635 };
6636
6637 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
6638 struct io_uring_params *p)
6639 {
6640 struct io_rings *rings;
6641 size_t size, sq_array_offset;
6642
6643 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
6644 if (size == SIZE_MAX)
6645 return -EOVERFLOW;
6646
6647 rings = io_mem_alloc(size);
6648 if (!rings)
6649 return -ENOMEM;
6650
6651 ctx->rings = rings;
6652 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
6653 rings->sq_ring_mask = p->sq_entries - 1;
6654 rings->cq_ring_mask = p->cq_entries - 1;
6655 rings->sq_ring_entries = p->sq_entries;
6656 rings->cq_ring_entries = p->cq_entries;
6657 ctx->sq_mask = rings->sq_ring_mask;
6658 ctx->cq_mask = rings->cq_ring_mask;
6659 ctx->sq_entries = rings->sq_ring_entries;
6660 ctx->cq_entries = rings->cq_ring_entries;
6661
6662 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
6663 if (size == SIZE_MAX) {
6664 io_mem_free(ctx->rings);
6665 ctx->rings = NULL;
6666 return -EOVERFLOW;
6667 }
6668
6669 ctx->sq_sqes = io_mem_alloc(size);
6670 if (!ctx->sq_sqes) {
6671 io_mem_free(ctx->rings);
6672 ctx->rings = NULL;
6673 return -ENOMEM;
6674 }
6675
6676 return 0;
6677 }
6678
6679 /*
6680 * Allocate an anonymous fd, this is what constitutes the application
6681 * visible backing of an io_uring instance. The application mmaps this
6682 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
6683 * we have to tie this fd to a socket for file garbage collection purposes.
6684 */
6685 static int io_uring_get_fd(struct io_ring_ctx *ctx)
6686 {
6687 struct file *file;
6688 int ret;
6689
6690 #if defined(CONFIG_UNIX)
6691 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
6692 &ctx->ring_sock);
6693 if (ret)
6694 return ret;
6695 #endif
6696
6697 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
6698 if (ret < 0)
6699 goto err;
6700
6701 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
6702 O_RDWR | O_CLOEXEC);
6703 if (IS_ERR(file)) {
6704 put_unused_fd(ret);
6705 ret = PTR_ERR(file);
6706 goto err;
6707 }
6708
6709 #if defined(CONFIG_UNIX)
6710 ctx->ring_sock->file = file;
6711 #endif
6712 fd_install(ret, file);
6713 return ret;
6714 err:
6715 #if defined(CONFIG_UNIX)
6716 sock_release(ctx->ring_sock);
6717 ctx->ring_sock = NULL;
6718 #endif
6719 return ret;
6720 }
6721
6722 static int io_uring_create(unsigned entries, struct io_uring_params *p)
6723 {
6724 struct user_struct *user = NULL;
6725 struct io_ring_ctx *ctx;
6726 bool account_mem;
6727 int ret;
6728
6729 if (!entries)
6730 return -EINVAL;
6731 if (entries > IORING_MAX_ENTRIES) {
6732 if (!(p->flags & IORING_SETUP_CLAMP))
6733 return -EINVAL;
6734 entries = IORING_MAX_ENTRIES;
6735 }
6736
6737 /*
6738 * Use twice as many entries for the CQ ring. It's possible for the
6739 * application to drive a higher depth than the size of the SQ ring,
6740 * since the sqes are only used at submission time. This allows for
6741 * some flexibility in overcommitting a bit. If the application has
6742 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
6743 * of CQ ring entries manually.
6744 */
6745 p->sq_entries = roundup_pow_of_two(entries);
6746 if (p->flags & IORING_SETUP_CQSIZE) {
6747 /*
6748 * If IORING_SETUP_CQSIZE is set, we do the same roundup
6749 * to a power-of-two, if it isn't already. We do NOT impose
6750 * any cq vs sq ring sizing.
6751 */
6752 if (p->cq_entries < p->sq_entries)
6753 return -EINVAL;
6754 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
6755 if (!(p->flags & IORING_SETUP_CLAMP))
6756 return -EINVAL;
6757 p->cq_entries = IORING_MAX_CQ_ENTRIES;
6758 }
6759 p->cq_entries = roundup_pow_of_two(p->cq_entries);
6760 } else {
6761 p->cq_entries = 2 * p->sq_entries;
6762 }
6763
6764 user = get_uid(current_user());
6765 account_mem = !capable(CAP_IPC_LOCK);
6766
6767 if (account_mem) {
6768 ret = io_account_mem(user,
6769 ring_pages(p->sq_entries, p->cq_entries));
6770 if (ret) {
6771 free_uid(user);
6772 return ret;
6773 }
6774 }
6775
6776 ctx = io_ring_ctx_alloc(p);
6777 if (!ctx) {
6778 if (account_mem)
6779 io_unaccount_mem(user, ring_pages(p->sq_entries,
6780 p->cq_entries));
6781 free_uid(user);
6782 return -ENOMEM;
6783 }
6784 ctx->compat = in_compat_syscall();
6785 ctx->account_mem = account_mem;
6786 ctx->user = user;
6787 ctx->creds = get_current_cred();
6788
6789 ret = io_allocate_scq_urings(ctx, p);
6790 if (ret)
6791 goto err;
6792
6793 ret = io_sq_offload_start(ctx, p);
6794 if (ret)
6795 goto err;
6796
6797 memset(&p->sq_off, 0, sizeof(p->sq_off));
6798 p->sq_off.head = offsetof(struct io_rings, sq.head);
6799 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
6800 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
6801 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
6802 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
6803 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
6804 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
6805
6806 memset(&p->cq_off, 0, sizeof(p->cq_off));
6807 p->cq_off.head = offsetof(struct io_rings, cq.head);
6808 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
6809 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
6810 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
6811 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
6812 p->cq_off.cqes = offsetof(struct io_rings, cqes);
6813
6814 /*
6815 * Install ring fd as the very last thing, so we don't risk someone
6816 * having closed it before we finish setup
6817 */
6818 ret = io_uring_get_fd(ctx);
6819 if (ret < 0)
6820 goto err;
6821
6822 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
6823 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
6824 IORING_FEAT_CUR_PERSONALITY;
6825 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
6826 return ret;
6827 err:
6828 io_ring_ctx_wait_and_kill(ctx);
6829 return ret;
6830 }
6831
6832 /*
6833 * Sets up an aio uring context, and returns the fd. Applications asks for a
6834 * ring size, we return the actual sq/cq ring sizes (among other things) in the
6835 * params structure passed in.
6836 */
6837 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
6838 {
6839 struct io_uring_params p;
6840 long ret;
6841 int i;
6842
6843 if (copy_from_user(&p, params, sizeof(p)))
6844 return -EFAULT;
6845 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
6846 if (p.resv[i])
6847 return -EINVAL;
6848 }
6849
6850 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
6851 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
6852 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ))
6853 return -EINVAL;
6854
6855 ret = io_uring_create(entries, &p);
6856 if (ret < 0)
6857 return ret;
6858
6859 if (copy_to_user(params, &p, sizeof(p)))
6860 return -EFAULT;
6861
6862 return ret;
6863 }
6864
6865 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
6866 struct io_uring_params __user *, params)
6867 {
6868 return io_uring_setup(entries, params);
6869 }
6870
6871 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
6872 {
6873 struct io_uring_probe *p;
6874 size_t size;
6875 int i, ret;
6876
6877 size = struct_size(p, ops, nr_args);
6878 if (size == SIZE_MAX)
6879 return -EOVERFLOW;
6880 p = kzalloc(size, GFP_KERNEL);
6881 if (!p)
6882 return -ENOMEM;
6883
6884 ret = -EFAULT;
6885 if (copy_from_user(p, arg, size))
6886 goto out;
6887 ret = -EINVAL;
6888 if (memchr_inv(p, 0, size))
6889 goto out;
6890
6891 p->last_op = IORING_OP_LAST - 1;
6892 if (nr_args > IORING_OP_LAST)
6893 nr_args = IORING_OP_LAST;
6894
6895 for (i = 0; i < nr_args; i++) {
6896 p->ops[i].op = i;
6897 if (!io_op_defs[i].not_supported)
6898 p->ops[i].flags = IO_URING_OP_SUPPORTED;
6899 }
6900 p->ops_len = i;
6901
6902 ret = 0;
6903 if (copy_to_user(arg, p, size))
6904 ret = -EFAULT;
6905 out:
6906 kfree(p);
6907 return ret;
6908 }
6909
6910 static int io_register_personality(struct io_ring_ctx *ctx)
6911 {
6912 const struct cred *creds = get_current_cred();
6913 int id;
6914
6915 id = idr_alloc_cyclic(&ctx->personality_idr, (void *) creds, 1,
6916 USHRT_MAX, GFP_KERNEL);
6917 if (id < 0)
6918 put_cred(creds);
6919 return id;
6920 }
6921
6922 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
6923 {
6924 const struct cred *old_creds;
6925
6926 old_creds = idr_remove(&ctx->personality_idr, id);
6927 if (old_creds) {
6928 put_cred(old_creds);
6929 return 0;
6930 }
6931
6932 return -EINVAL;
6933 }
6934
6935 static bool io_register_op_must_quiesce(int op)
6936 {
6937 switch (op) {
6938 case IORING_UNREGISTER_FILES:
6939 case IORING_REGISTER_FILES_UPDATE:
6940 case IORING_REGISTER_PROBE:
6941 case IORING_REGISTER_PERSONALITY:
6942 case IORING_UNREGISTER_PERSONALITY:
6943 return false;
6944 default:
6945 return true;
6946 }
6947 }
6948
6949 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
6950 void __user *arg, unsigned nr_args)
6951 __releases(ctx->uring_lock)
6952 __acquires(ctx->uring_lock)
6953 {
6954 int ret;
6955
6956 /*
6957 * We're inside the ring mutex, if the ref is already dying, then
6958 * someone else killed the ctx or is already going through
6959 * io_uring_register().
6960 */
6961 if (percpu_ref_is_dying(&ctx->refs))
6962 return -ENXIO;
6963
6964 if (io_register_op_must_quiesce(opcode)) {
6965 percpu_ref_kill(&ctx->refs);
6966
6967 /*
6968 * Drop uring mutex before waiting for references to exit. If
6969 * another thread is currently inside io_uring_enter() it might
6970 * need to grab the uring_lock to make progress. If we hold it
6971 * here across the drain wait, then we can deadlock. It's safe
6972 * to drop the mutex here, since no new references will come in
6973 * after we've killed the percpu ref.
6974 */
6975 mutex_unlock(&ctx->uring_lock);
6976 ret = wait_for_completion_interruptible(&ctx->completions[0]);
6977 mutex_lock(&ctx->uring_lock);
6978 if (ret) {
6979 percpu_ref_resurrect(&ctx->refs);
6980 ret = -EINTR;
6981 goto out;
6982 }
6983 }
6984
6985 switch (opcode) {
6986 case IORING_REGISTER_BUFFERS:
6987 ret = io_sqe_buffer_register(ctx, arg, nr_args);
6988 break;
6989 case IORING_UNREGISTER_BUFFERS:
6990 ret = -EINVAL;
6991 if (arg || nr_args)
6992 break;
6993 ret = io_sqe_buffer_unregister(ctx);
6994 break;
6995 case IORING_REGISTER_FILES:
6996 ret = io_sqe_files_register(ctx, arg, nr_args);
6997 break;
6998 case IORING_UNREGISTER_FILES:
6999 ret = -EINVAL;
7000 if (arg || nr_args)
7001 break;
7002 ret = io_sqe_files_unregister(ctx);
7003 break;
7004 case IORING_REGISTER_FILES_UPDATE:
7005 ret = io_sqe_files_update(ctx, arg, nr_args);
7006 break;
7007 case IORING_REGISTER_EVENTFD:
7008 case IORING_REGISTER_EVENTFD_ASYNC:
7009 ret = -EINVAL;
7010 if (nr_args != 1)
7011 break;
7012 ret = io_eventfd_register(ctx, arg);
7013 if (ret)
7014 break;
7015 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
7016 ctx->eventfd_async = 1;
7017 else
7018 ctx->eventfd_async = 0;
7019 break;
7020 case IORING_UNREGISTER_EVENTFD:
7021 ret = -EINVAL;
7022 if (arg || nr_args)
7023 break;
7024 ret = io_eventfd_unregister(ctx);
7025 break;
7026 case IORING_REGISTER_PROBE:
7027 ret = -EINVAL;
7028 if (!arg || nr_args > 256)
7029 break;
7030 ret = io_probe(ctx, arg, nr_args);
7031 break;
7032 case IORING_REGISTER_PERSONALITY:
7033 ret = -EINVAL;
7034 if (arg || nr_args)
7035 break;
7036 ret = io_register_personality(ctx);
7037 break;
7038 case IORING_UNREGISTER_PERSONALITY:
7039 ret = -EINVAL;
7040 if (arg)
7041 break;
7042 ret = io_unregister_personality(ctx, nr_args);
7043 break;
7044 default:
7045 ret = -EINVAL;
7046 break;
7047 }
7048
7049 if (io_register_op_must_quiesce(opcode)) {
7050 /* bring the ctx back to life */
7051 percpu_ref_reinit(&ctx->refs);
7052 out:
7053 reinit_completion(&ctx->completions[0]);
7054 }
7055 return ret;
7056 }
7057
7058 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
7059 void __user *, arg, unsigned int, nr_args)
7060 {
7061 struct io_ring_ctx *ctx;
7062 long ret = -EBADF;
7063 struct fd f;
7064
7065 f = fdget(fd);
7066 if (!f.file)
7067 return -EBADF;
7068
7069 ret = -EOPNOTSUPP;
7070 if (f.file->f_op != &io_uring_fops)
7071 goto out_fput;
7072
7073 ctx = f.file->private_data;
7074
7075 mutex_lock(&ctx->uring_lock);
7076 ret = __io_uring_register(ctx, opcode, arg, nr_args);
7077 mutex_unlock(&ctx->uring_lock);
7078 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
7079 ctx->cq_ev_fd != NULL, ret);
7080 out_fput:
7081 fdput(f);
7082 return ret;
7083 }
7084
7085 static int __init io_uring_init(void)
7086 {
7087 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
7088 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
7089 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
7090 } while (0)
7091
7092 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
7093 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
7094 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
7095 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
7096 BUILD_BUG_SQE_ELEM(1, __u8, flags);
7097 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
7098 BUILD_BUG_SQE_ELEM(4, __s32, fd);
7099 BUILD_BUG_SQE_ELEM(8, __u64, off);
7100 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
7101 BUILD_BUG_SQE_ELEM(16, __u64, addr);
7102 BUILD_BUG_SQE_ELEM(24, __u32, len);
7103 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
7104 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
7105 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
7106 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
7107 BUILD_BUG_SQE_ELEM(28, __u16, poll_events);
7108 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
7109 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
7110 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
7111 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
7112 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
7113 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
7114 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
7115 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
7116 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
7117 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
7118 BUILD_BUG_SQE_ELEM(42, __u16, personality);
7119
7120 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
7121 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
7122 return 0;
7123 };
7124 __initcall(io_uring_init);