]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'meminit-v5.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49
50 #include <linux/sched/signal.h>
51 #include <linux/fs.h>
52 #include <linux/file.h>
53 #include <linux/fdtable.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/mmu_context.h>
57 #include <linux/percpu.h>
58 #include <linux/slab.h>
59 #include <linux/workqueue.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73
74 #include <uapi/linux/io_uring.h>
75
76 #include "internal.h"
77
78 #define IORING_MAX_ENTRIES 4096
79 #define IORING_MAX_FIXED_FILES 1024
80
81 struct io_uring {
82 u32 head ____cacheline_aligned_in_smp;
83 u32 tail ____cacheline_aligned_in_smp;
84 };
85
86 /*
87 * This data is shared with the application through the mmap at offset
88 * IORING_OFF_SQ_RING.
89 *
90 * The offsets to the member fields are published through struct
91 * io_sqring_offsets when calling io_uring_setup.
92 */
93 struct io_sq_ring {
94 /*
95 * Head and tail offsets into the ring; the offsets need to be
96 * masked to get valid indices.
97 *
98 * The kernel controls head and the application controls tail.
99 */
100 struct io_uring r;
101 /*
102 * Bitmask to apply to head and tail offsets (constant, equals
103 * ring_entries - 1)
104 */
105 u32 ring_mask;
106 /* Ring size (constant, power of 2) */
107 u32 ring_entries;
108 /*
109 * Number of invalid entries dropped by the kernel due to
110 * invalid index stored in array
111 *
112 * Written by the kernel, shouldn't be modified by the
113 * application (i.e. get number of "new events" by comparing to
114 * cached value).
115 *
116 * After a new SQ head value was read by the application this
117 * counter includes all submissions that were dropped reaching
118 * the new SQ head (and possibly more).
119 */
120 u32 dropped;
121 /*
122 * Runtime flags
123 *
124 * Written by the kernel, shouldn't be modified by the
125 * application.
126 *
127 * The application needs a full memory barrier before checking
128 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
129 */
130 u32 flags;
131 /*
132 * Ring buffer of indices into array of io_uring_sqe, which is
133 * mmapped by the application using the IORING_OFF_SQES offset.
134 *
135 * This indirection could e.g. be used to assign fixed
136 * io_uring_sqe entries to operations and only submit them to
137 * the queue when needed.
138 *
139 * The kernel modifies neither the indices array nor the entries
140 * array.
141 */
142 u32 array[];
143 };
144
145 /*
146 * This data is shared with the application through the mmap at offset
147 * IORING_OFF_CQ_RING.
148 *
149 * The offsets to the member fields are published through struct
150 * io_cqring_offsets when calling io_uring_setup.
151 */
152 struct io_cq_ring {
153 /*
154 * Head and tail offsets into the ring; the offsets need to be
155 * masked to get valid indices.
156 *
157 * The application controls head and the kernel tail.
158 */
159 struct io_uring r;
160 /*
161 * Bitmask to apply to head and tail offsets (constant, equals
162 * ring_entries - 1)
163 */
164 u32 ring_mask;
165 /* Ring size (constant, power of 2) */
166 u32 ring_entries;
167 /*
168 * Number of completion events lost because the queue was full;
169 * this should be avoided by the application by making sure
170 * there are not more requests pending thatn there is space in
171 * the completion queue.
172 *
173 * Written by the kernel, shouldn't be modified by the
174 * application (i.e. get number of "new events" by comparing to
175 * cached value).
176 *
177 * As completion events come in out of order this counter is not
178 * ordered with any other data.
179 */
180 u32 overflow;
181 /*
182 * Ring buffer of completion events.
183 *
184 * The kernel writes completion events fresh every time they are
185 * produced, so the application is allowed to modify pending
186 * entries.
187 */
188 struct io_uring_cqe cqes[];
189 };
190
191 struct io_mapped_ubuf {
192 u64 ubuf;
193 size_t len;
194 struct bio_vec *bvec;
195 unsigned int nr_bvecs;
196 };
197
198 struct async_list {
199 spinlock_t lock;
200 atomic_t cnt;
201 struct list_head list;
202
203 struct file *file;
204 off_t io_end;
205 size_t io_pages;
206 };
207
208 struct io_ring_ctx {
209 struct {
210 struct percpu_ref refs;
211 } ____cacheline_aligned_in_smp;
212
213 struct {
214 unsigned int flags;
215 bool compat;
216 bool account_mem;
217
218 /* SQ ring */
219 struct io_sq_ring *sq_ring;
220 unsigned cached_sq_head;
221 unsigned sq_entries;
222 unsigned sq_mask;
223 unsigned sq_thread_idle;
224 struct io_uring_sqe *sq_sqes;
225 } ____cacheline_aligned_in_smp;
226
227 /* IO offload */
228 struct workqueue_struct *sqo_wq;
229 struct task_struct *sqo_thread; /* if using sq thread polling */
230 struct mm_struct *sqo_mm;
231 wait_queue_head_t sqo_wait;
232 unsigned sqo_stop;
233
234 struct {
235 /* CQ ring */
236 struct io_cq_ring *cq_ring;
237 unsigned cached_cq_tail;
238 unsigned cq_entries;
239 unsigned cq_mask;
240 struct wait_queue_head cq_wait;
241 struct fasync_struct *cq_fasync;
242 } ____cacheline_aligned_in_smp;
243
244 /*
245 * If used, fixed file set. Writers must ensure that ->refs is dead,
246 * readers must ensure that ->refs is alive as long as the file* is
247 * used. Only updated through io_uring_register(2).
248 */
249 struct file **user_files;
250 unsigned nr_user_files;
251
252 /* if used, fixed mapped user buffers */
253 unsigned nr_user_bufs;
254 struct io_mapped_ubuf *user_bufs;
255
256 struct user_struct *user;
257
258 struct completion ctx_done;
259
260 struct {
261 struct mutex uring_lock;
262 wait_queue_head_t wait;
263 } ____cacheline_aligned_in_smp;
264
265 struct {
266 spinlock_t completion_lock;
267 bool poll_multi_file;
268 /*
269 * ->poll_list is protected by the ctx->uring_lock for
270 * io_uring instances that don't use IORING_SETUP_SQPOLL.
271 * For SQPOLL, only the single threaded io_sq_thread() will
272 * manipulate the list, hence no extra locking is needed there.
273 */
274 struct list_head poll_list;
275 struct list_head cancel_list;
276 } ____cacheline_aligned_in_smp;
277
278 struct async_list pending_async[2];
279
280 #if defined(CONFIG_UNIX)
281 struct socket *ring_sock;
282 #endif
283 };
284
285 struct sqe_submit {
286 const struct io_uring_sqe *sqe;
287 unsigned short index;
288 bool has_user;
289 bool needs_lock;
290 bool needs_fixed_file;
291 };
292
293 /*
294 * First field must be the file pointer in all the
295 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
296 */
297 struct io_poll_iocb {
298 struct file *file;
299 struct wait_queue_head *head;
300 __poll_t events;
301 bool done;
302 bool canceled;
303 struct wait_queue_entry wait;
304 };
305
306 /*
307 * NOTE! Each of the iocb union members has the file pointer
308 * as the first entry in their struct definition. So you can
309 * access the file pointer through any of the sub-structs,
310 * or directly as just 'ki_filp' in this struct.
311 */
312 struct io_kiocb {
313 union {
314 struct file *file;
315 struct kiocb rw;
316 struct io_poll_iocb poll;
317 };
318
319 struct sqe_submit submit;
320
321 struct io_ring_ctx *ctx;
322 struct list_head list;
323 unsigned int flags;
324 refcount_t refs;
325 #define REQ_F_NOWAIT 1 /* must not punt to workers */
326 #define REQ_F_IOPOLL_COMPLETED 2 /* polled IO has completed */
327 #define REQ_F_FIXED_FILE 4 /* ctx owns file */
328 #define REQ_F_SEQ_PREV 8 /* sequential with previous */
329 #define REQ_F_PREPPED 16 /* prep already done */
330 u64 user_data;
331 u64 error;
332
333 struct work_struct work;
334 };
335
336 #define IO_PLUG_THRESHOLD 2
337 #define IO_IOPOLL_BATCH 8
338
339 struct io_submit_state {
340 struct blk_plug plug;
341
342 /*
343 * io_kiocb alloc cache
344 */
345 void *reqs[IO_IOPOLL_BATCH];
346 unsigned int free_reqs;
347 unsigned int cur_req;
348
349 /*
350 * File reference cache
351 */
352 struct file *file;
353 unsigned int fd;
354 unsigned int has_refs;
355 unsigned int used_refs;
356 unsigned int ios_left;
357 };
358
359 static struct kmem_cache *req_cachep;
360
361 static const struct file_operations io_uring_fops;
362
363 struct sock *io_uring_get_socket(struct file *file)
364 {
365 #if defined(CONFIG_UNIX)
366 if (file->f_op == &io_uring_fops) {
367 struct io_ring_ctx *ctx = file->private_data;
368
369 return ctx->ring_sock->sk;
370 }
371 #endif
372 return NULL;
373 }
374 EXPORT_SYMBOL(io_uring_get_socket);
375
376 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
377 {
378 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
379
380 complete(&ctx->ctx_done);
381 }
382
383 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
384 {
385 struct io_ring_ctx *ctx;
386 int i;
387
388 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
389 if (!ctx)
390 return NULL;
391
392 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free, 0, GFP_KERNEL)) {
393 kfree(ctx);
394 return NULL;
395 }
396
397 ctx->flags = p->flags;
398 init_waitqueue_head(&ctx->cq_wait);
399 init_completion(&ctx->ctx_done);
400 mutex_init(&ctx->uring_lock);
401 init_waitqueue_head(&ctx->wait);
402 for (i = 0; i < ARRAY_SIZE(ctx->pending_async); i++) {
403 spin_lock_init(&ctx->pending_async[i].lock);
404 INIT_LIST_HEAD(&ctx->pending_async[i].list);
405 atomic_set(&ctx->pending_async[i].cnt, 0);
406 }
407 spin_lock_init(&ctx->completion_lock);
408 INIT_LIST_HEAD(&ctx->poll_list);
409 INIT_LIST_HEAD(&ctx->cancel_list);
410 return ctx;
411 }
412
413 static void io_commit_cqring(struct io_ring_ctx *ctx)
414 {
415 struct io_cq_ring *ring = ctx->cq_ring;
416
417 if (ctx->cached_cq_tail != READ_ONCE(ring->r.tail)) {
418 /* order cqe stores with ring update */
419 smp_store_release(&ring->r.tail, ctx->cached_cq_tail);
420
421 if (wq_has_sleeper(&ctx->cq_wait)) {
422 wake_up_interruptible(&ctx->cq_wait);
423 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
424 }
425 }
426 }
427
428 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
429 {
430 struct io_cq_ring *ring = ctx->cq_ring;
431 unsigned tail;
432
433 tail = ctx->cached_cq_tail;
434 /*
435 * writes to the cq entry need to come after reading head; the
436 * control dependency is enough as we're using WRITE_ONCE to
437 * fill the cq entry
438 */
439 if (tail - READ_ONCE(ring->r.head) == ring->ring_entries)
440 return NULL;
441
442 ctx->cached_cq_tail++;
443 return &ring->cqes[tail & ctx->cq_mask];
444 }
445
446 static void io_cqring_fill_event(struct io_ring_ctx *ctx, u64 ki_user_data,
447 long res, unsigned ev_flags)
448 {
449 struct io_uring_cqe *cqe;
450
451 /*
452 * If we can't get a cq entry, userspace overflowed the
453 * submission (by quite a lot). Increment the overflow count in
454 * the ring.
455 */
456 cqe = io_get_cqring(ctx);
457 if (cqe) {
458 WRITE_ONCE(cqe->user_data, ki_user_data);
459 WRITE_ONCE(cqe->res, res);
460 WRITE_ONCE(cqe->flags, ev_flags);
461 } else {
462 unsigned overflow = READ_ONCE(ctx->cq_ring->overflow);
463
464 WRITE_ONCE(ctx->cq_ring->overflow, overflow + 1);
465 }
466 }
467
468 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
469 {
470 if (waitqueue_active(&ctx->wait))
471 wake_up(&ctx->wait);
472 if (waitqueue_active(&ctx->sqo_wait))
473 wake_up(&ctx->sqo_wait);
474 }
475
476 static void io_cqring_add_event(struct io_ring_ctx *ctx, u64 user_data,
477 long res, unsigned ev_flags)
478 {
479 unsigned long flags;
480
481 spin_lock_irqsave(&ctx->completion_lock, flags);
482 io_cqring_fill_event(ctx, user_data, res, ev_flags);
483 io_commit_cqring(ctx);
484 spin_unlock_irqrestore(&ctx->completion_lock, flags);
485
486 io_cqring_ev_posted(ctx);
487 }
488
489 static void io_ring_drop_ctx_refs(struct io_ring_ctx *ctx, unsigned refs)
490 {
491 percpu_ref_put_many(&ctx->refs, refs);
492
493 if (waitqueue_active(&ctx->wait))
494 wake_up(&ctx->wait);
495 }
496
497 static struct io_kiocb *io_get_req(struct io_ring_ctx *ctx,
498 struct io_submit_state *state)
499 {
500 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
501 struct io_kiocb *req;
502
503 if (!percpu_ref_tryget(&ctx->refs))
504 return NULL;
505
506 if (!state) {
507 req = kmem_cache_alloc(req_cachep, gfp);
508 if (unlikely(!req))
509 goto out;
510 } else if (!state->free_reqs) {
511 size_t sz;
512 int ret;
513
514 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
515 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
516
517 /*
518 * Bulk alloc is all-or-nothing. If we fail to get a batch,
519 * retry single alloc to be on the safe side.
520 */
521 if (unlikely(ret <= 0)) {
522 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
523 if (!state->reqs[0])
524 goto out;
525 ret = 1;
526 }
527 state->free_reqs = ret - 1;
528 state->cur_req = 1;
529 req = state->reqs[0];
530 } else {
531 req = state->reqs[state->cur_req];
532 state->free_reqs--;
533 state->cur_req++;
534 }
535
536 req->ctx = ctx;
537 req->flags = 0;
538 /* one is dropped after submission, the other at completion */
539 refcount_set(&req->refs, 2);
540 return req;
541 out:
542 io_ring_drop_ctx_refs(ctx, 1);
543 return NULL;
544 }
545
546 static void io_free_req_many(struct io_ring_ctx *ctx, void **reqs, int *nr)
547 {
548 if (*nr) {
549 kmem_cache_free_bulk(req_cachep, *nr, reqs);
550 io_ring_drop_ctx_refs(ctx, *nr);
551 *nr = 0;
552 }
553 }
554
555 static void io_free_req(struct io_kiocb *req)
556 {
557 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
558 fput(req->file);
559 io_ring_drop_ctx_refs(req->ctx, 1);
560 kmem_cache_free(req_cachep, req);
561 }
562
563 static void io_put_req(struct io_kiocb *req)
564 {
565 if (refcount_dec_and_test(&req->refs))
566 io_free_req(req);
567 }
568
569 /*
570 * Find and free completed poll iocbs
571 */
572 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
573 struct list_head *done)
574 {
575 void *reqs[IO_IOPOLL_BATCH];
576 struct io_kiocb *req;
577 int to_free;
578
579 to_free = 0;
580 while (!list_empty(done)) {
581 req = list_first_entry(done, struct io_kiocb, list);
582 list_del(&req->list);
583
584 io_cqring_fill_event(ctx, req->user_data, req->error, 0);
585 (*nr_events)++;
586
587 if (refcount_dec_and_test(&req->refs)) {
588 /* If we're not using fixed files, we have to pair the
589 * completion part with the file put. Use regular
590 * completions for those, only batch free for fixed
591 * file.
592 */
593 if (req->flags & REQ_F_FIXED_FILE) {
594 reqs[to_free++] = req;
595 if (to_free == ARRAY_SIZE(reqs))
596 io_free_req_many(ctx, reqs, &to_free);
597 } else {
598 io_free_req(req);
599 }
600 }
601 }
602
603 io_commit_cqring(ctx);
604 io_free_req_many(ctx, reqs, &to_free);
605 }
606
607 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
608 long min)
609 {
610 struct io_kiocb *req, *tmp;
611 LIST_HEAD(done);
612 bool spin;
613 int ret;
614
615 /*
616 * Only spin for completions if we don't have multiple devices hanging
617 * off our complete list, and we're under the requested amount.
618 */
619 spin = !ctx->poll_multi_file && *nr_events < min;
620
621 ret = 0;
622 list_for_each_entry_safe(req, tmp, &ctx->poll_list, list) {
623 struct kiocb *kiocb = &req->rw;
624
625 /*
626 * Move completed entries to our local list. If we find a
627 * request that requires polling, break out and complete
628 * the done list first, if we have entries there.
629 */
630 if (req->flags & REQ_F_IOPOLL_COMPLETED) {
631 list_move_tail(&req->list, &done);
632 continue;
633 }
634 if (!list_empty(&done))
635 break;
636
637 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
638 if (ret < 0)
639 break;
640
641 if (ret && spin)
642 spin = false;
643 ret = 0;
644 }
645
646 if (!list_empty(&done))
647 io_iopoll_complete(ctx, nr_events, &done);
648
649 return ret;
650 }
651
652 /*
653 * Poll for a mininum of 'min' events. Note that if min == 0 we consider that a
654 * non-spinning poll check - we'll still enter the driver poll loop, but only
655 * as a non-spinning completion check.
656 */
657 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
658 long min)
659 {
660 while (!list_empty(&ctx->poll_list)) {
661 int ret;
662
663 ret = io_do_iopoll(ctx, nr_events, min);
664 if (ret < 0)
665 return ret;
666 if (!min || *nr_events >= min)
667 return 0;
668 }
669
670 return 1;
671 }
672
673 /*
674 * We can't just wait for polled events to come to us, we have to actively
675 * find and complete them.
676 */
677 static void io_iopoll_reap_events(struct io_ring_ctx *ctx)
678 {
679 if (!(ctx->flags & IORING_SETUP_IOPOLL))
680 return;
681
682 mutex_lock(&ctx->uring_lock);
683 while (!list_empty(&ctx->poll_list)) {
684 unsigned int nr_events = 0;
685
686 io_iopoll_getevents(ctx, &nr_events, 1);
687 }
688 mutex_unlock(&ctx->uring_lock);
689 }
690
691 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned *nr_events,
692 long min)
693 {
694 int ret = 0;
695
696 do {
697 int tmin = 0;
698
699 if (*nr_events < min)
700 tmin = min - *nr_events;
701
702 ret = io_iopoll_getevents(ctx, nr_events, tmin);
703 if (ret <= 0)
704 break;
705 ret = 0;
706 } while (min && !*nr_events && !need_resched());
707
708 return ret;
709 }
710
711 static void kiocb_end_write(struct kiocb *kiocb)
712 {
713 if (kiocb->ki_flags & IOCB_WRITE) {
714 struct inode *inode = file_inode(kiocb->ki_filp);
715
716 /*
717 * Tell lockdep we inherited freeze protection from submission
718 * thread.
719 */
720 if (S_ISREG(inode->i_mode))
721 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
722 file_end_write(kiocb->ki_filp);
723 }
724 }
725
726 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
727 {
728 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
729
730 kiocb_end_write(kiocb);
731
732 io_cqring_add_event(req->ctx, req->user_data, res, 0);
733 io_put_req(req);
734 }
735
736 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
737 {
738 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw);
739
740 kiocb_end_write(kiocb);
741
742 req->error = res;
743 if (res != -EAGAIN)
744 req->flags |= REQ_F_IOPOLL_COMPLETED;
745 }
746
747 /*
748 * After the iocb has been issued, it's safe to be found on the poll list.
749 * Adding the kiocb to the list AFTER submission ensures that we don't
750 * find it from a io_iopoll_getevents() thread before the issuer is done
751 * accessing the kiocb cookie.
752 */
753 static void io_iopoll_req_issued(struct io_kiocb *req)
754 {
755 struct io_ring_ctx *ctx = req->ctx;
756
757 /*
758 * Track whether we have multiple files in our lists. This will impact
759 * how we do polling eventually, not spinning if we're on potentially
760 * different devices.
761 */
762 if (list_empty(&ctx->poll_list)) {
763 ctx->poll_multi_file = false;
764 } else if (!ctx->poll_multi_file) {
765 struct io_kiocb *list_req;
766
767 list_req = list_first_entry(&ctx->poll_list, struct io_kiocb,
768 list);
769 if (list_req->rw.ki_filp != req->rw.ki_filp)
770 ctx->poll_multi_file = true;
771 }
772
773 /*
774 * For fast devices, IO may have already completed. If it has, add
775 * it to the front so we find it first.
776 */
777 if (req->flags & REQ_F_IOPOLL_COMPLETED)
778 list_add(&req->list, &ctx->poll_list);
779 else
780 list_add_tail(&req->list, &ctx->poll_list);
781 }
782
783 static void io_file_put(struct io_submit_state *state)
784 {
785 if (state->file) {
786 int diff = state->has_refs - state->used_refs;
787
788 if (diff)
789 fput_many(state->file, diff);
790 state->file = NULL;
791 }
792 }
793
794 /*
795 * Get as many references to a file as we have IOs left in this submission,
796 * assuming most submissions are for one file, or at least that each file
797 * has more than one submission.
798 */
799 static struct file *io_file_get(struct io_submit_state *state, int fd)
800 {
801 if (!state)
802 return fget(fd);
803
804 if (state->file) {
805 if (state->fd == fd) {
806 state->used_refs++;
807 state->ios_left--;
808 return state->file;
809 }
810 io_file_put(state);
811 }
812 state->file = fget_many(fd, state->ios_left);
813 if (!state->file)
814 return NULL;
815
816 state->fd = fd;
817 state->has_refs = state->ios_left;
818 state->used_refs = 1;
819 state->ios_left--;
820 return state->file;
821 }
822
823 /*
824 * If we tracked the file through the SCM inflight mechanism, we could support
825 * any file. For now, just ensure that anything potentially problematic is done
826 * inline.
827 */
828 static bool io_file_supports_async(struct file *file)
829 {
830 umode_t mode = file_inode(file)->i_mode;
831
832 if (S_ISBLK(mode) || S_ISCHR(mode))
833 return true;
834 if (S_ISREG(mode) && file->f_op != &io_uring_fops)
835 return true;
836
837 return false;
838 }
839
840 static int io_prep_rw(struct io_kiocb *req, const struct sqe_submit *s,
841 bool force_nonblock)
842 {
843 const struct io_uring_sqe *sqe = s->sqe;
844 struct io_ring_ctx *ctx = req->ctx;
845 struct kiocb *kiocb = &req->rw;
846 unsigned ioprio;
847 int ret;
848
849 if (!req->file)
850 return -EBADF;
851 /* For -EAGAIN retry, everything is already prepped */
852 if (req->flags & REQ_F_PREPPED)
853 return 0;
854
855 if (force_nonblock && !io_file_supports_async(req->file))
856 force_nonblock = false;
857
858 kiocb->ki_pos = READ_ONCE(sqe->off);
859 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
860 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
861
862 ioprio = READ_ONCE(sqe->ioprio);
863 if (ioprio) {
864 ret = ioprio_check_cap(ioprio);
865 if (ret)
866 return ret;
867
868 kiocb->ki_ioprio = ioprio;
869 } else
870 kiocb->ki_ioprio = get_current_ioprio();
871
872 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
873 if (unlikely(ret))
874 return ret;
875
876 /* don't allow async punt if RWF_NOWAIT was requested */
877 if (kiocb->ki_flags & IOCB_NOWAIT)
878 req->flags |= REQ_F_NOWAIT;
879
880 if (force_nonblock)
881 kiocb->ki_flags |= IOCB_NOWAIT;
882
883 if (ctx->flags & IORING_SETUP_IOPOLL) {
884 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
885 !kiocb->ki_filp->f_op->iopoll)
886 return -EOPNOTSUPP;
887
888 req->error = 0;
889 kiocb->ki_flags |= IOCB_HIPRI;
890 kiocb->ki_complete = io_complete_rw_iopoll;
891 } else {
892 if (kiocb->ki_flags & IOCB_HIPRI)
893 return -EINVAL;
894 kiocb->ki_complete = io_complete_rw;
895 }
896 req->flags |= REQ_F_PREPPED;
897 return 0;
898 }
899
900 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
901 {
902 switch (ret) {
903 case -EIOCBQUEUED:
904 break;
905 case -ERESTARTSYS:
906 case -ERESTARTNOINTR:
907 case -ERESTARTNOHAND:
908 case -ERESTART_RESTARTBLOCK:
909 /*
910 * We can't just restart the syscall, since previously
911 * submitted sqes may already be in progress. Just fail this
912 * IO with EINTR.
913 */
914 ret = -EINTR;
915 /* fall through */
916 default:
917 kiocb->ki_complete(kiocb, ret, 0);
918 }
919 }
920
921 static int io_import_fixed(struct io_ring_ctx *ctx, int rw,
922 const struct io_uring_sqe *sqe,
923 struct iov_iter *iter)
924 {
925 size_t len = READ_ONCE(sqe->len);
926 struct io_mapped_ubuf *imu;
927 unsigned index, buf_index;
928 size_t offset;
929 u64 buf_addr;
930
931 /* attempt to use fixed buffers without having provided iovecs */
932 if (unlikely(!ctx->user_bufs))
933 return -EFAULT;
934
935 buf_index = READ_ONCE(sqe->buf_index);
936 if (unlikely(buf_index >= ctx->nr_user_bufs))
937 return -EFAULT;
938
939 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
940 imu = &ctx->user_bufs[index];
941 buf_addr = READ_ONCE(sqe->addr);
942
943 /* overflow */
944 if (buf_addr + len < buf_addr)
945 return -EFAULT;
946 /* not inside the mapped region */
947 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
948 return -EFAULT;
949
950 /*
951 * May not be a start of buffer, set size appropriately
952 * and advance us to the beginning.
953 */
954 offset = buf_addr - imu->ubuf;
955 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
956 if (offset)
957 iov_iter_advance(iter, offset);
958
959 /* don't drop a reference to these pages */
960 iter->type |= ITER_BVEC_FLAG_NO_REF;
961 return 0;
962 }
963
964 static int io_import_iovec(struct io_ring_ctx *ctx, int rw,
965 const struct sqe_submit *s, struct iovec **iovec,
966 struct iov_iter *iter)
967 {
968 const struct io_uring_sqe *sqe = s->sqe;
969 void __user *buf = u64_to_user_ptr(READ_ONCE(sqe->addr));
970 size_t sqe_len = READ_ONCE(sqe->len);
971 u8 opcode;
972
973 /*
974 * We're reading ->opcode for the second time, but the first read
975 * doesn't care whether it's _FIXED or not, so it doesn't matter
976 * whether ->opcode changes concurrently. The first read does care
977 * about whether it is a READ or a WRITE, so we don't trust this read
978 * for that purpose and instead let the caller pass in the read/write
979 * flag.
980 */
981 opcode = READ_ONCE(sqe->opcode);
982 if (opcode == IORING_OP_READ_FIXED ||
983 opcode == IORING_OP_WRITE_FIXED) {
984 int ret = io_import_fixed(ctx, rw, sqe, iter);
985 *iovec = NULL;
986 return ret;
987 }
988
989 if (!s->has_user)
990 return -EFAULT;
991
992 #ifdef CONFIG_COMPAT
993 if (ctx->compat)
994 return compat_import_iovec(rw, buf, sqe_len, UIO_FASTIOV,
995 iovec, iter);
996 #endif
997
998 return import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter);
999 }
1000
1001 /*
1002 * Make a note of the last file/offset/direction we punted to async
1003 * context. We'll use this information to see if we can piggy back a
1004 * sequential request onto the previous one, if it's still hasn't been
1005 * completed by the async worker.
1006 */
1007 static void io_async_list_note(int rw, struct io_kiocb *req, size_t len)
1008 {
1009 struct async_list *async_list = &req->ctx->pending_async[rw];
1010 struct kiocb *kiocb = &req->rw;
1011 struct file *filp = kiocb->ki_filp;
1012 off_t io_end = kiocb->ki_pos + len;
1013
1014 if (filp == async_list->file && kiocb->ki_pos == async_list->io_end) {
1015 unsigned long max_pages;
1016
1017 /* Use 8x RA size as a decent limiter for both reads/writes */
1018 max_pages = filp->f_ra.ra_pages;
1019 if (!max_pages)
1020 max_pages = VM_READAHEAD_PAGES;
1021 max_pages *= 8;
1022
1023 /* If max pages are exceeded, reset the state */
1024 len >>= PAGE_SHIFT;
1025 if (async_list->io_pages + len <= max_pages) {
1026 req->flags |= REQ_F_SEQ_PREV;
1027 async_list->io_pages += len;
1028 } else {
1029 io_end = 0;
1030 async_list->io_pages = 0;
1031 }
1032 }
1033
1034 /* New file? Reset state. */
1035 if (async_list->file != filp) {
1036 async_list->io_pages = 0;
1037 async_list->file = filp;
1038 }
1039 async_list->io_end = io_end;
1040 }
1041
1042 static int io_read(struct io_kiocb *req, const struct sqe_submit *s,
1043 bool force_nonblock)
1044 {
1045 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1046 struct kiocb *kiocb = &req->rw;
1047 struct iov_iter iter;
1048 struct file *file;
1049 size_t iov_count;
1050 int ret;
1051
1052 ret = io_prep_rw(req, s, force_nonblock);
1053 if (ret)
1054 return ret;
1055 file = kiocb->ki_filp;
1056
1057 if (unlikely(!(file->f_mode & FMODE_READ)))
1058 return -EBADF;
1059 if (unlikely(!file->f_op->read_iter))
1060 return -EINVAL;
1061
1062 ret = io_import_iovec(req->ctx, READ, s, &iovec, &iter);
1063 if (ret)
1064 return ret;
1065
1066 iov_count = iov_iter_count(&iter);
1067 ret = rw_verify_area(READ, file, &kiocb->ki_pos, iov_count);
1068 if (!ret) {
1069 ssize_t ret2;
1070
1071 /* Catch -EAGAIN return for forced non-blocking submission */
1072 ret2 = call_read_iter(file, kiocb, &iter);
1073 if (!force_nonblock || ret2 != -EAGAIN) {
1074 io_rw_done(kiocb, ret2);
1075 } else {
1076 /*
1077 * If ->needs_lock is true, we're already in async
1078 * context.
1079 */
1080 if (!s->needs_lock)
1081 io_async_list_note(READ, req, iov_count);
1082 ret = -EAGAIN;
1083 }
1084 }
1085 kfree(iovec);
1086 return ret;
1087 }
1088
1089 static int io_write(struct io_kiocb *req, const struct sqe_submit *s,
1090 bool force_nonblock)
1091 {
1092 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1093 struct kiocb *kiocb = &req->rw;
1094 struct iov_iter iter;
1095 struct file *file;
1096 size_t iov_count;
1097 int ret;
1098
1099 ret = io_prep_rw(req, s, force_nonblock);
1100 if (ret)
1101 return ret;
1102
1103 file = kiocb->ki_filp;
1104 if (unlikely(!(file->f_mode & FMODE_WRITE)))
1105 return -EBADF;
1106 if (unlikely(!file->f_op->write_iter))
1107 return -EINVAL;
1108
1109 ret = io_import_iovec(req->ctx, WRITE, s, &iovec, &iter);
1110 if (ret)
1111 return ret;
1112
1113 iov_count = iov_iter_count(&iter);
1114
1115 ret = -EAGAIN;
1116 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT)) {
1117 /* If ->needs_lock is true, we're already in async context. */
1118 if (!s->needs_lock)
1119 io_async_list_note(WRITE, req, iov_count);
1120 goto out_free;
1121 }
1122
1123 ret = rw_verify_area(WRITE, file, &kiocb->ki_pos, iov_count);
1124 if (!ret) {
1125 ssize_t ret2;
1126
1127 /*
1128 * Open-code file_start_write here to grab freeze protection,
1129 * which will be released by another thread in
1130 * io_complete_rw(). Fool lockdep by telling it the lock got
1131 * released so that it doesn't complain about the held lock when
1132 * we return to userspace.
1133 */
1134 if (S_ISREG(file_inode(file)->i_mode)) {
1135 __sb_start_write(file_inode(file)->i_sb,
1136 SB_FREEZE_WRITE, true);
1137 __sb_writers_release(file_inode(file)->i_sb,
1138 SB_FREEZE_WRITE);
1139 }
1140 kiocb->ki_flags |= IOCB_WRITE;
1141
1142 ret2 = call_write_iter(file, kiocb, &iter);
1143 if (!force_nonblock || ret2 != -EAGAIN) {
1144 io_rw_done(kiocb, ret2);
1145 } else {
1146 /*
1147 * If ->needs_lock is true, we're already in async
1148 * context.
1149 */
1150 if (!s->needs_lock)
1151 io_async_list_note(WRITE, req, iov_count);
1152 ret = -EAGAIN;
1153 }
1154 }
1155 out_free:
1156 kfree(iovec);
1157 return ret;
1158 }
1159
1160 /*
1161 * IORING_OP_NOP just posts a completion event, nothing else.
1162 */
1163 static int io_nop(struct io_kiocb *req, u64 user_data)
1164 {
1165 struct io_ring_ctx *ctx = req->ctx;
1166 long err = 0;
1167
1168 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1169 return -EINVAL;
1170
1171 io_cqring_add_event(ctx, user_data, err, 0);
1172 io_put_req(req);
1173 return 0;
1174 }
1175
1176 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1177 {
1178 struct io_ring_ctx *ctx = req->ctx;
1179
1180 if (!req->file)
1181 return -EBADF;
1182 /* Prep already done (EAGAIN retry) */
1183 if (req->flags & REQ_F_PREPPED)
1184 return 0;
1185
1186 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
1187 return -EINVAL;
1188 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
1189 return -EINVAL;
1190
1191 req->flags |= REQ_F_PREPPED;
1192 return 0;
1193 }
1194
1195 static int io_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe,
1196 bool force_nonblock)
1197 {
1198 loff_t sqe_off = READ_ONCE(sqe->off);
1199 loff_t sqe_len = READ_ONCE(sqe->len);
1200 loff_t end = sqe_off + sqe_len;
1201 unsigned fsync_flags;
1202 int ret;
1203
1204 fsync_flags = READ_ONCE(sqe->fsync_flags);
1205 if (unlikely(fsync_flags & ~IORING_FSYNC_DATASYNC))
1206 return -EINVAL;
1207
1208 ret = io_prep_fsync(req, sqe);
1209 if (ret)
1210 return ret;
1211
1212 /* fsync always requires a blocking context */
1213 if (force_nonblock)
1214 return -EAGAIN;
1215
1216 ret = vfs_fsync_range(req->rw.ki_filp, sqe_off,
1217 end > 0 ? end : LLONG_MAX,
1218 fsync_flags & IORING_FSYNC_DATASYNC);
1219
1220 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1221 io_put_req(req);
1222 return 0;
1223 }
1224
1225 static void io_poll_remove_one(struct io_kiocb *req)
1226 {
1227 struct io_poll_iocb *poll = &req->poll;
1228
1229 spin_lock(&poll->head->lock);
1230 WRITE_ONCE(poll->canceled, true);
1231 if (!list_empty(&poll->wait.entry)) {
1232 list_del_init(&poll->wait.entry);
1233 queue_work(req->ctx->sqo_wq, &req->work);
1234 }
1235 spin_unlock(&poll->head->lock);
1236
1237 list_del_init(&req->list);
1238 }
1239
1240 static void io_poll_remove_all(struct io_ring_ctx *ctx)
1241 {
1242 struct io_kiocb *req;
1243
1244 spin_lock_irq(&ctx->completion_lock);
1245 while (!list_empty(&ctx->cancel_list)) {
1246 req = list_first_entry(&ctx->cancel_list, struct io_kiocb,list);
1247 io_poll_remove_one(req);
1248 }
1249 spin_unlock_irq(&ctx->completion_lock);
1250 }
1251
1252 /*
1253 * Find a running poll command that matches one specified in sqe->addr,
1254 * and remove it if found.
1255 */
1256 static int io_poll_remove(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1257 {
1258 struct io_ring_ctx *ctx = req->ctx;
1259 struct io_kiocb *poll_req, *next;
1260 int ret = -ENOENT;
1261
1262 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1263 return -EINVAL;
1264 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
1265 sqe->poll_events)
1266 return -EINVAL;
1267
1268 spin_lock_irq(&ctx->completion_lock);
1269 list_for_each_entry_safe(poll_req, next, &ctx->cancel_list, list) {
1270 if (READ_ONCE(sqe->addr) == poll_req->user_data) {
1271 io_poll_remove_one(poll_req);
1272 ret = 0;
1273 break;
1274 }
1275 }
1276 spin_unlock_irq(&ctx->completion_lock);
1277
1278 io_cqring_add_event(req->ctx, sqe->user_data, ret, 0);
1279 io_put_req(req);
1280 return 0;
1281 }
1282
1283 static void io_poll_complete(struct io_ring_ctx *ctx, struct io_kiocb *req,
1284 __poll_t mask)
1285 {
1286 req->poll.done = true;
1287 io_cqring_fill_event(ctx, req->user_data, mangle_poll(mask), 0);
1288 io_commit_cqring(ctx);
1289 }
1290
1291 static void io_poll_complete_work(struct work_struct *work)
1292 {
1293 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1294 struct io_poll_iocb *poll = &req->poll;
1295 struct poll_table_struct pt = { ._key = poll->events };
1296 struct io_ring_ctx *ctx = req->ctx;
1297 __poll_t mask = 0;
1298
1299 if (!READ_ONCE(poll->canceled))
1300 mask = vfs_poll(poll->file, &pt) & poll->events;
1301
1302 /*
1303 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1304 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1305 * synchronize with them. In the cancellation case the list_del_init
1306 * itself is not actually needed, but harmless so we keep it in to
1307 * avoid further branches in the fast path.
1308 */
1309 spin_lock_irq(&ctx->completion_lock);
1310 if (!mask && !READ_ONCE(poll->canceled)) {
1311 add_wait_queue(poll->head, &poll->wait);
1312 spin_unlock_irq(&ctx->completion_lock);
1313 return;
1314 }
1315 list_del_init(&req->list);
1316 io_poll_complete(ctx, req, mask);
1317 spin_unlock_irq(&ctx->completion_lock);
1318
1319 io_cqring_ev_posted(ctx);
1320 io_put_req(req);
1321 }
1322
1323 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1324 void *key)
1325 {
1326 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
1327 wait);
1328 struct io_kiocb *req = container_of(poll, struct io_kiocb, poll);
1329 struct io_ring_ctx *ctx = req->ctx;
1330 __poll_t mask = key_to_poll(key);
1331 unsigned long flags;
1332
1333 /* for instances that support it check for an event match first: */
1334 if (mask && !(mask & poll->events))
1335 return 0;
1336
1337 list_del_init(&poll->wait.entry);
1338
1339 if (mask && spin_trylock_irqsave(&ctx->completion_lock, flags)) {
1340 list_del(&req->list);
1341 io_poll_complete(ctx, req, mask);
1342 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1343
1344 io_cqring_ev_posted(ctx);
1345 io_put_req(req);
1346 } else {
1347 queue_work(ctx->sqo_wq, &req->work);
1348 }
1349
1350 return 1;
1351 }
1352
1353 struct io_poll_table {
1354 struct poll_table_struct pt;
1355 struct io_kiocb *req;
1356 int error;
1357 };
1358
1359 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1360 struct poll_table_struct *p)
1361 {
1362 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
1363
1364 if (unlikely(pt->req->poll.head)) {
1365 pt->error = -EINVAL;
1366 return;
1367 }
1368
1369 pt->error = 0;
1370 pt->req->poll.head = head;
1371 add_wait_queue(head, &pt->req->poll.wait);
1372 }
1373
1374 static int io_poll_add(struct io_kiocb *req, const struct io_uring_sqe *sqe)
1375 {
1376 struct io_poll_iocb *poll = &req->poll;
1377 struct io_ring_ctx *ctx = req->ctx;
1378 struct io_poll_table ipt;
1379 bool cancel = false;
1380 __poll_t mask;
1381 u16 events;
1382
1383 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
1384 return -EINVAL;
1385 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
1386 return -EINVAL;
1387 if (!poll->file)
1388 return -EBADF;
1389
1390 INIT_WORK(&req->work, io_poll_complete_work);
1391 events = READ_ONCE(sqe->poll_events);
1392 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP;
1393
1394 poll->head = NULL;
1395 poll->done = false;
1396 poll->canceled = false;
1397
1398 ipt.pt._qproc = io_poll_queue_proc;
1399 ipt.pt._key = poll->events;
1400 ipt.req = req;
1401 ipt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1402
1403 /* initialized the list so that we can do list_empty checks */
1404 INIT_LIST_HEAD(&poll->wait.entry);
1405 init_waitqueue_func_entry(&poll->wait, io_poll_wake);
1406
1407 mask = vfs_poll(poll->file, &ipt.pt) & poll->events;
1408
1409 spin_lock_irq(&ctx->completion_lock);
1410 if (likely(poll->head)) {
1411 spin_lock(&poll->head->lock);
1412 if (unlikely(list_empty(&poll->wait.entry))) {
1413 if (ipt.error)
1414 cancel = true;
1415 ipt.error = 0;
1416 mask = 0;
1417 }
1418 if (mask || ipt.error)
1419 list_del_init(&poll->wait.entry);
1420 else if (cancel)
1421 WRITE_ONCE(poll->canceled, true);
1422 else if (!poll->done) /* actually waiting for an event */
1423 list_add_tail(&req->list, &ctx->cancel_list);
1424 spin_unlock(&poll->head->lock);
1425 }
1426 if (mask) { /* no async, we'd stolen it */
1427 req->error = mangle_poll(mask);
1428 ipt.error = 0;
1429 io_poll_complete(ctx, req, mask);
1430 }
1431 spin_unlock_irq(&ctx->completion_lock);
1432
1433 if (mask) {
1434 io_cqring_ev_posted(ctx);
1435 io_put_req(req);
1436 }
1437 return ipt.error;
1438 }
1439
1440 static int __io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
1441 const struct sqe_submit *s, bool force_nonblock)
1442 {
1443 int ret, opcode;
1444
1445 if (unlikely(s->index >= ctx->sq_entries))
1446 return -EINVAL;
1447 req->user_data = READ_ONCE(s->sqe->user_data);
1448
1449 opcode = READ_ONCE(s->sqe->opcode);
1450 switch (opcode) {
1451 case IORING_OP_NOP:
1452 ret = io_nop(req, req->user_data);
1453 break;
1454 case IORING_OP_READV:
1455 if (unlikely(s->sqe->buf_index))
1456 return -EINVAL;
1457 ret = io_read(req, s, force_nonblock);
1458 break;
1459 case IORING_OP_WRITEV:
1460 if (unlikely(s->sqe->buf_index))
1461 return -EINVAL;
1462 ret = io_write(req, s, force_nonblock);
1463 break;
1464 case IORING_OP_READ_FIXED:
1465 ret = io_read(req, s, force_nonblock);
1466 break;
1467 case IORING_OP_WRITE_FIXED:
1468 ret = io_write(req, s, force_nonblock);
1469 break;
1470 case IORING_OP_FSYNC:
1471 ret = io_fsync(req, s->sqe, force_nonblock);
1472 break;
1473 case IORING_OP_POLL_ADD:
1474 ret = io_poll_add(req, s->sqe);
1475 break;
1476 case IORING_OP_POLL_REMOVE:
1477 ret = io_poll_remove(req, s->sqe);
1478 break;
1479 default:
1480 ret = -EINVAL;
1481 break;
1482 }
1483
1484 if (ret)
1485 return ret;
1486
1487 if (ctx->flags & IORING_SETUP_IOPOLL) {
1488 if (req->error == -EAGAIN)
1489 return -EAGAIN;
1490
1491 /* workqueue context doesn't hold uring_lock, grab it now */
1492 if (s->needs_lock)
1493 mutex_lock(&ctx->uring_lock);
1494 io_iopoll_req_issued(req);
1495 if (s->needs_lock)
1496 mutex_unlock(&ctx->uring_lock);
1497 }
1498
1499 return 0;
1500 }
1501
1502 static struct async_list *io_async_list_from_sqe(struct io_ring_ctx *ctx,
1503 const struct io_uring_sqe *sqe)
1504 {
1505 switch (sqe->opcode) {
1506 case IORING_OP_READV:
1507 case IORING_OP_READ_FIXED:
1508 return &ctx->pending_async[READ];
1509 case IORING_OP_WRITEV:
1510 case IORING_OP_WRITE_FIXED:
1511 return &ctx->pending_async[WRITE];
1512 default:
1513 return NULL;
1514 }
1515 }
1516
1517 static inline bool io_sqe_needs_user(const struct io_uring_sqe *sqe)
1518 {
1519 u8 opcode = READ_ONCE(sqe->opcode);
1520
1521 return !(opcode == IORING_OP_READ_FIXED ||
1522 opcode == IORING_OP_WRITE_FIXED);
1523 }
1524
1525 static void io_sq_wq_submit_work(struct work_struct *work)
1526 {
1527 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1528 struct io_ring_ctx *ctx = req->ctx;
1529 struct mm_struct *cur_mm = NULL;
1530 struct async_list *async_list;
1531 LIST_HEAD(req_list);
1532 mm_segment_t old_fs;
1533 int ret;
1534
1535 async_list = io_async_list_from_sqe(ctx, req->submit.sqe);
1536 restart:
1537 do {
1538 struct sqe_submit *s = &req->submit;
1539 const struct io_uring_sqe *sqe = s->sqe;
1540
1541 /* Ensure we clear previously set non-block flag */
1542 req->rw.ki_flags &= ~IOCB_NOWAIT;
1543
1544 ret = 0;
1545 if (io_sqe_needs_user(sqe) && !cur_mm) {
1546 if (!mmget_not_zero(ctx->sqo_mm)) {
1547 ret = -EFAULT;
1548 } else {
1549 cur_mm = ctx->sqo_mm;
1550 use_mm(cur_mm);
1551 old_fs = get_fs();
1552 set_fs(USER_DS);
1553 }
1554 }
1555
1556 if (!ret) {
1557 s->has_user = cur_mm != NULL;
1558 s->needs_lock = true;
1559 do {
1560 ret = __io_submit_sqe(ctx, req, s, false);
1561 /*
1562 * We can get EAGAIN for polled IO even though
1563 * we're forcing a sync submission from here,
1564 * since we can't wait for request slots on the
1565 * block side.
1566 */
1567 if (ret != -EAGAIN)
1568 break;
1569 cond_resched();
1570 } while (1);
1571 }
1572
1573 /* drop submission reference */
1574 io_put_req(req);
1575
1576 if (ret) {
1577 io_cqring_add_event(ctx, sqe->user_data, ret, 0);
1578 io_put_req(req);
1579 }
1580
1581 /* async context always use a copy of the sqe */
1582 kfree(sqe);
1583
1584 if (!async_list)
1585 break;
1586 if (!list_empty(&req_list)) {
1587 req = list_first_entry(&req_list, struct io_kiocb,
1588 list);
1589 list_del(&req->list);
1590 continue;
1591 }
1592 if (list_empty(&async_list->list))
1593 break;
1594
1595 req = NULL;
1596 spin_lock(&async_list->lock);
1597 if (list_empty(&async_list->list)) {
1598 spin_unlock(&async_list->lock);
1599 break;
1600 }
1601 list_splice_init(&async_list->list, &req_list);
1602 spin_unlock(&async_list->lock);
1603
1604 req = list_first_entry(&req_list, struct io_kiocb, list);
1605 list_del(&req->list);
1606 } while (req);
1607
1608 /*
1609 * Rare case of racing with a submitter. If we find the count has
1610 * dropped to zero AND we have pending work items, then restart
1611 * the processing. This is a tiny race window.
1612 */
1613 if (async_list) {
1614 ret = atomic_dec_return(&async_list->cnt);
1615 while (!ret && !list_empty(&async_list->list)) {
1616 spin_lock(&async_list->lock);
1617 atomic_inc(&async_list->cnt);
1618 list_splice_init(&async_list->list, &req_list);
1619 spin_unlock(&async_list->lock);
1620
1621 if (!list_empty(&req_list)) {
1622 req = list_first_entry(&req_list,
1623 struct io_kiocb, list);
1624 list_del(&req->list);
1625 goto restart;
1626 }
1627 ret = atomic_dec_return(&async_list->cnt);
1628 }
1629 }
1630
1631 if (cur_mm) {
1632 set_fs(old_fs);
1633 unuse_mm(cur_mm);
1634 mmput(cur_mm);
1635 }
1636 }
1637
1638 /*
1639 * See if we can piggy back onto previously submitted work, that is still
1640 * running. We currently only allow this if the new request is sequential
1641 * to the previous one we punted.
1642 */
1643 static bool io_add_to_prev_work(struct async_list *list, struct io_kiocb *req)
1644 {
1645 bool ret = false;
1646
1647 if (!list)
1648 return false;
1649 if (!(req->flags & REQ_F_SEQ_PREV))
1650 return false;
1651 if (!atomic_read(&list->cnt))
1652 return false;
1653
1654 ret = true;
1655 spin_lock(&list->lock);
1656 list_add_tail(&req->list, &list->list);
1657 if (!atomic_read(&list->cnt)) {
1658 list_del_init(&req->list);
1659 ret = false;
1660 }
1661 spin_unlock(&list->lock);
1662 return ret;
1663 }
1664
1665 static bool io_op_needs_file(const struct io_uring_sqe *sqe)
1666 {
1667 int op = READ_ONCE(sqe->opcode);
1668
1669 switch (op) {
1670 case IORING_OP_NOP:
1671 case IORING_OP_POLL_REMOVE:
1672 return false;
1673 default:
1674 return true;
1675 }
1676 }
1677
1678 static int io_req_set_file(struct io_ring_ctx *ctx, const struct sqe_submit *s,
1679 struct io_submit_state *state, struct io_kiocb *req)
1680 {
1681 unsigned flags;
1682 int fd;
1683
1684 flags = READ_ONCE(s->sqe->flags);
1685 fd = READ_ONCE(s->sqe->fd);
1686
1687 if (!io_op_needs_file(s->sqe)) {
1688 req->file = NULL;
1689 return 0;
1690 }
1691
1692 if (flags & IOSQE_FIXED_FILE) {
1693 if (unlikely(!ctx->user_files ||
1694 (unsigned) fd >= ctx->nr_user_files))
1695 return -EBADF;
1696 req->file = ctx->user_files[fd];
1697 req->flags |= REQ_F_FIXED_FILE;
1698 } else {
1699 if (s->needs_fixed_file)
1700 return -EBADF;
1701 req->file = io_file_get(state, fd);
1702 if (unlikely(!req->file))
1703 return -EBADF;
1704 }
1705
1706 return 0;
1707 }
1708
1709 static int io_submit_sqe(struct io_ring_ctx *ctx, struct sqe_submit *s,
1710 struct io_submit_state *state)
1711 {
1712 struct io_kiocb *req;
1713 int ret;
1714
1715 /* enforce forwards compatibility on users */
1716 if (unlikely(s->sqe->flags & ~IOSQE_FIXED_FILE))
1717 return -EINVAL;
1718
1719 req = io_get_req(ctx, state);
1720 if (unlikely(!req))
1721 return -EAGAIN;
1722
1723 ret = io_req_set_file(ctx, s, state, req);
1724 if (unlikely(ret))
1725 goto out;
1726
1727 ret = __io_submit_sqe(ctx, req, s, true);
1728 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
1729 struct io_uring_sqe *sqe_copy;
1730
1731 sqe_copy = kmalloc(sizeof(*sqe_copy), GFP_KERNEL);
1732 if (sqe_copy) {
1733 struct async_list *list;
1734
1735 memcpy(sqe_copy, s->sqe, sizeof(*sqe_copy));
1736 s->sqe = sqe_copy;
1737
1738 memcpy(&req->submit, s, sizeof(*s));
1739 list = io_async_list_from_sqe(ctx, s->sqe);
1740 if (!io_add_to_prev_work(list, req)) {
1741 if (list)
1742 atomic_inc(&list->cnt);
1743 INIT_WORK(&req->work, io_sq_wq_submit_work);
1744 queue_work(ctx->sqo_wq, &req->work);
1745 }
1746
1747 /*
1748 * Queued up for async execution, worker will release
1749 * submit reference when the iocb is actually
1750 * submitted.
1751 */
1752 return 0;
1753 }
1754 }
1755
1756 out:
1757 /* drop submission reference */
1758 io_put_req(req);
1759
1760 /* and drop final reference, if we failed */
1761 if (ret)
1762 io_put_req(req);
1763
1764 return ret;
1765 }
1766
1767 /*
1768 * Batched submission is done, ensure local IO is flushed out.
1769 */
1770 static void io_submit_state_end(struct io_submit_state *state)
1771 {
1772 blk_finish_plug(&state->plug);
1773 io_file_put(state);
1774 if (state->free_reqs)
1775 kmem_cache_free_bulk(req_cachep, state->free_reqs,
1776 &state->reqs[state->cur_req]);
1777 }
1778
1779 /*
1780 * Start submission side cache.
1781 */
1782 static void io_submit_state_start(struct io_submit_state *state,
1783 struct io_ring_ctx *ctx, unsigned max_ios)
1784 {
1785 blk_start_plug(&state->plug);
1786 state->free_reqs = 0;
1787 state->file = NULL;
1788 state->ios_left = max_ios;
1789 }
1790
1791 static void io_commit_sqring(struct io_ring_ctx *ctx)
1792 {
1793 struct io_sq_ring *ring = ctx->sq_ring;
1794
1795 if (ctx->cached_sq_head != READ_ONCE(ring->r.head)) {
1796 /*
1797 * Ensure any loads from the SQEs are done at this point,
1798 * since once we write the new head, the application could
1799 * write new data to them.
1800 */
1801 smp_store_release(&ring->r.head, ctx->cached_sq_head);
1802 }
1803 }
1804
1805 /*
1806 * Fetch an sqe, if one is available. Note that s->sqe will point to memory
1807 * that is mapped by userspace. This means that care needs to be taken to
1808 * ensure that reads are stable, as we cannot rely on userspace always
1809 * being a good citizen. If members of the sqe are validated and then later
1810 * used, it's important that those reads are done through READ_ONCE() to
1811 * prevent a re-load down the line.
1812 */
1813 static bool io_get_sqring(struct io_ring_ctx *ctx, struct sqe_submit *s)
1814 {
1815 struct io_sq_ring *ring = ctx->sq_ring;
1816 unsigned head;
1817
1818 /*
1819 * The cached sq head (or cq tail) serves two purposes:
1820 *
1821 * 1) allows us to batch the cost of updating the user visible
1822 * head updates.
1823 * 2) allows the kernel side to track the head on its own, even
1824 * though the application is the one updating it.
1825 */
1826 head = ctx->cached_sq_head;
1827 /* make sure SQ entry isn't read before tail */
1828 if (head == smp_load_acquire(&ring->r.tail))
1829 return false;
1830
1831 head = READ_ONCE(ring->array[head & ctx->sq_mask]);
1832 if (head < ctx->sq_entries) {
1833 s->index = head;
1834 s->sqe = &ctx->sq_sqes[head];
1835 ctx->cached_sq_head++;
1836 return true;
1837 }
1838
1839 /* drop invalid entries */
1840 ctx->cached_sq_head++;
1841 ring->dropped++;
1842 return false;
1843 }
1844
1845 static int io_submit_sqes(struct io_ring_ctx *ctx, struct sqe_submit *sqes,
1846 unsigned int nr, bool has_user, bool mm_fault)
1847 {
1848 struct io_submit_state state, *statep = NULL;
1849 int ret, i, submitted = 0;
1850
1851 if (nr > IO_PLUG_THRESHOLD) {
1852 io_submit_state_start(&state, ctx, nr);
1853 statep = &state;
1854 }
1855
1856 for (i = 0; i < nr; i++) {
1857 if (unlikely(mm_fault)) {
1858 ret = -EFAULT;
1859 } else {
1860 sqes[i].has_user = has_user;
1861 sqes[i].needs_lock = true;
1862 sqes[i].needs_fixed_file = true;
1863 ret = io_submit_sqe(ctx, &sqes[i], statep);
1864 }
1865 if (!ret) {
1866 submitted++;
1867 continue;
1868 }
1869
1870 io_cqring_add_event(ctx, sqes[i].sqe->user_data, ret, 0);
1871 }
1872
1873 if (statep)
1874 io_submit_state_end(&state);
1875
1876 return submitted;
1877 }
1878
1879 static int io_sq_thread(void *data)
1880 {
1881 struct sqe_submit sqes[IO_IOPOLL_BATCH];
1882 struct io_ring_ctx *ctx = data;
1883 struct mm_struct *cur_mm = NULL;
1884 mm_segment_t old_fs;
1885 DEFINE_WAIT(wait);
1886 unsigned inflight;
1887 unsigned long timeout;
1888
1889 old_fs = get_fs();
1890 set_fs(USER_DS);
1891
1892 timeout = inflight = 0;
1893 while (!kthread_should_stop() && !ctx->sqo_stop) {
1894 bool all_fixed, mm_fault = false;
1895 int i;
1896
1897 if (inflight) {
1898 unsigned nr_events = 0;
1899
1900 if (ctx->flags & IORING_SETUP_IOPOLL) {
1901 /*
1902 * We disallow the app entering submit/complete
1903 * with polling, but we still need to lock the
1904 * ring to prevent racing with polled issue
1905 * that got punted to a workqueue.
1906 */
1907 mutex_lock(&ctx->uring_lock);
1908 io_iopoll_check(ctx, &nr_events, 0);
1909 mutex_unlock(&ctx->uring_lock);
1910 } else {
1911 /*
1912 * Normal IO, just pretend everything completed.
1913 * We don't have to poll completions for that.
1914 */
1915 nr_events = inflight;
1916 }
1917
1918 inflight -= nr_events;
1919 if (!inflight)
1920 timeout = jiffies + ctx->sq_thread_idle;
1921 }
1922
1923 if (!io_get_sqring(ctx, &sqes[0])) {
1924 /*
1925 * We're polling. If we're within the defined idle
1926 * period, then let us spin without work before going
1927 * to sleep.
1928 */
1929 if (inflight || !time_after(jiffies, timeout)) {
1930 cpu_relax();
1931 continue;
1932 }
1933
1934 /*
1935 * Drop cur_mm before scheduling, we can't hold it for
1936 * long periods (or over schedule()). Do this before
1937 * adding ourselves to the waitqueue, as the unuse/drop
1938 * may sleep.
1939 */
1940 if (cur_mm) {
1941 unuse_mm(cur_mm);
1942 mmput(cur_mm);
1943 cur_mm = NULL;
1944 }
1945
1946 prepare_to_wait(&ctx->sqo_wait, &wait,
1947 TASK_INTERRUPTIBLE);
1948
1949 /* Tell userspace we may need a wakeup call */
1950 ctx->sq_ring->flags |= IORING_SQ_NEED_WAKEUP;
1951 /* make sure to read SQ tail after writing flags */
1952 smp_mb();
1953
1954 if (!io_get_sqring(ctx, &sqes[0])) {
1955 if (kthread_should_stop()) {
1956 finish_wait(&ctx->sqo_wait, &wait);
1957 break;
1958 }
1959 if (signal_pending(current))
1960 flush_signals(current);
1961 schedule();
1962 finish_wait(&ctx->sqo_wait, &wait);
1963
1964 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1965 continue;
1966 }
1967 finish_wait(&ctx->sqo_wait, &wait);
1968
1969 ctx->sq_ring->flags &= ~IORING_SQ_NEED_WAKEUP;
1970 }
1971
1972 i = 0;
1973 all_fixed = true;
1974 do {
1975 if (all_fixed && io_sqe_needs_user(sqes[i].sqe))
1976 all_fixed = false;
1977
1978 i++;
1979 if (i == ARRAY_SIZE(sqes))
1980 break;
1981 } while (io_get_sqring(ctx, &sqes[i]));
1982
1983 /* Unless all new commands are FIXED regions, grab mm */
1984 if (!all_fixed && !cur_mm) {
1985 mm_fault = !mmget_not_zero(ctx->sqo_mm);
1986 if (!mm_fault) {
1987 use_mm(ctx->sqo_mm);
1988 cur_mm = ctx->sqo_mm;
1989 }
1990 }
1991
1992 inflight += io_submit_sqes(ctx, sqes, i, cur_mm != NULL,
1993 mm_fault);
1994
1995 /* Commit SQ ring head once we've consumed all SQEs */
1996 io_commit_sqring(ctx);
1997 }
1998
1999 set_fs(old_fs);
2000 if (cur_mm) {
2001 unuse_mm(cur_mm);
2002 mmput(cur_mm);
2003 }
2004
2005 if (kthread_should_park())
2006 kthread_parkme();
2007
2008 return 0;
2009 }
2010
2011 static int io_ring_submit(struct io_ring_ctx *ctx, unsigned int to_submit)
2012 {
2013 struct io_submit_state state, *statep = NULL;
2014 int i, submit = 0;
2015
2016 if (to_submit > IO_PLUG_THRESHOLD) {
2017 io_submit_state_start(&state, ctx, to_submit);
2018 statep = &state;
2019 }
2020
2021 for (i = 0; i < to_submit; i++) {
2022 struct sqe_submit s;
2023 int ret;
2024
2025 if (!io_get_sqring(ctx, &s))
2026 break;
2027
2028 s.has_user = true;
2029 s.needs_lock = false;
2030 s.needs_fixed_file = false;
2031 submit++;
2032
2033 ret = io_submit_sqe(ctx, &s, statep);
2034 if (ret)
2035 io_cqring_add_event(ctx, s.sqe->user_data, ret, 0);
2036 }
2037 io_commit_sqring(ctx);
2038
2039 if (statep)
2040 io_submit_state_end(statep);
2041
2042 return submit;
2043 }
2044
2045 static unsigned io_cqring_events(struct io_cq_ring *ring)
2046 {
2047 return READ_ONCE(ring->r.tail) - READ_ONCE(ring->r.head);
2048 }
2049
2050 /*
2051 * Wait until events become available, if we don't already have some. The
2052 * application must reap them itself, as they reside on the shared cq ring.
2053 */
2054 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
2055 const sigset_t __user *sig, size_t sigsz)
2056 {
2057 struct io_cq_ring *ring = ctx->cq_ring;
2058 sigset_t ksigmask, sigsaved;
2059 DEFINE_WAIT(wait);
2060 int ret;
2061
2062 /* See comment at the top of this file */
2063 smp_rmb();
2064 if (io_cqring_events(ring) >= min_events)
2065 return 0;
2066
2067 if (sig) {
2068 #ifdef CONFIG_COMPAT
2069 if (in_compat_syscall())
2070 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
2071 &ksigmask, &sigsaved, sigsz);
2072 else
2073 #endif
2074 ret = set_user_sigmask(sig, &ksigmask,
2075 &sigsaved, sigsz);
2076
2077 if (ret)
2078 return ret;
2079 }
2080
2081 do {
2082 prepare_to_wait(&ctx->wait, &wait, TASK_INTERRUPTIBLE);
2083
2084 ret = 0;
2085 /* See comment at the top of this file */
2086 smp_rmb();
2087 if (io_cqring_events(ring) >= min_events)
2088 break;
2089
2090 schedule();
2091
2092 ret = -EINTR;
2093 if (signal_pending(current))
2094 break;
2095 } while (1);
2096
2097 finish_wait(&ctx->wait, &wait);
2098
2099 if (sig)
2100 restore_user_sigmask(sig, &sigsaved);
2101
2102 return READ_ONCE(ring->r.head) == READ_ONCE(ring->r.tail) ? ret : 0;
2103 }
2104
2105 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
2106 {
2107 #if defined(CONFIG_UNIX)
2108 if (ctx->ring_sock) {
2109 struct sock *sock = ctx->ring_sock->sk;
2110 struct sk_buff *skb;
2111
2112 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
2113 kfree_skb(skb);
2114 }
2115 #else
2116 int i;
2117
2118 for (i = 0; i < ctx->nr_user_files; i++)
2119 fput(ctx->user_files[i]);
2120 #endif
2121 }
2122
2123 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
2124 {
2125 if (!ctx->user_files)
2126 return -ENXIO;
2127
2128 __io_sqe_files_unregister(ctx);
2129 kfree(ctx->user_files);
2130 ctx->user_files = NULL;
2131 ctx->nr_user_files = 0;
2132 return 0;
2133 }
2134
2135 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
2136 {
2137 if (ctx->sqo_thread) {
2138 ctx->sqo_stop = 1;
2139 mb();
2140 kthread_park(ctx->sqo_thread);
2141 kthread_stop(ctx->sqo_thread);
2142 ctx->sqo_thread = NULL;
2143 }
2144 }
2145
2146 static void io_finish_async(struct io_ring_ctx *ctx)
2147 {
2148 io_sq_thread_stop(ctx);
2149
2150 if (ctx->sqo_wq) {
2151 destroy_workqueue(ctx->sqo_wq);
2152 ctx->sqo_wq = NULL;
2153 }
2154 }
2155
2156 #if defined(CONFIG_UNIX)
2157 static void io_destruct_skb(struct sk_buff *skb)
2158 {
2159 struct io_ring_ctx *ctx = skb->sk->sk_user_data;
2160
2161 io_finish_async(ctx);
2162 unix_destruct_scm(skb);
2163 }
2164
2165 /*
2166 * Ensure the UNIX gc is aware of our file set, so we are certain that
2167 * the io_uring can be safely unregistered on process exit, even if we have
2168 * loops in the file referencing.
2169 */
2170 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
2171 {
2172 struct sock *sk = ctx->ring_sock->sk;
2173 struct scm_fp_list *fpl;
2174 struct sk_buff *skb;
2175 int i;
2176
2177 if (!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN)) {
2178 unsigned long inflight = ctx->user->unix_inflight + nr;
2179
2180 if (inflight > task_rlimit(current, RLIMIT_NOFILE))
2181 return -EMFILE;
2182 }
2183
2184 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
2185 if (!fpl)
2186 return -ENOMEM;
2187
2188 skb = alloc_skb(0, GFP_KERNEL);
2189 if (!skb) {
2190 kfree(fpl);
2191 return -ENOMEM;
2192 }
2193
2194 skb->sk = sk;
2195 skb->destructor = io_destruct_skb;
2196
2197 fpl->user = get_uid(ctx->user);
2198 for (i = 0; i < nr; i++) {
2199 fpl->fp[i] = get_file(ctx->user_files[i + offset]);
2200 unix_inflight(fpl->user, fpl->fp[i]);
2201 }
2202
2203 fpl->max = fpl->count = nr;
2204 UNIXCB(skb).fp = fpl;
2205 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
2206 skb_queue_head(&sk->sk_receive_queue, skb);
2207
2208 for (i = 0; i < nr; i++)
2209 fput(fpl->fp[i]);
2210
2211 return 0;
2212 }
2213
2214 /*
2215 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
2216 * causes regular reference counting to break down. We rely on the UNIX
2217 * garbage collection to take care of this problem for us.
2218 */
2219 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2220 {
2221 unsigned left, total;
2222 int ret = 0;
2223
2224 total = 0;
2225 left = ctx->nr_user_files;
2226 while (left) {
2227 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
2228 int ret;
2229
2230 ret = __io_sqe_files_scm(ctx, this_files, total);
2231 if (ret)
2232 break;
2233 left -= this_files;
2234 total += this_files;
2235 }
2236
2237 if (!ret)
2238 return 0;
2239
2240 while (total < ctx->nr_user_files) {
2241 fput(ctx->user_files[total]);
2242 total++;
2243 }
2244
2245 return ret;
2246 }
2247 #else
2248 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
2249 {
2250 return 0;
2251 }
2252 #endif
2253
2254 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
2255 unsigned nr_args)
2256 {
2257 __s32 __user *fds = (__s32 __user *) arg;
2258 int fd, ret = 0;
2259 unsigned i;
2260
2261 if (ctx->user_files)
2262 return -EBUSY;
2263 if (!nr_args)
2264 return -EINVAL;
2265 if (nr_args > IORING_MAX_FIXED_FILES)
2266 return -EMFILE;
2267
2268 ctx->user_files = kcalloc(nr_args, sizeof(struct file *), GFP_KERNEL);
2269 if (!ctx->user_files)
2270 return -ENOMEM;
2271
2272 for (i = 0; i < nr_args; i++) {
2273 ret = -EFAULT;
2274 if (copy_from_user(&fd, &fds[i], sizeof(fd)))
2275 break;
2276
2277 ctx->user_files[i] = fget(fd);
2278
2279 ret = -EBADF;
2280 if (!ctx->user_files[i])
2281 break;
2282 /*
2283 * Don't allow io_uring instances to be registered. If UNIX
2284 * isn't enabled, then this causes a reference cycle and this
2285 * instance can never get freed. If UNIX is enabled we'll
2286 * handle it just fine, but there's still no point in allowing
2287 * a ring fd as it doesn't support regular read/write anyway.
2288 */
2289 if (ctx->user_files[i]->f_op == &io_uring_fops) {
2290 fput(ctx->user_files[i]);
2291 break;
2292 }
2293 ctx->nr_user_files++;
2294 ret = 0;
2295 }
2296
2297 if (ret) {
2298 for (i = 0; i < ctx->nr_user_files; i++)
2299 fput(ctx->user_files[i]);
2300
2301 kfree(ctx->user_files);
2302 ctx->user_files = NULL;
2303 ctx->nr_user_files = 0;
2304 return ret;
2305 }
2306
2307 ret = io_sqe_files_scm(ctx);
2308 if (ret)
2309 io_sqe_files_unregister(ctx);
2310
2311 return ret;
2312 }
2313
2314 static int io_sq_offload_start(struct io_ring_ctx *ctx,
2315 struct io_uring_params *p)
2316 {
2317 int ret;
2318
2319 init_waitqueue_head(&ctx->sqo_wait);
2320 mmgrab(current->mm);
2321 ctx->sqo_mm = current->mm;
2322
2323 if (ctx->flags & IORING_SETUP_SQPOLL) {
2324 ret = -EPERM;
2325 if (!capable(CAP_SYS_ADMIN))
2326 goto err;
2327
2328 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
2329 if (!ctx->sq_thread_idle)
2330 ctx->sq_thread_idle = HZ;
2331
2332 if (p->flags & IORING_SETUP_SQ_AFF) {
2333 int cpu = array_index_nospec(p->sq_thread_cpu,
2334 nr_cpu_ids);
2335
2336 ret = -EINVAL;
2337 if (!cpu_possible(cpu))
2338 goto err;
2339
2340 ctx->sqo_thread = kthread_create_on_cpu(io_sq_thread,
2341 ctx, cpu,
2342 "io_uring-sq");
2343 } else {
2344 ctx->sqo_thread = kthread_create(io_sq_thread, ctx,
2345 "io_uring-sq");
2346 }
2347 if (IS_ERR(ctx->sqo_thread)) {
2348 ret = PTR_ERR(ctx->sqo_thread);
2349 ctx->sqo_thread = NULL;
2350 goto err;
2351 }
2352 wake_up_process(ctx->sqo_thread);
2353 } else if (p->flags & IORING_SETUP_SQ_AFF) {
2354 /* Can't have SQ_AFF without SQPOLL */
2355 ret = -EINVAL;
2356 goto err;
2357 }
2358
2359 /* Do QD, or 2 * CPUS, whatever is smallest */
2360 ctx->sqo_wq = alloc_workqueue("io_ring-wq", WQ_UNBOUND | WQ_FREEZABLE,
2361 min(ctx->sq_entries - 1, 2 * num_online_cpus()));
2362 if (!ctx->sqo_wq) {
2363 ret = -ENOMEM;
2364 goto err;
2365 }
2366
2367 return 0;
2368 err:
2369 io_sq_thread_stop(ctx);
2370 mmdrop(ctx->sqo_mm);
2371 ctx->sqo_mm = NULL;
2372 return ret;
2373 }
2374
2375 static void io_unaccount_mem(struct user_struct *user, unsigned long nr_pages)
2376 {
2377 atomic_long_sub(nr_pages, &user->locked_vm);
2378 }
2379
2380 static int io_account_mem(struct user_struct *user, unsigned long nr_pages)
2381 {
2382 unsigned long page_limit, cur_pages, new_pages;
2383
2384 /* Don't allow more pages than we can safely lock */
2385 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
2386
2387 do {
2388 cur_pages = atomic_long_read(&user->locked_vm);
2389 new_pages = cur_pages + nr_pages;
2390 if (new_pages > page_limit)
2391 return -ENOMEM;
2392 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
2393 new_pages) != cur_pages);
2394
2395 return 0;
2396 }
2397
2398 static void io_mem_free(void *ptr)
2399 {
2400 struct page *page;
2401
2402 if (!ptr)
2403 return;
2404
2405 page = virt_to_head_page(ptr);
2406 if (put_page_testzero(page))
2407 free_compound_page(page);
2408 }
2409
2410 static void *io_mem_alloc(size_t size)
2411 {
2412 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
2413 __GFP_NORETRY;
2414
2415 return (void *) __get_free_pages(gfp_flags, get_order(size));
2416 }
2417
2418 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
2419 {
2420 struct io_sq_ring *sq_ring;
2421 struct io_cq_ring *cq_ring;
2422 size_t bytes;
2423
2424 bytes = struct_size(sq_ring, array, sq_entries);
2425 bytes += array_size(sizeof(struct io_uring_sqe), sq_entries);
2426 bytes += struct_size(cq_ring, cqes, cq_entries);
2427
2428 return (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
2429 }
2430
2431 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
2432 {
2433 int i, j;
2434
2435 if (!ctx->user_bufs)
2436 return -ENXIO;
2437
2438 for (i = 0; i < ctx->nr_user_bufs; i++) {
2439 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2440
2441 for (j = 0; j < imu->nr_bvecs; j++)
2442 put_page(imu->bvec[j].bv_page);
2443
2444 if (ctx->account_mem)
2445 io_unaccount_mem(ctx->user, imu->nr_bvecs);
2446 kvfree(imu->bvec);
2447 imu->nr_bvecs = 0;
2448 }
2449
2450 kfree(ctx->user_bufs);
2451 ctx->user_bufs = NULL;
2452 ctx->nr_user_bufs = 0;
2453 return 0;
2454 }
2455
2456 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
2457 void __user *arg, unsigned index)
2458 {
2459 struct iovec __user *src;
2460
2461 #ifdef CONFIG_COMPAT
2462 if (ctx->compat) {
2463 struct compat_iovec __user *ciovs;
2464 struct compat_iovec ciov;
2465
2466 ciovs = (struct compat_iovec __user *) arg;
2467 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
2468 return -EFAULT;
2469
2470 dst->iov_base = (void __user *) (unsigned long) ciov.iov_base;
2471 dst->iov_len = ciov.iov_len;
2472 return 0;
2473 }
2474 #endif
2475 src = (struct iovec __user *) arg;
2476 if (copy_from_user(dst, &src[index], sizeof(*dst)))
2477 return -EFAULT;
2478 return 0;
2479 }
2480
2481 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
2482 unsigned nr_args)
2483 {
2484 struct vm_area_struct **vmas = NULL;
2485 struct page **pages = NULL;
2486 int i, j, got_pages = 0;
2487 int ret = -EINVAL;
2488
2489 if (ctx->user_bufs)
2490 return -EBUSY;
2491 if (!nr_args || nr_args > UIO_MAXIOV)
2492 return -EINVAL;
2493
2494 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
2495 GFP_KERNEL);
2496 if (!ctx->user_bufs)
2497 return -ENOMEM;
2498
2499 for (i = 0; i < nr_args; i++) {
2500 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
2501 unsigned long off, start, end, ubuf;
2502 int pret, nr_pages;
2503 struct iovec iov;
2504 size_t size;
2505
2506 ret = io_copy_iov(ctx, &iov, arg, i);
2507 if (ret)
2508 break;
2509
2510 /*
2511 * Don't impose further limits on the size and buffer
2512 * constraints here, we'll -EINVAL later when IO is
2513 * submitted if they are wrong.
2514 */
2515 ret = -EFAULT;
2516 if (!iov.iov_base || !iov.iov_len)
2517 goto err;
2518
2519 /* arbitrary limit, but we need something */
2520 if (iov.iov_len > SZ_1G)
2521 goto err;
2522
2523 ubuf = (unsigned long) iov.iov_base;
2524 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2525 start = ubuf >> PAGE_SHIFT;
2526 nr_pages = end - start;
2527
2528 if (ctx->account_mem) {
2529 ret = io_account_mem(ctx->user, nr_pages);
2530 if (ret)
2531 goto err;
2532 }
2533
2534 ret = 0;
2535 if (!pages || nr_pages > got_pages) {
2536 kfree(vmas);
2537 kfree(pages);
2538 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
2539 GFP_KERNEL);
2540 vmas = kvmalloc_array(nr_pages,
2541 sizeof(struct vm_area_struct *),
2542 GFP_KERNEL);
2543 if (!pages || !vmas) {
2544 ret = -ENOMEM;
2545 if (ctx->account_mem)
2546 io_unaccount_mem(ctx->user, nr_pages);
2547 goto err;
2548 }
2549 got_pages = nr_pages;
2550 }
2551
2552 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
2553 GFP_KERNEL);
2554 ret = -ENOMEM;
2555 if (!imu->bvec) {
2556 if (ctx->account_mem)
2557 io_unaccount_mem(ctx->user, nr_pages);
2558 goto err;
2559 }
2560
2561 ret = 0;
2562 down_read(&current->mm->mmap_sem);
2563 pret = get_user_pages_longterm(ubuf, nr_pages, FOLL_WRITE,
2564 pages, vmas);
2565 if (pret == nr_pages) {
2566 /* don't support file backed memory */
2567 for (j = 0; j < nr_pages; j++) {
2568 struct vm_area_struct *vma = vmas[j];
2569
2570 if (vma->vm_file &&
2571 !is_file_hugepages(vma->vm_file)) {
2572 ret = -EOPNOTSUPP;
2573 break;
2574 }
2575 }
2576 } else {
2577 ret = pret < 0 ? pret : -EFAULT;
2578 }
2579 up_read(&current->mm->mmap_sem);
2580 if (ret) {
2581 /*
2582 * if we did partial map, or found file backed vmas,
2583 * release any pages we did get
2584 */
2585 if (pret > 0) {
2586 for (j = 0; j < pret; j++)
2587 put_page(pages[j]);
2588 }
2589 if (ctx->account_mem)
2590 io_unaccount_mem(ctx->user, nr_pages);
2591 kvfree(imu->bvec);
2592 goto err;
2593 }
2594
2595 off = ubuf & ~PAGE_MASK;
2596 size = iov.iov_len;
2597 for (j = 0; j < nr_pages; j++) {
2598 size_t vec_len;
2599
2600 vec_len = min_t(size_t, size, PAGE_SIZE - off);
2601 imu->bvec[j].bv_page = pages[j];
2602 imu->bvec[j].bv_len = vec_len;
2603 imu->bvec[j].bv_offset = off;
2604 off = 0;
2605 size -= vec_len;
2606 }
2607 /* store original address for later verification */
2608 imu->ubuf = ubuf;
2609 imu->len = iov.iov_len;
2610 imu->nr_bvecs = nr_pages;
2611
2612 ctx->nr_user_bufs++;
2613 }
2614 kvfree(pages);
2615 kvfree(vmas);
2616 return 0;
2617 err:
2618 kvfree(pages);
2619 kvfree(vmas);
2620 io_sqe_buffer_unregister(ctx);
2621 return ret;
2622 }
2623
2624 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
2625 {
2626 io_finish_async(ctx);
2627 if (ctx->sqo_mm)
2628 mmdrop(ctx->sqo_mm);
2629
2630 io_iopoll_reap_events(ctx);
2631 io_sqe_buffer_unregister(ctx);
2632 io_sqe_files_unregister(ctx);
2633
2634 #if defined(CONFIG_UNIX)
2635 if (ctx->ring_sock)
2636 sock_release(ctx->ring_sock);
2637 #endif
2638
2639 io_mem_free(ctx->sq_ring);
2640 io_mem_free(ctx->sq_sqes);
2641 io_mem_free(ctx->cq_ring);
2642
2643 percpu_ref_exit(&ctx->refs);
2644 if (ctx->account_mem)
2645 io_unaccount_mem(ctx->user,
2646 ring_pages(ctx->sq_entries, ctx->cq_entries));
2647 free_uid(ctx->user);
2648 kfree(ctx);
2649 }
2650
2651 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2652 {
2653 struct io_ring_ctx *ctx = file->private_data;
2654 __poll_t mask = 0;
2655
2656 poll_wait(file, &ctx->cq_wait, wait);
2657 /*
2658 * synchronizes with barrier from wq_has_sleeper call in
2659 * io_commit_cqring
2660 */
2661 smp_rmb();
2662 if (READ_ONCE(ctx->sq_ring->r.tail) - ctx->cached_sq_head !=
2663 ctx->sq_ring->ring_entries)
2664 mask |= EPOLLOUT | EPOLLWRNORM;
2665 if (READ_ONCE(ctx->cq_ring->r.head) != ctx->cached_cq_tail)
2666 mask |= EPOLLIN | EPOLLRDNORM;
2667
2668 return mask;
2669 }
2670
2671 static int io_uring_fasync(int fd, struct file *file, int on)
2672 {
2673 struct io_ring_ctx *ctx = file->private_data;
2674
2675 return fasync_helper(fd, file, on, &ctx->cq_fasync);
2676 }
2677
2678 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2679 {
2680 mutex_lock(&ctx->uring_lock);
2681 percpu_ref_kill(&ctx->refs);
2682 mutex_unlock(&ctx->uring_lock);
2683
2684 io_poll_remove_all(ctx);
2685 io_iopoll_reap_events(ctx);
2686 wait_for_completion(&ctx->ctx_done);
2687 io_ring_ctx_free(ctx);
2688 }
2689
2690 static int io_uring_release(struct inode *inode, struct file *file)
2691 {
2692 struct io_ring_ctx *ctx = file->private_data;
2693
2694 file->private_data = NULL;
2695 io_ring_ctx_wait_and_kill(ctx);
2696 return 0;
2697 }
2698
2699 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
2700 {
2701 loff_t offset = (loff_t) vma->vm_pgoff << PAGE_SHIFT;
2702 unsigned long sz = vma->vm_end - vma->vm_start;
2703 struct io_ring_ctx *ctx = file->private_data;
2704 unsigned long pfn;
2705 struct page *page;
2706 void *ptr;
2707
2708 switch (offset) {
2709 case IORING_OFF_SQ_RING:
2710 ptr = ctx->sq_ring;
2711 break;
2712 case IORING_OFF_SQES:
2713 ptr = ctx->sq_sqes;
2714 break;
2715 case IORING_OFF_CQ_RING:
2716 ptr = ctx->cq_ring;
2717 break;
2718 default:
2719 return -EINVAL;
2720 }
2721
2722 page = virt_to_head_page(ptr);
2723 if (sz > (PAGE_SIZE << compound_order(page)))
2724 return -EINVAL;
2725
2726 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
2727 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
2728 }
2729
2730 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
2731 u32, min_complete, u32, flags, const sigset_t __user *, sig,
2732 size_t, sigsz)
2733 {
2734 struct io_ring_ctx *ctx;
2735 long ret = -EBADF;
2736 int submitted = 0;
2737 struct fd f;
2738
2739 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP))
2740 return -EINVAL;
2741
2742 f = fdget(fd);
2743 if (!f.file)
2744 return -EBADF;
2745
2746 ret = -EOPNOTSUPP;
2747 if (f.file->f_op != &io_uring_fops)
2748 goto out_fput;
2749
2750 ret = -ENXIO;
2751 ctx = f.file->private_data;
2752 if (!percpu_ref_tryget(&ctx->refs))
2753 goto out_fput;
2754
2755 /*
2756 * For SQ polling, the thread will do all submissions and completions.
2757 * Just return the requested submit count, and wake the thread if
2758 * we were asked to.
2759 */
2760 if (ctx->flags & IORING_SETUP_SQPOLL) {
2761 if (flags & IORING_ENTER_SQ_WAKEUP)
2762 wake_up(&ctx->sqo_wait);
2763 submitted = to_submit;
2764 goto out_ctx;
2765 }
2766
2767 ret = 0;
2768 if (to_submit) {
2769 to_submit = min(to_submit, ctx->sq_entries);
2770
2771 mutex_lock(&ctx->uring_lock);
2772 submitted = io_ring_submit(ctx, to_submit);
2773 mutex_unlock(&ctx->uring_lock);
2774 }
2775 if (flags & IORING_ENTER_GETEVENTS) {
2776 unsigned nr_events = 0;
2777
2778 min_complete = min(min_complete, ctx->cq_entries);
2779
2780 if (ctx->flags & IORING_SETUP_IOPOLL) {
2781 mutex_lock(&ctx->uring_lock);
2782 ret = io_iopoll_check(ctx, &nr_events, min_complete);
2783 mutex_unlock(&ctx->uring_lock);
2784 } else {
2785 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
2786 }
2787 }
2788
2789 out_ctx:
2790 io_ring_drop_ctx_refs(ctx, 1);
2791 out_fput:
2792 fdput(f);
2793 return submitted ? submitted : ret;
2794 }
2795
2796 static const struct file_operations io_uring_fops = {
2797 .release = io_uring_release,
2798 .mmap = io_uring_mmap,
2799 .poll = io_uring_poll,
2800 .fasync = io_uring_fasync,
2801 };
2802
2803 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
2804 struct io_uring_params *p)
2805 {
2806 struct io_sq_ring *sq_ring;
2807 struct io_cq_ring *cq_ring;
2808 size_t size;
2809
2810 sq_ring = io_mem_alloc(struct_size(sq_ring, array, p->sq_entries));
2811 if (!sq_ring)
2812 return -ENOMEM;
2813
2814 ctx->sq_ring = sq_ring;
2815 sq_ring->ring_mask = p->sq_entries - 1;
2816 sq_ring->ring_entries = p->sq_entries;
2817 ctx->sq_mask = sq_ring->ring_mask;
2818 ctx->sq_entries = sq_ring->ring_entries;
2819
2820 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
2821 if (size == SIZE_MAX)
2822 return -EOVERFLOW;
2823
2824 ctx->sq_sqes = io_mem_alloc(size);
2825 if (!ctx->sq_sqes)
2826 return -ENOMEM;
2827
2828 cq_ring = io_mem_alloc(struct_size(cq_ring, cqes, p->cq_entries));
2829 if (!cq_ring)
2830 return -ENOMEM;
2831
2832 ctx->cq_ring = cq_ring;
2833 cq_ring->ring_mask = p->cq_entries - 1;
2834 cq_ring->ring_entries = p->cq_entries;
2835 ctx->cq_mask = cq_ring->ring_mask;
2836 ctx->cq_entries = cq_ring->ring_entries;
2837 return 0;
2838 }
2839
2840 /*
2841 * Allocate an anonymous fd, this is what constitutes the application
2842 * visible backing of an io_uring instance. The application mmaps this
2843 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
2844 * we have to tie this fd to a socket for file garbage collection purposes.
2845 */
2846 static int io_uring_get_fd(struct io_ring_ctx *ctx)
2847 {
2848 struct file *file;
2849 int ret;
2850
2851 #if defined(CONFIG_UNIX)
2852 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
2853 &ctx->ring_sock);
2854 if (ret)
2855 return ret;
2856 #endif
2857
2858 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2859 if (ret < 0)
2860 goto err;
2861
2862 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
2863 O_RDWR | O_CLOEXEC);
2864 if (IS_ERR(file)) {
2865 put_unused_fd(ret);
2866 ret = PTR_ERR(file);
2867 goto err;
2868 }
2869
2870 #if defined(CONFIG_UNIX)
2871 ctx->ring_sock->file = file;
2872 ctx->ring_sock->sk->sk_user_data = ctx;
2873 #endif
2874 fd_install(ret, file);
2875 return ret;
2876 err:
2877 #if defined(CONFIG_UNIX)
2878 sock_release(ctx->ring_sock);
2879 ctx->ring_sock = NULL;
2880 #endif
2881 return ret;
2882 }
2883
2884 static int io_uring_create(unsigned entries, struct io_uring_params *p)
2885 {
2886 struct user_struct *user = NULL;
2887 struct io_ring_ctx *ctx;
2888 bool account_mem;
2889 int ret;
2890
2891 if (!entries || entries > IORING_MAX_ENTRIES)
2892 return -EINVAL;
2893
2894 /*
2895 * Use twice as many entries for the CQ ring. It's possible for the
2896 * application to drive a higher depth than the size of the SQ ring,
2897 * since the sqes are only used at submission time. This allows for
2898 * some flexibility in overcommitting a bit.
2899 */
2900 p->sq_entries = roundup_pow_of_two(entries);
2901 p->cq_entries = 2 * p->sq_entries;
2902
2903 user = get_uid(current_user());
2904 account_mem = !capable(CAP_IPC_LOCK);
2905
2906 if (account_mem) {
2907 ret = io_account_mem(user,
2908 ring_pages(p->sq_entries, p->cq_entries));
2909 if (ret) {
2910 free_uid(user);
2911 return ret;
2912 }
2913 }
2914
2915 ctx = io_ring_ctx_alloc(p);
2916 if (!ctx) {
2917 if (account_mem)
2918 io_unaccount_mem(user, ring_pages(p->sq_entries,
2919 p->cq_entries));
2920 free_uid(user);
2921 return -ENOMEM;
2922 }
2923 ctx->compat = in_compat_syscall();
2924 ctx->account_mem = account_mem;
2925 ctx->user = user;
2926
2927 ret = io_allocate_scq_urings(ctx, p);
2928 if (ret)
2929 goto err;
2930
2931 ret = io_sq_offload_start(ctx, p);
2932 if (ret)
2933 goto err;
2934
2935 ret = io_uring_get_fd(ctx);
2936 if (ret < 0)
2937 goto err;
2938
2939 memset(&p->sq_off, 0, sizeof(p->sq_off));
2940 p->sq_off.head = offsetof(struct io_sq_ring, r.head);
2941 p->sq_off.tail = offsetof(struct io_sq_ring, r.tail);
2942 p->sq_off.ring_mask = offsetof(struct io_sq_ring, ring_mask);
2943 p->sq_off.ring_entries = offsetof(struct io_sq_ring, ring_entries);
2944 p->sq_off.flags = offsetof(struct io_sq_ring, flags);
2945 p->sq_off.dropped = offsetof(struct io_sq_ring, dropped);
2946 p->sq_off.array = offsetof(struct io_sq_ring, array);
2947
2948 memset(&p->cq_off, 0, sizeof(p->cq_off));
2949 p->cq_off.head = offsetof(struct io_cq_ring, r.head);
2950 p->cq_off.tail = offsetof(struct io_cq_ring, r.tail);
2951 p->cq_off.ring_mask = offsetof(struct io_cq_ring, ring_mask);
2952 p->cq_off.ring_entries = offsetof(struct io_cq_ring, ring_entries);
2953 p->cq_off.overflow = offsetof(struct io_cq_ring, overflow);
2954 p->cq_off.cqes = offsetof(struct io_cq_ring, cqes);
2955 return ret;
2956 err:
2957 io_ring_ctx_wait_and_kill(ctx);
2958 return ret;
2959 }
2960
2961 /*
2962 * Sets up an aio uring context, and returns the fd. Applications asks for a
2963 * ring size, we return the actual sq/cq ring sizes (among other things) in the
2964 * params structure passed in.
2965 */
2966 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
2967 {
2968 struct io_uring_params p;
2969 long ret;
2970 int i;
2971
2972 if (copy_from_user(&p, params, sizeof(p)))
2973 return -EFAULT;
2974 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
2975 if (p.resv[i])
2976 return -EINVAL;
2977 }
2978
2979 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
2980 IORING_SETUP_SQ_AFF))
2981 return -EINVAL;
2982
2983 ret = io_uring_create(entries, &p);
2984 if (ret < 0)
2985 return ret;
2986
2987 if (copy_to_user(params, &p, sizeof(p)))
2988 return -EFAULT;
2989
2990 return ret;
2991 }
2992
2993 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
2994 struct io_uring_params __user *, params)
2995 {
2996 return io_uring_setup(entries, params);
2997 }
2998
2999 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
3000 void __user *arg, unsigned nr_args)
3001 __releases(ctx->uring_lock)
3002 __acquires(ctx->uring_lock)
3003 {
3004 int ret;
3005
3006 /*
3007 * We're inside the ring mutex, if the ref is already dying, then
3008 * someone else killed the ctx or is already going through
3009 * io_uring_register().
3010 */
3011 if (percpu_ref_is_dying(&ctx->refs))
3012 return -ENXIO;
3013
3014 percpu_ref_kill(&ctx->refs);
3015
3016 /*
3017 * Drop uring mutex before waiting for references to exit. If another
3018 * thread is currently inside io_uring_enter() it might need to grab
3019 * the uring_lock to make progress. If we hold it here across the drain
3020 * wait, then we can deadlock. It's safe to drop the mutex here, since
3021 * no new references will come in after we've killed the percpu ref.
3022 */
3023 mutex_unlock(&ctx->uring_lock);
3024 wait_for_completion(&ctx->ctx_done);
3025 mutex_lock(&ctx->uring_lock);
3026
3027 switch (opcode) {
3028 case IORING_REGISTER_BUFFERS:
3029 ret = io_sqe_buffer_register(ctx, arg, nr_args);
3030 break;
3031 case IORING_UNREGISTER_BUFFERS:
3032 ret = -EINVAL;
3033 if (arg || nr_args)
3034 break;
3035 ret = io_sqe_buffer_unregister(ctx);
3036 break;
3037 case IORING_REGISTER_FILES:
3038 ret = io_sqe_files_register(ctx, arg, nr_args);
3039 break;
3040 case IORING_UNREGISTER_FILES:
3041 ret = -EINVAL;
3042 if (arg || nr_args)
3043 break;
3044 ret = io_sqe_files_unregister(ctx);
3045 break;
3046 default:
3047 ret = -EINVAL;
3048 break;
3049 }
3050
3051 /* bring the ctx back to life */
3052 reinit_completion(&ctx->ctx_done);
3053 percpu_ref_reinit(&ctx->refs);
3054 return ret;
3055 }
3056
3057 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
3058 void __user *, arg, unsigned int, nr_args)
3059 {
3060 struct io_ring_ctx *ctx;
3061 long ret = -EBADF;
3062 struct fd f;
3063
3064 f = fdget(fd);
3065 if (!f.file)
3066 return -EBADF;
3067
3068 ret = -EOPNOTSUPP;
3069 if (f.file->f_op != &io_uring_fops)
3070 goto out_fput;
3071
3072 ctx = f.file->private_data;
3073
3074 mutex_lock(&ctx->uring_lock);
3075 ret = __io_uring_register(ctx, opcode, arg, nr_args);
3076 mutex_unlock(&ctx->uring_lock);
3077 out_fput:
3078 fdput(f);
3079 return ret;
3080 }
3081
3082 static int __init io_uring_init(void)
3083 {
3084 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
3085 return 0;
3086 };
3087 __initcall(io_uring_init);