]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: move common poll bits
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 bool done;
490 bool canceled;
491 struct wait_queue_entry wait;
492 };
493
494 struct io_poll_update {
495 struct file *file;
496 u64 old_user_data;
497 u64 new_user_data;
498 __poll_t events;
499 bool update_events;
500 bool update_user_data;
501 };
502
503 struct io_close {
504 struct file *file;
505 int fd;
506 u32 file_slot;
507 };
508
509 struct io_timeout_data {
510 struct io_kiocb *req;
511 struct hrtimer timer;
512 struct timespec64 ts;
513 enum hrtimer_mode mode;
514 u32 flags;
515 };
516
517 struct io_accept {
518 struct file *file;
519 struct sockaddr __user *addr;
520 int __user *addr_len;
521 int flags;
522 u32 file_slot;
523 unsigned long nofile;
524 };
525
526 struct io_sync {
527 struct file *file;
528 loff_t len;
529 loff_t off;
530 int flags;
531 int mode;
532 };
533
534 struct io_cancel {
535 struct file *file;
536 u64 addr;
537 };
538
539 struct io_timeout {
540 struct file *file;
541 u32 off;
542 u32 target_seq;
543 struct list_head list;
544 /* head of the link, used by linked timeouts only */
545 struct io_kiocb *head;
546 /* for linked completions */
547 struct io_kiocb *prev;
548 };
549
550 struct io_timeout_rem {
551 struct file *file;
552 u64 addr;
553
554 /* timeout update */
555 struct timespec64 ts;
556 u32 flags;
557 bool ltimeout;
558 };
559
560 struct io_rw {
561 /* NOTE: kiocb has the file as the first member, so don't do it here */
562 struct kiocb kiocb;
563 u64 addr;
564 u64 len;
565 };
566
567 struct io_connect {
568 struct file *file;
569 struct sockaddr __user *addr;
570 int addr_len;
571 };
572
573 struct io_sr_msg {
574 struct file *file;
575 union {
576 struct compat_msghdr __user *umsg_compat;
577 struct user_msghdr __user *umsg;
578 void __user *buf;
579 };
580 int msg_flags;
581 int bgid;
582 size_t len;
583 struct io_buffer *kbuf;
584 };
585
586 struct io_open {
587 struct file *file;
588 int dfd;
589 u32 file_slot;
590 struct filename *filename;
591 struct open_how how;
592 unsigned long nofile;
593 };
594
595 struct io_rsrc_update {
596 struct file *file;
597 u64 arg;
598 u32 nr_args;
599 u32 offset;
600 };
601
602 struct io_fadvise {
603 struct file *file;
604 u64 offset;
605 u32 len;
606 u32 advice;
607 };
608
609 struct io_madvise {
610 struct file *file;
611 u64 addr;
612 u32 len;
613 u32 advice;
614 };
615
616 struct io_epoll {
617 struct file *file;
618 int epfd;
619 int op;
620 int fd;
621 struct epoll_event event;
622 };
623
624 struct io_splice {
625 struct file *file_out;
626 loff_t off_out;
627 loff_t off_in;
628 u64 len;
629 int splice_fd_in;
630 unsigned int flags;
631 };
632
633 struct io_provide_buf {
634 struct file *file;
635 __u64 addr;
636 __u32 len;
637 __u32 bgid;
638 __u16 nbufs;
639 __u16 bid;
640 };
641
642 struct io_statx {
643 struct file *file;
644 int dfd;
645 unsigned int mask;
646 unsigned int flags;
647 const char __user *filename;
648 struct statx __user *buffer;
649 };
650
651 struct io_shutdown {
652 struct file *file;
653 int how;
654 };
655
656 struct io_rename {
657 struct file *file;
658 int old_dfd;
659 int new_dfd;
660 struct filename *oldpath;
661 struct filename *newpath;
662 int flags;
663 };
664
665 struct io_unlink {
666 struct file *file;
667 int dfd;
668 int flags;
669 struct filename *filename;
670 };
671
672 struct io_mkdir {
673 struct file *file;
674 int dfd;
675 umode_t mode;
676 struct filename *filename;
677 };
678
679 struct io_symlink {
680 struct file *file;
681 int new_dfd;
682 struct filename *oldpath;
683 struct filename *newpath;
684 };
685
686 struct io_hardlink {
687 struct file *file;
688 int old_dfd;
689 int new_dfd;
690 struct filename *oldpath;
691 struct filename *newpath;
692 int flags;
693 };
694
695 struct io_completion {
696 struct file *file;
697 u32 cflags;
698 };
699
700 struct io_async_connect {
701 struct sockaddr_storage address;
702 };
703
704 struct io_async_msghdr {
705 struct iovec fast_iov[UIO_FASTIOV];
706 /* points to an allocated iov, if NULL we use fast_iov instead */
707 struct iovec *free_iov;
708 struct sockaddr __user *uaddr;
709 struct msghdr msg;
710 struct sockaddr_storage addr;
711 };
712
713 struct io_async_rw {
714 struct iovec fast_iov[UIO_FASTIOV];
715 const struct iovec *free_iovec;
716 struct iov_iter iter;
717 struct iov_iter_state iter_state;
718 size_t bytes_done;
719 struct wait_page_queue wpq;
720 };
721
722 enum {
723 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
724 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
725 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
726 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
727 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
728 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
729
730 /* first byte is taken by user flags, shift it to not overlap */
731 REQ_F_FAIL_BIT = 8,
732 REQ_F_INFLIGHT_BIT,
733 REQ_F_CUR_POS_BIT,
734 REQ_F_NOWAIT_BIT,
735 REQ_F_LINK_TIMEOUT_BIT,
736 REQ_F_NEED_CLEANUP_BIT,
737 REQ_F_POLLED_BIT,
738 REQ_F_BUFFER_SELECTED_BIT,
739 REQ_F_COMPLETE_INLINE_BIT,
740 REQ_F_REISSUE_BIT,
741 REQ_F_CREDS_BIT,
742 REQ_F_REFCOUNT_BIT,
743 REQ_F_ARM_LTIMEOUT_BIT,
744 /* keep async read/write and isreg together and in order */
745 REQ_F_NOWAIT_READ_BIT,
746 REQ_F_NOWAIT_WRITE_BIT,
747 REQ_F_ISREG_BIT,
748
749 /* not a real bit, just to check we're not overflowing the space */
750 __REQ_F_LAST_BIT,
751 };
752
753 enum {
754 /* ctx owns file */
755 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
756 /* drain existing IO first */
757 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
758 /* linked sqes */
759 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
760 /* doesn't sever on completion < 0 */
761 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
762 /* IOSQE_ASYNC */
763 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
764 /* IOSQE_BUFFER_SELECT */
765 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
766
767 /* fail rest of links */
768 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
769 /* on inflight list, should be cancelled and waited on exit reliably */
770 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
771 /* read/write uses file position */
772 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
773 /* must not punt to workers */
774 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
775 /* has or had linked timeout */
776 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
777 /* needs cleanup */
778 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
779 /* already went through poll handler */
780 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
781 /* buffer already selected */
782 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
783 /* completion is deferred through io_comp_state */
784 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
785 /* caller should reissue async */
786 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
787 /* supports async reads */
788 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
789 /* supports async writes */
790 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
791 /* regular file */
792 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
793 /* has creds assigned */
794 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
795 /* skip refcounting if not set */
796 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
797 /* there is a linked timeout that has to be armed */
798 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800
801 struct async_poll {
802 struct io_poll_iocb poll;
803 struct io_poll_iocb *double_poll;
804 };
805
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807
808 struct io_task_work {
809 union {
810 struct io_wq_work_node node;
811 struct llist_node fallback_node;
812 };
813 io_req_tw_func_t func;
814 };
815
816 enum {
817 IORING_RSRC_FILE = 0,
818 IORING_RSRC_BUFFER = 1,
819 };
820
821 /*
822 * NOTE! Each of the iocb union members has the file pointer
823 * as the first entry in their struct definition. So you can
824 * access the file pointer through any of the sub-structs,
825 * or directly as just 'ki_filp' in this struct.
826 */
827 struct io_kiocb {
828 union {
829 struct file *file;
830 struct io_rw rw;
831 struct io_poll_iocb poll;
832 struct io_poll_update poll_update;
833 struct io_accept accept;
834 struct io_sync sync;
835 struct io_cancel cancel;
836 struct io_timeout timeout;
837 struct io_timeout_rem timeout_rem;
838 struct io_connect connect;
839 struct io_sr_msg sr_msg;
840 struct io_open open;
841 struct io_close close;
842 struct io_rsrc_update rsrc_update;
843 struct io_fadvise fadvise;
844 struct io_madvise madvise;
845 struct io_epoll epoll;
846 struct io_splice splice;
847 struct io_provide_buf pbuf;
848 struct io_statx statx;
849 struct io_shutdown shutdown;
850 struct io_rename rename;
851 struct io_unlink unlink;
852 struct io_mkdir mkdir;
853 struct io_symlink symlink;
854 struct io_hardlink hardlink;
855 /* use only after cleaning per-op data, see io_clean_op() */
856 struct io_completion compl;
857 };
858
859 /* opcode allocated if it needs to store data for async defer */
860 void *async_data;
861 u8 opcode;
862 /* polled IO has completed */
863 u8 iopoll_completed;
864
865 u16 buf_index;
866 u32 result;
867
868 struct io_ring_ctx *ctx;
869 unsigned int flags;
870 atomic_t refs;
871 struct task_struct *task;
872 u64 user_data;
873
874 struct io_kiocb *link;
875 struct percpu_ref *fixed_rsrc_refs;
876
877 /* used with ctx->iopoll_list with reads/writes */
878 struct list_head inflight_entry;
879 struct io_task_work io_task_work;
880 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 struct hlist_node hash_node;
882 struct async_poll *apoll;
883 struct io_wq_work work;
884 const struct cred *creds;
885
886 /* store used ubuf, so we can prevent reloading */
887 struct io_mapped_ubuf *imu;
888 };
889
890 struct io_tctx_node {
891 struct list_head ctx_node;
892 struct task_struct *task;
893 struct io_ring_ctx *ctx;
894 };
895
896 struct io_defer_entry {
897 struct list_head list;
898 struct io_kiocb *req;
899 u32 seq;
900 };
901
902 struct io_op_def {
903 /* needs req->file assigned */
904 unsigned needs_file : 1;
905 /* hash wq insertion if file is a regular file */
906 unsigned hash_reg_file : 1;
907 /* unbound wq insertion if file is a non-regular file */
908 unsigned unbound_nonreg_file : 1;
909 /* opcode is not supported by this kernel */
910 unsigned not_supported : 1;
911 /* set if opcode supports polled "wait" */
912 unsigned pollin : 1;
913 unsigned pollout : 1;
914 /* op supports buffer selection */
915 unsigned buffer_select : 1;
916 /* do prep async if is going to be punted */
917 unsigned needs_async_setup : 1;
918 /* should block plug */
919 unsigned plug : 1;
920 /* size of async data needed, if any */
921 unsigned short async_size;
922 };
923
924 static const struct io_op_def io_op_defs[] = {
925 [IORING_OP_NOP] = {},
926 [IORING_OP_READV] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .buffer_select = 1,
931 .needs_async_setup = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 },
935 [IORING_OP_WRITEV] = {
936 .needs_file = 1,
937 .hash_reg_file = 1,
938 .unbound_nonreg_file = 1,
939 .pollout = 1,
940 .needs_async_setup = 1,
941 .plug = 1,
942 .async_size = sizeof(struct io_async_rw),
943 },
944 [IORING_OP_FSYNC] = {
945 .needs_file = 1,
946 },
947 [IORING_OP_READ_FIXED] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollin = 1,
951 .plug = 1,
952 .async_size = sizeof(struct io_async_rw),
953 },
954 [IORING_OP_WRITE_FIXED] = {
955 .needs_file = 1,
956 .hash_reg_file = 1,
957 .unbound_nonreg_file = 1,
958 .pollout = 1,
959 .plug = 1,
960 .async_size = sizeof(struct io_async_rw),
961 },
962 [IORING_OP_POLL_ADD] = {
963 .needs_file = 1,
964 .unbound_nonreg_file = 1,
965 },
966 [IORING_OP_POLL_REMOVE] = {},
967 [IORING_OP_SYNC_FILE_RANGE] = {
968 .needs_file = 1,
969 },
970 [IORING_OP_SENDMSG] = {
971 .needs_file = 1,
972 .unbound_nonreg_file = 1,
973 .pollout = 1,
974 .needs_async_setup = 1,
975 .async_size = sizeof(struct io_async_msghdr),
976 },
977 [IORING_OP_RECVMSG] = {
978 .needs_file = 1,
979 .unbound_nonreg_file = 1,
980 .pollin = 1,
981 .buffer_select = 1,
982 .needs_async_setup = 1,
983 .async_size = sizeof(struct io_async_msghdr),
984 },
985 [IORING_OP_TIMEOUT] = {
986 .async_size = sizeof(struct io_timeout_data),
987 },
988 [IORING_OP_TIMEOUT_REMOVE] = {
989 /* used by timeout updates' prep() */
990 },
991 [IORING_OP_ACCEPT] = {
992 .needs_file = 1,
993 .unbound_nonreg_file = 1,
994 .pollin = 1,
995 },
996 [IORING_OP_ASYNC_CANCEL] = {},
997 [IORING_OP_LINK_TIMEOUT] = {
998 .async_size = sizeof(struct io_timeout_data),
999 },
1000 [IORING_OP_CONNECT] = {
1001 .needs_file = 1,
1002 .unbound_nonreg_file = 1,
1003 .pollout = 1,
1004 .needs_async_setup = 1,
1005 .async_size = sizeof(struct io_async_connect),
1006 },
1007 [IORING_OP_FALLOCATE] = {
1008 .needs_file = 1,
1009 },
1010 [IORING_OP_OPENAT] = {},
1011 [IORING_OP_CLOSE] = {},
1012 [IORING_OP_FILES_UPDATE] = {},
1013 [IORING_OP_STATX] = {},
1014 [IORING_OP_READ] = {
1015 .needs_file = 1,
1016 .unbound_nonreg_file = 1,
1017 .pollin = 1,
1018 .buffer_select = 1,
1019 .plug = 1,
1020 .async_size = sizeof(struct io_async_rw),
1021 },
1022 [IORING_OP_WRITE] = {
1023 .needs_file = 1,
1024 .hash_reg_file = 1,
1025 .unbound_nonreg_file = 1,
1026 .pollout = 1,
1027 .plug = 1,
1028 .async_size = sizeof(struct io_async_rw),
1029 },
1030 [IORING_OP_FADVISE] = {
1031 .needs_file = 1,
1032 },
1033 [IORING_OP_MADVISE] = {},
1034 [IORING_OP_SEND] = {
1035 .needs_file = 1,
1036 .unbound_nonreg_file = 1,
1037 .pollout = 1,
1038 },
1039 [IORING_OP_RECV] = {
1040 .needs_file = 1,
1041 .unbound_nonreg_file = 1,
1042 .pollin = 1,
1043 .buffer_select = 1,
1044 },
1045 [IORING_OP_OPENAT2] = {
1046 },
1047 [IORING_OP_EPOLL_CTL] = {
1048 .unbound_nonreg_file = 1,
1049 },
1050 [IORING_OP_SPLICE] = {
1051 .needs_file = 1,
1052 .hash_reg_file = 1,
1053 .unbound_nonreg_file = 1,
1054 },
1055 [IORING_OP_PROVIDE_BUFFERS] = {},
1056 [IORING_OP_REMOVE_BUFFERS] = {},
1057 [IORING_OP_TEE] = {
1058 .needs_file = 1,
1059 .hash_reg_file = 1,
1060 .unbound_nonreg_file = 1,
1061 },
1062 [IORING_OP_SHUTDOWN] = {
1063 .needs_file = 1,
1064 },
1065 [IORING_OP_RENAMEAT] = {},
1066 [IORING_OP_UNLINKAT] = {},
1067 [IORING_OP_MKDIRAT] = {},
1068 [IORING_OP_SYMLINKAT] = {},
1069 [IORING_OP_LINKAT] = {},
1070 };
1071
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 struct task_struct *task,
1079 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 long res, unsigned int cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 struct io_uring_rsrc_update2 *up,
1090 unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106
1107 static struct kmem_cache *req_cachep;
1108
1109 static const struct file_operations io_uring_fops;
1110
1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 if (file->f_op == &io_uring_fops) {
1115 struct io_ring_ctx *ctx = file->private_data;
1116
1117 return ctx->ring_sock->sk;
1118 }
1119 #endif
1120 return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123
1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 if (!*locked) {
1127 mutex_lock(&ctx->uring_lock);
1128 *locked = true;
1129 }
1130 }
1131
1132 #define io_for_each_link(pos, head) \
1133 for (pos = (head); pos; pos = pos->link)
1134
1135 /*
1136 * Shamelessly stolen from the mm implementation of page reference checking,
1137 * see commit f958d7b528b1 for details.
1138 */
1139 #define req_ref_zero_or_close_to_overflow(req) \
1140 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141
1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 return atomic_inc_not_zero(&req->refs);
1146 }
1147
1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 return true;
1152
1153 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 return atomic_dec_and_test(&req->refs);
1155 }
1156
1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162
1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 atomic_inc(&req->refs);
1168 }
1169
1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 if (!(req->flags & REQ_F_REFCOUNT)) {
1173 req->flags |= REQ_F_REFCOUNT;
1174 atomic_set(&req->refs, nr);
1175 }
1176 }
1177
1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 __io_req_set_refcount(req, 1);
1181 }
1182
1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 struct io_ring_ctx *ctx = req->ctx;
1186
1187 if (!req->fixed_rsrc_refs) {
1188 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 percpu_ref_get(req->fixed_rsrc_refs);
1190 }
1191 }
1192
1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 bool got = percpu_ref_tryget(ref);
1196
1197 /* already at zero, wait for ->release() */
1198 if (!got)
1199 wait_for_completion(compl);
1200 percpu_ref_resurrect(ref);
1201 if (got)
1202 percpu_ref_put(ref);
1203 }
1204
1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 bool cancel_all)
1207 __must_hold(&req->ctx->timeout_lock)
1208 {
1209 struct io_kiocb *req;
1210
1211 if (task && head->task != task)
1212 return false;
1213 if (cancel_all)
1214 return true;
1215
1216 io_for_each_link(req, head) {
1217 if (req->flags & REQ_F_INFLIGHT)
1218 return true;
1219 }
1220 return false;
1221 }
1222
1223 static bool io_match_linked(struct io_kiocb *head)
1224 {
1225 struct io_kiocb *req;
1226
1227 io_for_each_link(req, head) {
1228 if (req->flags & REQ_F_INFLIGHT)
1229 return true;
1230 }
1231 return false;
1232 }
1233
1234 /*
1235 * As io_match_task() but protected against racing with linked timeouts.
1236 * User must not hold timeout_lock.
1237 */
1238 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1239 bool cancel_all)
1240 {
1241 bool matched;
1242
1243 if (task && head->task != task)
1244 return false;
1245 if (cancel_all)
1246 return true;
1247
1248 if (head->flags & REQ_F_LINK_TIMEOUT) {
1249 struct io_ring_ctx *ctx = head->ctx;
1250
1251 /* protect against races with linked timeouts */
1252 spin_lock_irq(&ctx->timeout_lock);
1253 matched = io_match_linked(head);
1254 spin_unlock_irq(&ctx->timeout_lock);
1255 } else {
1256 matched = io_match_linked(head);
1257 }
1258 return matched;
1259 }
1260
1261 static inline void req_set_fail(struct io_kiocb *req)
1262 {
1263 req->flags |= REQ_F_FAIL;
1264 }
1265
1266 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1267 {
1268 req_set_fail(req);
1269 req->result = res;
1270 }
1271
1272 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1273 {
1274 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1275
1276 complete(&ctx->ref_comp);
1277 }
1278
1279 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1280 {
1281 return !req->timeout.off;
1282 }
1283
1284 static void io_fallback_req_func(struct work_struct *work)
1285 {
1286 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1287 fallback_work.work);
1288 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1289 struct io_kiocb *req, *tmp;
1290 bool locked = false;
1291
1292 percpu_ref_get(&ctx->refs);
1293 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1294 req->io_task_work.func(req, &locked);
1295
1296 if (locked) {
1297 if (ctx->submit_state.compl_nr)
1298 io_submit_flush_completions(ctx);
1299 mutex_unlock(&ctx->uring_lock);
1300 }
1301 percpu_ref_put(&ctx->refs);
1302
1303 }
1304
1305 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1306 {
1307 struct io_ring_ctx *ctx;
1308 int hash_bits;
1309
1310 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1311 if (!ctx)
1312 return NULL;
1313
1314 /*
1315 * Use 5 bits less than the max cq entries, that should give us around
1316 * 32 entries per hash list if totally full and uniformly spread.
1317 */
1318 hash_bits = ilog2(p->cq_entries);
1319 hash_bits -= 5;
1320 if (hash_bits <= 0)
1321 hash_bits = 1;
1322 ctx->cancel_hash_bits = hash_bits;
1323 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1324 GFP_KERNEL);
1325 if (!ctx->cancel_hash)
1326 goto err;
1327 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1328
1329 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1330 if (!ctx->dummy_ubuf)
1331 goto err;
1332 /* set invalid range, so io_import_fixed() fails meeting it */
1333 ctx->dummy_ubuf->ubuf = -1UL;
1334
1335 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1336 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1337 goto err;
1338
1339 ctx->flags = p->flags;
1340 init_waitqueue_head(&ctx->sqo_sq_wait);
1341 INIT_LIST_HEAD(&ctx->sqd_list);
1342 init_waitqueue_head(&ctx->poll_wait);
1343 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1344 init_completion(&ctx->ref_comp);
1345 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1346 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1347 mutex_init(&ctx->uring_lock);
1348 init_waitqueue_head(&ctx->cq_wait);
1349 spin_lock_init(&ctx->completion_lock);
1350 spin_lock_init(&ctx->timeout_lock);
1351 INIT_LIST_HEAD(&ctx->iopoll_list);
1352 INIT_LIST_HEAD(&ctx->defer_list);
1353 INIT_LIST_HEAD(&ctx->timeout_list);
1354 INIT_LIST_HEAD(&ctx->ltimeout_list);
1355 spin_lock_init(&ctx->rsrc_ref_lock);
1356 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1357 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1358 init_llist_head(&ctx->rsrc_put_llist);
1359 INIT_LIST_HEAD(&ctx->tctx_list);
1360 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1361 INIT_LIST_HEAD(&ctx->locked_free_list);
1362 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1363 return ctx;
1364 err:
1365 kfree(ctx->dummy_ubuf);
1366 kfree(ctx->cancel_hash);
1367 kfree(ctx);
1368 return NULL;
1369 }
1370
1371 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1372 {
1373 struct io_rings *r = ctx->rings;
1374
1375 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1376 ctx->cq_extra--;
1377 }
1378
1379 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1380 {
1381 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1382 struct io_ring_ctx *ctx = req->ctx;
1383
1384 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1385 }
1386
1387 return false;
1388 }
1389
1390 #define FFS_ASYNC_READ 0x1UL
1391 #define FFS_ASYNC_WRITE 0x2UL
1392 #ifdef CONFIG_64BIT
1393 #define FFS_ISREG 0x4UL
1394 #else
1395 #define FFS_ISREG 0x0UL
1396 #endif
1397 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1398
1399 static inline bool io_req_ffs_set(struct io_kiocb *req)
1400 {
1401 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1402 }
1403
1404 static void io_req_track_inflight(struct io_kiocb *req)
1405 {
1406 if (!(req->flags & REQ_F_INFLIGHT)) {
1407 req->flags |= REQ_F_INFLIGHT;
1408 atomic_inc(&current->io_uring->inflight_tracked);
1409 }
1410 }
1411
1412 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1413 {
1414 if (WARN_ON_ONCE(!req->link))
1415 return NULL;
1416
1417 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1418 req->flags |= REQ_F_LINK_TIMEOUT;
1419
1420 /* linked timeouts should have two refs once prep'ed */
1421 io_req_set_refcount(req);
1422 __io_req_set_refcount(req->link, 2);
1423 return req->link;
1424 }
1425
1426 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1427 {
1428 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1429 return NULL;
1430 return __io_prep_linked_timeout(req);
1431 }
1432
1433 static void io_prep_async_work(struct io_kiocb *req)
1434 {
1435 const struct io_op_def *def = &io_op_defs[req->opcode];
1436 struct io_ring_ctx *ctx = req->ctx;
1437
1438 if (!(req->flags & REQ_F_CREDS)) {
1439 req->flags |= REQ_F_CREDS;
1440 req->creds = get_current_cred();
1441 }
1442
1443 req->work.list.next = NULL;
1444 req->work.flags = 0;
1445 if (req->flags & REQ_F_FORCE_ASYNC)
1446 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1447
1448 if (req->flags & REQ_F_ISREG) {
1449 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1450 io_wq_hash_work(&req->work, file_inode(req->file));
1451 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1452 if (def->unbound_nonreg_file)
1453 req->work.flags |= IO_WQ_WORK_UNBOUND;
1454 }
1455 }
1456
1457 static void io_prep_async_link(struct io_kiocb *req)
1458 {
1459 struct io_kiocb *cur;
1460
1461 if (req->flags & REQ_F_LINK_TIMEOUT) {
1462 struct io_ring_ctx *ctx = req->ctx;
1463
1464 spin_lock_irq(&ctx->timeout_lock);
1465 io_for_each_link(cur, req)
1466 io_prep_async_work(cur);
1467 spin_unlock_irq(&ctx->timeout_lock);
1468 } else {
1469 io_for_each_link(cur, req)
1470 io_prep_async_work(cur);
1471 }
1472 }
1473
1474 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1475 {
1476 struct io_ring_ctx *ctx = req->ctx;
1477 struct io_kiocb *link = io_prep_linked_timeout(req);
1478 struct io_uring_task *tctx = req->task->io_uring;
1479
1480 /* must not take the lock, NULL it as a precaution */
1481 locked = NULL;
1482
1483 BUG_ON(!tctx);
1484 BUG_ON(!tctx->io_wq);
1485
1486 /* init ->work of the whole link before punting */
1487 io_prep_async_link(req);
1488
1489 /*
1490 * Not expected to happen, but if we do have a bug where this _can_
1491 * happen, catch it here and ensure the request is marked as
1492 * canceled. That will make io-wq go through the usual work cancel
1493 * procedure rather than attempt to run this request (or create a new
1494 * worker for it).
1495 */
1496 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1497 req->work.flags |= IO_WQ_WORK_CANCEL;
1498
1499 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1500 &req->work, req->flags);
1501 io_wq_enqueue(tctx->io_wq, &req->work);
1502 if (link)
1503 io_queue_linked_timeout(link);
1504 }
1505
1506 static void io_kill_timeout(struct io_kiocb *req, int status)
1507 __must_hold(&req->ctx->completion_lock)
1508 __must_hold(&req->ctx->timeout_lock)
1509 {
1510 struct io_timeout_data *io = req->async_data;
1511
1512 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1513 if (status)
1514 req_set_fail(req);
1515 atomic_set(&req->ctx->cq_timeouts,
1516 atomic_read(&req->ctx->cq_timeouts) + 1);
1517 list_del_init(&req->timeout.list);
1518 io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1519 io_put_req_deferred(req);
1520 }
1521 }
1522
1523 static void io_queue_deferred(struct io_ring_ctx *ctx)
1524 {
1525 while (!list_empty(&ctx->defer_list)) {
1526 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1527 struct io_defer_entry, list);
1528
1529 if (req_need_defer(de->req, de->seq))
1530 break;
1531 list_del_init(&de->list);
1532 io_req_task_queue(de->req);
1533 kfree(de);
1534 }
1535 }
1536
1537 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1538 __must_hold(&ctx->completion_lock)
1539 {
1540 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1541 struct io_kiocb *req, *tmp;
1542
1543 spin_lock_irq(&ctx->timeout_lock);
1544 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1545 u32 events_needed, events_got;
1546
1547 if (io_is_timeout_noseq(req))
1548 break;
1549
1550 /*
1551 * Since seq can easily wrap around over time, subtract
1552 * the last seq at which timeouts were flushed before comparing.
1553 * Assuming not more than 2^31-1 events have happened since,
1554 * these subtractions won't have wrapped, so we can check if
1555 * target is in [last_seq, current_seq] by comparing the two.
1556 */
1557 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1558 events_got = seq - ctx->cq_last_tm_flush;
1559 if (events_got < events_needed)
1560 break;
1561
1562 io_kill_timeout(req, 0);
1563 }
1564 ctx->cq_last_tm_flush = seq;
1565 spin_unlock_irq(&ctx->timeout_lock);
1566 }
1567
1568 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1569 {
1570 if (ctx->off_timeout_used)
1571 io_flush_timeouts(ctx);
1572 if (ctx->drain_active)
1573 io_queue_deferred(ctx);
1574 }
1575
1576 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1577 {
1578 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1579 __io_commit_cqring_flush(ctx);
1580 /* order cqe stores with ring update */
1581 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1582 }
1583
1584 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1585 {
1586 struct io_rings *r = ctx->rings;
1587
1588 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1589 }
1590
1591 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1592 {
1593 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1594 }
1595
1596 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1597 {
1598 struct io_rings *rings = ctx->rings;
1599 unsigned tail, mask = ctx->cq_entries - 1;
1600
1601 /*
1602 * writes to the cq entry need to come after reading head; the
1603 * control dependency is enough as we're using WRITE_ONCE to
1604 * fill the cq entry
1605 */
1606 if (__io_cqring_events(ctx) == ctx->cq_entries)
1607 return NULL;
1608
1609 tail = ctx->cached_cq_tail++;
1610 return &rings->cqes[tail & mask];
1611 }
1612
1613 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1614 {
1615 if (likely(!ctx->cq_ev_fd))
1616 return false;
1617 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1618 return false;
1619 return !ctx->eventfd_async || io_wq_current_is_worker();
1620 }
1621
1622 /*
1623 * This should only get called when at least one event has been posted.
1624 * Some applications rely on the eventfd notification count only changing
1625 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1626 * 1:1 relationship between how many times this function is called (and
1627 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1628 */
1629 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1630 {
1631 /*
1632 * wake_up_all() may seem excessive, but io_wake_function() and
1633 * io_should_wake() handle the termination of the loop and only
1634 * wake as many waiters as we need to.
1635 */
1636 if (wq_has_sleeper(&ctx->cq_wait))
1637 wake_up_all(&ctx->cq_wait);
1638 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1639 wake_up(&ctx->sq_data->wait);
1640 if (io_should_trigger_evfd(ctx))
1641 eventfd_signal(ctx->cq_ev_fd, 1);
1642 if (waitqueue_active(&ctx->poll_wait))
1643 wake_up_interruptible(&ctx->poll_wait);
1644 }
1645
1646 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1647 {
1648 /* see waitqueue_active() comment */
1649 smp_mb();
1650
1651 if (ctx->flags & IORING_SETUP_SQPOLL) {
1652 if (waitqueue_active(&ctx->cq_wait))
1653 wake_up_all(&ctx->cq_wait);
1654 }
1655 if (io_should_trigger_evfd(ctx))
1656 eventfd_signal(ctx->cq_ev_fd, 1);
1657 if (waitqueue_active(&ctx->poll_wait))
1658 wake_up_interruptible(&ctx->poll_wait);
1659 }
1660
1661 /* Returns true if there are no backlogged entries after the flush */
1662 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1663 {
1664 bool all_flushed, posted;
1665
1666 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1667 return false;
1668
1669 posted = false;
1670 spin_lock(&ctx->completion_lock);
1671 while (!list_empty(&ctx->cq_overflow_list)) {
1672 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1673 struct io_overflow_cqe *ocqe;
1674
1675 if (!cqe && !force)
1676 break;
1677 ocqe = list_first_entry(&ctx->cq_overflow_list,
1678 struct io_overflow_cqe, list);
1679 if (cqe)
1680 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1681 else
1682 io_account_cq_overflow(ctx);
1683
1684 posted = true;
1685 list_del(&ocqe->list);
1686 kfree(ocqe);
1687 }
1688
1689 all_flushed = list_empty(&ctx->cq_overflow_list);
1690 if (all_flushed) {
1691 clear_bit(0, &ctx->check_cq_overflow);
1692 WRITE_ONCE(ctx->rings->sq_flags,
1693 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1694 }
1695
1696 if (posted)
1697 io_commit_cqring(ctx);
1698 spin_unlock(&ctx->completion_lock);
1699 if (posted)
1700 io_cqring_ev_posted(ctx);
1701 return all_flushed;
1702 }
1703
1704 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1705 {
1706 bool ret = true;
1707
1708 if (test_bit(0, &ctx->check_cq_overflow)) {
1709 /* iopoll syncs against uring_lock, not completion_lock */
1710 if (ctx->flags & IORING_SETUP_IOPOLL)
1711 mutex_lock(&ctx->uring_lock);
1712 ret = __io_cqring_overflow_flush(ctx, false);
1713 if (ctx->flags & IORING_SETUP_IOPOLL)
1714 mutex_unlock(&ctx->uring_lock);
1715 }
1716
1717 return ret;
1718 }
1719
1720 /* must to be called somewhat shortly after putting a request */
1721 static inline void io_put_task(struct task_struct *task, int nr)
1722 {
1723 struct io_uring_task *tctx = task->io_uring;
1724
1725 if (likely(task == current)) {
1726 tctx->cached_refs += nr;
1727 } else {
1728 percpu_counter_sub(&tctx->inflight, nr);
1729 if (unlikely(atomic_read(&tctx->in_idle)))
1730 wake_up(&tctx->wait);
1731 put_task_struct_many(task, nr);
1732 }
1733 }
1734
1735 static void io_task_refs_refill(struct io_uring_task *tctx)
1736 {
1737 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1738
1739 percpu_counter_add(&tctx->inflight, refill);
1740 refcount_add(refill, &current->usage);
1741 tctx->cached_refs += refill;
1742 }
1743
1744 static inline void io_get_task_refs(int nr)
1745 {
1746 struct io_uring_task *tctx = current->io_uring;
1747
1748 tctx->cached_refs -= nr;
1749 if (unlikely(tctx->cached_refs < 0))
1750 io_task_refs_refill(tctx);
1751 }
1752
1753 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1754 {
1755 struct io_uring_task *tctx = task->io_uring;
1756 unsigned int refs = tctx->cached_refs;
1757
1758 if (refs) {
1759 tctx->cached_refs = 0;
1760 percpu_counter_sub(&tctx->inflight, refs);
1761 put_task_struct_many(task, refs);
1762 }
1763 }
1764
1765 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1766 long res, unsigned int cflags)
1767 {
1768 struct io_overflow_cqe *ocqe;
1769
1770 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1771 if (!ocqe) {
1772 /*
1773 * If we're in ring overflow flush mode, or in task cancel mode,
1774 * or cannot allocate an overflow entry, then we need to drop it
1775 * on the floor.
1776 */
1777 io_account_cq_overflow(ctx);
1778 return false;
1779 }
1780 if (list_empty(&ctx->cq_overflow_list)) {
1781 set_bit(0, &ctx->check_cq_overflow);
1782 WRITE_ONCE(ctx->rings->sq_flags,
1783 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1784
1785 }
1786 ocqe->cqe.user_data = user_data;
1787 ocqe->cqe.res = res;
1788 ocqe->cqe.flags = cflags;
1789 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1790 return true;
1791 }
1792
1793 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1794 long res, unsigned int cflags)
1795 {
1796 struct io_uring_cqe *cqe;
1797
1798 trace_io_uring_complete(ctx, user_data, res, cflags);
1799
1800 /*
1801 * If we can't get a cq entry, userspace overflowed the
1802 * submission (by quite a lot). Increment the overflow count in
1803 * the ring.
1804 */
1805 cqe = io_get_cqe(ctx);
1806 if (likely(cqe)) {
1807 WRITE_ONCE(cqe->user_data, user_data);
1808 WRITE_ONCE(cqe->res, res);
1809 WRITE_ONCE(cqe->flags, cflags);
1810 return true;
1811 }
1812 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1813 }
1814
1815 /* not as hot to bloat with inlining */
1816 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1817 long res, unsigned int cflags)
1818 {
1819 return __io_cqring_fill_event(ctx, user_data, res, cflags);
1820 }
1821
1822 static void io_req_complete_post(struct io_kiocb *req, long res,
1823 unsigned int cflags)
1824 {
1825 struct io_ring_ctx *ctx = req->ctx;
1826
1827 spin_lock(&ctx->completion_lock);
1828 __io_cqring_fill_event(ctx, req->user_data, res, cflags);
1829 /*
1830 * If we're the last reference to this request, add to our locked
1831 * free_list cache.
1832 */
1833 if (req_ref_put_and_test(req)) {
1834 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1835 if (req->flags & IO_DISARM_MASK)
1836 io_disarm_next(req);
1837 if (req->link) {
1838 io_req_task_queue(req->link);
1839 req->link = NULL;
1840 }
1841 }
1842 io_dismantle_req(req);
1843 io_put_task(req->task, 1);
1844 list_add(&req->inflight_entry, &ctx->locked_free_list);
1845 ctx->locked_free_nr++;
1846 } else {
1847 if (!percpu_ref_tryget(&ctx->refs))
1848 req = NULL;
1849 }
1850 io_commit_cqring(ctx);
1851 spin_unlock(&ctx->completion_lock);
1852
1853 if (req) {
1854 io_cqring_ev_posted(ctx);
1855 percpu_ref_put(&ctx->refs);
1856 }
1857 }
1858
1859 static inline bool io_req_needs_clean(struct io_kiocb *req)
1860 {
1861 return req->flags & IO_REQ_CLEAN_FLAGS;
1862 }
1863
1864 static void io_req_complete_state(struct io_kiocb *req, long res,
1865 unsigned int cflags)
1866 {
1867 if (io_req_needs_clean(req))
1868 io_clean_op(req);
1869 req->result = res;
1870 req->compl.cflags = cflags;
1871 req->flags |= REQ_F_COMPLETE_INLINE;
1872 }
1873
1874 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1875 long res, unsigned cflags)
1876 {
1877 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1878 io_req_complete_state(req, res, cflags);
1879 else
1880 io_req_complete_post(req, res, cflags);
1881 }
1882
1883 static inline void io_req_complete(struct io_kiocb *req, long res)
1884 {
1885 __io_req_complete(req, 0, res, 0);
1886 }
1887
1888 static void io_req_complete_failed(struct io_kiocb *req, long res)
1889 {
1890 req_set_fail(req);
1891 io_req_complete_post(req, res, 0);
1892 }
1893
1894 static void io_req_complete_fail_submit(struct io_kiocb *req)
1895 {
1896 /*
1897 * We don't submit, fail them all, for that replace hardlinks with
1898 * normal links. Extra REQ_F_LINK is tolerated.
1899 */
1900 req->flags &= ~REQ_F_HARDLINK;
1901 req->flags |= REQ_F_LINK;
1902 io_req_complete_failed(req, req->result);
1903 }
1904
1905 /*
1906 * Don't initialise the fields below on every allocation, but do that in
1907 * advance and keep them valid across allocations.
1908 */
1909 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1910 {
1911 req->ctx = ctx;
1912 req->link = NULL;
1913 req->async_data = NULL;
1914 /* not necessary, but safer to zero */
1915 req->result = 0;
1916 }
1917
1918 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1919 struct io_submit_state *state)
1920 {
1921 spin_lock(&ctx->completion_lock);
1922 list_splice_init(&ctx->locked_free_list, &state->free_list);
1923 ctx->locked_free_nr = 0;
1924 spin_unlock(&ctx->completion_lock);
1925 }
1926
1927 /* Returns true IFF there are requests in the cache */
1928 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1929 {
1930 struct io_submit_state *state = &ctx->submit_state;
1931 int nr;
1932
1933 /*
1934 * If we have more than a batch's worth of requests in our IRQ side
1935 * locked cache, grab the lock and move them over to our submission
1936 * side cache.
1937 */
1938 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1939 io_flush_cached_locked_reqs(ctx, state);
1940
1941 nr = state->free_reqs;
1942 while (!list_empty(&state->free_list)) {
1943 struct io_kiocb *req = list_first_entry(&state->free_list,
1944 struct io_kiocb, inflight_entry);
1945
1946 list_del(&req->inflight_entry);
1947 state->reqs[nr++] = req;
1948 if (nr == ARRAY_SIZE(state->reqs))
1949 break;
1950 }
1951
1952 state->free_reqs = nr;
1953 return nr != 0;
1954 }
1955
1956 /*
1957 * A request might get retired back into the request caches even before opcode
1958 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1959 * Because of that, io_alloc_req() should be called only under ->uring_lock
1960 * and with extra caution to not get a request that is still worked on.
1961 */
1962 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1963 __must_hold(&ctx->uring_lock)
1964 {
1965 struct io_submit_state *state = &ctx->submit_state;
1966 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1967 int ret, i;
1968
1969 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1970
1971 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1972 goto got_req;
1973
1974 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1975 state->reqs);
1976
1977 /*
1978 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1979 * retry single alloc to be on the safe side.
1980 */
1981 if (unlikely(ret <= 0)) {
1982 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1983 if (!state->reqs[0])
1984 return NULL;
1985 ret = 1;
1986 }
1987
1988 for (i = 0; i < ret; i++)
1989 io_preinit_req(state->reqs[i], ctx);
1990 state->free_reqs = ret;
1991 got_req:
1992 state->free_reqs--;
1993 return state->reqs[state->free_reqs];
1994 }
1995
1996 static inline void io_put_file(struct file *file)
1997 {
1998 if (file)
1999 fput(file);
2000 }
2001
2002 static void io_dismantle_req(struct io_kiocb *req)
2003 {
2004 unsigned int flags = req->flags;
2005
2006 if (io_req_needs_clean(req))
2007 io_clean_op(req);
2008 if (!(flags & REQ_F_FIXED_FILE))
2009 io_put_file(req->file);
2010 if (req->fixed_rsrc_refs)
2011 percpu_ref_put(req->fixed_rsrc_refs);
2012 if (req->async_data) {
2013 kfree(req->async_data);
2014 req->async_data = NULL;
2015 }
2016 }
2017
2018 static void __io_free_req(struct io_kiocb *req)
2019 {
2020 struct io_ring_ctx *ctx = req->ctx;
2021
2022 io_dismantle_req(req);
2023 io_put_task(req->task, 1);
2024
2025 spin_lock(&ctx->completion_lock);
2026 list_add(&req->inflight_entry, &ctx->locked_free_list);
2027 ctx->locked_free_nr++;
2028 spin_unlock(&ctx->completion_lock);
2029
2030 percpu_ref_put(&ctx->refs);
2031 }
2032
2033 static inline void io_remove_next_linked(struct io_kiocb *req)
2034 {
2035 struct io_kiocb *nxt = req->link;
2036
2037 req->link = nxt->link;
2038 nxt->link = NULL;
2039 }
2040
2041 static bool io_kill_linked_timeout(struct io_kiocb *req)
2042 __must_hold(&req->ctx->completion_lock)
2043 __must_hold(&req->ctx->timeout_lock)
2044 {
2045 struct io_kiocb *link = req->link;
2046
2047 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2048 struct io_timeout_data *io = link->async_data;
2049
2050 io_remove_next_linked(req);
2051 link->timeout.head = NULL;
2052 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2053 list_del(&link->timeout.list);
2054 io_cqring_fill_event(link->ctx, link->user_data,
2055 -ECANCELED, 0);
2056 io_put_req_deferred(link);
2057 return true;
2058 }
2059 }
2060 return false;
2061 }
2062
2063 static void io_fail_links(struct io_kiocb *req)
2064 __must_hold(&req->ctx->completion_lock)
2065 {
2066 struct io_kiocb *nxt, *link = req->link;
2067
2068 req->link = NULL;
2069 while (link) {
2070 long res = -ECANCELED;
2071
2072 if (link->flags & REQ_F_FAIL)
2073 res = link->result;
2074
2075 nxt = link->link;
2076 link->link = NULL;
2077
2078 trace_io_uring_fail_link(req, link);
2079 io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2080 io_put_req_deferred(link);
2081 link = nxt;
2082 }
2083 }
2084
2085 static bool io_disarm_next(struct io_kiocb *req)
2086 __must_hold(&req->ctx->completion_lock)
2087 {
2088 bool posted = false;
2089
2090 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2091 struct io_kiocb *link = req->link;
2092
2093 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2094 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2095 io_remove_next_linked(req);
2096 io_cqring_fill_event(link->ctx, link->user_data,
2097 -ECANCELED, 0);
2098 io_put_req_deferred(link);
2099 posted = true;
2100 }
2101 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2102 struct io_ring_ctx *ctx = req->ctx;
2103
2104 spin_lock_irq(&ctx->timeout_lock);
2105 posted = io_kill_linked_timeout(req);
2106 spin_unlock_irq(&ctx->timeout_lock);
2107 }
2108 if (unlikely((req->flags & REQ_F_FAIL) &&
2109 !(req->flags & REQ_F_HARDLINK))) {
2110 posted |= (req->link != NULL);
2111 io_fail_links(req);
2112 }
2113 return posted;
2114 }
2115
2116 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2117 {
2118 struct io_kiocb *nxt;
2119
2120 /*
2121 * If LINK is set, we have dependent requests in this chain. If we
2122 * didn't fail this request, queue the first one up, moving any other
2123 * dependencies to the next request. In case of failure, fail the rest
2124 * of the chain.
2125 */
2126 if (req->flags & IO_DISARM_MASK) {
2127 struct io_ring_ctx *ctx = req->ctx;
2128 bool posted;
2129
2130 spin_lock(&ctx->completion_lock);
2131 posted = io_disarm_next(req);
2132 if (posted)
2133 io_commit_cqring(req->ctx);
2134 spin_unlock(&ctx->completion_lock);
2135 if (posted)
2136 io_cqring_ev_posted(ctx);
2137 }
2138 nxt = req->link;
2139 req->link = NULL;
2140 return nxt;
2141 }
2142
2143 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2144 {
2145 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2146 return NULL;
2147 return __io_req_find_next(req);
2148 }
2149
2150 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2151 {
2152 if (!ctx)
2153 return;
2154 if (*locked) {
2155 if (ctx->submit_state.compl_nr)
2156 io_submit_flush_completions(ctx);
2157 mutex_unlock(&ctx->uring_lock);
2158 *locked = false;
2159 }
2160 percpu_ref_put(&ctx->refs);
2161 }
2162
2163 static void tctx_task_work(struct callback_head *cb)
2164 {
2165 bool locked = false;
2166 struct io_ring_ctx *ctx = NULL;
2167 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2168 task_work);
2169
2170 while (1) {
2171 struct io_wq_work_node *node;
2172
2173 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2174 io_submit_flush_completions(ctx);
2175
2176 spin_lock_irq(&tctx->task_lock);
2177 node = tctx->task_list.first;
2178 INIT_WQ_LIST(&tctx->task_list);
2179 if (!node)
2180 tctx->task_running = false;
2181 spin_unlock_irq(&tctx->task_lock);
2182 if (!node)
2183 break;
2184
2185 do {
2186 struct io_wq_work_node *next = node->next;
2187 struct io_kiocb *req = container_of(node, struct io_kiocb,
2188 io_task_work.node);
2189
2190 if (req->ctx != ctx) {
2191 ctx_flush_and_put(ctx, &locked);
2192 ctx = req->ctx;
2193 /* if not contended, grab and improve batching */
2194 locked = mutex_trylock(&ctx->uring_lock);
2195 percpu_ref_get(&ctx->refs);
2196 }
2197 req->io_task_work.func(req, &locked);
2198 node = next;
2199 } while (node);
2200
2201 cond_resched();
2202 }
2203
2204 ctx_flush_and_put(ctx, &locked);
2205
2206 /* relaxed read is enough as only the task itself sets ->in_idle */
2207 if (unlikely(atomic_read(&tctx->in_idle)))
2208 io_uring_drop_tctx_refs(current);
2209 }
2210
2211 static void io_req_task_work_add(struct io_kiocb *req)
2212 {
2213 struct task_struct *tsk = req->task;
2214 struct io_uring_task *tctx = tsk->io_uring;
2215 enum task_work_notify_mode notify;
2216 struct io_wq_work_node *node;
2217 unsigned long flags;
2218 bool running;
2219
2220 WARN_ON_ONCE(!tctx);
2221
2222 spin_lock_irqsave(&tctx->task_lock, flags);
2223 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2224 running = tctx->task_running;
2225 if (!running)
2226 tctx->task_running = true;
2227 spin_unlock_irqrestore(&tctx->task_lock, flags);
2228
2229 /* task_work already pending, we're done */
2230 if (running)
2231 return;
2232
2233 /*
2234 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2235 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2236 * processing task_work. There's no reliable way to tell if TWA_RESUME
2237 * will do the job.
2238 */
2239 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2240 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2241 wake_up_process(tsk);
2242 return;
2243 }
2244
2245 spin_lock_irqsave(&tctx->task_lock, flags);
2246 tctx->task_running = false;
2247 node = tctx->task_list.first;
2248 INIT_WQ_LIST(&tctx->task_list);
2249 spin_unlock_irqrestore(&tctx->task_lock, flags);
2250
2251 while (node) {
2252 req = container_of(node, struct io_kiocb, io_task_work.node);
2253 node = node->next;
2254 if (llist_add(&req->io_task_work.fallback_node,
2255 &req->ctx->fallback_llist))
2256 schedule_delayed_work(&req->ctx->fallback_work, 1);
2257 }
2258 }
2259
2260 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2261 {
2262 struct io_ring_ctx *ctx = req->ctx;
2263
2264 /* not needed for normal modes, but SQPOLL depends on it */
2265 io_tw_lock(ctx, locked);
2266 io_req_complete_failed(req, req->result);
2267 }
2268
2269 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2270 {
2271 struct io_ring_ctx *ctx = req->ctx;
2272
2273 io_tw_lock(ctx, locked);
2274 /* req->task == current here, checking PF_EXITING is safe */
2275 if (likely(!(req->task->flags & PF_EXITING)))
2276 __io_queue_sqe(req);
2277 else
2278 io_req_complete_failed(req, -EFAULT);
2279 }
2280
2281 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2282 {
2283 req->result = ret;
2284 req->io_task_work.func = io_req_task_cancel;
2285 io_req_task_work_add(req);
2286 }
2287
2288 static void io_req_task_queue(struct io_kiocb *req)
2289 {
2290 req->io_task_work.func = io_req_task_submit;
2291 io_req_task_work_add(req);
2292 }
2293
2294 static void io_req_task_queue_reissue(struct io_kiocb *req)
2295 {
2296 req->io_task_work.func = io_queue_async_work;
2297 io_req_task_work_add(req);
2298 }
2299
2300 static inline void io_queue_next(struct io_kiocb *req)
2301 {
2302 struct io_kiocb *nxt = io_req_find_next(req);
2303
2304 if (nxt)
2305 io_req_task_queue(nxt);
2306 }
2307
2308 static void io_free_req(struct io_kiocb *req)
2309 {
2310 io_queue_next(req);
2311 __io_free_req(req);
2312 }
2313
2314 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2315 {
2316 io_free_req(req);
2317 }
2318
2319 struct req_batch {
2320 struct task_struct *task;
2321 int task_refs;
2322 int ctx_refs;
2323 };
2324
2325 static inline void io_init_req_batch(struct req_batch *rb)
2326 {
2327 rb->task_refs = 0;
2328 rb->ctx_refs = 0;
2329 rb->task = NULL;
2330 }
2331
2332 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2333 struct req_batch *rb)
2334 {
2335 if (rb->ctx_refs)
2336 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2337 if (rb->task)
2338 io_put_task(rb->task, rb->task_refs);
2339 }
2340
2341 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2342 struct io_submit_state *state)
2343 {
2344 io_queue_next(req);
2345 io_dismantle_req(req);
2346
2347 if (req->task != rb->task) {
2348 if (rb->task)
2349 io_put_task(rb->task, rb->task_refs);
2350 rb->task = req->task;
2351 rb->task_refs = 0;
2352 }
2353 rb->task_refs++;
2354 rb->ctx_refs++;
2355
2356 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2357 state->reqs[state->free_reqs++] = req;
2358 else
2359 list_add(&req->inflight_entry, &state->free_list);
2360 }
2361
2362 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2363 __must_hold(&ctx->uring_lock)
2364 {
2365 struct io_submit_state *state = &ctx->submit_state;
2366 int i, nr = state->compl_nr;
2367 struct req_batch rb;
2368
2369 spin_lock(&ctx->completion_lock);
2370 for (i = 0; i < nr; i++) {
2371 struct io_kiocb *req = state->compl_reqs[i];
2372
2373 __io_cqring_fill_event(ctx, req->user_data, req->result,
2374 req->compl.cflags);
2375 }
2376 io_commit_cqring(ctx);
2377 spin_unlock(&ctx->completion_lock);
2378 io_cqring_ev_posted(ctx);
2379
2380 io_init_req_batch(&rb);
2381 for (i = 0; i < nr; i++) {
2382 struct io_kiocb *req = state->compl_reqs[i];
2383
2384 if (req_ref_put_and_test(req))
2385 io_req_free_batch(&rb, req, &ctx->submit_state);
2386 }
2387
2388 io_req_free_batch_finish(ctx, &rb);
2389 state->compl_nr = 0;
2390 }
2391
2392 /*
2393 * Drop reference to request, return next in chain (if there is one) if this
2394 * was the last reference to this request.
2395 */
2396 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2397 {
2398 struct io_kiocb *nxt = NULL;
2399
2400 if (req_ref_put_and_test(req)) {
2401 nxt = io_req_find_next(req);
2402 __io_free_req(req);
2403 }
2404 return nxt;
2405 }
2406
2407 static inline void io_put_req(struct io_kiocb *req)
2408 {
2409 if (req_ref_put_and_test(req))
2410 io_free_req(req);
2411 }
2412
2413 static inline void io_put_req_deferred(struct io_kiocb *req)
2414 {
2415 if (req_ref_put_and_test(req)) {
2416 req->io_task_work.func = io_free_req_work;
2417 io_req_task_work_add(req);
2418 }
2419 }
2420
2421 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2422 {
2423 /* See comment at the top of this file */
2424 smp_rmb();
2425 return __io_cqring_events(ctx);
2426 }
2427
2428 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2429 {
2430 struct io_rings *rings = ctx->rings;
2431
2432 /* make sure SQ entry isn't read before tail */
2433 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2434 }
2435
2436 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2437 {
2438 unsigned int cflags;
2439
2440 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2441 cflags |= IORING_CQE_F_BUFFER;
2442 req->flags &= ~REQ_F_BUFFER_SELECTED;
2443 kfree(kbuf);
2444 return cflags;
2445 }
2446
2447 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2448 {
2449 struct io_buffer *kbuf;
2450
2451 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2452 return 0;
2453 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2454 return io_put_kbuf(req, kbuf);
2455 }
2456
2457 static inline bool io_run_task_work(void)
2458 {
2459 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2460 __set_current_state(TASK_RUNNING);
2461 tracehook_notify_signal();
2462 return true;
2463 }
2464
2465 return false;
2466 }
2467
2468 /*
2469 * Find and free completed poll iocbs
2470 */
2471 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2472 struct list_head *done)
2473 {
2474 struct req_batch rb;
2475 struct io_kiocb *req;
2476
2477 /* order with ->result store in io_complete_rw_iopoll() */
2478 smp_rmb();
2479
2480 io_init_req_batch(&rb);
2481 while (!list_empty(done)) {
2482 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2483 list_del(&req->inflight_entry);
2484
2485 __io_cqring_fill_event(ctx, req->user_data, req->result,
2486 io_put_rw_kbuf(req));
2487 (*nr_events)++;
2488
2489 if (req_ref_put_and_test(req))
2490 io_req_free_batch(&rb, req, &ctx->submit_state);
2491 }
2492
2493 io_commit_cqring(ctx);
2494 io_cqring_ev_posted_iopoll(ctx);
2495 io_req_free_batch_finish(ctx, &rb);
2496 }
2497
2498 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2499 long min)
2500 {
2501 struct io_kiocb *req, *tmp;
2502 LIST_HEAD(done);
2503 bool spin;
2504
2505 /*
2506 * Only spin for completions if we don't have multiple devices hanging
2507 * off our complete list, and we're under the requested amount.
2508 */
2509 spin = !ctx->poll_multi_queue && *nr_events < min;
2510
2511 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2512 struct kiocb *kiocb = &req->rw.kiocb;
2513 int ret;
2514
2515 /*
2516 * Move completed and retryable entries to our local lists.
2517 * If we find a request that requires polling, break out
2518 * and complete those lists first, if we have entries there.
2519 */
2520 if (READ_ONCE(req->iopoll_completed)) {
2521 list_move_tail(&req->inflight_entry, &done);
2522 continue;
2523 }
2524 if (!list_empty(&done))
2525 break;
2526
2527 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2528 if (unlikely(ret < 0))
2529 return ret;
2530 else if (ret)
2531 spin = false;
2532
2533 /* iopoll may have completed current req */
2534 if (READ_ONCE(req->iopoll_completed))
2535 list_move_tail(&req->inflight_entry, &done);
2536 }
2537
2538 if (!list_empty(&done))
2539 io_iopoll_complete(ctx, nr_events, &done);
2540
2541 return 0;
2542 }
2543
2544 /*
2545 * We can't just wait for polled events to come to us, we have to actively
2546 * find and complete them.
2547 */
2548 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2549 {
2550 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2551 return;
2552
2553 mutex_lock(&ctx->uring_lock);
2554 while (!list_empty(&ctx->iopoll_list)) {
2555 unsigned int nr_events = 0;
2556
2557 io_do_iopoll(ctx, &nr_events, 0);
2558
2559 /* let it sleep and repeat later if can't complete a request */
2560 if (nr_events == 0)
2561 break;
2562 /*
2563 * Ensure we allow local-to-the-cpu processing to take place,
2564 * in this case we need to ensure that we reap all events.
2565 * Also let task_work, etc. to progress by releasing the mutex
2566 */
2567 if (need_resched()) {
2568 mutex_unlock(&ctx->uring_lock);
2569 cond_resched();
2570 mutex_lock(&ctx->uring_lock);
2571 }
2572 }
2573 mutex_unlock(&ctx->uring_lock);
2574 }
2575
2576 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2577 {
2578 unsigned int nr_events = 0;
2579 int ret = 0;
2580
2581 /*
2582 * We disallow the app entering submit/complete with polling, but we
2583 * still need to lock the ring to prevent racing with polled issue
2584 * that got punted to a workqueue.
2585 */
2586 mutex_lock(&ctx->uring_lock);
2587 /*
2588 * Don't enter poll loop if we already have events pending.
2589 * If we do, we can potentially be spinning for commands that
2590 * already triggered a CQE (eg in error).
2591 */
2592 if (test_bit(0, &ctx->check_cq_overflow))
2593 __io_cqring_overflow_flush(ctx, false);
2594 if (io_cqring_events(ctx))
2595 goto out;
2596 do {
2597 /*
2598 * If a submit got punted to a workqueue, we can have the
2599 * application entering polling for a command before it gets
2600 * issued. That app will hold the uring_lock for the duration
2601 * of the poll right here, so we need to take a breather every
2602 * now and then to ensure that the issue has a chance to add
2603 * the poll to the issued list. Otherwise we can spin here
2604 * forever, while the workqueue is stuck trying to acquire the
2605 * very same mutex.
2606 */
2607 if (list_empty(&ctx->iopoll_list)) {
2608 u32 tail = ctx->cached_cq_tail;
2609
2610 mutex_unlock(&ctx->uring_lock);
2611 io_run_task_work();
2612 mutex_lock(&ctx->uring_lock);
2613
2614 /* some requests don't go through iopoll_list */
2615 if (tail != ctx->cached_cq_tail ||
2616 list_empty(&ctx->iopoll_list))
2617 break;
2618 }
2619 ret = io_do_iopoll(ctx, &nr_events, min);
2620 } while (!ret && nr_events < min && !need_resched());
2621 out:
2622 mutex_unlock(&ctx->uring_lock);
2623 return ret;
2624 }
2625
2626 static void kiocb_end_write(struct io_kiocb *req)
2627 {
2628 /*
2629 * Tell lockdep we inherited freeze protection from submission
2630 * thread.
2631 */
2632 if (req->flags & REQ_F_ISREG) {
2633 struct super_block *sb = file_inode(req->file)->i_sb;
2634
2635 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2636 sb_end_write(sb);
2637 }
2638 }
2639
2640 #ifdef CONFIG_BLOCK
2641 static bool io_resubmit_prep(struct io_kiocb *req)
2642 {
2643 struct io_async_rw *rw = req->async_data;
2644
2645 if (!rw)
2646 return !io_req_prep_async(req);
2647 iov_iter_restore(&rw->iter, &rw->iter_state);
2648 return true;
2649 }
2650
2651 static bool io_rw_should_reissue(struct io_kiocb *req)
2652 {
2653 umode_t mode = file_inode(req->file)->i_mode;
2654 struct io_ring_ctx *ctx = req->ctx;
2655
2656 if (!S_ISBLK(mode) && !S_ISREG(mode))
2657 return false;
2658 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2659 !(ctx->flags & IORING_SETUP_IOPOLL)))
2660 return false;
2661 /*
2662 * If ref is dying, we might be running poll reap from the exit work.
2663 * Don't attempt to reissue from that path, just let it fail with
2664 * -EAGAIN.
2665 */
2666 if (percpu_ref_is_dying(&ctx->refs))
2667 return false;
2668 /*
2669 * Play it safe and assume not safe to re-import and reissue if we're
2670 * not in the original thread group (or in task context).
2671 */
2672 if (!same_thread_group(req->task, current) || !in_task())
2673 return false;
2674 return true;
2675 }
2676 #else
2677 static bool io_resubmit_prep(struct io_kiocb *req)
2678 {
2679 return false;
2680 }
2681 static bool io_rw_should_reissue(struct io_kiocb *req)
2682 {
2683 return false;
2684 }
2685 #endif
2686
2687 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2688 {
2689 if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
2690 kiocb_end_write(req);
2691 fsnotify_modify(req->file);
2692 } else {
2693 fsnotify_access(req->file);
2694 }
2695 if (res != req->result) {
2696 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2697 io_rw_should_reissue(req)) {
2698 req->flags |= REQ_F_REISSUE;
2699 return true;
2700 }
2701 req_set_fail(req);
2702 req->result = res;
2703 }
2704 return false;
2705 }
2706
2707 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2708 {
2709 unsigned int cflags = io_put_rw_kbuf(req);
2710 long res = req->result;
2711
2712 if (*locked) {
2713 struct io_ring_ctx *ctx = req->ctx;
2714 struct io_submit_state *state = &ctx->submit_state;
2715
2716 io_req_complete_state(req, res, cflags);
2717 state->compl_reqs[state->compl_nr++] = req;
2718 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2719 io_submit_flush_completions(ctx);
2720 } else {
2721 io_req_complete_post(req, res, cflags);
2722 }
2723 }
2724
2725 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2726 unsigned int issue_flags)
2727 {
2728 if (__io_complete_rw_common(req, res))
2729 return;
2730 __io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2731 }
2732
2733 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2734 {
2735 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2736
2737 if (__io_complete_rw_common(req, res))
2738 return;
2739 req->result = res;
2740 req->io_task_work.func = io_req_task_complete;
2741 io_req_task_work_add(req);
2742 }
2743
2744 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2745 {
2746 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2747
2748 if (kiocb->ki_flags & IOCB_WRITE)
2749 kiocb_end_write(req);
2750 if (unlikely(res != req->result)) {
2751 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2752 req->flags |= REQ_F_REISSUE;
2753 return;
2754 }
2755 }
2756
2757 WRITE_ONCE(req->result, res);
2758 /* order with io_iopoll_complete() checking ->result */
2759 smp_wmb();
2760 WRITE_ONCE(req->iopoll_completed, 1);
2761 }
2762
2763 /*
2764 * After the iocb has been issued, it's safe to be found on the poll list.
2765 * Adding the kiocb to the list AFTER submission ensures that we don't
2766 * find it from a io_do_iopoll() thread before the issuer is done
2767 * accessing the kiocb cookie.
2768 */
2769 static void io_iopoll_req_issued(struct io_kiocb *req)
2770 {
2771 struct io_ring_ctx *ctx = req->ctx;
2772 const bool in_async = io_wq_current_is_worker();
2773
2774 /* workqueue context doesn't hold uring_lock, grab it now */
2775 if (unlikely(in_async))
2776 mutex_lock(&ctx->uring_lock);
2777
2778 /*
2779 * Track whether we have multiple files in our lists. This will impact
2780 * how we do polling eventually, not spinning if we're on potentially
2781 * different devices.
2782 */
2783 if (list_empty(&ctx->iopoll_list)) {
2784 ctx->poll_multi_queue = false;
2785 } else if (!ctx->poll_multi_queue) {
2786 struct io_kiocb *list_req;
2787 unsigned int queue_num0, queue_num1;
2788
2789 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2790 inflight_entry);
2791
2792 if (list_req->file != req->file) {
2793 ctx->poll_multi_queue = true;
2794 } else {
2795 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2796 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2797 if (queue_num0 != queue_num1)
2798 ctx->poll_multi_queue = true;
2799 }
2800 }
2801
2802 /*
2803 * For fast devices, IO may have already completed. If it has, add
2804 * it to the front so we find it first.
2805 */
2806 if (READ_ONCE(req->iopoll_completed))
2807 list_add(&req->inflight_entry, &ctx->iopoll_list);
2808 else
2809 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2810
2811 if (unlikely(in_async)) {
2812 /*
2813 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2814 * in sq thread task context or in io worker task context. If
2815 * current task context is sq thread, we don't need to check
2816 * whether should wake up sq thread.
2817 */
2818 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2819 wq_has_sleeper(&ctx->sq_data->wait))
2820 wake_up(&ctx->sq_data->wait);
2821
2822 mutex_unlock(&ctx->uring_lock);
2823 }
2824 }
2825
2826 static bool io_bdev_nowait(struct block_device *bdev)
2827 {
2828 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2829 }
2830
2831 /*
2832 * If we tracked the file through the SCM inflight mechanism, we could support
2833 * any file. For now, just ensure that anything potentially problematic is done
2834 * inline.
2835 */
2836 static bool __io_file_supports_nowait(struct file *file, int rw)
2837 {
2838 umode_t mode = file_inode(file)->i_mode;
2839
2840 if (S_ISBLK(mode)) {
2841 if (IS_ENABLED(CONFIG_BLOCK) &&
2842 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2843 return true;
2844 return false;
2845 }
2846 if (S_ISSOCK(mode))
2847 return true;
2848 if (S_ISREG(mode)) {
2849 if (IS_ENABLED(CONFIG_BLOCK) &&
2850 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2851 file->f_op != &io_uring_fops)
2852 return true;
2853 return false;
2854 }
2855
2856 /* any ->read/write should understand O_NONBLOCK */
2857 if (file->f_flags & O_NONBLOCK)
2858 return true;
2859
2860 if (!(file->f_mode & FMODE_NOWAIT))
2861 return false;
2862
2863 if (rw == READ)
2864 return file->f_op->read_iter != NULL;
2865
2866 return file->f_op->write_iter != NULL;
2867 }
2868
2869 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2870 {
2871 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2872 return true;
2873 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2874 return true;
2875
2876 return __io_file_supports_nowait(req->file, rw);
2877 }
2878
2879 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2880 int rw)
2881 {
2882 struct io_ring_ctx *ctx = req->ctx;
2883 struct kiocb *kiocb = &req->rw.kiocb;
2884 struct file *file = req->file;
2885 unsigned ioprio;
2886 int ret;
2887
2888 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2889 req->flags |= REQ_F_ISREG;
2890
2891 kiocb->ki_pos = READ_ONCE(sqe->off);
2892 if (kiocb->ki_pos == -1) {
2893 if (!(file->f_mode & FMODE_STREAM)) {
2894 req->flags |= REQ_F_CUR_POS;
2895 kiocb->ki_pos = file->f_pos;
2896 } else {
2897 kiocb->ki_pos = 0;
2898 }
2899 }
2900 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2901 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2902 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2903 if (unlikely(ret))
2904 return ret;
2905
2906 /*
2907 * If the file is marked O_NONBLOCK, still allow retry for it if it
2908 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2909 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2910 */
2911 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2912 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2913 req->flags |= REQ_F_NOWAIT;
2914
2915 ioprio = READ_ONCE(sqe->ioprio);
2916 if (ioprio) {
2917 ret = ioprio_check_cap(ioprio);
2918 if (ret)
2919 return ret;
2920
2921 kiocb->ki_ioprio = ioprio;
2922 } else
2923 kiocb->ki_ioprio = get_current_ioprio();
2924
2925 if (ctx->flags & IORING_SETUP_IOPOLL) {
2926 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2927 !kiocb->ki_filp->f_op->iopoll)
2928 return -EOPNOTSUPP;
2929
2930 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2931 kiocb->ki_complete = io_complete_rw_iopoll;
2932 req->iopoll_completed = 0;
2933 } else {
2934 if (kiocb->ki_flags & IOCB_HIPRI)
2935 return -EINVAL;
2936 kiocb->ki_complete = io_complete_rw;
2937 }
2938
2939 /* used for fixed read/write too - just read unconditionally */
2940 req->buf_index = READ_ONCE(sqe->buf_index);
2941 req->imu = NULL;
2942
2943 if (req->opcode == IORING_OP_READ_FIXED ||
2944 req->opcode == IORING_OP_WRITE_FIXED) {
2945 struct io_ring_ctx *ctx = req->ctx;
2946 u16 index;
2947
2948 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
2949 return -EFAULT;
2950 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
2951 req->imu = ctx->user_bufs[index];
2952 io_req_set_rsrc_node(req);
2953 }
2954
2955 req->rw.addr = READ_ONCE(sqe->addr);
2956 req->rw.len = READ_ONCE(sqe->len);
2957 return 0;
2958 }
2959
2960 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2961 {
2962 switch (ret) {
2963 case -EIOCBQUEUED:
2964 break;
2965 case -ERESTARTSYS:
2966 case -ERESTARTNOINTR:
2967 case -ERESTARTNOHAND:
2968 case -ERESTART_RESTARTBLOCK:
2969 /*
2970 * We can't just restart the syscall, since previously
2971 * submitted sqes may already be in progress. Just fail this
2972 * IO with EINTR.
2973 */
2974 ret = -EINTR;
2975 fallthrough;
2976 default:
2977 kiocb->ki_complete(kiocb, ret, 0);
2978 }
2979 }
2980
2981 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2982 unsigned int issue_flags)
2983 {
2984 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2985 struct io_async_rw *io = req->async_data;
2986
2987 /* add previously done IO, if any */
2988 if (io && io->bytes_done > 0) {
2989 if (ret < 0)
2990 ret = io->bytes_done;
2991 else
2992 ret += io->bytes_done;
2993 }
2994
2995 if (req->flags & REQ_F_CUR_POS)
2996 req->file->f_pos = kiocb->ki_pos;
2997 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2998 __io_complete_rw(req, ret, 0, issue_flags);
2999 else
3000 io_rw_done(kiocb, ret);
3001
3002 if (req->flags & REQ_F_REISSUE) {
3003 req->flags &= ~REQ_F_REISSUE;
3004 if (io_resubmit_prep(req)) {
3005 io_req_task_queue_reissue(req);
3006 } else {
3007 unsigned int cflags = io_put_rw_kbuf(req);
3008 struct io_ring_ctx *ctx = req->ctx;
3009
3010 req_set_fail(req);
3011 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3012 mutex_lock(&ctx->uring_lock);
3013 __io_req_complete(req, issue_flags, ret, cflags);
3014 mutex_unlock(&ctx->uring_lock);
3015 } else {
3016 __io_req_complete(req, issue_flags, ret, cflags);
3017 }
3018 }
3019 }
3020 }
3021
3022 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3023 struct io_mapped_ubuf *imu)
3024 {
3025 size_t len = req->rw.len;
3026 u64 buf_end, buf_addr = req->rw.addr;
3027 size_t offset;
3028
3029 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3030 return -EFAULT;
3031 /* not inside the mapped region */
3032 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3033 return -EFAULT;
3034
3035 /*
3036 * May not be a start of buffer, set size appropriately
3037 * and advance us to the beginning.
3038 */
3039 offset = buf_addr - imu->ubuf;
3040 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3041
3042 if (offset) {
3043 /*
3044 * Don't use iov_iter_advance() here, as it's really slow for
3045 * using the latter parts of a big fixed buffer - it iterates
3046 * over each segment manually. We can cheat a bit here, because
3047 * we know that:
3048 *
3049 * 1) it's a BVEC iter, we set it up
3050 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3051 * first and last bvec
3052 *
3053 * So just find our index, and adjust the iterator afterwards.
3054 * If the offset is within the first bvec (or the whole first
3055 * bvec, just use iov_iter_advance(). This makes it easier
3056 * since we can just skip the first segment, which may not
3057 * be PAGE_SIZE aligned.
3058 */
3059 const struct bio_vec *bvec = imu->bvec;
3060
3061 if (offset <= bvec->bv_len) {
3062 iov_iter_advance(iter, offset);
3063 } else {
3064 unsigned long seg_skip;
3065
3066 /* skip first vec */
3067 offset -= bvec->bv_len;
3068 seg_skip = 1 + (offset >> PAGE_SHIFT);
3069
3070 iter->bvec = bvec + seg_skip;
3071 iter->nr_segs -= seg_skip;
3072 iter->count -= bvec->bv_len + offset;
3073 iter->iov_offset = offset & ~PAGE_MASK;
3074 }
3075 }
3076
3077 return 0;
3078 }
3079
3080 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3081 {
3082 if (WARN_ON_ONCE(!req->imu))
3083 return -EFAULT;
3084 return __io_import_fixed(req, rw, iter, req->imu);
3085 }
3086
3087 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3088 {
3089 if (needs_lock)
3090 mutex_unlock(&ctx->uring_lock);
3091 }
3092
3093 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3094 {
3095 /*
3096 * "Normal" inline submissions always hold the uring_lock, since we
3097 * grab it from the system call. Same is true for the SQPOLL offload.
3098 * The only exception is when we've detached the request and issue it
3099 * from an async worker thread, grab the lock for that case.
3100 */
3101 if (needs_lock)
3102 mutex_lock(&ctx->uring_lock);
3103 }
3104
3105 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3106 int bgid, struct io_buffer *kbuf,
3107 bool needs_lock)
3108 {
3109 struct io_buffer *head;
3110
3111 if (req->flags & REQ_F_BUFFER_SELECTED)
3112 return kbuf;
3113
3114 io_ring_submit_lock(req->ctx, needs_lock);
3115
3116 lockdep_assert_held(&req->ctx->uring_lock);
3117
3118 head = xa_load(&req->ctx->io_buffers, bgid);
3119 if (head) {
3120 if (!list_empty(&head->list)) {
3121 kbuf = list_last_entry(&head->list, struct io_buffer,
3122 list);
3123 list_del(&kbuf->list);
3124 } else {
3125 kbuf = head;
3126 xa_erase(&req->ctx->io_buffers, bgid);
3127 }
3128 if (*len > kbuf->len)
3129 *len = kbuf->len;
3130 } else {
3131 kbuf = ERR_PTR(-ENOBUFS);
3132 }
3133
3134 io_ring_submit_unlock(req->ctx, needs_lock);
3135
3136 return kbuf;
3137 }
3138
3139 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3140 bool needs_lock)
3141 {
3142 struct io_buffer *kbuf;
3143 u16 bgid;
3144
3145 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3146 bgid = req->buf_index;
3147 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3148 if (IS_ERR(kbuf))
3149 return kbuf;
3150 req->rw.addr = (u64) (unsigned long) kbuf;
3151 req->flags |= REQ_F_BUFFER_SELECTED;
3152 return u64_to_user_ptr(kbuf->addr);
3153 }
3154
3155 #ifdef CONFIG_COMPAT
3156 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3157 bool needs_lock)
3158 {
3159 struct compat_iovec __user *uiov;
3160 compat_ssize_t clen;
3161 void __user *buf;
3162 ssize_t len;
3163
3164 uiov = u64_to_user_ptr(req->rw.addr);
3165 if (!access_ok(uiov, sizeof(*uiov)))
3166 return -EFAULT;
3167 if (__get_user(clen, &uiov->iov_len))
3168 return -EFAULT;
3169 if (clen < 0)
3170 return -EINVAL;
3171
3172 len = clen;
3173 buf = io_rw_buffer_select(req, &len, needs_lock);
3174 if (IS_ERR(buf))
3175 return PTR_ERR(buf);
3176 iov[0].iov_base = buf;
3177 iov[0].iov_len = (compat_size_t) len;
3178 return 0;
3179 }
3180 #endif
3181
3182 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3183 bool needs_lock)
3184 {
3185 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3186 void __user *buf;
3187 ssize_t len;
3188
3189 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3190 return -EFAULT;
3191
3192 len = iov[0].iov_len;
3193 if (len < 0)
3194 return -EINVAL;
3195 buf = io_rw_buffer_select(req, &len, needs_lock);
3196 if (IS_ERR(buf))
3197 return PTR_ERR(buf);
3198 iov[0].iov_base = buf;
3199 iov[0].iov_len = len;
3200 return 0;
3201 }
3202
3203 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3204 bool needs_lock)
3205 {
3206 if (req->flags & REQ_F_BUFFER_SELECTED) {
3207 struct io_buffer *kbuf;
3208
3209 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3210 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3211 iov[0].iov_len = kbuf->len;
3212 return 0;
3213 }
3214 if (req->rw.len != 1)
3215 return -EINVAL;
3216
3217 #ifdef CONFIG_COMPAT
3218 if (req->ctx->compat)
3219 return io_compat_import(req, iov, needs_lock);
3220 #endif
3221
3222 return __io_iov_buffer_select(req, iov, needs_lock);
3223 }
3224
3225 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3226 struct iov_iter *iter, bool needs_lock)
3227 {
3228 void __user *buf = u64_to_user_ptr(req->rw.addr);
3229 size_t sqe_len = req->rw.len;
3230 u8 opcode = req->opcode;
3231 ssize_t ret;
3232
3233 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3234 *iovec = NULL;
3235 return io_import_fixed(req, rw, iter);
3236 }
3237
3238 /* buffer index only valid with fixed read/write, or buffer select */
3239 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3240 return -EINVAL;
3241
3242 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3243 if (req->flags & REQ_F_BUFFER_SELECT) {
3244 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3245 if (IS_ERR(buf))
3246 return PTR_ERR(buf);
3247 req->rw.len = sqe_len;
3248 }
3249
3250 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3251 *iovec = NULL;
3252 return ret;
3253 }
3254
3255 if (req->flags & REQ_F_BUFFER_SELECT) {
3256 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3257 if (!ret)
3258 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3259 *iovec = NULL;
3260 return ret;
3261 }
3262
3263 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3264 req->ctx->compat);
3265 }
3266
3267 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3268 {
3269 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3270 }
3271
3272 /*
3273 * For files that don't have ->read_iter() and ->write_iter(), handle them
3274 * by looping over ->read() or ->write() manually.
3275 */
3276 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3277 {
3278 struct kiocb *kiocb = &req->rw.kiocb;
3279 struct file *file = req->file;
3280 ssize_t ret = 0;
3281
3282 /*
3283 * Don't support polled IO through this interface, and we can't
3284 * support non-blocking either. For the latter, this just causes
3285 * the kiocb to be handled from an async context.
3286 */
3287 if (kiocb->ki_flags & IOCB_HIPRI)
3288 return -EOPNOTSUPP;
3289 if (kiocb->ki_flags & IOCB_NOWAIT)
3290 return -EAGAIN;
3291
3292 while (iov_iter_count(iter)) {
3293 struct iovec iovec;
3294 ssize_t nr;
3295
3296 if (!iov_iter_is_bvec(iter)) {
3297 iovec = iov_iter_iovec(iter);
3298 } else {
3299 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3300 iovec.iov_len = req->rw.len;
3301 }
3302
3303 if (rw == READ) {
3304 nr = file->f_op->read(file, iovec.iov_base,
3305 iovec.iov_len, io_kiocb_ppos(kiocb));
3306 } else {
3307 nr = file->f_op->write(file, iovec.iov_base,
3308 iovec.iov_len, io_kiocb_ppos(kiocb));
3309 }
3310
3311 if (nr < 0) {
3312 if (!ret)
3313 ret = nr;
3314 break;
3315 }
3316 ret += nr;
3317 if (!iov_iter_is_bvec(iter)) {
3318 iov_iter_advance(iter, nr);
3319 } else {
3320 req->rw.addr += nr;
3321 req->rw.len -= nr;
3322 if (!req->rw.len)
3323 break;
3324 }
3325 if (nr != iovec.iov_len)
3326 break;
3327 }
3328
3329 return ret;
3330 }
3331
3332 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3333 const struct iovec *fast_iov, struct iov_iter *iter)
3334 {
3335 struct io_async_rw *rw = req->async_data;
3336
3337 memcpy(&rw->iter, iter, sizeof(*iter));
3338 rw->free_iovec = iovec;
3339 rw->bytes_done = 0;
3340 /* can only be fixed buffers, no need to do anything */
3341 if (iov_iter_is_bvec(iter))
3342 return;
3343 if (!iovec) {
3344 unsigned iov_off = 0;
3345
3346 rw->iter.iov = rw->fast_iov;
3347 if (iter->iov != fast_iov) {
3348 iov_off = iter->iov - fast_iov;
3349 rw->iter.iov += iov_off;
3350 }
3351 if (rw->fast_iov != fast_iov)
3352 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3353 sizeof(struct iovec) * iter->nr_segs);
3354 } else {
3355 req->flags |= REQ_F_NEED_CLEANUP;
3356 }
3357 }
3358
3359 static inline int io_alloc_async_data(struct io_kiocb *req)
3360 {
3361 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3362 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3363 return req->async_data == NULL;
3364 }
3365
3366 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3367 const struct iovec *fast_iov,
3368 struct iov_iter *iter, bool force)
3369 {
3370 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3371 return 0;
3372 if (!req->async_data) {
3373 struct io_async_rw *iorw;
3374
3375 if (io_alloc_async_data(req)) {
3376 kfree(iovec);
3377 return -ENOMEM;
3378 }
3379
3380 io_req_map_rw(req, iovec, fast_iov, iter);
3381 iorw = req->async_data;
3382 /* we've copied and mapped the iter, ensure state is saved */
3383 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3384 }
3385 return 0;
3386 }
3387
3388 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3389 {
3390 struct io_async_rw *iorw = req->async_data;
3391 struct iovec *iov = iorw->fast_iov;
3392 int ret;
3393
3394 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3395 if (unlikely(ret < 0))
3396 return ret;
3397
3398 iorw->bytes_done = 0;
3399 iorw->free_iovec = iov;
3400 if (iov)
3401 req->flags |= REQ_F_NEED_CLEANUP;
3402 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3403 return 0;
3404 }
3405
3406 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3407 {
3408 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3409 return -EBADF;
3410 return io_prep_rw(req, sqe, READ);
3411 }
3412
3413 /*
3414 * This is our waitqueue callback handler, registered through lock_page_async()
3415 * when we initially tried to do the IO with the iocb armed our waitqueue.
3416 * This gets called when the page is unlocked, and we generally expect that to
3417 * happen when the page IO is completed and the page is now uptodate. This will
3418 * queue a task_work based retry of the operation, attempting to copy the data
3419 * again. If the latter fails because the page was NOT uptodate, then we will
3420 * do a thread based blocking retry of the operation. That's the unexpected
3421 * slow path.
3422 */
3423 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3424 int sync, void *arg)
3425 {
3426 struct wait_page_queue *wpq;
3427 struct io_kiocb *req = wait->private;
3428 struct wait_page_key *key = arg;
3429
3430 wpq = container_of(wait, struct wait_page_queue, wait);
3431
3432 if (!wake_page_match(wpq, key))
3433 return 0;
3434
3435 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3436 list_del_init(&wait->entry);
3437 io_req_task_queue(req);
3438 return 1;
3439 }
3440
3441 /*
3442 * This controls whether a given IO request should be armed for async page
3443 * based retry. If we return false here, the request is handed to the async
3444 * worker threads for retry. If we're doing buffered reads on a regular file,
3445 * we prepare a private wait_page_queue entry and retry the operation. This
3446 * will either succeed because the page is now uptodate and unlocked, or it
3447 * will register a callback when the page is unlocked at IO completion. Through
3448 * that callback, io_uring uses task_work to setup a retry of the operation.
3449 * That retry will attempt the buffered read again. The retry will generally
3450 * succeed, or in rare cases where it fails, we then fall back to using the
3451 * async worker threads for a blocking retry.
3452 */
3453 static bool io_rw_should_retry(struct io_kiocb *req)
3454 {
3455 struct io_async_rw *rw = req->async_data;
3456 struct wait_page_queue *wait = &rw->wpq;
3457 struct kiocb *kiocb = &req->rw.kiocb;
3458
3459 /* never retry for NOWAIT, we just complete with -EAGAIN */
3460 if (req->flags & REQ_F_NOWAIT)
3461 return false;
3462
3463 /* Only for buffered IO */
3464 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3465 return false;
3466
3467 /*
3468 * just use poll if we can, and don't attempt if the fs doesn't
3469 * support callback based unlocks
3470 */
3471 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3472 return false;
3473
3474 wait->wait.func = io_async_buf_func;
3475 wait->wait.private = req;
3476 wait->wait.flags = 0;
3477 INIT_LIST_HEAD(&wait->wait.entry);
3478 kiocb->ki_flags |= IOCB_WAITQ;
3479 kiocb->ki_flags &= ~IOCB_NOWAIT;
3480 kiocb->ki_waitq = wait;
3481 return true;
3482 }
3483
3484 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3485 {
3486 if (req->file->f_op->read_iter)
3487 return call_read_iter(req->file, &req->rw.kiocb, iter);
3488 else if (req->file->f_op->read)
3489 return loop_rw_iter(READ, req, iter);
3490 else
3491 return -EINVAL;
3492 }
3493
3494 static bool need_read_all(struct io_kiocb *req)
3495 {
3496 return req->flags & REQ_F_ISREG ||
3497 S_ISBLK(file_inode(req->file)->i_mode);
3498 }
3499
3500 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3501 {
3502 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3503 struct kiocb *kiocb = &req->rw.kiocb;
3504 struct iov_iter __iter, *iter = &__iter;
3505 struct io_async_rw *rw = req->async_data;
3506 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3507 struct iov_iter_state __state, *state;
3508 ssize_t ret, ret2;
3509
3510 if (rw) {
3511 iter = &rw->iter;
3512 state = &rw->iter_state;
3513 /*
3514 * We come here from an earlier attempt, restore our state to
3515 * match in case it doesn't. It's cheap enough that we don't
3516 * need to make this conditional.
3517 */
3518 iov_iter_restore(iter, state);
3519 iovec = NULL;
3520 } else {
3521 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3522 if (ret < 0)
3523 return ret;
3524 state = &__state;
3525 iov_iter_save_state(iter, state);
3526 }
3527 req->result = iov_iter_count(iter);
3528
3529 /* Ensure we clear previously set non-block flag */
3530 if (!force_nonblock)
3531 kiocb->ki_flags &= ~IOCB_NOWAIT;
3532 else
3533 kiocb->ki_flags |= IOCB_NOWAIT;
3534
3535 /* If the file doesn't support async, just async punt */
3536 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3537 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3538 return ret ?: -EAGAIN;
3539 }
3540
3541 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3542 if (unlikely(ret)) {
3543 kfree(iovec);
3544 return ret;
3545 }
3546
3547 ret = io_iter_do_read(req, iter);
3548
3549 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3550 req->flags &= ~REQ_F_REISSUE;
3551 /* IOPOLL retry should happen for io-wq threads */
3552 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3553 goto done;
3554 /* no retry on NONBLOCK nor RWF_NOWAIT */
3555 if (req->flags & REQ_F_NOWAIT)
3556 goto done;
3557 ret = 0;
3558 } else if (ret == -EIOCBQUEUED) {
3559 goto out_free;
3560 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3561 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3562 /* read all, failed, already did sync or don't want to retry */
3563 goto done;
3564 }
3565
3566 /*
3567 * Don't depend on the iter state matching what was consumed, or being
3568 * untouched in case of error. Restore it and we'll advance it
3569 * manually if we need to.
3570 */
3571 iov_iter_restore(iter, state);
3572
3573 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3574 if (ret2)
3575 return ret2;
3576
3577 iovec = NULL;
3578 rw = req->async_data;
3579 /*
3580 * Now use our persistent iterator and state, if we aren't already.
3581 * We've restored and mapped the iter to match.
3582 */
3583 if (iter != &rw->iter) {
3584 iter = &rw->iter;
3585 state = &rw->iter_state;
3586 }
3587
3588 do {
3589 /*
3590 * We end up here because of a partial read, either from
3591 * above or inside this loop. Advance the iter by the bytes
3592 * that were consumed.
3593 */
3594 iov_iter_advance(iter, ret);
3595 if (!iov_iter_count(iter))
3596 break;
3597 rw->bytes_done += ret;
3598 iov_iter_save_state(iter, state);
3599
3600 /* if we can retry, do so with the callbacks armed */
3601 if (!io_rw_should_retry(req)) {
3602 kiocb->ki_flags &= ~IOCB_WAITQ;
3603 return -EAGAIN;
3604 }
3605
3606 /*
3607 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3608 * we get -EIOCBQUEUED, then we'll get a notification when the
3609 * desired page gets unlocked. We can also get a partial read
3610 * here, and if we do, then just retry at the new offset.
3611 */
3612 ret = io_iter_do_read(req, iter);
3613 if (ret == -EIOCBQUEUED)
3614 return 0;
3615 /* we got some bytes, but not all. retry. */
3616 kiocb->ki_flags &= ~IOCB_WAITQ;
3617 iov_iter_restore(iter, state);
3618 } while (ret > 0);
3619 done:
3620 kiocb_done(kiocb, ret, issue_flags);
3621 out_free:
3622 /* it's faster to check here then delegate to kfree */
3623 if (iovec)
3624 kfree(iovec);
3625 return 0;
3626 }
3627
3628 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3629 {
3630 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3631 return -EBADF;
3632 return io_prep_rw(req, sqe, WRITE);
3633 }
3634
3635 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3636 {
3637 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3638 struct kiocb *kiocb = &req->rw.kiocb;
3639 struct iov_iter __iter, *iter = &__iter;
3640 struct io_async_rw *rw = req->async_data;
3641 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3642 struct iov_iter_state __state, *state;
3643 ssize_t ret, ret2;
3644
3645 if (rw) {
3646 iter = &rw->iter;
3647 state = &rw->iter_state;
3648 iov_iter_restore(iter, state);
3649 iovec = NULL;
3650 } else {
3651 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3652 if (ret < 0)
3653 return ret;
3654 state = &__state;
3655 iov_iter_save_state(iter, state);
3656 }
3657 req->result = iov_iter_count(iter);
3658
3659 /* Ensure we clear previously set non-block flag */
3660 if (!force_nonblock)
3661 kiocb->ki_flags &= ~IOCB_NOWAIT;
3662 else
3663 kiocb->ki_flags |= IOCB_NOWAIT;
3664
3665 /* If the file doesn't support async, just async punt */
3666 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3667 goto copy_iov;
3668
3669 /* file path doesn't support NOWAIT for non-direct_IO */
3670 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3671 (req->flags & REQ_F_ISREG))
3672 goto copy_iov;
3673
3674 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3675 if (unlikely(ret))
3676 goto out_free;
3677
3678 /*
3679 * Open-code file_start_write here to grab freeze protection,
3680 * which will be released by another thread in
3681 * io_complete_rw(). Fool lockdep by telling it the lock got
3682 * released so that it doesn't complain about the held lock when
3683 * we return to userspace.
3684 */
3685 if (req->flags & REQ_F_ISREG) {
3686 sb_start_write(file_inode(req->file)->i_sb);
3687 __sb_writers_release(file_inode(req->file)->i_sb,
3688 SB_FREEZE_WRITE);
3689 }
3690 kiocb->ki_flags |= IOCB_WRITE;
3691
3692 if (req->file->f_op->write_iter)
3693 ret2 = call_write_iter(req->file, kiocb, iter);
3694 else if (req->file->f_op->write)
3695 ret2 = loop_rw_iter(WRITE, req, iter);
3696 else
3697 ret2 = -EINVAL;
3698
3699 if (req->flags & REQ_F_REISSUE) {
3700 req->flags &= ~REQ_F_REISSUE;
3701 ret2 = -EAGAIN;
3702 }
3703
3704 /*
3705 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3706 * retry them without IOCB_NOWAIT.
3707 */
3708 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3709 ret2 = -EAGAIN;
3710 /* no retry on NONBLOCK nor RWF_NOWAIT */
3711 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3712 goto done;
3713 if (!force_nonblock || ret2 != -EAGAIN) {
3714 /* IOPOLL retry should happen for io-wq threads */
3715 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3716 goto copy_iov;
3717 done:
3718 kiocb_done(kiocb, ret2, issue_flags);
3719 } else {
3720 copy_iov:
3721 iov_iter_restore(iter, state);
3722 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3723 return ret ?: -EAGAIN;
3724 }
3725 out_free:
3726 /* it's reportedly faster than delegating the null check to kfree() */
3727 if (iovec)
3728 kfree(iovec);
3729 return ret;
3730 }
3731
3732 static int io_renameat_prep(struct io_kiocb *req,
3733 const struct io_uring_sqe *sqe)
3734 {
3735 struct io_rename *ren = &req->rename;
3736 const char __user *oldf, *newf;
3737
3738 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3739 return -EINVAL;
3740 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3741 return -EINVAL;
3742 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3743 return -EBADF;
3744
3745 ren->old_dfd = READ_ONCE(sqe->fd);
3746 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3747 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3748 ren->new_dfd = READ_ONCE(sqe->len);
3749 ren->flags = READ_ONCE(sqe->rename_flags);
3750
3751 ren->oldpath = getname(oldf);
3752 if (IS_ERR(ren->oldpath))
3753 return PTR_ERR(ren->oldpath);
3754
3755 ren->newpath = getname(newf);
3756 if (IS_ERR(ren->newpath)) {
3757 putname(ren->oldpath);
3758 return PTR_ERR(ren->newpath);
3759 }
3760
3761 req->flags |= REQ_F_NEED_CLEANUP;
3762 return 0;
3763 }
3764
3765 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3766 {
3767 struct io_rename *ren = &req->rename;
3768 int ret;
3769
3770 if (issue_flags & IO_URING_F_NONBLOCK)
3771 return -EAGAIN;
3772
3773 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3774 ren->newpath, ren->flags);
3775
3776 req->flags &= ~REQ_F_NEED_CLEANUP;
3777 if (ret < 0)
3778 req_set_fail(req);
3779 io_req_complete(req, ret);
3780 return 0;
3781 }
3782
3783 static int io_unlinkat_prep(struct io_kiocb *req,
3784 const struct io_uring_sqe *sqe)
3785 {
3786 struct io_unlink *un = &req->unlink;
3787 const char __user *fname;
3788
3789 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3790 return -EINVAL;
3791 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3792 sqe->splice_fd_in)
3793 return -EINVAL;
3794 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3795 return -EBADF;
3796
3797 un->dfd = READ_ONCE(sqe->fd);
3798
3799 un->flags = READ_ONCE(sqe->unlink_flags);
3800 if (un->flags & ~AT_REMOVEDIR)
3801 return -EINVAL;
3802
3803 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3804 un->filename = getname(fname);
3805 if (IS_ERR(un->filename))
3806 return PTR_ERR(un->filename);
3807
3808 req->flags |= REQ_F_NEED_CLEANUP;
3809 return 0;
3810 }
3811
3812 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3813 {
3814 struct io_unlink *un = &req->unlink;
3815 int ret;
3816
3817 if (issue_flags & IO_URING_F_NONBLOCK)
3818 return -EAGAIN;
3819
3820 if (un->flags & AT_REMOVEDIR)
3821 ret = do_rmdir(un->dfd, un->filename);
3822 else
3823 ret = do_unlinkat(un->dfd, un->filename);
3824
3825 req->flags &= ~REQ_F_NEED_CLEANUP;
3826 if (ret < 0)
3827 req_set_fail(req);
3828 io_req_complete(req, ret);
3829 return 0;
3830 }
3831
3832 static int io_mkdirat_prep(struct io_kiocb *req,
3833 const struct io_uring_sqe *sqe)
3834 {
3835 struct io_mkdir *mkd = &req->mkdir;
3836 const char __user *fname;
3837
3838 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3839 return -EINVAL;
3840 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3841 sqe->splice_fd_in)
3842 return -EINVAL;
3843 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3844 return -EBADF;
3845
3846 mkd->dfd = READ_ONCE(sqe->fd);
3847 mkd->mode = READ_ONCE(sqe->len);
3848
3849 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3850 mkd->filename = getname(fname);
3851 if (IS_ERR(mkd->filename))
3852 return PTR_ERR(mkd->filename);
3853
3854 req->flags |= REQ_F_NEED_CLEANUP;
3855 return 0;
3856 }
3857
3858 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3859 {
3860 struct io_mkdir *mkd = &req->mkdir;
3861 int ret;
3862
3863 if (issue_flags & IO_URING_F_NONBLOCK)
3864 return -EAGAIN;
3865
3866 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3867
3868 req->flags &= ~REQ_F_NEED_CLEANUP;
3869 if (ret < 0)
3870 req_set_fail(req);
3871 io_req_complete(req, ret);
3872 return 0;
3873 }
3874
3875 static int io_symlinkat_prep(struct io_kiocb *req,
3876 const struct io_uring_sqe *sqe)
3877 {
3878 struct io_symlink *sl = &req->symlink;
3879 const char __user *oldpath, *newpath;
3880
3881 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3882 return -EINVAL;
3883 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3884 sqe->splice_fd_in)
3885 return -EINVAL;
3886 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3887 return -EBADF;
3888
3889 sl->new_dfd = READ_ONCE(sqe->fd);
3890 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3891 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3892
3893 sl->oldpath = getname(oldpath);
3894 if (IS_ERR(sl->oldpath))
3895 return PTR_ERR(sl->oldpath);
3896
3897 sl->newpath = getname(newpath);
3898 if (IS_ERR(sl->newpath)) {
3899 putname(sl->oldpath);
3900 return PTR_ERR(sl->newpath);
3901 }
3902
3903 req->flags |= REQ_F_NEED_CLEANUP;
3904 return 0;
3905 }
3906
3907 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3908 {
3909 struct io_symlink *sl = &req->symlink;
3910 int ret;
3911
3912 if (issue_flags & IO_URING_F_NONBLOCK)
3913 return -EAGAIN;
3914
3915 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3916
3917 req->flags &= ~REQ_F_NEED_CLEANUP;
3918 if (ret < 0)
3919 req_set_fail(req);
3920 io_req_complete(req, ret);
3921 return 0;
3922 }
3923
3924 static int io_linkat_prep(struct io_kiocb *req,
3925 const struct io_uring_sqe *sqe)
3926 {
3927 struct io_hardlink *lnk = &req->hardlink;
3928 const char __user *oldf, *newf;
3929
3930 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3931 return -EINVAL;
3932 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3933 return -EINVAL;
3934 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3935 return -EBADF;
3936
3937 lnk->old_dfd = READ_ONCE(sqe->fd);
3938 lnk->new_dfd = READ_ONCE(sqe->len);
3939 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3940 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3941 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3942
3943 lnk->oldpath = getname(oldf);
3944 if (IS_ERR(lnk->oldpath))
3945 return PTR_ERR(lnk->oldpath);
3946
3947 lnk->newpath = getname(newf);
3948 if (IS_ERR(lnk->newpath)) {
3949 putname(lnk->oldpath);
3950 return PTR_ERR(lnk->newpath);
3951 }
3952
3953 req->flags |= REQ_F_NEED_CLEANUP;
3954 return 0;
3955 }
3956
3957 static int io_linkat(struct io_kiocb *req, int issue_flags)
3958 {
3959 struct io_hardlink *lnk = &req->hardlink;
3960 int ret;
3961
3962 if (issue_flags & IO_URING_F_NONBLOCK)
3963 return -EAGAIN;
3964
3965 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3966 lnk->newpath, lnk->flags);
3967
3968 req->flags &= ~REQ_F_NEED_CLEANUP;
3969 if (ret < 0)
3970 req_set_fail(req);
3971 io_req_complete(req, ret);
3972 return 0;
3973 }
3974
3975 static int io_shutdown_prep(struct io_kiocb *req,
3976 const struct io_uring_sqe *sqe)
3977 {
3978 #if defined(CONFIG_NET)
3979 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3980 return -EINVAL;
3981 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3982 sqe->buf_index || sqe->splice_fd_in))
3983 return -EINVAL;
3984
3985 req->shutdown.how = READ_ONCE(sqe->len);
3986 return 0;
3987 #else
3988 return -EOPNOTSUPP;
3989 #endif
3990 }
3991
3992 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3993 {
3994 #if defined(CONFIG_NET)
3995 struct socket *sock;
3996 int ret;
3997
3998 if (issue_flags & IO_URING_F_NONBLOCK)
3999 return -EAGAIN;
4000
4001 sock = sock_from_file(req->file);
4002 if (unlikely(!sock))
4003 return -ENOTSOCK;
4004
4005 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4006 if (ret < 0)
4007 req_set_fail(req);
4008 io_req_complete(req, ret);
4009 return 0;
4010 #else
4011 return -EOPNOTSUPP;
4012 #endif
4013 }
4014
4015 static int __io_splice_prep(struct io_kiocb *req,
4016 const struct io_uring_sqe *sqe)
4017 {
4018 struct io_splice *sp = &req->splice;
4019 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4020
4021 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4022 return -EINVAL;
4023
4024 sp->len = READ_ONCE(sqe->len);
4025 sp->flags = READ_ONCE(sqe->splice_flags);
4026 if (unlikely(sp->flags & ~valid_flags))
4027 return -EINVAL;
4028 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4029 return 0;
4030 }
4031
4032 static int io_tee_prep(struct io_kiocb *req,
4033 const struct io_uring_sqe *sqe)
4034 {
4035 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4036 return -EINVAL;
4037 return __io_splice_prep(req, sqe);
4038 }
4039
4040 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4041 {
4042 struct io_splice *sp = &req->splice;
4043 struct file *out = sp->file_out;
4044 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4045 struct file *in;
4046 long ret = 0;
4047
4048 if (issue_flags & IO_URING_F_NONBLOCK)
4049 return -EAGAIN;
4050
4051 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4052 (sp->flags & SPLICE_F_FD_IN_FIXED));
4053 if (!in) {
4054 ret = -EBADF;
4055 goto done;
4056 }
4057
4058 if (sp->len)
4059 ret = do_tee(in, out, sp->len, flags);
4060
4061 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4062 io_put_file(in);
4063 done:
4064 if (ret != sp->len)
4065 req_set_fail(req);
4066 io_req_complete(req, ret);
4067 return 0;
4068 }
4069
4070 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4071 {
4072 struct io_splice *sp = &req->splice;
4073
4074 sp->off_in = READ_ONCE(sqe->splice_off_in);
4075 sp->off_out = READ_ONCE(sqe->off);
4076 return __io_splice_prep(req, sqe);
4077 }
4078
4079 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4080 {
4081 struct io_splice *sp = &req->splice;
4082 struct file *out = sp->file_out;
4083 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4084 loff_t *poff_in, *poff_out;
4085 struct file *in;
4086 long ret = 0;
4087
4088 if (issue_flags & IO_URING_F_NONBLOCK)
4089 return -EAGAIN;
4090
4091 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4092 (sp->flags & SPLICE_F_FD_IN_FIXED));
4093 if (!in) {
4094 ret = -EBADF;
4095 goto done;
4096 }
4097
4098 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4099 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4100
4101 if (sp->len)
4102 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4103
4104 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4105 io_put_file(in);
4106 done:
4107 if (ret != sp->len)
4108 req_set_fail(req);
4109 io_req_complete(req, ret);
4110 return 0;
4111 }
4112
4113 /*
4114 * IORING_OP_NOP just posts a completion event, nothing else.
4115 */
4116 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4117 {
4118 struct io_ring_ctx *ctx = req->ctx;
4119
4120 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4121 return -EINVAL;
4122
4123 __io_req_complete(req, issue_flags, 0, 0);
4124 return 0;
4125 }
4126
4127 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4128 {
4129 struct io_ring_ctx *ctx = req->ctx;
4130
4131 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4132 return -EINVAL;
4133 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4134 sqe->splice_fd_in))
4135 return -EINVAL;
4136
4137 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4138 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4139 return -EINVAL;
4140
4141 req->sync.off = READ_ONCE(sqe->off);
4142 req->sync.len = READ_ONCE(sqe->len);
4143 return 0;
4144 }
4145
4146 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4147 {
4148 loff_t end = req->sync.off + req->sync.len;
4149 int ret;
4150
4151 /* fsync always requires a blocking context */
4152 if (issue_flags & IO_URING_F_NONBLOCK)
4153 return -EAGAIN;
4154
4155 ret = vfs_fsync_range(req->file, req->sync.off,
4156 end > 0 ? end : LLONG_MAX,
4157 req->sync.flags & IORING_FSYNC_DATASYNC);
4158 if (ret < 0)
4159 req_set_fail(req);
4160 io_req_complete(req, ret);
4161 return 0;
4162 }
4163
4164 static int io_fallocate_prep(struct io_kiocb *req,
4165 const struct io_uring_sqe *sqe)
4166 {
4167 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4168 sqe->splice_fd_in)
4169 return -EINVAL;
4170 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4171 return -EINVAL;
4172
4173 req->sync.off = READ_ONCE(sqe->off);
4174 req->sync.len = READ_ONCE(sqe->addr);
4175 req->sync.mode = READ_ONCE(sqe->len);
4176 return 0;
4177 }
4178
4179 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4180 {
4181 int ret;
4182
4183 /* fallocate always requiring blocking context */
4184 if (issue_flags & IO_URING_F_NONBLOCK)
4185 return -EAGAIN;
4186 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4187 req->sync.len);
4188 if (ret < 0)
4189 req_set_fail(req);
4190 else
4191 fsnotify_modify(req->file);
4192 io_req_complete(req, ret);
4193 return 0;
4194 }
4195
4196 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4197 {
4198 const char __user *fname;
4199 int ret;
4200
4201 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4202 return -EINVAL;
4203 if (unlikely(sqe->ioprio || sqe->buf_index))
4204 return -EINVAL;
4205 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4206 return -EBADF;
4207
4208 /* open.how should be already initialised */
4209 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4210 req->open.how.flags |= O_LARGEFILE;
4211
4212 req->open.dfd = READ_ONCE(sqe->fd);
4213 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4214 req->open.filename = getname(fname);
4215 if (IS_ERR(req->open.filename)) {
4216 ret = PTR_ERR(req->open.filename);
4217 req->open.filename = NULL;
4218 return ret;
4219 }
4220
4221 req->open.file_slot = READ_ONCE(sqe->file_index);
4222 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4223 return -EINVAL;
4224
4225 req->open.nofile = rlimit(RLIMIT_NOFILE);
4226 req->flags |= REQ_F_NEED_CLEANUP;
4227 return 0;
4228 }
4229
4230 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4231 {
4232 u64 mode = READ_ONCE(sqe->len);
4233 u64 flags = READ_ONCE(sqe->open_flags);
4234
4235 req->open.how = build_open_how(flags, mode);
4236 return __io_openat_prep(req, sqe);
4237 }
4238
4239 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4240 {
4241 struct open_how __user *how;
4242 size_t len;
4243 int ret;
4244
4245 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4246 len = READ_ONCE(sqe->len);
4247 if (len < OPEN_HOW_SIZE_VER0)
4248 return -EINVAL;
4249
4250 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4251 len);
4252 if (ret)
4253 return ret;
4254
4255 return __io_openat_prep(req, sqe);
4256 }
4257
4258 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4259 {
4260 struct open_flags op;
4261 struct file *file;
4262 bool resolve_nonblock, nonblock_set;
4263 bool fixed = !!req->open.file_slot;
4264 int ret;
4265
4266 ret = build_open_flags(&req->open.how, &op);
4267 if (ret)
4268 goto err;
4269 nonblock_set = op.open_flag & O_NONBLOCK;
4270 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4271 if (issue_flags & IO_URING_F_NONBLOCK) {
4272 /*
4273 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4274 * it'll always -EAGAIN
4275 */
4276 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4277 return -EAGAIN;
4278 op.lookup_flags |= LOOKUP_CACHED;
4279 op.open_flag |= O_NONBLOCK;
4280 }
4281
4282 if (!fixed) {
4283 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4284 if (ret < 0)
4285 goto err;
4286 }
4287
4288 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4289 if (IS_ERR(file)) {
4290 /*
4291 * We could hang on to this 'fd' on retrying, but seems like
4292 * marginal gain for something that is now known to be a slower
4293 * path. So just put it, and we'll get a new one when we retry.
4294 */
4295 if (!fixed)
4296 put_unused_fd(ret);
4297
4298 ret = PTR_ERR(file);
4299 /* only retry if RESOLVE_CACHED wasn't already set by application */
4300 if (ret == -EAGAIN &&
4301 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4302 return -EAGAIN;
4303 goto err;
4304 }
4305
4306 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4307 file->f_flags &= ~O_NONBLOCK;
4308 fsnotify_open(file);
4309
4310 if (!fixed)
4311 fd_install(ret, file);
4312 else
4313 ret = io_install_fixed_file(req, file, issue_flags,
4314 req->open.file_slot - 1);
4315 err:
4316 putname(req->open.filename);
4317 req->flags &= ~REQ_F_NEED_CLEANUP;
4318 if (ret < 0)
4319 req_set_fail(req);
4320 __io_req_complete(req, issue_flags, ret, 0);
4321 return 0;
4322 }
4323
4324 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4325 {
4326 return io_openat2(req, issue_flags);
4327 }
4328
4329 static int io_remove_buffers_prep(struct io_kiocb *req,
4330 const struct io_uring_sqe *sqe)
4331 {
4332 struct io_provide_buf *p = &req->pbuf;
4333 u64 tmp;
4334
4335 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4336 sqe->splice_fd_in)
4337 return -EINVAL;
4338
4339 tmp = READ_ONCE(sqe->fd);
4340 if (!tmp || tmp > USHRT_MAX)
4341 return -EINVAL;
4342
4343 memset(p, 0, sizeof(*p));
4344 p->nbufs = tmp;
4345 p->bgid = READ_ONCE(sqe->buf_group);
4346 return 0;
4347 }
4348
4349 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4350 int bgid, unsigned nbufs)
4351 {
4352 unsigned i = 0;
4353
4354 /* shouldn't happen */
4355 if (!nbufs)
4356 return 0;
4357
4358 /* the head kbuf is the list itself */
4359 while (!list_empty(&buf->list)) {
4360 struct io_buffer *nxt;
4361
4362 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4363 list_del(&nxt->list);
4364 kfree(nxt);
4365 if (++i == nbufs)
4366 return i;
4367 cond_resched();
4368 }
4369 i++;
4370 kfree(buf);
4371 xa_erase(&ctx->io_buffers, bgid);
4372
4373 return i;
4374 }
4375
4376 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4377 {
4378 struct io_provide_buf *p = &req->pbuf;
4379 struct io_ring_ctx *ctx = req->ctx;
4380 struct io_buffer *head;
4381 int ret = 0;
4382 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4383
4384 io_ring_submit_lock(ctx, !force_nonblock);
4385
4386 lockdep_assert_held(&ctx->uring_lock);
4387
4388 ret = -ENOENT;
4389 head = xa_load(&ctx->io_buffers, p->bgid);
4390 if (head)
4391 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4392 if (ret < 0)
4393 req_set_fail(req);
4394
4395 /* complete before unlock, IOPOLL may need the lock */
4396 __io_req_complete(req, issue_flags, ret, 0);
4397 io_ring_submit_unlock(ctx, !force_nonblock);
4398 return 0;
4399 }
4400
4401 static int io_provide_buffers_prep(struct io_kiocb *req,
4402 const struct io_uring_sqe *sqe)
4403 {
4404 unsigned long size, tmp_check;
4405 struct io_provide_buf *p = &req->pbuf;
4406 u64 tmp;
4407
4408 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4409 return -EINVAL;
4410
4411 tmp = READ_ONCE(sqe->fd);
4412 if (!tmp || tmp > USHRT_MAX)
4413 return -E2BIG;
4414 p->nbufs = tmp;
4415 p->addr = READ_ONCE(sqe->addr);
4416 p->len = READ_ONCE(sqe->len);
4417
4418 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4419 &size))
4420 return -EOVERFLOW;
4421 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4422 return -EOVERFLOW;
4423
4424 size = (unsigned long)p->len * p->nbufs;
4425 if (!access_ok(u64_to_user_ptr(p->addr), size))
4426 return -EFAULT;
4427
4428 p->bgid = READ_ONCE(sqe->buf_group);
4429 tmp = READ_ONCE(sqe->off);
4430 if (tmp > USHRT_MAX)
4431 return -E2BIG;
4432 p->bid = tmp;
4433 return 0;
4434 }
4435
4436 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4437 {
4438 struct io_buffer *buf;
4439 u64 addr = pbuf->addr;
4440 int i, bid = pbuf->bid;
4441
4442 for (i = 0; i < pbuf->nbufs; i++) {
4443 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4444 if (!buf)
4445 break;
4446
4447 buf->addr = addr;
4448 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4449 buf->bid = bid;
4450 addr += pbuf->len;
4451 bid++;
4452 if (!*head) {
4453 INIT_LIST_HEAD(&buf->list);
4454 *head = buf;
4455 } else {
4456 list_add_tail(&buf->list, &(*head)->list);
4457 }
4458 cond_resched();
4459 }
4460
4461 return i ? i : -ENOMEM;
4462 }
4463
4464 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4465 {
4466 struct io_provide_buf *p = &req->pbuf;
4467 struct io_ring_ctx *ctx = req->ctx;
4468 struct io_buffer *head, *list;
4469 int ret = 0;
4470 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4471
4472 io_ring_submit_lock(ctx, !force_nonblock);
4473
4474 lockdep_assert_held(&ctx->uring_lock);
4475
4476 list = head = xa_load(&ctx->io_buffers, p->bgid);
4477
4478 ret = io_add_buffers(p, &head);
4479 if (ret >= 0 && !list) {
4480 ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4481 if (ret < 0)
4482 __io_remove_buffers(ctx, head, p->bgid, -1U);
4483 }
4484 if (ret < 0)
4485 req_set_fail(req);
4486 /* complete before unlock, IOPOLL may need the lock */
4487 __io_req_complete(req, issue_flags, ret, 0);
4488 io_ring_submit_unlock(ctx, !force_nonblock);
4489 return 0;
4490 }
4491
4492 static int io_epoll_ctl_prep(struct io_kiocb *req,
4493 const struct io_uring_sqe *sqe)
4494 {
4495 #if defined(CONFIG_EPOLL)
4496 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4497 return -EINVAL;
4498 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4499 return -EINVAL;
4500
4501 req->epoll.epfd = READ_ONCE(sqe->fd);
4502 req->epoll.op = READ_ONCE(sqe->len);
4503 req->epoll.fd = READ_ONCE(sqe->off);
4504
4505 if (ep_op_has_event(req->epoll.op)) {
4506 struct epoll_event __user *ev;
4507
4508 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4509 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4510 return -EFAULT;
4511 }
4512
4513 return 0;
4514 #else
4515 return -EOPNOTSUPP;
4516 #endif
4517 }
4518
4519 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4520 {
4521 #if defined(CONFIG_EPOLL)
4522 struct io_epoll *ie = &req->epoll;
4523 int ret;
4524 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4525
4526 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4527 if (force_nonblock && ret == -EAGAIN)
4528 return -EAGAIN;
4529
4530 if (ret < 0)
4531 req_set_fail(req);
4532 __io_req_complete(req, issue_flags, ret, 0);
4533 return 0;
4534 #else
4535 return -EOPNOTSUPP;
4536 #endif
4537 }
4538
4539 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4540 {
4541 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4542 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4543 return -EINVAL;
4544 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4545 return -EINVAL;
4546
4547 req->madvise.addr = READ_ONCE(sqe->addr);
4548 req->madvise.len = READ_ONCE(sqe->len);
4549 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4550 return 0;
4551 #else
4552 return -EOPNOTSUPP;
4553 #endif
4554 }
4555
4556 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4557 {
4558 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4559 struct io_madvise *ma = &req->madvise;
4560 int ret;
4561
4562 if (issue_flags & IO_URING_F_NONBLOCK)
4563 return -EAGAIN;
4564
4565 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4566 if (ret < 0)
4567 req_set_fail(req);
4568 io_req_complete(req, ret);
4569 return 0;
4570 #else
4571 return -EOPNOTSUPP;
4572 #endif
4573 }
4574
4575 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4576 {
4577 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4578 return -EINVAL;
4579 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4580 return -EINVAL;
4581
4582 req->fadvise.offset = READ_ONCE(sqe->off);
4583 req->fadvise.len = READ_ONCE(sqe->len);
4584 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4585 return 0;
4586 }
4587
4588 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4589 {
4590 struct io_fadvise *fa = &req->fadvise;
4591 int ret;
4592
4593 if (issue_flags & IO_URING_F_NONBLOCK) {
4594 switch (fa->advice) {
4595 case POSIX_FADV_NORMAL:
4596 case POSIX_FADV_RANDOM:
4597 case POSIX_FADV_SEQUENTIAL:
4598 break;
4599 default:
4600 return -EAGAIN;
4601 }
4602 }
4603
4604 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4605 if (ret < 0)
4606 req_set_fail(req);
4607 __io_req_complete(req, issue_flags, ret, 0);
4608 return 0;
4609 }
4610
4611 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4612 {
4613 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4614 return -EINVAL;
4615 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4616 return -EINVAL;
4617 if (req->flags & REQ_F_FIXED_FILE)
4618 return -EBADF;
4619
4620 req->statx.dfd = READ_ONCE(sqe->fd);
4621 req->statx.mask = READ_ONCE(sqe->len);
4622 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4623 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4624 req->statx.flags = READ_ONCE(sqe->statx_flags);
4625
4626 return 0;
4627 }
4628
4629 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4630 {
4631 struct io_statx *ctx = &req->statx;
4632 int ret;
4633
4634 if (issue_flags & IO_URING_F_NONBLOCK)
4635 return -EAGAIN;
4636
4637 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4638 ctx->buffer);
4639
4640 if (ret < 0)
4641 req_set_fail(req);
4642 io_req_complete(req, ret);
4643 return 0;
4644 }
4645
4646 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4647 {
4648 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4649 return -EINVAL;
4650 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4651 sqe->rw_flags || sqe->buf_index)
4652 return -EINVAL;
4653 if (req->flags & REQ_F_FIXED_FILE)
4654 return -EBADF;
4655
4656 req->close.fd = READ_ONCE(sqe->fd);
4657 req->close.file_slot = READ_ONCE(sqe->file_index);
4658 if (req->close.file_slot && req->close.fd)
4659 return -EINVAL;
4660
4661 return 0;
4662 }
4663
4664 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4665 {
4666 struct files_struct *files = current->files;
4667 struct io_close *close = &req->close;
4668 struct fdtable *fdt;
4669 struct file *file = NULL;
4670 int ret = -EBADF;
4671
4672 if (req->close.file_slot) {
4673 ret = io_close_fixed(req, issue_flags);
4674 goto err;
4675 }
4676
4677 spin_lock(&files->file_lock);
4678 fdt = files_fdtable(files);
4679 if (close->fd >= fdt->max_fds) {
4680 spin_unlock(&files->file_lock);
4681 goto err;
4682 }
4683 file = fdt->fd[close->fd];
4684 if (!file || file->f_op == &io_uring_fops) {
4685 spin_unlock(&files->file_lock);
4686 file = NULL;
4687 goto err;
4688 }
4689
4690 /* if the file has a flush method, be safe and punt to async */
4691 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4692 spin_unlock(&files->file_lock);
4693 return -EAGAIN;
4694 }
4695
4696 ret = __close_fd_get_file(close->fd, &file);
4697 spin_unlock(&files->file_lock);
4698 if (ret < 0) {
4699 if (ret == -ENOENT)
4700 ret = -EBADF;
4701 goto err;
4702 }
4703
4704 /* No ->flush() or already async, safely close from here */
4705 ret = filp_close(file, current->files);
4706 err:
4707 if (ret < 0)
4708 req_set_fail(req);
4709 if (file)
4710 fput(file);
4711 __io_req_complete(req, issue_flags, ret, 0);
4712 return 0;
4713 }
4714
4715 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4716 {
4717 struct io_ring_ctx *ctx = req->ctx;
4718
4719 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4720 return -EINVAL;
4721 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4722 sqe->splice_fd_in))
4723 return -EINVAL;
4724
4725 req->sync.off = READ_ONCE(sqe->off);
4726 req->sync.len = READ_ONCE(sqe->len);
4727 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4728 return 0;
4729 }
4730
4731 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4732 {
4733 int ret;
4734
4735 /* sync_file_range always requires a blocking context */
4736 if (issue_flags & IO_URING_F_NONBLOCK)
4737 return -EAGAIN;
4738
4739 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4740 req->sync.flags);
4741 if (ret < 0)
4742 req_set_fail(req);
4743 io_req_complete(req, ret);
4744 return 0;
4745 }
4746
4747 #if defined(CONFIG_NET)
4748 static int io_setup_async_msg(struct io_kiocb *req,
4749 struct io_async_msghdr *kmsg)
4750 {
4751 struct io_async_msghdr *async_msg = req->async_data;
4752
4753 if (async_msg)
4754 return -EAGAIN;
4755 if (io_alloc_async_data(req)) {
4756 kfree(kmsg->free_iov);
4757 return -ENOMEM;
4758 }
4759 async_msg = req->async_data;
4760 req->flags |= REQ_F_NEED_CLEANUP;
4761 memcpy(async_msg, kmsg, sizeof(*kmsg));
4762 async_msg->msg.msg_name = &async_msg->addr;
4763 /* if were using fast_iov, set it to the new one */
4764 if (!async_msg->free_iov)
4765 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4766
4767 return -EAGAIN;
4768 }
4769
4770 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4771 struct io_async_msghdr *iomsg)
4772 {
4773 iomsg->msg.msg_name = &iomsg->addr;
4774 iomsg->free_iov = iomsg->fast_iov;
4775 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4776 req->sr_msg.msg_flags, &iomsg->free_iov);
4777 }
4778
4779 static int io_sendmsg_prep_async(struct io_kiocb *req)
4780 {
4781 int ret;
4782
4783 ret = io_sendmsg_copy_hdr(req, req->async_data);
4784 if (!ret)
4785 req->flags |= REQ_F_NEED_CLEANUP;
4786 return ret;
4787 }
4788
4789 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4790 {
4791 struct io_sr_msg *sr = &req->sr_msg;
4792
4793 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4794 return -EINVAL;
4795 if (unlikely(sqe->addr2 || sqe->file_index))
4796 return -EINVAL;
4797 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4798 return -EINVAL;
4799
4800 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4801 sr->len = READ_ONCE(sqe->len);
4802 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4803 if (sr->msg_flags & MSG_DONTWAIT)
4804 req->flags |= REQ_F_NOWAIT;
4805
4806 #ifdef CONFIG_COMPAT
4807 if (req->ctx->compat)
4808 sr->msg_flags |= MSG_CMSG_COMPAT;
4809 #endif
4810 return 0;
4811 }
4812
4813 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4814 {
4815 struct io_async_msghdr iomsg, *kmsg;
4816 struct socket *sock;
4817 unsigned flags;
4818 int min_ret = 0;
4819 int ret;
4820
4821 sock = sock_from_file(req->file);
4822 if (unlikely(!sock))
4823 return -ENOTSOCK;
4824
4825 kmsg = req->async_data;
4826 if (!kmsg) {
4827 ret = io_sendmsg_copy_hdr(req, &iomsg);
4828 if (ret)
4829 return ret;
4830 kmsg = &iomsg;
4831 }
4832
4833 flags = req->sr_msg.msg_flags;
4834 if (issue_flags & IO_URING_F_NONBLOCK)
4835 flags |= MSG_DONTWAIT;
4836 if (flags & MSG_WAITALL)
4837 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4838
4839 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4840 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4841 return io_setup_async_msg(req, kmsg);
4842 if (ret == -ERESTARTSYS)
4843 ret = -EINTR;
4844
4845 /* fast path, check for non-NULL to avoid function call */
4846 if (kmsg->free_iov)
4847 kfree(kmsg->free_iov);
4848 req->flags &= ~REQ_F_NEED_CLEANUP;
4849 if (ret < min_ret)
4850 req_set_fail(req);
4851 __io_req_complete(req, issue_flags, ret, 0);
4852 return 0;
4853 }
4854
4855 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4856 {
4857 struct io_sr_msg *sr = &req->sr_msg;
4858 struct msghdr msg;
4859 struct iovec iov;
4860 struct socket *sock;
4861 unsigned flags;
4862 int min_ret = 0;
4863 int ret;
4864
4865 sock = sock_from_file(req->file);
4866 if (unlikely(!sock))
4867 return -ENOTSOCK;
4868
4869 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4870 if (unlikely(ret))
4871 return ret;
4872
4873 msg.msg_name = NULL;
4874 msg.msg_control = NULL;
4875 msg.msg_controllen = 0;
4876 msg.msg_namelen = 0;
4877
4878 flags = req->sr_msg.msg_flags;
4879 if (issue_flags & IO_URING_F_NONBLOCK)
4880 flags |= MSG_DONTWAIT;
4881 if (flags & MSG_WAITALL)
4882 min_ret = iov_iter_count(&msg.msg_iter);
4883
4884 msg.msg_flags = flags;
4885 ret = sock_sendmsg(sock, &msg);
4886 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4887 return -EAGAIN;
4888 if (ret == -ERESTARTSYS)
4889 ret = -EINTR;
4890
4891 if (ret < min_ret)
4892 req_set_fail(req);
4893 __io_req_complete(req, issue_flags, ret, 0);
4894 return 0;
4895 }
4896
4897 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4898 struct io_async_msghdr *iomsg)
4899 {
4900 struct io_sr_msg *sr = &req->sr_msg;
4901 struct iovec __user *uiov;
4902 size_t iov_len;
4903 int ret;
4904
4905 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4906 &iomsg->uaddr, &uiov, &iov_len);
4907 if (ret)
4908 return ret;
4909
4910 if (req->flags & REQ_F_BUFFER_SELECT) {
4911 if (iov_len > 1)
4912 return -EINVAL;
4913 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4914 return -EFAULT;
4915 sr->len = iomsg->fast_iov[0].iov_len;
4916 iomsg->free_iov = NULL;
4917 } else {
4918 iomsg->free_iov = iomsg->fast_iov;
4919 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4920 &iomsg->free_iov, &iomsg->msg.msg_iter,
4921 false);
4922 if (ret > 0)
4923 ret = 0;
4924 }
4925
4926 return ret;
4927 }
4928
4929 #ifdef CONFIG_COMPAT
4930 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4931 struct io_async_msghdr *iomsg)
4932 {
4933 struct io_sr_msg *sr = &req->sr_msg;
4934 struct compat_iovec __user *uiov;
4935 compat_uptr_t ptr;
4936 compat_size_t len;
4937 int ret;
4938
4939 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4940 &ptr, &len);
4941 if (ret)
4942 return ret;
4943
4944 uiov = compat_ptr(ptr);
4945 if (req->flags & REQ_F_BUFFER_SELECT) {
4946 compat_ssize_t clen;
4947
4948 if (len > 1)
4949 return -EINVAL;
4950 if (!access_ok(uiov, sizeof(*uiov)))
4951 return -EFAULT;
4952 if (__get_user(clen, &uiov->iov_len))
4953 return -EFAULT;
4954 if (clen < 0)
4955 return -EINVAL;
4956 sr->len = clen;
4957 iomsg->free_iov = NULL;
4958 } else {
4959 iomsg->free_iov = iomsg->fast_iov;
4960 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4961 UIO_FASTIOV, &iomsg->free_iov,
4962 &iomsg->msg.msg_iter, true);
4963 if (ret < 0)
4964 return ret;
4965 }
4966
4967 return 0;
4968 }
4969 #endif
4970
4971 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4972 struct io_async_msghdr *iomsg)
4973 {
4974 iomsg->msg.msg_name = &iomsg->addr;
4975
4976 #ifdef CONFIG_COMPAT
4977 if (req->ctx->compat)
4978 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4979 #endif
4980
4981 return __io_recvmsg_copy_hdr(req, iomsg);
4982 }
4983
4984 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4985 bool needs_lock)
4986 {
4987 struct io_sr_msg *sr = &req->sr_msg;
4988 struct io_buffer *kbuf;
4989
4990 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4991 if (IS_ERR(kbuf))
4992 return kbuf;
4993
4994 sr->kbuf = kbuf;
4995 req->flags |= REQ_F_BUFFER_SELECTED;
4996 return kbuf;
4997 }
4998
4999 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5000 {
5001 return io_put_kbuf(req, req->sr_msg.kbuf);
5002 }
5003
5004 static int io_recvmsg_prep_async(struct io_kiocb *req)
5005 {
5006 int ret;
5007
5008 ret = io_recvmsg_copy_hdr(req, req->async_data);
5009 if (!ret)
5010 req->flags |= REQ_F_NEED_CLEANUP;
5011 return ret;
5012 }
5013
5014 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5015 {
5016 struct io_sr_msg *sr = &req->sr_msg;
5017
5018 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5019 return -EINVAL;
5020 if (unlikely(sqe->addr2 || sqe->file_index))
5021 return -EINVAL;
5022 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5023 return -EINVAL;
5024
5025 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5026 sr->len = READ_ONCE(sqe->len);
5027 sr->bgid = READ_ONCE(sqe->buf_group);
5028 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5029 if (sr->msg_flags & MSG_DONTWAIT)
5030 req->flags |= REQ_F_NOWAIT;
5031
5032 #ifdef CONFIG_COMPAT
5033 if (req->ctx->compat)
5034 sr->msg_flags |= MSG_CMSG_COMPAT;
5035 #endif
5036 return 0;
5037 }
5038
5039 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5040 {
5041 struct io_async_msghdr iomsg, *kmsg;
5042 struct socket *sock;
5043 struct io_buffer *kbuf;
5044 unsigned flags;
5045 int min_ret = 0;
5046 int ret, cflags = 0;
5047 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5048
5049 sock = sock_from_file(req->file);
5050 if (unlikely(!sock))
5051 return -ENOTSOCK;
5052
5053 kmsg = req->async_data;
5054 if (!kmsg) {
5055 ret = io_recvmsg_copy_hdr(req, &iomsg);
5056 if (ret)
5057 return ret;
5058 kmsg = &iomsg;
5059 }
5060
5061 if (req->flags & REQ_F_BUFFER_SELECT) {
5062 kbuf = io_recv_buffer_select(req, !force_nonblock);
5063 if (IS_ERR(kbuf))
5064 return PTR_ERR(kbuf);
5065 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5066 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5067 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5068 1, req->sr_msg.len);
5069 }
5070
5071 flags = req->sr_msg.msg_flags;
5072 if (force_nonblock)
5073 flags |= MSG_DONTWAIT;
5074 if (flags & MSG_WAITALL)
5075 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5076
5077 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5078 kmsg->uaddr, flags);
5079 if (force_nonblock && ret == -EAGAIN)
5080 return io_setup_async_msg(req, kmsg);
5081 if (ret == -ERESTARTSYS)
5082 ret = -EINTR;
5083
5084 if (req->flags & REQ_F_BUFFER_SELECTED)
5085 cflags = io_put_recv_kbuf(req);
5086 /* fast path, check for non-NULL to avoid function call */
5087 if (kmsg->free_iov)
5088 kfree(kmsg->free_iov);
5089 req->flags &= ~REQ_F_NEED_CLEANUP;
5090 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5091 req_set_fail(req);
5092 __io_req_complete(req, issue_flags, ret, cflags);
5093 return 0;
5094 }
5095
5096 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5097 {
5098 struct io_buffer *kbuf;
5099 struct io_sr_msg *sr = &req->sr_msg;
5100 struct msghdr msg;
5101 void __user *buf = sr->buf;
5102 struct socket *sock;
5103 struct iovec iov;
5104 unsigned flags;
5105 int min_ret = 0;
5106 int ret, cflags = 0;
5107 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5108
5109 sock = sock_from_file(req->file);
5110 if (unlikely(!sock))
5111 return -ENOTSOCK;
5112
5113 if (req->flags & REQ_F_BUFFER_SELECT) {
5114 kbuf = io_recv_buffer_select(req, !force_nonblock);
5115 if (IS_ERR(kbuf))
5116 return PTR_ERR(kbuf);
5117 buf = u64_to_user_ptr(kbuf->addr);
5118 }
5119
5120 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5121 if (unlikely(ret))
5122 goto out_free;
5123
5124 msg.msg_name = NULL;
5125 msg.msg_control = NULL;
5126 msg.msg_controllen = 0;
5127 msg.msg_namelen = 0;
5128 msg.msg_iocb = NULL;
5129 msg.msg_flags = 0;
5130
5131 flags = req->sr_msg.msg_flags;
5132 if (force_nonblock)
5133 flags |= MSG_DONTWAIT;
5134 if (flags & MSG_WAITALL)
5135 min_ret = iov_iter_count(&msg.msg_iter);
5136
5137 ret = sock_recvmsg(sock, &msg, flags);
5138 if (force_nonblock && ret == -EAGAIN)
5139 return -EAGAIN;
5140 if (ret == -ERESTARTSYS)
5141 ret = -EINTR;
5142 out_free:
5143 if (req->flags & REQ_F_BUFFER_SELECTED)
5144 cflags = io_put_recv_kbuf(req);
5145 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5146 req_set_fail(req);
5147 __io_req_complete(req, issue_flags, ret, cflags);
5148 return 0;
5149 }
5150
5151 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5152 {
5153 struct io_accept *accept = &req->accept;
5154
5155 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5156 return -EINVAL;
5157 if (sqe->ioprio || sqe->len || sqe->buf_index)
5158 return -EINVAL;
5159
5160 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5161 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5162 accept->flags = READ_ONCE(sqe->accept_flags);
5163 accept->nofile = rlimit(RLIMIT_NOFILE);
5164
5165 accept->file_slot = READ_ONCE(sqe->file_index);
5166 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5167 return -EINVAL;
5168 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5169 return -EINVAL;
5170 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5171 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5172 return 0;
5173 }
5174
5175 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5176 {
5177 struct io_accept *accept = &req->accept;
5178 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5179 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5180 bool fixed = !!accept->file_slot;
5181 struct file *file;
5182 int ret, fd;
5183
5184 if (req->file->f_flags & O_NONBLOCK)
5185 req->flags |= REQ_F_NOWAIT;
5186
5187 if (!fixed) {
5188 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5189 if (unlikely(fd < 0))
5190 return fd;
5191 }
5192 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5193 accept->flags);
5194 if (IS_ERR(file)) {
5195 if (!fixed)
5196 put_unused_fd(fd);
5197 ret = PTR_ERR(file);
5198 if (ret == -EAGAIN && force_nonblock)
5199 return -EAGAIN;
5200 if (ret == -ERESTARTSYS)
5201 ret = -EINTR;
5202 req_set_fail(req);
5203 } else if (!fixed) {
5204 fd_install(fd, file);
5205 ret = fd;
5206 } else {
5207 ret = io_install_fixed_file(req, file, issue_flags,
5208 accept->file_slot - 1);
5209 }
5210 __io_req_complete(req, issue_flags, ret, 0);
5211 return 0;
5212 }
5213
5214 static int io_connect_prep_async(struct io_kiocb *req)
5215 {
5216 struct io_async_connect *io = req->async_data;
5217 struct io_connect *conn = &req->connect;
5218
5219 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5220 }
5221
5222 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5223 {
5224 struct io_connect *conn = &req->connect;
5225
5226 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5227 return -EINVAL;
5228 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5229 sqe->splice_fd_in)
5230 return -EINVAL;
5231
5232 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5233 conn->addr_len = READ_ONCE(sqe->addr2);
5234 return 0;
5235 }
5236
5237 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5238 {
5239 struct io_async_connect __io, *io;
5240 unsigned file_flags;
5241 int ret;
5242 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5243
5244 if (req->async_data) {
5245 io = req->async_data;
5246 } else {
5247 ret = move_addr_to_kernel(req->connect.addr,
5248 req->connect.addr_len,
5249 &__io.address);
5250 if (ret)
5251 goto out;
5252 io = &__io;
5253 }
5254
5255 file_flags = force_nonblock ? O_NONBLOCK : 0;
5256
5257 ret = __sys_connect_file(req->file, &io->address,
5258 req->connect.addr_len, file_flags);
5259 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5260 if (req->async_data)
5261 return -EAGAIN;
5262 if (io_alloc_async_data(req)) {
5263 ret = -ENOMEM;
5264 goto out;
5265 }
5266 memcpy(req->async_data, &__io, sizeof(__io));
5267 return -EAGAIN;
5268 }
5269 if (ret == -ERESTARTSYS)
5270 ret = -EINTR;
5271 out:
5272 if (ret < 0)
5273 req_set_fail(req);
5274 __io_req_complete(req, issue_flags, ret, 0);
5275 return 0;
5276 }
5277 #else /* !CONFIG_NET */
5278 #define IO_NETOP_FN(op) \
5279 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5280 { \
5281 return -EOPNOTSUPP; \
5282 }
5283
5284 #define IO_NETOP_PREP(op) \
5285 IO_NETOP_FN(op) \
5286 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5287 { \
5288 return -EOPNOTSUPP; \
5289 } \
5290
5291 #define IO_NETOP_PREP_ASYNC(op) \
5292 IO_NETOP_PREP(op) \
5293 static int io_##op##_prep_async(struct io_kiocb *req) \
5294 { \
5295 return -EOPNOTSUPP; \
5296 }
5297
5298 IO_NETOP_PREP_ASYNC(sendmsg);
5299 IO_NETOP_PREP_ASYNC(recvmsg);
5300 IO_NETOP_PREP_ASYNC(connect);
5301 IO_NETOP_PREP(accept);
5302 IO_NETOP_FN(send);
5303 IO_NETOP_FN(recv);
5304 #endif /* CONFIG_NET */
5305
5306 struct io_poll_table {
5307 struct poll_table_struct pt;
5308 struct io_kiocb *req;
5309 int nr_entries;
5310 int error;
5311 };
5312
5313 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5314 {
5315 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5316 if (req->opcode == IORING_OP_POLL_ADD)
5317 return req->async_data;
5318 return req->apoll->double_poll;
5319 }
5320
5321 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5322 {
5323 if (req->opcode == IORING_OP_POLL_ADD)
5324 return &req->poll;
5325 return &req->apoll->poll;
5326 }
5327
5328 static void io_poll_req_insert(struct io_kiocb *req)
5329 {
5330 struct io_ring_ctx *ctx = req->ctx;
5331 struct hlist_head *list;
5332
5333 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5334 hlist_add_head(&req->hash_node, list);
5335 }
5336
5337 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5338 wait_queue_func_t wake_func)
5339 {
5340 poll->head = NULL;
5341 poll->done = false;
5342 poll->canceled = false;
5343 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5344 /* mask in events that we always want/need */
5345 poll->events = events | IO_POLL_UNMASK;
5346 INIT_LIST_HEAD(&poll->wait.entry);
5347 init_waitqueue_func_entry(&poll->wait, wake_func);
5348 }
5349
5350 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5351 __poll_t mask, io_req_tw_func_t func)
5352 {
5353 /* for instances that support it check for an event match first: */
5354 if (mask && !(mask & poll->events))
5355 return 0;
5356
5357 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5358
5359 list_del_init(&poll->wait.entry);
5360
5361 req->result = mask;
5362 req->io_task_work.func = func;
5363
5364 /*
5365 * If this fails, then the task is exiting. When a task exits, the
5366 * work gets canceled, so just cancel this request as well instead
5367 * of executing it. We can't safely execute it anyway, as we may not
5368 * have the needed state needed for it anyway.
5369 */
5370 io_req_task_work_add(req);
5371 return 1;
5372 }
5373
5374 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5375 __acquires(&req->ctx->completion_lock)
5376 {
5377 struct io_ring_ctx *ctx = req->ctx;
5378
5379 /* req->task == current here, checking PF_EXITING is safe */
5380 if (unlikely(req->task->flags & PF_EXITING))
5381 WRITE_ONCE(poll->canceled, true);
5382
5383 if (!req->result && !READ_ONCE(poll->canceled)) {
5384 struct poll_table_struct pt = { ._key = poll->events };
5385
5386 req->result = vfs_poll(req->file, &pt) & poll->events;
5387 }
5388
5389 spin_lock(&ctx->completion_lock);
5390 if (!req->result && !READ_ONCE(poll->canceled)) {
5391 add_wait_queue(poll->head, &poll->wait);
5392 return true;
5393 }
5394
5395 return false;
5396 }
5397
5398 static void io_poll_remove_double(struct io_kiocb *req)
5399 __must_hold(&req->ctx->completion_lock)
5400 {
5401 struct io_poll_iocb *poll = io_poll_get_double(req);
5402
5403 lockdep_assert_held(&req->ctx->completion_lock);
5404
5405 if (poll && poll->head) {
5406 struct wait_queue_head *head = poll->head;
5407
5408 spin_lock_irq(&head->lock);
5409 list_del_init(&poll->wait.entry);
5410 if (poll->wait.private)
5411 req_ref_put(req);
5412 poll->head = NULL;
5413 spin_unlock_irq(&head->lock);
5414 }
5415 }
5416
5417 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5418 __must_hold(&req->ctx->completion_lock)
5419 {
5420 struct io_ring_ctx *ctx = req->ctx;
5421 unsigned flags = IORING_CQE_F_MORE;
5422 int error;
5423
5424 if (READ_ONCE(req->poll.canceled)) {
5425 error = -ECANCELED;
5426 req->poll.events |= EPOLLONESHOT;
5427 } else {
5428 error = mangle_poll(mask);
5429 }
5430 if (req->poll.events & EPOLLONESHOT)
5431 flags = 0;
5432 if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5433 req->poll.events |= EPOLLONESHOT;
5434 flags = 0;
5435 }
5436 if (flags & IORING_CQE_F_MORE)
5437 ctx->cq_extra++;
5438
5439 return !(flags & IORING_CQE_F_MORE);
5440 }
5441
5442 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5443 __must_hold(&req->ctx->completion_lock)
5444 {
5445 bool done;
5446
5447 done = __io_poll_complete(req, mask);
5448 io_commit_cqring(req->ctx);
5449 return done;
5450 }
5451
5452 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5453 {
5454 struct io_ring_ctx *ctx = req->ctx;
5455 struct io_kiocb *nxt;
5456
5457 if (io_poll_rewait(req, &req->poll)) {
5458 spin_unlock(&ctx->completion_lock);
5459 } else {
5460 bool done;
5461
5462 if (req->poll.done) {
5463 spin_unlock(&ctx->completion_lock);
5464 return;
5465 }
5466 done = __io_poll_complete(req, req->result);
5467 if (done) {
5468 io_poll_remove_double(req);
5469 hash_del(&req->hash_node);
5470 req->poll.done = true;
5471 } else {
5472 req->result = 0;
5473 add_wait_queue(req->poll.head, &req->poll.wait);
5474 }
5475 io_commit_cqring(ctx);
5476 spin_unlock(&ctx->completion_lock);
5477 io_cqring_ev_posted(ctx);
5478
5479 if (done) {
5480 nxt = io_put_req_find_next(req);
5481 if (nxt)
5482 io_req_task_submit(nxt, locked);
5483 }
5484 }
5485 }
5486
5487 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5488 int sync, void *key)
5489 {
5490 struct io_kiocb *req = wait->private;
5491 struct io_poll_iocb *poll = io_poll_get_single(req);
5492 __poll_t mask = key_to_poll(key);
5493 unsigned long flags;
5494
5495 /* for instances that support it check for an event match first: */
5496 if (mask && !(mask & poll->events))
5497 return 0;
5498 if (!(poll->events & EPOLLONESHOT))
5499 return poll->wait.func(&poll->wait, mode, sync, key);
5500
5501 list_del_init(&wait->entry);
5502
5503 if (poll->head) {
5504 bool done;
5505
5506 spin_lock_irqsave(&poll->head->lock, flags);
5507 done = list_empty(&poll->wait.entry);
5508 if (!done)
5509 list_del_init(&poll->wait.entry);
5510 /* make sure double remove sees this as being gone */
5511 wait->private = NULL;
5512 spin_unlock_irqrestore(&poll->head->lock, flags);
5513 if (!done) {
5514 /* use wait func handler, so it matches the rq type */
5515 poll->wait.func(&poll->wait, mode, sync, key);
5516 }
5517 }
5518 req_ref_put(req);
5519 return 1;
5520 }
5521
5522 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5523 struct wait_queue_head *head,
5524 struct io_poll_iocb **poll_ptr)
5525 {
5526 struct io_kiocb *req = pt->req;
5527
5528 /*
5529 * The file being polled uses multiple waitqueues for poll handling
5530 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5531 * if this happens.
5532 */
5533 if (unlikely(pt->nr_entries)) {
5534 struct io_poll_iocb *poll_one = poll;
5535
5536 /* double add on the same waitqueue head, ignore */
5537 if (poll_one->head == head)
5538 return;
5539 /* already have a 2nd entry, fail a third attempt */
5540 if (*poll_ptr) {
5541 if ((*poll_ptr)->head == head)
5542 return;
5543 pt->error = -EINVAL;
5544 return;
5545 }
5546 /*
5547 * Can't handle multishot for double wait for now, turn it
5548 * into one-shot mode.
5549 */
5550 if (!(poll_one->events & EPOLLONESHOT))
5551 poll_one->events |= EPOLLONESHOT;
5552 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5553 if (!poll) {
5554 pt->error = -ENOMEM;
5555 return;
5556 }
5557 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5558 req_ref_get(req);
5559 poll->wait.private = req;
5560 *poll_ptr = poll;
5561 }
5562
5563 pt->nr_entries++;
5564 poll->head = head;
5565
5566 if (poll->events & EPOLLEXCLUSIVE)
5567 add_wait_queue_exclusive(head, &poll->wait);
5568 else
5569 add_wait_queue(head, &poll->wait);
5570 }
5571
5572 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5573 struct poll_table_struct *p)
5574 {
5575 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5576 struct async_poll *apoll = pt->req->apoll;
5577
5578 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5579 }
5580
5581 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5582 {
5583 struct async_poll *apoll = req->apoll;
5584 struct io_ring_ctx *ctx = req->ctx;
5585
5586 trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5587
5588 if (io_poll_rewait(req, &apoll->poll)) {
5589 spin_unlock(&ctx->completion_lock);
5590 return;
5591 }
5592
5593 hash_del(&req->hash_node);
5594 io_poll_remove_double(req);
5595 apoll->poll.done = true;
5596 spin_unlock(&ctx->completion_lock);
5597
5598 if (!READ_ONCE(apoll->poll.canceled))
5599 io_req_task_submit(req, locked);
5600 else
5601 io_req_complete_failed(req, -ECANCELED);
5602 }
5603
5604 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5605 void *key)
5606 {
5607 struct io_kiocb *req = wait->private;
5608 struct io_poll_iocb *poll = &req->apoll->poll;
5609
5610 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5611 key_to_poll(key));
5612
5613 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5614 }
5615
5616 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5617 struct io_poll_iocb *poll,
5618 struct io_poll_table *ipt, __poll_t mask,
5619 wait_queue_func_t wake_func)
5620 __acquires(&ctx->completion_lock)
5621 {
5622 struct io_ring_ctx *ctx = req->ctx;
5623 bool cancel = false;
5624
5625 INIT_HLIST_NODE(&req->hash_node);
5626 io_init_poll_iocb(poll, mask, wake_func);
5627 poll->file = req->file;
5628 poll->wait.private = req;
5629
5630 ipt->pt._key = mask;
5631 ipt->req = req;
5632 ipt->error = 0;
5633 ipt->nr_entries = 0;
5634
5635 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5636 if (unlikely(!ipt->nr_entries) && !ipt->error)
5637 ipt->error = -EINVAL;
5638
5639 spin_lock(&ctx->completion_lock);
5640 if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5641 io_poll_remove_double(req);
5642 if (likely(poll->head)) {
5643 spin_lock_irq(&poll->head->lock);
5644 if (unlikely(list_empty(&poll->wait.entry))) {
5645 if (ipt->error)
5646 cancel = true;
5647 ipt->error = 0;
5648 mask = 0;
5649 }
5650 if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5651 list_del_init(&poll->wait.entry);
5652 else if (cancel)
5653 WRITE_ONCE(poll->canceled, true);
5654 else if (!poll->done) /* actually waiting for an event */
5655 io_poll_req_insert(req);
5656 spin_unlock_irq(&poll->head->lock);
5657 }
5658
5659 return mask;
5660 }
5661
5662 enum {
5663 IO_APOLL_OK,
5664 IO_APOLL_ABORTED,
5665 IO_APOLL_READY
5666 };
5667
5668 static int io_arm_poll_handler(struct io_kiocb *req)
5669 {
5670 const struct io_op_def *def = &io_op_defs[req->opcode];
5671 struct io_ring_ctx *ctx = req->ctx;
5672 struct async_poll *apoll;
5673 struct io_poll_table ipt;
5674 __poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5675
5676 if (!req->file || !file_can_poll(req->file))
5677 return IO_APOLL_ABORTED;
5678 if (req->flags & REQ_F_POLLED)
5679 return IO_APOLL_ABORTED;
5680 if (!def->pollin && !def->pollout)
5681 return IO_APOLL_ABORTED;
5682
5683 if (def->pollin) {
5684 mask |= POLLIN | POLLRDNORM;
5685
5686 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5687 if ((req->opcode == IORING_OP_RECVMSG) &&
5688 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5689 mask &= ~POLLIN;
5690 } else {
5691 mask |= POLLOUT | POLLWRNORM;
5692 }
5693
5694 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5695 if (unlikely(!apoll))
5696 return IO_APOLL_ABORTED;
5697 apoll->double_poll = NULL;
5698 req->apoll = apoll;
5699 req->flags |= REQ_F_POLLED;
5700 ipt.pt._qproc = io_async_queue_proc;
5701 io_req_set_refcount(req);
5702
5703 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5704 io_async_wake);
5705 spin_unlock(&ctx->completion_lock);
5706 if (ret || ipt.error)
5707 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5708
5709 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5710 mask, apoll->poll.events);
5711 return IO_APOLL_OK;
5712 }
5713
5714 static bool __io_poll_remove_one(struct io_kiocb *req,
5715 struct io_poll_iocb *poll, bool do_cancel)
5716 __must_hold(&req->ctx->completion_lock)
5717 {
5718 bool do_complete = false;
5719
5720 if (!poll->head)
5721 return false;
5722 spin_lock_irq(&poll->head->lock);
5723 if (do_cancel)
5724 WRITE_ONCE(poll->canceled, true);
5725 if (!list_empty(&poll->wait.entry)) {
5726 list_del_init(&poll->wait.entry);
5727 do_complete = true;
5728 }
5729 spin_unlock_irq(&poll->head->lock);
5730 hash_del(&req->hash_node);
5731 return do_complete;
5732 }
5733
5734 static bool io_poll_remove_one(struct io_kiocb *req)
5735 __must_hold(&req->ctx->completion_lock)
5736 {
5737 bool do_complete;
5738
5739 io_poll_remove_double(req);
5740 do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5741
5742 if (do_complete) {
5743 io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5744 io_commit_cqring(req->ctx);
5745 req_set_fail(req);
5746 io_put_req_deferred(req);
5747 }
5748 return do_complete;
5749 }
5750
5751 /*
5752 * Returns true if we found and killed one or more poll requests
5753 */
5754 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5755 bool cancel_all)
5756 {
5757 struct hlist_node *tmp;
5758 struct io_kiocb *req;
5759 int posted = 0, i;
5760
5761 spin_lock(&ctx->completion_lock);
5762 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5763 struct hlist_head *list;
5764
5765 list = &ctx->cancel_hash[i];
5766 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5767 if (io_match_task_safe(req, tsk, cancel_all))
5768 posted += io_poll_remove_one(req);
5769 }
5770 }
5771 spin_unlock(&ctx->completion_lock);
5772
5773 if (posted)
5774 io_cqring_ev_posted(ctx);
5775
5776 return posted != 0;
5777 }
5778
5779 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5780 bool poll_only)
5781 __must_hold(&ctx->completion_lock)
5782 {
5783 struct hlist_head *list;
5784 struct io_kiocb *req;
5785
5786 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5787 hlist_for_each_entry(req, list, hash_node) {
5788 if (sqe_addr != req->user_data)
5789 continue;
5790 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5791 continue;
5792 return req;
5793 }
5794 return NULL;
5795 }
5796
5797 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5798 bool poll_only)
5799 __must_hold(&ctx->completion_lock)
5800 {
5801 struct io_kiocb *req;
5802
5803 req = io_poll_find(ctx, sqe_addr, poll_only);
5804 if (!req)
5805 return -ENOENT;
5806 if (io_poll_remove_one(req))
5807 return 0;
5808
5809 return -EALREADY;
5810 }
5811
5812 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5813 unsigned int flags)
5814 {
5815 u32 events;
5816
5817 events = READ_ONCE(sqe->poll32_events);
5818 #ifdef __BIG_ENDIAN
5819 events = swahw32(events);
5820 #endif
5821 if (!(flags & IORING_POLL_ADD_MULTI))
5822 events |= EPOLLONESHOT;
5823 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5824 }
5825
5826 static int io_poll_update_prep(struct io_kiocb *req,
5827 const struct io_uring_sqe *sqe)
5828 {
5829 struct io_poll_update *upd = &req->poll_update;
5830 u32 flags;
5831
5832 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5833 return -EINVAL;
5834 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5835 return -EINVAL;
5836 flags = READ_ONCE(sqe->len);
5837 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5838 IORING_POLL_ADD_MULTI))
5839 return -EINVAL;
5840 /* meaningless without update */
5841 if (flags == IORING_POLL_ADD_MULTI)
5842 return -EINVAL;
5843
5844 upd->old_user_data = READ_ONCE(sqe->addr);
5845 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5846 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5847
5848 upd->new_user_data = READ_ONCE(sqe->off);
5849 if (!upd->update_user_data && upd->new_user_data)
5850 return -EINVAL;
5851 if (upd->update_events)
5852 upd->events = io_poll_parse_events(sqe, flags);
5853 else if (sqe->poll32_events)
5854 return -EINVAL;
5855
5856 return 0;
5857 }
5858
5859 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5860 void *key)
5861 {
5862 struct io_kiocb *req = wait->private;
5863 struct io_poll_iocb *poll = &req->poll;
5864
5865 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5866 }
5867
5868 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5869 struct poll_table_struct *p)
5870 {
5871 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5872
5873 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5874 }
5875
5876 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5877 {
5878 struct io_poll_iocb *poll = &req->poll;
5879 u32 flags;
5880
5881 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5882 return -EINVAL;
5883 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5884 return -EINVAL;
5885 flags = READ_ONCE(sqe->len);
5886 if (flags & ~IORING_POLL_ADD_MULTI)
5887 return -EINVAL;
5888
5889 io_req_set_refcount(req);
5890 poll->events = io_poll_parse_events(sqe, flags);
5891 return 0;
5892 }
5893
5894 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5895 {
5896 struct io_poll_iocb *poll = &req->poll;
5897 struct io_ring_ctx *ctx = req->ctx;
5898 struct io_poll_table ipt;
5899 __poll_t mask;
5900 bool done;
5901
5902 ipt.pt._qproc = io_poll_queue_proc;
5903
5904 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5905 io_poll_wake);
5906
5907 if (mask) { /* no async, we'd stolen it */
5908 ipt.error = 0;
5909 done = io_poll_complete(req, mask);
5910 }
5911 spin_unlock(&ctx->completion_lock);
5912
5913 if (mask) {
5914 io_cqring_ev_posted(ctx);
5915 if (done)
5916 io_put_req(req);
5917 }
5918 return ipt.error;
5919 }
5920
5921 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5922 {
5923 struct io_ring_ctx *ctx = req->ctx;
5924 struct io_kiocb *preq;
5925 bool completing;
5926 int ret2, ret = 0;
5927
5928 spin_lock(&ctx->completion_lock);
5929 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5930 if (!preq) {
5931 ret = -ENOENT;
5932 fail:
5933 spin_unlock(&ctx->completion_lock);
5934 goto out;
5935 }
5936 io_poll_remove_double(preq);
5937 /*
5938 * Don't allow racy completion with singleshot, as we cannot safely
5939 * update those. For multishot, if we're racing with completion, just
5940 * let completion re-add it.
5941 */
5942 completing = !__io_poll_remove_one(preq, &preq->poll, false);
5943 if (completing && (preq->poll.events & EPOLLONESHOT)) {
5944 ret = -EALREADY;
5945 goto fail;
5946 }
5947 spin_unlock(&ctx->completion_lock);
5948
5949 if (req->poll_update.update_events || req->poll_update.update_user_data) {
5950 /* only mask one event flags, keep behavior flags */
5951 if (req->poll_update.update_events) {
5952 preq->poll.events &= ~0xffff;
5953 preq->poll.events |= req->poll_update.events & 0xffff;
5954 preq->poll.events |= IO_POLL_UNMASK;
5955 }
5956 if (req->poll_update.update_user_data)
5957 preq->user_data = req->poll_update.new_user_data;
5958
5959 ret2 = io_poll_add(preq, issue_flags);
5960 /* successfully updated, don't complete poll request */
5961 if (!ret2)
5962 goto out;
5963 }
5964 req_set_fail(preq);
5965 io_req_complete(preq, -ECANCELED);
5966 out:
5967 if (ret < 0)
5968 req_set_fail(req);
5969 /* complete update request, we're done with it */
5970 io_req_complete(req, ret);
5971 return 0;
5972 }
5973
5974 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5975 {
5976 req_set_fail(req);
5977 io_req_complete_post(req, -ETIME, 0);
5978 }
5979
5980 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5981 {
5982 struct io_timeout_data *data = container_of(timer,
5983 struct io_timeout_data, timer);
5984 struct io_kiocb *req = data->req;
5985 struct io_ring_ctx *ctx = req->ctx;
5986 unsigned long flags;
5987
5988 spin_lock_irqsave(&ctx->timeout_lock, flags);
5989 list_del_init(&req->timeout.list);
5990 atomic_set(&req->ctx->cq_timeouts,
5991 atomic_read(&req->ctx->cq_timeouts) + 1);
5992 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5993
5994 req->io_task_work.func = io_req_task_timeout;
5995 io_req_task_work_add(req);
5996 return HRTIMER_NORESTART;
5997 }
5998
5999 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6000 __u64 user_data)
6001 __must_hold(&ctx->timeout_lock)
6002 {
6003 struct io_timeout_data *io;
6004 struct io_kiocb *req;
6005 bool found = false;
6006
6007 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6008 found = user_data == req->user_data;
6009 if (found)
6010 break;
6011 }
6012 if (!found)
6013 return ERR_PTR(-ENOENT);
6014
6015 io = req->async_data;
6016 if (hrtimer_try_to_cancel(&io->timer) == -1)
6017 return ERR_PTR(-EALREADY);
6018 list_del_init(&req->timeout.list);
6019 return req;
6020 }
6021
6022 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6023 __must_hold(&ctx->completion_lock)
6024 __must_hold(&ctx->timeout_lock)
6025 {
6026 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6027
6028 if (IS_ERR(req))
6029 return PTR_ERR(req);
6030
6031 req_set_fail(req);
6032 io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
6033 io_put_req_deferred(req);
6034 return 0;
6035 }
6036
6037 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6038 {
6039 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6040 case IORING_TIMEOUT_BOOTTIME:
6041 return CLOCK_BOOTTIME;
6042 case IORING_TIMEOUT_REALTIME:
6043 return CLOCK_REALTIME;
6044 default:
6045 /* can't happen, vetted at prep time */
6046 WARN_ON_ONCE(1);
6047 fallthrough;
6048 case 0:
6049 return CLOCK_MONOTONIC;
6050 }
6051 }
6052
6053 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6054 struct timespec64 *ts, enum hrtimer_mode mode)
6055 __must_hold(&ctx->timeout_lock)
6056 {
6057 struct io_timeout_data *io;
6058 struct io_kiocb *req;
6059 bool found = false;
6060
6061 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6062 found = user_data == req->user_data;
6063 if (found)
6064 break;
6065 }
6066 if (!found)
6067 return -ENOENT;
6068
6069 io = req->async_data;
6070 if (hrtimer_try_to_cancel(&io->timer) == -1)
6071 return -EALREADY;
6072 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6073 io->timer.function = io_link_timeout_fn;
6074 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6075 return 0;
6076 }
6077
6078 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6079 struct timespec64 *ts, enum hrtimer_mode mode)
6080 __must_hold(&ctx->timeout_lock)
6081 {
6082 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6083 struct io_timeout_data *data;
6084
6085 if (IS_ERR(req))
6086 return PTR_ERR(req);
6087
6088 req->timeout.off = 0; /* noseq */
6089 data = req->async_data;
6090 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6091 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6092 data->timer.function = io_timeout_fn;
6093 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6094 return 0;
6095 }
6096
6097 static int io_timeout_remove_prep(struct io_kiocb *req,
6098 const struct io_uring_sqe *sqe)
6099 {
6100 struct io_timeout_rem *tr = &req->timeout_rem;
6101
6102 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6103 return -EINVAL;
6104 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6105 return -EINVAL;
6106 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6107 return -EINVAL;
6108
6109 tr->ltimeout = false;
6110 tr->addr = READ_ONCE(sqe->addr);
6111 tr->flags = READ_ONCE(sqe->timeout_flags);
6112 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6113 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6114 return -EINVAL;
6115 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6116 tr->ltimeout = true;
6117 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6118 return -EINVAL;
6119 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6120 return -EFAULT;
6121 } else if (tr->flags) {
6122 /* timeout removal doesn't support flags */
6123 return -EINVAL;
6124 }
6125
6126 return 0;
6127 }
6128
6129 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6130 {
6131 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6132 : HRTIMER_MODE_REL;
6133 }
6134
6135 /*
6136 * Remove or update an existing timeout command
6137 */
6138 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6139 {
6140 struct io_timeout_rem *tr = &req->timeout_rem;
6141 struct io_ring_ctx *ctx = req->ctx;
6142 int ret;
6143
6144 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6145 spin_lock(&ctx->completion_lock);
6146 spin_lock_irq(&ctx->timeout_lock);
6147 ret = io_timeout_cancel(ctx, tr->addr);
6148 spin_unlock_irq(&ctx->timeout_lock);
6149 spin_unlock(&ctx->completion_lock);
6150 } else {
6151 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6152
6153 spin_lock_irq(&ctx->timeout_lock);
6154 if (tr->ltimeout)
6155 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6156 else
6157 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6158 spin_unlock_irq(&ctx->timeout_lock);
6159 }
6160
6161 if (ret < 0)
6162 req_set_fail(req);
6163 io_req_complete_post(req, ret, 0);
6164 return 0;
6165 }
6166
6167 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6168 bool is_timeout_link)
6169 {
6170 struct io_timeout_data *data;
6171 unsigned flags;
6172 u32 off = READ_ONCE(sqe->off);
6173
6174 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6175 return -EINVAL;
6176 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6177 sqe->splice_fd_in)
6178 return -EINVAL;
6179 if (off && is_timeout_link)
6180 return -EINVAL;
6181 flags = READ_ONCE(sqe->timeout_flags);
6182 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6183 return -EINVAL;
6184 /* more than one clock specified is invalid, obviously */
6185 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6186 return -EINVAL;
6187
6188 INIT_LIST_HEAD(&req->timeout.list);
6189 req->timeout.off = off;
6190 if (unlikely(off && !req->ctx->off_timeout_used))
6191 req->ctx->off_timeout_used = true;
6192
6193 if (!req->async_data && io_alloc_async_data(req))
6194 return -ENOMEM;
6195
6196 data = req->async_data;
6197 data->req = req;
6198 data->flags = flags;
6199
6200 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6201 return -EFAULT;
6202
6203 INIT_LIST_HEAD(&req->timeout.list);
6204 data->mode = io_translate_timeout_mode(flags);
6205 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6206
6207 if (is_timeout_link) {
6208 struct io_submit_link *link = &req->ctx->submit_state.link;
6209
6210 if (!link->head)
6211 return -EINVAL;
6212 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6213 return -EINVAL;
6214 req->timeout.head = link->last;
6215 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6216 }
6217 return 0;
6218 }
6219
6220 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6221 {
6222 struct io_ring_ctx *ctx = req->ctx;
6223 struct io_timeout_data *data = req->async_data;
6224 struct list_head *entry;
6225 u32 tail, off = req->timeout.off;
6226
6227 spin_lock_irq(&ctx->timeout_lock);
6228
6229 /*
6230 * sqe->off holds how many events that need to occur for this
6231 * timeout event to be satisfied. If it isn't set, then this is
6232 * a pure timeout request, sequence isn't used.
6233 */
6234 if (io_is_timeout_noseq(req)) {
6235 entry = ctx->timeout_list.prev;
6236 goto add;
6237 }
6238
6239 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6240 req->timeout.target_seq = tail + off;
6241
6242 /* Update the last seq here in case io_flush_timeouts() hasn't.
6243 * This is safe because ->completion_lock is held, and submissions
6244 * and completions are never mixed in the same ->completion_lock section.
6245 */
6246 ctx->cq_last_tm_flush = tail;
6247
6248 /*
6249 * Insertion sort, ensuring the first entry in the list is always
6250 * the one we need first.
6251 */
6252 list_for_each_prev(entry, &ctx->timeout_list) {
6253 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6254 timeout.list);
6255
6256 if (io_is_timeout_noseq(nxt))
6257 continue;
6258 /* nxt.seq is behind @tail, otherwise would've been completed */
6259 if (off >= nxt->timeout.target_seq - tail)
6260 break;
6261 }
6262 add:
6263 list_add(&req->timeout.list, entry);
6264 data->timer.function = io_timeout_fn;
6265 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6266 spin_unlock_irq(&ctx->timeout_lock);
6267 return 0;
6268 }
6269
6270 struct io_cancel_data {
6271 struct io_ring_ctx *ctx;
6272 u64 user_data;
6273 };
6274
6275 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6276 {
6277 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6278 struct io_cancel_data *cd = data;
6279
6280 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6281 }
6282
6283 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6284 struct io_ring_ctx *ctx)
6285 {
6286 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6287 enum io_wq_cancel cancel_ret;
6288 int ret = 0;
6289
6290 if (!tctx || !tctx->io_wq)
6291 return -ENOENT;
6292
6293 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6294 switch (cancel_ret) {
6295 case IO_WQ_CANCEL_OK:
6296 ret = 0;
6297 break;
6298 case IO_WQ_CANCEL_RUNNING:
6299 ret = -EALREADY;
6300 break;
6301 case IO_WQ_CANCEL_NOTFOUND:
6302 ret = -ENOENT;
6303 break;
6304 }
6305
6306 return ret;
6307 }
6308
6309 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6310 {
6311 struct io_ring_ctx *ctx = req->ctx;
6312 int ret;
6313
6314 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6315
6316 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6317 if (ret != -ENOENT)
6318 return ret;
6319
6320 spin_lock(&ctx->completion_lock);
6321 spin_lock_irq(&ctx->timeout_lock);
6322 ret = io_timeout_cancel(ctx, sqe_addr);
6323 spin_unlock_irq(&ctx->timeout_lock);
6324 if (ret != -ENOENT)
6325 goto out;
6326 ret = io_poll_cancel(ctx, sqe_addr, false);
6327 out:
6328 spin_unlock(&ctx->completion_lock);
6329 return ret;
6330 }
6331
6332 static int io_async_cancel_prep(struct io_kiocb *req,
6333 const struct io_uring_sqe *sqe)
6334 {
6335 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6336 return -EINVAL;
6337 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6338 return -EINVAL;
6339 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6340 sqe->splice_fd_in)
6341 return -EINVAL;
6342
6343 req->cancel.addr = READ_ONCE(sqe->addr);
6344 return 0;
6345 }
6346
6347 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6348 {
6349 struct io_ring_ctx *ctx = req->ctx;
6350 u64 sqe_addr = req->cancel.addr;
6351 struct io_tctx_node *node;
6352 int ret;
6353
6354 ret = io_try_cancel_userdata(req, sqe_addr);
6355 if (ret != -ENOENT)
6356 goto done;
6357
6358 /* slow path, try all io-wq's */
6359 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6360 ret = -ENOENT;
6361 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6362 struct io_uring_task *tctx = node->task->io_uring;
6363
6364 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6365 if (ret != -ENOENT)
6366 break;
6367 }
6368 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6369 done:
6370 if (ret < 0)
6371 req_set_fail(req);
6372 io_req_complete_post(req, ret, 0);
6373 return 0;
6374 }
6375
6376 static int io_rsrc_update_prep(struct io_kiocb *req,
6377 const struct io_uring_sqe *sqe)
6378 {
6379 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6380 return -EINVAL;
6381 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6382 return -EINVAL;
6383
6384 req->rsrc_update.offset = READ_ONCE(sqe->off);
6385 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6386 if (!req->rsrc_update.nr_args)
6387 return -EINVAL;
6388 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6389 return 0;
6390 }
6391
6392 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6393 {
6394 struct io_ring_ctx *ctx = req->ctx;
6395 struct io_uring_rsrc_update2 up;
6396 int ret;
6397
6398 up.offset = req->rsrc_update.offset;
6399 up.data = req->rsrc_update.arg;
6400 up.nr = 0;
6401 up.tags = 0;
6402 up.resv = 0;
6403 up.resv2 = 0;
6404
6405 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6406 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6407 &up, req->rsrc_update.nr_args);
6408 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6409
6410 if (ret < 0)
6411 req_set_fail(req);
6412 __io_req_complete(req, issue_flags, ret, 0);
6413 return 0;
6414 }
6415
6416 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6417 {
6418 switch (req->opcode) {
6419 case IORING_OP_NOP:
6420 return 0;
6421 case IORING_OP_READV:
6422 case IORING_OP_READ_FIXED:
6423 case IORING_OP_READ:
6424 return io_read_prep(req, sqe);
6425 case IORING_OP_WRITEV:
6426 case IORING_OP_WRITE_FIXED:
6427 case IORING_OP_WRITE:
6428 return io_write_prep(req, sqe);
6429 case IORING_OP_POLL_ADD:
6430 return io_poll_add_prep(req, sqe);
6431 case IORING_OP_POLL_REMOVE:
6432 return io_poll_update_prep(req, sqe);
6433 case IORING_OP_FSYNC:
6434 return io_fsync_prep(req, sqe);
6435 case IORING_OP_SYNC_FILE_RANGE:
6436 return io_sfr_prep(req, sqe);
6437 case IORING_OP_SENDMSG:
6438 case IORING_OP_SEND:
6439 return io_sendmsg_prep(req, sqe);
6440 case IORING_OP_RECVMSG:
6441 case IORING_OP_RECV:
6442 return io_recvmsg_prep(req, sqe);
6443 case IORING_OP_CONNECT:
6444 return io_connect_prep(req, sqe);
6445 case IORING_OP_TIMEOUT:
6446 return io_timeout_prep(req, sqe, false);
6447 case IORING_OP_TIMEOUT_REMOVE:
6448 return io_timeout_remove_prep(req, sqe);
6449 case IORING_OP_ASYNC_CANCEL:
6450 return io_async_cancel_prep(req, sqe);
6451 case IORING_OP_LINK_TIMEOUT:
6452 return io_timeout_prep(req, sqe, true);
6453 case IORING_OP_ACCEPT:
6454 return io_accept_prep(req, sqe);
6455 case IORING_OP_FALLOCATE:
6456 return io_fallocate_prep(req, sqe);
6457 case IORING_OP_OPENAT:
6458 return io_openat_prep(req, sqe);
6459 case IORING_OP_CLOSE:
6460 return io_close_prep(req, sqe);
6461 case IORING_OP_FILES_UPDATE:
6462 return io_rsrc_update_prep(req, sqe);
6463 case IORING_OP_STATX:
6464 return io_statx_prep(req, sqe);
6465 case IORING_OP_FADVISE:
6466 return io_fadvise_prep(req, sqe);
6467 case IORING_OP_MADVISE:
6468 return io_madvise_prep(req, sqe);
6469 case IORING_OP_OPENAT2:
6470 return io_openat2_prep(req, sqe);
6471 case IORING_OP_EPOLL_CTL:
6472 return io_epoll_ctl_prep(req, sqe);
6473 case IORING_OP_SPLICE:
6474 return io_splice_prep(req, sqe);
6475 case IORING_OP_PROVIDE_BUFFERS:
6476 return io_provide_buffers_prep(req, sqe);
6477 case IORING_OP_REMOVE_BUFFERS:
6478 return io_remove_buffers_prep(req, sqe);
6479 case IORING_OP_TEE:
6480 return io_tee_prep(req, sqe);
6481 case IORING_OP_SHUTDOWN:
6482 return io_shutdown_prep(req, sqe);
6483 case IORING_OP_RENAMEAT:
6484 return io_renameat_prep(req, sqe);
6485 case IORING_OP_UNLINKAT:
6486 return io_unlinkat_prep(req, sqe);
6487 case IORING_OP_MKDIRAT:
6488 return io_mkdirat_prep(req, sqe);
6489 case IORING_OP_SYMLINKAT:
6490 return io_symlinkat_prep(req, sqe);
6491 case IORING_OP_LINKAT:
6492 return io_linkat_prep(req, sqe);
6493 }
6494
6495 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6496 req->opcode);
6497 return -EINVAL;
6498 }
6499
6500 static int io_req_prep_async(struct io_kiocb *req)
6501 {
6502 if (!io_op_defs[req->opcode].needs_async_setup)
6503 return 0;
6504 if (WARN_ON_ONCE(req->async_data))
6505 return -EFAULT;
6506 if (io_alloc_async_data(req))
6507 return -EAGAIN;
6508
6509 switch (req->opcode) {
6510 case IORING_OP_READV:
6511 return io_rw_prep_async(req, READ);
6512 case IORING_OP_WRITEV:
6513 return io_rw_prep_async(req, WRITE);
6514 case IORING_OP_SENDMSG:
6515 return io_sendmsg_prep_async(req);
6516 case IORING_OP_RECVMSG:
6517 return io_recvmsg_prep_async(req);
6518 case IORING_OP_CONNECT:
6519 return io_connect_prep_async(req);
6520 }
6521 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6522 req->opcode);
6523 return -EFAULT;
6524 }
6525
6526 static u32 io_get_sequence(struct io_kiocb *req)
6527 {
6528 u32 seq = req->ctx->cached_sq_head;
6529
6530 /* need original cached_sq_head, but it was increased for each req */
6531 io_for_each_link(req, req)
6532 seq--;
6533 return seq;
6534 }
6535
6536 static bool io_drain_req(struct io_kiocb *req)
6537 {
6538 struct io_kiocb *pos;
6539 struct io_ring_ctx *ctx = req->ctx;
6540 struct io_defer_entry *de;
6541 int ret;
6542 u32 seq;
6543
6544 if (req->flags & REQ_F_FAIL) {
6545 io_req_complete_fail_submit(req);
6546 return true;
6547 }
6548
6549 /*
6550 * If we need to drain a request in the middle of a link, drain the
6551 * head request and the next request/link after the current link.
6552 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6553 * maintained for every request of our link.
6554 */
6555 if (ctx->drain_next) {
6556 req->flags |= REQ_F_IO_DRAIN;
6557 ctx->drain_next = false;
6558 }
6559 /* not interested in head, start from the first linked */
6560 io_for_each_link(pos, req->link) {
6561 if (pos->flags & REQ_F_IO_DRAIN) {
6562 ctx->drain_next = true;
6563 req->flags |= REQ_F_IO_DRAIN;
6564 break;
6565 }
6566 }
6567
6568 /* Still need defer if there is pending req in defer list. */
6569 spin_lock(&ctx->completion_lock);
6570 if (likely(list_empty_careful(&ctx->defer_list) &&
6571 !(req->flags & REQ_F_IO_DRAIN))) {
6572 spin_unlock(&ctx->completion_lock);
6573 ctx->drain_active = false;
6574 return false;
6575 }
6576 spin_unlock(&ctx->completion_lock);
6577
6578 seq = io_get_sequence(req);
6579 /* Still a chance to pass the sequence check */
6580 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6581 return false;
6582
6583 ret = io_req_prep_async(req);
6584 if (ret)
6585 goto fail;
6586 io_prep_async_link(req);
6587 de = kmalloc(sizeof(*de), GFP_KERNEL);
6588 if (!de) {
6589 ret = -ENOMEM;
6590 fail:
6591 io_req_complete_failed(req, ret);
6592 return true;
6593 }
6594
6595 spin_lock(&ctx->completion_lock);
6596 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6597 spin_unlock(&ctx->completion_lock);
6598 kfree(de);
6599 io_queue_async_work(req, NULL);
6600 return true;
6601 }
6602
6603 trace_io_uring_defer(ctx, req, req->user_data);
6604 de->req = req;
6605 de->seq = seq;
6606 list_add_tail(&de->list, &ctx->defer_list);
6607 spin_unlock(&ctx->completion_lock);
6608 return true;
6609 }
6610
6611 static void io_clean_op(struct io_kiocb *req)
6612 {
6613 if (req->flags & REQ_F_BUFFER_SELECTED) {
6614 switch (req->opcode) {
6615 case IORING_OP_READV:
6616 case IORING_OP_READ_FIXED:
6617 case IORING_OP_READ:
6618 kfree((void *)(unsigned long)req->rw.addr);
6619 break;
6620 case IORING_OP_RECVMSG:
6621 case IORING_OP_RECV:
6622 kfree(req->sr_msg.kbuf);
6623 break;
6624 }
6625 }
6626
6627 if (req->flags & REQ_F_NEED_CLEANUP) {
6628 switch (req->opcode) {
6629 case IORING_OP_READV:
6630 case IORING_OP_READ_FIXED:
6631 case IORING_OP_READ:
6632 case IORING_OP_WRITEV:
6633 case IORING_OP_WRITE_FIXED:
6634 case IORING_OP_WRITE: {
6635 struct io_async_rw *io = req->async_data;
6636
6637 kfree(io->free_iovec);
6638 break;
6639 }
6640 case IORING_OP_RECVMSG:
6641 case IORING_OP_SENDMSG: {
6642 struct io_async_msghdr *io = req->async_data;
6643
6644 kfree(io->free_iov);
6645 break;
6646 }
6647 case IORING_OP_OPENAT:
6648 case IORING_OP_OPENAT2:
6649 if (req->open.filename)
6650 putname(req->open.filename);
6651 break;
6652 case IORING_OP_RENAMEAT:
6653 putname(req->rename.oldpath);
6654 putname(req->rename.newpath);
6655 break;
6656 case IORING_OP_UNLINKAT:
6657 putname(req->unlink.filename);
6658 break;
6659 case IORING_OP_MKDIRAT:
6660 putname(req->mkdir.filename);
6661 break;
6662 case IORING_OP_SYMLINKAT:
6663 putname(req->symlink.oldpath);
6664 putname(req->symlink.newpath);
6665 break;
6666 case IORING_OP_LINKAT:
6667 putname(req->hardlink.oldpath);
6668 putname(req->hardlink.newpath);
6669 break;
6670 }
6671 }
6672 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6673 kfree(req->apoll->double_poll);
6674 kfree(req->apoll);
6675 req->apoll = NULL;
6676 }
6677 if (req->flags & REQ_F_INFLIGHT) {
6678 struct io_uring_task *tctx = req->task->io_uring;
6679
6680 atomic_dec(&tctx->inflight_tracked);
6681 }
6682 if (req->flags & REQ_F_CREDS)
6683 put_cred(req->creds);
6684
6685 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6686 }
6687
6688 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6689 {
6690 struct io_ring_ctx *ctx = req->ctx;
6691 const struct cred *creds = NULL;
6692 int ret;
6693
6694 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6695 creds = override_creds(req->creds);
6696
6697 switch (req->opcode) {
6698 case IORING_OP_NOP:
6699 ret = io_nop(req, issue_flags);
6700 break;
6701 case IORING_OP_READV:
6702 case IORING_OP_READ_FIXED:
6703 case IORING_OP_READ:
6704 ret = io_read(req, issue_flags);
6705 break;
6706 case IORING_OP_WRITEV:
6707 case IORING_OP_WRITE_FIXED:
6708 case IORING_OP_WRITE:
6709 ret = io_write(req, issue_flags);
6710 break;
6711 case IORING_OP_FSYNC:
6712 ret = io_fsync(req, issue_flags);
6713 break;
6714 case IORING_OP_POLL_ADD:
6715 ret = io_poll_add(req, issue_flags);
6716 break;
6717 case IORING_OP_POLL_REMOVE:
6718 ret = io_poll_update(req, issue_flags);
6719 break;
6720 case IORING_OP_SYNC_FILE_RANGE:
6721 ret = io_sync_file_range(req, issue_flags);
6722 break;
6723 case IORING_OP_SENDMSG:
6724 ret = io_sendmsg(req, issue_flags);
6725 break;
6726 case IORING_OP_SEND:
6727 ret = io_send(req, issue_flags);
6728 break;
6729 case IORING_OP_RECVMSG:
6730 ret = io_recvmsg(req, issue_flags);
6731 break;
6732 case IORING_OP_RECV:
6733 ret = io_recv(req, issue_flags);
6734 break;
6735 case IORING_OP_TIMEOUT:
6736 ret = io_timeout(req, issue_flags);
6737 break;
6738 case IORING_OP_TIMEOUT_REMOVE:
6739 ret = io_timeout_remove(req, issue_flags);
6740 break;
6741 case IORING_OP_ACCEPT:
6742 ret = io_accept(req, issue_flags);
6743 break;
6744 case IORING_OP_CONNECT:
6745 ret = io_connect(req, issue_flags);
6746 break;
6747 case IORING_OP_ASYNC_CANCEL:
6748 ret = io_async_cancel(req, issue_flags);
6749 break;
6750 case IORING_OP_FALLOCATE:
6751 ret = io_fallocate(req, issue_flags);
6752 break;
6753 case IORING_OP_OPENAT:
6754 ret = io_openat(req, issue_flags);
6755 break;
6756 case IORING_OP_CLOSE:
6757 ret = io_close(req, issue_flags);
6758 break;
6759 case IORING_OP_FILES_UPDATE:
6760 ret = io_files_update(req, issue_flags);
6761 break;
6762 case IORING_OP_STATX:
6763 ret = io_statx(req, issue_flags);
6764 break;
6765 case IORING_OP_FADVISE:
6766 ret = io_fadvise(req, issue_flags);
6767 break;
6768 case IORING_OP_MADVISE:
6769 ret = io_madvise(req, issue_flags);
6770 break;
6771 case IORING_OP_OPENAT2:
6772 ret = io_openat2(req, issue_flags);
6773 break;
6774 case IORING_OP_EPOLL_CTL:
6775 ret = io_epoll_ctl(req, issue_flags);
6776 break;
6777 case IORING_OP_SPLICE:
6778 ret = io_splice(req, issue_flags);
6779 break;
6780 case IORING_OP_PROVIDE_BUFFERS:
6781 ret = io_provide_buffers(req, issue_flags);
6782 break;
6783 case IORING_OP_REMOVE_BUFFERS:
6784 ret = io_remove_buffers(req, issue_flags);
6785 break;
6786 case IORING_OP_TEE:
6787 ret = io_tee(req, issue_flags);
6788 break;
6789 case IORING_OP_SHUTDOWN:
6790 ret = io_shutdown(req, issue_flags);
6791 break;
6792 case IORING_OP_RENAMEAT:
6793 ret = io_renameat(req, issue_flags);
6794 break;
6795 case IORING_OP_UNLINKAT:
6796 ret = io_unlinkat(req, issue_flags);
6797 break;
6798 case IORING_OP_MKDIRAT:
6799 ret = io_mkdirat(req, issue_flags);
6800 break;
6801 case IORING_OP_SYMLINKAT:
6802 ret = io_symlinkat(req, issue_flags);
6803 break;
6804 case IORING_OP_LINKAT:
6805 ret = io_linkat(req, issue_flags);
6806 break;
6807 default:
6808 ret = -EINVAL;
6809 break;
6810 }
6811
6812 if (creds)
6813 revert_creds(creds);
6814 if (ret)
6815 return ret;
6816 /* If the op doesn't have a file, we're not polling for it */
6817 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6818 io_iopoll_req_issued(req);
6819
6820 return 0;
6821 }
6822
6823 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6824 {
6825 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6826
6827 req = io_put_req_find_next(req);
6828 return req ? &req->work : NULL;
6829 }
6830
6831 static void io_wq_submit_work(struct io_wq_work *work)
6832 {
6833 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6834 struct io_kiocb *timeout;
6835 int ret = 0;
6836
6837 /* one will be dropped by ->io_free_work() after returning to io-wq */
6838 if (!(req->flags & REQ_F_REFCOUNT))
6839 __io_req_set_refcount(req, 2);
6840 else
6841 req_ref_get(req);
6842
6843 timeout = io_prep_linked_timeout(req);
6844 if (timeout)
6845 io_queue_linked_timeout(timeout);
6846
6847 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6848 if (work->flags & IO_WQ_WORK_CANCEL)
6849 ret = -ECANCELED;
6850
6851 if (!ret) {
6852 do {
6853 ret = io_issue_sqe(req, 0);
6854 /*
6855 * We can get EAGAIN for polled IO even though we're
6856 * forcing a sync submission from here, since we can't
6857 * wait for request slots on the block side.
6858 */
6859 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6860 break;
6861 cond_resched();
6862 } while (1);
6863 }
6864
6865 /* avoid locking problems by failing it from a clean context */
6866 if (ret)
6867 io_req_task_queue_fail(req, ret);
6868 }
6869
6870 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6871 unsigned i)
6872 {
6873 return &table->files[i];
6874 }
6875
6876 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6877 int index)
6878 {
6879 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6880
6881 return (struct file *) (slot->file_ptr & FFS_MASK);
6882 }
6883
6884 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6885 {
6886 unsigned long file_ptr = (unsigned long) file;
6887
6888 if (__io_file_supports_nowait(file, READ))
6889 file_ptr |= FFS_ASYNC_READ;
6890 if (__io_file_supports_nowait(file, WRITE))
6891 file_ptr |= FFS_ASYNC_WRITE;
6892 if (S_ISREG(file_inode(file)->i_mode))
6893 file_ptr |= FFS_ISREG;
6894 file_slot->file_ptr = file_ptr;
6895 }
6896
6897 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6898 struct io_kiocb *req, int fd)
6899 {
6900 struct file *file;
6901 unsigned long file_ptr;
6902
6903 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6904 return NULL;
6905 fd = array_index_nospec(fd, ctx->nr_user_files);
6906 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6907 file = (struct file *) (file_ptr & FFS_MASK);
6908 file_ptr &= ~FFS_MASK;
6909 /* mask in overlapping REQ_F and FFS bits */
6910 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6911 io_req_set_rsrc_node(req);
6912 return file;
6913 }
6914
6915 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6916 struct io_kiocb *req, int fd)
6917 {
6918 struct file *file = fget(fd);
6919
6920 trace_io_uring_file_get(ctx, fd);
6921
6922 /* we don't allow fixed io_uring files */
6923 if (file && unlikely(file->f_op == &io_uring_fops))
6924 io_req_track_inflight(req);
6925 return file;
6926 }
6927
6928 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6929 struct io_kiocb *req, int fd, bool fixed)
6930 {
6931 if (fixed)
6932 return io_file_get_fixed(ctx, req, fd);
6933 else
6934 return io_file_get_normal(ctx, req, fd);
6935 }
6936
6937 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6938 {
6939 struct io_kiocb *prev = req->timeout.prev;
6940 int ret = -ENOENT;
6941
6942 if (prev) {
6943 if (!(req->task->flags & PF_EXITING))
6944 ret = io_try_cancel_userdata(req, prev->user_data);
6945 io_req_complete_post(req, ret ?: -ETIME, 0);
6946 io_put_req(prev);
6947 } else {
6948 io_req_complete_post(req, -ETIME, 0);
6949 }
6950 }
6951
6952 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6953 {
6954 struct io_timeout_data *data = container_of(timer,
6955 struct io_timeout_data, timer);
6956 struct io_kiocb *prev, *req = data->req;
6957 struct io_ring_ctx *ctx = req->ctx;
6958 unsigned long flags;
6959
6960 spin_lock_irqsave(&ctx->timeout_lock, flags);
6961 prev = req->timeout.head;
6962 req->timeout.head = NULL;
6963
6964 /*
6965 * We don't expect the list to be empty, that will only happen if we
6966 * race with the completion of the linked work.
6967 */
6968 if (prev) {
6969 io_remove_next_linked(prev);
6970 if (!req_ref_inc_not_zero(prev))
6971 prev = NULL;
6972 }
6973 list_del(&req->timeout.list);
6974 req->timeout.prev = prev;
6975 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6976
6977 req->io_task_work.func = io_req_task_link_timeout;
6978 io_req_task_work_add(req);
6979 return HRTIMER_NORESTART;
6980 }
6981
6982 static void io_queue_linked_timeout(struct io_kiocb *req)
6983 {
6984 struct io_ring_ctx *ctx = req->ctx;
6985
6986 spin_lock_irq(&ctx->timeout_lock);
6987 /*
6988 * If the back reference is NULL, then our linked request finished
6989 * before we got a chance to setup the timer
6990 */
6991 if (req->timeout.head) {
6992 struct io_timeout_data *data = req->async_data;
6993
6994 data->timer.function = io_link_timeout_fn;
6995 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6996 data->mode);
6997 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6998 }
6999 spin_unlock_irq(&ctx->timeout_lock);
7000 /* drop submission reference */
7001 io_put_req(req);
7002 }
7003
7004 static void __io_queue_sqe(struct io_kiocb *req)
7005 __must_hold(&req->ctx->uring_lock)
7006 {
7007 struct io_kiocb *linked_timeout;
7008 int ret;
7009
7010 issue_sqe:
7011 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7012
7013 /*
7014 * We async punt it if the file wasn't marked NOWAIT, or if the file
7015 * doesn't support non-blocking read/write attempts
7016 */
7017 if (likely(!ret)) {
7018 if (req->flags & REQ_F_COMPLETE_INLINE) {
7019 struct io_ring_ctx *ctx = req->ctx;
7020 struct io_submit_state *state = &ctx->submit_state;
7021
7022 state->compl_reqs[state->compl_nr++] = req;
7023 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7024 io_submit_flush_completions(ctx);
7025 return;
7026 }
7027
7028 linked_timeout = io_prep_linked_timeout(req);
7029 if (linked_timeout)
7030 io_queue_linked_timeout(linked_timeout);
7031 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7032 linked_timeout = io_prep_linked_timeout(req);
7033
7034 switch (io_arm_poll_handler(req)) {
7035 case IO_APOLL_READY:
7036 if (linked_timeout)
7037 io_queue_linked_timeout(linked_timeout);
7038 goto issue_sqe;
7039 case IO_APOLL_ABORTED:
7040 /*
7041 * Queued up for async execution, worker will release
7042 * submit reference when the iocb is actually submitted.
7043 */
7044 io_queue_async_work(req, NULL);
7045 break;
7046 }
7047
7048 if (linked_timeout)
7049 io_queue_linked_timeout(linked_timeout);
7050 } else {
7051 io_req_complete_failed(req, ret);
7052 }
7053 }
7054
7055 static inline void io_queue_sqe(struct io_kiocb *req)
7056 __must_hold(&req->ctx->uring_lock)
7057 {
7058 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7059 return;
7060
7061 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7062 __io_queue_sqe(req);
7063 } else if (req->flags & REQ_F_FAIL) {
7064 io_req_complete_fail_submit(req);
7065 } else {
7066 int ret = io_req_prep_async(req);
7067
7068 if (unlikely(ret))
7069 io_req_complete_failed(req, ret);
7070 else
7071 io_queue_async_work(req, NULL);
7072 }
7073 }
7074
7075 /*
7076 * Check SQE restrictions (opcode and flags).
7077 *
7078 * Returns 'true' if SQE is allowed, 'false' otherwise.
7079 */
7080 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7081 struct io_kiocb *req,
7082 unsigned int sqe_flags)
7083 {
7084 if (likely(!ctx->restricted))
7085 return true;
7086
7087 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7088 return false;
7089
7090 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7091 ctx->restrictions.sqe_flags_required)
7092 return false;
7093
7094 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7095 ctx->restrictions.sqe_flags_required))
7096 return false;
7097
7098 return true;
7099 }
7100
7101 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7102 const struct io_uring_sqe *sqe)
7103 __must_hold(&ctx->uring_lock)
7104 {
7105 struct io_submit_state *state;
7106 unsigned int sqe_flags;
7107 int personality, ret = 0;
7108
7109 /* req is partially pre-initialised, see io_preinit_req() */
7110 req->opcode = READ_ONCE(sqe->opcode);
7111 /* same numerical values with corresponding REQ_F_*, safe to copy */
7112 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7113 req->user_data = READ_ONCE(sqe->user_data);
7114 req->file = NULL;
7115 req->fixed_rsrc_refs = NULL;
7116 req->task = current;
7117
7118 /* enforce forwards compatibility on users */
7119 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7120 return -EINVAL;
7121 if (unlikely(req->opcode >= IORING_OP_LAST))
7122 return -EINVAL;
7123 if (!io_check_restriction(ctx, req, sqe_flags))
7124 return -EACCES;
7125
7126 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7127 !io_op_defs[req->opcode].buffer_select)
7128 return -EOPNOTSUPP;
7129 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7130 ctx->drain_active = true;
7131
7132 personality = READ_ONCE(sqe->personality);
7133 if (personality) {
7134 req->creds = xa_load(&ctx->personalities, personality);
7135 if (!req->creds)
7136 return -EINVAL;
7137 get_cred(req->creds);
7138 req->flags |= REQ_F_CREDS;
7139 }
7140 state = &ctx->submit_state;
7141
7142 /*
7143 * Plug now if we have more than 1 IO left after this, and the target
7144 * is potentially a read/write to block based storage.
7145 */
7146 if (!state->plug_started && state->ios_left > 1 &&
7147 io_op_defs[req->opcode].plug) {
7148 blk_start_plug(&state->plug);
7149 state->plug_started = true;
7150 }
7151
7152 if (io_op_defs[req->opcode].needs_file) {
7153 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7154 (sqe_flags & IOSQE_FIXED_FILE));
7155 if (unlikely(!req->file))
7156 ret = -EBADF;
7157 }
7158
7159 state->ios_left--;
7160 return ret;
7161 }
7162
7163 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7164 const struct io_uring_sqe *sqe)
7165 __must_hold(&ctx->uring_lock)
7166 {
7167 struct io_submit_link *link = &ctx->submit_state.link;
7168 int ret;
7169
7170 ret = io_init_req(ctx, req, sqe);
7171 if (unlikely(ret)) {
7172 fail_req:
7173 /* fail even hard links since we don't submit */
7174 if (link->head) {
7175 /*
7176 * we can judge a link req is failed or cancelled by if
7177 * REQ_F_FAIL is set, but the head is an exception since
7178 * it may be set REQ_F_FAIL because of other req's failure
7179 * so let's leverage req->result to distinguish if a head
7180 * is set REQ_F_FAIL because of its failure or other req's
7181 * failure so that we can set the correct ret code for it.
7182 * init result here to avoid affecting the normal path.
7183 */
7184 if (!(link->head->flags & REQ_F_FAIL))
7185 req_fail_link_node(link->head, -ECANCELED);
7186 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7187 /*
7188 * the current req is a normal req, we should return
7189 * error and thus break the submittion loop.
7190 */
7191 io_req_complete_failed(req, ret);
7192 return ret;
7193 }
7194 req_fail_link_node(req, ret);
7195 } else {
7196 ret = io_req_prep(req, sqe);
7197 if (unlikely(ret))
7198 goto fail_req;
7199 }
7200
7201 /* don't need @sqe from now on */
7202 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7203 req->flags, true,
7204 ctx->flags & IORING_SETUP_SQPOLL);
7205
7206 /*
7207 * If we already have a head request, queue this one for async
7208 * submittal once the head completes. If we don't have a head but
7209 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7210 * submitted sync once the chain is complete. If none of those
7211 * conditions are true (normal request), then just queue it.
7212 */
7213 if (link->head) {
7214 struct io_kiocb *head = link->head;
7215
7216 if (!(req->flags & REQ_F_FAIL)) {
7217 ret = io_req_prep_async(req);
7218 if (unlikely(ret)) {
7219 req_fail_link_node(req, ret);
7220 if (!(head->flags & REQ_F_FAIL))
7221 req_fail_link_node(head, -ECANCELED);
7222 }
7223 }
7224 trace_io_uring_link(ctx, req, head);
7225 link->last->link = req;
7226 link->last = req;
7227
7228 /* last request of a link, enqueue the link */
7229 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7230 link->head = NULL;
7231 io_queue_sqe(head);
7232 }
7233 } else {
7234 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7235 link->head = req;
7236 link->last = req;
7237 } else {
7238 io_queue_sqe(req);
7239 }
7240 }
7241
7242 return 0;
7243 }
7244
7245 /*
7246 * Batched submission is done, ensure local IO is flushed out.
7247 */
7248 static void io_submit_state_end(struct io_submit_state *state,
7249 struct io_ring_ctx *ctx)
7250 {
7251 if (state->link.head)
7252 io_queue_sqe(state->link.head);
7253 if (state->compl_nr)
7254 io_submit_flush_completions(ctx);
7255 if (state->plug_started)
7256 blk_finish_plug(&state->plug);
7257 }
7258
7259 /*
7260 * Start submission side cache.
7261 */
7262 static void io_submit_state_start(struct io_submit_state *state,
7263 unsigned int max_ios)
7264 {
7265 state->plug_started = false;
7266 state->ios_left = max_ios;
7267 /* set only head, no need to init link_last in advance */
7268 state->link.head = NULL;
7269 }
7270
7271 static void io_commit_sqring(struct io_ring_ctx *ctx)
7272 {
7273 struct io_rings *rings = ctx->rings;
7274
7275 /*
7276 * Ensure any loads from the SQEs are done at this point,
7277 * since once we write the new head, the application could
7278 * write new data to them.
7279 */
7280 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7281 }
7282
7283 /*
7284 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7285 * that is mapped by userspace. This means that care needs to be taken to
7286 * ensure that reads are stable, as we cannot rely on userspace always
7287 * being a good citizen. If members of the sqe are validated and then later
7288 * used, it's important that those reads are done through READ_ONCE() to
7289 * prevent a re-load down the line.
7290 */
7291 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7292 {
7293 unsigned head, mask = ctx->sq_entries - 1;
7294 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7295
7296 /*
7297 * The cached sq head (or cq tail) serves two purposes:
7298 *
7299 * 1) allows us to batch the cost of updating the user visible
7300 * head updates.
7301 * 2) allows the kernel side to track the head on its own, even
7302 * though the application is the one updating it.
7303 */
7304 head = READ_ONCE(ctx->sq_array[sq_idx]);
7305 if (likely(head < ctx->sq_entries))
7306 return &ctx->sq_sqes[head];
7307
7308 /* drop invalid entries */
7309 ctx->cq_extra--;
7310 WRITE_ONCE(ctx->rings->sq_dropped,
7311 READ_ONCE(ctx->rings->sq_dropped) + 1);
7312 return NULL;
7313 }
7314
7315 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7316 __must_hold(&ctx->uring_lock)
7317 {
7318 int submitted = 0;
7319
7320 /* make sure SQ entry isn't read before tail */
7321 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7322 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7323 return -EAGAIN;
7324 io_get_task_refs(nr);
7325
7326 io_submit_state_start(&ctx->submit_state, nr);
7327 while (submitted < nr) {
7328 const struct io_uring_sqe *sqe;
7329 struct io_kiocb *req;
7330
7331 req = io_alloc_req(ctx);
7332 if (unlikely(!req)) {
7333 if (!submitted)
7334 submitted = -EAGAIN;
7335 break;
7336 }
7337 sqe = io_get_sqe(ctx);
7338 if (unlikely(!sqe)) {
7339 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7340 break;
7341 }
7342 /* will complete beyond this point, count as submitted */
7343 submitted++;
7344 if (io_submit_sqe(ctx, req, sqe))
7345 break;
7346 }
7347
7348 if (unlikely(submitted != nr)) {
7349 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7350 int unused = nr - ref_used;
7351
7352 current->io_uring->cached_refs += unused;
7353 percpu_ref_put_many(&ctx->refs, unused);
7354 }
7355
7356 io_submit_state_end(&ctx->submit_state, ctx);
7357 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7358 io_commit_sqring(ctx);
7359
7360 return submitted;
7361 }
7362
7363 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7364 {
7365 return READ_ONCE(sqd->state);
7366 }
7367
7368 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7369 {
7370 /* Tell userspace we may need a wakeup call */
7371 spin_lock(&ctx->completion_lock);
7372 WRITE_ONCE(ctx->rings->sq_flags,
7373 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7374 spin_unlock(&ctx->completion_lock);
7375 }
7376
7377 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7378 {
7379 spin_lock(&ctx->completion_lock);
7380 WRITE_ONCE(ctx->rings->sq_flags,
7381 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7382 spin_unlock(&ctx->completion_lock);
7383 }
7384
7385 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7386 {
7387 unsigned int to_submit;
7388 int ret = 0;
7389
7390 to_submit = io_sqring_entries(ctx);
7391 /* if we're handling multiple rings, cap submit size for fairness */
7392 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7393 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7394
7395 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7396 unsigned nr_events = 0;
7397 const struct cred *creds = NULL;
7398
7399 if (ctx->sq_creds != current_cred())
7400 creds = override_creds(ctx->sq_creds);
7401
7402 mutex_lock(&ctx->uring_lock);
7403 if (!list_empty(&ctx->iopoll_list))
7404 io_do_iopoll(ctx, &nr_events, 0);
7405
7406 /*
7407 * Don't submit if refs are dying, good for io_uring_register(),
7408 * but also it is relied upon by io_ring_exit_work()
7409 */
7410 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7411 !(ctx->flags & IORING_SETUP_R_DISABLED))
7412 ret = io_submit_sqes(ctx, to_submit);
7413 mutex_unlock(&ctx->uring_lock);
7414
7415 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7416 wake_up(&ctx->sqo_sq_wait);
7417 if (creds)
7418 revert_creds(creds);
7419 }
7420
7421 return ret;
7422 }
7423
7424 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7425 {
7426 struct io_ring_ctx *ctx;
7427 unsigned sq_thread_idle = 0;
7428
7429 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7430 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7431 sqd->sq_thread_idle = sq_thread_idle;
7432 }
7433
7434 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7435 {
7436 bool did_sig = false;
7437 struct ksignal ksig;
7438
7439 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7440 signal_pending(current)) {
7441 mutex_unlock(&sqd->lock);
7442 if (signal_pending(current))
7443 did_sig = get_signal(&ksig);
7444 cond_resched();
7445 mutex_lock(&sqd->lock);
7446 }
7447 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7448 }
7449
7450 static int io_sq_thread(void *data)
7451 {
7452 struct io_sq_data *sqd = data;
7453 struct io_ring_ctx *ctx;
7454 unsigned long timeout = 0;
7455 char buf[TASK_COMM_LEN];
7456 DEFINE_WAIT(wait);
7457
7458 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7459 set_task_comm(current, buf);
7460
7461 if (sqd->sq_cpu != -1)
7462 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7463 else
7464 set_cpus_allowed_ptr(current, cpu_online_mask);
7465 current->flags |= PF_NO_SETAFFINITY;
7466
7467 mutex_lock(&sqd->lock);
7468 while (1) {
7469 bool cap_entries, sqt_spin = false;
7470
7471 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7472 if (io_sqd_handle_event(sqd))
7473 break;
7474 timeout = jiffies + sqd->sq_thread_idle;
7475 }
7476
7477 cap_entries = !list_is_singular(&sqd->ctx_list);
7478 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7479 int ret = __io_sq_thread(ctx, cap_entries);
7480
7481 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7482 sqt_spin = true;
7483 }
7484 if (io_run_task_work())
7485 sqt_spin = true;
7486
7487 if (sqt_spin || !time_after(jiffies, timeout)) {
7488 cond_resched();
7489 if (sqt_spin)
7490 timeout = jiffies + sqd->sq_thread_idle;
7491 continue;
7492 }
7493
7494 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7495 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7496 bool needs_sched = true;
7497
7498 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7499 io_ring_set_wakeup_flag(ctx);
7500
7501 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7502 !list_empty_careful(&ctx->iopoll_list)) {
7503 needs_sched = false;
7504 break;
7505 }
7506 if (io_sqring_entries(ctx)) {
7507 needs_sched = false;
7508 break;
7509 }
7510 }
7511
7512 if (needs_sched) {
7513 mutex_unlock(&sqd->lock);
7514 schedule();
7515 mutex_lock(&sqd->lock);
7516 }
7517 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7518 io_ring_clear_wakeup_flag(ctx);
7519 }
7520
7521 finish_wait(&sqd->wait, &wait);
7522 timeout = jiffies + sqd->sq_thread_idle;
7523 }
7524
7525 io_uring_cancel_generic(true, sqd);
7526 sqd->thread = NULL;
7527 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7528 io_ring_set_wakeup_flag(ctx);
7529 io_run_task_work();
7530 mutex_unlock(&sqd->lock);
7531
7532 complete(&sqd->exited);
7533 do_exit(0);
7534 }
7535
7536 struct io_wait_queue {
7537 struct wait_queue_entry wq;
7538 struct io_ring_ctx *ctx;
7539 unsigned cq_tail;
7540 unsigned nr_timeouts;
7541 };
7542
7543 static inline bool io_should_wake(struct io_wait_queue *iowq)
7544 {
7545 struct io_ring_ctx *ctx = iowq->ctx;
7546 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7547
7548 /*
7549 * Wake up if we have enough events, or if a timeout occurred since we
7550 * started waiting. For timeouts, we always want to return to userspace,
7551 * regardless of event count.
7552 */
7553 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7554 }
7555
7556 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7557 int wake_flags, void *key)
7558 {
7559 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7560 wq);
7561
7562 /*
7563 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7564 * the task, and the next invocation will do it.
7565 */
7566 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7567 return autoremove_wake_function(curr, mode, wake_flags, key);
7568 return -1;
7569 }
7570
7571 static int io_run_task_work_sig(void)
7572 {
7573 if (io_run_task_work())
7574 return 1;
7575 if (!signal_pending(current))
7576 return 0;
7577 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7578 return -ERESTARTSYS;
7579 return -EINTR;
7580 }
7581
7582 /* when returns >0, the caller should retry */
7583 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7584 struct io_wait_queue *iowq,
7585 ktime_t timeout)
7586 {
7587 int ret;
7588
7589 /* make sure we run task_work before checking for signals */
7590 ret = io_run_task_work_sig();
7591 if (ret || io_should_wake(iowq))
7592 return ret;
7593 /* let the caller flush overflows, retry */
7594 if (test_bit(0, &ctx->check_cq_overflow))
7595 return 1;
7596
7597 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7598 return -ETIME;
7599 return 1;
7600 }
7601
7602 /*
7603 * Wait until events become available, if we don't already have some. The
7604 * application must reap them itself, as they reside on the shared cq ring.
7605 */
7606 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7607 const sigset_t __user *sig, size_t sigsz,
7608 struct __kernel_timespec __user *uts)
7609 {
7610 struct io_wait_queue iowq;
7611 struct io_rings *rings = ctx->rings;
7612 ktime_t timeout = KTIME_MAX;
7613 int ret;
7614
7615 do {
7616 io_cqring_overflow_flush(ctx);
7617 if (io_cqring_events(ctx) >= min_events)
7618 return 0;
7619 if (!io_run_task_work())
7620 break;
7621 } while (1);
7622
7623 if (uts) {
7624 struct timespec64 ts;
7625
7626 if (get_timespec64(&ts, uts))
7627 return -EFAULT;
7628 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7629 }
7630
7631 if (sig) {
7632 #ifdef CONFIG_COMPAT
7633 if (in_compat_syscall())
7634 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7635 sigsz);
7636 else
7637 #endif
7638 ret = set_user_sigmask(sig, sigsz);
7639
7640 if (ret)
7641 return ret;
7642 }
7643
7644 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7645 iowq.wq.private = current;
7646 INIT_LIST_HEAD(&iowq.wq.entry);
7647 iowq.ctx = ctx;
7648 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7649 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7650
7651 trace_io_uring_cqring_wait(ctx, min_events);
7652 do {
7653 /* if we can't even flush overflow, don't wait for more */
7654 if (!io_cqring_overflow_flush(ctx)) {
7655 ret = -EBUSY;
7656 break;
7657 }
7658 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7659 TASK_INTERRUPTIBLE);
7660 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7661 finish_wait(&ctx->cq_wait, &iowq.wq);
7662 cond_resched();
7663 } while (ret > 0);
7664
7665 restore_saved_sigmask_unless(ret == -EINTR);
7666
7667 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7668 }
7669
7670 static void io_free_page_table(void **table, size_t size)
7671 {
7672 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7673
7674 for (i = 0; i < nr_tables; i++)
7675 kfree(table[i]);
7676 kfree(table);
7677 }
7678
7679 static void **io_alloc_page_table(size_t size)
7680 {
7681 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7682 size_t init_size = size;
7683 void **table;
7684
7685 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7686 if (!table)
7687 return NULL;
7688
7689 for (i = 0; i < nr_tables; i++) {
7690 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7691
7692 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7693 if (!table[i]) {
7694 io_free_page_table(table, init_size);
7695 return NULL;
7696 }
7697 size -= this_size;
7698 }
7699 return table;
7700 }
7701
7702 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7703 {
7704 percpu_ref_exit(&ref_node->refs);
7705 kfree(ref_node);
7706 }
7707
7708 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7709 {
7710 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7711 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7712 unsigned long flags;
7713 bool first_add = false;
7714 unsigned long delay = HZ;
7715
7716 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7717 node->done = true;
7718
7719 /* if we are mid-quiesce then do not delay */
7720 if (node->rsrc_data->quiesce)
7721 delay = 0;
7722
7723 while (!list_empty(&ctx->rsrc_ref_list)) {
7724 node = list_first_entry(&ctx->rsrc_ref_list,
7725 struct io_rsrc_node, node);
7726 /* recycle ref nodes in order */
7727 if (!node->done)
7728 break;
7729 list_del(&node->node);
7730 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7731 }
7732 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7733
7734 if (first_add)
7735 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7736 }
7737
7738 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7739 {
7740 struct io_rsrc_node *ref_node;
7741
7742 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7743 if (!ref_node)
7744 return NULL;
7745
7746 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7747 0, GFP_KERNEL)) {
7748 kfree(ref_node);
7749 return NULL;
7750 }
7751 INIT_LIST_HEAD(&ref_node->node);
7752 INIT_LIST_HEAD(&ref_node->rsrc_list);
7753 ref_node->done = false;
7754 return ref_node;
7755 }
7756
7757 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7758 struct io_rsrc_data *data_to_kill)
7759 {
7760 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7761 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7762
7763 if (data_to_kill) {
7764 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7765
7766 rsrc_node->rsrc_data = data_to_kill;
7767 spin_lock_irq(&ctx->rsrc_ref_lock);
7768 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7769 spin_unlock_irq(&ctx->rsrc_ref_lock);
7770
7771 atomic_inc(&data_to_kill->refs);
7772 percpu_ref_kill(&rsrc_node->refs);
7773 ctx->rsrc_node = NULL;
7774 }
7775
7776 if (!ctx->rsrc_node) {
7777 ctx->rsrc_node = ctx->rsrc_backup_node;
7778 ctx->rsrc_backup_node = NULL;
7779 }
7780 }
7781
7782 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7783 {
7784 if (ctx->rsrc_backup_node)
7785 return 0;
7786 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7787 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7788 }
7789
7790 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7791 {
7792 int ret;
7793
7794 /* As we may drop ->uring_lock, other task may have started quiesce */
7795 if (data->quiesce)
7796 return -ENXIO;
7797
7798 data->quiesce = true;
7799 do {
7800 ret = io_rsrc_node_switch_start(ctx);
7801 if (ret)
7802 break;
7803 io_rsrc_node_switch(ctx, data);
7804
7805 /* kill initial ref, already quiesced if zero */
7806 if (atomic_dec_and_test(&data->refs))
7807 break;
7808 mutex_unlock(&ctx->uring_lock);
7809 flush_delayed_work(&ctx->rsrc_put_work);
7810 ret = wait_for_completion_interruptible(&data->done);
7811 if (!ret) {
7812 mutex_lock(&ctx->uring_lock);
7813 if (atomic_read(&data->refs) > 0) {
7814 /*
7815 * it has been revived by another thread while
7816 * we were unlocked
7817 */
7818 mutex_unlock(&ctx->uring_lock);
7819 } else {
7820 break;
7821 }
7822 }
7823
7824 atomic_inc(&data->refs);
7825 /* wait for all works potentially completing data->done */
7826 flush_delayed_work(&ctx->rsrc_put_work);
7827 reinit_completion(&data->done);
7828
7829 ret = io_run_task_work_sig();
7830 mutex_lock(&ctx->uring_lock);
7831 } while (ret >= 0);
7832 data->quiesce = false;
7833
7834 return ret;
7835 }
7836
7837 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7838 {
7839 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7840 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7841
7842 return &data->tags[table_idx][off];
7843 }
7844
7845 static void io_rsrc_data_free(struct io_rsrc_data *data)
7846 {
7847 size_t size = data->nr * sizeof(data->tags[0][0]);
7848
7849 if (data->tags)
7850 io_free_page_table((void **)data->tags, size);
7851 kfree(data);
7852 }
7853
7854 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7855 u64 __user *utags, unsigned nr,
7856 struct io_rsrc_data **pdata)
7857 {
7858 struct io_rsrc_data *data;
7859 int ret = -ENOMEM;
7860 unsigned i;
7861
7862 data = kzalloc(sizeof(*data), GFP_KERNEL);
7863 if (!data)
7864 return -ENOMEM;
7865 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7866 if (!data->tags) {
7867 kfree(data);
7868 return -ENOMEM;
7869 }
7870
7871 data->nr = nr;
7872 data->ctx = ctx;
7873 data->do_put = do_put;
7874 if (utags) {
7875 ret = -EFAULT;
7876 for (i = 0; i < nr; i++) {
7877 u64 *tag_slot = io_get_tag_slot(data, i);
7878
7879 if (copy_from_user(tag_slot, &utags[i],
7880 sizeof(*tag_slot)))
7881 goto fail;
7882 }
7883 }
7884
7885 atomic_set(&data->refs, 1);
7886 init_completion(&data->done);
7887 *pdata = data;
7888 return 0;
7889 fail:
7890 io_rsrc_data_free(data);
7891 return ret;
7892 }
7893
7894 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7895 {
7896 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7897 GFP_KERNEL_ACCOUNT);
7898 return !!table->files;
7899 }
7900
7901 static void io_free_file_tables(struct io_file_table *table)
7902 {
7903 kvfree(table->files);
7904 table->files = NULL;
7905 }
7906
7907 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7908 {
7909 #if defined(CONFIG_UNIX)
7910 if (ctx->ring_sock) {
7911 struct sock *sock = ctx->ring_sock->sk;
7912 struct sk_buff *skb;
7913
7914 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7915 kfree_skb(skb);
7916 }
7917 #else
7918 int i;
7919
7920 for (i = 0; i < ctx->nr_user_files; i++) {
7921 struct file *file;
7922
7923 file = io_file_from_index(ctx, i);
7924 if (file)
7925 fput(file);
7926 }
7927 #endif
7928 io_free_file_tables(&ctx->file_table);
7929 io_rsrc_data_free(ctx->file_data);
7930 ctx->file_data = NULL;
7931 ctx->nr_user_files = 0;
7932 }
7933
7934 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7935 {
7936 unsigned nr = ctx->nr_user_files;
7937 int ret;
7938
7939 if (!ctx->file_data)
7940 return -ENXIO;
7941
7942 /*
7943 * Quiesce may unlock ->uring_lock, and while it's not held
7944 * prevent new requests using the table.
7945 */
7946 ctx->nr_user_files = 0;
7947 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7948 ctx->nr_user_files = nr;
7949 if (!ret)
7950 __io_sqe_files_unregister(ctx);
7951 return ret;
7952 }
7953
7954 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7955 __releases(&sqd->lock)
7956 {
7957 WARN_ON_ONCE(sqd->thread == current);
7958
7959 /*
7960 * Do the dance but not conditional clear_bit() because it'd race with
7961 * other threads incrementing park_pending and setting the bit.
7962 */
7963 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7964 if (atomic_dec_return(&sqd->park_pending))
7965 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7966 mutex_unlock(&sqd->lock);
7967 }
7968
7969 static void io_sq_thread_park(struct io_sq_data *sqd)
7970 __acquires(&sqd->lock)
7971 {
7972 WARN_ON_ONCE(sqd->thread == current);
7973
7974 atomic_inc(&sqd->park_pending);
7975 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7976 mutex_lock(&sqd->lock);
7977 if (sqd->thread)
7978 wake_up_process(sqd->thread);
7979 }
7980
7981 static void io_sq_thread_stop(struct io_sq_data *sqd)
7982 {
7983 WARN_ON_ONCE(sqd->thread == current);
7984 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7985
7986 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7987 mutex_lock(&sqd->lock);
7988 if (sqd->thread)
7989 wake_up_process(sqd->thread);
7990 mutex_unlock(&sqd->lock);
7991 wait_for_completion(&sqd->exited);
7992 }
7993
7994 static void io_put_sq_data(struct io_sq_data *sqd)
7995 {
7996 if (refcount_dec_and_test(&sqd->refs)) {
7997 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7998
7999 io_sq_thread_stop(sqd);
8000 kfree(sqd);
8001 }
8002 }
8003
8004 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8005 {
8006 struct io_sq_data *sqd = ctx->sq_data;
8007
8008 if (sqd) {
8009 io_sq_thread_park(sqd);
8010 list_del_init(&ctx->sqd_list);
8011 io_sqd_update_thread_idle(sqd);
8012 io_sq_thread_unpark(sqd);
8013
8014 io_put_sq_data(sqd);
8015 ctx->sq_data = NULL;
8016 }
8017 }
8018
8019 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8020 {
8021 struct io_ring_ctx *ctx_attach;
8022 struct io_sq_data *sqd;
8023 struct fd f;
8024
8025 f = fdget(p->wq_fd);
8026 if (!f.file)
8027 return ERR_PTR(-ENXIO);
8028 if (f.file->f_op != &io_uring_fops) {
8029 fdput(f);
8030 return ERR_PTR(-EINVAL);
8031 }
8032
8033 ctx_attach = f.file->private_data;
8034 sqd = ctx_attach->sq_data;
8035 if (!sqd) {
8036 fdput(f);
8037 return ERR_PTR(-EINVAL);
8038 }
8039 if (sqd->task_tgid != current->tgid) {
8040 fdput(f);
8041 return ERR_PTR(-EPERM);
8042 }
8043
8044 refcount_inc(&sqd->refs);
8045 fdput(f);
8046 return sqd;
8047 }
8048
8049 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8050 bool *attached)
8051 {
8052 struct io_sq_data *sqd;
8053
8054 *attached = false;
8055 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8056 sqd = io_attach_sq_data(p);
8057 if (!IS_ERR(sqd)) {
8058 *attached = true;
8059 return sqd;
8060 }
8061 /* fall through for EPERM case, setup new sqd/task */
8062 if (PTR_ERR(sqd) != -EPERM)
8063 return sqd;
8064 }
8065
8066 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8067 if (!sqd)
8068 return ERR_PTR(-ENOMEM);
8069
8070 atomic_set(&sqd->park_pending, 0);
8071 refcount_set(&sqd->refs, 1);
8072 INIT_LIST_HEAD(&sqd->ctx_list);
8073 mutex_init(&sqd->lock);
8074 init_waitqueue_head(&sqd->wait);
8075 init_completion(&sqd->exited);
8076 return sqd;
8077 }
8078
8079 #if defined(CONFIG_UNIX)
8080 /*
8081 * Ensure the UNIX gc is aware of our file set, so we are certain that
8082 * the io_uring can be safely unregistered on process exit, even if we have
8083 * loops in the file referencing.
8084 */
8085 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8086 {
8087 struct sock *sk = ctx->ring_sock->sk;
8088 struct scm_fp_list *fpl;
8089 struct sk_buff *skb;
8090 int i, nr_files;
8091
8092 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8093 if (!fpl)
8094 return -ENOMEM;
8095
8096 skb = alloc_skb(0, GFP_KERNEL);
8097 if (!skb) {
8098 kfree(fpl);
8099 return -ENOMEM;
8100 }
8101
8102 skb->sk = sk;
8103
8104 nr_files = 0;
8105 fpl->user = get_uid(current_user());
8106 for (i = 0; i < nr; i++) {
8107 struct file *file = io_file_from_index(ctx, i + offset);
8108
8109 if (!file)
8110 continue;
8111 fpl->fp[nr_files] = get_file(file);
8112 unix_inflight(fpl->user, fpl->fp[nr_files]);
8113 nr_files++;
8114 }
8115
8116 if (nr_files) {
8117 fpl->max = SCM_MAX_FD;
8118 fpl->count = nr_files;
8119 UNIXCB(skb).fp = fpl;
8120 skb->destructor = unix_destruct_scm;
8121 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8122 skb_queue_head(&sk->sk_receive_queue, skb);
8123
8124 for (i = 0; i < nr; i++) {
8125 struct file *file = io_file_from_index(ctx, i + offset);
8126
8127 if (file)
8128 fput(file);
8129 }
8130 } else {
8131 kfree_skb(skb);
8132 free_uid(fpl->user);
8133 kfree(fpl);
8134 }
8135
8136 return 0;
8137 }
8138
8139 /*
8140 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8141 * causes regular reference counting to break down. We rely on the UNIX
8142 * garbage collection to take care of this problem for us.
8143 */
8144 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8145 {
8146 unsigned left, total;
8147 int ret = 0;
8148
8149 total = 0;
8150 left = ctx->nr_user_files;
8151 while (left) {
8152 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8153
8154 ret = __io_sqe_files_scm(ctx, this_files, total);
8155 if (ret)
8156 break;
8157 left -= this_files;
8158 total += this_files;
8159 }
8160
8161 if (!ret)
8162 return 0;
8163
8164 while (total < ctx->nr_user_files) {
8165 struct file *file = io_file_from_index(ctx, total);
8166
8167 if (file)
8168 fput(file);
8169 total++;
8170 }
8171
8172 return ret;
8173 }
8174 #else
8175 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8176 {
8177 return 0;
8178 }
8179 #endif
8180
8181 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8182 {
8183 struct file *file = prsrc->file;
8184 #if defined(CONFIG_UNIX)
8185 struct sock *sock = ctx->ring_sock->sk;
8186 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8187 struct sk_buff *skb;
8188 int i;
8189
8190 __skb_queue_head_init(&list);
8191
8192 /*
8193 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8194 * remove this entry and rearrange the file array.
8195 */
8196 skb = skb_dequeue(head);
8197 while (skb) {
8198 struct scm_fp_list *fp;
8199
8200 fp = UNIXCB(skb).fp;
8201 for (i = 0; i < fp->count; i++) {
8202 int left;
8203
8204 if (fp->fp[i] != file)
8205 continue;
8206
8207 unix_notinflight(fp->user, fp->fp[i]);
8208 left = fp->count - 1 - i;
8209 if (left) {
8210 memmove(&fp->fp[i], &fp->fp[i + 1],
8211 left * sizeof(struct file *));
8212 }
8213 fp->count--;
8214 if (!fp->count) {
8215 kfree_skb(skb);
8216 skb = NULL;
8217 } else {
8218 __skb_queue_tail(&list, skb);
8219 }
8220 fput(file);
8221 file = NULL;
8222 break;
8223 }
8224
8225 if (!file)
8226 break;
8227
8228 __skb_queue_tail(&list, skb);
8229
8230 skb = skb_dequeue(head);
8231 }
8232
8233 if (skb_peek(&list)) {
8234 spin_lock_irq(&head->lock);
8235 while ((skb = __skb_dequeue(&list)) != NULL)
8236 __skb_queue_tail(head, skb);
8237 spin_unlock_irq(&head->lock);
8238 }
8239 #else
8240 fput(file);
8241 #endif
8242 }
8243
8244 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8245 {
8246 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8247 struct io_ring_ctx *ctx = rsrc_data->ctx;
8248 struct io_rsrc_put *prsrc, *tmp;
8249
8250 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8251 list_del(&prsrc->list);
8252
8253 if (prsrc->tag) {
8254 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8255
8256 io_ring_submit_lock(ctx, lock_ring);
8257 spin_lock(&ctx->completion_lock);
8258 io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8259 ctx->cq_extra++;
8260 io_commit_cqring(ctx);
8261 spin_unlock(&ctx->completion_lock);
8262 io_cqring_ev_posted(ctx);
8263 io_ring_submit_unlock(ctx, lock_ring);
8264 }
8265
8266 rsrc_data->do_put(ctx, prsrc);
8267 kfree(prsrc);
8268 }
8269
8270 io_rsrc_node_destroy(ref_node);
8271 if (atomic_dec_and_test(&rsrc_data->refs))
8272 complete(&rsrc_data->done);
8273 }
8274
8275 static void io_rsrc_put_work(struct work_struct *work)
8276 {
8277 struct io_ring_ctx *ctx;
8278 struct llist_node *node;
8279
8280 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8281 node = llist_del_all(&ctx->rsrc_put_llist);
8282
8283 while (node) {
8284 struct io_rsrc_node *ref_node;
8285 struct llist_node *next = node->next;
8286
8287 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8288 __io_rsrc_put_work(ref_node);
8289 node = next;
8290 }
8291 }
8292
8293 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8294 unsigned nr_args, u64 __user *tags)
8295 {
8296 __s32 __user *fds = (__s32 __user *) arg;
8297 struct file *file;
8298 int fd, ret;
8299 unsigned i;
8300
8301 if (ctx->file_data)
8302 return -EBUSY;
8303 if (!nr_args)
8304 return -EINVAL;
8305 if (nr_args > IORING_MAX_FIXED_FILES)
8306 return -EMFILE;
8307 if (nr_args > rlimit(RLIMIT_NOFILE))
8308 return -EMFILE;
8309 ret = io_rsrc_node_switch_start(ctx);
8310 if (ret)
8311 return ret;
8312 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8313 &ctx->file_data);
8314 if (ret)
8315 return ret;
8316
8317 ret = -ENOMEM;
8318 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8319 goto out_free;
8320
8321 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8322 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8323 ret = -EFAULT;
8324 goto out_fput;
8325 }
8326 /* allow sparse sets */
8327 if (fd == -1) {
8328 ret = -EINVAL;
8329 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8330 goto out_fput;
8331 continue;
8332 }
8333
8334 file = fget(fd);
8335 ret = -EBADF;
8336 if (unlikely(!file))
8337 goto out_fput;
8338
8339 /*
8340 * Don't allow io_uring instances to be registered. If UNIX
8341 * isn't enabled, then this causes a reference cycle and this
8342 * instance can never get freed. If UNIX is enabled we'll
8343 * handle it just fine, but there's still no point in allowing
8344 * a ring fd as it doesn't support regular read/write anyway.
8345 */
8346 if (file->f_op == &io_uring_fops) {
8347 fput(file);
8348 goto out_fput;
8349 }
8350 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8351 }
8352
8353 ret = io_sqe_files_scm(ctx);
8354 if (ret) {
8355 __io_sqe_files_unregister(ctx);
8356 return ret;
8357 }
8358
8359 io_rsrc_node_switch(ctx, NULL);
8360 return ret;
8361 out_fput:
8362 for (i = 0; i < ctx->nr_user_files; i++) {
8363 file = io_file_from_index(ctx, i);
8364 if (file)
8365 fput(file);
8366 }
8367 io_free_file_tables(&ctx->file_table);
8368 ctx->nr_user_files = 0;
8369 out_free:
8370 io_rsrc_data_free(ctx->file_data);
8371 ctx->file_data = NULL;
8372 return ret;
8373 }
8374
8375 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8376 int index)
8377 {
8378 #if defined(CONFIG_UNIX)
8379 struct sock *sock = ctx->ring_sock->sk;
8380 struct sk_buff_head *head = &sock->sk_receive_queue;
8381 struct sk_buff *skb;
8382
8383 /*
8384 * See if we can merge this file into an existing skb SCM_RIGHTS
8385 * file set. If there's no room, fall back to allocating a new skb
8386 * and filling it in.
8387 */
8388 spin_lock_irq(&head->lock);
8389 skb = skb_peek(head);
8390 if (skb) {
8391 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8392
8393 if (fpl->count < SCM_MAX_FD) {
8394 __skb_unlink(skb, head);
8395 spin_unlock_irq(&head->lock);
8396 fpl->fp[fpl->count] = get_file(file);
8397 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8398 fpl->count++;
8399 spin_lock_irq(&head->lock);
8400 __skb_queue_head(head, skb);
8401 } else {
8402 skb = NULL;
8403 }
8404 }
8405 spin_unlock_irq(&head->lock);
8406
8407 if (skb) {
8408 fput(file);
8409 return 0;
8410 }
8411
8412 return __io_sqe_files_scm(ctx, 1, index);
8413 #else
8414 return 0;
8415 #endif
8416 }
8417
8418 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8419 struct io_rsrc_node *node, void *rsrc)
8420 {
8421 u64 *tag_slot = io_get_tag_slot(data, idx);
8422 struct io_rsrc_put *prsrc;
8423
8424 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8425 if (!prsrc)
8426 return -ENOMEM;
8427
8428 prsrc->tag = *tag_slot;
8429 *tag_slot = 0;
8430 prsrc->rsrc = rsrc;
8431 list_add(&prsrc->list, &node->rsrc_list);
8432 return 0;
8433 }
8434
8435 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8436 unsigned int issue_flags, u32 slot_index)
8437 {
8438 struct io_ring_ctx *ctx = req->ctx;
8439 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8440 bool needs_switch = false;
8441 struct io_fixed_file *file_slot;
8442 int ret = -EBADF;
8443
8444 io_ring_submit_lock(ctx, !force_nonblock);
8445 if (file->f_op == &io_uring_fops)
8446 goto err;
8447 ret = -ENXIO;
8448 if (!ctx->file_data)
8449 goto err;
8450 ret = -EINVAL;
8451 if (slot_index >= ctx->nr_user_files)
8452 goto err;
8453
8454 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8455 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8456
8457 if (file_slot->file_ptr) {
8458 struct file *old_file;
8459
8460 ret = io_rsrc_node_switch_start(ctx);
8461 if (ret)
8462 goto err;
8463
8464 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8465 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8466 ctx->rsrc_node, old_file);
8467 if (ret)
8468 goto err;
8469 file_slot->file_ptr = 0;
8470 needs_switch = true;
8471 }
8472
8473 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8474 io_fixed_file_set(file_slot, file);
8475 ret = io_sqe_file_register(ctx, file, slot_index);
8476 if (ret) {
8477 file_slot->file_ptr = 0;
8478 goto err;
8479 }
8480
8481 ret = 0;
8482 err:
8483 if (needs_switch)
8484 io_rsrc_node_switch(ctx, ctx->file_data);
8485 io_ring_submit_unlock(ctx, !force_nonblock);
8486 if (ret)
8487 fput(file);
8488 return ret;
8489 }
8490
8491 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8492 {
8493 unsigned int offset = req->close.file_slot - 1;
8494 struct io_ring_ctx *ctx = req->ctx;
8495 struct io_fixed_file *file_slot;
8496 struct file *file;
8497 int ret;
8498
8499 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8500 ret = -ENXIO;
8501 if (unlikely(!ctx->file_data))
8502 goto out;
8503 ret = -EINVAL;
8504 if (offset >= ctx->nr_user_files)
8505 goto out;
8506 ret = io_rsrc_node_switch_start(ctx);
8507 if (ret)
8508 goto out;
8509
8510 offset = array_index_nospec(offset, ctx->nr_user_files);
8511 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8512 ret = -EBADF;
8513 if (!file_slot->file_ptr)
8514 goto out;
8515
8516 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8517 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8518 if (ret)
8519 goto out;
8520
8521 file_slot->file_ptr = 0;
8522 io_rsrc_node_switch(ctx, ctx->file_data);
8523 ret = 0;
8524 out:
8525 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8526 return ret;
8527 }
8528
8529 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8530 struct io_uring_rsrc_update2 *up,
8531 unsigned nr_args)
8532 {
8533 u64 __user *tags = u64_to_user_ptr(up->tags);
8534 __s32 __user *fds = u64_to_user_ptr(up->data);
8535 struct io_rsrc_data *data = ctx->file_data;
8536 struct io_fixed_file *file_slot;
8537 struct file *file;
8538 int fd, i, err = 0;
8539 unsigned int done;
8540 bool needs_switch = false;
8541
8542 if (!ctx->file_data)
8543 return -ENXIO;
8544 if (up->offset + nr_args > ctx->nr_user_files)
8545 return -EINVAL;
8546
8547 for (done = 0; done < nr_args; done++) {
8548 u64 tag = 0;
8549
8550 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8551 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8552 err = -EFAULT;
8553 break;
8554 }
8555 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8556 err = -EINVAL;
8557 break;
8558 }
8559 if (fd == IORING_REGISTER_FILES_SKIP)
8560 continue;
8561
8562 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8563 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8564
8565 if (file_slot->file_ptr) {
8566 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8567 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8568 if (err)
8569 break;
8570 file_slot->file_ptr = 0;
8571 needs_switch = true;
8572 }
8573 if (fd != -1) {
8574 file = fget(fd);
8575 if (!file) {
8576 err = -EBADF;
8577 break;
8578 }
8579 /*
8580 * Don't allow io_uring instances to be registered. If
8581 * UNIX isn't enabled, then this causes a reference
8582 * cycle and this instance can never get freed. If UNIX
8583 * is enabled we'll handle it just fine, but there's
8584 * still no point in allowing a ring fd as it doesn't
8585 * support regular read/write anyway.
8586 */
8587 if (file->f_op == &io_uring_fops) {
8588 fput(file);
8589 err = -EBADF;
8590 break;
8591 }
8592 *io_get_tag_slot(data, i) = tag;
8593 io_fixed_file_set(file_slot, file);
8594 err = io_sqe_file_register(ctx, file, i);
8595 if (err) {
8596 file_slot->file_ptr = 0;
8597 fput(file);
8598 break;
8599 }
8600 }
8601 }
8602
8603 if (needs_switch)
8604 io_rsrc_node_switch(ctx, data);
8605 return done ? done : err;
8606 }
8607
8608 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8609 struct task_struct *task)
8610 {
8611 struct io_wq_hash *hash;
8612 struct io_wq_data data;
8613 unsigned int concurrency;
8614
8615 mutex_lock(&ctx->uring_lock);
8616 hash = ctx->hash_map;
8617 if (!hash) {
8618 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8619 if (!hash) {
8620 mutex_unlock(&ctx->uring_lock);
8621 return ERR_PTR(-ENOMEM);
8622 }
8623 refcount_set(&hash->refs, 1);
8624 init_waitqueue_head(&hash->wait);
8625 ctx->hash_map = hash;
8626 }
8627 mutex_unlock(&ctx->uring_lock);
8628
8629 data.hash = hash;
8630 data.task = task;
8631 data.free_work = io_wq_free_work;
8632 data.do_work = io_wq_submit_work;
8633
8634 /* Do QD, or 4 * CPUS, whatever is smallest */
8635 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8636
8637 return io_wq_create(concurrency, &data);
8638 }
8639
8640 static int io_uring_alloc_task_context(struct task_struct *task,
8641 struct io_ring_ctx *ctx)
8642 {
8643 struct io_uring_task *tctx;
8644 int ret;
8645
8646 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8647 if (unlikely(!tctx))
8648 return -ENOMEM;
8649
8650 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8651 if (unlikely(ret)) {
8652 kfree(tctx);
8653 return ret;
8654 }
8655
8656 tctx->io_wq = io_init_wq_offload(ctx, task);
8657 if (IS_ERR(tctx->io_wq)) {
8658 ret = PTR_ERR(tctx->io_wq);
8659 percpu_counter_destroy(&tctx->inflight);
8660 kfree(tctx);
8661 return ret;
8662 }
8663
8664 xa_init(&tctx->xa);
8665 init_waitqueue_head(&tctx->wait);
8666 atomic_set(&tctx->in_idle, 0);
8667 atomic_set(&tctx->inflight_tracked, 0);
8668 task->io_uring = tctx;
8669 spin_lock_init(&tctx->task_lock);
8670 INIT_WQ_LIST(&tctx->task_list);
8671 init_task_work(&tctx->task_work, tctx_task_work);
8672 return 0;
8673 }
8674
8675 void __io_uring_free(struct task_struct *tsk)
8676 {
8677 struct io_uring_task *tctx = tsk->io_uring;
8678
8679 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8680 WARN_ON_ONCE(tctx->io_wq);
8681 WARN_ON_ONCE(tctx->cached_refs);
8682
8683 percpu_counter_destroy(&tctx->inflight);
8684 kfree(tctx);
8685 tsk->io_uring = NULL;
8686 }
8687
8688 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8689 struct io_uring_params *p)
8690 {
8691 int ret;
8692
8693 /* Retain compatibility with failing for an invalid attach attempt */
8694 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8695 IORING_SETUP_ATTACH_WQ) {
8696 struct fd f;
8697
8698 f = fdget(p->wq_fd);
8699 if (!f.file)
8700 return -ENXIO;
8701 if (f.file->f_op != &io_uring_fops) {
8702 fdput(f);
8703 return -EINVAL;
8704 }
8705 fdput(f);
8706 }
8707 if (ctx->flags & IORING_SETUP_SQPOLL) {
8708 struct task_struct *tsk;
8709 struct io_sq_data *sqd;
8710 bool attached;
8711
8712 sqd = io_get_sq_data(p, &attached);
8713 if (IS_ERR(sqd)) {
8714 ret = PTR_ERR(sqd);
8715 goto err;
8716 }
8717
8718 ctx->sq_creds = get_current_cred();
8719 ctx->sq_data = sqd;
8720 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8721 if (!ctx->sq_thread_idle)
8722 ctx->sq_thread_idle = HZ;
8723
8724 io_sq_thread_park(sqd);
8725 list_add(&ctx->sqd_list, &sqd->ctx_list);
8726 io_sqd_update_thread_idle(sqd);
8727 /* don't attach to a dying SQPOLL thread, would be racy */
8728 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8729 io_sq_thread_unpark(sqd);
8730
8731 if (ret < 0)
8732 goto err;
8733 if (attached)
8734 return 0;
8735
8736 if (p->flags & IORING_SETUP_SQ_AFF) {
8737 int cpu = p->sq_thread_cpu;
8738
8739 ret = -EINVAL;
8740 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8741 goto err_sqpoll;
8742 sqd->sq_cpu = cpu;
8743 } else {
8744 sqd->sq_cpu = -1;
8745 }
8746
8747 sqd->task_pid = current->pid;
8748 sqd->task_tgid = current->tgid;
8749 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8750 if (IS_ERR(tsk)) {
8751 ret = PTR_ERR(tsk);
8752 goto err_sqpoll;
8753 }
8754
8755 sqd->thread = tsk;
8756 ret = io_uring_alloc_task_context(tsk, ctx);
8757 wake_up_new_task(tsk);
8758 if (ret)
8759 goto err;
8760 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8761 /* Can't have SQ_AFF without SQPOLL */
8762 ret = -EINVAL;
8763 goto err;
8764 }
8765
8766 return 0;
8767 err_sqpoll:
8768 complete(&ctx->sq_data->exited);
8769 err:
8770 io_sq_thread_finish(ctx);
8771 return ret;
8772 }
8773
8774 static inline void __io_unaccount_mem(struct user_struct *user,
8775 unsigned long nr_pages)
8776 {
8777 atomic_long_sub(nr_pages, &user->locked_vm);
8778 }
8779
8780 static inline int __io_account_mem(struct user_struct *user,
8781 unsigned long nr_pages)
8782 {
8783 unsigned long page_limit, cur_pages, new_pages;
8784
8785 /* Don't allow more pages than we can safely lock */
8786 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8787
8788 do {
8789 cur_pages = atomic_long_read(&user->locked_vm);
8790 new_pages = cur_pages + nr_pages;
8791 if (new_pages > page_limit)
8792 return -ENOMEM;
8793 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8794 new_pages) != cur_pages);
8795
8796 return 0;
8797 }
8798
8799 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8800 {
8801 if (ctx->user)
8802 __io_unaccount_mem(ctx->user, nr_pages);
8803
8804 if (ctx->mm_account)
8805 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8806 }
8807
8808 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8809 {
8810 int ret;
8811
8812 if (ctx->user) {
8813 ret = __io_account_mem(ctx->user, nr_pages);
8814 if (ret)
8815 return ret;
8816 }
8817
8818 if (ctx->mm_account)
8819 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8820
8821 return 0;
8822 }
8823
8824 static void io_mem_free(void *ptr)
8825 {
8826 struct page *page;
8827
8828 if (!ptr)
8829 return;
8830
8831 page = virt_to_head_page(ptr);
8832 if (put_page_testzero(page))
8833 free_compound_page(page);
8834 }
8835
8836 static void *io_mem_alloc(size_t size)
8837 {
8838 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8839
8840 return (void *) __get_free_pages(gfp, get_order(size));
8841 }
8842
8843 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8844 size_t *sq_offset)
8845 {
8846 struct io_rings *rings;
8847 size_t off, sq_array_size;
8848
8849 off = struct_size(rings, cqes, cq_entries);
8850 if (off == SIZE_MAX)
8851 return SIZE_MAX;
8852
8853 #ifdef CONFIG_SMP
8854 off = ALIGN(off, SMP_CACHE_BYTES);
8855 if (off == 0)
8856 return SIZE_MAX;
8857 #endif
8858
8859 if (sq_offset)
8860 *sq_offset = off;
8861
8862 sq_array_size = array_size(sizeof(u32), sq_entries);
8863 if (sq_array_size == SIZE_MAX)
8864 return SIZE_MAX;
8865
8866 if (check_add_overflow(off, sq_array_size, &off))
8867 return SIZE_MAX;
8868
8869 return off;
8870 }
8871
8872 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8873 {
8874 struct io_mapped_ubuf *imu = *slot;
8875 unsigned int i;
8876
8877 if (imu != ctx->dummy_ubuf) {
8878 for (i = 0; i < imu->nr_bvecs; i++)
8879 unpin_user_page(imu->bvec[i].bv_page);
8880 if (imu->acct_pages)
8881 io_unaccount_mem(ctx, imu->acct_pages);
8882 kvfree(imu);
8883 }
8884 *slot = NULL;
8885 }
8886
8887 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8888 {
8889 io_buffer_unmap(ctx, &prsrc->buf);
8890 prsrc->buf = NULL;
8891 }
8892
8893 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8894 {
8895 unsigned int i;
8896
8897 for (i = 0; i < ctx->nr_user_bufs; i++)
8898 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8899 kfree(ctx->user_bufs);
8900 io_rsrc_data_free(ctx->buf_data);
8901 ctx->user_bufs = NULL;
8902 ctx->buf_data = NULL;
8903 ctx->nr_user_bufs = 0;
8904 }
8905
8906 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8907 {
8908 unsigned nr = ctx->nr_user_bufs;
8909 int ret;
8910
8911 if (!ctx->buf_data)
8912 return -ENXIO;
8913
8914 /*
8915 * Quiesce may unlock ->uring_lock, and while it's not held
8916 * prevent new requests using the table.
8917 */
8918 ctx->nr_user_bufs = 0;
8919 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8920 ctx->nr_user_bufs = nr;
8921 if (!ret)
8922 __io_sqe_buffers_unregister(ctx);
8923 return ret;
8924 }
8925
8926 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8927 void __user *arg, unsigned index)
8928 {
8929 struct iovec __user *src;
8930
8931 #ifdef CONFIG_COMPAT
8932 if (ctx->compat) {
8933 struct compat_iovec __user *ciovs;
8934 struct compat_iovec ciov;
8935
8936 ciovs = (struct compat_iovec __user *) arg;
8937 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8938 return -EFAULT;
8939
8940 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8941 dst->iov_len = ciov.iov_len;
8942 return 0;
8943 }
8944 #endif
8945 src = (struct iovec __user *) arg;
8946 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8947 return -EFAULT;
8948 return 0;
8949 }
8950
8951 /*
8952 * Not super efficient, but this is just a registration time. And we do cache
8953 * the last compound head, so generally we'll only do a full search if we don't
8954 * match that one.
8955 *
8956 * We check if the given compound head page has already been accounted, to
8957 * avoid double accounting it. This allows us to account the full size of the
8958 * page, not just the constituent pages of a huge page.
8959 */
8960 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8961 int nr_pages, struct page *hpage)
8962 {
8963 int i, j;
8964
8965 /* check current page array */
8966 for (i = 0; i < nr_pages; i++) {
8967 if (!PageCompound(pages[i]))
8968 continue;
8969 if (compound_head(pages[i]) == hpage)
8970 return true;
8971 }
8972
8973 /* check previously registered pages */
8974 for (i = 0; i < ctx->nr_user_bufs; i++) {
8975 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8976
8977 for (j = 0; j < imu->nr_bvecs; j++) {
8978 if (!PageCompound(imu->bvec[j].bv_page))
8979 continue;
8980 if (compound_head(imu->bvec[j].bv_page) == hpage)
8981 return true;
8982 }
8983 }
8984
8985 return false;
8986 }
8987
8988 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8989 int nr_pages, struct io_mapped_ubuf *imu,
8990 struct page **last_hpage)
8991 {
8992 int i, ret;
8993
8994 imu->acct_pages = 0;
8995 for (i = 0; i < nr_pages; i++) {
8996 if (!PageCompound(pages[i])) {
8997 imu->acct_pages++;
8998 } else {
8999 struct page *hpage;
9000
9001 hpage = compound_head(pages[i]);
9002 if (hpage == *last_hpage)
9003 continue;
9004 *last_hpage = hpage;
9005 if (headpage_already_acct(ctx, pages, i, hpage))
9006 continue;
9007 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9008 }
9009 }
9010
9011 if (!imu->acct_pages)
9012 return 0;
9013
9014 ret = io_account_mem(ctx, imu->acct_pages);
9015 if (ret)
9016 imu->acct_pages = 0;
9017 return ret;
9018 }
9019
9020 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9021 struct io_mapped_ubuf **pimu,
9022 struct page **last_hpage)
9023 {
9024 struct io_mapped_ubuf *imu = NULL;
9025 struct vm_area_struct **vmas = NULL;
9026 struct page **pages = NULL;
9027 unsigned long off, start, end, ubuf;
9028 size_t size;
9029 int ret, pret, nr_pages, i;
9030
9031 if (!iov->iov_base) {
9032 *pimu = ctx->dummy_ubuf;
9033 return 0;
9034 }
9035
9036 ubuf = (unsigned long) iov->iov_base;
9037 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9038 start = ubuf >> PAGE_SHIFT;
9039 nr_pages = end - start;
9040
9041 *pimu = NULL;
9042 ret = -ENOMEM;
9043
9044 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9045 if (!pages)
9046 goto done;
9047
9048 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9049 GFP_KERNEL);
9050 if (!vmas)
9051 goto done;
9052
9053 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9054 if (!imu)
9055 goto done;
9056
9057 ret = 0;
9058 mmap_read_lock(current->mm);
9059 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9060 pages, vmas);
9061 if (pret == nr_pages) {
9062 /* don't support file backed memory */
9063 for (i = 0; i < nr_pages; i++) {
9064 struct vm_area_struct *vma = vmas[i];
9065
9066 if (vma_is_shmem(vma))
9067 continue;
9068 if (vma->vm_file &&
9069 !is_file_hugepages(vma->vm_file)) {
9070 ret = -EOPNOTSUPP;
9071 break;
9072 }
9073 }
9074 } else {
9075 ret = pret < 0 ? pret : -EFAULT;
9076 }
9077 mmap_read_unlock(current->mm);
9078 if (ret) {
9079 /*
9080 * if we did partial map, or found file backed vmas,
9081 * release any pages we did get
9082 */
9083 if (pret > 0)
9084 unpin_user_pages(pages, pret);
9085 goto done;
9086 }
9087
9088 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9089 if (ret) {
9090 unpin_user_pages(pages, pret);
9091 goto done;
9092 }
9093
9094 off = ubuf & ~PAGE_MASK;
9095 size = iov->iov_len;
9096 for (i = 0; i < nr_pages; i++) {
9097 size_t vec_len;
9098
9099 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9100 imu->bvec[i].bv_page = pages[i];
9101 imu->bvec[i].bv_len = vec_len;
9102 imu->bvec[i].bv_offset = off;
9103 off = 0;
9104 size -= vec_len;
9105 }
9106 /* store original address for later verification */
9107 imu->ubuf = ubuf;
9108 imu->ubuf_end = ubuf + iov->iov_len;
9109 imu->nr_bvecs = nr_pages;
9110 *pimu = imu;
9111 ret = 0;
9112 done:
9113 if (ret)
9114 kvfree(imu);
9115 kvfree(pages);
9116 kvfree(vmas);
9117 return ret;
9118 }
9119
9120 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9121 {
9122 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9123 return ctx->user_bufs ? 0 : -ENOMEM;
9124 }
9125
9126 static int io_buffer_validate(struct iovec *iov)
9127 {
9128 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9129
9130 /*
9131 * Don't impose further limits on the size and buffer
9132 * constraints here, we'll -EINVAL later when IO is
9133 * submitted if they are wrong.
9134 */
9135 if (!iov->iov_base)
9136 return iov->iov_len ? -EFAULT : 0;
9137 if (!iov->iov_len)
9138 return -EFAULT;
9139
9140 /* arbitrary limit, but we need something */
9141 if (iov->iov_len > SZ_1G)
9142 return -EFAULT;
9143
9144 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9145 return -EOVERFLOW;
9146
9147 return 0;
9148 }
9149
9150 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9151 unsigned int nr_args, u64 __user *tags)
9152 {
9153 struct page *last_hpage = NULL;
9154 struct io_rsrc_data *data;
9155 int i, ret;
9156 struct iovec iov;
9157
9158 if (ctx->user_bufs)
9159 return -EBUSY;
9160 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9161 return -EINVAL;
9162 ret = io_rsrc_node_switch_start(ctx);
9163 if (ret)
9164 return ret;
9165 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9166 if (ret)
9167 return ret;
9168 ret = io_buffers_map_alloc(ctx, nr_args);
9169 if (ret) {
9170 io_rsrc_data_free(data);
9171 return ret;
9172 }
9173
9174 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9175 ret = io_copy_iov(ctx, &iov, arg, i);
9176 if (ret)
9177 break;
9178 ret = io_buffer_validate(&iov);
9179 if (ret)
9180 break;
9181 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9182 ret = -EINVAL;
9183 break;
9184 }
9185
9186 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9187 &last_hpage);
9188 if (ret)
9189 break;
9190 }
9191
9192 WARN_ON_ONCE(ctx->buf_data);
9193
9194 ctx->buf_data = data;
9195 if (ret)
9196 __io_sqe_buffers_unregister(ctx);
9197 else
9198 io_rsrc_node_switch(ctx, NULL);
9199 return ret;
9200 }
9201
9202 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9203 struct io_uring_rsrc_update2 *up,
9204 unsigned int nr_args)
9205 {
9206 u64 __user *tags = u64_to_user_ptr(up->tags);
9207 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9208 struct page *last_hpage = NULL;
9209 bool needs_switch = false;
9210 __u32 done;
9211 int i, err;
9212
9213 if (!ctx->buf_data)
9214 return -ENXIO;
9215 if (up->offset + nr_args > ctx->nr_user_bufs)
9216 return -EINVAL;
9217
9218 for (done = 0; done < nr_args; done++) {
9219 struct io_mapped_ubuf *imu;
9220 int offset = up->offset + done;
9221 u64 tag = 0;
9222
9223 err = io_copy_iov(ctx, &iov, iovs, done);
9224 if (err)
9225 break;
9226 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9227 err = -EFAULT;
9228 break;
9229 }
9230 err = io_buffer_validate(&iov);
9231 if (err)
9232 break;
9233 if (!iov.iov_base && tag) {
9234 err = -EINVAL;
9235 break;
9236 }
9237 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9238 if (err)
9239 break;
9240
9241 i = array_index_nospec(offset, ctx->nr_user_bufs);
9242 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9243 err = io_queue_rsrc_removal(ctx->buf_data, i,
9244 ctx->rsrc_node, ctx->user_bufs[i]);
9245 if (unlikely(err)) {
9246 io_buffer_unmap(ctx, &imu);
9247 break;
9248 }
9249 ctx->user_bufs[i] = NULL;
9250 needs_switch = true;
9251 }
9252
9253 ctx->user_bufs[i] = imu;
9254 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9255 }
9256
9257 if (needs_switch)
9258 io_rsrc_node_switch(ctx, ctx->buf_data);
9259 return done ? done : err;
9260 }
9261
9262 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9263 {
9264 __s32 __user *fds = arg;
9265 int fd;
9266
9267 if (ctx->cq_ev_fd)
9268 return -EBUSY;
9269
9270 if (copy_from_user(&fd, fds, sizeof(*fds)))
9271 return -EFAULT;
9272
9273 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9274 if (IS_ERR(ctx->cq_ev_fd)) {
9275 int ret = PTR_ERR(ctx->cq_ev_fd);
9276
9277 ctx->cq_ev_fd = NULL;
9278 return ret;
9279 }
9280
9281 return 0;
9282 }
9283
9284 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9285 {
9286 if (ctx->cq_ev_fd) {
9287 eventfd_ctx_put(ctx->cq_ev_fd);
9288 ctx->cq_ev_fd = NULL;
9289 return 0;
9290 }
9291
9292 return -ENXIO;
9293 }
9294
9295 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9296 {
9297 struct io_buffer *buf;
9298 unsigned long index;
9299
9300 xa_for_each(&ctx->io_buffers, index, buf)
9301 __io_remove_buffers(ctx, buf, index, -1U);
9302 }
9303
9304 static void io_req_cache_free(struct list_head *list)
9305 {
9306 struct io_kiocb *req, *nxt;
9307
9308 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9309 list_del(&req->inflight_entry);
9310 kmem_cache_free(req_cachep, req);
9311 }
9312 }
9313
9314 static void io_req_caches_free(struct io_ring_ctx *ctx)
9315 {
9316 struct io_submit_state *state = &ctx->submit_state;
9317
9318 mutex_lock(&ctx->uring_lock);
9319
9320 if (state->free_reqs) {
9321 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9322 state->free_reqs = 0;
9323 }
9324
9325 io_flush_cached_locked_reqs(ctx, state);
9326 io_req_cache_free(&state->free_list);
9327 mutex_unlock(&ctx->uring_lock);
9328 }
9329
9330 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9331 {
9332 if (data && !atomic_dec_and_test(&data->refs))
9333 wait_for_completion(&data->done);
9334 }
9335
9336 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9337 {
9338 io_sq_thread_finish(ctx);
9339
9340 if (ctx->mm_account) {
9341 mmdrop(ctx->mm_account);
9342 ctx->mm_account = NULL;
9343 }
9344
9345 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9346 io_wait_rsrc_data(ctx->buf_data);
9347 io_wait_rsrc_data(ctx->file_data);
9348
9349 mutex_lock(&ctx->uring_lock);
9350 if (ctx->buf_data)
9351 __io_sqe_buffers_unregister(ctx);
9352 if (ctx->file_data)
9353 __io_sqe_files_unregister(ctx);
9354 if (ctx->rings)
9355 __io_cqring_overflow_flush(ctx, true);
9356 mutex_unlock(&ctx->uring_lock);
9357 io_eventfd_unregister(ctx);
9358 io_destroy_buffers(ctx);
9359 if (ctx->sq_creds)
9360 put_cred(ctx->sq_creds);
9361
9362 /* there are no registered resources left, nobody uses it */
9363 if (ctx->rsrc_node)
9364 io_rsrc_node_destroy(ctx->rsrc_node);
9365 if (ctx->rsrc_backup_node)
9366 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9367 flush_delayed_work(&ctx->rsrc_put_work);
9368
9369 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9370 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9371
9372 #if defined(CONFIG_UNIX)
9373 if (ctx->ring_sock) {
9374 ctx->ring_sock->file = NULL; /* so that iput() is called */
9375 sock_release(ctx->ring_sock);
9376 }
9377 #endif
9378 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9379
9380 io_mem_free(ctx->rings);
9381 io_mem_free(ctx->sq_sqes);
9382
9383 percpu_ref_exit(&ctx->refs);
9384 free_uid(ctx->user);
9385 io_req_caches_free(ctx);
9386 if (ctx->hash_map)
9387 io_wq_put_hash(ctx->hash_map);
9388 kfree(ctx->cancel_hash);
9389 kfree(ctx->dummy_ubuf);
9390 kfree(ctx);
9391 }
9392
9393 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9394 {
9395 struct io_ring_ctx *ctx = file->private_data;
9396 __poll_t mask = 0;
9397
9398 poll_wait(file, &ctx->poll_wait, wait);
9399 /*
9400 * synchronizes with barrier from wq_has_sleeper call in
9401 * io_commit_cqring
9402 */
9403 smp_rmb();
9404 if (!io_sqring_full(ctx))
9405 mask |= EPOLLOUT | EPOLLWRNORM;
9406
9407 /*
9408 * Don't flush cqring overflow list here, just do a simple check.
9409 * Otherwise there could possible be ABBA deadlock:
9410 * CPU0 CPU1
9411 * ---- ----
9412 * lock(&ctx->uring_lock);
9413 * lock(&ep->mtx);
9414 * lock(&ctx->uring_lock);
9415 * lock(&ep->mtx);
9416 *
9417 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9418 * pushs them to do the flush.
9419 */
9420 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9421 mask |= EPOLLIN | EPOLLRDNORM;
9422
9423 return mask;
9424 }
9425
9426 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9427 {
9428 const struct cred *creds;
9429
9430 creds = xa_erase(&ctx->personalities, id);
9431 if (creds) {
9432 put_cred(creds);
9433 return 0;
9434 }
9435
9436 return -EINVAL;
9437 }
9438
9439 struct io_tctx_exit {
9440 struct callback_head task_work;
9441 struct completion completion;
9442 struct io_ring_ctx *ctx;
9443 };
9444
9445 static void io_tctx_exit_cb(struct callback_head *cb)
9446 {
9447 struct io_uring_task *tctx = current->io_uring;
9448 struct io_tctx_exit *work;
9449
9450 work = container_of(cb, struct io_tctx_exit, task_work);
9451 /*
9452 * When @in_idle, we're in cancellation and it's racy to remove the
9453 * node. It'll be removed by the end of cancellation, just ignore it.
9454 */
9455 if (!atomic_read(&tctx->in_idle))
9456 io_uring_del_tctx_node((unsigned long)work->ctx);
9457 complete(&work->completion);
9458 }
9459
9460 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9461 {
9462 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9463
9464 return req->ctx == data;
9465 }
9466
9467 static void io_ring_exit_work(struct work_struct *work)
9468 {
9469 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9470 unsigned long timeout = jiffies + HZ * 60 * 5;
9471 unsigned long interval = HZ / 20;
9472 struct io_tctx_exit exit;
9473 struct io_tctx_node *node;
9474 int ret;
9475
9476 /*
9477 * If we're doing polled IO and end up having requests being
9478 * submitted async (out-of-line), then completions can come in while
9479 * we're waiting for refs to drop. We need to reap these manually,
9480 * as nobody else will be looking for them.
9481 */
9482 do {
9483 io_uring_try_cancel_requests(ctx, NULL, true);
9484 if (ctx->sq_data) {
9485 struct io_sq_data *sqd = ctx->sq_data;
9486 struct task_struct *tsk;
9487
9488 io_sq_thread_park(sqd);
9489 tsk = sqd->thread;
9490 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9491 io_wq_cancel_cb(tsk->io_uring->io_wq,
9492 io_cancel_ctx_cb, ctx, true);
9493 io_sq_thread_unpark(sqd);
9494 }
9495
9496 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9497 /* there is little hope left, don't run it too often */
9498 interval = HZ * 60;
9499 }
9500 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9501
9502 init_completion(&exit.completion);
9503 init_task_work(&exit.task_work, io_tctx_exit_cb);
9504 exit.ctx = ctx;
9505 /*
9506 * Some may use context even when all refs and requests have been put,
9507 * and they are free to do so while still holding uring_lock or
9508 * completion_lock, see io_req_task_submit(). Apart from other work,
9509 * this lock/unlock section also waits them to finish.
9510 */
9511 mutex_lock(&ctx->uring_lock);
9512 while (!list_empty(&ctx->tctx_list)) {
9513 WARN_ON_ONCE(time_after(jiffies, timeout));
9514
9515 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9516 ctx_node);
9517 /* don't spin on a single task if cancellation failed */
9518 list_rotate_left(&ctx->tctx_list);
9519 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9520 if (WARN_ON_ONCE(ret))
9521 continue;
9522 wake_up_process(node->task);
9523
9524 mutex_unlock(&ctx->uring_lock);
9525 wait_for_completion(&exit.completion);
9526 mutex_lock(&ctx->uring_lock);
9527 }
9528 mutex_unlock(&ctx->uring_lock);
9529 spin_lock(&ctx->completion_lock);
9530 spin_unlock(&ctx->completion_lock);
9531
9532 io_ring_ctx_free(ctx);
9533 }
9534
9535 /* Returns true if we found and killed one or more timeouts */
9536 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9537 bool cancel_all)
9538 {
9539 struct io_kiocb *req, *tmp;
9540 int canceled = 0;
9541
9542 spin_lock(&ctx->completion_lock);
9543 spin_lock_irq(&ctx->timeout_lock);
9544 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9545 if (io_match_task(req, tsk, cancel_all)) {
9546 io_kill_timeout(req, -ECANCELED);
9547 canceled++;
9548 }
9549 }
9550 spin_unlock_irq(&ctx->timeout_lock);
9551 if (canceled != 0)
9552 io_commit_cqring(ctx);
9553 spin_unlock(&ctx->completion_lock);
9554 if (canceled != 0)
9555 io_cqring_ev_posted(ctx);
9556 return canceled != 0;
9557 }
9558
9559 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9560 {
9561 unsigned long index;
9562 struct creds *creds;
9563
9564 mutex_lock(&ctx->uring_lock);
9565 percpu_ref_kill(&ctx->refs);
9566 if (ctx->rings)
9567 __io_cqring_overflow_flush(ctx, true);
9568 xa_for_each(&ctx->personalities, index, creds)
9569 io_unregister_personality(ctx, index);
9570 mutex_unlock(&ctx->uring_lock);
9571
9572 io_kill_timeouts(ctx, NULL, true);
9573 io_poll_remove_all(ctx, NULL, true);
9574
9575 /* if we failed setting up the ctx, we might not have any rings */
9576 io_iopoll_try_reap_events(ctx);
9577
9578 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9579 /*
9580 * Use system_unbound_wq to avoid spawning tons of event kworkers
9581 * if we're exiting a ton of rings at the same time. It just adds
9582 * noise and overhead, there's no discernable change in runtime
9583 * over using system_wq.
9584 */
9585 queue_work(system_unbound_wq, &ctx->exit_work);
9586 }
9587
9588 static int io_uring_release(struct inode *inode, struct file *file)
9589 {
9590 struct io_ring_ctx *ctx = file->private_data;
9591
9592 file->private_data = NULL;
9593 io_ring_ctx_wait_and_kill(ctx);
9594 return 0;
9595 }
9596
9597 struct io_task_cancel {
9598 struct task_struct *task;
9599 bool all;
9600 };
9601
9602 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9603 {
9604 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9605 struct io_task_cancel *cancel = data;
9606
9607 return io_match_task_safe(req, cancel->task, cancel->all);
9608 }
9609
9610 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9611 struct task_struct *task, bool cancel_all)
9612 {
9613 struct io_defer_entry *de;
9614 LIST_HEAD(list);
9615
9616 spin_lock(&ctx->completion_lock);
9617 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9618 if (io_match_task_safe(de->req, task, cancel_all)) {
9619 list_cut_position(&list, &ctx->defer_list, &de->list);
9620 break;
9621 }
9622 }
9623 spin_unlock(&ctx->completion_lock);
9624 if (list_empty(&list))
9625 return false;
9626
9627 while (!list_empty(&list)) {
9628 de = list_first_entry(&list, struct io_defer_entry, list);
9629 list_del_init(&de->list);
9630 io_req_complete_failed(de->req, -ECANCELED);
9631 kfree(de);
9632 }
9633 return true;
9634 }
9635
9636 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9637 {
9638 struct io_tctx_node *node;
9639 enum io_wq_cancel cret;
9640 bool ret = false;
9641
9642 mutex_lock(&ctx->uring_lock);
9643 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9644 struct io_uring_task *tctx = node->task->io_uring;
9645
9646 /*
9647 * io_wq will stay alive while we hold uring_lock, because it's
9648 * killed after ctx nodes, which requires to take the lock.
9649 */
9650 if (!tctx || !tctx->io_wq)
9651 continue;
9652 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9653 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9654 }
9655 mutex_unlock(&ctx->uring_lock);
9656
9657 return ret;
9658 }
9659
9660 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9661 struct task_struct *task,
9662 bool cancel_all)
9663 {
9664 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9665 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9666
9667 while (1) {
9668 enum io_wq_cancel cret;
9669 bool ret = false;
9670
9671 if (!task) {
9672 ret |= io_uring_try_cancel_iowq(ctx);
9673 } else if (tctx && tctx->io_wq) {
9674 /*
9675 * Cancels requests of all rings, not only @ctx, but
9676 * it's fine as the task is in exit/exec.
9677 */
9678 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9679 &cancel, true);
9680 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9681 }
9682
9683 /* SQPOLL thread does its own polling */
9684 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9685 (ctx->sq_data && ctx->sq_data->thread == current)) {
9686 while (!list_empty_careful(&ctx->iopoll_list)) {
9687 io_iopoll_try_reap_events(ctx);
9688 ret = true;
9689 }
9690 }
9691
9692 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9693 ret |= io_poll_remove_all(ctx, task, cancel_all);
9694 ret |= io_kill_timeouts(ctx, task, cancel_all);
9695 if (task)
9696 ret |= io_run_task_work();
9697 if (!ret)
9698 break;
9699 cond_resched();
9700 }
9701 }
9702
9703 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9704 {
9705 struct io_uring_task *tctx = current->io_uring;
9706 struct io_tctx_node *node;
9707 int ret;
9708
9709 if (unlikely(!tctx)) {
9710 ret = io_uring_alloc_task_context(current, ctx);
9711 if (unlikely(ret))
9712 return ret;
9713
9714 tctx = current->io_uring;
9715 if (ctx->iowq_limits_set) {
9716 unsigned int limits[2] = { ctx->iowq_limits[0],
9717 ctx->iowq_limits[1], };
9718
9719 ret = io_wq_max_workers(tctx->io_wq, limits);
9720 if (ret)
9721 return ret;
9722 }
9723 }
9724 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9725 node = kmalloc(sizeof(*node), GFP_KERNEL);
9726 if (!node)
9727 return -ENOMEM;
9728 node->ctx = ctx;
9729 node->task = current;
9730
9731 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9732 node, GFP_KERNEL));
9733 if (ret) {
9734 kfree(node);
9735 return ret;
9736 }
9737
9738 mutex_lock(&ctx->uring_lock);
9739 list_add(&node->ctx_node, &ctx->tctx_list);
9740 mutex_unlock(&ctx->uring_lock);
9741 }
9742 tctx->last = ctx;
9743 return 0;
9744 }
9745
9746 /*
9747 * Note that this task has used io_uring. We use it for cancelation purposes.
9748 */
9749 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9750 {
9751 struct io_uring_task *tctx = current->io_uring;
9752
9753 if (likely(tctx && tctx->last == ctx))
9754 return 0;
9755 return __io_uring_add_tctx_node(ctx);
9756 }
9757
9758 /*
9759 * Remove this io_uring_file -> task mapping.
9760 */
9761 static void io_uring_del_tctx_node(unsigned long index)
9762 {
9763 struct io_uring_task *tctx = current->io_uring;
9764 struct io_tctx_node *node;
9765
9766 if (!tctx)
9767 return;
9768 node = xa_erase(&tctx->xa, index);
9769 if (!node)
9770 return;
9771
9772 WARN_ON_ONCE(current != node->task);
9773 WARN_ON_ONCE(list_empty(&node->ctx_node));
9774
9775 mutex_lock(&node->ctx->uring_lock);
9776 list_del(&node->ctx_node);
9777 mutex_unlock(&node->ctx->uring_lock);
9778
9779 if (tctx->last == node->ctx)
9780 tctx->last = NULL;
9781 kfree(node);
9782 }
9783
9784 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9785 {
9786 struct io_wq *wq = tctx->io_wq;
9787 struct io_tctx_node *node;
9788 unsigned long index;
9789
9790 xa_for_each(&tctx->xa, index, node) {
9791 io_uring_del_tctx_node(index);
9792 cond_resched();
9793 }
9794 if (wq) {
9795 /*
9796 * Must be after io_uring_del_task_file() (removes nodes under
9797 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9798 */
9799 io_wq_put_and_exit(wq);
9800 tctx->io_wq = NULL;
9801 }
9802 }
9803
9804 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9805 {
9806 if (tracked)
9807 return atomic_read(&tctx->inflight_tracked);
9808 return percpu_counter_sum(&tctx->inflight);
9809 }
9810
9811 /*
9812 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9813 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9814 */
9815 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9816 {
9817 struct io_uring_task *tctx = current->io_uring;
9818 struct io_ring_ctx *ctx;
9819 s64 inflight;
9820 DEFINE_WAIT(wait);
9821
9822 WARN_ON_ONCE(sqd && sqd->thread != current);
9823
9824 if (!current->io_uring)
9825 return;
9826 if (tctx->io_wq)
9827 io_wq_exit_start(tctx->io_wq);
9828
9829 atomic_inc(&tctx->in_idle);
9830 do {
9831 io_uring_drop_tctx_refs(current);
9832 /* read completions before cancelations */
9833 inflight = tctx_inflight(tctx, !cancel_all);
9834 if (!inflight)
9835 break;
9836
9837 if (!sqd) {
9838 struct io_tctx_node *node;
9839 unsigned long index;
9840
9841 xa_for_each(&tctx->xa, index, node) {
9842 /* sqpoll task will cancel all its requests */
9843 if (node->ctx->sq_data)
9844 continue;
9845 io_uring_try_cancel_requests(node->ctx, current,
9846 cancel_all);
9847 }
9848 } else {
9849 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9850 io_uring_try_cancel_requests(ctx, current,
9851 cancel_all);
9852 }
9853
9854 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9855 io_run_task_work();
9856 io_uring_drop_tctx_refs(current);
9857
9858 /*
9859 * If we've seen completions, retry without waiting. This
9860 * avoids a race where a completion comes in before we did
9861 * prepare_to_wait().
9862 */
9863 if (inflight == tctx_inflight(tctx, !cancel_all))
9864 schedule();
9865 finish_wait(&tctx->wait, &wait);
9866 } while (1);
9867
9868 io_uring_clean_tctx(tctx);
9869 if (cancel_all) {
9870 /*
9871 * We shouldn't run task_works after cancel, so just leave
9872 * ->in_idle set for normal exit.
9873 */
9874 atomic_dec(&tctx->in_idle);
9875 /* for exec all current's requests should be gone, kill tctx */
9876 __io_uring_free(current);
9877 }
9878 }
9879
9880 void __io_uring_cancel(bool cancel_all)
9881 {
9882 io_uring_cancel_generic(cancel_all, NULL);
9883 }
9884
9885 static void *io_uring_validate_mmap_request(struct file *file,
9886 loff_t pgoff, size_t sz)
9887 {
9888 struct io_ring_ctx *ctx = file->private_data;
9889 loff_t offset = pgoff << PAGE_SHIFT;
9890 struct page *page;
9891 void *ptr;
9892
9893 switch (offset) {
9894 case IORING_OFF_SQ_RING:
9895 case IORING_OFF_CQ_RING:
9896 ptr = ctx->rings;
9897 break;
9898 case IORING_OFF_SQES:
9899 ptr = ctx->sq_sqes;
9900 break;
9901 default:
9902 return ERR_PTR(-EINVAL);
9903 }
9904
9905 page = virt_to_head_page(ptr);
9906 if (sz > page_size(page))
9907 return ERR_PTR(-EINVAL);
9908
9909 return ptr;
9910 }
9911
9912 #ifdef CONFIG_MMU
9913
9914 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9915 {
9916 size_t sz = vma->vm_end - vma->vm_start;
9917 unsigned long pfn;
9918 void *ptr;
9919
9920 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9921 if (IS_ERR(ptr))
9922 return PTR_ERR(ptr);
9923
9924 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9925 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9926 }
9927
9928 #else /* !CONFIG_MMU */
9929
9930 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9931 {
9932 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9933 }
9934
9935 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9936 {
9937 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9938 }
9939
9940 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9941 unsigned long addr, unsigned long len,
9942 unsigned long pgoff, unsigned long flags)
9943 {
9944 void *ptr;
9945
9946 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9947 if (IS_ERR(ptr))
9948 return PTR_ERR(ptr);
9949
9950 return (unsigned long) ptr;
9951 }
9952
9953 #endif /* !CONFIG_MMU */
9954
9955 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9956 {
9957 DEFINE_WAIT(wait);
9958
9959 do {
9960 if (!io_sqring_full(ctx))
9961 break;
9962 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9963
9964 if (!io_sqring_full(ctx))
9965 break;
9966 schedule();
9967 } while (!signal_pending(current));
9968
9969 finish_wait(&ctx->sqo_sq_wait, &wait);
9970 return 0;
9971 }
9972
9973 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9974 struct __kernel_timespec __user **ts,
9975 const sigset_t __user **sig)
9976 {
9977 struct io_uring_getevents_arg arg;
9978
9979 /*
9980 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9981 * is just a pointer to the sigset_t.
9982 */
9983 if (!(flags & IORING_ENTER_EXT_ARG)) {
9984 *sig = (const sigset_t __user *) argp;
9985 *ts = NULL;
9986 return 0;
9987 }
9988
9989 /*
9990 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9991 * timespec and sigset_t pointers if good.
9992 */
9993 if (*argsz != sizeof(arg))
9994 return -EINVAL;
9995 if (copy_from_user(&arg, argp, sizeof(arg)))
9996 return -EFAULT;
9997 if (arg.pad)
9998 return -EINVAL;
9999 *sig = u64_to_user_ptr(arg.sigmask);
10000 *argsz = arg.sigmask_sz;
10001 *ts = u64_to_user_ptr(arg.ts);
10002 return 0;
10003 }
10004
10005 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10006 u32, min_complete, u32, flags, const void __user *, argp,
10007 size_t, argsz)
10008 {
10009 struct io_ring_ctx *ctx;
10010 int submitted = 0;
10011 struct fd f;
10012 long ret;
10013
10014 io_run_task_work();
10015
10016 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10017 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10018 return -EINVAL;
10019
10020 f = fdget(fd);
10021 if (unlikely(!f.file))
10022 return -EBADF;
10023
10024 ret = -EOPNOTSUPP;
10025 if (unlikely(f.file->f_op != &io_uring_fops))
10026 goto out_fput;
10027
10028 ret = -ENXIO;
10029 ctx = f.file->private_data;
10030 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10031 goto out_fput;
10032
10033 ret = -EBADFD;
10034 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10035 goto out;
10036
10037 /*
10038 * For SQ polling, the thread will do all submissions and completions.
10039 * Just return the requested submit count, and wake the thread if
10040 * we were asked to.
10041 */
10042 ret = 0;
10043 if (ctx->flags & IORING_SETUP_SQPOLL) {
10044 io_cqring_overflow_flush(ctx);
10045
10046 if (unlikely(ctx->sq_data->thread == NULL)) {
10047 ret = -EOWNERDEAD;
10048 goto out;
10049 }
10050 if (flags & IORING_ENTER_SQ_WAKEUP)
10051 wake_up(&ctx->sq_data->wait);
10052 if (flags & IORING_ENTER_SQ_WAIT) {
10053 ret = io_sqpoll_wait_sq(ctx);
10054 if (ret)
10055 goto out;
10056 }
10057 submitted = to_submit;
10058 } else if (to_submit) {
10059 ret = io_uring_add_tctx_node(ctx);
10060 if (unlikely(ret))
10061 goto out;
10062 mutex_lock(&ctx->uring_lock);
10063 submitted = io_submit_sqes(ctx, to_submit);
10064 mutex_unlock(&ctx->uring_lock);
10065
10066 if (submitted != to_submit)
10067 goto out;
10068 }
10069 if (flags & IORING_ENTER_GETEVENTS) {
10070 const sigset_t __user *sig;
10071 struct __kernel_timespec __user *ts;
10072
10073 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10074 if (unlikely(ret))
10075 goto out;
10076
10077 min_complete = min(min_complete, ctx->cq_entries);
10078
10079 /*
10080 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10081 * space applications don't need to do io completion events
10082 * polling again, they can rely on io_sq_thread to do polling
10083 * work, which can reduce cpu usage and uring_lock contention.
10084 */
10085 if (ctx->flags & IORING_SETUP_IOPOLL &&
10086 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10087 ret = io_iopoll_check(ctx, min_complete);
10088 } else {
10089 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10090 }
10091 }
10092
10093 out:
10094 percpu_ref_put(&ctx->refs);
10095 out_fput:
10096 fdput(f);
10097 return submitted ? submitted : ret;
10098 }
10099
10100 #ifdef CONFIG_PROC_FS
10101 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10102 const struct cred *cred)
10103 {
10104 struct user_namespace *uns = seq_user_ns(m);
10105 struct group_info *gi;
10106 kernel_cap_t cap;
10107 unsigned __capi;
10108 int g;
10109
10110 seq_printf(m, "%5d\n", id);
10111 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10112 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10113 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10114 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10115 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10116 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10117 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10118 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10119 seq_puts(m, "\n\tGroups:\t");
10120 gi = cred->group_info;
10121 for (g = 0; g < gi->ngroups; g++) {
10122 seq_put_decimal_ull(m, g ? " " : "",
10123 from_kgid_munged(uns, gi->gid[g]));
10124 }
10125 seq_puts(m, "\n\tCapEff:\t");
10126 cap = cred->cap_effective;
10127 CAP_FOR_EACH_U32(__capi)
10128 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10129 seq_putc(m, '\n');
10130 return 0;
10131 }
10132
10133 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10134 {
10135 struct io_sq_data *sq = NULL;
10136 bool has_lock;
10137 int i;
10138
10139 /*
10140 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10141 * since fdinfo case grabs it in the opposite direction of normal use
10142 * cases. If we fail to get the lock, we just don't iterate any
10143 * structures that could be going away outside the io_uring mutex.
10144 */
10145 has_lock = mutex_trylock(&ctx->uring_lock);
10146
10147 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10148 sq = ctx->sq_data;
10149 if (!sq->thread)
10150 sq = NULL;
10151 }
10152
10153 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10154 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10155 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10156 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10157 struct file *f = io_file_from_index(ctx, i);
10158
10159 if (f)
10160 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10161 else
10162 seq_printf(m, "%5u: <none>\n", i);
10163 }
10164 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10165 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10166 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10167 unsigned int len = buf->ubuf_end - buf->ubuf;
10168
10169 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10170 }
10171 if (has_lock && !xa_empty(&ctx->personalities)) {
10172 unsigned long index;
10173 const struct cred *cred;
10174
10175 seq_printf(m, "Personalities:\n");
10176 xa_for_each(&ctx->personalities, index, cred)
10177 io_uring_show_cred(m, index, cred);
10178 }
10179 seq_printf(m, "PollList:\n");
10180 spin_lock(&ctx->completion_lock);
10181 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10182 struct hlist_head *list = &ctx->cancel_hash[i];
10183 struct io_kiocb *req;
10184
10185 hlist_for_each_entry(req, list, hash_node)
10186 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10187 req->task->task_works != NULL);
10188 }
10189 spin_unlock(&ctx->completion_lock);
10190 if (has_lock)
10191 mutex_unlock(&ctx->uring_lock);
10192 }
10193
10194 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10195 {
10196 struct io_ring_ctx *ctx = f->private_data;
10197
10198 if (percpu_ref_tryget(&ctx->refs)) {
10199 __io_uring_show_fdinfo(ctx, m);
10200 percpu_ref_put(&ctx->refs);
10201 }
10202 }
10203 #endif
10204
10205 static const struct file_operations io_uring_fops = {
10206 .release = io_uring_release,
10207 .mmap = io_uring_mmap,
10208 #ifndef CONFIG_MMU
10209 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10210 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10211 #endif
10212 .poll = io_uring_poll,
10213 #ifdef CONFIG_PROC_FS
10214 .show_fdinfo = io_uring_show_fdinfo,
10215 #endif
10216 };
10217
10218 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10219 struct io_uring_params *p)
10220 {
10221 struct io_rings *rings;
10222 size_t size, sq_array_offset;
10223
10224 /* make sure these are sane, as we already accounted them */
10225 ctx->sq_entries = p->sq_entries;
10226 ctx->cq_entries = p->cq_entries;
10227
10228 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10229 if (size == SIZE_MAX)
10230 return -EOVERFLOW;
10231
10232 rings = io_mem_alloc(size);
10233 if (!rings)
10234 return -ENOMEM;
10235
10236 ctx->rings = rings;
10237 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10238 rings->sq_ring_mask = p->sq_entries - 1;
10239 rings->cq_ring_mask = p->cq_entries - 1;
10240 rings->sq_ring_entries = p->sq_entries;
10241 rings->cq_ring_entries = p->cq_entries;
10242
10243 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10244 if (size == SIZE_MAX) {
10245 io_mem_free(ctx->rings);
10246 ctx->rings = NULL;
10247 return -EOVERFLOW;
10248 }
10249
10250 ctx->sq_sqes = io_mem_alloc(size);
10251 if (!ctx->sq_sqes) {
10252 io_mem_free(ctx->rings);
10253 ctx->rings = NULL;
10254 return -ENOMEM;
10255 }
10256
10257 return 0;
10258 }
10259
10260 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10261 {
10262 int ret, fd;
10263
10264 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10265 if (fd < 0)
10266 return fd;
10267
10268 ret = io_uring_add_tctx_node(ctx);
10269 if (ret) {
10270 put_unused_fd(fd);
10271 return ret;
10272 }
10273 fd_install(fd, file);
10274 return fd;
10275 }
10276
10277 /*
10278 * Allocate an anonymous fd, this is what constitutes the application
10279 * visible backing of an io_uring instance. The application mmaps this
10280 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10281 * we have to tie this fd to a socket for file garbage collection purposes.
10282 */
10283 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10284 {
10285 struct file *file;
10286 #if defined(CONFIG_UNIX)
10287 int ret;
10288
10289 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10290 &ctx->ring_sock);
10291 if (ret)
10292 return ERR_PTR(ret);
10293 #endif
10294
10295 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10296 O_RDWR | O_CLOEXEC);
10297 #if defined(CONFIG_UNIX)
10298 if (IS_ERR(file)) {
10299 sock_release(ctx->ring_sock);
10300 ctx->ring_sock = NULL;
10301 } else {
10302 ctx->ring_sock->file = file;
10303 }
10304 #endif
10305 return file;
10306 }
10307
10308 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10309 struct io_uring_params __user *params)
10310 {
10311 struct io_ring_ctx *ctx;
10312 struct file *file;
10313 int ret;
10314
10315 if (!entries)
10316 return -EINVAL;
10317 if (entries > IORING_MAX_ENTRIES) {
10318 if (!(p->flags & IORING_SETUP_CLAMP))
10319 return -EINVAL;
10320 entries = IORING_MAX_ENTRIES;
10321 }
10322
10323 /*
10324 * Use twice as many entries for the CQ ring. It's possible for the
10325 * application to drive a higher depth than the size of the SQ ring,
10326 * since the sqes are only used at submission time. This allows for
10327 * some flexibility in overcommitting a bit. If the application has
10328 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10329 * of CQ ring entries manually.
10330 */
10331 p->sq_entries = roundup_pow_of_two(entries);
10332 if (p->flags & IORING_SETUP_CQSIZE) {
10333 /*
10334 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10335 * to a power-of-two, if it isn't already. We do NOT impose
10336 * any cq vs sq ring sizing.
10337 */
10338 if (!p->cq_entries)
10339 return -EINVAL;
10340 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10341 if (!(p->flags & IORING_SETUP_CLAMP))
10342 return -EINVAL;
10343 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10344 }
10345 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10346 if (p->cq_entries < p->sq_entries)
10347 return -EINVAL;
10348 } else {
10349 p->cq_entries = 2 * p->sq_entries;
10350 }
10351
10352 ctx = io_ring_ctx_alloc(p);
10353 if (!ctx)
10354 return -ENOMEM;
10355 ctx->compat = in_compat_syscall();
10356 if (!capable(CAP_IPC_LOCK))
10357 ctx->user = get_uid(current_user());
10358
10359 /*
10360 * This is just grabbed for accounting purposes. When a process exits,
10361 * the mm is exited and dropped before the files, hence we need to hang
10362 * on to this mm purely for the purposes of being able to unaccount
10363 * memory (locked/pinned vm). It's not used for anything else.
10364 */
10365 mmgrab(current->mm);
10366 ctx->mm_account = current->mm;
10367
10368 ret = io_allocate_scq_urings(ctx, p);
10369 if (ret)
10370 goto err;
10371
10372 ret = io_sq_offload_create(ctx, p);
10373 if (ret)
10374 goto err;
10375 /* always set a rsrc node */
10376 ret = io_rsrc_node_switch_start(ctx);
10377 if (ret)
10378 goto err;
10379 io_rsrc_node_switch(ctx, NULL);
10380
10381 memset(&p->sq_off, 0, sizeof(p->sq_off));
10382 p->sq_off.head = offsetof(struct io_rings, sq.head);
10383 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10384 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10385 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10386 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10387 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10388 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10389
10390 memset(&p->cq_off, 0, sizeof(p->cq_off));
10391 p->cq_off.head = offsetof(struct io_rings, cq.head);
10392 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10393 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10394 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10395 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10396 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10397 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10398
10399 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10400 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10401 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10402 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10403 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10404 IORING_FEAT_RSRC_TAGS;
10405
10406 if (copy_to_user(params, p, sizeof(*p))) {
10407 ret = -EFAULT;
10408 goto err;
10409 }
10410
10411 file = io_uring_get_file(ctx);
10412 if (IS_ERR(file)) {
10413 ret = PTR_ERR(file);
10414 goto err;
10415 }
10416
10417 /*
10418 * Install ring fd as the very last thing, so we don't risk someone
10419 * having closed it before we finish setup
10420 */
10421 ret = io_uring_install_fd(ctx, file);
10422 if (ret < 0) {
10423 /* fput will clean it up */
10424 fput(file);
10425 return ret;
10426 }
10427
10428 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10429 return ret;
10430 err:
10431 io_ring_ctx_wait_and_kill(ctx);
10432 return ret;
10433 }
10434
10435 /*
10436 * Sets up an aio uring context, and returns the fd. Applications asks for a
10437 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10438 * params structure passed in.
10439 */
10440 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10441 {
10442 struct io_uring_params p;
10443 int i;
10444
10445 if (copy_from_user(&p, params, sizeof(p)))
10446 return -EFAULT;
10447 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10448 if (p.resv[i])
10449 return -EINVAL;
10450 }
10451
10452 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10453 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10454 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10455 IORING_SETUP_R_DISABLED))
10456 return -EINVAL;
10457
10458 return io_uring_create(entries, &p, params);
10459 }
10460
10461 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10462 struct io_uring_params __user *, params)
10463 {
10464 return io_uring_setup(entries, params);
10465 }
10466
10467 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10468 {
10469 struct io_uring_probe *p;
10470 size_t size;
10471 int i, ret;
10472
10473 size = struct_size(p, ops, nr_args);
10474 if (size == SIZE_MAX)
10475 return -EOVERFLOW;
10476 p = kzalloc(size, GFP_KERNEL);
10477 if (!p)
10478 return -ENOMEM;
10479
10480 ret = -EFAULT;
10481 if (copy_from_user(p, arg, size))
10482 goto out;
10483 ret = -EINVAL;
10484 if (memchr_inv(p, 0, size))
10485 goto out;
10486
10487 p->last_op = IORING_OP_LAST - 1;
10488 if (nr_args > IORING_OP_LAST)
10489 nr_args = IORING_OP_LAST;
10490
10491 for (i = 0; i < nr_args; i++) {
10492 p->ops[i].op = i;
10493 if (!io_op_defs[i].not_supported)
10494 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10495 }
10496 p->ops_len = i;
10497
10498 ret = 0;
10499 if (copy_to_user(arg, p, size))
10500 ret = -EFAULT;
10501 out:
10502 kfree(p);
10503 return ret;
10504 }
10505
10506 static int io_register_personality(struct io_ring_ctx *ctx)
10507 {
10508 const struct cred *creds;
10509 u32 id;
10510 int ret;
10511
10512 creds = get_current_cred();
10513
10514 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10515 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10516 if (ret < 0) {
10517 put_cred(creds);
10518 return ret;
10519 }
10520 return id;
10521 }
10522
10523 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10524 unsigned int nr_args)
10525 {
10526 struct io_uring_restriction *res;
10527 size_t size;
10528 int i, ret;
10529
10530 /* Restrictions allowed only if rings started disabled */
10531 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10532 return -EBADFD;
10533
10534 /* We allow only a single restrictions registration */
10535 if (ctx->restrictions.registered)
10536 return -EBUSY;
10537
10538 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10539 return -EINVAL;
10540
10541 size = array_size(nr_args, sizeof(*res));
10542 if (size == SIZE_MAX)
10543 return -EOVERFLOW;
10544
10545 res = memdup_user(arg, size);
10546 if (IS_ERR(res))
10547 return PTR_ERR(res);
10548
10549 ret = 0;
10550
10551 for (i = 0; i < nr_args; i++) {
10552 switch (res[i].opcode) {
10553 case IORING_RESTRICTION_REGISTER_OP:
10554 if (res[i].register_op >= IORING_REGISTER_LAST) {
10555 ret = -EINVAL;
10556 goto out;
10557 }
10558
10559 __set_bit(res[i].register_op,
10560 ctx->restrictions.register_op);
10561 break;
10562 case IORING_RESTRICTION_SQE_OP:
10563 if (res[i].sqe_op >= IORING_OP_LAST) {
10564 ret = -EINVAL;
10565 goto out;
10566 }
10567
10568 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10569 break;
10570 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10571 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10572 break;
10573 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10574 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10575 break;
10576 default:
10577 ret = -EINVAL;
10578 goto out;
10579 }
10580 }
10581
10582 out:
10583 /* Reset all restrictions if an error happened */
10584 if (ret != 0)
10585 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10586 else
10587 ctx->restrictions.registered = true;
10588
10589 kfree(res);
10590 return ret;
10591 }
10592
10593 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10594 {
10595 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10596 return -EBADFD;
10597
10598 if (ctx->restrictions.registered)
10599 ctx->restricted = 1;
10600
10601 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10602 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10603 wake_up(&ctx->sq_data->wait);
10604 return 0;
10605 }
10606
10607 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10608 struct io_uring_rsrc_update2 *up,
10609 unsigned nr_args)
10610 {
10611 __u32 tmp;
10612 int err;
10613
10614 if (check_add_overflow(up->offset, nr_args, &tmp))
10615 return -EOVERFLOW;
10616 err = io_rsrc_node_switch_start(ctx);
10617 if (err)
10618 return err;
10619
10620 switch (type) {
10621 case IORING_RSRC_FILE:
10622 return __io_sqe_files_update(ctx, up, nr_args);
10623 case IORING_RSRC_BUFFER:
10624 return __io_sqe_buffers_update(ctx, up, nr_args);
10625 }
10626 return -EINVAL;
10627 }
10628
10629 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10630 unsigned nr_args)
10631 {
10632 struct io_uring_rsrc_update2 up;
10633
10634 if (!nr_args)
10635 return -EINVAL;
10636 memset(&up, 0, sizeof(up));
10637 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10638 return -EFAULT;
10639 if (up.resv || up.resv2)
10640 return -EINVAL;
10641 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10642 }
10643
10644 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10645 unsigned size, unsigned type)
10646 {
10647 struct io_uring_rsrc_update2 up;
10648
10649 if (size != sizeof(up))
10650 return -EINVAL;
10651 if (copy_from_user(&up, arg, sizeof(up)))
10652 return -EFAULT;
10653 if (!up.nr || up.resv || up.resv2)
10654 return -EINVAL;
10655 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10656 }
10657
10658 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10659 unsigned int size, unsigned int type)
10660 {
10661 struct io_uring_rsrc_register rr;
10662
10663 /* keep it extendible */
10664 if (size != sizeof(rr))
10665 return -EINVAL;
10666
10667 memset(&rr, 0, sizeof(rr));
10668 if (copy_from_user(&rr, arg, size))
10669 return -EFAULT;
10670 if (!rr.nr || rr.resv || rr.resv2)
10671 return -EINVAL;
10672
10673 switch (type) {
10674 case IORING_RSRC_FILE:
10675 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10676 rr.nr, u64_to_user_ptr(rr.tags));
10677 case IORING_RSRC_BUFFER:
10678 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10679 rr.nr, u64_to_user_ptr(rr.tags));
10680 }
10681 return -EINVAL;
10682 }
10683
10684 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10685 unsigned len)
10686 {
10687 struct io_uring_task *tctx = current->io_uring;
10688 cpumask_var_t new_mask;
10689 int ret;
10690
10691 if (!tctx || !tctx->io_wq)
10692 return -EINVAL;
10693
10694 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10695 return -ENOMEM;
10696
10697 cpumask_clear(new_mask);
10698 if (len > cpumask_size())
10699 len = cpumask_size();
10700
10701 if (in_compat_syscall()) {
10702 ret = compat_get_bitmap(cpumask_bits(new_mask),
10703 (const compat_ulong_t __user *)arg,
10704 len * 8 /* CHAR_BIT */);
10705 } else {
10706 ret = copy_from_user(new_mask, arg, len);
10707 }
10708
10709 if (ret) {
10710 free_cpumask_var(new_mask);
10711 return -EFAULT;
10712 }
10713
10714 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10715 free_cpumask_var(new_mask);
10716 return ret;
10717 }
10718
10719 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10720 {
10721 struct io_uring_task *tctx = current->io_uring;
10722
10723 if (!tctx || !tctx->io_wq)
10724 return -EINVAL;
10725
10726 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10727 }
10728
10729 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10730 void __user *arg)
10731 __must_hold(&ctx->uring_lock)
10732 {
10733 struct io_tctx_node *node;
10734 struct io_uring_task *tctx = NULL;
10735 struct io_sq_data *sqd = NULL;
10736 __u32 new_count[2];
10737 int i, ret;
10738
10739 if (copy_from_user(new_count, arg, sizeof(new_count)))
10740 return -EFAULT;
10741 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10742 if (new_count[i] > INT_MAX)
10743 return -EINVAL;
10744
10745 if (ctx->flags & IORING_SETUP_SQPOLL) {
10746 sqd = ctx->sq_data;
10747 if (sqd) {
10748 /*
10749 * Observe the correct sqd->lock -> ctx->uring_lock
10750 * ordering. Fine to drop uring_lock here, we hold
10751 * a ref to the ctx.
10752 */
10753 refcount_inc(&sqd->refs);
10754 mutex_unlock(&ctx->uring_lock);
10755 mutex_lock(&sqd->lock);
10756 mutex_lock(&ctx->uring_lock);
10757 if (sqd->thread)
10758 tctx = sqd->thread->io_uring;
10759 }
10760 } else {
10761 tctx = current->io_uring;
10762 }
10763
10764 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10765
10766 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10767 if (new_count[i])
10768 ctx->iowq_limits[i] = new_count[i];
10769 ctx->iowq_limits_set = true;
10770
10771 ret = -EINVAL;
10772 if (tctx && tctx->io_wq) {
10773 ret = io_wq_max_workers(tctx->io_wq, new_count);
10774 if (ret)
10775 goto err;
10776 } else {
10777 memset(new_count, 0, sizeof(new_count));
10778 }
10779
10780 if (sqd) {
10781 mutex_unlock(&sqd->lock);
10782 io_put_sq_data(sqd);
10783 }
10784
10785 if (copy_to_user(arg, new_count, sizeof(new_count)))
10786 return -EFAULT;
10787
10788 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10789 if (sqd)
10790 return 0;
10791
10792 /* now propagate the restriction to all registered users */
10793 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10794 struct io_uring_task *tctx = node->task->io_uring;
10795
10796 if (WARN_ON_ONCE(!tctx->io_wq))
10797 continue;
10798
10799 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10800 new_count[i] = ctx->iowq_limits[i];
10801 /* ignore errors, it always returns zero anyway */
10802 (void)io_wq_max_workers(tctx->io_wq, new_count);
10803 }
10804 return 0;
10805 err:
10806 if (sqd) {
10807 mutex_unlock(&sqd->lock);
10808 io_put_sq_data(sqd);
10809 }
10810 return ret;
10811 }
10812
10813 static bool io_register_op_must_quiesce(int op)
10814 {
10815 switch (op) {
10816 case IORING_REGISTER_BUFFERS:
10817 case IORING_UNREGISTER_BUFFERS:
10818 case IORING_REGISTER_FILES:
10819 case IORING_UNREGISTER_FILES:
10820 case IORING_REGISTER_FILES_UPDATE:
10821 case IORING_REGISTER_PROBE:
10822 case IORING_REGISTER_PERSONALITY:
10823 case IORING_UNREGISTER_PERSONALITY:
10824 case IORING_REGISTER_FILES2:
10825 case IORING_REGISTER_FILES_UPDATE2:
10826 case IORING_REGISTER_BUFFERS2:
10827 case IORING_REGISTER_BUFFERS_UPDATE:
10828 case IORING_REGISTER_IOWQ_AFF:
10829 case IORING_UNREGISTER_IOWQ_AFF:
10830 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10831 return false;
10832 default:
10833 return true;
10834 }
10835 }
10836
10837 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10838 {
10839 long ret;
10840
10841 percpu_ref_kill(&ctx->refs);
10842
10843 /*
10844 * Drop uring mutex before waiting for references to exit. If another
10845 * thread is currently inside io_uring_enter() it might need to grab the
10846 * uring_lock to make progress. If we hold it here across the drain
10847 * wait, then we can deadlock. It's safe to drop the mutex here, since
10848 * no new references will come in after we've killed the percpu ref.
10849 */
10850 mutex_unlock(&ctx->uring_lock);
10851 do {
10852 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10853 if (!ret)
10854 break;
10855 ret = io_run_task_work_sig();
10856 } while (ret >= 0);
10857 mutex_lock(&ctx->uring_lock);
10858
10859 if (ret)
10860 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10861 return ret;
10862 }
10863
10864 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10865 void __user *arg, unsigned nr_args)
10866 __releases(ctx->uring_lock)
10867 __acquires(ctx->uring_lock)
10868 {
10869 int ret;
10870
10871 /*
10872 * We're inside the ring mutex, if the ref is already dying, then
10873 * someone else killed the ctx or is already going through
10874 * io_uring_register().
10875 */
10876 if (percpu_ref_is_dying(&ctx->refs))
10877 return -ENXIO;
10878
10879 if (ctx->restricted) {
10880 if (opcode >= IORING_REGISTER_LAST)
10881 return -EINVAL;
10882 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10883 if (!test_bit(opcode, ctx->restrictions.register_op))
10884 return -EACCES;
10885 }
10886
10887 if (io_register_op_must_quiesce(opcode)) {
10888 ret = io_ctx_quiesce(ctx);
10889 if (ret)
10890 return ret;
10891 }
10892
10893 switch (opcode) {
10894 case IORING_REGISTER_BUFFERS:
10895 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10896 break;
10897 case IORING_UNREGISTER_BUFFERS:
10898 ret = -EINVAL;
10899 if (arg || nr_args)
10900 break;
10901 ret = io_sqe_buffers_unregister(ctx);
10902 break;
10903 case IORING_REGISTER_FILES:
10904 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10905 break;
10906 case IORING_UNREGISTER_FILES:
10907 ret = -EINVAL;
10908 if (arg || nr_args)
10909 break;
10910 ret = io_sqe_files_unregister(ctx);
10911 break;
10912 case IORING_REGISTER_FILES_UPDATE:
10913 ret = io_register_files_update(ctx, arg, nr_args);
10914 break;
10915 case IORING_REGISTER_EVENTFD:
10916 case IORING_REGISTER_EVENTFD_ASYNC:
10917 ret = -EINVAL;
10918 if (nr_args != 1)
10919 break;
10920 ret = io_eventfd_register(ctx, arg);
10921 if (ret)
10922 break;
10923 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10924 ctx->eventfd_async = 1;
10925 else
10926 ctx->eventfd_async = 0;
10927 break;
10928 case IORING_UNREGISTER_EVENTFD:
10929 ret = -EINVAL;
10930 if (arg || nr_args)
10931 break;
10932 ret = io_eventfd_unregister(ctx);
10933 break;
10934 case IORING_REGISTER_PROBE:
10935 ret = -EINVAL;
10936 if (!arg || nr_args > 256)
10937 break;
10938 ret = io_probe(ctx, arg, nr_args);
10939 break;
10940 case IORING_REGISTER_PERSONALITY:
10941 ret = -EINVAL;
10942 if (arg || nr_args)
10943 break;
10944 ret = io_register_personality(ctx);
10945 break;
10946 case IORING_UNREGISTER_PERSONALITY:
10947 ret = -EINVAL;
10948 if (arg)
10949 break;
10950 ret = io_unregister_personality(ctx, nr_args);
10951 break;
10952 case IORING_REGISTER_ENABLE_RINGS:
10953 ret = -EINVAL;
10954 if (arg || nr_args)
10955 break;
10956 ret = io_register_enable_rings(ctx);
10957 break;
10958 case IORING_REGISTER_RESTRICTIONS:
10959 ret = io_register_restrictions(ctx, arg, nr_args);
10960 break;
10961 case IORING_REGISTER_FILES2:
10962 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10963 break;
10964 case IORING_REGISTER_FILES_UPDATE2:
10965 ret = io_register_rsrc_update(ctx, arg, nr_args,
10966 IORING_RSRC_FILE);
10967 break;
10968 case IORING_REGISTER_BUFFERS2:
10969 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10970 break;
10971 case IORING_REGISTER_BUFFERS_UPDATE:
10972 ret = io_register_rsrc_update(ctx, arg, nr_args,
10973 IORING_RSRC_BUFFER);
10974 break;
10975 case IORING_REGISTER_IOWQ_AFF:
10976 ret = -EINVAL;
10977 if (!arg || !nr_args)
10978 break;
10979 ret = io_register_iowq_aff(ctx, arg, nr_args);
10980 break;
10981 case IORING_UNREGISTER_IOWQ_AFF:
10982 ret = -EINVAL;
10983 if (arg || nr_args)
10984 break;
10985 ret = io_unregister_iowq_aff(ctx);
10986 break;
10987 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10988 ret = -EINVAL;
10989 if (!arg || nr_args != 2)
10990 break;
10991 ret = io_register_iowq_max_workers(ctx, arg);
10992 break;
10993 default:
10994 ret = -EINVAL;
10995 break;
10996 }
10997
10998 if (io_register_op_must_quiesce(opcode)) {
10999 /* bring the ctx back to life */
11000 percpu_ref_reinit(&ctx->refs);
11001 reinit_completion(&ctx->ref_comp);
11002 }
11003 return ret;
11004 }
11005
11006 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11007 void __user *, arg, unsigned int, nr_args)
11008 {
11009 struct io_ring_ctx *ctx;
11010 long ret = -EBADF;
11011 struct fd f;
11012
11013 f = fdget(fd);
11014 if (!f.file)
11015 return -EBADF;
11016
11017 ret = -EOPNOTSUPP;
11018 if (f.file->f_op != &io_uring_fops)
11019 goto out_fput;
11020
11021 ctx = f.file->private_data;
11022
11023 io_run_task_work();
11024
11025 mutex_lock(&ctx->uring_lock);
11026 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11027 mutex_unlock(&ctx->uring_lock);
11028 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11029 ctx->cq_ev_fd != NULL, ret);
11030 out_fput:
11031 fdput(f);
11032 return ret;
11033 }
11034
11035 static int __init io_uring_init(void)
11036 {
11037 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11038 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11039 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11040 } while (0)
11041
11042 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11043 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11044 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11045 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11046 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11047 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11048 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11049 BUILD_BUG_SQE_ELEM(8, __u64, off);
11050 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11051 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11052 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11053 BUILD_BUG_SQE_ELEM(24, __u32, len);
11054 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11055 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11056 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11057 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11058 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11059 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11060 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11061 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11062 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11063 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11064 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11065 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11066 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11067 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11068 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11069 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11070 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11071 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11072 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11073 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11074 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11075
11076 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11077 sizeof(struct io_uring_rsrc_update));
11078 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11079 sizeof(struct io_uring_rsrc_update2));
11080
11081 /* ->buf_index is u16 */
11082 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11083
11084 /* should fit into one byte */
11085 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11086
11087 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11088 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11089
11090 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11091 SLAB_ACCOUNT);
11092 return 0;
11093 };
11094 __initcall(io_uring_init);