]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
fscrypt: remove reachable WARN in fscrypt_setup_iv_ino_lblk_32_key()
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 };
209
210 struct fixed_file_data {
211 struct fixed_file_table *table;
212 struct io_ring_ctx *ctx;
213
214 struct fixed_file_ref_node *node;
215 struct percpu_ref refs;
216 struct completion done;
217 struct list_head ref_list;
218 spinlock_t lock;
219 };
220
221 struct io_buffer {
222 struct list_head list;
223 __u64 addr;
224 __s32 len;
225 __u16 bid;
226 };
227
228 struct io_restriction {
229 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
230 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
231 u8 sqe_flags_allowed;
232 u8 sqe_flags_required;
233 bool registered;
234 };
235
236 struct io_sq_data {
237 refcount_t refs;
238 struct mutex lock;
239
240 /* ctx's that are using this sqd */
241 struct list_head ctx_list;
242 struct list_head ctx_new_list;
243 struct mutex ctx_lock;
244
245 struct task_struct *thread;
246 struct wait_queue_head wait;
247 };
248
249 struct io_ring_ctx {
250 struct {
251 struct percpu_ref refs;
252 } ____cacheline_aligned_in_smp;
253
254 struct {
255 unsigned int flags;
256 unsigned int compat: 1;
257 unsigned int limit_mem: 1;
258 unsigned int cq_overflow_flushed: 1;
259 unsigned int drain_next: 1;
260 unsigned int eventfd_async: 1;
261 unsigned int restricted: 1;
262
263 /*
264 * Ring buffer of indices into array of io_uring_sqe, which is
265 * mmapped by the application using the IORING_OFF_SQES offset.
266 *
267 * This indirection could e.g. be used to assign fixed
268 * io_uring_sqe entries to operations and only submit them to
269 * the queue when needed.
270 *
271 * The kernel modifies neither the indices array nor the entries
272 * array.
273 */
274 u32 *sq_array;
275 unsigned cached_sq_head;
276 unsigned sq_entries;
277 unsigned sq_mask;
278 unsigned sq_thread_idle;
279 unsigned cached_sq_dropped;
280 unsigned cached_cq_overflow;
281 unsigned long sq_check_overflow;
282
283 struct list_head defer_list;
284 struct list_head timeout_list;
285 struct list_head cq_overflow_list;
286
287 wait_queue_head_t inflight_wait;
288 struct io_uring_sqe *sq_sqes;
289 } ____cacheline_aligned_in_smp;
290
291 struct io_rings *rings;
292
293 /* IO offload */
294 struct io_wq *io_wq;
295
296 /*
297 * For SQPOLL usage - we hold a reference to the parent task, so we
298 * have access to the ->files
299 */
300 struct task_struct *sqo_task;
301
302 /* Only used for accounting purposes */
303 struct mm_struct *mm_account;
304
305 #ifdef CONFIG_BLK_CGROUP
306 struct cgroup_subsys_state *sqo_blkcg_css;
307 #endif
308
309 struct io_sq_data *sq_data; /* if using sq thread polling */
310
311 struct wait_queue_head sqo_sq_wait;
312 struct wait_queue_entry sqo_wait_entry;
313 struct list_head sqd_list;
314
315 /*
316 * If used, fixed file set. Writers must ensure that ->refs is dead,
317 * readers must ensure that ->refs is alive as long as the file* is
318 * used. Only updated through io_uring_register(2).
319 */
320 struct fixed_file_data *file_data;
321 unsigned nr_user_files;
322
323 /* if used, fixed mapped user buffers */
324 unsigned nr_user_bufs;
325 struct io_mapped_ubuf *user_bufs;
326
327 struct user_struct *user;
328
329 const struct cred *creds;
330
331 #ifdef CONFIG_AUDIT
332 kuid_t loginuid;
333 unsigned int sessionid;
334 #endif
335
336 struct completion ref_comp;
337 struct completion sq_thread_comp;
338
339 /* if all else fails... */
340 struct io_kiocb *fallback_req;
341
342 #if defined(CONFIG_UNIX)
343 struct socket *ring_sock;
344 #endif
345
346 struct idr io_buffer_idr;
347
348 struct idr personality_idr;
349
350 struct {
351 unsigned cached_cq_tail;
352 unsigned cq_entries;
353 unsigned cq_mask;
354 atomic_t cq_timeouts;
355 unsigned long cq_check_overflow;
356 struct wait_queue_head cq_wait;
357 struct fasync_struct *cq_fasync;
358 struct eventfd_ctx *cq_ev_fd;
359 } ____cacheline_aligned_in_smp;
360
361 struct {
362 struct mutex uring_lock;
363 wait_queue_head_t wait;
364 } ____cacheline_aligned_in_smp;
365
366 struct {
367 spinlock_t completion_lock;
368
369 /*
370 * ->iopoll_list is protected by the ctx->uring_lock for
371 * io_uring instances that don't use IORING_SETUP_SQPOLL.
372 * For SQPOLL, only the single threaded io_sq_thread() will
373 * manipulate the list, hence no extra locking is needed there.
374 */
375 struct list_head iopoll_list;
376 struct hlist_head *cancel_hash;
377 unsigned cancel_hash_bits;
378 bool poll_multi_file;
379
380 spinlock_t inflight_lock;
381 struct list_head inflight_list;
382 } ____cacheline_aligned_in_smp;
383
384 struct delayed_work file_put_work;
385 struct llist_head file_put_llist;
386
387 struct work_struct exit_work;
388 struct io_restriction restrictions;
389 };
390
391 /*
392 * First field must be the file pointer in all the
393 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
394 */
395 struct io_poll_iocb {
396 struct file *file;
397 union {
398 struct wait_queue_head *head;
399 u64 addr;
400 };
401 __poll_t events;
402 bool done;
403 bool canceled;
404 struct wait_queue_entry wait;
405 };
406
407 struct io_close {
408 struct file *file;
409 struct file *put_file;
410 int fd;
411 };
412
413 struct io_timeout_data {
414 struct io_kiocb *req;
415 struct hrtimer timer;
416 struct timespec64 ts;
417 enum hrtimer_mode mode;
418 };
419
420 struct io_accept {
421 struct file *file;
422 struct sockaddr __user *addr;
423 int __user *addr_len;
424 int flags;
425 unsigned long nofile;
426 };
427
428 struct io_sync {
429 struct file *file;
430 loff_t len;
431 loff_t off;
432 int flags;
433 int mode;
434 };
435
436 struct io_cancel {
437 struct file *file;
438 u64 addr;
439 };
440
441 struct io_timeout {
442 struct file *file;
443 u32 off;
444 u32 target_seq;
445 struct list_head list;
446 };
447
448 struct io_timeout_rem {
449 struct file *file;
450 u64 addr;
451 };
452
453 struct io_rw {
454 /* NOTE: kiocb has the file as the first member, so don't do it here */
455 struct kiocb kiocb;
456 u64 addr;
457 u64 len;
458 };
459
460 struct io_connect {
461 struct file *file;
462 struct sockaddr __user *addr;
463 int addr_len;
464 };
465
466 struct io_sr_msg {
467 struct file *file;
468 union {
469 struct user_msghdr __user *umsg;
470 void __user *buf;
471 };
472 int msg_flags;
473 int bgid;
474 size_t len;
475 struct io_buffer *kbuf;
476 };
477
478 struct io_open {
479 struct file *file;
480 int dfd;
481 struct filename *filename;
482 struct open_how how;
483 unsigned long nofile;
484 };
485
486 struct io_files_update {
487 struct file *file;
488 u64 arg;
489 u32 nr_args;
490 u32 offset;
491 };
492
493 struct io_fadvise {
494 struct file *file;
495 u64 offset;
496 u32 len;
497 u32 advice;
498 };
499
500 struct io_madvise {
501 struct file *file;
502 u64 addr;
503 u32 len;
504 u32 advice;
505 };
506
507 struct io_epoll {
508 struct file *file;
509 int epfd;
510 int op;
511 int fd;
512 struct epoll_event event;
513 };
514
515 struct io_splice {
516 struct file *file_out;
517 struct file *file_in;
518 loff_t off_out;
519 loff_t off_in;
520 u64 len;
521 unsigned int flags;
522 };
523
524 struct io_provide_buf {
525 struct file *file;
526 __u64 addr;
527 __s32 len;
528 __u32 bgid;
529 __u16 nbufs;
530 __u16 bid;
531 };
532
533 struct io_statx {
534 struct file *file;
535 int dfd;
536 unsigned int mask;
537 unsigned int flags;
538 const char __user *filename;
539 struct statx __user *buffer;
540 };
541
542 struct io_completion {
543 struct file *file;
544 struct list_head list;
545 int cflags;
546 };
547
548 struct io_async_connect {
549 struct sockaddr_storage address;
550 };
551
552 struct io_async_msghdr {
553 struct iovec fast_iov[UIO_FASTIOV];
554 struct iovec *iov;
555 struct sockaddr __user *uaddr;
556 struct msghdr msg;
557 struct sockaddr_storage addr;
558 };
559
560 struct io_async_rw {
561 struct iovec fast_iov[UIO_FASTIOV];
562 const struct iovec *free_iovec;
563 struct iov_iter iter;
564 size_t bytes_done;
565 struct wait_page_queue wpq;
566 };
567
568 enum {
569 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
570 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
571 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
572 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
573 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
574 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
575
576 REQ_F_LINK_HEAD_BIT,
577 REQ_F_FAIL_LINK_BIT,
578 REQ_F_INFLIGHT_BIT,
579 REQ_F_CUR_POS_BIT,
580 REQ_F_NOWAIT_BIT,
581 REQ_F_LINK_TIMEOUT_BIT,
582 REQ_F_ISREG_BIT,
583 REQ_F_NEED_CLEANUP_BIT,
584 REQ_F_POLLED_BIT,
585 REQ_F_BUFFER_SELECTED_BIT,
586 REQ_F_NO_FILE_TABLE_BIT,
587 REQ_F_WORK_INITIALIZED_BIT,
588 REQ_F_LTIMEOUT_ACTIVE_BIT,
589
590 /* not a real bit, just to check we're not overflowing the space */
591 __REQ_F_LAST_BIT,
592 };
593
594 enum {
595 /* ctx owns file */
596 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
597 /* drain existing IO first */
598 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
599 /* linked sqes */
600 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
601 /* doesn't sever on completion < 0 */
602 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
603 /* IOSQE_ASYNC */
604 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
605 /* IOSQE_BUFFER_SELECT */
606 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
607
608 /* head of a link */
609 REQ_F_LINK_HEAD = BIT(REQ_F_LINK_HEAD_BIT),
610 /* fail rest of links */
611 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
612 /* on inflight list */
613 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
614 /* read/write uses file position */
615 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
616 /* must not punt to workers */
617 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
618 /* has or had linked timeout */
619 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
620 /* regular file */
621 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
622 /* needs cleanup */
623 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
624 /* already went through poll handler */
625 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
626 /* buffer already selected */
627 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
628 /* doesn't need file table for this request */
629 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
630 /* io_wq_work is initialized */
631 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
632 /* linked timeout is active, i.e. prepared by link's head */
633 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
634 };
635
636 struct async_poll {
637 struct io_poll_iocb poll;
638 struct io_poll_iocb *double_poll;
639 };
640
641 /*
642 * NOTE! Each of the iocb union members has the file pointer
643 * as the first entry in their struct definition. So you can
644 * access the file pointer through any of the sub-structs,
645 * or directly as just 'ki_filp' in this struct.
646 */
647 struct io_kiocb {
648 union {
649 struct file *file;
650 struct io_rw rw;
651 struct io_poll_iocb poll;
652 struct io_accept accept;
653 struct io_sync sync;
654 struct io_cancel cancel;
655 struct io_timeout timeout;
656 struct io_timeout_rem timeout_rem;
657 struct io_connect connect;
658 struct io_sr_msg sr_msg;
659 struct io_open open;
660 struct io_close close;
661 struct io_files_update files_update;
662 struct io_fadvise fadvise;
663 struct io_madvise madvise;
664 struct io_epoll epoll;
665 struct io_splice splice;
666 struct io_provide_buf pbuf;
667 struct io_statx statx;
668 /* use only after cleaning per-op data, see io_clean_op() */
669 struct io_completion compl;
670 };
671
672 /* opcode allocated if it needs to store data for async defer */
673 void *async_data;
674 u8 opcode;
675 /* polled IO has completed */
676 u8 iopoll_completed;
677
678 u16 buf_index;
679 u32 result;
680
681 struct io_ring_ctx *ctx;
682 unsigned int flags;
683 refcount_t refs;
684 struct task_struct *task;
685 u64 user_data;
686
687 struct list_head link_list;
688
689 /*
690 * 1. used with ctx->iopoll_list with reads/writes
691 * 2. to track reqs with ->files (see io_op_def::file_table)
692 */
693 struct list_head inflight_entry;
694
695 struct percpu_ref *fixed_file_refs;
696 struct callback_head task_work;
697 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
698 struct hlist_node hash_node;
699 struct async_poll *apoll;
700 struct io_wq_work work;
701 };
702
703 struct io_defer_entry {
704 struct list_head list;
705 struct io_kiocb *req;
706 u32 seq;
707 };
708
709 #define IO_IOPOLL_BATCH 8
710
711 struct io_comp_state {
712 unsigned int nr;
713 struct list_head list;
714 struct io_ring_ctx *ctx;
715 };
716
717 struct io_submit_state {
718 struct blk_plug plug;
719
720 /*
721 * io_kiocb alloc cache
722 */
723 void *reqs[IO_IOPOLL_BATCH];
724 unsigned int free_reqs;
725
726 /*
727 * Batch completion logic
728 */
729 struct io_comp_state comp;
730
731 /*
732 * File reference cache
733 */
734 struct file *file;
735 unsigned int fd;
736 unsigned int has_refs;
737 unsigned int ios_left;
738 };
739
740 struct io_op_def {
741 /* needs req->file assigned */
742 unsigned needs_file : 1;
743 /* don't fail if file grab fails */
744 unsigned needs_file_no_error : 1;
745 /* hash wq insertion if file is a regular file */
746 unsigned hash_reg_file : 1;
747 /* unbound wq insertion if file is a non-regular file */
748 unsigned unbound_nonreg_file : 1;
749 /* opcode is not supported by this kernel */
750 unsigned not_supported : 1;
751 /* set if opcode supports polled "wait" */
752 unsigned pollin : 1;
753 unsigned pollout : 1;
754 /* op supports buffer selection */
755 unsigned buffer_select : 1;
756 /* must always have async data allocated */
757 unsigned needs_async_data : 1;
758 /* size of async data needed, if any */
759 unsigned short async_size;
760 unsigned work_flags;
761 };
762
763 static const struct io_op_def io_op_defs[] = {
764 [IORING_OP_NOP] = {},
765 [IORING_OP_READV] = {
766 .needs_file = 1,
767 .unbound_nonreg_file = 1,
768 .pollin = 1,
769 .buffer_select = 1,
770 .needs_async_data = 1,
771 .async_size = sizeof(struct io_async_rw),
772 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
773 },
774 [IORING_OP_WRITEV] = {
775 .needs_file = 1,
776 .hash_reg_file = 1,
777 .unbound_nonreg_file = 1,
778 .pollout = 1,
779 .needs_async_data = 1,
780 .async_size = sizeof(struct io_async_rw),
781 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
782 IO_WQ_WORK_FSIZE,
783 },
784 [IORING_OP_FSYNC] = {
785 .needs_file = 1,
786 .work_flags = IO_WQ_WORK_BLKCG,
787 },
788 [IORING_OP_READ_FIXED] = {
789 .needs_file = 1,
790 .unbound_nonreg_file = 1,
791 .pollin = 1,
792 .async_size = sizeof(struct io_async_rw),
793 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
794 },
795 [IORING_OP_WRITE_FIXED] = {
796 .needs_file = 1,
797 .hash_reg_file = 1,
798 .unbound_nonreg_file = 1,
799 .pollout = 1,
800 .async_size = sizeof(struct io_async_rw),
801 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
802 IO_WQ_WORK_MM,
803 },
804 [IORING_OP_POLL_ADD] = {
805 .needs_file = 1,
806 .unbound_nonreg_file = 1,
807 },
808 [IORING_OP_POLL_REMOVE] = {},
809 [IORING_OP_SYNC_FILE_RANGE] = {
810 .needs_file = 1,
811 .work_flags = IO_WQ_WORK_BLKCG,
812 },
813 [IORING_OP_SENDMSG] = {
814 .needs_file = 1,
815 .unbound_nonreg_file = 1,
816 .pollout = 1,
817 .needs_async_data = 1,
818 .async_size = sizeof(struct io_async_msghdr),
819 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
820 IO_WQ_WORK_FS,
821 },
822 [IORING_OP_RECVMSG] = {
823 .needs_file = 1,
824 .unbound_nonreg_file = 1,
825 .pollin = 1,
826 .buffer_select = 1,
827 .needs_async_data = 1,
828 .async_size = sizeof(struct io_async_msghdr),
829 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
830 IO_WQ_WORK_FS,
831 },
832 [IORING_OP_TIMEOUT] = {
833 .needs_async_data = 1,
834 .async_size = sizeof(struct io_timeout_data),
835 .work_flags = IO_WQ_WORK_MM,
836 },
837 [IORING_OP_TIMEOUT_REMOVE] = {},
838 [IORING_OP_ACCEPT] = {
839 .needs_file = 1,
840 .unbound_nonreg_file = 1,
841 .pollin = 1,
842 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
843 },
844 [IORING_OP_ASYNC_CANCEL] = {},
845 [IORING_OP_LINK_TIMEOUT] = {
846 .needs_async_data = 1,
847 .async_size = sizeof(struct io_timeout_data),
848 .work_flags = IO_WQ_WORK_MM,
849 },
850 [IORING_OP_CONNECT] = {
851 .needs_file = 1,
852 .unbound_nonreg_file = 1,
853 .pollout = 1,
854 .needs_async_data = 1,
855 .async_size = sizeof(struct io_async_connect),
856 .work_flags = IO_WQ_WORK_MM,
857 },
858 [IORING_OP_FALLOCATE] = {
859 .needs_file = 1,
860 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
861 },
862 [IORING_OP_OPENAT] = {
863 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
864 IO_WQ_WORK_FS,
865 },
866 [IORING_OP_CLOSE] = {
867 .needs_file = 1,
868 .needs_file_no_error = 1,
869 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
870 },
871 [IORING_OP_FILES_UPDATE] = {
872 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
873 },
874 [IORING_OP_STATX] = {
875 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
876 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
877 },
878 [IORING_OP_READ] = {
879 .needs_file = 1,
880 .unbound_nonreg_file = 1,
881 .pollin = 1,
882 .buffer_select = 1,
883 .async_size = sizeof(struct io_async_rw),
884 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
885 },
886 [IORING_OP_WRITE] = {
887 .needs_file = 1,
888 .unbound_nonreg_file = 1,
889 .pollout = 1,
890 .async_size = sizeof(struct io_async_rw),
891 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
892 IO_WQ_WORK_FSIZE,
893 },
894 [IORING_OP_FADVISE] = {
895 .needs_file = 1,
896 .work_flags = IO_WQ_WORK_BLKCG,
897 },
898 [IORING_OP_MADVISE] = {
899 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
900 },
901 [IORING_OP_SEND] = {
902 .needs_file = 1,
903 .unbound_nonreg_file = 1,
904 .pollout = 1,
905 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
906 },
907 [IORING_OP_RECV] = {
908 .needs_file = 1,
909 .unbound_nonreg_file = 1,
910 .pollin = 1,
911 .buffer_select = 1,
912 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
913 },
914 [IORING_OP_OPENAT2] = {
915 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
916 IO_WQ_WORK_BLKCG,
917 },
918 [IORING_OP_EPOLL_CTL] = {
919 .unbound_nonreg_file = 1,
920 .work_flags = IO_WQ_WORK_FILES,
921 },
922 [IORING_OP_SPLICE] = {
923 .needs_file = 1,
924 .hash_reg_file = 1,
925 .unbound_nonreg_file = 1,
926 .work_flags = IO_WQ_WORK_BLKCG,
927 },
928 [IORING_OP_PROVIDE_BUFFERS] = {},
929 [IORING_OP_REMOVE_BUFFERS] = {},
930 [IORING_OP_TEE] = {
931 .needs_file = 1,
932 .hash_reg_file = 1,
933 .unbound_nonreg_file = 1,
934 },
935 };
936
937 enum io_mem_account {
938 ACCT_LOCKED,
939 ACCT_PINNED,
940 };
941
942 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
943 struct io_comp_state *cs);
944 static void io_cqring_fill_event(struct io_kiocb *req, long res);
945 static void io_put_req(struct io_kiocb *req);
946 static void io_put_req_deferred(struct io_kiocb *req, int nr);
947 static void io_double_put_req(struct io_kiocb *req);
948 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
949 static void __io_queue_linked_timeout(struct io_kiocb *req);
950 static void io_queue_linked_timeout(struct io_kiocb *req);
951 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
952 struct io_uring_files_update *ip,
953 unsigned nr_args);
954 static void __io_clean_op(struct io_kiocb *req);
955 static struct file *io_file_get(struct io_submit_state *state,
956 struct io_kiocb *req, int fd, bool fixed);
957 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
958 static void io_file_put_work(struct work_struct *work);
959
960 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
961 struct iovec **iovec, struct iov_iter *iter,
962 bool needs_lock);
963 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
964 const struct iovec *fast_iov,
965 struct iov_iter *iter, bool force);
966
967 static struct kmem_cache *req_cachep;
968
969 static const struct file_operations io_uring_fops;
970
971 struct sock *io_uring_get_socket(struct file *file)
972 {
973 #if defined(CONFIG_UNIX)
974 if (file->f_op == &io_uring_fops) {
975 struct io_ring_ctx *ctx = file->private_data;
976
977 return ctx->ring_sock->sk;
978 }
979 #endif
980 return NULL;
981 }
982 EXPORT_SYMBOL(io_uring_get_socket);
983
984 static inline void io_clean_op(struct io_kiocb *req)
985 {
986 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
987 REQ_F_INFLIGHT))
988 __io_clean_op(req);
989 }
990
991 static void io_sq_thread_drop_mm(void)
992 {
993 struct mm_struct *mm = current->mm;
994
995 if (mm) {
996 kthread_unuse_mm(mm);
997 mmput(mm);
998 }
999 }
1000
1001 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1002 {
1003 if (!current->mm) {
1004 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL) ||
1005 !ctx->sqo_task->mm ||
1006 !mmget_not_zero(ctx->sqo_task->mm)))
1007 return -EFAULT;
1008 kthread_use_mm(ctx->sqo_task->mm);
1009 }
1010
1011 return 0;
1012 }
1013
1014 static int io_sq_thread_acquire_mm(struct io_ring_ctx *ctx,
1015 struct io_kiocb *req)
1016 {
1017 if (!(io_op_defs[req->opcode].work_flags & IO_WQ_WORK_MM))
1018 return 0;
1019 return __io_sq_thread_acquire_mm(ctx);
1020 }
1021
1022 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1023 struct cgroup_subsys_state **cur_css)
1024
1025 {
1026 #ifdef CONFIG_BLK_CGROUP
1027 /* puts the old one when swapping */
1028 if (*cur_css != ctx->sqo_blkcg_css) {
1029 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1030 *cur_css = ctx->sqo_blkcg_css;
1031 }
1032 #endif
1033 }
1034
1035 static void io_sq_thread_unassociate_blkcg(void)
1036 {
1037 #ifdef CONFIG_BLK_CGROUP
1038 kthread_associate_blkcg(NULL);
1039 #endif
1040 }
1041
1042 static inline void req_set_fail_links(struct io_kiocb *req)
1043 {
1044 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1045 req->flags |= REQ_F_FAIL_LINK;
1046 }
1047
1048 /*
1049 * None of these are dereferenced, they are simply used to check if any of
1050 * them have changed. If we're under current and check they are still the
1051 * same, we're fine to grab references to them for actual out-of-line use.
1052 */
1053 static void io_init_identity(struct io_identity *id)
1054 {
1055 id->files = current->files;
1056 id->mm = current->mm;
1057 #ifdef CONFIG_BLK_CGROUP
1058 rcu_read_lock();
1059 id->blkcg_css = blkcg_css();
1060 rcu_read_unlock();
1061 #endif
1062 id->creds = current_cred();
1063 id->nsproxy = current->nsproxy;
1064 id->fs = current->fs;
1065 id->fsize = rlimit(RLIMIT_FSIZE);
1066 #ifdef CONFIG_AUDIT
1067 id->loginuid = current->loginuid;
1068 id->sessionid = current->sessionid;
1069 #endif
1070 refcount_set(&id->count, 1);
1071 }
1072
1073 static inline void __io_req_init_async(struct io_kiocb *req)
1074 {
1075 memset(&req->work, 0, sizeof(req->work));
1076 req->flags |= REQ_F_WORK_INITIALIZED;
1077 }
1078
1079 /*
1080 * Note: must call io_req_init_async() for the first time you
1081 * touch any members of io_wq_work.
1082 */
1083 static inline void io_req_init_async(struct io_kiocb *req)
1084 {
1085 struct io_uring_task *tctx = current->io_uring;
1086
1087 if (req->flags & REQ_F_WORK_INITIALIZED)
1088 return;
1089
1090 __io_req_init_async(req);
1091
1092 /* Grab a ref if this isn't our static identity */
1093 req->work.identity = tctx->identity;
1094 if (tctx->identity != &tctx->__identity)
1095 refcount_inc(&req->work.identity->count);
1096 }
1097
1098 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1099 {
1100 return ctx->flags & IORING_SETUP_SQPOLL;
1101 }
1102
1103 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1104 {
1105 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1106
1107 complete(&ctx->ref_comp);
1108 }
1109
1110 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1111 {
1112 return !req->timeout.off;
1113 }
1114
1115 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1116 {
1117 struct io_ring_ctx *ctx;
1118 int hash_bits;
1119
1120 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1121 if (!ctx)
1122 return NULL;
1123
1124 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1125 if (!ctx->fallback_req)
1126 goto err;
1127
1128 /*
1129 * Use 5 bits less than the max cq entries, that should give us around
1130 * 32 entries per hash list if totally full and uniformly spread.
1131 */
1132 hash_bits = ilog2(p->cq_entries);
1133 hash_bits -= 5;
1134 if (hash_bits <= 0)
1135 hash_bits = 1;
1136 ctx->cancel_hash_bits = hash_bits;
1137 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1138 GFP_KERNEL);
1139 if (!ctx->cancel_hash)
1140 goto err;
1141 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1142
1143 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1144 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1145 goto err;
1146
1147 ctx->flags = p->flags;
1148 init_waitqueue_head(&ctx->sqo_sq_wait);
1149 INIT_LIST_HEAD(&ctx->sqd_list);
1150 init_waitqueue_head(&ctx->cq_wait);
1151 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1152 init_completion(&ctx->ref_comp);
1153 init_completion(&ctx->sq_thread_comp);
1154 idr_init(&ctx->io_buffer_idr);
1155 idr_init(&ctx->personality_idr);
1156 mutex_init(&ctx->uring_lock);
1157 init_waitqueue_head(&ctx->wait);
1158 spin_lock_init(&ctx->completion_lock);
1159 INIT_LIST_HEAD(&ctx->iopoll_list);
1160 INIT_LIST_HEAD(&ctx->defer_list);
1161 INIT_LIST_HEAD(&ctx->timeout_list);
1162 init_waitqueue_head(&ctx->inflight_wait);
1163 spin_lock_init(&ctx->inflight_lock);
1164 INIT_LIST_HEAD(&ctx->inflight_list);
1165 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1166 init_llist_head(&ctx->file_put_llist);
1167 return ctx;
1168 err:
1169 if (ctx->fallback_req)
1170 kmem_cache_free(req_cachep, ctx->fallback_req);
1171 kfree(ctx->cancel_hash);
1172 kfree(ctx);
1173 return NULL;
1174 }
1175
1176 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1177 {
1178 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1179 struct io_ring_ctx *ctx = req->ctx;
1180
1181 return seq != ctx->cached_cq_tail
1182 + READ_ONCE(ctx->cached_cq_overflow);
1183 }
1184
1185 return false;
1186 }
1187
1188 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1189 {
1190 struct io_rings *rings = ctx->rings;
1191
1192 /* order cqe stores with ring update */
1193 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1194
1195 if (wq_has_sleeper(&ctx->cq_wait)) {
1196 wake_up_interruptible(&ctx->cq_wait);
1197 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1198 }
1199 }
1200
1201 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1202 {
1203 if (req->work.identity == &tctx->__identity)
1204 return;
1205 if (refcount_dec_and_test(&req->work.identity->count))
1206 kfree(req->work.identity);
1207 }
1208
1209 static void io_req_clean_work(struct io_kiocb *req)
1210 {
1211 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1212 return;
1213
1214 req->flags &= ~REQ_F_WORK_INITIALIZED;
1215
1216 if (req->work.flags & IO_WQ_WORK_MM) {
1217 mmdrop(req->work.identity->mm);
1218 req->work.flags &= ~IO_WQ_WORK_MM;
1219 }
1220 #ifdef CONFIG_BLK_CGROUP
1221 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1222 css_put(req->work.identity->blkcg_css);
1223 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1224 }
1225 #endif
1226 if (req->work.flags & IO_WQ_WORK_CREDS) {
1227 put_cred(req->work.identity->creds);
1228 req->work.flags &= ~IO_WQ_WORK_CREDS;
1229 }
1230 if (req->work.flags & IO_WQ_WORK_FS) {
1231 struct fs_struct *fs = req->work.identity->fs;
1232
1233 spin_lock(&req->work.identity->fs->lock);
1234 if (--fs->users)
1235 fs = NULL;
1236 spin_unlock(&req->work.identity->fs->lock);
1237 if (fs)
1238 free_fs_struct(fs);
1239 req->work.flags &= ~IO_WQ_WORK_FS;
1240 }
1241
1242 io_put_identity(req->task->io_uring, req);
1243 }
1244
1245 /*
1246 * Create a private copy of io_identity, since some fields don't match
1247 * the current context.
1248 */
1249 static bool io_identity_cow(struct io_kiocb *req)
1250 {
1251 struct io_uring_task *tctx = current->io_uring;
1252 const struct cred *creds = NULL;
1253 struct io_identity *id;
1254
1255 if (req->work.flags & IO_WQ_WORK_CREDS)
1256 creds = req->work.identity->creds;
1257
1258 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1259 if (unlikely(!id)) {
1260 req->work.flags |= IO_WQ_WORK_CANCEL;
1261 return false;
1262 }
1263
1264 /*
1265 * We can safely just re-init the creds we copied Either the field
1266 * matches the current one, or we haven't grabbed it yet. The only
1267 * exception is ->creds, through registered personalities, so handle
1268 * that one separately.
1269 */
1270 io_init_identity(id);
1271 if (creds)
1272 req->work.identity->creds = creds;
1273
1274 /* add one for this request */
1275 refcount_inc(&id->count);
1276
1277 /* drop old identity, assign new one. one ref for req, one for tctx */
1278 if (req->work.identity != tctx->identity &&
1279 refcount_sub_and_test(2, &req->work.identity->count))
1280 kfree(req->work.identity);
1281
1282 req->work.identity = id;
1283 tctx->identity = id;
1284 return true;
1285 }
1286
1287 static bool io_grab_identity(struct io_kiocb *req)
1288 {
1289 const struct io_op_def *def = &io_op_defs[req->opcode];
1290 struct io_identity *id = req->work.identity;
1291 struct io_ring_ctx *ctx = req->ctx;
1292
1293 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1294 if (id->fsize != rlimit(RLIMIT_FSIZE))
1295 return false;
1296 req->work.flags |= IO_WQ_WORK_FSIZE;
1297 }
1298
1299 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1300 (def->work_flags & IO_WQ_WORK_FILES) &&
1301 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1302 if (id->files != current->files ||
1303 id->nsproxy != current->nsproxy)
1304 return false;
1305 atomic_inc(&id->files->count);
1306 get_nsproxy(id->nsproxy);
1307 req->flags |= REQ_F_INFLIGHT;
1308
1309 spin_lock_irq(&ctx->inflight_lock);
1310 list_add(&req->inflight_entry, &ctx->inflight_list);
1311 spin_unlock_irq(&ctx->inflight_lock);
1312 req->work.flags |= IO_WQ_WORK_FILES;
1313 }
1314 #ifdef CONFIG_BLK_CGROUP
1315 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1316 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1317 rcu_read_lock();
1318 if (id->blkcg_css != blkcg_css()) {
1319 rcu_read_unlock();
1320 return false;
1321 }
1322 /*
1323 * This should be rare, either the cgroup is dying or the task
1324 * is moving cgroups. Just punt to root for the handful of ios.
1325 */
1326 if (css_tryget_online(id->blkcg_css))
1327 req->work.flags |= IO_WQ_WORK_BLKCG;
1328 rcu_read_unlock();
1329 }
1330 #endif
1331 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1332 if (id->creds != current_cred())
1333 return false;
1334 get_cred(id->creds);
1335 req->work.flags |= IO_WQ_WORK_CREDS;
1336 }
1337 #ifdef CONFIG_AUDIT
1338 if (!uid_eq(current->loginuid, id->loginuid) ||
1339 current->sessionid != id->sessionid)
1340 return false;
1341 #endif
1342 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1343 (def->work_flags & IO_WQ_WORK_FS)) {
1344 if (current->fs != id->fs)
1345 return false;
1346 spin_lock(&id->fs->lock);
1347 if (!id->fs->in_exec) {
1348 id->fs->users++;
1349 req->work.flags |= IO_WQ_WORK_FS;
1350 } else {
1351 req->work.flags |= IO_WQ_WORK_CANCEL;
1352 }
1353 spin_unlock(&current->fs->lock);
1354 }
1355
1356 return true;
1357 }
1358
1359 static void io_prep_async_work(struct io_kiocb *req)
1360 {
1361 const struct io_op_def *def = &io_op_defs[req->opcode];
1362 struct io_ring_ctx *ctx = req->ctx;
1363 struct io_identity *id;
1364
1365 io_req_init_async(req);
1366 id = req->work.identity;
1367
1368 if (req->flags & REQ_F_FORCE_ASYNC)
1369 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1370
1371 if (req->flags & REQ_F_ISREG) {
1372 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1373 io_wq_hash_work(&req->work, file_inode(req->file));
1374 } else {
1375 if (def->unbound_nonreg_file)
1376 req->work.flags |= IO_WQ_WORK_UNBOUND;
1377 }
1378
1379 /* ->mm can never change on us */
1380 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1381 (def->work_flags & IO_WQ_WORK_MM)) {
1382 mmgrab(id->mm);
1383 req->work.flags |= IO_WQ_WORK_MM;
1384 }
1385
1386 /* if we fail grabbing identity, we must COW, regrab, and retry */
1387 if (io_grab_identity(req))
1388 return;
1389
1390 if (!io_identity_cow(req))
1391 return;
1392
1393 /* can't fail at this point */
1394 if (!io_grab_identity(req))
1395 WARN_ON(1);
1396 }
1397
1398 static void io_prep_async_link(struct io_kiocb *req)
1399 {
1400 struct io_kiocb *cur;
1401
1402 io_prep_async_work(req);
1403 if (req->flags & REQ_F_LINK_HEAD)
1404 list_for_each_entry(cur, &req->link_list, link_list)
1405 io_prep_async_work(cur);
1406 }
1407
1408 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1409 {
1410 struct io_ring_ctx *ctx = req->ctx;
1411 struct io_kiocb *link = io_prep_linked_timeout(req);
1412
1413 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1414 &req->work, req->flags);
1415 io_wq_enqueue(ctx->io_wq, &req->work);
1416 return link;
1417 }
1418
1419 static void io_queue_async_work(struct io_kiocb *req)
1420 {
1421 struct io_kiocb *link;
1422
1423 /* init ->work of the whole link before punting */
1424 io_prep_async_link(req);
1425 link = __io_queue_async_work(req);
1426
1427 if (link)
1428 io_queue_linked_timeout(link);
1429 }
1430
1431 static void io_kill_timeout(struct io_kiocb *req)
1432 {
1433 struct io_timeout_data *io = req->async_data;
1434 int ret;
1435
1436 ret = hrtimer_try_to_cancel(&io->timer);
1437 if (ret != -1) {
1438 atomic_set(&req->ctx->cq_timeouts,
1439 atomic_read(&req->ctx->cq_timeouts) + 1);
1440 list_del_init(&req->timeout.list);
1441 io_cqring_fill_event(req, 0);
1442 io_put_req_deferred(req, 1);
1443 }
1444 }
1445
1446 static bool io_task_match(struct io_kiocb *req, struct task_struct *tsk)
1447 {
1448 struct io_ring_ctx *ctx = req->ctx;
1449
1450 if (!tsk || req->task == tsk)
1451 return true;
1452 if (ctx->flags & IORING_SETUP_SQPOLL) {
1453 if (ctx->sq_data && req->task == ctx->sq_data->thread)
1454 return true;
1455 }
1456 return false;
1457 }
1458
1459 /*
1460 * Returns true if we found and killed one or more timeouts
1461 */
1462 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk)
1463 {
1464 struct io_kiocb *req, *tmp;
1465 int canceled = 0;
1466
1467 spin_lock_irq(&ctx->completion_lock);
1468 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1469 if (io_task_match(req, tsk)) {
1470 io_kill_timeout(req);
1471 canceled++;
1472 }
1473 }
1474 spin_unlock_irq(&ctx->completion_lock);
1475 return canceled != 0;
1476 }
1477
1478 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1479 {
1480 do {
1481 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1482 struct io_defer_entry, list);
1483 struct io_kiocb *link;
1484
1485 if (req_need_defer(de->req, de->seq))
1486 break;
1487 list_del_init(&de->list);
1488 /* punt-init is done before queueing for defer */
1489 link = __io_queue_async_work(de->req);
1490 if (link) {
1491 __io_queue_linked_timeout(link);
1492 /* drop submission reference */
1493 io_put_req_deferred(link, 1);
1494 }
1495 kfree(de);
1496 } while (!list_empty(&ctx->defer_list));
1497 }
1498
1499 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1500 {
1501 while (!list_empty(&ctx->timeout_list)) {
1502 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1503 struct io_kiocb, timeout.list);
1504
1505 if (io_is_timeout_noseq(req))
1506 break;
1507 if (req->timeout.target_seq != ctx->cached_cq_tail
1508 - atomic_read(&ctx->cq_timeouts))
1509 break;
1510
1511 list_del_init(&req->timeout.list);
1512 io_kill_timeout(req);
1513 }
1514 }
1515
1516 static void io_commit_cqring(struct io_ring_ctx *ctx)
1517 {
1518 io_flush_timeouts(ctx);
1519 __io_commit_cqring(ctx);
1520
1521 if (unlikely(!list_empty(&ctx->defer_list)))
1522 __io_queue_deferred(ctx);
1523 }
1524
1525 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1526 {
1527 struct io_rings *r = ctx->rings;
1528
1529 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1530 }
1531
1532 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1533 {
1534 struct io_rings *rings = ctx->rings;
1535 unsigned tail;
1536
1537 tail = ctx->cached_cq_tail;
1538 /*
1539 * writes to the cq entry need to come after reading head; the
1540 * control dependency is enough as we're using WRITE_ONCE to
1541 * fill the cq entry
1542 */
1543 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1544 return NULL;
1545
1546 ctx->cached_cq_tail++;
1547 return &rings->cqes[tail & ctx->cq_mask];
1548 }
1549
1550 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1551 {
1552 if (!ctx->cq_ev_fd)
1553 return false;
1554 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1555 return false;
1556 if (!ctx->eventfd_async)
1557 return true;
1558 return io_wq_current_is_worker();
1559 }
1560
1561 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1562 {
1563 if (waitqueue_active(&ctx->wait))
1564 wake_up(&ctx->wait);
1565 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1566 wake_up(&ctx->sq_data->wait);
1567 if (io_should_trigger_evfd(ctx))
1568 eventfd_signal(ctx->cq_ev_fd, 1);
1569 }
1570
1571 static void io_cqring_mark_overflow(struct io_ring_ctx *ctx)
1572 {
1573 if (list_empty(&ctx->cq_overflow_list)) {
1574 clear_bit(0, &ctx->sq_check_overflow);
1575 clear_bit(0, &ctx->cq_check_overflow);
1576 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1577 }
1578 }
1579
1580 static inline bool io_match_files(struct io_kiocb *req,
1581 struct files_struct *files)
1582 {
1583 if (!files)
1584 return true;
1585 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1586 (req->work.flags & IO_WQ_WORK_FILES))
1587 return req->work.identity->files == files;
1588 return false;
1589 }
1590
1591 /* Returns true if there are no backlogged entries after the flush */
1592 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1593 struct task_struct *tsk,
1594 struct files_struct *files)
1595 {
1596 struct io_rings *rings = ctx->rings;
1597 struct io_kiocb *req, *tmp;
1598 struct io_uring_cqe *cqe;
1599 unsigned long flags;
1600 LIST_HEAD(list);
1601
1602 if (!force) {
1603 if (list_empty_careful(&ctx->cq_overflow_list))
1604 return true;
1605 if ((ctx->cached_cq_tail - READ_ONCE(rings->cq.head) ==
1606 rings->cq_ring_entries))
1607 return false;
1608 }
1609
1610 spin_lock_irqsave(&ctx->completion_lock, flags);
1611
1612 /* if force is set, the ring is going away. always drop after that */
1613 if (force)
1614 ctx->cq_overflow_flushed = 1;
1615
1616 cqe = NULL;
1617 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1618 if (tsk && req->task != tsk)
1619 continue;
1620 if (!io_match_files(req, files))
1621 continue;
1622
1623 cqe = io_get_cqring(ctx);
1624 if (!cqe && !force)
1625 break;
1626
1627 list_move(&req->compl.list, &list);
1628 if (cqe) {
1629 WRITE_ONCE(cqe->user_data, req->user_data);
1630 WRITE_ONCE(cqe->res, req->result);
1631 WRITE_ONCE(cqe->flags, req->compl.cflags);
1632 } else {
1633 ctx->cached_cq_overflow++;
1634 WRITE_ONCE(ctx->rings->cq_overflow,
1635 ctx->cached_cq_overflow);
1636 }
1637 }
1638
1639 io_commit_cqring(ctx);
1640 io_cqring_mark_overflow(ctx);
1641
1642 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1643 io_cqring_ev_posted(ctx);
1644
1645 while (!list_empty(&list)) {
1646 req = list_first_entry(&list, struct io_kiocb, compl.list);
1647 list_del(&req->compl.list);
1648 io_put_req(req);
1649 }
1650
1651 return cqe != NULL;
1652 }
1653
1654 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1655 {
1656 struct io_ring_ctx *ctx = req->ctx;
1657 struct io_uring_cqe *cqe;
1658
1659 trace_io_uring_complete(ctx, req->user_data, res);
1660
1661 /*
1662 * If we can't get a cq entry, userspace overflowed the
1663 * submission (by quite a lot). Increment the overflow count in
1664 * the ring.
1665 */
1666 cqe = io_get_cqring(ctx);
1667 if (likely(cqe)) {
1668 WRITE_ONCE(cqe->user_data, req->user_data);
1669 WRITE_ONCE(cqe->res, res);
1670 WRITE_ONCE(cqe->flags, cflags);
1671 } else if (ctx->cq_overflow_flushed || req->task->io_uring->in_idle) {
1672 /*
1673 * If we're in ring overflow flush mode, or in task cancel mode,
1674 * then we cannot store the request for later flushing, we need
1675 * to drop it on the floor.
1676 */
1677 ctx->cached_cq_overflow++;
1678 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1679 } else {
1680 if (list_empty(&ctx->cq_overflow_list)) {
1681 set_bit(0, &ctx->sq_check_overflow);
1682 set_bit(0, &ctx->cq_check_overflow);
1683 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1684 }
1685 io_clean_op(req);
1686 req->result = res;
1687 req->compl.cflags = cflags;
1688 refcount_inc(&req->refs);
1689 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1690 }
1691 }
1692
1693 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1694 {
1695 __io_cqring_fill_event(req, res, 0);
1696 }
1697
1698 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1699 {
1700 struct io_ring_ctx *ctx = req->ctx;
1701 unsigned long flags;
1702
1703 spin_lock_irqsave(&ctx->completion_lock, flags);
1704 __io_cqring_fill_event(req, res, cflags);
1705 io_commit_cqring(ctx);
1706 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1707
1708 io_cqring_ev_posted(ctx);
1709 }
1710
1711 static void io_submit_flush_completions(struct io_comp_state *cs)
1712 {
1713 struct io_ring_ctx *ctx = cs->ctx;
1714
1715 spin_lock_irq(&ctx->completion_lock);
1716 while (!list_empty(&cs->list)) {
1717 struct io_kiocb *req;
1718
1719 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1720 list_del(&req->compl.list);
1721 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1722
1723 /*
1724 * io_free_req() doesn't care about completion_lock unless one
1725 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1726 * because of a potential deadlock with req->work.fs->lock
1727 */
1728 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1729 |REQ_F_WORK_INITIALIZED)) {
1730 spin_unlock_irq(&ctx->completion_lock);
1731 io_put_req(req);
1732 spin_lock_irq(&ctx->completion_lock);
1733 } else {
1734 io_put_req(req);
1735 }
1736 }
1737 io_commit_cqring(ctx);
1738 spin_unlock_irq(&ctx->completion_lock);
1739
1740 io_cqring_ev_posted(ctx);
1741 cs->nr = 0;
1742 }
1743
1744 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1745 struct io_comp_state *cs)
1746 {
1747 if (!cs) {
1748 io_cqring_add_event(req, res, cflags);
1749 io_put_req(req);
1750 } else {
1751 io_clean_op(req);
1752 req->result = res;
1753 req->compl.cflags = cflags;
1754 list_add_tail(&req->compl.list, &cs->list);
1755 if (++cs->nr >= 32)
1756 io_submit_flush_completions(cs);
1757 }
1758 }
1759
1760 static void io_req_complete(struct io_kiocb *req, long res)
1761 {
1762 __io_req_complete(req, res, 0, NULL);
1763 }
1764
1765 static inline bool io_is_fallback_req(struct io_kiocb *req)
1766 {
1767 return req == (struct io_kiocb *)
1768 ((unsigned long) req->ctx->fallback_req & ~1UL);
1769 }
1770
1771 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1772 {
1773 struct io_kiocb *req;
1774
1775 req = ctx->fallback_req;
1776 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1777 return req;
1778
1779 return NULL;
1780 }
1781
1782 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1783 struct io_submit_state *state)
1784 {
1785 if (!state->free_reqs) {
1786 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1787 size_t sz;
1788 int ret;
1789
1790 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1791 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1792
1793 /*
1794 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1795 * retry single alloc to be on the safe side.
1796 */
1797 if (unlikely(ret <= 0)) {
1798 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1799 if (!state->reqs[0])
1800 goto fallback;
1801 ret = 1;
1802 }
1803 state->free_reqs = ret;
1804 }
1805
1806 state->free_reqs--;
1807 return state->reqs[state->free_reqs];
1808 fallback:
1809 return io_get_fallback_req(ctx);
1810 }
1811
1812 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1813 bool fixed)
1814 {
1815 if (fixed)
1816 percpu_ref_put(req->fixed_file_refs);
1817 else
1818 fput(file);
1819 }
1820
1821 static void io_dismantle_req(struct io_kiocb *req)
1822 {
1823 io_clean_op(req);
1824
1825 if (req->async_data)
1826 kfree(req->async_data);
1827 if (req->file)
1828 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1829
1830 io_req_clean_work(req);
1831 }
1832
1833 static void __io_free_req(struct io_kiocb *req)
1834 {
1835 struct io_uring_task *tctx = req->task->io_uring;
1836 struct io_ring_ctx *ctx = req->ctx;
1837
1838 io_dismantle_req(req);
1839
1840 percpu_counter_dec(&tctx->inflight);
1841 if (tctx->in_idle)
1842 wake_up(&tctx->wait);
1843 put_task_struct(req->task);
1844
1845 if (likely(!io_is_fallback_req(req)))
1846 kmem_cache_free(req_cachep, req);
1847 else
1848 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1849 percpu_ref_put(&ctx->refs);
1850 }
1851
1852 static void io_kill_linked_timeout(struct io_kiocb *req)
1853 {
1854 struct io_ring_ctx *ctx = req->ctx;
1855 struct io_kiocb *link;
1856 bool cancelled = false;
1857 unsigned long flags;
1858
1859 spin_lock_irqsave(&ctx->completion_lock, flags);
1860 link = list_first_entry_or_null(&req->link_list, struct io_kiocb,
1861 link_list);
1862 /*
1863 * Can happen if a linked timeout fired and link had been like
1864 * req -> link t-out -> link t-out [-> ...]
1865 */
1866 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
1867 struct io_timeout_data *io = link->async_data;
1868 int ret;
1869
1870 list_del_init(&link->link_list);
1871 ret = hrtimer_try_to_cancel(&io->timer);
1872 if (ret != -1) {
1873 io_cqring_fill_event(link, -ECANCELED);
1874 io_commit_cqring(ctx);
1875 cancelled = true;
1876 }
1877 }
1878 req->flags &= ~REQ_F_LINK_TIMEOUT;
1879 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1880
1881 if (cancelled) {
1882 io_cqring_ev_posted(ctx);
1883 io_put_req(link);
1884 }
1885 }
1886
1887 static struct io_kiocb *io_req_link_next(struct io_kiocb *req)
1888 {
1889 struct io_kiocb *nxt;
1890
1891 /*
1892 * The list should never be empty when we are called here. But could
1893 * potentially happen if the chain is messed up, check to be on the
1894 * safe side.
1895 */
1896 if (unlikely(list_empty(&req->link_list)))
1897 return NULL;
1898
1899 nxt = list_first_entry(&req->link_list, struct io_kiocb, link_list);
1900 list_del_init(&req->link_list);
1901 if (!list_empty(&nxt->link_list))
1902 nxt->flags |= REQ_F_LINK_HEAD;
1903 return nxt;
1904 }
1905
1906 /*
1907 * Called if REQ_F_LINK_HEAD is set, and we fail the head request
1908 */
1909 static void io_fail_links(struct io_kiocb *req)
1910 {
1911 struct io_ring_ctx *ctx = req->ctx;
1912 unsigned long flags;
1913
1914 spin_lock_irqsave(&ctx->completion_lock, flags);
1915 while (!list_empty(&req->link_list)) {
1916 struct io_kiocb *link = list_first_entry(&req->link_list,
1917 struct io_kiocb, link_list);
1918
1919 list_del_init(&link->link_list);
1920 trace_io_uring_fail_link(req, link);
1921
1922 io_cqring_fill_event(link, -ECANCELED);
1923
1924 /*
1925 * It's ok to free under spinlock as they're not linked anymore,
1926 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
1927 * work.fs->lock.
1928 */
1929 if (link->flags & REQ_F_WORK_INITIALIZED)
1930 io_put_req_deferred(link, 2);
1931 else
1932 io_double_put_req(link);
1933 }
1934
1935 io_commit_cqring(ctx);
1936 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1937
1938 io_cqring_ev_posted(ctx);
1939 }
1940
1941 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
1942 {
1943 req->flags &= ~REQ_F_LINK_HEAD;
1944 if (req->flags & REQ_F_LINK_TIMEOUT)
1945 io_kill_linked_timeout(req);
1946
1947 /*
1948 * If LINK is set, we have dependent requests in this chain. If we
1949 * didn't fail this request, queue the first one up, moving any other
1950 * dependencies to the next request. In case of failure, fail the rest
1951 * of the chain.
1952 */
1953 if (likely(!(req->flags & REQ_F_FAIL_LINK)))
1954 return io_req_link_next(req);
1955 io_fail_links(req);
1956 return NULL;
1957 }
1958
1959 static struct io_kiocb *io_req_find_next(struct io_kiocb *req)
1960 {
1961 if (likely(!(req->flags & REQ_F_LINK_HEAD)))
1962 return NULL;
1963 return __io_req_find_next(req);
1964 }
1965
1966 static int io_req_task_work_add(struct io_kiocb *req, bool twa_signal_ok)
1967 {
1968 struct task_struct *tsk = req->task;
1969 struct io_ring_ctx *ctx = req->ctx;
1970 enum task_work_notify_mode notify;
1971 int ret;
1972
1973 if (tsk->flags & PF_EXITING)
1974 return -ESRCH;
1975
1976 /*
1977 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
1978 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
1979 * processing task_work. There's no reliable way to tell if TWA_RESUME
1980 * will do the job.
1981 */
1982 notify = TWA_NONE;
1983 if (!(ctx->flags & IORING_SETUP_SQPOLL) && twa_signal_ok)
1984 notify = TWA_SIGNAL;
1985
1986 ret = task_work_add(tsk, &req->task_work, notify);
1987 if (!ret)
1988 wake_up_process(tsk);
1989
1990 return ret;
1991 }
1992
1993 static void __io_req_task_cancel(struct io_kiocb *req, int error)
1994 {
1995 struct io_ring_ctx *ctx = req->ctx;
1996
1997 spin_lock_irq(&ctx->completion_lock);
1998 io_cqring_fill_event(req, error);
1999 io_commit_cqring(ctx);
2000 spin_unlock_irq(&ctx->completion_lock);
2001
2002 io_cqring_ev_posted(ctx);
2003 req_set_fail_links(req);
2004 io_double_put_req(req);
2005 }
2006
2007 static void io_req_task_cancel(struct callback_head *cb)
2008 {
2009 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2010 struct io_ring_ctx *ctx = req->ctx;
2011
2012 __io_req_task_cancel(req, -ECANCELED);
2013 percpu_ref_put(&ctx->refs);
2014 }
2015
2016 static void __io_req_task_submit(struct io_kiocb *req)
2017 {
2018 struct io_ring_ctx *ctx = req->ctx;
2019
2020 if (!__io_sq_thread_acquire_mm(ctx)) {
2021 mutex_lock(&ctx->uring_lock);
2022 __io_queue_sqe(req, NULL);
2023 mutex_unlock(&ctx->uring_lock);
2024 } else {
2025 __io_req_task_cancel(req, -EFAULT);
2026 }
2027 }
2028
2029 static void io_req_task_submit(struct callback_head *cb)
2030 {
2031 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2032 struct io_ring_ctx *ctx = req->ctx;
2033
2034 __io_req_task_submit(req);
2035 percpu_ref_put(&ctx->refs);
2036 }
2037
2038 static void io_req_task_queue(struct io_kiocb *req)
2039 {
2040 int ret;
2041
2042 init_task_work(&req->task_work, io_req_task_submit);
2043 percpu_ref_get(&req->ctx->refs);
2044
2045 ret = io_req_task_work_add(req, true);
2046 if (unlikely(ret)) {
2047 struct task_struct *tsk;
2048
2049 init_task_work(&req->task_work, io_req_task_cancel);
2050 tsk = io_wq_get_task(req->ctx->io_wq);
2051 task_work_add(tsk, &req->task_work, TWA_NONE);
2052 wake_up_process(tsk);
2053 }
2054 }
2055
2056 static void io_queue_next(struct io_kiocb *req)
2057 {
2058 struct io_kiocb *nxt = io_req_find_next(req);
2059
2060 if (nxt)
2061 io_req_task_queue(nxt);
2062 }
2063
2064 static void io_free_req(struct io_kiocb *req)
2065 {
2066 io_queue_next(req);
2067 __io_free_req(req);
2068 }
2069
2070 struct req_batch {
2071 void *reqs[IO_IOPOLL_BATCH];
2072 int to_free;
2073
2074 struct task_struct *task;
2075 int task_refs;
2076 };
2077
2078 static inline void io_init_req_batch(struct req_batch *rb)
2079 {
2080 rb->to_free = 0;
2081 rb->task_refs = 0;
2082 rb->task = NULL;
2083 }
2084
2085 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2086 struct req_batch *rb)
2087 {
2088 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2089 percpu_ref_put_many(&ctx->refs, rb->to_free);
2090 rb->to_free = 0;
2091 }
2092
2093 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2094 struct req_batch *rb)
2095 {
2096 if (rb->to_free)
2097 __io_req_free_batch_flush(ctx, rb);
2098 if (rb->task) {
2099 struct io_uring_task *tctx = rb->task->io_uring;
2100
2101 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2102 put_task_struct_many(rb->task, rb->task_refs);
2103 rb->task = NULL;
2104 }
2105 }
2106
2107 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2108 {
2109 if (unlikely(io_is_fallback_req(req))) {
2110 io_free_req(req);
2111 return;
2112 }
2113 if (req->flags & REQ_F_LINK_HEAD)
2114 io_queue_next(req);
2115
2116 if (req->task != rb->task) {
2117 if (rb->task) {
2118 struct io_uring_task *tctx = rb->task->io_uring;
2119
2120 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2121 put_task_struct_many(rb->task, rb->task_refs);
2122 }
2123 rb->task = req->task;
2124 rb->task_refs = 0;
2125 }
2126 rb->task_refs++;
2127
2128 io_dismantle_req(req);
2129 rb->reqs[rb->to_free++] = req;
2130 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2131 __io_req_free_batch_flush(req->ctx, rb);
2132 }
2133
2134 /*
2135 * Drop reference to request, return next in chain (if there is one) if this
2136 * was the last reference to this request.
2137 */
2138 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2139 {
2140 struct io_kiocb *nxt = NULL;
2141
2142 if (refcount_dec_and_test(&req->refs)) {
2143 nxt = io_req_find_next(req);
2144 __io_free_req(req);
2145 }
2146 return nxt;
2147 }
2148
2149 static void io_put_req(struct io_kiocb *req)
2150 {
2151 if (refcount_dec_and_test(&req->refs))
2152 io_free_req(req);
2153 }
2154
2155 static void io_put_req_deferred_cb(struct callback_head *cb)
2156 {
2157 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2158
2159 io_free_req(req);
2160 }
2161
2162 static void io_free_req_deferred(struct io_kiocb *req)
2163 {
2164 int ret;
2165
2166 init_task_work(&req->task_work, io_put_req_deferred_cb);
2167 ret = io_req_task_work_add(req, true);
2168 if (unlikely(ret)) {
2169 struct task_struct *tsk;
2170
2171 tsk = io_wq_get_task(req->ctx->io_wq);
2172 task_work_add(tsk, &req->task_work, TWA_NONE);
2173 wake_up_process(tsk);
2174 }
2175 }
2176
2177 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2178 {
2179 if (refcount_sub_and_test(refs, &req->refs))
2180 io_free_req_deferred(req);
2181 }
2182
2183 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2184 {
2185 struct io_kiocb *nxt;
2186
2187 /*
2188 * A ref is owned by io-wq in which context we're. So, if that's the
2189 * last one, it's safe to steal next work. False negatives are Ok,
2190 * it just will be re-punted async in io_put_work()
2191 */
2192 if (refcount_read(&req->refs) != 1)
2193 return NULL;
2194
2195 nxt = io_req_find_next(req);
2196 return nxt ? &nxt->work : NULL;
2197 }
2198
2199 static void io_double_put_req(struct io_kiocb *req)
2200 {
2201 /* drop both submit and complete references */
2202 if (refcount_sub_and_test(2, &req->refs))
2203 io_free_req(req);
2204 }
2205
2206 static unsigned io_cqring_events(struct io_ring_ctx *ctx, bool noflush)
2207 {
2208 struct io_rings *rings = ctx->rings;
2209
2210 if (test_bit(0, &ctx->cq_check_overflow)) {
2211 /*
2212 * noflush == true is from the waitqueue handler, just ensure
2213 * we wake up the task, and the next invocation will flush the
2214 * entries. We cannot safely to it from here.
2215 */
2216 if (noflush && !list_empty(&ctx->cq_overflow_list))
2217 return -1U;
2218
2219 io_cqring_overflow_flush(ctx, false, NULL, NULL);
2220 }
2221
2222 /* See comment at the top of this file */
2223 smp_rmb();
2224 return ctx->cached_cq_tail - READ_ONCE(rings->cq.head);
2225 }
2226
2227 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2228 {
2229 struct io_rings *rings = ctx->rings;
2230
2231 /* make sure SQ entry isn't read before tail */
2232 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2233 }
2234
2235 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2236 {
2237 unsigned int cflags;
2238
2239 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2240 cflags |= IORING_CQE_F_BUFFER;
2241 req->flags &= ~REQ_F_BUFFER_SELECTED;
2242 kfree(kbuf);
2243 return cflags;
2244 }
2245
2246 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2247 {
2248 struct io_buffer *kbuf;
2249
2250 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2251 return io_put_kbuf(req, kbuf);
2252 }
2253
2254 static inline bool io_run_task_work(void)
2255 {
2256 /*
2257 * Not safe to run on exiting task, and the task_work handling will
2258 * not add work to such a task.
2259 */
2260 if (unlikely(current->flags & PF_EXITING))
2261 return false;
2262 if (current->task_works) {
2263 __set_current_state(TASK_RUNNING);
2264 task_work_run();
2265 return true;
2266 }
2267
2268 return false;
2269 }
2270
2271 static void io_iopoll_queue(struct list_head *again)
2272 {
2273 struct io_kiocb *req;
2274
2275 do {
2276 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2277 list_del(&req->inflight_entry);
2278 __io_complete_rw(req, -EAGAIN, 0, NULL);
2279 } while (!list_empty(again));
2280 }
2281
2282 /*
2283 * Find and free completed poll iocbs
2284 */
2285 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2286 struct list_head *done)
2287 {
2288 struct req_batch rb;
2289 struct io_kiocb *req;
2290 LIST_HEAD(again);
2291
2292 /* order with ->result store in io_complete_rw_iopoll() */
2293 smp_rmb();
2294
2295 io_init_req_batch(&rb);
2296 while (!list_empty(done)) {
2297 int cflags = 0;
2298
2299 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2300 if (READ_ONCE(req->result) == -EAGAIN) {
2301 req->result = 0;
2302 req->iopoll_completed = 0;
2303 list_move_tail(&req->inflight_entry, &again);
2304 continue;
2305 }
2306 list_del(&req->inflight_entry);
2307
2308 if (req->flags & REQ_F_BUFFER_SELECTED)
2309 cflags = io_put_rw_kbuf(req);
2310
2311 __io_cqring_fill_event(req, req->result, cflags);
2312 (*nr_events)++;
2313
2314 if (refcount_dec_and_test(&req->refs))
2315 io_req_free_batch(&rb, req);
2316 }
2317
2318 io_commit_cqring(ctx);
2319 if (ctx->flags & IORING_SETUP_SQPOLL)
2320 io_cqring_ev_posted(ctx);
2321 io_req_free_batch_finish(ctx, &rb);
2322
2323 if (!list_empty(&again))
2324 io_iopoll_queue(&again);
2325 }
2326
2327 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2328 long min)
2329 {
2330 struct io_kiocb *req, *tmp;
2331 LIST_HEAD(done);
2332 bool spin;
2333 int ret;
2334
2335 /*
2336 * Only spin for completions if we don't have multiple devices hanging
2337 * off our complete list, and we're under the requested amount.
2338 */
2339 spin = !ctx->poll_multi_file && *nr_events < min;
2340
2341 ret = 0;
2342 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2343 struct kiocb *kiocb = &req->rw.kiocb;
2344
2345 /*
2346 * Move completed and retryable entries to our local lists.
2347 * If we find a request that requires polling, break out
2348 * and complete those lists first, if we have entries there.
2349 */
2350 if (READ_ONCE(req->iopoll_completed)) {
2351 list_move_tail(&req->inflight_entry, &done);
2352 continue;
2353 }
2354 if (!list_empty(&done))
2355 break;
2356
2357 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2358 if (ret < 0)
2359 break;
2360
2361 /* iopoll may have completed current req */
2362 if (READ_ONCE(req->iopoll_completed))
2363 list_move_tail(&req->inflight_entry, &done);
2364
2365 if (ret && spin)
2366 spin = false;
2367 ret = 0;
2368 }
2369
2370 if (!list_empty(&done))
2371 io_iopoll_complete(ctx, nr_events, &done);
2372
2373 return ret;
2374 }
2375
2376 /*
2377 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2378 * non-spinning poll check - we'll still enter the driver poll loop, but only
2379 * as a non-spinning completion check.
2380 */
2381 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2382 long min)
2383 {
2384 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2385 int ret;
2386
2387 ret = io_do_iopoll(ctx, nr_events, min);
2388 if (ret < 0)
2389 return ret;
2390 if (*nr_events >= min)
2391 return 0;
2392 }
2393
2394 return 1;
2395 }
2396
2397 /*
2398 * We can't just wait for polled events to come to us, we have to actively
2399 * find and complete them.
2400 */
2401 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2402 {
2403 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2404 return;
2405
2406 mutex_lock(&ctx->uring_lock);
2407 while (!list_empty(&ctx->iopoll_list)) {
2408 unsigned int nr_events = 0;
2409
2410 io_do_iopoll(ctx, &nr_events, 0);
2411
2412 /* let it sleep and repeat later if can't complete a request */
2413 if (nr_events == 0)
2414 break;
2415 /*
2416 * Ensure we allow local-to-the-cpu processing to take place,
2417 * in this case we need to ensure that we reap all events.
2418 * Also let task_work, etc. to progress by releasing the mutex
2419 */
2420 if (need_resched()) {
2421 mutex_unlock(&ctx->uring_lock);
2422 cond_resched();
2423 mutex_lock(&ctx->uring_lock);
2424 }
2425 }
2426 mutex_unlock(&ctx->uring_lock);
2427 }
2428
2429 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2430 {
2431 unsigned int nr_events = 0;
2432 int iters = 0, ret = 0;
2433
2434 /*
2435 * We disallow the app entering submit/complete with polling, but we
2436 * still need to lock the ring to prevent racing with polled issue
2437 * that got punted to a workqueue.
2438 */
2439 mutex_lock(&ctx->uring_lock);
2440 do {
2441 /*
2442 * Don't enter poll loop if we already have events pending.
2443 * If we do, we can potentially be spinning for commands that
2444 * already triggered a CQE (eg in error).
2445 */
2446 if (io_cqring_events(ctx, false))
2447 break;
2448
2449 /*
2450 * If a submit got punted to a workqueue, we can have the
2451 * application entering polling for a command before it gets
2452 * issued. That app will hold the uring_lock for the duration
2453 * of the poll right here, so we need to take a breather every
2454 * now and then to ensure that the issue has a chance to add
2455 * the poll to the issued list. Otherwise we can spin here
2456 * forever, while the workqueue is stuck trying to acquire the
2457 * very same mutex.
2458 */
2459 if (!(++iters & 7)) {
2460 mutex_unlock(&ctx->uring_lock);
2461 io_run_task_work();
2462 mutex_lock(&ctx->uring_lock);
2463 }
2464
2465 ret = io_iopoll_getevents(ctx, &nr_events, min);
2466 if (ret <= 0)
2467 break;
2468 ret = 0;
2469 } while (min && !nr_events && !need_resched());
2470
2471 mutex_unlock(&ctx->uring_lock);
2472 return ret;
2473 }
2474
2475 static void kiocb_end_write(struct io_kiocb *req)
2476 {
2477 /*
2478 * Tell lockdep we inherited freeze protection from submission
2479 * thread.
2480 */
2481 if (req->flags & REQ_F_ISREG) {
2482 struct inode *inode = file_inode(req->file);
2483
2484 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2485 }
2486 file_end_write(req->file);
2487 }
2488
2489 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2490 struct io_comp_state *cs)
2491 {
2492 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2493 int cflags = 0;
2494
2495 if (kiocb->ki_flags & IOCB_WRITE)
2496 kiocb_end_write(req);
2497
2498 if (res != req->result)
2499 req_set_fail_links(req);
2500 if (req->flags & REQ_F_BUFFER_SELECTED)
2501 cflags = io_put_rw_kbuf(req);
2502 __io_req_complete(req, res, cflags, cs);
2503 }
2504
2505 #ifdef CONFIG_BLOCK
2506 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2507 {
2508 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2509 ssize_t ret = -ECANCELED;
2510 struct iov_iter iter;
2511 int rw;
2512
2513 if (error) {
2514 ret = error;
2515 goto end_req;
2516 }
2517
2518 switch (req->opcode) {
2519 case IORING_OP_READV:
2520 case IORING_OP_READ_FIXED:
2521 case IORING_OP_READ:
2522 rw = READ;
2523 break;
2524 case IORING_OP_WRITEV:
2525 case IORING_OP_WRITE_FIXED:
2526 case IORING_OP_WRITE:
2527 rw = WRITE;
2528 break;
2529 default:
2530 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2531 req->opcode);
2532 goto end_req;
2533 }
2534
2535 if (!req->async_data) {
2536 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2537 if (ret < 0)
2538 goto end_req;
2539 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2540 if (!ret)
2541 return true;
2542 kfree(iovec);
2543 } else {
2544 return true;
2545 }
2546 end_req:
2547 req_set_fail_links(req);
2548 io_req_complete(req, ret);
2549 return false;
2550 }
2551 #endif
2552
2553 static bool io_rw_reissue(struct io_kiocb *req, long res)
2554 {
2555 #ifdef CONFIG_BLOCK
2556 umode_t mode = file_inode(req->file)->i_mode;
2557 int ret;
2558
2559 if (!S_ISBLK(mode) && !S_ISREG(mode))
2560 return false;
2561 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2562 return false;
2563
2564 ret = io_sq_thread_acquire_mm(req->ctx, req);
2565
2566 if (io_resubmit_prep(req, ret)) {
2567 refcount_inc(&req->refs);
2568 io_queue_async_work(req);
2569 return true;
2570 }
2571
2572 #endif
2573 return false;
2574 }
2575
2576 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2577 struct io_comp_state *cs)
2578 {
2579 if (!io_rw_reissue(req, res))
2580 io_complete_rw_common(&req->rw.kiocb, res, cs);
2581 }
2582
2583 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2584 {
2585 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2586
2587 __io_complete_rw(req, res, res2, NULL);
2588 }
2589
2590 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2591 {
2592 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2593
2594 if (kiocb->ki_flags & IOCB_WRITE)
2595 kiocb_end_write(req);
2596
2597 if (res != -EAGAIN && res != req->result)
2598 req_set_fail_links(req);
2599
2600 WRITE_ONCE(req->result, res);
2601 /* order with io_poll_complete() checking ->result */
2602 smp_wmb();
2603 WRITE_ONCE(req->iopoll_completed, 1);
2604 }
2605
2606 /*
2607 * After the iocb has been issued, it's safe to be found on the poll list.
2608 * Adding the kiocb to the list AFTER submission ensures that we don't
2609 * find it from a io_iopoll_getevents() thread before the issuer is done
2610 * accessing the kiocb cookie.
2611 */
2612 static void io_iopoll_req_issued(struct io_kiocb *req)
2613 {
2614 struct io_ring_ctx *ctx = req->ctx;
2615
2616 /*
2617 * Track whether we have multiple files in our lists. This will impact
2618 * how we do polling eventually, not spinning if we're on potentially
2619 * different devices.
2620 */
2621 if (list_empty(&ctx->iopoll_list)) {
2622 ctx->poll_multi_file = false;
2623 } else if (!ctx->poll_multi_file) {
2624 struct io_kiocb *list_req;
2625
2626 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2627 inflight_entry);
2628 if (list_req->file != req->file)
2629 ctx->poll_multi_file = true;
2630 }
2631
2632 /*
2633 * For fast devices, IO may have already completed. If it has, add
2634 * it to the front so we find it first.
2635 */
2636 if (READ_ONCE(req->iopoll_completed))
2637 list_add(&req->inflight_entry, &ctx->iopoll_list);
2638 else
2639 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2640
2641 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2642 wq_has_sleeper(&ctx->sq_data->wait))
2643 wake_up(&ctx->sq_data->wait);
2644 }
2645
2646 static void __io_state_file_put(struct io_submit_state *state)
2647 {
2648 if (state->has_refs)
2649 fput_many(state->file, state->has_refs);
2650 state->file = NULL;
2651 }
2652
2653 static inline void io_state_file_put(struct io_submit_state *state)
2654 {
2655 if (state->file)
2656 __io_state_file_put(state);
2657 }
2658
2659 /*
2660 * Get as many references to a file as we have IOs left in this submission,
2661 * assuming most submissions are for one file, or at least that each file
2662 * has more than one submission.
2663 */
2664 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2665 {
2666 if (!state)
2667 return fget(fd);
2668
2669 if (state->file) {
2670 if (state->fd == fd) {
2671 state->has_refs--;
2672 return state->file;
2673 }
2674 __io_state_file_put(state);
2675 }
2676 state->file = fget_many(fd, state->ios_left);
2677 if (!state->file)
2678 return NULL;
2679
2680 state->fd = fd;
2681 state->has_refs = state->ios_left - 1;
2682 return state->file;
2683 }
2684
2685 static bool io_bdev_nowait(struct block_device *bdev)
2686 {
2687 #ifdef CONFIG_BLOCK
2688 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2689 #else
2690 return true;
2691 #endif
2692 }
2693
2694 /*
2695 * If we tracked the file through the SCM inflight mechanism, we could support
2696 * any file. For now, just ensure that anything potentially problematic is done
2697 * inline.
2698 */
2699 static bool io_file_supports_async(struct file *file, int rw)
2700 {
2701 umode_t mode = file_inode(file)->i_mode;
2702
2703 if (S_ISBLK(mode)) {
2704 if (io_bdev_nowait(file->f_inode->i_bdev))
2705 return true;
2706 return false;
2707 }
2708 if (S_ISCHR(mode) || S_ISSOCK(mode))
2709 return true;
2710 if (S_ISREG(mode)) {
2711 if (io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2712 file->f_op != &io_uring_fops)
2713 return true;
2714 return false;
2715 }
2716
2717 /* any ->read/write should understand O_NONBLOCK */
2718 if (file->f_flags & O_NONBLOCK)
2719 return true;
2720
2721 if (!(file->f_mode & FMODE_NOWAIT))
2722 return false;
2723
2724 if (rw == READ)
2725 return file->f_op->read_iter != NULL;
2726
2727 return file->f_op->write_iter != NULL;
2728 }
2729
2730 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2731 {
2732 struct io_ring_ctx *ctx = req->ctx;
2733 struct kiocb *kiocb = &req->rw.kiocb;
2734 unsigned ioprio;
2735 int ret;
2736
2737 if (S_ISREG(file_inode(req->file)->i_mode))
2738 req->flags |= REQ_F_ISREG;
2739
2740 kiocb->ki_pos = READ_ONCE(sqe->off);
2741 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2742 req->flags |= REQ_F_CUR_POS;
2743 kiocb->ki_pos = req->file->f_pos;
2744 }
2745 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2746 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2747 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2748 if (unlikely(ret))
2749 return ret;
2750
2751 ioprio = READ_ONCE(sqe->ioprio);
2752 if (ioprio) {
2753 ret = ioprio_check_cap(ioprio);
2754 if (ret)
2755 return ret;
2756
2757 kiocb->ki_ioprio = ioprio;
2758 } else
2759 kiocb->ki_ioprio = get_current_ioprio();
2760
2761 /* don't allow async punt if RWF_NOWAIT was requested */
2762 if (kiocb->ki_flags & IOCB_NOWAIT)
2763 req->flags |= REQ_F_NOWAIT;
2764
2765 if (ctx->flags & IORING_SETUP_IOPOLL) {
2766 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2767 !kiocb->ki_filp->f_op->iopoll)
2768 return -EOPNOTSUPP;
2769
2770 kiocb->ki_flags |= IOCB_HIPRI;
2771 kiocb->ki_complete = io_complete_rw_iopoll;
2772 req->iopoll_completed = 0;
2773 } else {
2774 if (kiocb->ki_flags & IOCB_HIPRI)
2775 return -EINVAL;
2776 kiocb->ki_complete = io_complete_rw;
2777 }
2778
2779 req->rw.addr = READ_ONCE(sqe->addr);
2780 req->rw.len = READ_ONCE(sqe->len);
2781 req->buf_index = READ_ONCE(sqe->buf_index);
2782 return 0;
2783 }
2784
2785 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2786 {
2787 switch (ret) {
2788 case -EIOCBQUEUED:
2789 break;
2790 case -ERESTARTSYS:
2791 case -ERESTARTNOINTR:
2792 case -ERESTARTNOHAND:
2793 case -ERESTART_RESTARTBLOCK:
2794 /*
2795 * We can't just restart the syscall, since previously
2796 * submitted sqes may already be in progress. Just fail this
2797 * IO with EINTR.
2798 */
2799 ret = -EINTR;
2800 fallthrough;
2801 default:
2802 kiocb->ki_complete(kiocb, ret, 0);
2803 }
2804 }
2805
2806 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2807 struct io_comp_state *cs)
2808 {
2809 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2810 struct io_async_rw *io = req->async_data;
2811
2812 /* add previously done IO, if any */
2813 if (io && io->bytes_done > 0) {
2814 if (ret < 0)
2815 ret = io->bytes_done;
2816 else
2817 ret += io->bytes_done;
2818 }
2819
2820 if (req->flags & REQ_F_CUR_POS)
2821 req->file->f_pos = kiocb->ki_pos;
2822 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2823 __io_complete_rw(req, ret, 0, cs);
2824 else
2825 io_rw_done(kiocb, ret);
2826 }
2827
2828 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2829 struct iov_iter *iter)
2830 {
2831 struct io_ring_ctx *ctx = req->ctx;
2832 size_t len = req->rw.len;
2833 struct io_mapped_ubuf *imu;
2834 u16 index, buf_index = req->buf_index;
2835 size_t offset;
2836 u64 buf_addr;
2837
2838 if (unlikely(buf_index >= ctx->nr_user_bufs))
2839 return -EFAULT;
2840 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2841 imu = &ctx->user_bufs[index];
2842 buf_addr = req->rw.addr;
2843
2844 /* overflow */
2845 if (buf_addr + len < buf_addr)
2846 return -EFAULT;
2847 /* not inside the mapped region */
2848 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2849 return -EFAULT;
2850
2851 /*
2852 * May not be a start of buffer, set size appropriately
2853 * and advance us to the beginning.
2854 */
2855 offset = buf_addr - imu->ubuf;
2856 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2857
2858 if (offset) {
2859 /*
2860 * Don't use iov_iter_advance() here, as it's really slow for
2861 * using the latter parts of a big fixed buffer - it iterates
2862 * over each segment manually. We can cheat a bit here, because
2863 * we know that:
2864 *
2865 * 1) it's a BVEC iter, we set it up
2866 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2867 * first and last bvec
2868 *
2869 * So just find our index, and adjust the iterator afterwards.
2870 * If the offset is within the first bvec (or the whole first
2871 * bvec, just use iov_iter_advance(). This makes it easier
2872 * since we can just skip the first segment, which may not
2873 * be PAGE_SIZE aligned.
2874 */
2875 const struct bio_vec *bvec = imu->bvec;
2876
2877 if (offset <= bvec->bv_len) {
2878 iov_iter_advance(iter, offset);
2879 } else {
2880 unsigned long seg_skip;
2881
2882 /* skip first vec */
2883 offset -= bvec->bv_len;
2884 seg_skip = 1 + (offset >> PAGE_SHIFT);
2885
2886 iter->bvec = bvec + seg_skip;
2887 iter->nr_segs -= seg_skip;
2888 iter->count -= bvec->bv_len + offset;
2889 iter->iov_offset = offset & ~PAGE_MASK;
2890 }
2891 }
2892
2893 return len;
2894 }
2895
2896 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
2897 {
2898 if (needs_lock)
2899 mutex_unlock(&ctx->uring_lock);
2900 }
2901
2902 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
2903 {
2904 /*
2905 * "Normal" inline submissions always hold the uring_lock, since we
2906 * grab it from the system call. Same is true for the SQPOLL offload.
2907 * The only exception is when we've detached the request and issue it
2908 * from an async worker thread, grab the lock for that case.
2909 */
2910 if (needs_lock)
2911 mutex_lock(&ctx->uring_lock);
2912 }
2913
2914 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
2915 int bgid, struct io_buffer *kbuf,
2916 bool needs_lock)
2917 {
2918 struct io_buffer *head;
2919
2920 if (req->flags & REQ_F_BUFFER_SELECTED)
2921 return kbuf;
2922
2923 io_ring_submit_lock(req->ctx, needs_lock);
2924
2925 lockdep_assert_held(&req->ctx->uring_lock);
2926
2927 head = idr_find(&req->ctx->io_buffer_idr, bgid);
2928 if (head) {
2929 if (!list_empty(&head->list)) {
2930 kbuf = list_last_entry(&head->list, struct io_buffer,
2931 list);
2932 list_del(&kbuf->list);
2933 } else {
2934 kbuf = head;
2935 idr_remove(&req->ctx->io_buffer_idr, bgid);
2936 }
2937 if (*len > kbuf->len)
2938 *len = kbuf->len;
2939 } else {
2940 kbuf = ERR_PTR(-ENOBUFS);
2941 }
2942
2943 io_ring_submit_unlock(req->ctx, needs_lock);
2944
2945 return kbuf;
2946 }
2947
2948 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
2949 bool needs_lock)
2950 {
2951 struct io_buffer *kbuf;
2952 u16 bgid;
2953
2954 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2955 bgid = req->buf_index;
2956 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
2957 if (IS_ERR(kbuf))
2958 return kbuf;
2959 req->rw.addr = (u64) (unsigned long) kbuf;
2960 req->flags |= REQ_F_BUFFER_SELECTED;
2961 return u64_to_user_ptr(kbuf->addr);
2962 }
2963
2964 #ifdef CONFIG_COMPAT
2965 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
2966 bool needs_lock)
2967 {
2968 struct compat_iovec __user *uiov;
2969 compat_ssize_t clen;
2970 void __user *buf;
2971 ssize_t len;
2972
2973 uiov = u64_to_user_ptr(req->rw.addr);
2974 if (!access_ok(uiov, sizeof(*uiov)))
2975 return -EFAULT;
2976 if (__get_user(clen, &uiov->iov_len))
2977 return -EFAULT;
2978 if (clen < 0)
2979 return -EINVAL;
2980
2981 len = clen;
2982 buf = io_rw_buffer_select(req, &len, needs_lock);
2983 if (IS_ERR(buf))
2984 return PTR_ERR(buf);
2985 iov[0].iov_base = buf;
2986 iov[0].iov_len = (compat_size_t) len;
2987 return 0;
2988 }
2989 #endif
2990
2991 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
2992 bool needs_lock)
2993 {
2994 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
2995 void __user *buf;
2996 ssize_t len;
2997
2998 if (copy_from_user(iov, uiov, sizeof(*uiov)))
2999 return -EFAULT;
3000
3001 len = iov[0].iov_len;
3002 if (len < 0)
3003 return -EINVAL;
3004 buf = io_rw_buffer_select(req, &len, needs_lock);
3005 if (IS_ERR(buf))
3006 return PTR_ERR(buf);
3007 iov[0].iov_base = buf;
3008 iov[0].iov_len = len;
3009 return 0;
3010 }
3011
3012 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3013 bool needs_lock)
3014 {
3015 if (req->flags & REQ_F_BUFFER_SELECTED) {
3016 struct io_buffer *kbuf;
3017
3018 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3019 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3020 iov[0].iov_len = kbuf->len;
3021 return 0;
3022 }
3023 if (!req->rw.len)
3024 return 0;
3025 else if (req->rw.len > 1)
3026 return -EINVAL;
3027
3028 #ifdef CONFIG_COMPAT
3029 if (req->ctx->compat)
3030 return io_compat_import(req, iov, needs_lock);
3031 #endif
3032
3033 return __io_iov_buffer_select(req, iov, needs_lock);
3034 }
3035
3036 static ssize_t __io_import_iovec(int rw, struct io_kiocb *req,
3037 struct iovec **iovec, struct iov_iter *iter,
3038 bool needs_lock)
3039 {
3040 void __user *buf = u64_to_user_ptr(req->rw.addr);
3041 size_t sqe_len = req->rw.len;
3042 ssize_t ret;
3043 u8 opcode;
3044
3045 opcode = req->opcode;
3046 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3047 *iovec = NULL;
3048 return io_import_fixed(req, rw, iter);
3049 }
3050
3051 /* buffer index only valid with fixed read/write, or buffer select */
3052 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3053 return -EINVAL;
3054
3055 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3056 if (req->flags & REQ_F_BUFFER_SELECT) {
3057 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3058 if (IS_ERR(buf))
3059 return PTR_ERR(buf);
3060 req->rw.len = sqe_len;
3061 }
3062
3063 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3064 *iovec = NULL;
3065 return ret < 0 ? ret : sqe_len;
3066 }
3067
3068 if (req->flags & REQ_F_BUFFER_SELECT) {
3069 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3070 if (!ret) {
3071 ret = (*iovec)->iov_len;
3072 iov_iter_init(iter, rw, *iovec, 1, ret);
3073 }
3074 *iovec = NULL;
3075 return ret;
3076 }
3077
3078 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3079 req->ctx->compat);
3080 }
3081
3082 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3083 struct iovec **iovec, struct iov_iter *iter,
3084 bool needs_lock)
3085 {
3086 struct io_async_rw *iorw = req->async_data;
3087
3088 if (!iorw)
3089 return __io_import_iovec(rw, req, iovec, iter, needs_lock);
3090 *iovec = NULL;
3091 return iov_iter_count(&iorw->iter);
3092 }
3093
3094 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3095 {
3096 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3097 }
3098
3099 /*
3100 * For files that don't have ->read_iter() and ->write_iter(), handle them
3101 * by looping over ->read() or ->write() manually.
3102 */
3103 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3104 {
3105 struct kiocb *kiocb = &req->rw.kiocb;
3106 struct file *file = req->file;
3107 ssize_t ret = 0;
3108
3109 /*
3110 * Don't support polled IO through this interface, and we can't
3111 * support non-blocking either. For the latter, this just causes
3112 * the kiocb to be handled from an async context.
3113 */
3114 if (kiocb->ki_flags & IOCB_HIPRI)
3115 return -EOPNOTSUPP;
3116 if (kiocb->ki_flags & IOCB_NOWAIT)
3117 return -EAGAIN;
3118
3119 while (iov_iter_count(iter)) {
3120 struct iovec iovec;
3121 ssize_t nr;
3122
3123 if (!iov_iter_is_bvec(iter)) {
3124 iovec = iov_iter_iovec(iter);
3125 } else {
3126 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3127 iovec.iov_len = req->rw.len;
3128 }
3129
3130 if (rw == READ) {
3131 nr = file->f_op->read(file, iovec.iov_base,
3132 iovec.iov_len, io_kiocb_ppos(kiocb));
3133 } else {
3134 nr = file->f_op->write(file, iovec.iov_base,
3135 iovec.iov_len, io_kiocb_ppos(kiocb));
3136 }
3137
3138 if (nr < 0) {
3139 if (!ret)
3140 ret = nr;
3141 break;
3142 }
3143 ret += nr;
3144 if (nr != iovec.iov_len)
3145 break;
3146 req->rw.len -= nr;
3147 req->rw.addr += nr;
3148 iov_iter_advance(iter, nr);
3149 }
3150
3151 return ret;
3152 }
3153
3154 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3155 const struct iovec *fast_iov, struct iov_iter *iter)
3156 {
3157 struct io_async_rw *rw = req->async_data;
3158
3159 memcpy(&rw->iter, iter, sizeof(*iter));
3160 rw->free_iovec = iovec;
3161 rw->bytes_done = 0;
3162 /* can only be fixed buffers, no need to do anything */
3163 if (iter->type == ITER_BVEC)
3164 return;
3165 if (!iovec) {
3166 unsigned iov_off = 0;
3167
3168 rw->iter.iov = rw->fast_iov;
3169 if (iter->iov != fast_iov) {
3170 iov_off = iter->iov - fast_iov;
3171 rw->iter.iov += iov_off;
3172 }
3173 if (rw->fast_iov != fast_iov)
3174 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3175 sizeof(struct iovec) * iter->nr_segs);
3176 } else {
3177 req->flags |= REQ_F_NEED_CLEANUP;
3178 }
3179 }
3180
3181 static inline int __io_alloc_async_data(struct io_kiocb *req)
3182 {
3183 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3184 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3185 return req->async_data == NULL;
3186 }
3187
3188 static int io_alloc_async_data(struct io_kiocb *req)
3189 {
3190 if (!io_op_defs[req->opcode].needs_async_data)
3191 return 0;
3192
3193 return __io_alloc_async_data(req);
3194 }
3195
3196 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3197 const struct iovec *fast_iov,
3198 struct iov_iter *iter, bool force)
3199 {
3200 if (!force && !io_op_defs[req->opcode].needs_async_data)
3201 return 0;
3202 if (!req->async_data) {
3203 if (__io_alloc_async_data(req))
3204 return -ENOMEM;
3205
3206 io_req_map_rw(req, iovec, fast_iov, iter);
3207 }
3208 return 0;
3209 }
3210
3211 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3212 {
3213 struct io_async_rw *iorw = req->async_data;
3214 struct iovec *iov = iorw->fast_iov;
3215 ssize_t ret;
3216
3217 ret = __io_import_iovec(rw, req, &iov, &iorw->iter, false);
3218 if (unlikely(ret < 0))
3219 return ret;
3220
3221 iorw->bytes_done = 0;
3222 iorw->free_iovec = iov;
3223 if (iov)
3224 req->flags |= REQ_F_NEED_CLEANUP;
3225 return 0;
3226 }
3227
3228 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3229 {
3230 ssize_t ret;
3231
3232 ret = io_prep_rw(req, sqe);
3233 if (ret)
3234 return ret;
3235
3236 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3237 return -EBADF;
3238
3239 /* either don't need iovec imported or already have it */
3240 if (!req->async_data)
3241 return 0;
3242 return io_rw_prep_async(req, READ);
3243 }
3244
3245 /*
3246 * This is our waitqueue callback handler, registered through lock_page_async()
3247 * when we initially tried to do the IO with the iocb armed our waitqueue.
3248 * This gets called when the page is unlocked, and we generally expect that to
3249 * happen when the page IO is completed and the page is now uptodate. This will
3250 * queue a task_work based retry of the operation, attempting to copy the data
3251 * again. If the latter fails because the page was NOT uptodate, then we will
3252 * do a thread based blocking retry of the operation. That's the unexpected
3253 * slow path.
3254 */
3255 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3256 int sync, void *arg)
3257 {
3258 struct wait_page_queue *wpq;
3259 struct io_kiocb *req = wait->private;
3260 struct wait_page_key *key = arg;
3261 int ret;
3262
3263 wpq = container_of(wait, struct wait_page_queue, wait);
3264
3265 if (!wake_page_match(wpq, key))
3266 return 0;
3267
3268 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3269 list_del_init(&wait->entry);
3270
3271 init_task_work(&req->task_work, io_req_task_submit);
3272 percpu_ref_get(&req->ctx->refs);
3273
3274 /* submit ref gets dropped, acquire a new one */
3275 refcount_inc(&req->refs);
3276 ret = io_req_task_work_add(req, true);
3277 if (unlikely(ret)) {
3278 struct task_struct *tsk;
3279
3280 /* queue just for cancelation */
3281 init_task_work(&req->task_work, io_req_task_cancel);
3282 tsk = io_wq_get_task(req->ctx->io_wq);
3283 task_work_add(tsk, &req->task_work, TWA_NONE);
3284 wake_up_process(tsk);
3285 }
3286 return 1;
3287 }
3288
3289 /*
3290 * This controls whether a given IO request should be armed for async page
3291 * based retry. If we return false here, the request is handed to the async
3292 * worker threads for retry. If we're doing buffered reads on a regular file,
3293 * we prepare a private wait_page_queue entry and retry the operation. This
3294 * will either succeed because the page is now uptodate and unlocked, or it
3295 * will register a callback when the page is unlocked at IO completion. Through
3296 * that callback, io_uring uses task_work to setup a retry of the operation.
3297 * That retry will attempt the buffered read again. The retry will generally
3298 * succeed, or in rare cases where it fails, we then fall back to using the
3299 * async worker threads for a blocking retry.
3300 */
3301 static bool io_rw_should_retry(struct io_kiocb *req)
3302 {
3303 struct io_async_rw *rw = req->async_data;
3304 struct wait_page_queue *wait = &rw->wpq;
3305 struct kiocb *kiocb = &req->rw.kiocb;
3306
3307 /* never retry for NOWAIT, we just complete with -EAGAIN */
3308 if (req->flags & REQ_F_NOWAIT)
3309 return false;
3310
3311 /* Only for buffered IO */
3312 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3313 return false;
3314
3315 /*
3316 * just use poll if we can, and don't attempt if the fs doesn't
3317 * support callback based unlocks
3318 */
3319 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3320 return false;
3321
3322 wait->wait.func = io_async_buf_func;
3323 wait->wait.private = req;
3324 wait->wait.flags = 0;
3325 INIT_LIST_HEAD(&wait->wait.entry);
3326 kiocb->ki_flags |= IOCB_WAITQ;
3327 kiocb->ki_flags &= ~IOCB_NOWAIT;
3328 kiocb->ki_waitq = wait;
3329 return true;
3330 }
3331
3332 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3333 {
3334 if (req->file->f_op->read_iter)
3335 return call_read_iter(req->file, &req->rw.kiocb, iter);
3336 else if (req->file->f_op->read)
3337 return loop_rw_iter(READ, req, iter);
3338 else
3339 return -EINVAL;
3340 }
3341
3342 static int io_read(struct io_kiocb *req, bool force_nonblock,
3343 struct io_comp_state *cs)
3344 {
3345 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3346 struct kiocb *kiocb = &req->rw.kiocb;
3347 struct iov_iter __iter, *iter = &__iter;
3348 struct io_async_rw *rw = req->async_data;
3349 ssize_t io_size, ret, ret2;
3350 size_t iov_count;
3351 bool no_async;
3352
3353 if (rw)
3354 iter = &rw->iter;
3355
3356 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3357 if (ret < 0)
3358 return ret;
3359 iov_count = iov_iter_count(iter);
3360 io_size = ret;
3361 req->result = io_size;
3362 ret = 0;
3363
3364 /* Ensure we clear previously set non-block flag */
3365 if (!force_nonblock)
3366 kiocb->ki_flags &= ~IOCB_NOWAIT;
3367 else
3368 kiocb->ki_flags |= IOCB_NOWAIT;
3369
3370
3371 /* If the file doesn't support async, just async punt */
3372 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3373 if (no_async)
3374 goto copy_iov;
3375
3376 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), iov_count);
3377 if (unlikely(ret))
3378 goto out_free;
3379
3380 ret = io_iter_do_read(req, iter);
3381
3382 if (!ret) {
3383 goto done;
3384 } else if (ret == -EIOCBQUEUED) {
3385 ret = 0;
3386 goto out_free;
3387 } else if (ret == -EAGAIN) {
3388 /* IOPOLL retry should happen for io-wq threads */
3389 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3390 goto done;
3391 /* no retry on NONBLOCK marked file */
3392 if (req->file->f_flags & O_NONBLOCK)
3393 goto done;
3394 /* some cases will consume bytes even on error returns */
3395 iov_iter_revert(iter, iov_count - iov_iter_count(iter));
3396 ret = 0;
3397 goto copy_iov;
3398 } else if (ret < 0) {
3399 /* make sure -ERESTARTSYS -> -EINTR is done */
3400 goto done;
3401 }
3402
3403 /* read it all, or we did blocking attempt. no retry. */
3404 if (!iov_iter_count(iter) || !force_nonblock ||
3405 (req->file->f_flags & O_NONBLOCK))
3406 goto done;
3407
3408 io_size -= ret;
3409 copy_iov:
3410 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3411 if (ret2) {
3412 ret = ret2;
3413 goto out_free;
3414 }
3415 if (no_async)
3416 return -EAGAIN;
3417 rw = req->async_data;
3418 /* it's copied and will be cleaned with ->io */
3419 iovec = NULL;
3420 /* now use our persistent iterator, if we aren't already */
3421 iter = &rw->iter;
3422 retry:
3423 rw->bytes_done += ret;
3424 /* if we can retry, do so with the callbacks armed */
3425 if (!io_rw_should_retry(req)) {
3426 kiocb->ki_flags &= ~IOCB_WAITQ;
3427 return -EAGAIN;
3428 }
3429
3430 /*
3431 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3432 * get -EIOCBQUEUED, then we'll get a notification when the desired
3433 * page gets unlocked. We can also get a partial read here, and if we
3434 * do, then just retry at the new offset.
3435 */
3436 ret = io_iter_do_read(req, iter);
3437 if (ret == -EIOCBQUEUED) {
3438 ret = 0;
3439 goto out_free;
3440 } else if (ret > 0 && ret < io_size) {
3441 /* we got some bytes, but not all. retry. */
3442 goto retry;
3443 }
3444 done:
3445 kiocb_done(kiocb, ret, cs);
3446 ret = 0;
3447 out_free:
3448 /* it's reportedly faster than delegating the null check to kfree() */
3449 if (iovec)
3450 kfree(iovec);
3451 return ret;
3452 }
3453
3454 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3455 {
3456 ssize_t ret;
3457
3458 ret = io_prep_rw(req, sqe);
3459 if (ret)
3460 return ret;
3461
3462 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3463 return -EBADF;
3464
3465 /* either don't need iovec imported or already have it */
3466 if (!req->async_data)
3467 return 0;
3468 return io_rw_prep_async(req, WRITE);
3469 }
3470
3471 static int io_write(struct io_kiocb *req, bool force_nonblock,
3472 struct io_comp_state *cs)
3473 {
3474 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3475 struct kiocb *kiocb = &req->rw.kiocb;
3476 struct iov_iter __iter, *iter = &__iter;
3477 struct io_async_rw *rw = req->async_data;
3478 size_t iov_count;
3479 ssize_t ret, ret2, io_size;
3480
3481 if (rw)
3482 iter = &rw->iter;
3483
3484 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3485 if (ret < 0)
3486 return ret;
3487 iov_count = iov_iter_count(iter);
3488 io_size = ret;
3489 req->result = io_size;
3490
3491 /* Ensure we clear previously set non-block flag */
3492 if (!force_nonblock)
3493 kiocb->ki_flags &= ~IOCB_NOWAIT;
3494 else
3495 kiocb->ki_flags |= IOCB_NOWAIT;
3496
3497 /* If the file doesn't support async, just async punt */
3498 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3499 goto copy_iov;
3500
3501 /* file path doesn't support NOWAIT for non-direct_IO */
3502 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3503 (req->flags & REQ_F_ISREG))
3504 goto copy_iov;
3505
3506 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), iov_count);
3507 if (unlikely(ret))
3508 goto out_free;
3509
3510 /*
3511 * Open-code file_start_write here to grab freeze protection,
3512 * which will be released by another thread in
3513 * io_complete_rw(). Fool lockdep by telling it the lock got
3514 * released so that it doesn't complain about the held lock when
3515 * we return to userspace.
3516 */
3517 if (req->flags & REQ_F_ISREG) {
3518 __sb_start_write(file_inode(req->file)->i_sb,
3519 SB_FREEZE_WRITE, true);
3520 __sb_writers_release(file_inode(req->file)->i_sb,
3521 SB_FREEZE_WRITE);
3522 }
3523 kiocb->ki_flags |= IOCB_WRITE;
3524
3525 if (req->file->f_op->write_iter)
3526 ret2 = call_write_iter(req->file, kiocb, iter);
3527 else if (req->file->f_op->write)
3528 ret2 = loop_rw_iter(WRITE, req, iter);
3529 else
3530 ret2 = -EINVAL;
3531
3532 /*
3533 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3534 * retry them without IOCB_NOWAIT.
3535 */
3536 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3537 ret2 = -EAGAIN;
3538 /* no retry on NONBLOCK marked file */
3539 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3540 goto done;
3541 if (!force_nonblock || ret2 != -EAGAIN) {
3542 /* IOPOLL retry should happen for io-wq threads */
3543 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3544 goto copy_iov;
3545 done:
3546 kiocb_done(kiocb, ret2, cs);
3547 } else {
3548 copy_iov:
3549 /* some cases will consume bytes even on error returns */
3550 iov_iter_revert(iter, iov_count - iov_iter_count(iter));
3551 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3552 if (!ret)
3553 return -EAGAIN;
3554 }
3555 out_free:
3556 /* it's reportedly faster than delegating the null check to kfree() */
3557 if (iovec)
3558 kfree(iovec);
3559 return ret;
3560 }
3561
3562 static int __io_splice_prep(struct io_kiocb *req,
3563 const struct io_uring_sqe *sqe)
3564 {
3565 struct io_splice* sp = &req->splice;
3566 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3567
3568 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3569 return -EINVAL;
3570
3571 sp->file_in = NULL;
3572 sp->len = READ_ONCE(sqe->len);
3573 sp->flags = READ_ONCE(sqe->splice_flags);
3574
3575 if (unlikely(sp->flags & ~valid_flags))
3576 return -EINVAL;
3577
3578 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3579 (sp->flags & SPLICE_F_FD_IN_FIXED));
3580 if (!sp->file_in)
3581 return -EBADF;
3582 req->flags |= REQ_F_NEED_CLEANUP;
3583
3584 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3585 /*
3586 * Splice operation will be punted aync, and here need to
3587 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3588 */
3589 io_req_init_async(req);
3590 req->work.flags |= IO_WQ_WORK_UNBOUND;
3591 }
3592
3593 return 0;
3594 }
3595
3596 static int io_tee_prep(struct io_kiocb *req,
3597 const struct io_uring_sqe *sqe)
3598 {
3599 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3600 return -EINVAL;
3601 return __io_splice_prep(req, sqe);
3602 }
3603
3604 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3605 {
3606 struct io_splice *sp = &req->splice;
3607 struct file *in = sp->file_in;
3608 struct file *out = sp->file_out;
3609 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3610 long ret = 0;
3611
3612 if (force_nonblock)
3613 return -EAGAIN;
3614 if (sp->len)
3615 ret = do_tee(in, out, sp->len, flags);
3616
3617 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3618 req->flags &= ~REQ_F_NEED_CLEANUP;
3619
3620 if (ret != sp->len)
3621 req_set_fail_links(req);
3622 io_req_complete(req, ret);
3623 return 0;
3624 }
3625
3626 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3627 {
3628 struct io_splice* sp = &req->splice;
3629
3630 sp->off_in = READ_ONCE(sqe->splice_off_in);
3631 sp->off_out = READ_ONCE(sqe->off);
3632 return __io_splice_prep(req, sqe);
3633 }
3634
3635 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3636 {
3637 struct io_splice *sp = &req->splice;
3638 struct file *in = sp->file_in;
3639 struct file *out = sp->file_out;
3640 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3641 loff_t *poff_in, *poff_out;
3642 long ret = 0;
3643
3644 if (force_nonblock)
3645 return -EAGAIN;
3646
3647 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3648 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3649
3650 if (sp->len)
3651 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3652
3653 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3654 req->flags &= ~REQ_F_NEED_CLEANUP;
3655
3656 if (ret != sp->len)
3657 req_set_fail_links(req);
3658 io_req_complete(req, ret);
3659 return 0;
3660 }
3661
3662 /*
3663 * IORING_OP_NOP just posts a completion event, nothing else.
3664 */
3665 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3666 {
3667 struct io_ring_ctx *ctx = req->ctx;
3668
3669 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3670 return -EINVAL;
3671
3672 __io_req_complete(req, 0, 0, cs);
3673 return 0;
3674 }
3675
3676 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3677 {
3678 struct io_ring_ctx *ctx = req->ctx;
3679
3680 if (!req->file)
3681 return -EBADF;
3682
3683 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3684 return -EINVAL;
3685 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3686 return -EINVAL;
3687
3688 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3689 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3690 return -EINVAL;
3691
3692 req->sync.off = READ_ONCE(sqe->off);
3693 req->sync.len = READ_ONCE(sqe->len);
3694 return 0;
3695 }
3696
3697 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3698 {
3699 loff_t end = req->sync.off + req->sync.len;
3700 int ret;
3701
3702 /* fsync always requires a blocking context */
3703 if (force_nonblock)
3704 return -EAGAIN;
3705
3706 ret = vfs_fsync_range(req->file, req->sync.off,
3707 end > 0 ? end : LLONG_MAX,
3708 req->sync.flags & IORING_FSYNC_DATASYNC);
3709 if (ret < 0)
3710 req_set_fail_links(req);
3711 io_req_complete(req, ret);
3712 return 0;
3713 }
3714
3715 static int io_fallocate_prep(struct io_kiocb *req,
3716 const struct io_uring_sqe *sqe)
3717 {
3718 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3719 return -EINVAL;
3720 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3721 return -EINVAL;
3722
3723 req->sync.off = READ_ONCE(sqe->off);
3724 req->sync.len = READ_ONCE(sqe->addr);
3725 req->sync.mode = READ_ONCE(sqe->len);
3726 return 0;
3727 }
3728
3729 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3730 {
3731 int ret;
3732
3733 /* fallocate always requiring blocking context */
3734 if (force_nonblock)
3735 return -EAGAIN;
3736 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3737 req->sync.len);
3738 if (ret < 0)
3739 req_set_fail_links(req);
3740 io_req_complete(req, ret);
3741 return 0;
3742 }
3743
3744 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3745 {
3746 const char __user *fname;
3747 int ret;
3748
3749 if (unlikely(sqe->ioprio || sqe->buf_index))
3750 return -EINVAL;
3751 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3752 return -EBADF;
3753
3754 /* open.how should be already initialised */
3755 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3756 req->open.how.flags |= O_LARGEFILE;
3757
3758 req->open.dfd = READ_ONCE(sqe->fd);
3759 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3760 req->open.filename = getname(fname);
3761 if (IS_ERR(req->open.filename)) {
3762 ret = PTR_ERR(req->open.filename);
3763 req->open.filename = NULL;
3764 return ret;
3765 }
3766 req->open.nofile = rlimit(RLIMIT_NOFILE);
3767 req->flags |= REQ_F_NEED_CLEANUP;
3768 return 0;
3769 }
3770
3771 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3772 {
3773 u64 flags, mode;
3774
3775 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3776 return -EINVAL;
3777 mode = READ_ONCE(sqe->len);
3778 flags = READ_ONCE(sqe->open_flags);
3779 req->open.how = build_open_how(flags, mode);
3780 return __io_openat_prep(req, sqe);
3781 }
3782
3783 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3784 {
3785 struct open_how __user *how;
3786 size_t len;
3787 int ret;
3788
3789 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
3790 return -EINVAL;
3791 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3792 len = READ_ONCE(sqe->len);
3793 if (len < OPEN_HOW_SIZE_VER0)
3794 return -EINVAL;
3795
3796 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
3797 len);
3798 if (ret)
3799 return ret;
3800
3801 return __io_openat_prep(req, sqe);
3802 }
3803
3804 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
3805 {
3806 struct open_flags op;
3807 struct file *file;
3808 int ret;
3809
3810 if (force_nonblock)
3811 return -EAGAIN;
3812
3813 ret = build_open_flags(&req->open.how, &op);
3814 if (ret)
3815 goto err;
3816
3817 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
3818 if (ret < 0)
3819 goto err;
3820
3821 file = do_filp_open(req->open.dfd, req->open.filename, &op);
3822 if (IS_ERR(file)) {
3823 put_unused_fd(ret);
3824 ret = PTR_ERR(file);
3825 } else {
3826 fsnotify_open(file);
3827 fd_install(ret, file);
3828 }
3829 err:
3830 putname(req->open.filename);
3831 req->flags &= ~REQ_F_NEED_CLEANUP;
3832 if (ret < 0)
3833 req_set_fail_links(req);
3834 io_req_complete(req, ret);
3835 return 0;
3836 }
3837
3838 static int io_openat(struct io_kiocb *req, bool force_nonblock)
3839 {
3840 return io_openat2(req, force_nonblock);
3841 }
3842
3843 static int io_remove_buffers_prep(struct io_kiocb *req,
3844 const struct io_uring_sqe *sqe)
3845 {
3846 struct io_provide_buf *p = &req->pbuf;
3847 u64 tmp;
3848
3849 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
3850 return -EINVAL;
3851
3852 tmp = READ_ONCE(sqe->fd);
3853 if (!tmp || tmp > USHRT_MAX)
3854 return -EINVAL;
3855
3856 memset(p, 0, sizeof(*p));
3857 p->nbufs = tmp;
3858 p->bgid = READ_ONCE(sqe->buf_group);
3859 return 0;
3860 }
3861
3862 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
3863 int bgid, unsigned nbufs)
3864 {
3865 unsigned i = 0;
3866
3867 /* shouldn't happen */
3868 if (!nbufs)
3869 return 0;
3870
3871 /* the head kbuf is the list itself */
3872 while (!list_empty(&buf->list)) {
3873 struct io_buffer *nxt;
3874
3875 nxt = list_first_entry(&buf->list, struct io_buffer, list);
3876 list_del(&nxt->list);
3877 kfree(nxt);
3878 if (++i == nbufs)
3879 return i;
3880 }
3881 i++;
3882 kfree(buf);
3883 idr_remove(&ctx->io_buffer_idr, bgid);
3884
3885 return i;
3886 }
3887
3888 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
3889 struct io_comp_state *cs)
3890 {
3891 struct io_provide_buf *p = &req->pbuf;
3892 struct io_ring_ctx *ctx = req->ctx;
3893 struct io_buffer *head;
3894 int ret = 0;
3895
3896 io_ring_submit_lock(ctx, !force_nonblock);
3897
3898 lockdep_assert_held(&ctx->uring_lock);
3899
3900 ret = -ENOENT;
3901 head = idr_find(&ctx->io_buffer_idr, p->bgid);
3902 if (head)
3903 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
3904
3905 io_ring_submit_lock(ctx, !force_nonblock);
3906 if (ret < 0)
3907 req_set_fail_links(req);
3908 __io_req_complete(req, ret, 0, cs);
3909 return 0;
3910 }
3911
3912 static int io_provide_buffers_prep(struct io_kiocb *req,
3913 const struct io_uring_sqe *sqe)
3914 {
3915 struct io_provide_buf *p = &req->pbuf;
3916 u64 tmp;
3917
3918 if (sqe->ioprio || sqe->rw_flags)
3919 return -EINVAL;
3920
3921 tmp = READ_ONCE(sqe->fd);
3922 if (!tmp || tmp > USHRT_MAX)
3923 return -E2BIG;
3924 p->nbufs = tmp;
3925 p->addr = READ_ONCE(sqe->addr);
3926 p->len = READ_ONCE(sqe->len);
3927
3928 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
3929 return -EFAULT;
3930
3931 p->bgid = READ_ONCE(sqe->buf_group);
3932 tmp = READ_ONCE(sqe->off);
3933 if (tmp > USHRT_MAX)
3934 return -E2BIG;
3935 p->bid = tmp;
3936 return 0;
3937 }
3938
3939 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
3940 {
3941 struct io_buffer *buf;
3942 u64 addr = pbuf->addr;
3943 int i, bid = pbuf->bid;
3944
3945 for (i = 0; i < pbuf->nbufs; i++) {
3946 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
3947 if (!buf)
3948 break;
3949
3950 buf->addr = addr;
3951 buf->len = pbuf->len;
3952 buf->bid = bid;
3953 addr += pbuf->len;
3954 bid++;
3955 if (!*head) {
3956 INIT_LIST_HEAD(&buf->list);
3957 *head = buf;
3958 } else {
3959 list_add_tail(&buf->list, &(*head)->list);
3960 }
3961 }
3962
3963 return i ? i : -ENOMEM;
3964 }
3965
3966 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
3967 struct io_comp_state *cs)
3968 {
3969 struct io_provide_buf *p = &req->pbuf;
3970 struct io_ring_ctx *ctx = req->ctx;
3971 struct io_buffer *head, *list;
3972 int ret = 0;
3973
3974 io_ring_submit_lock(ctx, !force_nonblock);
3975
3976 lockdep_assert_held(&ctx->uring_lock);
3977
3978 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
3979
3980 ret = io_add_buffers(p, &head);
3981 if (ret < 0)
3982 goto out;
3983
3984 if (!list) {
3985 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
3986 GFP_KERNEL);
3987 if (ret < 0) {
3988 __io_remove_buffers(ctx, head, p->bgid, -1U);
3989 goto out;
3990 }
3991 }
3992 out:
3993 io_ring_submit_unlock(ctx, !force_nonblock);
3994 if (ret < 0)
3995 req_set_fail_links(req);
3996 __io_req_complete(req, ret, 0, cs);
3997 return 0;
3998 }
3999
4000 static int io_epoll_ctl_prep(struct io_kiocb *req,
4001 const struct io_uring_sqe *sqe)
4002 {
4003 #if defined(CONFIG_EPOLL)
4004 if (sqe->ioprio || sqe->buf_index)
4005 return -EINVAL;
4006 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4007 return -EINVAL;
4008
4009 req->epoll.epfd = READ_ONCE(sqe->fd);
4010 req->epoll.op = READ_ONCE(sqe->len);
4011 req->epoll.fd = READ_ONCE(sqe->off);
4012
4013 if (ep_op_has_event(req->epoll.op)) {
4014 struct epoll_event __user *ev;
4015
4016 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4017 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4018 return -EFAULT;
4019 }
4020
4021 return 0;
4022 #else
4023 return -EOPNOTSUPP;
4024 #endif
4025 }
4026
4027 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4028 struct io_comp_state *cs)
4029 {
4030 #if defined(CONFIG_EPOLL)
4031 struct io_epoll *ie = &req->epoll;
4032 int ret;
4033
4034 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4035 if (force_nonblock && ret == -EAGAIN)
4036 return -EAGAIN;
4037
4038 if (ret < 0)
4039 req_set_fail_links(req);
4040 __io_req_complete(req, ret, 0, cs);
4041 return 0;
4042 #else
4043 return -EOPNOTSUPP;
4044 #endif
4045 }
4046
4047 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4048 {
4049 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4050 if (sqe->ioprio || sqe->buf_index || sqe->off)
4051 return -EINVAL;
4052 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4053 return -EINVAL;
4054
4055 req->madvise.addr = READ_ONCE(sqe->addr);
4056 req->madvise.len = READ_ONCE(sqe->len);
4057 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4058 return 0;
4059 #else
4060 return -EOPNOTSUPP;
4061 #endif
4062 }
4063
4064 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4065 {
4066 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4067 struct io_madvise *ma = &req->madvise;
4068 int ret;
4069
4070 if (force_nonblock)
4071 return -EAGAIN;
4072
4073 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4074 if (ret < 0)
4075 req_set_fail_links(req);
4076 io_req_complete(req, ret);
4077 return 0;
4078 #else
4079 return -EOPNOTSUPP;
4080 #endif
4081 }
4082
4083 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4084 {
4085 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4086 return -EINVAL;
4087 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4088 return -EINVAL;
4089
4090 req->fadvise.offset = READ_ONCE(sqe->off);
4091 req->fadvise.len = READ_ONCE(sqe->len);
4092 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4093 return 0;
4094 }
4095
4096 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4097 {
4098 struct io_fadvise *fa = &req->fadvise;
4099 int ret;
4100
4101 if (force_nonblock) {
4102 switch (fa->advice) {
4103 case POSIX_FADV_NORMAL:
4104 case POSIX_FADV_RANDOM:
4105 case POSIX_FADV_SEQUENTIAL:
4106 break;
4107 default:
4108 return -EAGAIN;
4109 }
4110 }
4111
4112 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4113 if (ret < 0)
4114 req_set_fail_links(req);
4115 io_req_complete(req, ret);
4116 return 0;
4117 }
4118
4119 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4120 {
4121 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4122 return -EINVAL;
4123 if (sqe->ioprio || sqe->buf_index)
4124 return -EINVAL;
4125 if (req->flags & REQ_F_FIXED_FILE)
4126 return -EBADF;
4127
4128 req->statx.dfd = READ_ONCE(sqe->fd);
4129 req->statx.mask = READ_ONCE(sqe->len);
4130 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4131 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4132 req->statx.flags = READ_ONCE(sqe->statx_flags);
4133
4134 return 0;
4135 }
4136
4137 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4138 {
4139 struct io_statx *ctx = &req->statx;
4140 int ret;
4141
4142 if (force_nonblock) {
4143 /* only need file table for an actual valid fd */
4144 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4145 req->flags |= REQ_F_NO_FILE_TABLE;
4146 return -EAGAIN;
4147 }
4148
4149 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4150 ctx->buffer);
4151
4152 if (ret < 0)
4153 req_set_fail_links(req);
4154 io_req_complete(req, ret);
4155 return 0;
4156 }
4157
4158 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4159 {
4160 /*
4161 * If we queue this for async, it must not be cancellable. That would
4162 * leave the 'file' in an undeterminate state, and here need to modify
4163 * io_wq_work.flags, so initialize io_wq_work firstly.
4164 */
4165 io_req_init_async(req);
4166 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4167
4168 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4169 return -EINVAL;
4170 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4171 sqe->rw_flags || sqe->buf_index)
4172 return -EINVAL;
4173 if (req->flags & REQ_F_FIXED_FILE)
4174 return -EBADF;
4175
4176 req->close.fd = READ_ONCE(sqe->fd);
4177 if ((req->file && req->file->f_op == &io_uring_fops))
4178 return -EBADF;
4179
4180 req->close.put_file = NULL;
4181 return 0;
4182 }
4183
4184 static int io_close(struct io_kiocb *req, bool force_nonblock,
4185 struct io_comp_state *cs)
4186 {
4187 struct io_close *close = &req->close;
4188 int ret;
4189
4190 /* might be already done during nonblock submission */
4191 if (!close->put_file) {
4192 ret = __close_fd_get_file(close->fd, &close->put_file);
4193 if (ret < 0)
4194 return (ret == -ENOENT) ? -EBADF : ret;
4195 }
4196
4197 /* if the file has a flush method, be safe and punt to async */
4198 if (close->put_file->f_op->flush && force_nonblock) {
4199 /* was never set, but play safe */
4200 req->flags &= ~REQ_F_NOWAIT;
4201 /* avoid grabbing files - we don't need the files */
4202 req->flags |= REQ_F_NO_FILE_TABLE;
4203 return -EAGAIN;
4204 }
4205
4206 /* No ->flush() or already async, safely close from here */
4207 ret = filp_close(close->put_file, req->work.identity->files);
4208 if (ret < 0)
4209 req_set_fail_links(req);
4210 fput(close->put_file);
4211 close->put_file = NULL;
4212 __io_req_complete(req, ret, 0, cs);
4213 return 0;
4214 }
4215
4216 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4217 {
4218 struct io_ring_ctx *ctx = req->ctx;
4219
4220 if (!req->file)
4221 return -EBADF;
4222
4223 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4224 return -EINVAL;
4225 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4226 return -EINVAL;
4227
4228 req->sync.off = READ_ONCE(sqe->off);
4229 req->sync.len = READ_ONCE(sqe->len);
4230 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4231 return 0;
4232 }
4233
4234 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4235 {
4236 int ret;
4237
4238 /* sync_file_range always requires a blocking context */
4239 if (force_nonblock)
4240 return -EAGAIN;
4241
4242 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4243 req->sync.flags);
4244 if (ret < 0)
4245 req_set_fail_links(req);
4246 io_req_complete(req, ret);
4247 return 0;
4248 }
4249
4250 #if defined(CONFIG_NET)
4251 static int io_setup_async_msg(struct io_kiocb *req,
4252 struct io_async_msghdr *kmsg)
4253 {
4254 struct io_async_msghdr *async_msg = req->async_data;
4255
4256 if (async_msg)
4257 return -EAGAIN;
4258 if (io_alloc_async_data(req)) {
4259 if (kmsg->iov != kmsg->fast_iov)
4260 kfree(kmsg->iov);
4261 return -ENOMEM;
4262 }
4263 async_msg = req->async_data;
4264 req->flags |= REQ_F_NEED_CLEANUP;
4265 memcpy(async_msg, kmsg, sizeof(*kmsg));
4266 return -EAGAIN;
4267 }
4268
4269 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4270 struct io_async_msghdr *iomsg)
4271 {
4272 iomsg->iov = iomsg->fast_iov;
4273 iomsg->msg.msg_name = &iomsg->addr;
4274 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4275 req->sr_msg.msg_flags, &iomsg->iov);
4276 }
4277
4278 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4279 {
4280 struct io_async_msghdr *async_msg = req->async_data;
4281 struct io_sr_msg *sr = &req->sr_msg;
4282 int ret;
4283
4284 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4285 return -EINVAL;
4286
4287 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4288 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4289 sr->len = READ_ONCE(sqe->len);
4290
4291 #ifdef CONFIG_COMPAT
4292 if (req->ctx->compat)
4293 sr->msg_flags |= MSG_CMSG_COMPAT;
4294 #endif
4295
4296 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4297 return 0;
4298 ret = io_sendmsg_copy_hdr(req, async_msg);
4299 if (!ret)
4300 req->flags |= REQ_F_NEED_CLEANUP;
4301 return ret;
4302 }
4303
4304 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4305 struct io_comp_state *cs)
4306 {
4307 struct io_async_msghdr iomsg, *kmsg;
4308 struct socket *sock;
4309 unsigned flags;
4310 int ret;
4311
4312 sock = sock_from_file(req->file, &ret);
4313 if (unlikely(!sock))
4314 return ret;
4315
4316 if (req->async_data) {
4317 kmsg = req->async_data;
4318 kmsg->msg.msg_name = &kmsg->addr;
4319 /* if iov is set, it's allocated already */
4320 if (!kmsg->iov)
4321 kmsg->iov = kmsg->fast_iov;
4322 kmsg->msg.msg_iter.iov = kmsg->iov;
4323 } else {
4324 ret = io_sendmsg_copy_hdr(req, &iomsg);
4325 if (ret)
4326 return ret;
4327 kmsg = &iomsg;
4328 }
4329
4330 flags = req->sr_msg.msg_flags;
4331 if (flags & MSG_DONTWAIT)
4332 req->flags |= REQ_F_NOWAIT;
4333 else if (force_nonblock)
4334 flags |= MSG_DONTWAIT;
4335
4336 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4337 if (force_nonblock && ret == -EAGAIN)
4338 return io_setup_async_msg(req, kmsg);
4339 if (ret == -ERESTARTSYS)
4340 ret = -EINTR;
4341
4342 if (kmsg->iov != kmsg->fast_iov)
4343 kfree(kmsg->iov);
4344 req->flags &= ~REQ_F_NEED_CLEANUP;
4345 if (ret < 0)
4346 req_set_fail_links(req);
4347 __io_req_complete(req, ret, 0, cs);
4348 return 0;
4349 }
4350
4351 static int io_send(struct io_kiocb *req, bool force_nonblock,
4352 struct io_comp_state *cs)
4353 {
4354 struct io_sr_msg *sr = &req->sr_msg;
4355 struct msghdr msg;
4356 struct iovec iov;
4357 struct socket *sock;
4358 unsigned flags;
4359 int ret;
4360
4361 sock = sock_from_file(req->file, &ret);
4362 if (unlikely(!sock))
4363 return ret;
4364
4365 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4366 if (unlikely(ret))
4367 return ret;
4368
4369 msg.msg_name = NULL;
4370 msg.msg_control = NULL;
4371 msg.msg_controllen = 0;
4372 msg.msg_namelen = 0;
4373
4374 flags = req->sr_msg.msg_flags;
4375 if (flags & MSG_DONTWAIT)
4376 req->flags |= REQ_F_NOWAIT;
4377 else if (force_nonblock)
4378 flags |= MSG_DONTWAIT;
4379
4380 msg.msg_flags = flags;
4381 ret = sock_sendmsg(sock, &msg);
4382 if (force_nonblock && ret == -EAGAIN)
4383 return -EAGAIN;
4384 if (ret == -ERESTARTSYS)
4385 ret = -EINTR;
4386
4387 if (ret < 0)
4388 req_set_fail_links(req);
4389 __io_req_complete(req, ret, 0, cs);
4390 return 0;
4391 }
4392
4393 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4394 struct io_async_msghdr *iomsg)
4395 {
4396 struct io_sr_msg *sr = &req->sr_msg;
4397 struct iovec __user *uiov;
4398 size_t iov_len;
4399 int ret;
4400
4401 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4402 &iomsg->uaddr, &uiov, &iov_len);
4403 if (ret)
4404 return ret;
4405
4406 if (req->flags & REQ_F_BUFFER_SELECT) {
4407 if (iov_len > 1)
4408 return -EINVAL;
4409 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4410 return -EFAULT;
4411 sr->len = iomsg->iov[0].iov_len;
4412 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4413 sr->len);
4414 iomsg->iov = NULL;
4415 } else {
4416 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4417 &iomsg->iov, &iomsg->msg.msg_iter,
4418 false);
4419 if (ret > 0)
4420 ret = 0;
4421 }
4422
4423 return ret;
4424 }
4425
4426 #ifdef CONFIG_COMPAT
4427 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4428 struct io_async_msghdr *iomsg)
4429 {
4430 struct compat_msghdr __user *msg_compat;
4431 struct io_sr_msg *sr = &req->sr_msg;
4432 struct compat_iovec __user *uiov;
4433 compat_uptr_t ptr;
4434 compat_size_t len;
4435 int ret;
4436
4437 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4438 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4439 &ptr, &len);
4440 if (ret)
4441 return ret;
4442
4443 uiov = compat_ptr(ptr);
4444 if (req->flags & REQ_F_BUFFER_SELECT) {
4445 compat_ssize_t clen;
4446
4447 if (len > 1)
4448 return -EINVAL;
4449 if (!access_ok(uiov, sizeof(*uiov)))
4450 return -EFAULT;
4451 if (__get_user(clen, &uiov->iov_len))
4452 return -EFAULT;
4453 if (clen < 0)
4454 return -EINVAL;
4455 sr->len = iomsg->iov[0].iov_len;
4456 iomsg->iov = NULL;
4457 } else {
4458 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4459 UIO_FASTIOV, &iomsg->iov,
4460 &iomsg->msg.msg_iter, true);
4461 if (ret < 0)
4462 return ret;
4463 }
4464
4465 return 0;
4466 }
4467 #endif
4468
4469 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4470 struct io_async_msghdr *iomsg)
4471 {
4472 iomsg->msg.msg_name = &iomsg->addr;
4473 iomsg->iov = iomsg->fast_iov;
4474
4475 #ifdef CONFIG_COMPAT
4476 if (req->ctx->compat)
4477 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4478 #endif
4479
4480 return __io_recvmsg_copy_hdr(req, iomsg);
4481 }
4482
4483 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4484 bool needs_lock)
4485 {
4486 struct io_sr_msg *sr = &req->sr_msg;
4487 struct io_buffer *kbuf;
4488
4489 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4490 if (IS_ERR(kbuf))
4491 return kbuf;
4492
4493 sr->kbuf = kbuf;
4494 req->flags |= REQ_F_BUFFER_SELECTED;
4495 return kbuf;
4496 }
4497
4498 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4499 {
4500 return io_put_kbuf(req, req->sr_msg.kbuf);
4501 }
4502
4503 static int io_recvmsg_prep(struct io_kiocb *req,
4504 const struct io_uring_sqe *sqe)
4505 {
4506 struct io_async_msghdr *async_msg = req->async_data;
4507 struct io_sr_msg *sr = &req->sr_msg;
4508 int ret;
4509
4510 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4511 return -EINVAL;
4512
4513 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4514 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4515 sr->len = READ_ONCE(sqe->len);
4516 sr->bgid = READ_ONCE(sqe->buf_group);
4517
4518 #ifdef CONFIG_COMPAT
4519 if (req->ctx->compat)
4520 sr->msg_flags |= MSG_CMSG_COMPAT;
4521 #endif
4522
4523 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4524 return 0;
4525 ret = io_recvmsg_copy_hdr(req, async_msg);
4526 if (!ret)
4527 req->flags |= REQ_F_NEED_CLEANUP;
4528 return ret;
4529 }
4530
4531 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4532 struct io_comp_state *cs)
4533 {
4534 struct io_async_msghdr iomsg, *kmsg;
4535 struct socket *sock;
4536 struct io_buffer *kbuf;
4537 unsigned flags;
4538 int ret, cflags = 0;
4539
4540 sock = sock_from_file(req->file, &ret);
4541 if (unlikely(!sock))
4542 return ret;
4543
4544 if (req->async_data) {
4545 kmsg = req->async_data;
4546 kmsg->msg.msg_name = &kmsg->addr;
4547 /* if iov is set, it's allocated already */
4548 if (!kmsg->iov)
4549 kmsg->iov = kmsg->fast_iov;
4550 kmsg->msg.msg_iter.iov = kmsg->iov;
4551 } else {
4552 ret = io_recvmsg_copy_hdr(req, &iomsg);
4553 if (ret)
4554 return ret;
4555 kmsg = &iomsg;
4556 }
4557
4558 if (req->flags & REQ_F_BUFFER_SELECT) {
4559 kbuf = io_recv_buffer_select(req, !force_nonblock);
4560 if (IS_ERR(kbuf))
4561 return PTR_ERR(kbuf);
4562 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4563 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4564 1, req->sr_msg.len);
4565 }
4566
4567 flags = req->sr_msg.msg_flags;
4568 if (flags & MSG_DONTWAIT)
4569 req->flags |= REQ_F_NOWAIT;
4570 else if (force_nonblock)
4571 flags |= MSG_DONTWAIT;
4572
4573 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4574 kmsg->uaddr, flags);
4575 if (force_nonblock && ret == -EAGAIN)
4576 return io_setup_async_msg(req, kmsg);
4577 if (ret == -ERESTARTSYS)
4578 ret = -EINTR;
4579
4580 if (req->flags & REQ_F_BUFFER_SELECTED)
4581 cflags = io_put_recv_kbuf(req);
4582 if (kmsg->iov != kmsg->fast_iov)
4583 kfree(kmsg->iov);
4584 req->flags &= ~REQ_F_NEED_CLEANUP;
4585 if (ret < 0)
4586 req_set_fail_links(req);
4587 __io_req_complete(req, ret, cflags, cs);
4588 return 0;
4589 }
4590
4591 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4592 struct io_comp_state *cs)
4593 {
4594 struct io_buffer *kbuf;
4595 struct io_sr_msg *sr = &req->sr_msg;
4596 struct msghdr msg;
4597 void __user *buf = sr->buf;
4598 struct socket *sock;
4599 struct iovec iov;
4600 unsigned flags;
4601 int ret, cflags = 0;
4602
4603 sock = sock_from_file(req->file, &ret);
4604 if (unlikely(!sock))
4605 return ret;
4606
4607 if (req->flags & REQ_F_BUFFER_SELECT) {
4608 kbuf = io_recv_buffer_select(req, !force_nonblock);
4609 if (IS_ERR(kbuf))
4610 return PTR_ERR(kbuf);
4611 buf = u64_to_user_ptr(kbuf->addr);
4612 }
4613
4614 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4615 if (unlikely(ret))
4616 goto out_free;
4617
4618 msg.msg_name = NULL;
4619 msg.msg_control = NULL;
4620 msg.msg_controllen = 0;
4621 msg.msg_namelen = 0;
4622 msg.msg_iocb = NULL;
4623 msg.msg_flags = 0;
4624
4625 flags = req->sr_msg.msg_flags;
4626 if (flags & MSG_DONTWAIT)
4627 req->flags |= REQ_F_NOWAIT;
4628 else if (force_nonblock)
4629 flags |= MSG_DONTWAIT;
4630
4631 ret = sock_recvmsg(sock, &msg, flags);
4632 if (force_nonblock && ret == -EAGAIN)
4633 return -EAGAIN;
4634 if (ret == -ERESTARTSYS)
4635 ret = -EINTR;
4636 out_free:
4637 if (req->flags & REQ_F_BUFFER_SELECTED)
4638 cflags = io_put_recv_kbuf(req);
4639 if (ret < 0)
4640 req_set_fail_links(req);
4641 __io_req_complete(req, ret, cflags, cs);
4642 return 0;
4643 }
4644
4645 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4646 {
4647 struct io_accept *accept = &req->accept;
4648
4649 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4650 return -EINVAL;
4651 if (sqe->ioprio || sqe->len || sqe->buf_index)
4652 return -EINVAL;
4653
4654 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4655 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4656 accept->flags = READ_ONCE(sqe->accept_flags);
4657 accept->nofile = rlimit(RLIMIT_NOFILE);
4658 return 0;
4659 }
4660
4661 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4662 struct io_comp_state *cs)
4663 {
4664 struct io_accept *accept = &req->accept;
4665 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4666 int ret;
4667
4668 if (req->file->f_flags & O_NONBLOCK)
4669 req->flags |= REQ_F_NOWAIT;
4670
4671 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4672 accept->addr_len, accept->flags,
4673 accept->nofile);
4674 if (ret == -EAGAIN && force_nonblock)
4675 return -EAGAIN;
4676 if (ret < 0) {
4677 if (ret == -ERESTARTSYS)
4678 ret = -EINTR;
4679 req_set_fail_links(req);
4680 }
4681 __io_req_complete(req, ret, 0, cs);
4682 return 0;
4683 }
4684
4685 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4686 {
4687 struct io_connect *conn = &req->connect;
4688 struct io_async_connect *io = req->async_data;
4689
4690 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL|IORING_SETUP_SQPOLL)))
4691 return -EINVAL;
4692 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4693 return -EINVAL;
4694
4695 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4696 conn->addr_len = READ_ONCE(sqe->addr2);
4697
4698 if (!io)
4699 return 0;
4700
4701 return move_addr_to_kernel(conn->addr, conn->addr_len,
4702 &io->address);
4703 }
4704
4705 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4706 struct io_comp_state *cs)
4707 {
4708 struct io_async_connect __io, *io;
4709 unsigned file_flags;
4710 int ret;
4711
4712 if (req->async_data) {
4713 io = req->async_data;
4714 } else {
4715 ret = move_addr_to_kernel(req->connect.addr,
4716 req->connect.addr_len,
4717 &__io.address);
4718 if (ret)
4719 goto out;
4720 io = &__io;
4721 }
4722
4723 file_flags = force_nonblock ? O_NONBLOCK : 0;
4724
4725 ret = __sys_connect_file(req->file, &io->address,
4726 req->connect.addr_len, file_flags);
4727 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4728 if (req->async_data)
4729 return -EAGAIN;
4730 if (io_alloc_async_data(req)) {
4731 ret = -ENOMEM;
4732 goto out;
4733 }
4734 io = req->async_data;
4735 memcpy(req->async_data, &__io, sizeof(__io));
4736 return -EAGAIN;
4737 }
4738 if (ret == -ERESTARTSYS)
4739 ret = -EINTR;
4740 out:
4741 if (ret < 0)
4742 req_set_fail_links(req);
4743 __io_req_complete(req, ret, 0, cs);
4744 return 0;
4745 }
4746 #else /* !CONFIG_NET */
4747 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4748 {
4749 return -EOPNOTSUPP;
4750 }
4751
4752 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4753 struct io_comp_state *cs)
4754 {
4755 return -EOPNOTSUPP;
4756 }
4757
4758 static int io_send(struct io_kiocb *req, bool force_nonblock,
4759 struct io_comp_state *cs)
4760 {
4761 return -EOPNOTSUPP;
4762 }
4763
4764 static int io_recvmsg_prep(struct io_kiocb *req,
4765 const struct io_uring_sqe *sqe)
4766 {
4767 return -EOPNOTSUPP;
4768 }
4769
4770 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4771 struct io_comp_state *cs)
4772 {
4773 return -EOPNOTSUPP;
4774 }
4775
4776 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4777 struct io_comp_state *cs)
4778 {
4779 return -EOPNOTSUPP;
4780 }
4781
4782 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4783 {
4784 return -EOPNOTSUPP;
4785 }
4786
4787 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4788 struct io_comp_state *cs)
4789 {
4790 return -EOPNOTSUPP;
4791 }
4792
4793 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4794 {
4795 return -EOPNOTSUPP;
4796 }
4797
4798 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4799 struct io_comp_state *cs)
4800 {
4801 return -EOPNOTSUPP;
4802 }
4803 #endif /* CONFIG_NET */
4804
4805 struct io_poll_table {
4806 struct poll_table_struct pt;
4807 struct io_kiocb *req;
4808 int error;
4809 };
4810
4811 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
4812 __poll_t mask, task_work_func_t func)
4813 {
4814 bool twa_signal_ok;
4815 int ret;
4816
4817 /* for instances that support it check for an event match first: */
4818 if (mask && !(mask & poll->events))
4819 return 0;
4820
4821 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
4822
4823 list_del_init(&poll->wait.entry);
4824
4825 req->result = mask;
4826 init_task_work(&req->task_work, func);
4827 percpu_ref_get(&req->ctx->refs);
4828
4829 /*
4830 * If we using the signalfd wait_queue_head for this wakeup, then
4831 * it's not safe to use TWA_SIGNAL as we could be recursing on the
4832 * tsk->sighand->siglock on doing the wakeup. Should not be needed
4833 * either, as the normal wakeup will suffice.
4834 */
4835 twa_signal_ok = (poll->head != &req->task->sighand->signalfd_wqh);
4836
4837 /*
4838 * If this fails, then the task is exiting. When a task exits, the
4839 * work gets canceled, so just cancel this request as well instead
4840 * of executing it. We can't safely execute it anyway, as we may not
4841 * have the needed state needed for it anyway.
4842 */
4843 ret = io_req_task_work_add(req, twa_signal_ok);
4844 if (unlikely(ret)) {
4845 struct task_struct *tsk;
4846
4847 WRITE_ONCE(poll->canceled, true);
4848 tsk = io_wq_get_task(req->ctx->io_wq);
4849 task_work_add(tsk, &req->task_work, TWA_NONE);
4850 wake_up_process(tsk);
4851 }
4852 return 1;
4853 }
4854
4855 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
4856 __acquires(&req->ctx->completion_lock)
4857 {
4858 struct io_ring_ctx *ctx = req->ctx;
4859
4860 if (!req->result && !READ_ONCE(poll->canceled)) {
4861 struct poll_table_struct pt = { ._key = poll->events };
4862
4863 req->result = vfs_poll(req->file, &pt) & poll->events;
4864 }
4865
4866 spin_lock_irq(&ctx->completion_lock);
4867 if (!req->result && !READ_ONCE(poll->canceled)) {
4868 add_wait_queue(poll->head, &poll->wait);
4869 return true;
4870 }
4871
4872 return false;
4873 }
4874
4875 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
4876 {
4877 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
4878 if (req->opcode == IORING_OP_POLL_ADD)
4879 return req->async_data;
4880 return req->apoll->double_poll;
4881 }
4882
4883 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
4884 {
4885 if (req->opcode == IORING_OP_POLL_ADD)
4886 return &req->poll;
4887 return &req->apoll->poll;
4888 }
4889
4890 static void io_poll_remove_double(struct io_kiocb *req)
4891 {
4892 struct io_poll_iocb *poll = io_poll_get_double(req);
4893
4894 lockdep_assert_held(&req->ctx->completion_lock);
4895
4896 if (poll && poll->head) {
4897 struct wait_queue_head *head = poll->head;
4898
4899 spin_lock(&head->lock);
4900 list_del_init(&poll->wait.entry);
4901 if (poll->wait.private)
4902 refcount_dec(&req->refs);
4903 poll->head = NULL;
4904 spin_unlock(&head->lock);
4905 }
4906 }
4907
4908 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
4909 {
4910 struct io_ring_ctx *ctx = req->ctx;
4911
4912 io_poll_remove_double(req);
4913 req->poll.done = true;
4914 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
4915 io_commit_cqring(ctx);
4916 }
4917
4918 static void io_poll_task_func(struct callback_head *cb)
4919 {
4920 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
4921 struct io_ring_ctx *ctx = req->ctx;
4922 struct io_kiocb *nxt;
4923
4924 if (io_poll_rewait(req, &req->poll)) {
4925 spin_unlock_irq(&ctx->completion_lock);
4926 } else {
4927 hash_del(&req->hash_node);
4928 io_poll_complete(req, req->result, 0);
4929 spin_unlock_irq(&ctx->completion_lock);
4930
4931 nxt = io_put_req_find_next(req);
4932 io_cqring_ev_posted(ctx);
4933 if (nxt)
4934 __io_req_task_submit(nxt);
4935 }
4936
4937 percpu_ref_put(&ctx->refs);
4938 }
4939
4940 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
4941 int sync, void *key)
4942 {
4943 struct io_kiocb *req = wait->private;
4944 struct io_poll_iocb *poll = io_poll_get_single(req);
4945 __poll_t mask = key_to_poll(key);
4946
4947 /* for instances that support it check for an event match first: */
4948 if (mask && !(mask & poll->events))
4949 return 0;
4950
4951 list_del_init(&wait->entry);
4952
4953 if (poll && poll->head) {
4954 bool done;
4955
4956 spin_lock(&poll->head->lock);
4957 done = list_empty(&poll->wait.entry);
4958 if (!done)
4959 list_del_init(&poll->wait.entry);
4960 /* make sure double remove sees this as being gone */
4961 wait->private = NULL;
4962 spin_unlock(&poll->head->lock);
4963 if (!done) {
4964 /* use wait func handler, so it matches the rq type */
4965 poll->wait.func(&poll->wait, mode, sync, key);
4966 }
4967 }
4968 refcount_dec(&req->refs);
4969 return 1;
4970 }
4971
4972 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
4973 wait_queue_func_t wake_func)
4974 {
4975 poll->head = NULL;
4976 poll->done = false;
4977 poll->canceled = false;
4978 poll->events = events;
4979 INIT_LIST_HEAD(&poll->wait.entry);
4980 init_waitqueue_func_entry(&poll->wait, wake_func);
4981 }
4982
4983 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
4984 struct wait_queue_head *head,
4985 struct io_poll_iocb **poll_ptr)
4986 {
4987 struct io_kiocb *req = pt->req;
4988
4989 /*
4990 * If poll->head is already set, it's because the file being polled
4991 * uses multiple waitqueues for poll handling (eg one for read, one
4992 * for write). Setup a separate io_poll_iocb if this happens.
4993 */
4994 if (unlikely(poll->head)) {
4995 struct io_poll_iocb *poll_one = poll;
4996
4997 /* already have a 2nd entry, fail a third attempt */
4998 if (*poll_ptr) {
4999 pt->error = -EINVAL;
5000 return;
5001 }
5002 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5003 if (!poll) {
5004 pt->error = -ENOMEM;
5005 return;
5006 }
5007 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5008 refcount_inc(&req->refs);
5009 poll->wait.private = req;
5010 *poll_ptr = poll;
5011 }
5012
5013 pt->error = 0;
5014 poll->head = head;
5015
5016 if (poll->events & EPOLLEXCLUSIVE)
5017 add_wait_queue_exclusive(head, &poll->wait);
5018 else
5019 add_wait_queue(head, &poll->wait);
5020 }
5021
5022 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5023 struct poll_table_struct *p)
5024 {
5025 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5026 struct async_poll *apoll = pt->req->apoll;
5027
5028 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5029 }
5030
5031 static void io_async_task_func(struct callback_head *cb)
5032 {
5033 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5034 struct async_poll *apoll = req->apoll;
5035 struct io_ring_ctx *ctx = req->ctx;
5036
5037 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5038
5039 if (io_poll_rewait(req, &apoll->poll)) {
5040 spin_unlock_irq(&ctx->completion_lock);
5041 percpu_ref_put(&ctx->refs);
5042 return;
5043 }
5044
5045 /* If req is still hashed, it cannot have been canceled. Don't check. */
5046 if (hash_hashed(&req->hash_node))
5047 hash_del(&req->hash_node);
5048
5049 io_poll_remove_double(req);
5050 spin_unlock_irq(&ctx->completion_lock);
5051
5052 if (!READ_ONCE(apoll->poll.canceled))
5053 __io_req_task_submit(req);
5054 else
5055 __io_req_task_cancel(req, -ECANCELED);
5056
5057 percpu_ref_put(&ctx->refs);
5058 kfree(apoll->double_poll);
5059 kfree(apoll);
5060 }
5061
5062 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5063 void *key)
5064 {
5065 struct io_kiocb *req = wait->private;
5066 struct io_poll_iocb *poll = &req->apoll->poll;
5067
5068 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5069 key_to_poll(key));
5070
5071 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5072 }
5073
5074 static void io_poll_req_insert(struct io_kiocb *req)
5075 {
5076 struct io_ring_ctx *ctx = req->ctx;
5077 struct hlist_head *list;
5078
5079 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5080 hlist_add_head(&req->hash_node, list);
5081 }
5082
5083 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5084 struct io_poll_iocb *poll,
5085 struct io_poll_table *ipt, __poll_t mask,
5086 wait_queue_func_t wake_func)
5087 __acquires(&ctx->completion_lock)
5088 {
5089 struct io_ring_ctx *ctx = req->ctx;
5090 bool cancel = false;
5091
5092 INIT_HLIST_NODE(&req->hash_node);
5093 io_init_poll_iocb(poll, mask, wake_func);
5094 poll->file = req->file;
5095 poll->wait.private = req;
5096
5097 ipt->pt._key = mask;
5098 ipt->req = req;
5099 ipt->error = -EINVAL;
5100
5101 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5102
5103 spin_lock_irq(&ctx->completion_lock);
5104 if (likely(poll->head)) {
5105 spin_lock(&poll->head->lock);
5106 if (unlikely(list_empty(&poll->wait.entry))) {
5107 if (ipt->error)
5108 cancel = true;
5109 ipt->error = 0;
5110 mask = 0;
5111 }
5112 if (mask || ipt->error)
5113 list_del_init(&poll->wait.entry);
5114 else if (cancel)
5115 WRITE_ONCE(poll->canceled, true);
5116 else if (!poll->done) /* actually waiting for an event */
5117 io_poll_req_insert(req);
5118 spin_unlock(&poll->head->lock);
5119 }
5120
5121 return mask;
5122 }
5123
5124 static bool io_arm_poll_handler(struct io_kiocb *req)
5125 {
5126 const struct io_op_def *def = &io_op_defs[req->opcode];
5127 struct io_ring_ctx *ctx = req->ctx;
5128 struct async_poll *apoll;
5129 struct io_poll_table ipt;
5130 __poll_t mask, ret;
5131 int rw;
5132
5133 if (!req->file || !file_can_poll(req->file))
5134 return false;
5135 if (req->flags & REQ_F_POLLED)
5136 return false;
5137 if (def->pollin)
5138 rw = READ;
5139 else if (def->pollout)
5140 rw = WRITE;
5141 else
5142 return false;
5143 /* if we can't nonblock try, then no point in arming a poll handler */
5144 if (!io_file_supports_async(req->file, rw))
5145 return false;
5146
5147 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5148 if (unlikely(!apoll))
5149 return false;
5150 apoll->double_poll = NULL;
5151
5152 req->flags |= REQ_F_POLLED;
5153 req->apoll = apoll;
5154
5155 mask = 0;
5156 if (def->pollin)
5157 mask |= POLLIN | POLLRDNORM;
5158 if (def->pollout)
5159 mask |= POLLOUT | POLLWRNORM;
5160
5161 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5162 if ((req->opcode == IORING_OP_RECVMSG) &&
5163 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5164 mask &= ~POLLIN;
5165
5166 mask |= POLLERR | POLLPRI;
5167
5168 ipt.pt._qproc = io_async_queue_proc;
5169
5170 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5171 io_async_wake);
5172 if (ret || ipt.error) {
5173 io_poll_remove_double(req);
5174 spin_unlock_irq(&ctx->completion_lock);
5175 kfree(apoll->double_poll);
5176 kfree(apoll);
5177 return false;
5178 }
5179 spin_unlock_irq(&ctx->completion_lock);
5180 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5181 apoll->poll.events);
5182 return true;
5183 }
5184
5185 static bool __io_poll_remove_one(struct io_kiocb *req,
5186 struct io_poll_iocb *poll)
5187 {
5188 bool do_complete = false;
5189
5190 spin_lock(&poll->head->lock);
5191 WRITE_ONCE(poll->canceled, true);
5192 if (!list_empty(&poll->wait.entry)) {
5193 list_del_init(&poll->wait.entry);
5194 do_complete = true;
5195 }
5196 spin_unlock(&poll->head->lock);
5197 hash_del(&req->hash_node);
5198 return do_complete;
5199 }
5200
5201 static bool io_poll_remove_one(struct io_kiocb *req)
5202 {
5203 bool do_complete;
5204
5205 io_poll_remove_double(req);
5206
5207 if (req->opcode == IORING_OP_POLL_ADD) {
5208 do_complete = __io_poll_remove_one(req, &req->poll);
5209 } else {
5210 struct async_poll *apoll = req->apoll;
5211
5212 /* non-poll requests have submit ref still */
5213 do_complete = __io_poll_remove_one(req, &apoll->poll);
5214 if (do_complete) {
5215 io_put_req(req);
5216 kfree(apoll->double_poll);
5217 kfree(apoll);
5218 }
5219 }
5220
5221 if (do_complete) {
5222 io_cqring_fill_event(req, -ECANCELED);
5223 io_commit_cqring(req->ctx);
5224 req_set_fail_links(req);
5225 io_put_req_deferred(req, 1);
5226 }
5227
5228 return do_complete;
5229 }
5230
5231 /*
5232 * Returns true if we found and killed one or more poll requests
5233 */
5234 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk)
5235 {
5236 struct hlist_node *tmp;
5237 struct io_kiocb *req;
5238 int posted = 0, i;
5239
5240 spin_lock_irq(&ctx->completion_lock);
5241 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5242 struct hlist_head *list;
5243
5244 list = &ctx->cancel_hash[i];
5245 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5246 if (io_task_match(req, tsk))
5247 posted += io_poll_remove_one(req);
5248 }
5249 }
5250 spin_unlock_irq(&ctx->completion_lock);
5251
5252 if (posted)
5253 io_cqring_ev_posted(ctx);
5254
5255 return posted != 0;
5256 }
5257
5258 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5259 {
5260 struct hlist_head *list;
5261 struct io_kiocb *req;
5262
5263 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5264 hlist_for_each_entry(req, list, hash_node) {
5265 if (sqe_addr != req->user_data)
5266 continue;
5267 if (io_poll_remove_one(req))
5268 return 0;
5269 return -EALREADY;
5270 }
5271
5272 return -ENOENT;
5273 }
5274
5275 static int io_poll_remove_prep(struct io_kiocb *req,
5276 const struct io_uring_sqe *sqe)
5277 {
5278 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5279 return -EINVAL;
5280 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5281 sqe->poll_events)
5282 return -EINVAL;
5283
5284 req->poll.addr = READ_ONCE(sqe->addr);
5285 return 0;
5286 }
5287
5288 /*
5289 * Find a running poll command that matches one specified in sqe->addr,
5290 * and remove it if found.
5291 */
5292 static int io_poll_remove(struct io_kiocb *req)
5293 {
5294 struct io_ring_ctx *ctx = req->ctx;
5295 u64 addr;
5296 int ret;
5297
5298 addr = req->poll.addr;
5299 spin_lock_irq(&ctx->completion_lock);
5300 ret = io_poll_cancel(ctx, addr);
5301 spin_unlock_irq(&ctx->completion_lock);
5302
5303 if (ret < 0)
5304 req_set_fail_links(req);
5305 io_req_complete(req, ret);
5306 return 0;
5307 }
5308
5309 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5310 void *key)
5311 {
5312 struct io_kiocb *req = wait->private;
5313 struct io_poll_iocb *poll = &req->poll;
5314
5315 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5316 }
5317
5318 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5319 struct poll_table_struct *p)
5320 {
5321 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5322
5323 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5324 }
5325
5326 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5327 {
5328 struct io_poll_iocb *poll = &req->poll;
5329 u32 events;
5330
5331 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5332 return -EINVAL;
5333 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5334 return -EINVAL;
5335
5336 events = READ_ONCE(sqe->poll32_events);
5337 #ifdef __BIG_ENDIAN
5338 events = swahw32(events);
5339 #endif
5340 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5341 (events & EPOLLEXCLUSIVE);
5342 return 0;
5343 }
5344
5345 static int io_poll_add(struct io_kiocb *req)
5346 {
5347 struct io_poll_iocb *poll = &req->poll;
5348 struct io_ring_ctx *ctx = req->ctx;
5349 struct io_poll_table ipt;
5350 __poll_t mask;
5351
5352 ipt.pt._qproc = io_poll_queue_proc;
5353
5354 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5355 io_poll_wake);
5356
5357 if (mask) { /* no async, we'd stolen it */
5358 ipt.error = 0;
5359 io_poll_complete(req, mask, 0);
5360 }
5361 spin_unlock_irq(&ctx->completion_lock);
5362
5363 if (mask) {
5364 io_cqring_ev_posted(ctx);
5365 io_put_req(req);
5366 }
5367 return ipt.error;
5368 }
5369
5370 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5371 {
5372 struct io_timeout_data *data = container_of(timer,
5373 struct io_timeout_data, timer);
5374 struct io_kiocb *req = data->req;
5375 struct io_ring_ctx *ctx = req->ctx;
5376 unsigned long flags;
5377
5378 spin_lock_irqsave(&ctx->completion_lock, flags);
5379 list_del_init(&req->timeout.list);
5380 atomic_set(&req->ctx->cq_timeouts,
5381 atomic_read(&req->ctx->cq_timeouts) + 1);
5382
5383 io_cqring_fill_event(req, -ETIME);
5384 io_commit_cqring(ctx);
5385 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5386
5387 io_cqring_ev_posted(ctx);
5388 req_set_fail_links(req);
5389 io_put_req(req);
5390 return HRTIMER_NORESTART;
5391 }
5392
5393 static int __io_timeout_cancel(struct io_kiocb *req)
5394 {
5395 struct io_timeout_data *io = req->async_data;
5396 int ret;
5397
5398 ret = hrtimer_try_to_cancel(&io->timer);
5399 if (ret == -1)
5400 return -EALREADY;
5401 list_del_init(&req->timeout.list);
5402
5403 req_set_fail_links(req);
5404 io_cqring_fill_event(req, -ECANCELED);
5405 io_put_req_deferred(req, 1);
5406 return 0;
5407 }
5408
5409 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5410 {
5411 struct io_kiocb *req;
5412 int ret = -ENOENT;
5413
5414 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5415 if (user_data == req->user_data) {
5416 ret = 0;
5417 break;
5418 }
5419 }
5420
5421 if (ret == -ENOENT)
5422 return ret;
5423
5424 return __io_timeout_cancel(req);
5425 }
5426
5427 static int io_timeout_remove_prep(struct io_kiocb *req,
5428 const struct io_uring_sqe *sqe)
5429 {
5430 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5431 return -EINVAL;
5432 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5433 return -EINVAL;
5434 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->timeout_flags)
5435 return -EINVAL;
5436
5437 req->timeout_rem.addr = READ_ONCE(sqe->addr);
5438 return 0;
5439 }
5440
5441 /*
5442 * Remove or update an existing timeout command
5443 */
5444 static int io_timeout_remove(struct io_kiocb *req)
5445 {
5446 struct io_ring_ctx *ctx = req->ctx;
5447 int ret;
5448
5449 spin_lock_irq(&ctx->completion_lock);
5450 ret = io_timeout_cancel(ctx, req->timeout_rem.addr);
5451
5452 io_cqring_fill_event(req, ret);
5453 io_commit_cqring(ctx);
5454 spin_unlock_irq(&ctx->completion_lock);
5455 io_cqring_ev_posted(ctx);
5456 if (ret < 0)
5457 req_set_fail_links(req);
5458 io_put_req(req);
5459 return 0;
5460 }
5461
5462 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5463 bool is_timeout_link)
5464 {
5465 struct io_timeout_data *data;
5466 unsigned flags;
5467 u32 off = READ_ONCE(sqe->off);
5468
5469 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5470 return -EINVAL;
5471 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5472 return -EINVAL;
5473 if (off && is_timeout_link)
5474 return -EINVAL;
5475 flags = READ_ONCE(sqe->timeout_flags);
5476 if (flags & ~IORING_TIMEOUT_ABS)
5477 return -EINVAL;
5478
5479 req->timeout.off = off;
5480
5481 if (!req->async_data && io_alloc_async_data(req))
5482 return -ENOMEM;
5483
5484 data = req->async_data;
5485 data->req = req;
5486
5487 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5488 return -EFAULT;
5489
5490 if (flags & IORING_TIMEOUT_ABS)
5491 data->mode = HRTIMER_MODE_ABS;
5492 else
5493 data->mode = HRTIMER_MODE_REL;
5494
5495 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5496 return 0;
5497 }
5498
5499 static int io_timeout(struct io_kiocb *req)
5500 {
5501 struct io_ring_ctx *ctx = req->ctx;
5502 struct io_timeout_data *data = req->async_data;
5503 struct list_head *entry;
5504 u32 tail, off = req->timeout.off;
5505
5506 spin_lock_irq(&ctx->completion_lock);
5507
5508 /*
5509 * sqe->off holds how many events that need to occur for this
5510 * timeout event to be satisfied. If it isn't set, then this is
5511 * a pure timeout request, sequence isn't used.
5512 */
5513 if (io_is_timeout_noseq(req)) {
5514 entry = ctx->timeout_list.prev;
5515 goto add;
5516 }
5517
5518 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5519 req->timeout.target_seq = tail + off;
5520
5521 /*
5522 * Insertion sort, ensuring the first entry in the list is always
5523 * the one we need first.
5524 */
5525 list_for_each_prev(entry, &ctx->timeout_list) {
5526 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5527 timeout.list);
5528
5529 if (io_is_timeout_noseq(nxt))
5530 continue;
5531 /* nxt.seq is behind @tail, otherwise would've been completed */
5532 if (off >= nxt->timeout.target_seq - tail)
5533 break;
5534 }
5535 add:
5536 list_add(&req->timeout.list, entry);
5537 data->timer.function = io_timeout_fn;
5538 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5539 spin_unlock_irq(&ctx->completion_lock);
5540 return 0;
5541 }
5542
5543 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5544 {
5545 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5546
5547 return req->user_data == (unsigned long) data;
5548 }
5549
5550 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5551 {
5552 enum io_wq_cancel cancel_ret;
5553 int ret = 0;
5554
5555 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5556 switch (cancel_ret) {
5557 case IO_WQ_CANCEL_OK:
5558 ret = 0;
5559 break;
5560 case IO_WQ_CANCEL_RUNNING:
5561 ret = -EALREADY;
5562 break;
5563 case IO_WQ_CANCEL_NOTFOUND:
5564 ret = -ENOENT;
5565 break;
5566 }
5567
5568 return ret;
5569 }
5570
5571 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5572 struct io_kiocb *req, __u64 sqe_addr,
5573 int success_ret)
5574 {
5575 unsigned long flags;
5576 int ret;
5577
5578 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5579 if (ret != -ENOENT) {
5580 spin_lock_irqsave(&ctx->completion_lock, flags);
5581 goto done;
5582 }
5583
5584 spin_lock_irqsave(&ctx->completion_lock, flags);
5585 ret = io_timeout_cancel(ctx, sqe_addr);
5586 if (ret != -ENOENT)
5587 goto done;
5588 ret = io_poll_cancel(ctx, sqe_addr);
5589 done:
5590 if (!ret)
5591 ret = success_ret;
5592 io_cqring_fill_event(req, ret);
5593 io_commit_cqring(ctx);
5594 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5595 io_cqring_ev_posted(ctx);
5596
5597 if (ret < 0)
5598 req_set_fail_links(req);
5599 io_put_req(req);
5600 }
5601
5602 static int io_async_cancel_prep(struct io_kiocb *req,
5603 const struct io_uring_sqe *sqe)
5604 {
5605 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5606 return -EINVAL;
5607 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5608 return -EINVAL;
5609 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5610 return -EINVAL;
5611
5612 req->cancel.addr = READ_ONCE(sqe->addr);
5613 return 0;
5614 }
5615
5616 static int io_async_cancel(struct io_kiocb *req)
5617 {
5618 struct io_ring_ctx *ctx = req->ctx;
5619
5620 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5621 return 0;
5622 }
5623
5624 static int io_files_update_prep(struct io_kiocb *req,
5625 const struct io_uring_sqe *sqe)
5626 {
5627 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5628 return -EINVAL;
5629 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5630 return -EINVAL;
5631 if (sqe->ioprio || sqe->rw_flags)
5632 return -EINVAL;
5633
5634 req->files_update.offset = READ_ONCE(sqe->off);
5635 req->files_update.nr_args = READ_ONCE(sqe->len);
5636 if (!req->files_update.nr_args)
5637 return -EINVAL;
5638 req->files_update.arg = READ_ONCE(sqe->addr);
5639 return 0;
5640 }
5641
5642 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5643 struct io_comp_state *cs)
5644 {
5645 struct io_ring_ctx *ctx = req->ctx;
5646 struct io_uring_files_update up;
5647 int ret;
5648
5649 if (force_nonblock)
5650 return -EAGAIN;
5651
5652 up.offset = req->files_update.offset;
5653 up.fds = req->files_update.arg;
5654
5655 mutex_lock(&ctx->uring_lock);
5656 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5657 mutex_unlock(&ctx->uring_lock);
5658
5659 if (ret < 0)
5660 req_set_fail_links(req);
5661 __io_req_complete(req, ret, 0, cs);
5662 return 0;
5663 }
5664
5665 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5666 {
5667 switch (req->opcode) {
5668 case IORING_OP_NOP:
5669 return 0;
5670 case IORING_OP_READV:
5671 case IORING_OP_READ_FIXED:
5672 case IORING_OP_READ:
5673 return io_read_prep(req, sqe);
5674 case IORING_OP_WRITEV:
5675 case IORING_OP_WRITE_FIXED:
5676 case IORING_OP_WRITE:
5677 return io_write_prep(req, sqe);
5678 case IORING_OP_POLL_ADD:
5679 return io_poll_add_prep(req, sqe);
5680 case IORING_OP_POLL_REMOVE:
5681 return io_poll_remove_prep(req, sqe);
5682 case IORING_OP_FSYNC:
5683 return io_prep_fsync(req, sqe);
5684 case IORING_OP_SYNC_FILE_RANGE:
5685 return io_prep_sfr(req, sqe);
5686 case IORING_OP_SENDMSG:
5687 case IORING_OP_SEND:
5688 return io_sendmsg_prep(req, sqe);
5689 case IORING_OP_RECVMSG:
5690 case IORING_OP_RECV:
5691 return io_recvmsg_prep(req, sqe);
5692 case IORING_OP_CONNECT:
5693 return io_connect_prep(req, sqe);
5694 case IORING_OP_TIMEOUT:
5695 return io_timeout_prep(req, sqe, false);
5696 case IORING_OP_TIMEOUT_REMOVE:
5697 return io_timeout_remove_prep(req, sqe);
5698 case IORING_OP_ASYNC_CANCEL:
5699 return io_async_cancel_prep(req, sqe);
5700 case IORING_OP_LINK_TIMEOUT:
5701 return io_timeout_prep(req, sqe, true);
5702 case IORING_OP_ACCEPT:
5703 return io_accept_prep(req, sqe);
5704 case IORING_OP_FALLOCATE:
5705 return io_fallocate_prep(req, sqe);
5706 case IORING_OP_OPENAT:
5707 return io_openat_prep(req, sqe);
5708 case IORING_OP_CLOSE:
5709 return io_close_prep(req, sqe);
5710 case IORING_OP_FILES_UPDATE:
5711 return io_files_update_prep(req, sqe);
5712 case IORING_OP_STATX:
5713 return io_statx_prep(req, sqe);
5714 case IORING_OP_FADVISE:
5715 return io_fadvise_prep(req, sqe);
5716 case IORING_OP_MADVISE:
5717 return io_madvise_prep(req, sqe);
5718 case IORING_OP_OPENAT2:
5719 return io_openat2_prep(req, sqe);
5720 case IORING_OP_EPOLL_CTL:
5721 return io_epoll_ctl_prep(req, sqe);
5722 case IORING_OP_SPLICE:
5723 return io_splice_prep(req, sqe);
5724 case IORING_OP_PROVIDE_BUFFERS:
5725 return io_provide_buffers_prep(req, sqe);
5726 case IORING_OP_REMOVE_BUFFERS:
5727 return io_remove_buffers_prep(req, sqe);
5728 case IORING_OP_TEE:
5729 return io_tee_prep(req, sqe);
5730 }
5731
5732 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
5733 req->opcode);
5734 return-EINVAL;
5735 }
5736
5737 static int io_req_defer_prep(struct io_kiocb *req,
5738 const struct io_uring_sqe *sqe)
5739 {
5740 if (!sqe)
5741 return 0;
5742 if (io_alloc_async_data(req))
5743 return -EAGAIN;
5744 return io_req_prep(req, sqe);
5745 }
5746
5747 static u32 io_get_sequence(struct io_kiocb *req)
5748 {
5749 struct io_kiocb *pos;
5750 struct io_ring_ctx *ctx = req->ctx;
5751 u32 total_submitted, nr_reqs = 1;
5752
5753 if (req->flags & REQ_F_LINK_HEAD)
5754 list_for_each_entry(pos, &req->link_list, link_list)
5755 nr_reqs++;
5756
5757 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
5758 return total_submitted - nr_reqs;
5759 }
5760
5761 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5762 {
5763 struct io_ring_ctx *ctx = req->ctx;
5764 struct io_defer_entry *de;
5765 int ret;
5766 u32 seq;
5767
5768 /* Still need defer if there is pending req in defer list. */
5769 if (likely(list_empty_careful(&ctx->defer_list) &&
5770 !(req->flags & REQ_F_IO_DRAIN)))
5771 return 0;
5772
5773 seq = io_get_sequence(req);
5774 /* Still a chance to pass the sequence check */
5775 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
5776 return 0;
5777
5778 if (!req->async_data) {
5779 ret = io_req_defer_prep(req, sqe);
5780 if (ret)
5781 return ret;
5782 }
5783 io_prep_async_link(req);
5784 de = kmalloc(sizeof(*de), GFP_KERNEL);
5785 if (!de)
5786 return -ENOMEM;
5787
5788 spin_lock_irq(&ctx->completion_lock);
5789 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
5790 spin_unlock_irq(&ctx->completion_lock);
5791 kfree(de);
5792 io_queue_async_work(req);
5793 return -EIOCBQUEUED;
5794 }
5795
5796 trace_io_uring_defer(ctx, req, req->user_data);
5797 de->req = req;
5798 de->seq = seq;
5799 list_add_tail(&de->list, &ctx->defer_list);
5800 spin_unlock_irq(&ctx->completion_lock);
5801 return -EIOCBQUEUED;
5802 }
5803
5804 static void io_req_drop_files(struct io_kiocb *req)
5805 {
5806 struct io_ring_ctx *ctx = req->ctx;
5807 unsigned long flags;
5808
5809 spin_lock_irqsave(&ctx->inflight_lock, flags);
5810 list_del(&req->inflight_entry);
5811 if (waitqueue_active(&ctx->inflight_wait))
5812 wake_up(&ctx->inflight_wait);
5813 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
5814 req->flags &= ~REQ_F_INFLIGHT;
5815 put_files_struct(req->work.identity->files);
5816 put_nsproxy(req->work.identity->nsproxy);
5817 req->work.flags &= ~IO_WQ_WORK_FILES;
5818 }
5819
5820 static void __io_clean_op(struct io_kiocb *req)
5821 {
5822 if (req->flags & REQ_F_BUFFER_SELECTED) {
5823 switch (req->opcode) {
5824 case IORING_OP_READV:
5825 case IORING_OP_READ_FIXED:
5826 case IORING_OP_READ:
5827 kfree((void *)(unsigned long)req->rw.addr);
5828 break;
5829 case IORING_OP_RECVMSG:
5830 case IORING_OP_RECV:
5831 kfree(req->sr_msg.kbuf);
5832 break;
5833 }
5834 req->flags &= ~REQ_F_BUFFER_SELECTED;
5835 }
5836
5837 if (req->flags & REQ_F_NEED_CLEANUP) {
5838 switch (req->opcode) {
5839 case IORING_OP_READV:
5840 case IORING_OP_READ_FIXED:
5841 case IORING_OP_READ:
5842 case IORING_OP_WRITEV:
5843 case IORING_OP_WRITE_FIXED:
5844 case IORING_OP_WRITE: {
5845 struct io_async_rw *io = req->async_data;
5846 if (io->free_iovec)
5847 kfree(io->free_iovec);
5848 break;
5849 }
5850 case IORING_OP_RECVMSG:
5851 case IORING_OP_SENDMSG: {
5852 struct io_async_msghdr *io = req->async_data;
5853 if (io->iov != io->fast_iov)
5854 kfree(io->iov);
5855 break;
5856 }
5857 case IORING_OP_SPLICE:
5858 case IORING_OP_TEE:
5859 io_put_file(req, req->splice.file_in,
5860 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
5861 break;
5862 case IORING_OP_OPENAT:
5863 case IORING_OP_OPENAT2:
5864 if (req->open.filename)
5865 putname(req->open.filename);
5866 break;
5867 }
5868 req->flags &= ~REQ_F_NEED_CLEANUP;
5869 }
5870
5871 if (req->flags & REQ_F_INFLIGHT)
5872 io_req_drop_files(req);
5873 }
5874
5875 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
5876 struct io_comp_state *cs)
5877 {
5878 struct io_ring_ctx *ctx = req->ctx;
5879 int ret;
5880
5881 switch (req->opcode) {
5882 case IORING_OP_NOP:
5883 ret = io_nop(req, cs);
5884 break;
5885 case IORING_OP_READV:
5886 case IORING_OP_READ_FIXED:
5887 case IORING_OP_READ:
5888 ret = io_read(req, force_nonblock, cs);
5889 break;
5890 case IORING_OP_WRITEV:
5891 case IORING_OP_WRITE_FIXED:
5892 case IORING_OP_WRITE:
5893 ret = io_write(req, force_nonblock, cs);
5894 break;
5895 case IORING_OP_FSYNC:
5896 ret = io_fsync(req, force_nonblock);
5897 break;
5898 case IORING_OP_POLL_ADD:
5899 ret = io_poll_add(req);
5900 break;
5901 case IORING_OP_POLL_REMOVE:
5902 ret = io_poll_remove(req);
5903 break;
5904 case IORING_OP_SYNC_FILE_RANGE:
5905 ret = io_sync_file_range(req, force_nonblock);
5906 break;
5907 case IORING_OP_SENDMSG:
5908 ret = io_sendmsg(req, force_nonblock, cs);
5909 break;
5910 case IORING_OP_SEND:
5911 ret = io_send(req, force_nonblock, cs);
5912 break;
5913 case IORING_OP_RECVMSG:
5914 ret = io_recvmsg(req, force_nonblock, cs);
5915 break;
5916 case IORING_OP_RECV:
5917 ret = io_recv(req, force_nonblock, cs);
5918 break;
5919 case IORING_OP_TIMEOUT:
5920 ret = io_timeout(req);
5921 break;
5922 case IORING_OP_TIMEOUT_REMOVE:
5923 ret = io_timeout_remove(req);
5924 break;
5925 case IORING_OP_ACCEPT:
5926 ret = io_accept(req, force_nonblock, cs);
5927 break;
5928 case IORING_OP_CONNECT:
5929 ret = io_connect(req, force_nonblock, cs);
5930 break;
5931 case IORING_OP_ASYNC_CANCEL:
5932 ret = io_async_cancel(req);
5933 break;
5934 case IORING_OP_FALLOCATE:
5935 ret = io_fallocate(req, force_nonblock);
5936 break;
5937 case IORING_OP_OPENAT:
5938 ret = io_openat(req, force_nonblock);
5939 break;
5940 case IORING_OP_CLOSE:
5941 ret = io_close(req, force_nonblock, cs);
5942 break;
5943 case IORING_OP_FILES_UPDATE:
5944 ret = io_files_update(req, force_nonblock, cs);
5945 break;
5946 case IORING_OP_STATX:
5947 ret = io_statx(req, force_nonblock);
5948 break;
5949 case IORING_OP_FADVISE:
5950 ret = io_fadvise(req, force_nonblock);
5951 break;
5952 case IORING_OP_MADVISE:
5953 ret = io_madvise(req, force_nonblock);
5954 break;
5955 case IORING_OP_OPENAT2:
5956 ret = io_openat2(req, force_nonblock);
5957 break;
5958 case IORING_OP_EPOLL_CTL:
5959 ret = io_epoll_ctl(req, force_nonblock, cs);
5960 break;
5961 case IORING_OP_SPLICE:
5962 ret = io_splice(req, force_nonblock);
5963 break;
5964 case IORING_OP_PROVIDE_BUFFERS:
5965 ret = io_provide_buffers(req, force_nonblock, cs);
5966 break;
5967 case IORING_OP_REMOVE_BUFFERS:
5968 ret = io_remove_buffers(req, force_nonblock, cs);
5969 break;
5970 case IORING_OP_TEE:
5971 ret = io_tee(req, force_nonblock);
5972 break;
5973 default:
5974 ret = -EINVAL;
5975 break;
5976 }
5977
5978 if (ret)
5979 return ret;
5980
5981 /* If the op doesn't have a file, we're not polling for it */
5982 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
5983 const bool in_async = io_wq_current_is_worker();
5984
5985 /* workqueue context doesn't hold uring_lock, grab it now */
5986 if (in_async)
5987 mutex_lock(&ctx->uring_lock);
5988
5989 io_iopoll_req_issued(req);
5990
5991 if (in_async)
5992 mutex_unlock(&ctx->uring_lock);
5993 }
5994
5995 return 0;
5996 }
5997
5998 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
5999 {
6000 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6001 struct io_kiocb *timeout;
6002 int ret = 0;
6003
6004 timeout = io_prep_linked_timeout(req);
6005 if (timeout)
6006 io_queue_linked_timeout(timeout);
6007
6008 /* if NO_CANCEL is set, we must still run the work */
6009 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6010 IO_WQ_WORK_CANCEL) {
6011 ret = -ECANCELED;
6012 }
6013
6014 if (!ret) {
6015 do {
6016 ret = io_issue_sqe(req, false, NULL);
6017 /*
6018 * We can get EAGAIN for polled IO even though we're
6019 * forcing a sync submission from here, since we can't
6020 * wait for request slots on the block side.
6021 */
6022 if (ret != -EAGAIN)
6023 break;
6024 cond_resched();
6025 } while (1);
6026 }
6027
6028 if (ret) {
6029 req_set_fail_links(req);
6030 io_req_complete(req, ret);
6031 }
6032
6033 return io_steal_work(req);
6034 }
6035
6036 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6037 int index)
6038 {
6039 struct fixed_file_table *table;
6040
6041 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6042 return table->files[index & IORING_FILE_TABLE_MASK];
6043 }
6044
6045 static struct file *io_file_get(struct io_submit_state *state,
6046 struct io_kiocb *req, int fd, bool fixed)
6047 {
6048 struct io_ring_ctx *ctx = req->ctx;
6049 struct file *file;
6050
6051 if (fixed) {
6052 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6053 return NULL;
6054 fd = array_index_nospec(fd, ctx->nr_user_files);
6055 file = io_file_from_index(ctx, fd);
6056 if (file) {
6057 req->fixed_file_refs = &ctx->file_data->node->refs;
6058 percpu_ref_get(req->fixed_file_refs);
6059 }
6060 } else {
6061 trace_io_uring_file_get(ctx, fd);
6062 file = __io_file_get(state, fd);
6063 }
6064
6065 return file;
6066 }
6067
6068 static int io_req_set_file(struct io_submit_state *state, struct io_kiocb *req,
6069 int fd)
6070 {
6071 bool fixed;
6072
6073 fixed = (req->flags & REQ_F_FIXED_FILE) != 0;
6074 if (unlikely(!fixed && io_async_submit(req->ctx)))
6075 return -EBADF;
6076
6077 req->file = io_file_get(state, req, fd, fixed);
6078 if (req->file || io_op_defs[req->opcode].needs_file_no_error)
6079 return 0;
6080 return -EBADF;
6081 }
6082
6083 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6084 {
6085 struct io_timeout_data *data = container_of(timer,
6086 struct io_timeout_data, timer);
6087 struct io_kiocb *req = data->req;
6088 struct io_ring_ctx *ctx = req->ctx;
6089 struct io_kiocb *prev = NULL;
6090 unsigned long flags;
6091
6092 spin_lock_irqsave(&ctx->completion_lock, flags);
6093
6094 /*
6095 * We don't expect the list to be empty, that will only happen if we
6096 * race with the completion of the linked work.
6097 */
6098 if (!list_empty(&req->link_list)) {
6099 prev = list_entry(req->link_list.prev, struct io_kiocb,
6100 link_list);
6101 if (refcount_inc_not_zero(&prev->refs))
6102 list_del_init(&req->link_list);
6103 else
6104 prev = NULL;
6105 }
6106
6107 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6108
6109 if (prev) {
6110 req_set_fail_links(prev);
6111 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6112 io_put_req(prev);
6113 } else {
6114 io_req_complete(req, -ETIME);
6115 }
6116 return HRTIMER_NORESTART;
6117 }
6118
6119 static void __io_queue_linked_timeout(struct io_kiocb *req)
6120 {
6121 /*
6122 * If the list is now empty, then our linked request finished before
6123 * we got a chance to setup the timer
6124 */
6125 if (!list_empty(&req->link_list)) {
6126 struct io_timeout_data *data = req->async_data;
6127
6128 data->timer.function = io_link_timeout_fn;
6129 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6130 data->mode);
6131 }
6132 }
6133
6134 static void io_queue_linked_timeout(struct io_kiocb *req)
6135 {
6136 struct io_ring_ctx *ctx = req->ctx;
6137
6138 spin_lock_irq(&ctx->completion_lock);
6139 __io_queue_linked_timeout(req);
6140 spin_unlock_irq(&ctx->completion_lock);
6141
6142 /* drop submission reference */
6143 io_put_req(req);
6144 }
6145
6146 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6147 {
6148 struct io_kiocb *nxt;
6149
6150 if (!(req->flags & REQ_F_LINK_HEAD))
6151 return NULL;
6152 if (req->flags & REQ_F_LINK_TIMEOUT)
6153 return NULL;
6154
6155 nxt = list_first_entry_or_null(&req->link_list, struct io_kiocb,
6156 link_list);
6157 if (!nxt || nxt->opcode != IORING_OP_LINK_TIMEOUT)
6158 return NULL;
6159
6160 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6161 req->flags |= REQ_F_LINK_TIMEOUT;
6162 return nxt;
6163 }
6164
6165 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6166 {
6167 struct io_kiocb *linked_timeout;
6168 const struct cred *old_creds = NULL;
6169 int ret;
6170
6171 again:
6172 linked_timeout = io_prep_linked_timeout(req);
6173
6174 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6175 (req->work.flags & IO_WQ_WORK_CREDS) &&
6176 req->work.identity->creds != current_cred()) {
6177 if (old_creds)
6178 revert_creds(old_creds);
6179 if (old_creds == req->work.identity->creds)
6180 old_creds = NULL; /* restored original creds */
6181 else
6182 old_creds = override_creds(req->work.identity->creds);
6183 }
6184
6185 ret = io_issue_sqe(req, true, cs);
6186
6187 /*
6188 * We async punt it if the file wasn't marked NOWAIT, or if the file
6189 * doesn't support non-blocking read/write attempts
6190 */
6191 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6192 if (!io_arm_poll_handler(req)) {
6193 /*
6194 * Queued up for async execution, worker will release
6195 * submit reference when the iocb is actually submitted.
6196 */
6197 io_queue_async_work(req);
6198 }
6199
6200 if (linked_timeout)
6201 io_queue_linked_timeout(linked_timeout);
6202 } else if (likely(!ret)) {
6203 /* drop submission reference */
6204 req = io_put_req_find_next(req);
6205 if (linked_timeout)
6206 io_queue_linked_timeout(linked_timeout);
6207
6208 if (req) {
6209 if (!(req->flags & REQ_F_FORCE_ASYNC))
6210 goto again;
6211 io_queue_async_work(req);
6212 }
6213 } else {
6214 /* un-prep timeout, so it'll be killed as any other linked */
6215 req->flags &= ~REQ_F_LINK_TIMEOUT;
6216 req_set_fail_links(req);
6217 io_put_req(req);
6218 io_req_complete(req, ret);
6219 }
6220
6221 if (old_creds)
6222 revert_creds(old_creds);
6223 }
6224
6225 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6226 struct io_comp_state *cs)
6227 {
6228 int ret;
6229
6230 ret = io_req_defer(req, sqe);
6231 if (ret) {
6232 if (ret != -EIOCBQUEUED) {
6233 fail_req:
6234 req_set_fail_links(req);
6235 io_put_req(req);
6236 io_req_complete(req, ret);
6237 }
6238 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6239 if (!req->async_data) {
6240 ret = io_req_defer_prep(req, sqe);
6241 if (unlikely(ret))
6242 goto fail_req;
6243 }
6244 io_queue_async_work(req);
6245 } else {
6246 if (sqe) {
6247 ret = io_req_prep(req, sqe);
6248 if (unlikely(ret))
6249 goto fail_req;
6250 }
6251 __io_queue_sqe(req, cs);
6252 }
6253 }
6254
6255 static inline void io_queue_link_head(struct io_kiocb *req,
6256 struct io_comp_state *cs)
6257 {
6258 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6259 io_put_req(req);
6260 io_req_complete(req, -ECANCELED);
6261 } else
6262 io_queue_sqe(req, NULL, cs);
6263 }
6264
6265 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6266 struct io_kiocb **link, struct io_comp_state *cs)
6267 {
6268 struct io_ring_ctx *ctx = req->ctx;
6269 int ret;
6270
6271 /*
6272 * If we already have a head request, queue this one for async
6273 * submittal once the head completes. If we don't have a head but
6274 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6275 * submitted sync once the chain is complete. If none of those
6276 * conditions are true (normal request), then just queue it.
6277 */
6278 if (*link) {
6279 struct io_kiocb *head = *link;
6280
6281 /*
6282 * Taking sequential execution of a link, draining both sides
6283 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6284 * requests in the link. So, it drains the head and the
6285 * next after the link request. The last one is done via
6286 * drain_next flag to persist the effect across calls.
6287 */
6288 if (req->flags & REQ_F_IO_DRAIN) {
6289 head->flags |= REQ_F_IO_DRAIN;
6290 ctx->drain_next = 1;
6291 }
6292 ret = io_req_defer_prep(req, sqe);
6293 if (unlikely(ret)) {
6294 /* fail even hard links since we don't submit */
6295 head->flags |= REQ_F_FAIL_LINK;
6296 return ret;
6297 }
6298 trace_io_uring_link(ctx, req, head);
6299 list_add_tail(&req->link_list, &head->link_list);
6300
6301 /* last request of a link, enqueue the link */
6302 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6303 io_queue_link_head(head, cs);
6304 *link = NULL;
6305 }
6306 } else {
6307 if (unlikely(ctx->drain_next)) {
6308 req->flags |= REQ_F_IO_DRAIN;
6309 ctx->drain_next = 0;
6310 }
6311 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6312 req->flags |= REQ_F_LINK_HEAD;
6313 INIT_LIST_HEAD(&req->link_list);
6314
6315 ret = io_req_defer_prep(req, sqe);
6316 if (unlikely(ret))
6317 req->flags |= REQ_F_FAIL_LINK;
6318 *link = req;
6319 } else {
6320 io_queue_sqe(req, sqe, cs);
6321 }
6322 }
6323
6324 return 0;
6325 }
6326
6327 /*
6328 * Batched submission is done, ensure local IO is flushed out.
6329 */
6330 static void io_submit_state_end(struct io_submit_state *state)
6331 {
6332 if (!list_empty(&state->comp.list))
6333 io_submit_flush_completions(&state->comp);
6334 blk_finish_plug(&state->plug);
6335 io_state_file_put(state);
6336 if (state->free_reqs)
6337 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6338 }
6339
6340 /*
6341 * Start submission side cache.
6342 */
6343 static void io_submit_state_start(struct io_submit_state *state,
6344 struct io_ring_ctx *ctx, unsigned int max_ios)
6345 {
6346 blk_start_plug(&state->plug);
6347 state->comp.nr = 0;
6348 INIT_LIST_HEAD(&state->comp.list);
6349 state->comp.ctx = ctx;
6350 state->free_reqs = 0;
6351 state->file = NULL;
6352 state->ios_left = max_ios;
6353 }
6354
6355 static void io_commit_sqring(struct io_ring_ctx *ctx)
6356 {
6357 struct io_rings *rings = ctx->rings;
6358
6359 /*
6360 * Ensure any loads from the SQEs are done at this point,
6361 * since once we write the new head, the application could
6362 * write new data to them.
6363 */
6364 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6365 }
6366
6367 /*
6368 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6369 * that is mapped by userspace. This means that care needs to be taken to
6370 * ensure that reads are stable, as we cannot rely on userspace always
6371 * being a good citizen. If members of the sqe are validated and then later
6372 * used, it's important that those reads are done through READ_ONCE() to
6373 * prevent a re-load down the line.
6374 */
6375 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6376 {
6377 u32 *sq_array = ctx->sq_array;
6378 unsigned head;
6379
6380 /*
6381 * The cached sq head (or cq tail) serves two purposes:
6382 *
6383 * 1) allows us to batch the cost of updating the user visible
6384 * head updates.
6385 * 2) allows the kernel side to track the head on its own, even
6386 * though the application is the one updating it.
6387 */
6388 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6389 if (likely(head < ctx->sq_entries))
6390 return &ctx->sq_sqes[head];
6391
6392 /* drop invalid entries */
6393 ctx->cached_sq_dropped++;
6394 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6395 return NULL;
6396 }
6397
6398 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6399 {
6400 ctx->cached_sq_head++;
6401 }
6402
6403 /*
6404 * Check SQE restrictions (opcode and flags).
6405 *
6406 * Returns 'true' if SQE is allowed, 'false' otherwise.
6407 */
6408 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6409 struct io_kiocb *req,
6410 unsigned int sqe_flags)
6411 {
6412 if (!ctx->restricted)
6413 return true;
6414
6415 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6416 return false;
6417
6418 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6419 ctx->restrictions.sqe_flags_required)
6420 return false;
6421
6422 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6423 ctx->restrictions.sqe_flags_required))
6424 return false;
6425
6426 return true;
6427 }
6428
6429 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6430 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6431 IOSQE_BUFFER_SELECT)
6432
6433 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6434 const struct io_uring_sqe *sqe,
6435 struct io_submit_state *state)
6436 {
6437 unsigned int sqe_flags;
6438 int id, ret;
6439
6440 req->opcode = READ_ONCE(sqe->opcode);
6441 req->user_data = READ_ONCE(sqe->user_data);
6442 req->async_data = NULL;
6443 req->file = NULL;
6444 req->ctx = ctx;
6445 req->flags = 0;
6446 /* one is dropped after submission, the other at completion */
6447 refcount_set(&req->refs, 2);
6448 req->task = current;
6449 req->result = 0;
6450
6451 if (unlikely(req->opcode >= IORING_OP_LAST))
6452 return -EINVAL;
6453
6454 if (unlikely(io_sq_thread_acquire_mm(ctx, req)))
6455 return -EFAULT;
6456
6457 sqe_flags = READ_ONCE(sqe->flags);
6458 /* enforce forwards compatibility on users */
6459 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6460 return -EINVAL;
6461
6462 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6463 return -EACCES;
6464
6465 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6466 !io_op_defs[req->opcode].buffer_select)
6467 return -EOPNOTSUPP;
6468
6469 id = READ_ONCE(sqe->personality);
6470 if (id) {
6471 struct io_identity *iod;
6472
6473 iod = idr_find(&ctx->personality_idr, id);
6474 if (unlikely(!iod))
6475 return -EINVAL;
6476 refcount_inc(&iod->count);
6477
6478 __io_req_init_async(req);
6479 get_cred(iod->creds);
6480 req->work.identity = iod;
6481 req->work.flags |= IO_WQ_WORK_CREDS;
6482 }
6483
6484 /* same numerical values with corresponding REQ_F_*, safe to copy */
6485 req->flags |= sqe_flags;
6486
6487 if (!io_op_defs[req->opcode].needs_file)
6488 return 0;
6489
6490 ret = io_req_set_file(state, req, READ_ONCE(sqe->fd));
6491 state->ios_left--;
6492 return ret;
6493 }
6494
6495 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6496 {
6497 struct io_submit_state state;
6498 struct io_kiocb *link = NULL;
6499 int i, submitted = 0;
6500
6501 /* if we have a backlog and couldn't flush it all, return BUSY */
6502 if (test_bit(0, &ctx->sq_check_overflow)) {
6503 if (!list_empty(&ctx->cq_overflow_list) &&
6504 !io_cqring_overflow_flush(ctx, false, NULL, NULL))
6505 return -EBUSY;
6506 }
6507
6508 /* make sure SQ entry isn't read before tail */
6509 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6510
6511 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6512 return -EAGAIN;
6513
6514 percpu_counter_add(&current->io_uring->inflight, nr);
6515 refcount_add(nr, &current->usage);
6516
6517 io_submit_state_start(&state, ctx, nr);
6518
6519 for (i = 0; i < nr; i++) {
6520 const struct io_uring_sqe *sqe;
6521 struct io_kiocb *req;
6522 int err;
6523
6524 sqe = io_get_sqe(ctx);
6525 if (unlikely(!sqe)) {
6526 io_consume_sqe(ctx);
6527 break;
6528 }
6529 req = io_alloc_req(ctx, &state);
6530 if (unlikely(!req)) {
6531 if (!submitted)
6532 submitted = -EAGAIN;
6533 break;
6534 }
6535 io_consume_sqe(ctx);
6536 /* will complete beyond this point, count as submitted */
6537 submitted++;
6538
6539 err = io_init_req(ctx, req, sqe, &state);
6540 if (unlikely(err)) {
6541 fail_req:
6542 io_put_req(req);
6543 io_req_complete(req, err);
6544 break;
6545 }
6546
6547 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6548 true, io_async_submit(ctx));
6549 err = io_submit_sqe(req, sqe, &link, &state.comp);
6550 if (err)
6551 goto fail_req;
6552 }
6553
6554 if (unlikely(submitted != nr)) {
6555 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6556 struct io_uring_task *tctx = current->io_uring;
6557 int unused = nr - ref_used;
6558
6559 percpu_ref_put_many(&ctx->refs, unused);
6560 percpu_counter_sub(&tctx->inflight, unused);
6561 put_task_struct_many(current, unused);
6562 }
6563 if (link)
6564 io_queue_link_head(link, &state.comp);
6565 io_submit_state_end(&state);
6566
6567 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6568 io_commit_sqring(ctx);
6569
6570 return submitted;
6571 }
6572
6573 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6574 {
6575 /* Tell userspace we may need a wakeup call */
6576 spin_lock_irq(&ctx->completion_lock);
6577 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6578 spin_unlock_irq(&ctx->completion_lock);
6579 }
6580
6581 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6582 {
6583 spin_lock_irq(&ctx->completion_lock);
6584 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6585 spin_unlock_irq(&ctx->completion_lock);
6586 }
6587
6588 static int io_sq_wake_function(struct wait_queue_entry *wqe, unsigned mode,
6589 int sync, void *key)
6590 {
6591 struct io_ring_ctx *ctx = container_of(wqe, struct io_ring_ctx, sqo_wait_entry);
6592 int ret;
6593
6594 ret = autoremove_wake_function(wqe, mode, sync, key);
6595 if (ret) {
6596 unsigned long flags;
6597
6598 spin_lock_irqsave(&ctx->completion_lock, flags);
6599 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6600 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6601 }
6602 return ret;
6603 }
6604
6605 enum sq_ret {
6606 SQT_IDLE = 1,
6607 SQT_SPIN = 2,
6608 SQT_DID_WORK = 4,
6609 };
6610
6611 static enum sq_ret __io_sq_thread(struct io_ring_ctx *ctx,
6612 unsigned long start_jiffies, bool cap_entries)
6613 {
6614 unsigned long timeout = start_jiffies + ctx->sq_thread_idle;
6615 struct io_sq_data *sqd = ctx->sq_data;
6616 unsigned int to_submit;
6617 int ret = 0;
6618
6619 again:
6620 if (!list_empty(&ctx->iopoll_list)) {
6621 unsigned nr_events = 0;
6622
6623 mutex_lock(&ctx->uring_lock);
6624 if (!list_empty(&ctx->iopoll_list) && !need_resched())
6625 io_do_iopoll(ctx, &nr_events, 0);
6626 mutex_unlock(&ctx->uring_lock);
6627 }
6628
6629 to_submit = io_sqring_entries(ctx);
6630
6631 /*
6632 * If submit got -EBUSY, flag us as needing the application
6633 * to enter the kernel to reap and flush events.
6634 */
6635 if (!to_submit || ret == -EBUSY || need_resched()) {
6636 /*
6637 * Drop cur_mm before scheduling, we can't hold it for
6638 * long periods (or over schedule()). Do this before
6639 * adding ourselves to the waitqueue, as the unuse/drop
6640 * may sleep.
6641 */
6642 io_sq_thread_drop_mm();
6643
6644 /*
6645 * We're polling. If we're within the defined idle
6646 * period, then let us spin without work before going
6647 * to sleep. The exception is if we got EBUSY doing
6648 * more IO, we should wait for the application to
6649 * reap events and wake us up.
6650 */
6651 if (!list_empty(&ctx->iopoll_list) || need_resched() ||
6652 (!time_after(jiffies, timeout) && ret != -EBUSY &&
6653 !percpu_ref_is_dying(&ctx->refs)))
6654 return SQT_SPIN;
6655
6656 prepare_to_wait(&sqd->wait, &ctx->sqo_wait_entry,
6657 TASK_INTERRUPTIBLE);
6658
6659 /*
6660 * While doing polled IO, before going to sleep, we need
6661 * to check if there are new reqs added to iopoll_list,
6662 * it is because reqs may have been punted to io worker
6663 * and will be added to iopoll_list later, hence check
6664 * the iopoll_list again.
6665 */
6666 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
6667 !list_empty_careful(&ctx->iopoll_list)) {
6668 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
6669 goto again;
6670 }
6671
6672 to_submit = io_sqring_entries(ctx);
6673 if (!to_submit || ret == -EBUSY)
6674 return SQT_IDLE;
6675 }
6676
6677 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
6678 io_ring_clear_wakeup_flag(ctx);
6679
6680 /* if we're handling multiple rings, cap submit size for fairness */
6681 if (cap_entries && to_submit > 8)
6682 to_submit = 8;
6683
6684 mutex_lock(&ctx->uring_lock);
6685 if (likely(!percpu_ref_is_dying(&ctx->refs)))
6686 ret = io_submit_sqes(ctx, to_submit);
6687 mutex_unlock(&ctx->uring_lock);
6688
6689 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6690 wake_up(&ctx->sqo_sq_wait);
6691
6692 return SQT_DID_WORK;
6693 }
6694
6695 static void io_sqd_init_new(struct io_sq_data *sqd)
6696 {
6697 struct io_ring_ctx *ctx;
6698
6699 while (!list_empty(&sqd->ctx_new_list)) {
6700 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6701 init_wait(&ctx->sqo_wait_entry);
6702 ctx->sqo_wait_entry.func = io_sq_wake_function;
6703 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6704 complete(&ctx->sq_thread_comp);
6705 }
6706 }
6707
6708 static int io_sq_thread(void *data)
6709 {
6710 struct cgroup_subsys_state *cur_css = NULL;
6711 const struct cred *old_cred = NULL;
6712 struct io_sq_data *sqd = data;
6713 struct io_ring_ctx *ctx;
6714 unsigned long start_jiffies;
6715
6716 start_jiffies = jiffies;
6717 while (!kthread_should_stop()) {
6718 enum sq_ret ret = 0;
6719 bool cap_entries;
6720
6721 /*
6722 * Any changes to the sqd lists are synchronized through the
6723 * kthread parking. This synchronizes the thread vs users,
6724 * the users are synchronized on the sqd->ctx_lock.
6725 */
6726 if (kthread_should_park())
6727 kthread_parkme();
6728
6729 if (unlikely(!list_empty(&sqd->ctx_new_list)))
6730 io_sqd_init_new(sqd);
6731
6732 cap_entries = !list_is_singular(&sqd->ctx_list);
6733
6734 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6735 if (current->cred != ctx->creds) {
6736 if (old_cred)
6737 revert_creds(old_cred);
6738 old_cred = override_creds(ctx->creds);
6739 }
6740 io_sq_thread_associate_blkcg(ctx, &cur_css);
6741 #ifdef CONFIG_AUDIT
6742 current->loginuid = ctx->loginuid;
6743 current->sessionid = ctx->sessionid;
6744 #endif
6745
6746 ret |= __io_sq_thread(ctx, start_jiffies, cap_entries);
6747
6748 io_sq_thread_drop_mm();
6749 }
6750
6751 if (ret & SQT_SPIN) {
6752 io_run_task_work();
6753 cond_resched();
6754 } else if (ret == SQT_IDLE) {
6755 if (kthread_should_park())
6756 continue;
6757 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6758 io_ring_set_wakeup_flag(ctx);
6759 schedule();
6760 start_jiffies = jiffies;
6761 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
6762 io_ring_clear_wakeup_flag(ctx);
6763 }
6764 }
6765
6766 io_run_task_work();
6767
6768 if (cur_css)
6769 io_sq_thread_unassociate_blkcg();
6770 if (old_cred)
6771 revert_creds(old_cred);
6772
6773 kthread_parkme();
6774
6775 return 0;
6776 }
6777
6778 struct io_wait_queue {
6779 struct wait_queue_entry wq;
6780 struct io_ring_ctx *ctx;
6781 unsigned to_wait;
6782 unsigned nr_timeouts;
6783 };
6784
6785 static inline bool io_should_wake(struct io_wait_queue *iowq, bool noflush)
6786 {
6787 struct io_ring_ctx *ctx = iowq->ctx;
6788
6789 /*
6790 * Wake up if we have enough events, or if a timeout occurred since we
6791 * started waiting. For timeouts, we always want to return to userspace,
6792 * regardless of event count.
6793 */
6794 return io_cqring_events(ctx, noflush) >= iowq->to_wait ||
6795 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
6796 }
6797
6798 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
6799 int wake_flags, void *key)
6800 {
6801 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
6802 wq);
6803
6804 /* use noflush == true, as we can't safely rely on locking context */
6805 if (!io_should_wake(iowq, true))
6806 return -1;
6807
6808 return autoremove_wake_function(curr, mode, wake_flags, key);
6809 }
6810
6811 static int io_run_task_work_sig(void)
6812 {
6813 if (io_run_task_work())
6814 return 1;
6815 if (!signal_pending(current))
6816 return 0;
6817 if (current->jobctl & JOBCTL_TASK_WORK) {
6818 spin_lock_irq(&current->sighand->siglock);
6819 current->jobctl &= ~JOBCTL_TASK_WORK;
6820 recalc_sigpending();
6821 spin_unlock_irq(&current->sighand->siglock);
6822 return 1;
6823 }
6824 return -EINTR;
6825 }
6826
6827 /*
6828 * Wait until events become available, if we don't already have some. The
6829 * application must reap them itself, as they reside on the shared cq ring.
6830 */
6831 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
6832 const sigset_t __user *sig, size_t sigsz)
6833 {
6834 struct io_wait_queue iowq = {
6835 .wq = {
6836 .private = current,
6837 .func = io_wake_function,
6838 .entry = LIST_HEAD_INIT(iowq.wq.entry),
6839 },
6840 .ctx = ctx,
6841 .to_wait = min_events,
6842 };
6843 struct io_rings *rings = ctx->rings;
6844 int ret = 0;
6845
6846 do {
6847 if (io_cqring_events(ctx, false) >= min_events)
6848 return 0;
6849 if (!io_run_task_work())
6850 break;
6851 } while (1);
6852
6853 if (sig) {
6854 #ifdef CONFIG_COMPAT
6855 if (in_compat_syscall())
6856 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
6857 sigsz);
6858 else
6859 #endif
6860 ret = set_user_sigmask(sig, sigsz);
6861
6862 if (ret)
6863 return ret;
6864 }
6865
6866 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
6867 trace_io_uring_cqring_wait(ctx, min_events);
6868 do {
6869 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
6870 TASK_INTERRUPTIBLE);
6871 /* make sure we run task_work before checking for signals */
6872 ret = io_run_task_work_sig();
6873 if (ret > 0)
6874 continue;
6875 else if (ret < 0)
6876 break;
6877 if (io_should_wake(&iowq, false))
6878 break;
6879 schedule();
6880 } while (1);
6881 finish_wait(&ctx->wait, &iowq.wq);
6882
6883 restore_saved_sigmask_unless(ret == -EINTR);
6884
6885 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
6886 }
6887
6888 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
6889 {
6890 #if defined(CONFIG_UNIX)
6891 if (ctx->ring_sock) {
6892 struct sock *sock = ctx->ring_sock->sk;
6893 struct sk_buff *skb;
6894
6895 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
6896 kfree_skb(skb);
6897 }
6898 #else
6899 int i;
6900
6901 for (i = 0; i < ctx->nr_user_files; i++) {
6902 struct file *file;
6903
6904 file = io_file_from_index(ctx, i);
6905 if (file)
6906 fput(file);
6907 }
6908 #endif
6909 }
6910
6911 static void io_file_ref_kill(struct percpu_ref *ref)
6912 {
6913 struct fixed_file_data *data;
6914
6915 data = container_of(ref, struct fixed_file_data, refs);
6916 complete(&data->done);
6917 }
6918
6919 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
6920 {
6921 struct fixed_file_data *data = ctx->file_data;
6922 struct fixed_file_ref_node *ref_node = NULL;
6923 unsigned nr_tables, i;
6924
6925 if (!data)
6926 return -ENXIO;
6927
6928 spin_lock(&data->lock);
6929 if (!list_empty(&data->ref_list))
6930 ref_node = list_first_entry(&data->ref_list,
6931 struct fixed_file_ref_node, node);
6932 spin_unlock(&data->lock);
6933 if (ref_node)
6934 percpu_ref_kill(&ref_node->refs);
6935
6936 percpu_ref_kill(&data->refs);
6937
6938 /* wait for all refs nodes to complete */
6939 flush_delayed_work(&ctx->file_put_work);
6940 wait_for_completion(&data->done);
6941
6942 __io_sqe_files_unregister(ctx);
6943 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
6944 for (i = 0; i < nr_tables; i++)
6945 kfree(data->table[i].files);
6946 kfree(data->table);
6947 percpu_ref_exit(&data->refs);
6948 kfree(data);
6949 ctx->file_data = NULL;
6950 ctx->nr_user_files = 0;
6951 return 0;
6952 }
6953
6954 static void io_put_sq_data(struct io_sq_data *sqd)
6955 {
6956 if (refcount_dec_and_test(&sqd->refs)) {
6957 /*
6958 * The park is a bit of a work-around, without it we get
6959 * warning spews on shutdown with SQPOLL set and affinity
6960 * set to a single CPU.
6961 */
6962 if (sqd->thread) {
6963 kthread_park(sqd->thread);
6964 kthread_stop(sqd->thread);
6965 }
6966
6967 kfree(sqd);
6968 }
6969 }
6970
6971 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
6972 {
6973 struct io_ring_ctx *ctx_attach;
6974 struct io_sq_data *sqd;
6975 struct fd f;
6976
6977 f = fdget(p->wq_fd);
6978 if (!f.file)
6979 return ERR_PTR(-ENXIO);
6980 if (f.file->f_op != &io_uring_fops) {
6981 fdput(f);
6982 return ERR_PTR(-EINVAL);
6983 }
6984
6985 ctx_attach = f.file->private_data;
6986 sqd = ctx_attach->sq_data;
6987 if (!sqd) {
6988 fdput(f);
6989 return ERR_PTR(-EINVAL);
6990 }
6991
6992 refcount_inc(&sqd->refs);
6993 fdput(f);
6994 return sqd;
6995 }
6996
6997 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
6998 {
6999 struct io_sq_data *sqd;
7000
7001 if (p->flags & IORING_SETUP_ATTACH_WQ)
7002 return io_attach_sq_data(p);
7003
7004 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7005 if (!sqd)
7006 return ERR_PTR(-ENOMEM);
7007
7008 refcount_set(&sqd->refs, 1);
7009 INIT_LIST_HEAD(&sqd->ctx_list);
7010 INIT_LIST_HEAD(&sqd->ctx_new_list);
7011 mutex_init(&sqd->ctx_lock);
7012 mutex_init(&sqd->lock);
7013 init_waitqueue_head(&sqd->wait);
7014 return sqd;
7015 }
7016
7017 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7018 __releases(&sqd->lock)
7019 {
7020 if (!sqd->thread)
7021 return;
7022 kthread_unpark(sqd->thread);
7023 mutex_unlock(&sqd->lock);
7024 }
7025
7026 static void io_sq_thread_park(struct io_sq_data *sqd)
7027 __acquires(&sqd->lock)
7028 {
7029 if (!sqd->thread)
7030 return;
7031 mutex_lock(&sqd->lock);
7032 kthread_park(sqd->thread);
7033 }
7034
7035 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7036 {
7037 struct io_sq_data *sqd = ctx->sq_data;
7038
7039 if (sqd) {
7040 if (sqd->thread) {
7041 /*
7042 * We may arrive here from the error branch in
7043 * io_sq_offload_create() where the kthread is created
7044 * without being waked up, thus wake it up now to make
7045 * sure the wait will complete.
7046 */
7047 wake_up_process(sqd->thread);
7048 wait_for_completion(&ctx->sq_thread_comp);
7049
7050 io_sq_thread_park(sqd);
7051 }
7052
7053 mutex_lock(&sqd->ctx_lock);
7054 list_del(&ctx->sqd_list);
7055 mutex_unlock(&sqd->ctx_lock);
7056
7057 if (sqd->thread) {
7058 finish_wait(&sqd->wait, &ctx->sqo_wait_entry);
7059 io_sq_thread_unpark(sqd);
7060 }
7061
7062 io_put_sq_data(sqd);
7063 ctx->sq_data = NULL;
7064 }
7065 }
7066
7067 static void io_finish_async(struct io_ring_ctx *ctx)
7068 {
7069 io_sq_thread_stop(ctx);
7070
7071 if (ctx->io_wq) {
7072 io_wq_destroy(ctx->io_wq);
7073 ctx->io_wq = NULL;
7074 }
7075 }
7076
7077 #if defined(CONFIG_UNIX)
7078 /*
7079 * Ensure the UNIX gc is aware of our file set, so we are certain that
7080 * the io_uring can be safely unregistered on process exit, even if we have
7081 * loops in the file referencing.
7082 */
7083 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7084 {
7085 struct sock *sk = ctx->ring_sock->sk;
7086 struct scm_fp_list *fpl;
7087 struct sk_buff *skb;
7088 int i, nr_files;
7089
7090 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7091 if (!fpl)
7092 return -ENOMEM;
7093
7094 skb = alloc_skb(0, GFP_KERNEL);
7095 if (!skb) {
7096 kfree(fpl);
7097 return -ENOMEM;
7098 }
7099
7100 skb->sk = sk;
7101
7102 nr_files = 0;
7103 fpl->user = get_uid(ctx->user);
7104 for (i = 0; i < nr; i++) {
7105 struct file *file = io_file_from_index(ctx, i + offset);
7106
7107 if (!file)
7108 continue;
7109 fpl->fp[nr_files] = get_file(file);
7110 unix_inflight(fpl->user, fpl->fp[nr_files]);
7111 nr_files++;
7112 }
7113
7114 if (nr_files) {
7115 fpl->max = SCM_MAX_FD;
7116 fpl->count = nr_files;
7117 UNIXCB(skb).fp = fpl;
7118 skb->destructor = unix_destruct_scm;
7119 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7120 skb_queue_head(&sk->sk_receive_queue, skb);
7121
7122 for (i = 0; i < nr_files; i++)
7123 fput(fpl->fp[i]);
7124 } else {
7125 kfree_skb(skb);
7126 kfree(fpl);
7127 }
7128
7129 return 0;
7130 }
7131
7132 /*
7133 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7134 * causes regular reference counting to break down. We rely on the UNIX
7135 * garbage collection to take care of this problem for us.
7136 */
7137 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7138 {
7139 unsigned left, total;
7140 int ret = 0;
7141
7142 total = 0;
7143 left = ctx->nr_user_files;
7144 while (left) {
7145 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7146
7147 ret = __io_sqe_files_scm(ctx, this_files, total);
7148 if (ret)
7149 break;
7150 left -= this_files;
7151 total += this_files;
7152 }
7153
7154 if (!ret)
7155 return 0;
7156
7157 while (total < ctx->nr_user_files) {
7158 struct file *file = io_file_from_index(ctx, total);
7159
7160 if (file)
7161 fput(file);
7162 total++;
7163 }
7164
7165 return ret;
7166 }
7167 #else
7168 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7169 {
7170 return 0;
7171 }
7172 #endif
7173
7174 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7175 unsigned nr_tables, unsigned nr_files)
7176 {
7177 int i;
7178
7179 for (i = 0; i < nr_tables; i++) {
7180 struct fixed_file_table *table = &file_data->table[i];
7181 unsigned this_files;
7182
7183 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7184 table->files = kcalloc(this_files, sizeof(struct file *),
7185 GFP_KERNEL);
7186 if (!table->files)
7187 break;
7188 nr_files -= this_files;
7189 }
7190
7191 if (i == nr_tables)
7192 return 0;
7193
7194 for (i = 0; i < nr_tables; i++) {
7195 struct fixed_file_table *table = &file_data->table[i];
7196 kfree(table->files);
7197 }
7198 return 1;
7199 }
7200
7201 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7202 {
7203 #if defined(CONFIG_UNIX)
7204 struct sock *sock = ctx->ring_sock->sk;
7205 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7206 struct sk_buff *skb;
7207 int i;
7208
7209 __skb_queue_head_init(&list);
7210
7211 /*
7212 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7213 * remove this entry and rearrange the file array.
7214 */
7215 skb = skb_dequeue(head);
7216 while (skb) {
7217 struct scm_fp_list *fp;
7218
7219 fp = UNIXCB(skb).fp;
7220 for (i = 0; i < fp->count; i++) {
7221 int left;
7222
7223 if (fp->fp[i] != file)
7224 continue;
7225
7226 unix_notinflight(fp->user, fp->fp[i]);
7227 left = fp->count - 1 - i;
7228 if (left) {
7229 memmove(&fp->fp[i], &fp->fp[i + 1],
7230 left * sizeof(struct file *));
7231 }
7232 fp->count--;
7233 if (!fp->count) {
7234 kfree_skb(skb);
7235 skb = NULL;
7236 } else {
7237 __skb_queue_tail(&list, skb);
7238 }
7239 fput(file);
7240 file = NULL;
7241 break;
7242 }
7243
7244 if (!file)
7245 break;
7246
7247 __skb_queue_tail(&list, skb);
7248
7249 skb = skb_dequeue(head);
7250 }
7251
7252 if (skb_peek(&list)) {
7253 spin_lock_irq(&head->lock);
7254 while ((skb = __skb_dequeue(&list)) != NULL)
7255 __skb_queue_tail(head, skb);
7256 spin_unlock_irq(&head->lock);
7257 }
7258 #else
7259 fput(file);
7260 #endif
7261 }
7262
7263 struct io_file_put {
7264 struct list_head list;
7265 struct file *file;
7266 };
7267
7268 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7269 {
7270 struct fixed_file_data *file_data = ref_node->file_data;
7271 struct io_ring_ctx *ctx = file_data->ctx;
7272 struct io_file_put *pfile, *tmp;
7273
7274 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7275 list_del(&pfile->list);
7276 io_ring_file_put(ctx, pfile->file);
7277 kfree(pfile);
7278 }
7279
7280 spin_lock(&file_data->lock);
7281 list_del(&ref_node->node);
7282 spin_unlock(&file_data->lock);
7283
7284 percpu_ref_exit(&ref_node->refs);
7285 kfree(ref_node);
7286 percpu_ref_put(&file_data->refs);
7287 }
7288
7289 static void io_file_put_work(struct work_struct *work)
7290 {
7291 struct io_ring_ctx *ctx;
7292 struct llist_node *node;
7293
7294 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7295 node = llist_del_all(&ctx->file_put_llist);
7296
7297 while (node) {
7298 struct fixed_file_ref_node *ref_node;
7299 struct llist_node *next = node->next;
7300
7301 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7302 __io_file_put_work(ref_node);
7303 node = next;
7304 }
7305 }
7306
7307 static void io_file_data_ref_zero(struct percpu_ref *ref)
7308 {
7309 struct fixed_file_ref_node *ref_node;
7310 struct io_ring_ctx *ctx;
7311 bool first_add;
7312 int delay = HZ;
7313
7314 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7315 ctx = ref_node->file_data->ctx;
7316
7317 if (percpu_ref_is_dying(&ctx->file_data->refs))
7318 delay = 0;
7319
7320 first_add = llist_add(&ref_node->llist, &ctx->file_put_llist);
7321 if (!delay)
7322 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7323 else if (first_add)
7324 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7325 }
7326
7327 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7328 struct io_ring_ctx *ctx)
7329 {
7330 struct fixed_file_ref_node *ref_node;
7331
7332 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7333 if (!ref_node)
7334 return ERR_PTR(-ENOMEM);
7335
7336 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7337 0, GFP_KERNEL)) {
7338 kfree(ref_node);
7339 return ERR_PTR(-ENOMEM);
7340 }
7341 INIT_LIST_HEAD(&ref_node->node);
7342 INIT_LIST_HEAD(&ref_node->file_list);
7343 ref_node->file_data = ctx->file_data;
7344 return ref_node;
7345 }
7346
7347 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7348 {
7349 percpu_ref_exit(&ref_node->refs);
7350 kfree(ref_node);
7351 }
7352
7353 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7354 unsigned nr_args)
7355 {
7356 __s32 __user *fds = (__s32 __user *) arg;
7357 unsigned nr_tables, i;
7358 struct file *file;
7359 int fd, ret = -ENOMEM;
7360 struct fixed_file_ref_node *ref_node;
7361 struct fixed_file_data *file_data;
7362
7363 if (ctx->file_data)
7364 return -EBUSY;
7365 if (!nr_args)
7366 return -EINVAL;
7367 if (nr_args > IORING_MAX_FIXED_FILES)
7368 return -EMFILE;
7369
7370 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7371 if (!file_data)
7372 return -ENOMEM;
7373 file_data->ctx = ctx;
7374 init_completion(&file_data->done);
7375 INIT_LIST_HEAD(&file_data->ref_list);
7376 spin_lock_init(&file_data->lock);
7377
7378 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7379 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7380 GFP_KERNEL);
7381 if (!file_data->table)
7382 goto out_free;
7383
7384 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7385 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7386 goto out_free;
7387
7388 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7389 goto out_ref;
7390 ctx->file_data = file_data;
7391
7392 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7393 struct fixed_file_table *table;
7394 unsigned index;
7395
7396 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7397 ret = -EFAULT;
7398 goto out_fput;
7399 }
7400 /* allow sparse sets */
7401 if (fd == -1)
7402 continue;
7403
7404 file = fget(fd);
7405 ret = -EBADF;
7406 if (!file)
7407 goto out_fput;
7408
7409 /*
7410 * Don't allow io_uring instances to be registered. If UNIX
7411 * isn't enabled, then this causes a reference cycle and this
7412 * instance can never get freed. If UNIX is enabled we'll
7413 * handle it just fine, but there's still no point in allowing
7414 * a ring fd as it doesn't support regular read/write anyway.
7415 */
7416 if (file->f_op == &io_uring_fops) {
7417 fput(file);
7418 goto out_fput;
7419 }
7420 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7421 index = i & IORING_FILE_TABLE_MASK;
7422 table->files[index] = file;
7423 }
7424
7425 ret = io_sqe_files_scm(ctx);
7426 if (ret) {
7427 io_sqe_files_unregister(ctx);
7428 return ret;
7429 }
7430
7431 ref_node = alloc_fixed_file_ref_node(ctx);
7432 if (IS_ERR(ref_node)) {
7433 io_sqe_files_unregister(ctx);
7434 return PTR_ERR(ref_node);
7435 }
7436
7437 file_data->node = ref_node;
7438 spin_lock(&file_data->lock);
7439 list_add(&ref_node->node, &file_data->ref_list);
7440 spin_unlock(&file_data->lock);
7441 percpu_ref_get(&file_data->refs);
7442 return ret;
7443 out_fput:
7444 for (i = 0; i < ctx->nr_user_files; i++) {
7445 file = io_file_from_index(ctx, i);
7446 if (file)
7447 fput(file);
7448 }
7449 for (i = 0; i < nr_tables; i++)
7450 kfree(file_data->table[i].files);
7451 ctx->nr_user_files = 0;
7452 out_ref:
7453 percpu_ref_exit(&file_data->refs);
7454 out_free:
7455 kfree(file_data->table);
7456 kfree(file_data);
7457 ctx->file_data = NULL;
7458 return ret;
7459 }
7460
7461 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7462 int index)
7463 {
7464 #if defined(CONFIG_UNIX)
7465 struct sock *sock = ctx->ring_sock->sk;
7466 struct sk_buff_head *head = &sock->sk_receive_queue;
7467 struct sk_buff *skb;
7468
7469 /*
7470 * See if we can merge this file into an existing skb SCM_RIGHTS
7471 * file set. If there's no room, fall back to allocating a new skb
7472 * and filling it in.
7473 */
7474 spin_lock_irq(&head->lock);
7475 skb = skb_peek(head);
7476 if (skb) {
7477 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7478
7479 if (fpl->count < SCM_MAX_FD) {
7480 __skb_unlink(skb, head);
7481 spin_unlock_irq(&head->lock);
7482 fpl->fp[fpl->count] = get_file(file);
7483 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7484 fpl->count++;
7485 spin_lock_irq(&head->lock);
7486 __skb_queue_head(head, skb);
7487 } else {
7488 skb = NULL;
7489 }
7490 }
7491 spin_unlock_irq(&head->lock);
7492
7493 if (skb) {
7494 fput(file);
7495 return 0;
7496 }
7497
7498 return __io_sqe_files_scm(ctx, 1, index);
7499 #else
7500 return 0;
7501 #endif
7502 }
7503
7504 static int io_queue_file_removal(struct fixed_file_data *data,
7505 struct file *file)
7506 {
7507 struct io_file_put *pfile;
7508 struct fixed_file_ref_node *ref_node = data->node;
7509
7510 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7511 if (!pfile)
7512 return -ENOMEM;
7513
7514 pfile->file = file;
7515 list_add(&pfile->list, &ref_node->file_list);
7516
7517 return 0;
7518 }
7519
7520 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7521 struct io_uring_files_update *up,
7522 unsigned nr_args)
7523 {
7524 struct fixed_file_data *data = ctx->file_data;
7525 struct fixed_file_ref_node *ref_node;
7526 struct file *file;
7527 __s32 __user *fds;
7528 int fd, i, err;
7529 __u32 done;
7530 bool needs_switch = false;
7531
7532 if (check_add_overflow(up->offset, nr_args, &done))
7533 return -EOVERFLOW;
7534 if (done > ctx->nr_user_files)
7535 return -EINVAL;
7536
7537 ref_node = alloc_fixed_file_ref_node(ctx);
7538 if (IS_ERR(ref_node))
7539 return PTR_ERR(ref_node);
7540
7541 done = 0;
7542 fds = u64_to_user_ptr(up->fds);
7543 while (nr_args) {
7544 struct fixed_file_table *table;
7545 unsigned index;
7546
7547 err = 0;
7548 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7549 err = -EFAULT;
7550 break;
7551 }
7552 i = array_index_nospec(up->offset, ctx->nr_user_files);
7553 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7554 index = i & IORING_FILE_TABLE_MASK;
7555 if (table->files[index]) {
7556 file = table->files[index];
7557 err = io_queue_file_removal(data, file);
7558 if (err)
7559 break;
7560 table->files[index] = NULL;
7561 needs_switch = true;
7562 }
7563 if (fd != -1) {
7564 file = fget(fd);
7565 if (!file) {
7566 err = -EBADF;
7567 break;
7568 }
7569 /*
7570 * Don't allow io_uring instances to be registered. If
7571 * UNIX isn't enabled, then this causes a reference
7572 * cycle and this instance can never get freed. If UNIX
7573 * is enabled we'll handle it just fine, but there's
7574 * still no point in allowing a ring fd as it doesn't
7575 * support regular read/write anyway.
7576 */
7577 if (file->f_op == &io_uring_fops) {
7578 fput(file);
7579 err = -EBADF;
7580 break;
7581 }
7582 table->files[index] = file;
7583 err = io_sqe_file_register(ctx, file, i);
7584 if (err) {
7585 table->files[index] = NULL;
7586 fput(file);
7587 break;
7588 }
7589 }
7590 nr_args--;
7591 done++;
7592 up->offset++;
7593 }
7594
7595 if (needs_switch) {
7596 percpu_ref_kill(&data->node->refs);
7597 spin_lock(&data->lock);
7598 list_add(&ref_node->node, &data->ref_list);
7599 data->node = ref_node;
7600 spin_unlock(&data->lock);
7601 percpu_ref_get(&ctx->file_data->refs);
7602 } else
7603 destroy_fixed_file_ref_node(ref_node);
7604
7605 return done ? done : err;
7606 }
7607
7608 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7609 unsigned nr_args)
7610 {
7611 struct io_uring_files_update up;
7612
7613 if (!ctx->file_data)
7614 return -ENXIO;
7615 if (!nr_args)
7616 return -EINVAL;
7617 if (copy_from_user(&up, arg, sizeof(up)))
7618 return -EFAULT;
7619 if (up.resv)
7620 return -EINVAL;
7621
7622 return __io_sqe_files_update(ctx, &up, nr_args);
7623 }
7624
7625 static void io_free_work(struct io_wq_work *work)
7626 {
7627 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7628
7629 /* Consider that io_steal_work() relies on this ref */
7630 io_put_req(req);
7631 }
7632
7633 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7634 struct io_uring_params *p)
7635 {
7636 struct io_wq_data data;
7637 struct fd f;
7638 struct io_ring_ctx *ctx_attach;
7639 unsigned int concurrency;
7640 int ret = 0;
7641
7642 data.user = ctx->user;
7643 data.free_work = io_free_work;
7644 data.do_work = io_wq_submit_work;
7645
7646 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
7647 /* Do QD, or 4 * CPUS, whatever is smallest */
7648 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
7649
7650 ctx->io_wq = io_wq_create(concurrency, &data);
7651 if (IS_ERR(ctx->io_wq)) {
7652 ret = PTR_ERR(ctx->io_wq);
7653 ctx->io_wq = NULL;
7654 }
7655 return ret;
7656 }
7657
7658 f = fdget(p->wq_fd);
7659 if (!f.file)
7660 return -EBADF;
7661
7662 if (f.file->f_op != &io_uring_fops) {
7663 ret = -EINVAL;
7664 goto out_fput;
7665 }
7666
7667 ctx_attach = f.file->private_data;
7668 /* @io_wq is protected by holding the fd */
7669 if (!io_wq_get(ctx_attach->io_wq, &data)) {
7670 ret = -EINVAL;
7671 goto out_fput;
7672 }
7673
7674 ctx->io_wq = ctx_attach->io_wq;
7675 out_fput:
7676 fdput(f);
7677 return ret;
7678 }
7679
7680 static int io_uring_alloc_task_context(struct task_struct *task)
7681 {
7682 struct io_uring_task *tctx;
7683 int ret;
7684
7685 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
7686 if (unlikely(!tctx))
7687 return -ENOMEM;
7688
7689 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
7690 if (unlikely(ret)) {
7691 kfree(tctx);
7692 return ret;
7693 }
7694
7695 xa_init(&tctx->xa);
7696 init_waitqueue_head(&tctx->wait);
7697 tctx->last = NULL;
7698 tctx->in_idle = 0;
7699 io_init_identity(&tctx->__identity);
7700 tctx->identity = &tctx->__identity;
7701 task->io_uring = tctx;
7702 return 0;
7703 }
7704
7705 void __io_uring_free(struct task_struct *tsk)
7706 {
7707 struct io_uring_task *tctx = tsk->io_uring;
7708
7709 WARN_ON_ONCE(!xa_empty(&tctx->xa));
7710 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
7711 if (tctx->identity != &tctx->__identity)
7712 kfree(tctx->identity);
7713 percpu_counter_destroy(&tctx->inflight);
7714 kfree(tctx);
7715 tsk->io_uring = NULL;
7716 }
7717
7718 static int io_sq_offload_create(struct io_ring_ctx *ctx,
7719 struct io_uring_params *p)
7720 {
7721 int ret;
7722
7723 if (ctx->flags & IORING_SETUP_SQPOLL) {
7724 struct io_sq_data *sqd;
7725
7726 ret = -EPERM;
7727 if (!capable(CAP_SYS_ADMIN))
7728 goto err;
7729
7730 sqd = io_get_sq_data(p);
7731 if (IS_ERR(sqd)) {
7732 ret = PTR_ERR(sqd);
7733 goto err;
7734 }
7735
7736 ctx->sq_data = sqd;
7737 io_sq_thread_park(sqd);
7738 mutex_lock(&sqd->ctx_lock);
7739 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
7740 mutex_unlock(&sqd->ctx_lock);
7741 io_sq_thread_unpark(sqd);
7742
7743 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
7744 if (!ctx->sq_thread_idle)
7745 ctx->sq_thread_idle = HZ;
7746
7747 if (sqd->thread)
7748 goto done;
7749
7750 if (p->flags & IORING_SETUP_SQ_AFF) {
7751 int cpu = p->sq_thread_cpu;
7752
7753 ret = -EINVAL;
7754 if (cpu >= nr_cpu_ids)
7755 goto err;
7756 if (!cpu_online(cpu))
7757 goto err;
7758
7759 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
7760 cpu, "io_uring-sq");
7761 } else {
7762 sqd->thread = kthread_create(io_sq_thread, sqd,
7763 "io_uring-sq");
7764 }
7765 if (IS_ERR(sqd->thread)) {
7766 ret = PTR_ERR(sqd->thread);
7767 sqd->thread = NULL;
7768 goto err;
7769 }
7770 ret = io_uring_alloc_task_context(sqd->thread);
7771 if (ret)
7772 goto err;
7773 } else if (p->flags & IORING_SETUP_SQ_AFF) {
7774 /* Can't have SQ_AFF without SQPOLL */
7775 ret = -EINVAL;
7776 goto err;
7777 }
7778
7779 done:
7780 ret = io_init_wq_offload(ctx, p);
7781 if (ret)
7782 goto err;
7783
7784 return 0;
7785 err:
7786 io_finish_async(ctx);
7787 return ret;
7788 }
7789
7790 static void io_sq_offload_start(struct io_ring_ctx *ctx)
7791 {
7792 struct io_sq_data *sqd = ctx->sq_data;
7793
7794 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
7795 wake_up_process(sqd->thread);
7796 }
7797
7798 static inline void __io_unaccount_mem(struct user_struct *user,
7799 unsigned long nr_pages)
7800 {
7801 atomic_long_sub(nr_pages, &user->locked_vm);
7802 }
7803
7804 static inline int __io_account_mem(struct user_struct *user,
7805 unsigned long nr_pages)
7806 {
7807 unsigned long page_limit, cur_pages, new_pages;
7808
7809 /* Don't allow more pages than we can safely lock */
7810 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
7811
7812 do {
7813 cur_pages = atomic_long_read(&user->locked_vm);
7814 new_pages = cur_pages + nr_pages;
7815 if (new_pages > page_limit)
7816 return -ENOMEM;
7817 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
7818 new_pages) != cur_pages);
7819
7820 return 0;
7821 }
7822
7823 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7824 enum io_mem_account acct)
7825 {
7826 if (ctx->limit_mem)
7827 __io_unaccount_mem(ctx->user, nr_pages);
7828
7829 if (ctx->mm_account) {
7830 if (acct == ACCT_LOCKED)
7831 ctx->mm_account->locked_vm -= nr_pages;
7832 else if (acct == ACCT_PINNED)
7833 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
7834 }
7835 }
7836
7837 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
7838 enum io_mem_account acct)
7839 {
7840 int ret;
7841
7842 if (ctx->limit_mem) {
7843 ret = __io_account_mem(ctx->user, nr_pages);
7844 if (ret)
7845 return ret;
7846 }
7847
7848 if (ctx->mm_account) {
7849 if (acct == ACCT_LOCKED)
7850 ctx->mm_account->locked_vm += nr_pages;
7851 else if (acct == ACCT_PINNED)
7852 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
7853 }
7854
7855 return 0;
7856 }
7857
7858 static void io_mem_free(void *ptr)
7859 {
7860 struct page *page;
7861
7862 if (!ptr)
7863 return;
7864
7865 page = virt_to_head_page(ptr);
7866 if (put_page_testzero(page))
7867 free_compound_page(page);
7868 }
7869
7870 static void *io_mem_alloc(size_t size)
7871 {
7872 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
7873 __GFP_NORETRY;
7874
7875 return (void *) __get_free_pages(gfp_flags, get_order(size));
7876 }
7877
7878 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
7879 size_t *sq_offset)
7880 {
7881 struct io_rings *rings;
7882 size_t off, sq_array_size;
7883
7884 off = struct_size(rings, cqes, cq_entries);
7885 if (off == SIZE_MAX)
7886 return SIZE_MAX;
7887
7888 #ifdef CONFIG_SMP
7889 off = ALIGN(off, SMP_CACHE_BYTES);
7890 if (off == 0)
7891 return SIZE_MAX;
7892 #endif
7893
7894 if (sq_offset)
7895 *sq_offset = off;
7896
7897 sq_array_size = array_size(sizeof(u32), sq_entries);
7898 if (sq_array_size == SIZE_MAX)
7899 return SIZE_MAX;
7900
7901 if (check_add_overflow(off, sq_array_size, &off))
7902 return SIZE_MAX;
7903
7904 return off;
7905 }
7906
7907 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
7908 {
7909 size_t pages;
7910
7911 pages = (size_t)1 << get_order(
7912 rings_size(sq_entries, cq_entries, NULL));
7913 pages += (size_t)1 << get_order(
7914 array_size(sizeof(struct io_uring_sqe), sq_entries));
7915
7916 return pages;
7917 }
7918
7919 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
7920 {
7921 int i, j;
7922
7923 if (!ctx->user_bufs)
7924 return -ENXIO;
7925
7926 for (i = 0; i < ctx->nr_user_bufs; i++) {
7927 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7928
7929 for (j = 0; j < imu->nr_bvecs; j++)
7930 unpin_user_page(imu->bvec[j].bv_page);
7931
7932 if (imu->acct_pages)
7933 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
7934 kvfree(imu->bvec);
7935 imu->nr_bvecs = 0;
7936 }
7937
7938 kfree(ctx->user_bufs);
7939 ctx->user_bufs = NULL;
7940 ctx->nr_user_bufs = 0;
7941 return 0;
7942 }
7943
7944 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
7945 void __user *arg, unsigned index)
7946 {
7947 struct iovec __user *src;
7948
7949 #ifdef CONFIG_COMPAT
7950 if (ctx->compat) {
7951 struct compat_iovec __user *ciovs;
7952 struct compat_iovec ciov;
7953
7954 ciovs = (struct compat_iovec __user *) arg;
7955 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
7956 return -EFAULT;
7957
7958 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
7959 dst->iov_len = ciov.iov_len;
7960 return 0;
7961 }
7962 #endif
7963 src = (struct iovec __user *) arg;
7964 if (copy_from_user(dst, &src[index], sizeof(*dst)))
7965 return -EFAULT;
7966 return 0;
7967 }
7968
7969 /*
7970 * Not super efficient, but this is just a registration time. And we do cache
7971 * the last compound head, so generally we'll only do a full search if we don't
7972 * match that one.
7973 *
7974 * We check if the given compound head page has already been accounted, to
7975 * avoid double accounting it. This allows us to account the full size of the
7976 * page, not just the constituent pages of a huge page.
7977 */
7978 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
7979 int nr_pages, struct page *hpage)
7980 {
7981 int i, j;
7982
7983 /* check current page array */
7984 for (i = 0; i < nr_pages; i++) {
7985 if (!PageCompound(pages[i]))
7986 continue;
7987 if (compound_head(pages[i]) == hpage)
7988 return true;
7989 }
7990
7991 /* check previously registered pages */
7992 for (i = 0; i < ctx->nr_user_bufs; i++) {
7993 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
7994
7995 for (j = 0; j < imu->nr_bvecs; j++) {
7996 if (!PageCompound(imu->bvec[j].bv_page))
7997 continue;
7998 if (compound_head(imu->bvec[j].bv_page) == hpage)
7999 return true;
8000 }
8001 }
8002
8003 return false;
8004 }
8005
8006 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8007 int nr_pages, struct io_mapped_ubuf *imu,
8008 struct page **last_hpage)
8009 {
8010 int i, ret;
8011
8012 for (i = 0; i < nr_pages; i++) {
8013 if (!PageCompound(pages[i])) {
8014 imu->acct_pages++;
8015 } else {
8016 struct page *hpage;
8017
8018 hpage = compound_head(pages[i]);
8019 if (hpage == *last_hpage)
8020 continue;
8021 *last_hpage = hpage;
8022 if (headpage_already_acct(ctx, pages, i, hpage))
8023 continue;
8024 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8025 }
8026 }
8027
8028 if (!imu->acct_pages)
8029 return 0;
8030
8031 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8032 if (ret)
8033 imu->acct_pages = 0;
8034 return ret;
8035 }
8036
8037 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8038 unsigned nr_args)
8039 {
8040 struct vm_area_struct **vmas = NULL;
8041 struct page **pages = NULL;
8042 struct page *last_hpage = NULL;
8043 int i, j, got_pages = 0;
8044 int ret = -EINVAL;
8045
8046 if (ctx->user_bufs)
8047 return -EBUSY;
8048 if (!nr_args || nr_args > UIO_MAXIOV)
8049 return -EINVAL;
8050
8051 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8052 GFP_KERNEL);
8053 if (!ctx->user_bufs)
8054 return -ENOMEM;
8055
8056 for (i = 0; i < nr_args; i++) {
8057 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8058 unsigned long off, start, end, ubuf;
8059 int pret, nr_pages;
8060 struct iovec iov;
8061 size_t size;
8062
8063 ret = io_copy_iov(ctx, &iov, arg, i);
8064 if (ret)
8065 goto err;
8066
8067 /*
8068 * Don't impose further limits on the size and buffer
8069 * constraints here, we'll -EINVAL later when IO is
8070 * submitted if they are wrong.
8071 */
8072 ret = -EFAULT;
8073 if (!iov.iov_base || !iov.iov_len)
8074 goto err;
8075
8076 /* arbitrary limit, but we need something */
8077 if (iov.iov_len > SZ_1G)
8078 goto err;
8079
8080 ubuf = (unsigned long) iov.iov_base;
8081 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8082 start = ubuf >> PAGE_SHIFT;
8083 nr_pages = end - start;
8084
8085 ret = 0;
8086 if (!pages || nr_pages > got_pages) {
8087 kvfree(vmas);
8088 kvfree(pages);
8089 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8090 GFP_KERNEL);
8091 vmas = kvmalloc_array(nr_pages,
8092 sizeof(struct vm_area_struct *),
8093 GFP_KERNEL);
8094 if (!pages || !vmas) {
8095 ret = -ENOMEM;
8096 goto err;
8097 }
8098 got_pages = nr_pages;
8099 }
8100
8101 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8102 GFP_KERNEL);
8103 ret = -ENOMEM;
8104 if (!imu->bvec)
8105 goto err;
8106
8107 ret = 0;
8108 mmap_read_lock(current->mm);
8109 pret = pin_user_pages(ubuf, nr_pages,
8110 FOLL_WRITE | FOLL_LONGTERM,
8111 pages, vmas);
8112 if (pret == nr_pages) {
8113 /* don't support file backed memory */
8114 for (j = 0; j < nr_pages; j++) {
8115 struct vm_area_struct *vma = vmas[j];
8116
8117 if (vma->vm_file &&
8118 !is_file_hugepages(vma->vm_file)) {
8119 ret = -EOPNOTSUPP;
8120 break;
8121 }
8122 }
8123 } else {
8124 ret = pret < 0 ? pret : -EFAULT;
8125 }
8126 mmap_read_unlock(current->mm);
8127 if (ret) {
8128 /*
8129 * if we did partial map, or found file backed vmas,
8130 * release any pages we did get
8131 */
8132 if (pret > 0)
8133 unpin_user_pages(pages, pret);
8134 kvfree(imu->bvec);
8135 goto err;
8136 }
8137
8138 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8139 if (ret) {
8140 unpin_user_pages(pages, pret);
8141 kvfree(imu->bvec);
8142 goto err;
8143 }
8144
8145 off = ubuf & ~PAGE_MASK;
8146 size = iov.iov_len;
8147 for (j = 0; j < nr_pages; j++) {
8148 size_t vec_len;
8149
8150 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8151 imu->bvec[j].bv_page = pages[j];
8152 imu->bvec[j].bv_len = vec_len;
8153 imu->bvec[j].bv_offset = off;
8154 off = 0;
8155 size -= vec_len;
8156 }
8157 /* store original address for later verification */
8158 imu->ubuf = ubuf;
8159 imu->len = iov.iov_len;
8160 imu->nr_bvecs = nr_pages;
8161
8162 ctx->nr_user_bufs++;
8163 }
8164 kvfree(pages);
8165 kvfree(vmas);
8166 return 0;
8167 err:
8168 kvfree(pages);
8169 kvfree(vmas);
8170 io_sqe_buffer_unregister(ctx);
8171 return ret;
8172 }
8173
8174 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8175 {
8176 __s32 __user *fds = arg;
8177 int fd;
8178
8179 if (ctx->cq_ev_fd)
8180 return -EBUSY;
8181
8182 if (copy_from_user(&fd, fds, sizeof(*fds)))
8183 return -EFAULT;
8184
8185 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8186 if (IS_ERR(ctx->cq_ev_fd)) {
8187 int ret = PTR_ERR(ctx->cq_ev_fd);
8188 ctx->cq_ev_fd = NULL;
8189 return ret;
8190 }
8191
8192 return 0;
8193 }
8194
8195 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8196 {
8197 if (ctx->cq_ev_fd) {
8198 eventfd_ctx_put(ctx->cq_ev_fd);
8199 ctx->cq_ev_fd = NULL;
8200 return 0;
8201 }
8202
8203 return -ENXIO;
8204 }
8205
8206 static int __io_destroy_buffers(int id, void *p, void *data)
8207 {
8208 struct io_ring_ctx *ctx = data;
8209 struct io_buffer *buf = p;
8210
8211 __io_remove_buffers(ctx, buf, id, -1U);
8212 return 0;
8213 }
8214
8215 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8216 {
8217 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8218 idr_destroy(&ctx->io_buffer_idr);
8219 }
8220
8221 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8222 {
8223 io_finish_async(ctx);
8224 io_sqe_buffer_unregister(ctx);
8225
8226 if (ctx->sqo_task) {
8227 put_task_struct(ctx->sqo_task);
8228 ctx->sqo_task = NULL;
8229 mmdrop(ctx->mm_account);
8230 ctx->mm_account = NULL;
8231 }
8232
8233 #ifdef CONFIG_BLK_CGROUP
8234 if (ctx->sqo_blkcg_css)
8235 css_put(ctx->sqo_blkcg_css);
8236 #endif
8237
8238 io_sqe_files_unregister(ctx);
8239 io_eventfd_unregister(ctx);
8240 io_destroy_buffers(ctx);
8241 idr_destroy(&ctx->personality_idr);
8242
8243 #if defined(CONFIG_UNIX)
8244 if (ctx->ring_sock) {
8245 ctx->ring_sock->file = NULL; /* so that iput() is called */
8246 sock_release(ctx->ring_sock);
8247 }
8248 #endif
8249
8250 io_mem_free(ctx->rings);
8251 io_mem_free(ctx->sq_sqes);
8252
8253 percpu_ref_exit(&ctx->refs);
8254 free_uid(ctx->user);
8255 put_cred(ctx->creds);
8256 kfree(ctx->cancel_hash);
8257 kmem_cache_free(req_cachep, ctx->fallback_req);
8258 kfree(ctx);
8259 }
8260
8261 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8262 {
8263 struct io_ring_ctx *ctx = file->private_data;
8264 __poll_t mask = 0;
8265
8266 poll_wait(file, &ctx->cq_wait, wait);
8267 /*
8268 * synchronizes with barrier from wq_has_sleeper call in
8269 * io_commit_cqring
8270 */
8271 smp_rmb();
8272 if (!io_sqring_full(ctx))
8273 mask |= EPOLLOUT | EPOLLWRNORM;
8274 if (io_cqring_events(ctx, false))
8275 mask |= EPOLLIN | EPOLLRDNORM;
8276
8277 return mask;
8278 }
8279
8280 static int io_uring_fasync(int fd, struct file *file, int on)
8281 {
8282 struct io_ring_ctx *ctx = file->private_data;
8283
8284 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8285 }
8286
8287 static int io_remove_personalities(int id, void *p, void *data)
8288 {
8289 struct io_ring_ctx *ctx = data;
8290 struct io_identity *iod;
8291
8292 iod = idr_remove(&ctx->personality_idr, id);
8293 if (iod) {
8294 put_cred(iod->creds);
8295 if (refcount_dec_and_test(&iod->count))
8296 kfree(iod);
8297 }
8298 return 0;
8299 }
8300
8301 static void io_ring_exit_work(struct work_struct *work)
8302 {
8303 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8304 exit_work);
8305
8306 /*
8307 * If we're doing polled IO and end up having requests being
8308 * submitted async (out-of-line), then completions can come in while
8309 * we're waiting for refs to drop. We need to reap these manually,
8310 * as nobody else will be looking for them.
8311 */
8312 do {
8313 if (ctx->rings)
8314 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8315 io_iopoll_try_reap_events(ctx);
8316 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8317 io_ring_ctx_free(ctx);
8318 }
8319
8320 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8321 {
8322 mutex_lock(&ctx->uring_lock);
8323 percpu_ref_kill(&ctx->refs);
8324 mutex_unlock(&ctx->uring_lock);
8325
8326 io_kill_timeouts(ctx, NULL);
8327 io_poll_remove_all(ctx, NULL);
8328
8329 if (ctx->io_wq)
8330 io_wq_cancel_all(ctx->io_wq);
8331
8332 /* if we failed setting up the ctx, we might not have any rings */
8333 if (ctx->rings)
8334 io_cqring_overflow_flush(ctx, true, NULL, NULL);
8335 io_iopoll_try_reap_events(ctx);
8336 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8337
8338 /*
8339 * Do this upfront, so we won't have a grace period where the ring
8340 * is closed but resources aren't reaped yet. This can cause
8341 * spurious failure in setting up a new ring.
8342 */
8343 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8344 ACCT_LOCKED);
8345
8346 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8347 /*
8348 * Use system_unbound_wq to avoid spawning tons of event kworkers
8349 * if we're exiting a ton of rings at the same time. It just adds
8350 * noise and overhead, there's no discernable change in runtime
8351 * over using system_wq.
8352 */
8353 queue_work(system_unbound_wq, &ctx->exit_work);
8354 }
8355
8356 static int io_uring_release(struct inode *inode, struct file *file)
8357 {
8358 struct io_ring_ctx *ctx = file->private_data;
8359
8360 file->private_data = NULL;
8361 io_ring_ctx_wait_and_kill(ctx);
8362 return 0;
8363 }
8364
8365 static bool io_wq_files_match(struct io_wq_work *work, void *data)
8366 {
8367 struct files_struct *files = data;
8368
8369 return !files || ((work->flags & IO_WQ_WORK_FILES) &&
8370 work->identity->files == files);
8371 }
8372
8373 /*
8374 * Returns true if 'preq' is the link parent of 'req'
8375 */
8376 static bool io_match_link(struct io_kiocb *preq, struct io_kiocb *req)
8377 {
8378 struct io_kiocb *link;
8379
8380 if (!(preq->flags & REQ_F_LINK_HEAD))
8381 return false;
8382
8383 list_for_each_entry(link, &preq->link_list, link_list) {
8384 if (link == req)
8385 return true;
8386 }
8387
8388 return false;
8389 }
8390
8391 static bool io_match_link_files(struct io_kiocb *req,
8392 struct files_struct *files)
8393 {
8394 struct io_kiocb *link;
8395
8396 if (io_match_files(req, files))
8397 return true;
8398 if (req->flags & REQ_F_LINK_HEAD) {
8399 list_for_each_entry(link, &req->link_list, link_list) {
8400 if (io_match_files(link, files))
8401 return true;
8402 }
8403 }
8404 return false;
8405 }
8406
8407 /*
8408 * We're looking to cancel 'req' because it's holding on to our files, but
8409 * 'req' could be a link to another request. See if it is, and cancel that
8410 * parent request if so.
8411 */
8412 static bool io_poll_remove_link(struct io_ring_ctx *ctx, struct io_kiocb *req)
8413 {
8414 struct hlist_node *tmp;
8415 struct io_kiocb *preq;
8416 bool found = false;
8417 int i;
8418
8419 spin_lock_irq(&ctx->completion_lock);
8420 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
8421 struct hlist_head *list;
8422
8423 list = &ctx->cancel_hash[i];
8424 hlist_for_each_entry_safe(preq, tmp, list, hash_node) {
8425 found = io_match_link(preq, req);
8426 if (found) {
8427 io_poll_remove_one(preq);
8428 break;
8429 }
8430 }
8431 }
8432 spin_unlock_irq(&ctx->completion_lock);
8433 return found;
8434 }
8435
8436 static bool io_timeout_remove_link(struct io_ring_ctx *ctx,
8437 struct io_kiocb *req)
8438 {
8439 struct io_kiocb *preq;
8440 bool found = false;
8441
8442 spin_lock_irq(&ctx->completion_lock);
8443 list_for_each_entry(preq, &ctx->timeout_list, timeout.list) {
8444 found = io_match_link(preq, req);
8445 if (found) {
8446 __io_timeout_cancel(preq);
8447 break;
8448 }
8449 }
8450 spin_unlock_irq(&ctx->completion_lock);
8451 return found;
8452 }
8453
8454 static bool io_cancel_link_cb(struct io_wq_work *work, void *data)
8455 {
8456 return io_match_link(container_of(work, struct io_kiocb, work), data);
8457 }
8458
8459 static void io_attempt_cancel(struct io_ring_ctx *ctx, struct io_kiocb *req)
8460 {
8461 enum io_wq_cancel cret;
8462
8463 /* cancel this particular work, if it's running */
8464 cret = io_wq_cancel_work(ctx->io_wq, &req->work);
8465 if (cret != IO_WQ_CANCEL_NOTFOUND)
8466 return;
8467
8468 /* find links that hold this pending, cancel those */
8469 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_link_cb, req, true);
8470 if (cret != IO_WQ_CANCEL_NOTFOUND)
8471 return;
8472
8473 /* if we have a poll link holding this pending, cancel that */
8474 if (io_poll_remove_link(ctx, req))
8475 return;
8476
8477 /* final option, timeout link is holding this req pending */
8478 io_timeout_remove_link(ctx, req);
8479 }
8480
8481 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8482 struct files_struct *files)
8483 {
8484 struct io_defer_entry *de = NULL;
8485 LIST_HEAD(list);
8486
8487 spin_lock_irq(&ctx->completion_lock);
8488 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8489 if (io_match_link_files(de->req, files)) {
8490 list_cut_position(&list, &ctx->defer_list, &de->list);
8491 break;
8492 }
8493 }
8494 spin_unlock_irq(&ctx->completion_lock);
8495
8496 while (!list_empty(&list)) {
8497 de = list_first_entry(&list, struct io_defer_entry, list);
8498 list_del_init(&de->list);
8499 req_set_fail_links(de->req);
8500 io_put_req(de->req);
8501 io_req_complete(de->req, -ECANCELED);
8502 kfree(de);
8503 }
8504 }
8505
8506 /*
8507 * Returns true if we found and killed one or more files pinning requests
8508 */
8509 static bool io_uring_cancel_files(struct io_ring_ctx *ctx,
8510 struct files_struct *files)
8511 {
8512 if (list_empty_careful(&ctx->inflight_list))
8513 return false;
8514
8515 io_cancel_defer_files(ctx, files);
8516 /* cancel all at once, should be faster than doing it one by one*/
8517 io_wq_cancel_cb(ctx->io_wq, io_wq_files_match, files, true);
8518
8519 while (!list_empty_careful(&ctx->inflight_list)) {
8520 struct io_kiocb *cancel_req = NULL, *req;
8521 DEFINE_WAIT(wait);
8522
8523 spin_lock_irq(&ctx->inflight_lock);
8524 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8525 if (files && (req->work.flags & IO_WQ_WORK_FILES) &&
8526 req->work.identity->files != files)
8527 continue;
8528 /* req is being completed, ignore */
8529 if (!refcount_inc_not_zero(&req->refs))
8530 continue;
8531 cancel_req = req;
8532 break;
8533 }
8534 if (cancel_req)
8535 prepare_to_wait(&ctx->inflight_wait, &wait,
8536 TASK_UNINTERRUPTIBLE);
8537 spin_unlock_irq(&ctx->inflight_lock);
8538
8539 /* We need to keep going until we don't find a matching req */
8540 if (!cancel_req)
8541 break;
8542 /* cancel this request, or head link requests */
8543 io_attempt_cancel(ctx, cancel_req);
8544 io_put_req(cancel_req);
8545 /* cancellations _may_ trigger task work */
8546 io_run_task_work();
8547 schedule();
8548 finish_wait(&ctx->inflight_wait, &wait);
8549 }
8550
8551 return true;
8552 }
8553
8554 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8555 {
8556 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8557 struct task_struct *task = data;
8558
8559 return io_task_match(req, task);
8560 }
8561
8562 static bool __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8563 struct task_struct *task,
8564 struct files_struct *files)
8565 {
8566 bool ret;
8567
8568 ret = io_uring_cancel_files(ctx, files);
8569 if (!files) {
8570 enum io_wq_cancel cret;
8571
8572 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, task, true);
8573 if (cret != IO_WQ_CANCEL_NOTFOUND)
8574 ret = true;
8575
8576 /* SQPOLL thread does its own polling */
8577 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8578 while (!list_empty_careful(&ctx->iopoll_list)) {
8579 io_iopoll_try_reap_events(ctx);
8580 ret = true;
8581 }
8582 }
8583
8584 ret |= io_poll_remove_all(ctx, task);
8585 ret |= io_kill_timeouts(ctx, task);
8586 }
8587
8588 return ret;
8589 }
8590
8591 /*
8592 * We need to iteratively cancel requests, in case a request has dependent
8593 * hard links. These persist even for failure of cancelations, hence keep
8594 * looping until none are found.
8595 */
8596 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8597 struct files_struct *files)
8598 {
8599 struct task_struct *task = current;
8600
8601 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data)
8602 task = ctx->sq_data->thread;
8603
8604 io_cqring_overflow_flush(ctx, true, task, files);
8605
8606 while (__io_uring_cancel_task_requests(ctx, task, files)) {
8607 io_run_task_work();
8608 cond_resched();
8609 }
8610 }
8611
8612 /*
8613 * Note that this task has used io_uring. We use it for cancelation purposes.
8614 */
8615 static int io_uring_add_task_file(struct file *file)
8616 {
8617 struct io_uring_task *tctx = current->io_uring;
8618
8619 if (unlikely(!tctx)) {
8620 int ret;
8621
8622 ret = io_uring_alloc_task_context(current);
8623 if (unlikely(ret))
8624 return ret;
8625 tctx = current->io_uring;
8626 }
8627 if (tctx->last != file) {
8628 void *old = xa_load(&tctx->xa, (unsigned long)file);
8629
8630 if (!old) {
8631 get_file(file);
8632 xa_store(&tctx->xa, (unsigned long)file, file, GFP_KERNEL);
8633 }
8634 tctx->last = file;
8635 }
8636
8637 return 0;
8638 }
8639
8640 /*
8641 * Remove this io_uring_file -> task mapping.
8642 */
8643 static void io_uring_del_task_file(struct file *file)
8644 {
8645 struct io_uring_task *tctx = current->io_uring;
8646
8647 if (tctx->last == file)
8648 tctx->last = NULL;
8649 file = xa_erase(&tctx->xa, (unsigned long)file);
8650 if (file)
8651 fput(file);
8652 }
8653
8654 /*
8655 * Drop task note for this file if we're the only ones that hold it after
8656 * pending fput()
8657 */
8658 static void io_uring_attempt_task_drop(struct file *file)
8659 {
8660 if (!current->io_uring)
8661 return;
8662 /*
8663 * fput() is pending, will be 2 if the only other ref is our potential
8664 * task file note. If the task is exiting, drop regardless of count.
8665 */
8666 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8667 atomic_long_read(&file->f_count) == 2)
8668 io_uring_del_task_file(file);
8669 }
8670
8671 void __io_uring_files_cancel(struct files_struct *files)
8672 {
8673 struct io_uring_task *tctx = current->io_uring;
8674 struct file *file;
8675 unsigned long index;
8676
8677 /* make sure overflow events are dropped */
8678 tctx->in_idle = true;
8679
8680 xa_for_each(&tctx->xa, index, file) {
8681 struct io_ring_ctx *ctx = file->private_data;
8682
8683 io_uring_cancel_task_requests(ctx, files);
8684 if (files)
8685 io_uring_del_task_file(file);
8686 }
8687 }
8688
8689 /*
8690 * Find any io_uring fd that this task has registered or done IO on, and cancel
8691 * requests.
8692 */
8693 void __io_uring_task_cancel(void)
8694 {
8695 struct io_uring_task *tctx = current->io_uring;
8696 DEFINE_WAIT(wait);
8697 s64 inflight;
8698
8699 /* make sure overflow events are dropped */
8700 tctx->in_idle = true;
8701
8702 do {
8703 /* read completions before cancelations */
8704 inflight = percpu_counter_sum(&tctx->inflight);
8705 if (!inflight)
8706 break;
8707 __io_uring_files_cancel(NULL);
8708
8709 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
8710
8711 /*
8712 * If we've seen completions, retry. This avoids a race where
8713 * a completion comes in before we did prepare_to_wait().
8714 */
8715 if (inflight != percpu_counter_sum(&tctx->inflight))
8716 continue;
8717 schedule();
8718 } while (1);
8719
8720 finish_wait(&tctx->wait, &wait);
8721 tctx->in_idle = false;
8722 }
8723
8724 static int io_uring_flush(struct file *file, void *data)
8725 {
8726 io_uring_attempt_task_drop(file);
8727 return 0;
8728 }
8729
8730 static void *io_uring_validate_mmap_request(struct file *file,
8731 loff_t pgoff, size_t sz)
8732 {
8733 struct io_ring_ctx *ctx = file->private_data;
8734 loff_t offset = pgoff << PAGE_SHIFT;
8735 struct page *page;
8736 void *ptr;
8737
8738 switch (offset) {
8739 case IORING_OFF_SQ_RING:
8740 case IORING_OFF_CQ_RING:
8741 ptr = ctx->rings;
8742 break;
8743 case IORING_OFF_SQES:
8744 ptr = ctx->sq_sqes;
8745 break;
8746 default:
8747 return ERR_PTR(-EINVAL);
8748 }
8749
8750 page = virt_to_head_page(ptr);
8751 if (sz > page_size(page))
8752 return ERR_PTR(-EINVAL);
8753
8754 return ptr;
8755 }
8756
8757 #ifdef CONFIG_MMU
8758
8759 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8760 {
8761 size_t sz = vma->vm_end - vma->vm_start;
8762 unsigned long pfn;
8763 void *ptr;
8764
8765 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
8766 if (IS_ERR(ptr))
8767 return PTR_ERR(ptr);
8768
8769 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
8770 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
8771 }
8772
8773 #else /* !CONFIG_MMU */
8774
8775 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
8776 {
8777 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
8778 }
8779
8780 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
8781 {
8782 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
8783 }
8784
8785 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
8786 unsigned long addr, unsigned long len,
8787 unsigned long pgoff, unsigned long flags)
8788 {
8789 void *ptr;
8790
8791 ptr = io_uring_validate_mmap_request(file, pgoff, len);
8792 if (IS_ERR(ptr))
8793 return PTR_ERR(ptr);
8794
8795 return (unsigned long) ptr;
8796 }
8797
8798 #endif /* !CONFIG_MMU */
8799
8800 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
8801 {
8802 DEFINE_WAIT(wait);
8803
8804 do {
8805 if (!io_sqring_full(ctx))
8806 break;
8807
8808 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
8809
8810 if (!io_sqring_full(ctx))
8811 break;
8812
8813 schedule();
8814 } while (!signal_pending(current));
8815
8816 finish_wait(&ctx->sqo_sq_wait, &wait);
8817 }
8818
8819 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
8820 u32, min_complete, u32, flags, const sigset_t __user *, sig,
8821 size_t, sigsz)
8822 {
8823 struct io_ring_ctx *ctx;
8824 long ret = -EBADF;
8825 int submitted = 0;
8826 struct fd f;
8827
8828 io_run_task_work();
8829
8830 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
8831 IORING_ENTER_SQ_WAIT))
8832 return -EINVAL;
8833
8834 f = fdget(fd);
8835 if (!f.file)
8836 return -EBADF;
8837
8838 ret = -EOPNOTSUPP;
8839 if (f.file->f_op != &io_uring_fops)
8840 goto out_fput;
8841
8842 ret = -ENXIO;
8843 ctx = f.file->private_data;
8844 if (!percpu_ref_tryget(&ctx->refs))
8845 goto out_fput;
8846
8847 ret = -EBADFD;
8848 if (ctx->flags & IORING_SETUP_R_DISABLED)
8849 goto out;
8850
8851 /*
8852 * For SQ polling, the thread will do all submissions and completions.
8853 * Just return the requested submit count, and wake the thread if
8854 * we were asked to.
8855 */
8856 ret = 0;
8857 if (ctx->flags & IORING_SETUP_SQPOLL) {
8858 if (!list_empty_careful(&ctx->cq_overflow_list))
8859 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8860 if (flags & IORING_ENTER_SQ_WAKEUP)
8861 wake_up(&ctx->sq_data->wait);
8862 if (flags & IORING_ENTER_SQ_WAIT)
8863 io_sqpoll_wait_sq(ctx);
8864 submitted = to_submit;
8865 } else if (to_submit) {
8866 ret = io_uring_add_task_file(f.file);
8867 if (unlikely(ret))
8868 goto out;
8869 mutex_lock(&ctx->uring_lock);
8870 submitted = io_submit_sqes(ctx, to_submit);
8871 mutex_unlock(&ctx->uring_lock);
8872
8873 if (submitted != to_submit)
8874 goto out;
8875 }
8876 if (flags & IORING_ENTER_GETEVENTS) {
8877 min_complete = min(min_complete, ctx->cq_entries);
8878
8879 /*
8880 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
8881 * space applications don't need to do io completion events
8882 * polling again, they can rely on io_sq_thread to do polling
8883 * work, which can reduce cpu usage and uring_lock contention.
8884 */
8885 if (ctx->flags & IORING_SETUP_IOPOLL &&
8886 !(ctx->flags & IORING_SETUP_SQPOLL)) {
8887 ret = io_iopoll_check(ctx, min_complete);
8888 } else {
8889 ret = io_cqring_wait(ctx, min_complete, sig, sigsz);
8890 }
8891 }
8892
8893 out:
8894 percpu_ref_put(&ctx->refs);
8895 out_fput:
8896 fdput(f);
8897 return submitted ? submitted : ret;
8898 }
8899
8900 #ifdef CONFIG_PROC_FS
8901 static int io_uring_show_cred(int id, void *p, void *data)
8902 {
8903 const struct cred *cred = p;
8904 struct seq_file *m = data;
8905 struct user_namespace *uns = seq_user_ns(m);
8906 struct group_info *gi;
8907 kernel_cap_t cap;
8908 unsigned __capi;
8909 int g;
8910
8911 seq_printf(m, "%5d\n", id);
8912 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
8913 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
8914 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
8915 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
8916 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
8917 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
8918 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
8919 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
8920 seq_puts(m, "\n\tGroups:\t");
8921 gi = cred->group_info;
8922 for (g = 0; g < gi->ngroups; g++) {
8923 seq_put_decimal_ull(m, g ? " " : "",
8924 from_kgid_munged(uns, gi->gid[g]));
8925 }
8926 seq_puts(m, "\n\tCapEff:\t");
8927 cap = cred->cap_effective;
8928 CAP_FOR_EACH_U32(__capi)
8929 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
8930 seq_putc(m, '\n');
8931 return 0;
8932 }
8933
8934 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
8935 {
8936 struct io_sq_data *sq = NULL;
8937 bool has_lock;
8938 int i;
8939
8940 /*
8941 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
8942 * since fdinfo case grabs it in the opposite direction of normal use
8943 * cases. If we fail to get the lock, we just don't iterate any
8944 * structures that could be going away outside the io_uring mutex.
8945 */
8946 has_lock = mutex_trylock(&ctx->uring_lock);
8947
8948 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
8949 sq = ctx->sq_data;
8950
8951 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
8952 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
8953 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
8954 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
8955 struct fixed_file_table *table;
8956 struct file *f;
8957
8958 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
8959 f = table->files[i & IORING_FILE_TABLE_MASK];
8960 if (f)
8961 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
8962 else
8963 seq_printf(m, "%5u: <none>\n", i);
8964 }
8965 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
8966 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
8967 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
8968
8969 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
8970 (unsigned int) buf->len);
8971 }
8972 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
8973 seq_printf(m, "Personalities:\n");
8974 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
8975 }
8976 seq_printf(m, "PollList:\n");
8977 spin_lock_irq(&ctx->completion_lock);
8978 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
8979 struct hlist_head *list = &ctx->cancel_hash[i];
8980 struct io_kiocb *req;
8981
8982 hlist_for_each_entry(req, list, hash_node)
8983 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
8984 req->task->task_works != NULL);
8985 }
8986 spin_unlock_irq(&ctx->completion_lock);
8987 if (has_lock)
8988 mutex_unlock(&ctx->uring_lock);
8989 }
8990
8991 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
8992 {
8993 struct io_ring_ctx *ctx = f->private_data;
8994
8995 if (percpu_ref_tryget(&ctx->refs)) {
8996 __io_uring_show_fdinfo(ctx, m);
8997 percpu_ref_put(&ctx->refs);
8998 }
8999 }
9000 #endif
9001
9002 static const struct file_operations io_uring_fops = {
9003 .release = io_uring_release,
9004 .flush = io_uring_flush,
9005 .mmap = io_uring_mmap,
9006 #ifndef CONFIG_MMU
9007 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9008 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9009 #endif
9010 .poll = io_uring_poll,
9011 .fasync = io_uring_fasync,
9012 #ifdef CONFIG_PROC_FS
9013 .show_fdinfo = io_uring_show_fdinfo,
9014 #endif
9015 };
9016
9017 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9018 struct io_uring_params *p)
9019 {
9020 struct io_rings *rings;
9021 size_t size, sq_array_offset;
9022
9023 /* make sure these are sane, as we already accounted them */
9024 ctx->sq_entries = p->sq_entries;
9025 ctx->cq_entries = p->cq_entries;
9026
9027 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9028 if (size == SIZE_MAX)
9029 return -EOVERFLOW;
9030
9031 rings = io_mem_alloc(size);
9032 if (!rings)
9033 return -ENOMEM;
9034
9035 ctx->rings = rings;
9036 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9037 rings->sq_ring_mask = p->sq_entries - 1;
9038 rings->cq_ring_mask = p->cq_entries - 1;
9039 rings->sq_ring_entries = p->sq_entries;
9040 rings->cq_ring_entries = p->cq_entries;
9041 ctx->sq_mask = rings->sq_ring_mask;
9042 ctx->cq_mask = rings->cq_ring_mask;
9043
9044 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9045 if (size == SIZE_MAX) {
9046 io_mem_free(ctx->rings);
9047 ctx->rings = NULL;
9048 return -EOVERFLOW;
9049 }
9050
9051 ctx->sq_sqes = io_mem_alloc(size);
9052 if (!ctx->sq_sqes) {
9053 io_mem_free(ctx->rings);
9054 ctx->rings = NULL;
9055 return -ENOMEM;
9056 }
9057
9058 return 0;
9059 }
9060
9061 /*
9062 * Allocate an anonymous fd, this is what constitutes the application
9063 * visible backing of an io_uring instance. The application mmaps this
9064 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9065 * we have to tie this fd to a socket for file garbage collection purposes.
9066 */
9067 static int io_uring_get_fd(struct io_ring_ctx *ctx)
9068 {
9069 struct file *file;
9070 int ret;
9071
9072 #if defined(CONFIG_UNIX)
9073 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9074 &ctx->ring_sock);
9075 if (ret)
9076 return ret;
9077 #endif
9078
9079 ret = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9080 if (ret < 0)
9081 goto err;
9082
9083 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9084 O_RDWR | O_CLOEXEC);
9085 if (IS_ERR(file)) {
9086 err_fd:
9087 put_unused_fd(ret);
9088 ret = PTR_ERR(file);
9089 goto err;
9090 }
9091
9092 #if defined(CONFIG_UNIX)
9093 ctx->ring_sock->file = file;
9094 #endif
9095 if (unlikely(io_uring_add_task_file(file))) {
9096 file = ERR_PTR(-ENOMEM);
9097 goto err_fd;
9098 }
9099 fd_install(ret, file);
9100 return ret;
9101 err:
9102 #if defined(CONFIG_UNIX)
9103 sock_release(ctx->ring_sock);
9104 ctx->ring_sock = NULL;
9105 #endif
9106 return ret;
9107 }
9108
9109 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9110 struct io_uring_params __user *params)
9111 {
9112 struct user_struct *user = NULL;
9113 struct io_ring_ctx *ctx;
9114 bool limit_mem;
9115 int ret;
9116
9117 if (!entries)
9118 return -EINVAL;
9119 if (entries > IORING_MAX_ENTRIES) {
9120 if (!(p->flags & IORING_SETUP_CLAMP))
9121 return -EINVAL;
9122 entries = IORING_MAX_ENTRIES;
9123 }
9124
9125 /*
9126 * Use twice as many entries for the CQ ring. It's possible for the
9127 * application to drive a higher depth than the size of the SQ ring,
9128 * since the sqes are only used at submission time. This allows for
9129 * some flexibility in overcommitting a bit. If the application has
9130 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9131 * of CQ ring entries manually.
9132 */
9133 p->sq_entries = roundup_pow_of_two(entries);
9134 if (p->flags & IORING_SETUP_CQSIZE) {
9135 /*
9136 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9137 * to a power-of-two, if it isn't already. We do NOT impose
9138 * any cq vs sq ring sizing.
9139 */
9140 if (p->cq_entries < p->sq_entries)
9141 return -EINVAL;
9142 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9143 if (!(p->flags & IORING_SETUP_CLAMP))
9144 return -EINVAL;
9145 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9146 }
9147 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9148 } else {
9149 p->cq_entries = 2 * p->sq_entries;
9150 }
9151
9152 user = get_uid(current_user());
9153 limit_mem = !capable(CAP_IPC_LOCK);
9154
9155 if (limit_mem) {
9156 ret = __io_account_mem(user,
9157 ring_pages(p->sq_entries, p->cq_entries));
9158 if (ret) {
9159 free_uid(user);
9160 return ret;
9161 }
9162 }
9163
9164 ctx = io_ring_ctx_alloc(p);
9165 if (!ctx) {
9166 if (limit_mem)
9167 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9168 p->cq_entries));
9169 free_uid(user);
9170 return -ENOMEM;
9171 }
9172 ctx->compat = in_compat_syscall();
9173 ctx->user = user;
9174 ctx->creds = get_current_cred();
9175 #ifdef CONFIG_AUDIT
9176 ctx->loginuid = current->loginuid;
9177 ctx->sessionid = current->sessionid;
9178 #endif
9179 ctx->sqo_task = get_task_struct(current);
9180
9181 /*
9182 * This is just grabbed for accounting purposes. When a process exits,
9183 * the mm is exited and dropped before the files, hence we need to hang
9184 * on to this mm purely for the purposes of being able to unaccount
9185 * memory (locked/pinned vm). It's not used for anything else.
9186 */
9187 mmgrab(current->mm);
9188 ctx->mm_account = current->mm;
9189
9190 #ifdef CONFIG_BLK_CGROUP
9191 /*
9192 * The sq thread will belong to the original cgroup it was inited in.
9193 * If the cgroup goes offline (e.g. disabling the io controller), then
9194 * issued bios will be associated with the closest cgroup later in the
9195 * block layer.
9196 */
9197 rcu_read_lock();
9198 ctx->sqo_blkcg_css = blkcg_css();
9199 ret = css_tryget_online(ctx->sqo_blkcg_css);
9200 rcu_read_unlock();
9201 if (!ret) {
9202 /* don't init against a dying cgroup, have the user try again */
9203 ctx->sqo_blkcg_css = NULL;
9204 ret = -ENODEV;
9205 goto err;
9206 }
9207 #endif
9208
9209 /*
9210 * Account memory _before_ installing the file descriptor. Once
9211 * the descriptor is installed, it can get closed at any time. Also
9212 * do this before hitting the general error path, as ring freeing
9213 * will un-account as well.
9214 */
9215 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9216 ACCT_LOCKED);
9217 ctx->limit_mem = limit_mem;
9218
9219 ret = io_allocate_scq_urings(ctx, p);
9220 if (ret)
9221 goto err;
9222
9223 ret = io_sq_offload_create(ctx, p);
9224 if (ret)
9225 goto err;
9226
9227 if (!(p->flags & IORING_SETUP_R_DISABLED))
9228 io_sq_offload_start(ctx);
9229
9230 memset(&p->sq_off, 0, sizeof(p->sq_off));
9231 p->sq_off.head = offsetof(struct io_rings, sq.head);
9232 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9233 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9234 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9235 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9236 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9237 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9238
9239 memset(&p->cq_off, 0, sizeof(p->cq_off));
9240 p->cq_off.head = offsetof(struct io_rings, cq.head);
9241 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9242 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9243 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9244 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9245 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9246 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9247
9248 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9249 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9250 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9251 IORING_FEAT_POLL_32BITS;
9252
9253 if (copy_to_user(params, p, sizeof(*p))) {
9254 ret = -EFAULT;
9255 goto err;
9256 }
9257
9258 /*
9259 * Install ring fd as the very last thing, so we don't risk someone
9260 * having closed it before we finish setup
9261 */
9262 ret = io_uring_get_fd(ctx);
9263 if (ret < 0)
9264 goto err;
9265
9266 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9267 return ret;
9268 err:
9269 io_ring_ctx_wait_and_kill(ctx);
9270 return ret;
9271 }
9272
9273 /*
9274 * Sets up an aio uring context, and returns the fd. Applications asks for a
9275 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9276 * params structure passed in.
9277 */
9278 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9279 {
9280 struct io_uring_params p;
9281 int i;
9282
9283 if (copy_from_user(&p, params, sizeof(p)))
9284 return -EFAULT;
9285 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9286 if (p.resv[i])
9287 return -EINVAL;
9288 }
9289
9290 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9291 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9292 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9293 IORING_SETUP_R_DISABLED))
9294 return -EINVAL;
9295
9296 return io_uring_create(entries, &p, params);
9297 }
9298
9299 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9300 struct io_uring_params __user *, params)
9301 {
9302 return io_uring_setup(entries, params);
9303 }
9304
9305 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9306 {
9307 struct io_uring_probe *p;
9308 size_t size;
9309 int i, ret;
9310
9311 size = struct_size(p, ops, nr_args);
9312 if (size == SIZE_MAX)
9313 return -EOVERFLOW;
9314 p = kzalloc(size, GFP_KERNEL);
9315 if (!p)
9316 return -ENOMEM;
9317
9318 ret = -EFAULT;
9319 if (copy_from_user(p, arg, size))
9320 goto out;
9321 ret = -EINVAL;
9322 if (memchr_inv(p, 0, size))
9323 goto out;
9324
9325 p->last_op = IORING_OP_LAST - 1;
9326 if (nr_args > IORING_OP_LAST)
9327 nr_args = IORING_OP_LAST;
9328
9329 for (i = 0; i < nr_args; i++) {
9330 p->ops[i].op = i;
9331 if (!io_op_defs[i].not_supported)
9332 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9333 }
9334 p->ops_len = i;
9335
9336 ret = 0;
9337 if (copy_to_user(arg, p, size))
9338 ret = -EFAULT;
9339 out:
9340 kfree(p);
9341 return ret;
9342 }
9343
9344 static int io_register_personality(struct io_ring_ctx *ctx)
9345 {
9346 struct io_identity *id;
9347 int ret;
9348
9349 id = kmalloc(sizeof(*id), GFP_KERNEL);
9350 if (unlikely(!id))
9351 return -ENOMEM;
9352
9353 io_init_identity(id);
9354 id->creds = get_current_cred();
9355
9356 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9357 if (ret < 0) {
9358 put_cred(id->creds);
9359 kfree(id);
9360 }
9361 return ret;
9362 }
9363
9364 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9365 {
9366 struct io_identity *iod;
9367
9368 iod = idr_remove(&ctx->personality_idr, id);
9369 if (iod) {
9370 put_cred(iod->creds);
9371 if (refcount_dec_and_test(&iod->count))
9372 kfree(iod);
9373 return 0;
9374 }
9375
9376 return -EINVAL;
9377 }
9378
9379 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9380 unsigned int nr_args)
9381 {
9382 struct io_uring_restriction *res;
9383 size_t size;
9384 int i, ret;
9385
9386 /* Restrictions allowed only if rings started disabled */
9387 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9388 return -EBADFD;
9389
9390 /* We allow only a single restrictions registration */
9391 if (ctx->restrictions.registered)
9392 return -EBUSY;
9393
9394 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9395 return -EINVAL;
9396
9397 size = array_size(nr_args, sizeof(*res));
9398 if (size == SIZE_MAX)
9399 return -EOVERFLOW;
9400
9401 res = memdup_user(arg, size);
9402 if (IS_ERR(res))
9403 return PTR_ERR(res);
9404
9405 ret = 0;
9406
9407 for (i = 0; i < nr_args; i++) {
9408 switch (res[i].opcode) {
9409 case IORING_RESTRICTION_REGISTER_OP:
9410 if (res[i].register_op >= IORING_REGISTER_LAST) {
9411 ret = -EINVAL;
9412 goto out;
9413 }
9414
9415 __set_bit(res[i].register_op,
9416 ctx->restrictions.register_op);
9417 break;
9418 case IORING_RESTRICTION_SQE_OP:
9419 if (res[i].sqe_op >= IORING_OP_LAST) {
9420 ret = -EINVAL;
9421 goto out;
9422 }
9423
9424 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9425 break;
9426 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9427 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9428 break;
9429 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9430 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9431 break;
9432 default:
9433 ret = -EINVAL;
9434 goto out;
9435 }
9436 }
9437
9438 out:
9439 /* Reset all restrictions if an error happened */
9440 if (ret != 0)
9441 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9442 else
9443 ctx->restrictions.registered = true;
9444
9445 kfree(res);
9446 return ret;
9447 }
9448
9449 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9450 {
9451 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9452 return -EBADFD;
9453
9454 if (ctx->restrictions.registered)
9455 ctx->restricted = 1;
9456
9457 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9458
9459 io_sq_offload_start(ctx);
9460
9461 return 0;
9462 }
9463
9464 static bool io_register_op_must_quiesce(int op)
9465 {
9466 switch (op) {
9467 case IORING_UNREGISTER_FILES:
9468 case IORING_REGISTER_FILES_UPDATE:
9469 case IORING_REGISTER_PROBE:
9470 case IORING_REGISTER_PERSONALITY:
9471 case IORING_UNREGISTER_PERSONALITY:
9472 return false;
9473 default:
9474 return true;
9475 }
9476 }
9477
9478 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9479 void __user *arg, unsigned nr_args)
9480 __releases(ctx->uring_lock)
9481 __acquires(ctx->uring_lock)
9482 {
9483 int ret;
9484
9485 /*
9486 * We're inside the ring mutex, if the ref is already dying, then
9487 * someone else killed the ctx or is already going through
9488 * io_uring_register().
9489 */
9490 if (percpu_ref_is_dying(&ctx->refs))
9491 return -ENXIO;
9492
9493 if (io_register_op_must_quiesce(opcode)) {
9494 percpu_ref_kill(&ctx->refs);
9495
9496 /*
9497 * Drop uring mutex before waiting for references to exit. If
9498 * another thread is currently inside io_uring_enter() it might
9499 * need to grab the uring_lock to make progress. If we hold it
9500 * here across the drain wait, then we can deadlock. It's safe
9501 * to drop the mutex here, since no new references will come in
9502 * after we've killed the percpu ref.
9503 */
9504 mutex_unlock(&ctx->uring_lock);
9505 do {
9506 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9507 if (!ret)
9508 break;
9509 ret = io_run_task_work_sig();
9510 if (ret < 0)
9511 break;
9512 } while (1);
9513
9514 mutex_lock(&ctx->uring_lock);
9515
9516 if (ret) {
9517 percpu_ref_resurrect(&ctx->refs);
9518 goto out_quiesce;
9519 }
9520 }
9521
9522 if (ctx->restricted) {
9523 if (opcode >= IORING_REGISTER_LAST) {
9524 ret = -EINVAL;
9525 goto out;
9526 }
9527
9528 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9529 ret = -EACCES;
9530 goto out;
9531 }
9532 }
9533
9534 switch (opcode) {
9535 case IORING_REGISTER_BUFFERS:
9536 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9537 break;
9538 case IORING_UNREGISTER_BUFFERS:
9539 ret = -EINVAL;
9540 if (arg || nr_args)
9541 break;
9542 ret = io_sqe_buffer_unregister(ctx);
9543 break;
9544 case IORING_REGISTER_FILES:
9545 ret = io_sqe_files_register(ctx, arg, nr_args);
9546 break;
9547 case IORING_UNREGISTER_FILES:
9548 ret = -EINVAL;
9549 if (arg || nr_args)
9550 break;
9551 ret = io_sqe_files_unregister(ctx);
9552 break;
9553 case IORING_REGISTER_FILES_UPDATE:
9554 ret = io_sqe_files_update(ctx, arg, nr_args);
9555 break;
9556 case IORING_REGISTER_EVENTFD:
9557 case IORING_REGISTER_EVENTFD_ASYNC:
9558 ret = -EINVAL;
9559 if (nr_args != 1)
9560 break;
9561 ret = io_eventfd_register(ctx, arg);
9562 if (ret)
9563 break;
9564 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9565 ctx->eventfd_async = 1;
9566 else
9567 ctx->eventfd_async = 0;
9568 break;
9569 case IORING_UNREGISTER_EVENTFD:
9570 ret = -EINVAL;
9571 if (arg || nr_args)
9572 break;
9573 ret = io_eventfd_unregister(ctx);
9574 break;
9575 case IORING_REGISTER_PROBE:
9576 ret = -EINVAL;
9577 if (!arg || nr_args > 256)
9578 break;
9579 ret = io_probe(ctx, arg, nr_args);
9580 break;
9581 case IORING_REGISTER_PERSONALITY:
9582 ret = -EINVAL;
9583 if (arg || nr_args)
9584 break;
9585 ret = io_register_personality(ctx);
9586 break;
9587 case IORING_UNREGISTER_PERSONALITY:
9588 ret = -EINVAL;
9589 if (arg)
9590 break;
9591 ret = io_unregister_personality(ctx, nr_args);
9592 break;
9593 case IORING_REGISTER_ENABLE_RINGS:
9594 ret = -EINVAL;
9595 if (arg || nr_args)
9596 break;
9597 ret = io_register_enable_rings(ctx);
9598 break;
9599 case IORING_REGISTER_RESTRICTIONS:
9600 ret = io_register_restrictions(ctx, arg, nr_args);
9601 break;
9602 default:
9603 ret = -EINVAL;
9604 break;
9605 }
9606
9607 out:
9608 if (io_register_op_must_quiesce(opcode)) {
9609 /* bring the ctx back to life */
9610 percpu_ref_reinit(&ctx->refs);
9611 out_quiesce:
9612 reinit_completion(&ctx->ref_comp);
9613 }
9614 return ret;
9615 }
9616
9617 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9618 void __user *, arg, unsigned int, nr_args)
9619 {
9620 struct io_ring_ctx *ctx;
9621 long ret = -EBADF;
9622 struct fd f;
9623
9624 f = fdget(fd);
9625 if (!f.file)
9626 return -EBADF;
9627
9628 ret = -EOPNOTSUPP;
9629 if (f.file->f_op != &io_uring_fops)
9630 goto out_fput;
9631
9632 ctx = f.file->private_data;
9633
9634 mutex_lock(&ctx->uring_lock);
9635 ret = __io_uring_register(ctx, opcode, arg, nr_args);
9636 mutex_unlock(&ctx->uring_lock);
9637 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
9638 ctx->cq_ev_fd != NULL, ret);
9639 out_fput:
9640 fdput(f);
9641 return ret;
9642 }
9643
9644 static int __init io_uring_init(void)
9645 {
9646 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
9647 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
9648 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
9649 } while (0)
9650
9651 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
9652 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
9653 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
9654 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
9655 BUILD_BUG_SQE_ELEM(1, __u8, flags);
9656 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
9657 BUILD_BUG_SQE_ELEM(4, __s32, fd);
9658 BUILD_BUG_SQE_ELEM(8, __u64, off);
9659 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
9660 BUILD_BUG_SQE_ELEM(16, __u64, addr);
9661 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
9662 BUILD_BUG_SQE_ELEM(24, __u32, len);
9663 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
9664 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
9665 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
9666 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
9667 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
9668 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
9669 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
9670 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
9671 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
9672 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
9673 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
9674 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
9675 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
9676 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
9677 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
9678 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
9679 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
9680 BUILD_BUG_SQE_ELEM(42, __u16, personality);
9681 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
9682
9683 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
9684 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
9685 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
9686 return 0;
9687 };
9688 __initcall(io_uring_init);