]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
dpaa2-switch: Fix memory leak in dpaa2_switch_acl_entry_add() and dpaa2_switch_acl_en...
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85
86 #include <uapi/linux/io_uring.h>
87
88 #include "internal.h"
89 #include "io-wq.h"
90
91 #define IORING_MAX_ENTRIES 32768
92 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES (1U << 15)
97 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
98 IORING_REGISTER_LAST + IORING_OP_LAST)
99
100 #define IO_RSRC_TAG_TABLE_SHIFT (PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX (1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK (IO_RSRC_TAG_TABLE_MAX - 1)
103
104 #define IORING_MAX_REG_BUFFERS (1U << 14)
105
106 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
107 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111
112 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
113
114 struct io_uring {
115 u32 head ____cacheline_aligned_in_smp;
116 u32 tail ____cacheline_aligned_in_smp;
117 };
118
119 /*
120 * This data is shared with the application through the mmap at offsets
121 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122 *
123 * The offsets to the member fields are published through struct
124 * io_sqring_offsets when calling io_uring_setup.
125 */
126 struct io_rings {
127 /*
128 * Head and tail offsets into the ring; the offsets need to be
129 * masked to get valid indices.
130 *
131 * The kernel controls head of the sq ring and the tail of the cq ring,
132 * and the application controls tail of the sq ring and the head of the
133 * cq ring.
134 */
135 struct io_uring sq, cq;
136 /*
137 * Bitmasks to apply to head and tail offsets (constant, equals
138 * ring_entries - 1)
139 */
140 u32 sq_ring_mask, cq_ring_mask;
141 /* Ring sizes (constant, power of 2) */
142 u32 sq_ring_entries, cq_ring_entries;
143 /*
144 * Number of invalid entries dropped by the kernel due to
145 * invalid index stored in array
146 *
147 * Written by the kernel, shouldn't be modified by the
148 * application (i.e. get number of "new events" by comparing to
149 * cached value).
150 *
151 * After a new SQ head value was read by the application this
152 * counter includes all submissions that were dropped reaching
153 * the new SQ head (and possibly more).
154 */
155 u32 sq_dropped;
156 /*
157 * Runtime SQ flags
158 *
159 * Written by the kernel, shouldn't be modified by the
160 * application.
161 *
162 * The application needs a full memory barrier before checking
163 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 */
165 u32 sq_flags;
166 /*
167 * Runtime CQ flags
168 *
169 * Written by the application, shouldn't be modified by the
170 * kernel.
171 */
172 u32 cq_flags;
173 /*
174 * Number of completion events lost because the queue was full;
175 * this should be avoided by the application by making sure
176 * there are not more requests pending than there is space in
177 * the completion queue.
178 *
179 * Written by the kernel, shouldn't be modified by the
180 * application (i.e. get number of "new events" by comparing to
181 * cached value).
182 *
183 * As completion events come in out of order this counter is not
184 * ordered with any other data.
185 */
186 u32 cq_overflow;
187 /*
188 * Ring buffer of completion events.
189 *
190 * The kernel writes completion events fresh every time they are
191 * produced, so the application is allowed to modify pending
192 * entries.
193 */
194 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
195 };
196
197 enum io_uring_cmd_flags {
198 IO_URING_F_NONBLOCK = 1,
199 IO_URING_F_COMPLETE_DEFER = 2,
200 };
201
202 struct io_mapped_ubuf {
203 u64 ubuf;
204 u64 ubuf_end;
205 unsigned int nr_bvecs;
206 unsigned long acct_pages;
207 struct bio_vec bvec[];
208 };
209
210 struct io_ring_ctx;
211
212 struct io_overflow_cqe {
213 struct io_uring_cqe cqe;
214 struct list_head list;
215 };
216
217 struct io_fixed_file {
218 /* file * with additional FFS_* flags */
219 unsigned long file_ptr;
220 };
221
222 struct io_rsrc_put {
223 struct list_head list;
224 u64 tag;
225 union {
226 void *rsrc;
227 struct file *file;
228 struct io_mapped_ubuf *buf;
229 };
230 };
231
232 struct io_file_table {
233 struct io_fixed_file *files;
234 };
235
236 struct io_rsrc_node {
237 struct percpu_ref refs;
238 struct list_head node;
239 struct list_head rsrc_list;
240 struct io_rsrc_data *rsrc_data;
241 struct llist_node llist;
242 bool done;
243 };
244
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246
247 struct io_rsrc_data {
248 struct io_ring_ctx *ctx;
249
250 u64 **tags;
251 unsigned int nr;
252 rsrc_put_fn *do_put;
253 atomic_t refs;
254 struct completion done;
255 bool quiesce;
256 };
257
258 struct io_buffer {
259 struct list_head list;
260 __u64 addr;
261 __u32 len;
262 __u16 bid;
263 };
264
265 struct io_restriction {
266 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 u8 sqe_flags_allowed;
269 u8 sqe_flags_required;
270 bool registered;
271 };
272
273 enum {
274 IO_SQ_THREAD_SHOULD_STOP = 0,
275 IO_SQ_THREAD_SHOULD_PARK,
276 };
277
278 struct io_sq_data {
279 refcount_t refs;
280 atomic_t park_pending;
281 struct mutex lock;
282
283 /* ctx's that are using this sqd */
284 struct list_head ctx_list;
285
286 struct task_struct *thread;
287 struct wait_queue_head wait;
288
289 unsigned sq_thread_idle;
290 int sq_cpu;
291 pid_t task_pid;
292 pid_t task_tgid;
293
294 unsigned long state;
295 struct completion exited;
296 };
297
298 #define IO_COMPL_BATCH 32
299 #define IO_REQ_CACHE_SIZE 32
300 #define IO_REQ_ALLOC_BATCH 8
301
302 struct io_submit_link {
303 struct io_kiocb *head;
304 struct io_kiocb *last;
305 };
306
307 struct io_submit_state {
308 struct blk_plug plug;
309 struct io_submit_link link;
310
311 /*
312 * io_kiocb alloc cache
313 */
314 void *reqs[IO_REQ_CACHE_SIZE];
315 unsigned int free_reqs;
316
317 bool plug_started;
318
319 /*
320 * Batch completion logic
321 */
322 struct io_kiocb *compl_reqs[IO_COMPL_BATCH];
323 unsigned int compl_nr;
324 /* inline/task_work completion list, under ->uring_lock */
325 struct list_head free_list;
326
327 unsigned int ios_left;
328 };
329
330 struct io_ring_ctx {
331 /* const or read-mostly hot data */
332 struct {
333 struct percpu_ref refs;
334
335 struct io_rings *rings;
336 unsigned int flags;
337 unsigned int compat: 1;
338 unsigned int drain_next: 1;
339 unsigned int eventfd_async: 1;
340 unsigned int restricted: 1;
341 unsigned int off_timeout_used: 1;
342 unsigned int drain_active: 1;
343 } ____cacheline_aligned_in_smp;
344
345 /* submission data */
346 struct {
347 struct mutex uring_lock;
348
349 /*
350 * Ring buffer of indices into array of io_uring_sqe, which is
351 * mmapped by the application using the IORING_OFF_SQES offset.
352 *
353 * This indirection could e.g. be used to assign fixed
354 * io_uring_sqe entries to operations and only submit them to
355 * the queue when needed.
356 *
357 * The kernel modifies neither the indices array nor the entries
358 * array.
359 */
360 u32 *sq_array;
361 struct io_uring_sqe *sq_sqes;
362 unsigned cached_sq_head;
363 unsigned sq_entries;
364 struct list_head defer_list;
365
366 /*
367 * Fixed resources fast path, should be accessed only under
368 * uring_lock, and updated through io_uring_register(2)
369 */
370 struct io_rsrc_node *rsrc_node;
371 struct io_file_table file_table;
372 unsigned nr_user_files;
373 unsigned nr_user_bufs;
374 struct io_mapped_ubuf **user_bufs;
375
376 struct io_submit_state submit_state;
377 struct list_head timeout_list;
378 struct list_head ltimeout_list;
379 struct list_head cq_overflow_list;
380 struct xarray io_buffers;
381 struct xarray personalities;
382 u32 pers_next;
383 unsigned sq_thread_idle;
384 } ____cacheline_aligned_in_smp;
385
386 /* IRQ completion list, under ->completion_lock */
387 struct list_head locked_free_list;
388 unsigned int locked_free_nr;
389
390 const struct cred *sq_creds; /* cred used for __io_sq_thread() */
391 struct io_sq_data *sq_data; /* if using sq thread polling */
392
393 struct wait_queue_head sqo_sq_wait;
394 struct list_head sqd_list;
395
396 unsigned long check_cq_overflow;
397
398 struct {
399 unsigned cached_cq_tail;
400 unsigned cq_entries;
401 struct eventfd_ctx *cq_ev_fd;
402 struct wait_queue_head poll_wait;
403 struct wait_queue_head cq_wait;
404 unsigned cq_extra;
405 atomic_t cq_timeouts;
406 unsigned cq_last_tm_flush;
407 } ____cacheline_aligned_in_smp;
408
409 struct {
410 spinlock_t completion_lock;
411
412 spinlock_t timeout_lock;
413
414 /*
415 * ->iopoll_list is protected by the ctx->uring_lock for
416 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 * For SQPOLL, only the single threaded io_sq_thread() will
418 * manipulate the list, hence no extra locking is needed there.
419 */
420 struct list_head iopoll_list;
421 struct hlist_head *cancel_hash;
422 unsigned cancel_hash_bits;
423 bool poll_multi_queue;
424 } ____cacheline_aligned_in_smp;
425
426 struct io_restriction restrictions;
427
428 /* slow path rsrc auxilary data, used by update/register */
429 struct {
430 struct io_rsrc_node *rsrc_backup_node;
431 struct io_mapped_ubuf *dummy_ubuf;
432 struct io_rsrc_data *file_data;
433 struct io_rsrc_data *buf_data;
434
435 struct delayed_work rsrc_put_work;
436 struct llist_head rsrc_put_llist;
437 struct list_head rsrc_ref_list;
438 spinlock_t rsrc_ref_lock;
439 };
440
441 /* Keep this last, we don't need it for the fast path */
442 struct {
443 #if defined(CONFIG_UNIX)
444 struct socket *ring_sock;
445 #endif
446 /* hashed buffered write serialization */
447 struct io_wq_hash *hash_map;
448
449 /* Only used for accounting purposes */
450 struct user_struct *user;
451 struct mm_struct *mm_account;
452
453 /* ctx exit and cancelation */
454 struct llist_head fallback_llist;
455 struct delayed_work fallback_work;
456 struct work_struct exit_work;
457 struct list_head tctx_list;
458 struct completion ref_comp;
459 u32 iowq_limits[2];
460 bool iowq_limits_set;
461 };
462 };
463
464 struct io_uring_task {
465 /* submission side */
466 int cached_refs;
467 struct xarray xa;
468 struct wait_queue_head wait;
469 const struct io_ring_ctx *last;
470 struct io_wq *io_wq;
471 struct percpu_counter inflight;
472 atomic_t inflight_tracked;
473 atomic_t in_idle;
474
475 spinlock_t task_lock;
476 struct io_wq_work_list task_list;
477 struct callback_head task_work;
478 bool task_running;
479 };
480
481 /*
482 * First field must be the file pointer in all the
483 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484 */
485 struct io_poll_iocb {
486 struct file *file;
487 struct wait_queue_head *head;
488 __poll_t events;
489 struct wait_queue_entry wait;
490 };
491
492 struct io_poll_update {
493 struct file *file;
494 u64 old_user_data;
495 u64 new_user_data;
496 __poll_t events;
497 bool update_events;
498 bool update_user_data;
499 };
500
501 struct io_close {
502 struct file *file;
503 int fd;
504 u32 file_slot;
505 };
506
507 struct io_timeout_data {
508 struct io_kiocb *req;
509 struct hrtimer timer;
510 struct timespec64 ts;
511 enum hrtimer_mode mode;
512 u32 flags;
513 };
514
515 struct io_accept {
516 struct file *file;
517 struct sockaddr __user *addr;
518 int __user *addr_len;
519 int flags;
520 u32 file_slot;
521 unsigned long nofile;
522 };
523
524 struct io_sync {
525 struct file *file;
526 loff_t len;
527 loff_t off;
528 int flags;
529 int mode;
530 };
531
532 struct io_cancel {
533 struct file *file;
534 u64 addr;
535 };
536
537 struct io_timeout {
538 struct file *file;
539 u32 off;
540 u32 target_seq;
541 struct list_head list;
542 /* head of the link, used by linked timeouts only */
543 struct io_kiocb *head;
544 /* for linked completions */
545 struct io_kiocb *prev;
546 };
547
548 struct io_timeout_rem {
549 struct file *file;
550 u64 addr;
551
552 /* timeout update */
553 struct timespec64 ts;
554 u32 flags;
555 bool ltimeout;
556 };
557
558 struct io_rw {
559 /* NOTE: kiocb has the file as the first member, so don't do it here */
560 struct kiocb kiocb;
561 u64 addr;
562 u64 len;
563 };
564
565 struct io_connect {
566 struct file *file;
567 struct sockaddr __user *addr;
568 int addr_len;
569 };
570
571 struct io_sr_msg {
572 struct file *file;
573 union {
574 struct compat_msghdr __user *umsg_compat;
575 struct user_msghdr __user *umsg;
576 void __user *buf;
577 };
578 int msg_flags;
579 int bgid;
580 size_t len;
581 struct io_buffer *kbuf;
582 };
583
584 struct io_open {
585 struct file *file;
586 int dfd;
587 u32 file_slot;
588 struct filename *filename;
589 struct open_how how;
590 unsigned long nofile;
591 };
592
593 struct io_rsrc_update {
594 struct file *file;
595 u64 arg;
596 u32 nr_args;
597 u32 offset;
598 };
599
600 struct io_fadvise {
601 struct file *file;
602 u64 offset;
603 u32 len;
604 u32 advice;
605 };
606
607 struct io_madvise {
608 struct file *file;
609 u64 addr;
610 u32 len;
611 u32 advice;
612 };
613
614 struct io_epoll {
615 struct file *file;
616 int epfd;
617 int op;
618 int fd;
619 struct epoll_event event;
620 };
621
622 struct io_splice {
623 struct file *file_out;
624 loff_t off_out;
625 loff_t off_in;
626 u64 len;
627 int splice_fd_in;
628 unsigned int flags;
629 };
630
631 struct io_provide_buf {
632 struct file *file;
633 __u64 addr;
634 __u32 len;
635 __u32 bgid;
636 __u16 nbufs;
637 __u16 bid;
638 };
639
640 struct io_statx {
641 struct file *file;
642 int dfd;
643 unsigned int mask;
644 unsigned int flags;
645 const char __user *filename;
646 struct statx __user *buffer;
647 };
648
649 struct io_shutdown {
650 struct file *file;
651 int how;
652 };
653
654 struct io_rename {
655 struct file *file;
656 int old_dfd;
657 int new_dfd;
658 struct filename *oldpath;
659 struct filename *newpath;
660 int flags;
661 };
662
663 struct io_unlink {
664 struct file *file;
665 int dfd;
666 int flags;
667 struct filename *filename;
668 };
669
670 struct io_mkdir {
671 struct file *file;
672 int dfd;
673 umode_t mode;
674 struct filename *filename;
675 };
676
677 struct io_symlink {
678 struct file *file;
679 int new_dfd;
680 struct filename *oldpath;
681 struct filename *newpath;
682 };
683
684 struct io_hardlink {
685 struct file *file;
686 int old_dfd;
687 int new_dfd;
688 struct filename *oldpath;
689 struct filename *newpath;
690 int flags;
691 };
692
693 struct io_completion {
694 struct file *file;
695 u32 cflags;
696 };
697
698 struct io_async_connect {
699 struct sockaddr_storage address;
700 };
701
702 struct io_async_msghdr {
703 struct iovec fast_iov[UIO_FASTIOV];
704 /* points to an allocated iov, if NULL we use fast_iov instead */
705 struct iovec *free_iov;
706 struct sockaddr __user *uaddr;
707 struct msghdr msg;
708 struct sockaddr_storage addr;
709 };
710
711 struct io_async_rw {
712 struct iovec fast_iov[UIO_FASTIOV];
713 const struct iovec *free_iovec;
714 struct iov_iter iter;
715 struct iov_iter_state iter_state;
716 size_t bytes_done;
717 struct wait_page_queue wpq;
718 };
719
720 enum {
721 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
722 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
723 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
724 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
725 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
726 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
727
728 /* first byte is taken by user flags, shift it to not overlap */
729 REQ_F_FAIL_BIT = 8,
730 REQ_F_INFLIGHT_BIT,
731 REQ_F_CUR_POS_BIT,
732 REQ_F_NOWAIT_BIT,
733 REQ_F_LINK_TIMEOUT_BIT,
734 REQ_F_NEED_CLEANUP_BIT,
735 REQ_F_POLLED_BIT,
736 REQ_F_BUFFER_SELECTED_BIT,
737 REQ_F_COMPLETE_INLINE_BIT,
738 REQ_F_REISSUE_BIT,
739 REQ_F_CREDS_BIT,
740 REQ_F_REFCOUNT_BIT,
741 REQ_F_ARM_LTIMEOUT_BIT,
742 /* keep async read/write and isreg together and in order */
743 REQ_F_NOWAIT_READ_BIT,
744 REQ_F_NOWAIT_WRITE_BIT,
745 REQ_F_ISREG_BIT,
746
747 /* not a real bit, just to check we're not overflowing the space */
748 __REQ_F_LAST_BIT,
749 };
750
751 enum {
752 /* ctx owns file */
753 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
754 /* drain existing IO first */
755 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
756 /* linked sqes */
757 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
758 /* doesn't sever on completion < 0 */
759 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
760 /* IOSQE_ASYNC */
761 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
762 /* IOSQE_BUFFER_SELECT */
763 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
764
765 /* fail rest of links */
766 REQ_F_FAIL = BIT(REQ_F_FAIL_BIT),
767 /* on inflight list, should be cancelled and waited on exit reliably */
768 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
769 /* read/write uses file position */
770 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
771 /* must not punt to workers */
772 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
773 /* has or had linked timeout */
774 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
775 /* needs cleanup */
776 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
777 /* already went through poll handler */
778 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
779 /* buffer already selected */
780 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
781 /* completion is deferred through io_comp_state */
782 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
783 /* caller should reissue async */
784 REQ_F_REISSUE = BIT(REQ_F_REISSUE_BIT),
785 /* supports async reads */
786 REQ_F_NOWAIT_READ = BIT(REQ_F_NOWAIT_READ_BIT),
787 /* supports async writes */
788 REQ_F_NOWAIT_WRITE = BIT(REQ_F_NOWAIT_WRITE_BIT),
789 /* regular file */
790 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
791 /* has creds assigned */
792 REQ_F_CREDS = BIT(REQ_F_CREDS_BIT),
793 /* skip refcounting if not set */
794 REQ_F_REFCOUNT = BIT(REQ_F_REFCOUNT_BIT),
795 /* there is a linked timeout that has to be armed */
796 REQ_F_ARM_LTIMEOUT = BIT(REQ_F_ARM_LTIMEOUT_BIT),
797 };
798
799 struct async_poll {
800 struct io_poll_iocb poll;
801 struct io_poll_iocb *double_poll;
802 };
803
804 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
805
806 struct io_task_work {
807 union {
808 struct io_wq_work_node node;
809 struct llist_node fallback_node;
810 };
811 io_req_tw_func_t func;
812 };
813
814 enum {
815 IORING_RSRC_FILE = 0,
816 IORING_RSRC_BUFFER = 1,
817 };
818
819 /*
820 * NOTE! Each of the iocb union members has the file pointer
821 * as the first entry in their struct definition. So you can
822 * access the file pointer through any of the sub-structs,
823 * or directly as just 'ki_filp' in this struct.
824 */
825 struct io_kiocb {
826 union {
827 struct file *file;
828 struct io_rw rw;
829 struct io_poll_iocb poll;
830 struct io_poll_update poll_update;
831 struct io_accept accept;
832 struct io_sync sync;
833 struct io_cancel cancel;
834 struct io_timeout timeout;
835 struct io_timeout_rem timeout_rem;
836 struct io_connect connect;
837 struct io_sr_msg sr_msg;
838 struct io_open open;
839 struct io_close close;
840 struct io_rsrc_update rsrc_update;
841 struct io_fadvise fadvise;
842 struct io_madvise madvise;
843 struct io_epoll epoll;
844 struct io_splice splice;
845 struct io_provide_buf pbuf;
846 struct io_statx statx;
847 struct io_shutdown shutdown;
848 struct io_rename rename;
849 struct io_unlink unlink;
850 struct io_mkdir mkdir;
851 struct io_symlink symlink;
852 struct io_hardlink hardlink;
853 /* use only after cleaning per-op data, see io_clean_op() */
854 struct io_completion compl;
855 };
856
857 /* opcode allocated if it needs to store data for async defer */
858 void *async_data;
859 u8 opcode;
860 /* polled IO has completed */
861 u8 iopoll_completed;
862
863 u16 buf_index;
864 u32 result;
865
866 struct io_ring_ctx *ctx;
867 unsigned int flags;
868 atomic_t refs;
869 struct task_struct *task;
870 u64 user_data;
871
872 struct io_kiocb *link;
873 struct percpu_ref *fixed_rsrc_refs;
874
875 /* used with ctx->iopoll_list with reads/writes */
876 struct list_head inflight_entry;
877 struct io_task_work io_task_work;
878 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
879 struct hlist_node hash_node;
880 struct async_poll *apoll;
881 struct io_wq_work work;
882 const struct cred *creds;
883
884 /* store used ubuf, so we can prevent reloading */
885 struct io_mapped_ubuf *imu;
886 /* stores selected buf, valid IFF REQ_F_BUFFER_SELECTED is set */
887 struct io_buffer *kbuf;
888 atomic_t poll_refs;
889 };
890
891 struct io_tctx_node {
892 struct list_head ctx_node;
893 struct task_struct *task;
894 struct io_ring_ctx *ctx;
895 };
896
897 struct io_defer_entry {
898 struct list_head list;
899 struct io_kiocb *req;
900 u32 seq;
901 };
902
903 struct io_op_def {
904 /* needs req->file assigned */
905 unsigned needs_file : 1;
906 /* hash wq insertion if file is a regular file */
907 unsigned hash_reg_file : 1;
908 /* unbound wq insertion if file is a non-regular file */
909 unsigned unbound_nonreg_file : 1;
910 /* opcode is not supported by this kernel */
911 unsigned not_supported : 1;
912 /* set if opcode supports polled "wait" */
913 unsigned pollin : 1;
914 unsigned pollout : 1;
915 /* op supports buffer selection */
916 unsigned buffer_select : 1;
917 /* do prep async if is going to be punted */
918 unsigned needs_async_setup : 1;
919 /* should block plug */
920 unsigned plug : 1;
921 /* size of async data needed, if any */
922 unsigned short async_size;
923 };
924
925 static const struct io_op_def io_op_defs[] = {
926 [IORING_OP_NOP] = {},
927 [IORING_OP_READV] = {
928 .needs_file = 1,
929 .unbound_nonreg_file = 1,
930 .pollin = 1,
931 .buffer_select = 1,
932 .needs_async_setup = 1,
933 .plug = 1,
934 .async_size = sizeof(struct io_async_rw),
935 },
936 [IORING_OP_WRITEV] = {
937 .needs_file = 1,
938 .hash_reg_file = 1,
939 .unbound_nonreg_file = 1,
940 .pollout = 1,
941 .needs_async_setup = 1,
942 .plug = 1,
943 .async_size = sizeof(struct io_async_rw),
944 },
945 [IORING_OP_FSYNC] = {
946 .needs_file = 1,
947 },
948 [IORING_OP_READ_FIXED] = {
949 .needs_file = 1,
950 .unbound_nonreg_file = 1,
951 .pollin = 1,
952 .plug = 1,
953 .async_size = sizeof(struct io_async_rw),
954 },
955 [IORING_OP_WRITE_FIXED] = {
956 .needs_file = 1,
957 .hash_reg_file = 1,
958 .unbound_nonreg_file = 1,
959 .pollout = 1,
960 .plug = 1,
961 .async_size = sizeof(struct io_async_rw),
962 },
963 [IORING_OP_POLL_ADD] = {
964 .needs_file = 1,
965 .unbound_nonreg_file = 1,
966 },
967 [IORING_OP_POLL_REMOVE] = {},
968 [IORING_OP_SYNC_FILE_RANGE] = {
969 .needs_file = 1,
970 },
971 [IORING_OP_SENDMSG] = {
972 .needs_file = 1,
973 .unbound_nonreg_file = 1,
974 .pollout = 1,
975 .needs_async_setup = 1,
976 .async_size = sizeof(struct io_async_msghdr),
977 },
978 [IORING_OP_RECVMSG] = {
979 .needs_file = 1,
980 .unbound_nonreg_file = 1,
981 .pollin = 1,
982 .buffer_select = 1,
983 .needs_async_setup = 1,
984 .async_size = sizeof(struct io_async_msghdr),
985 },
986 [IORING_OP_TIMEOUT] = {
987 .async_size = sizeof(struct io_timeout_data),
988 },
989 [IORING_OP_TIMEOUT_REMOVE] = {
990 /* used by timeout updates' prep() */
991 },
992 [IORING_OP_ACCEPT] = {
993 .needs_file = 1,
994 .unbound_nonreg_file = 1,
995 .pollin = 1,
996 },
997 [IORING_OP_ASYNC_CANCEL] = {},
998 [IORING_OP_LINK_TIMEOUT] = {
999 .async_size = sizeof(struct io_timeout_data),
1000 },
1001 [IORING_OP_CONNECT] = {
1002 .needs_file = 1,
1003 .unbound_nonreg_file = 1,
1004 .pollout = 1,
1005 .needs_async_setup = 1,
1006 .async_size = sizeof(struct io_async_connect),
1007 },
1008 [IORING_OP_FALLOCATE] = {
1009 .needs_file = 1,
1010 },
1011 [IORING_OP_OPENAT] = {},
1012 [IORING_OP_CLOSE] = {},
1013 [IORING_OP_FILES_UPDATE] = {},
1014 [IORING_OP_STATX] = {},
1015 [IORING_OP_READ] = {
1016 .needs_file = 1,
1017 .unbound_nonreg_file = 1,
1018 .pollin = 1,
1019 .buffer_select = 1,
1020 .plug = 1,
1021 .async_size = sizeof(struct io_async_rw),
1022 },
1023 [IORING_OP_WRITE] = {
1024 .needs_file = 1,
1025 .hash_reg_file = 1,
1026 .unbound_nonreg_file = 1,
1027 .pollout = 1,
1028 .plug = 1,
1029 .async_size = sizeof(struct io_async_rw),
1030 },
1031 [IORING_OP_FADVISE] = {
1032 .needs_file = 1,
1033 },
1034 [IORING_OP_MADVISE] = {},
1035 [IORING_OP_SEND] = {
1036 .needs_file = 1,
1037 .unbound_nonreg_file = 1,
1038 .pollout = 1,
1039 },
1040 [IORING_OP_RECV] = {
1041 .needs_file = 1,
1042 .unbound_nonreg_file = 1,
1043 .pollin = 1,
1044 .buffer_select = 1,
1045 },
1046 [IORING_OP_OPENAT2] = {
1047 },
1048 [IORING_OP_EPOLL_CTL] = {
1049 .unbound_nonreg_file = 1,
1050 },
1051 [IORING_OP_SPLICE] = {
1052 .needs_file = 1,
1053 .hash_reg_file = 1,
1054 .unbound_nonreg_file = 1,
1055 },
1056 [IORING_OP_PROVIDE_BUFFERS] = {},
1057 [IORING_OP_REMOVE_BUFFERS] = {},
1058 [IORING_OP_TEE] = {
1059 .needs_file = 1,
1060 .hash_reg_file = 1,
1061 .unbound_nonreg_file = 1,
1062 },
1063 [IORING_OP_SHUTDOWN] = {
1064 .needs_file = 1,
1065 },
1066 [IORING_OP_RENAMEAT] = {},
1067 [IORING_OP_UNLINKAT] = {},
1068 [IORING_OP_MKDIRAT] = {},
1069 [IORING_OP_SYMLINKAT] = {},
1070 [IORING_OP_LINKAT] = {},
1071 };
1072
1073 /* requests with any of those set should undergo io_disarm_next() */
1074 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1075
1076 static bool io_disarm_next(struct io_kiocb *req);
1077 static void io_uring_del_tctx_node(unsigned long index);
1078 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1079 struct task_struct *task,
1080 bool cancel_all);
1081 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1082
1083 static void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags);
1084
1085 static void io_put_req(struct io_kiocb *req);
1086 static void io_put_req_deferred(struct io_kiocb *req);
1087 static void io_dismantle_req(struct io_kiocb *req);
1088 static void io_queue_linked_timeout(struct io_kiocb *req);
1089 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1090 struct io_uring_rsrc_update2 *up,
1091 unsigned nr_args);
1092 static void io_clean_op(struct io_kiocb *req);
1093 static struct file *io_file_get(struct io_ring_ctx *ctx,
1094 struct io_kiocb *req, int fd, bool fixed);
1095 static void __io_queue_sqe(struct io_kiocb *req);
1096 static void io_rsrc_put_work(struct work_struct *work);
1097
1098 static void io_req_task_queue(struct io_kiocb *req);
1099 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1100 static int io_req_prep_async(struct io_kiocb *req);
1101
1102 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1103 unsigned int issue_flags, u32 slot_index);
1104 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1105
1106 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1107
1108 static struct kmem_cache *req_cachep;
1109
1110 static const struct file_operations io_uring_fops;
1111
1112 struct sock *io_uring_get_socket(struct file *file)
1113 {
1114 #if defined(CONFIG_UNIX)
1115 if (file->f_op == &io_uring_fops) {
1116 struct io_ring_ctx *ctx = file->private_data;
1117
1118 return ctx->ring_sock->sk;
1119 }
1120 #endif
1121 return NULL;
1122 }
1123 EXPORT_SYMBOL(io_uring_get_socket);
1124
1125 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1126 {
1127 if (!*locked) {
1128 mutex_lock(&ctx->uring_lock);
1129 *locked = true;
1130 }
1131 }
1132
1133 #define io_for_each_link(pos, head) \
1134 for (pos = (head); pos; pos = pos->link)
1135
1136 /*
1137 * Shamelessly stolen from the mm implementation of page reference checking,
1138 * see commit f958d7b528b1 for details.
1139 */
1140 #define req_ref_zero_or_close_to_overflow(req) \
1141 ((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1142
1143 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1144 {
1145 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1146 return atomic_inc_not_zero(&req->refs);
1147 }
1148
1149 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1150 {
1151 if (likely(!(req->flags & REQ_F_REFCOUNT)))
1152 return true;
1153
1154 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1155 return atomic_dec_and_test(&req->refs);
1156 }
1157
1158 static inline void req_ref_get(struct io_kiocb *req)
1159 {
1160 WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1161 WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1162 atomic_inc(&req->refs);
1163 }
1164
1165 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1166 {
1167 if (!(req->flags & REQ_F_REFCOUNT)) {
1168 req->flags |= REQ_F_REFCOUNT;
1169 atomic_set(&req->refs, nr);
1170 }
1171 }
1172
1173 static inline void io_req_set_refcount(struct io_kiocb *req)
1174 {
1175 __io_req_set_refcount(req, 1);
1176 }
1177
1178 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1179 {
1180 struct io_ring_ctx *ctx = req->ctx;
1181
1182 if (!req->fixed_rsrc_refs) {
1183 req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1184 percpu_ref_get(req->fixed_rsrc_refs);
1185 }
1186 }
1187
1188 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1189 {
1190 bool got = percpu_ref_tryget(ref);
1191
1192 /* already at zero, wait for ->release() */
1193 if (!got)
1194 wait_for_completion(compl);
1195 percpu_ref_resurrect(ref);
1196 if (got)
1197 percpu_ref_put(ref);
1198 }
1199
1200 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1201 bool cancel_all)
1202 __must_hold(&req->ctx->timeout_lock)
1203 {
1204 struct io_kiocb *req;
1205
1206 if (task && head->task != task)
1207 return false;
1208 if (cancel_all)
1209 return true;
1210
1211 io_for_each_link(req, head) {
1212 if (req->flags & REQ_F_INFLIGHT)
1213 return true;
1214 }
1215 return false;
1216 }
1217
1218 static bool io_match_linked(struct io_kiocb *head)
1219 {
1220 struct io_kiocb *req;
1221
1222 io_for_each_link(req, head) {
1223 if (req->flags & REQ_F_INFLIGHT)
1224 return true;
1225 }
1226 return false;
1227 }
1228
1229 /*
1230 * As io_match_task() but protected against racing with linked timeouts.
1231 * User must not hold timeout_lock.
1232 */
1233 static bool io_match_task_safe(struct io_kiocb *head, struct task_struct *task,
1234 bool cancel_all)
1235 {
1236 bool matched;
1237
1238 if (task && head->task != task)
1239 return false;
1240 if (cancel_all)
1241 return true;
1242
1243 if (head->flags & REQ_F_LINK_TIMEOUT) {
1244 struct io_ring_ctx *ctx = head->ctx;
1245
1246 /* protect against races with linked timeouts */
1247 spin_lock_irq(&ctx->timeout_lock);
1248 matched = io_match_linked(head);
1249 spin_unlock_irq(&ctx->timeout_lock);
1250 } else {
1251 matched = io_match_linked(head);
1252 }
1253 return matched;
1254 }
1255
1256 static inline void req_set_fail(struct io_kiocb *req)
1257 {
1258 req->flags |= REQ_F_FAIL;
1259 }
1260
1261 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1262 {
1263 req_set_fail(req);
1264 req->result = res;
1265 }
1266
1267 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1268 {
1269 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1270
1271 complete(&ctx->ref_comp);
1272 }
1273
1274 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1275 {
1276 return !req->timeout.off;
1277 }
1278
1279 static void io_fallback_req_func(struct work_struct *work)
1280 {
1281 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1282 fallback_work.work);
1283 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1284 struct io_kiocb *req, *tmp;
1285 bool locked = false;
1286
1287 percpu_ref_get(&ctx->refs);
1288 llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1289 req->io_task_work.func(req, &locked);
1290
1291 if (locked) {
1292 if (ctx->submit_state.compl_nr)
1293 io_submit_flush_completions(ctx);
1294 mutex_unlock(&ctx->uring_lock);
1295 }
1296 percpu_ref_put(&ctx->refs);
1297
1298 }
1299
1300 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1301 {
1302 struct io_ring_ctx *ctx;
1303 int hash_bits;
1304
1305 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1306 if (!ctx)
1307 return NULL;
1308
1309 /*
1310 * Use 5 bits less than the max cq entries, that should give us around
1311 * 32 entries per hash list if totally full and uniformly spread.
1312 */
1313 hash_bits = ilog2(p->cq_entries);
1314 hash_bits -= 5;
1315 if (hash_bits <= 0)
1316 hash_bits = 1;
1317 ctx->cancel_hash_bits = hash_bits;
1318 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1319 GFP_KERNEL);
1320 if (!ctx->cancel_hash)
1321 goto err;
1322 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1323
1324 ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1325 if (!ctx->dummy_ubuf)
1326 goto err;
1327 /* set invalid range, so io_import_fixed() fails meeting it */
1328 ctx->dummy_ubuf->ubuf = -1UL;
1329
1330 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1331 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1332 goto err;
1333
1334 ctx->flags = p->flags;
1335 init_waitqueue_head(&ctx->sqo_sq_wait);
1336 INIT_LIST_HEAD(&ctx->sqd_list);
1337 init_waitqueue_head(&ctx->poll_wait);
1338 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1339 init_completion(&ctx->ref_comp);
1340 xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1341 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1342 mutex_init(&ctx->uring_lock);
1343 init_waitqueue_head(&ctx->cq_wait);
1344 spin_lock_init(&ctx->completion_lock);
1345 spin_lock_init(&ctx->timeout_lock);
1346 INIT_LIST_HEAD(&ctx->iopoll_list);
1347 INIT_LIST_HEAD(&ctx->defer_list);
1348 INIT_LIST_HEAD(&ctx->timeout_list);
1349 INIT_LIST_HEAD(&ctx->ltimeout_list);
1350 spin_lock_init(&ctx->rsrc_ref_lock);
1351 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1352 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1353 init_llist_head(&ctx->rsrc_put_llist);
1354 INIT_LIST_HEAD(&ctx->tctx_list);
1355 INIT_LIST_HEAD(&ctx->submit_state.free_list);
1356 INIT_LIST_HEAD(&ctx->locked_free_list);
1357 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1358 return ctx;
1359 err:
1360 kfree(ctx->dummy_ubuf);
1361 kfree(ctx->cancel_hash);
1362 kfree(ctx);
1363 return NULL;
1364 }
1365
1366 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1367 {
1368 struct io_rings *r = ctx->rings;
1369
1370 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1371 ctx->cq_extra--;
1372 }
1373
1374 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1375 {
1376 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1377 struct io_ring_ctx *ctx = req->ctx;
1378
1379 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1380 }
1381
1382 return false;
1383 }
1384
1385 #define FFS_ASYNC_READ 0x1UL
1386 #define FFS_ASYNC_WRITE 0x2UL
1387 #ifdef CONFIG_64BIT
1388 #define FFS_ISREG 0x4UL
1389 #else
1390 #define FFS_ISREG 0x0UL
1391 #endif
1392 #define FFS_MASK ~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1393
1394 static inline bool io_req_ffs_set(struct io_kiocb *req)
1395 {
1396 return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1397 }
1398
1399 static void io_req_track_inflight(struct io_kiocb *req)
1400 {
1401 if (!(req->flags & REQ_F_INFLIGHT)) {
1402 req->flags |= REQ_F_INFLIGHT;
1403 atomic_inc(&req->task->io_uring->inflight_tracked);
1404 }
1405 }
1406
1407 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1408 {
1409 if (WARN_ON_ONCE(!req->link))
1410 return NULL;
1411
1412 req->flags &= ~REQ_F_ARM_LTIMEOUT;
1413 req->flags |= REQ_F_LINK_TIMEOUT;
1414
1415 /* linked timeouts should have two refs once prep'ed */
1416 io_req_set_refcount(req);
1417 __io_req_set_refcount(req->link, 2);
1418 return req->link;
1419 }
1420
1421 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1422 {
1423 if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1424 return NULL;
1425 return __io_prep_linked_timeout(req);
1426 }
1427
1428 static void io_prep_async_work(struct io_kiocb *req)
1429 {
1430 const struct io_op_def *def = &io_op_defs[req->opcode];
1431 struct io_ring_ctx *ctx = req->ctx;
1432
1433 if (!(req->flags & REQ_F_CREDS)) {
1434 req->flags |= REQ_F_CREDS;
1435 req->creds = get_current_cred();
1436 }
1437
1438 req->work.list.next = NULL;
1439 req->work.flags = 0;
1440 if (req->flags & REQ_F_FORCE_ASYNC)
1441 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1442
1443 if (req->flags & REQ_F_ISREG) {
1444 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1445 io_wq_hash_work(&req->work, file_inode(req->file));
1446 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1447 if (def->unbound_nonreg_file)
1448 req->work.flags |= IO_WQ_WORK_UNBOUND;
1449 }
1450 }
1451
1452 static void io_prep_async_link(struct io_kiocb *req)
1453 {
1454 struct io_kiocb *cur;
1455
1456 if (req->flags & REQ_F_LINK_TIMEOUT) {
1457 struct io_ring_ctx *ctx = req->ctx;
1458
1459 spin_lock_irq(&ctx->timeout_lock);
1460 io_for_each_link(cur, req)
1461 io_prep_async_work(cur);
1462 spin_unlock_irq(&ctx->timeout_lock);
1463 } else {
1464 io_for_each_link(cur, req)
1465 io_prep_async_work(cur);
1466 }
1467 }
1468
1469 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1470 {
1471 struct io_ring_ctx *ctx = req->ctx;
1472 struct io_kiocb *link = io_prep_linked_timeout(req);
1473 struct io_uring_task *tctx = req->task->io_uring;
1474
1475 /* must not take the lock, NULL it as a precaution */
1476 locked = NULL;
1477
1478 BUG_ON(!tctx);
1479 BUG_ON(!tctx->io_wq);
1480
1481 /* init ->work of the whole link before punting */
1482 io_prep_async_link(req);
1483
1484 /*
1485 * Not expected to happen, but if we do have a bug where this _can_
1486 * happen, catch it here and ensure the request is marked as
1487 * canceled. That will make io-wq go through the usual work cancel
1488 * procedure rather than attempt to run this request (or create a new
1489 * worker for it).
1490 */
1491 if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1492 req->work.flags |= IO_WQ_WORK_CANCEL;
1493
1494 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1495 &req->work, req->flags);
1496 io_wq_enqueue(tctx->io_wq, &req->work);
1497 if (link)
1498 io_queue_linked_timeout(link);
1499 }
1500
1501 static void io_kill_timeout(struct io_kiocb *req, int status)
1502 __must_hold(&req->ctx->completion_lock)
1503 __must_hold(&req->ctx->timeout_lock)
1504 {
1505 struct io_timeout_data *io = req->async_data;
1506
1507 if (hrtimer_try_to_cancel(&io->timer) != -1) {
1508 if (status)
1509 req_set_fail(req);
1510 atomic_set(&req->ctx->cq_timeouts,
1511 atomic_read(&req->ctx->cq_timeouts) + 1);
1512 list_del_init(&req->timeout.list);
1513 io_fill_cqe_req(req, status, 0);
1514 io_put_req_deferred(req);
1515 }
1516 }
1517
1518 static void io_queue_deferred(struct io_ring_ctx *ctx)
1519 {
1520 while (!list_empty(&ctx->defer_list)) {
1521 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1522 struct io_defer_entry, list);
1523
1524 if (req_need_defer(de->req, de->seq))
1525 break;
1526 list_del_init(&de->list);
1527 io_req_task_queue(de->req);
1528 kfree(de);
1529 }
1530 }
1531
1532 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1533 __must_hold(&ctx->completion_lock)
1534 {
1535 u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1536 struct io_kiocb *req, *tmp;
1537
1538 spin_lock_irq(&ctx->timeout_lock);
1539 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1540 u32 events_needed, events_got;
1541
1542 if (io_is_timeout_noseq(req))
1543 break;
1544
1545 /*
1546 * Since seq can easily wrap around over time, subtract
1547 * the last seq at which timeouts were flushed before comparing.
1548 * Assuming not more than 2^31-1 events have happened since,
1549 * these subtractions won't have wrapped, so we can check if
1550 * target is in [last_seq, current_seq] by comparing the two.
1551 */
1552 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1553 events_got = seq - ctx->cq_last_tm_flush;
1554 if (events_got < events_needed)
1555 break;
1556
1557 io_kill_timeout(req, 0);
1558 }
1559 ctx->cq_last_tm_flush = seq;
1560 spin_unlock_irq(&ctx->timeout_lock);
1561 }
1562
1563 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1564 {
1565 if (ctx->off_timeout_used)
1566 io_flush_timeouts(ctx);
1567 if (ctx->drain_active)
1568 io_queue_deferred(ctx);
1569 }
1570
1571 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1572 {
1573 if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1574 __io_commit_cqring_flush(ctx);
1575 /* order cqe stores with ring update */
1576 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1577 }
1578
1579 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1580 {
1581 struct io_rings *r = ctx->rings;
1582
1583 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1584 }
1585
1586 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1587 {
1588 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1589 }
1590
1591 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1592 {
1593 struct io_rings *rings = ctx->rings;
1594 unsigned tail, mask = ctx->cq_entries - 1;
1595
1596 /*
1597 * writes to the cq entry need to come after reading head; the
1598 * control dependency is enough as we're using WRITE_ONCE to
1599 * fill the cq entry
1600 */
1601 if (__io_cqring_events(ctx) == ctx->cq_entries)
1602 return NULL;
1603
1604 tail = ctx->cached_cq_tail++;
1605 return &rings->cqes[tail & mask];
1606 }
1607
1608 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1609 {
1610 if (likely(!ctx->cq_ev_fd))
1611 return false;
1612 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1613 return false;
1614 return !ctx->eventfd_async || io_wq_current_is_worker();
1615 }
1616
1617 /*
1618 * This should only get called when at least one event has been posted.
1619 * Some applications rely on the eventfd notification count only changing
1620 * IFF a new CQE has been added to the CQ ring. There's no depedency on
1621 * 1:1 relationship between how many times this function is called (and
1622 * hence the eventfd count) and number of CQEs posted to the CQ ring.
1623 */
1624 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1625 {
1626 /*
1627 * wake_up_all() may seem excessive, but io_wake_function() and
1628 * io_should_wake() handle the termination of the loop and only
1629 * wake as many waiters as we need to.
1630 */
1631 if (wq_has_sleeper(&ctx->cq_wait))
1632 wake_up_all(&ctx->cq_wait);
1633 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1634 wake_up(&ctx->sq_data->wait);
1635 if (io_should_trigger_evfd(ctx))
1636 eventfd_signal(ctx->cq_ev_fd, 1);
1637 if (waitqueue_active(&ctx->poll_wait))
1638 wake_up_interruptible(&ctx->poll_wait);
1639 }
1640
1641 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1642 {
1643 /* see waitqueue_active() comment */
1644 smp_mb();
1645
1646 if (ctx->flags & IORING_SETUP_SQPOLL) {
1647 if (waitqueue_active(&ctx->cq_wait))
1648 wake_up_all(&ctx->cq_wait);
1649 }
1650 if (io_should_trigger_evfd(ctx))
1651 eventfd_signal(ctx->cq_ev_fd, 1);
1652 if (waitqueue_active(&ctx->poll_wait))
1653 wake_up_interruptible(&ctx->poll_wait);
1654 }
1655
1656 /* Returns true if there are no backlogged entries after the flush */
1657 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1658 {
1659 bool all_flushed, posted;
1660
1661 if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1662 return false;
1663
1664 posted = false;
1665 spin_lock(&ctx->completion_lock);
1666 while (!list_empty(&ctx->cq_overflow_list)) {
1667 struct io_uring_cqe *cqe = io_get_cqe(ctx);
1668 struct io_overflow_cqe *ocqe;
1669
1670 if (!cqe && !force)
1671 break;
1672 ocqe = list_first_entry(&ctx->cq_overflow_list,
1673 struct io_overflow_cqe, list);
1674 if (cqe)
1675 memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1676 else
1677 io_account_cq_overflow(ctx);
1678
1679 posted = true;
1680 list_del(&ocqe->list);
1681 kfree(ocqe);
1682 }
1683
1684 all_flushed = list_empty(&ctx->cq_overflow_list);
1685 if (all_flushed) {
1686 clear_bit(0, &ctx->check_cq_overflow);
1687 WRITE_ONCE(ctx->rings->sq_flags,
1688 ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1689 }
1690
1691 if (posted)
1692 io_commit_cqring(ctx);
1693 spin_unlock(&ctx->completion_lock);
1694 if (posted)
1695 io_cqring_ev_posted(ctx);
1696 return all_flushed;
1697 }
1698
1699 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1700 {
1701 bool ret = true;
1702
1703 if (test_bit(0, &ctx->check_cq_overflow)) {
1704 /* iopoll syncs against uring_lock, not completion_lock */
1705 if (ctx->flags & IORING_SETUP_IOPOLL)
1706 mutex_lock(&ctx->uring_lock);
1707 ret = __io_cqring_overflow_flush(ctx, false);
1708 if (ctx->flags & IORING_SETUP_IOPOLL)
1709 mutex_unlock(&ctx->uring_lock);
1710 }
1711
1712 return ret;
1713 }
1714
1715 /* must to be called somewhat shortly after putting a request */
1716 static inline void io_put_task(struct task_struct *task, int nr)
1717 {
1718 struct io_uring_task *tctx = task->io_uring;
1719
1720 if (likely(task == current)) {
1721 tctx->cached_refs += nr;
1722 } else {
1723 percpu_counter_sub(&tctx->inflight, nr);
1724 if (unlikely(atomic_read(&tctx->in_idle)))
1725 wake_up(&tctx->wait);
1726 put_task_struct_many(task, nr);
1727 }
1728 }
1729
1730 static void io_task_refs_refill(struct io_uring_task *tctx)
1731 {
1732 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1733
1734 percpu_counter_add(&tctx->inflight, refill);
1735 refcount_add(refill, &current->usage);
1736 tctx->cached_refs += refill;
1737 }
1738
1739 static inline void io_get_task_refs(int nr)
1740 {
1741 struct io_uring_task *tctx = current->io_uring;
1742
1743 tctx->cached_refs -= nr;
1744 if (unlikely(tctx->cached_refs < 0))
1745 io_task_refs_refill(tctx);
1746 }
1747
1748 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
1749 {
1750 struct io_uring_task *tctx = task->io_uring;
1751 unsigned int refs = tctx->cached_refs;
1752
1753 if (refs) {
1754 tctx->cached_refs = 0;
1755 percpu_counter_sub(&tctx->inflight, refs);
1756 put_task_struct_many(task, refs);
1757 }
1758 }
1759
1760 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1761 s32 res, u32 cflags)
1762 {
1763 struct io_overflow_cqe *ocqe;
1764
1765 ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1766 if (!ocqe) {
1767 /*
1768 * If we're in ring overflow flush mode, or in task cancel mode,
1769 * or cannot allocate an overflow entry, then we need to drop it
1770 * on the floor.
1771 */
1772 io_account_cq_overflow(ctx);
1773 return false;
1774 }
1775 if (list_empty(&ctx->cq_overflow_list)) {
1776 set_bit(0, &ctx->check_cq_overflow);
1777 WRITE_ONCE(ctx->rings->sq_flags,
1778 ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1779
1780 }
1781 ocqe->cqe.user_data = user_data;
1782 ocqe->cqe.res = res;
1783 ocqe->cqe.flags = cflags;
1784 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1785 return true;
1786 }
1787
1788 static inline bool __io_fill_cqe(struct io_ring_ctx *ctx, u64 user_data,
1789 s32 res, u32 cflags)
1790 {
1791 struct io_uring_cqe *cqe;
1792
1793 trace_io_uring_complete(ctx, user_data, res, cflags);
1794
1795 /*
1796 * If we can't get a cq entry, userspace overflowed the
1797 * submission (by quite a lot). Increment the overflow count in
1798 * the ring.
1799 */
1800 cqe = io_get_cqe(ctx);
1801 if (likely(cqe)) {
1802 WRITE_ONCE(cqe->user_data, user_data);
1803 WRITE_ONCE(cqe->res, res);
1804 WRITE_ONCE(cqe->flags, cflags);
1805 return true;
1806 }
1807 return io_cqring_event_overflow(ctx, user_data, res, cflags);
1808 }
1809
1810 static noinline void io_fill_cqe_req(struct io_kiocb *req, s32 res, u32 cflags)
1811 {
1812 __io_fill_cqe(req->ctx, req->user_data, res, cflags);
1813 }
1814
1815 static noinline bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data,
1816 s32 res, u32 cflags)
1817 {
1818 ctx->cq_extra++;
1819 return __io_fill_cqe(ctx, user_data, res, cflags);
1820 }
1821
1822 static void io_req_complete_post(struct io_kiocb *req, s32 res,
1823 u32 cflags)
1824 {
1825 struct io_ring_ctx *ctx = req->ctx;
1826
1827 spin_lock(&ctx->completion_lock);
1828 __io_fill_cqe(ctx, req->user_data, res, cflags);
1829 /*
1830 * If we're the last reference to this request, add to our locked
1831 * free_list cache.
1832 */
1833 if (req_ref_put_and_test(req)) {
1834 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1835 if (req->flags & IO_DISARM_MASK)
1836 io_disarm_next(req);
1837 if (req->link) {
1838 io_req_task_queue(req->link);
1839 req->link = NULL;
1840 }
1841 }
1842 io_dismantle_req(req);
1843 io_put_task(req->task, 1);
1844 list_add(&req->inflight_entry, &ctx->locked_free_list);
1845 ctx->locked_free_nr++;
1846 } else {
1847 if (!percpu_ref_tryget(&ctx->refs))
1848 req = NULL;
1849 }
1850 io_commit_cqring(ctx);
1851 spin_unlock(&ctx->completion_lock);
1852
1853 if (req) {
1854 io_cqring_ev_posted(ctx);
1855 percpu_ref_put(&ctx->refs);
1856 }
1857 }
1858
1859 static inline bool io_req_needs_clean(struct io_kiocb *req)
1860 {
1861 return req->flags & IO_REQ_CLEAN_FLAGS;
1862 }
1863
1864 static inline void io_req_complete_state(struct io_kiocb *req, s32 res,
1865 u32 cflags)
1866 {
1867 if (io_req_needs_clean(req))
1868 io_clean_op(req);
1869 req->result = res;
1870 req->compl.cflags = cflags;
1871 req->flags |= REQ_F_COMPLETE_INLINE;
1872 }
1873
1874 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1875 s32 res, u32 cflags)
1876 {
1877 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1878 io_req_complete_state(req, res, cflags);
1879 else
1880 io_req_complete_post(req, res, cflags);
1881 }
1882
1883 static inline void io_req_complete(struct io_kiocb *req, s32 res)
1884 {
1885 __io_req_complete(req, 0, res, 0);
1886 }
1887
1888 static void io_req_complete_failed(struct io_kiocb *req, s32 res)
1889 {
1890 req_set_fail(req);
1891 io_req_complete_post(req, res, 0);
1892 }
1893
1894 static void io_req_complete_fail_submit(struct io_kiocb *req)
1895 {
1896 /*
1897 * We don't submit, fail them all, for that replace hardlinks with
1898 * normal links. Extra REQ_F_LINK is tolerated.
1899 */
1900 req->flags &= ~REQ_F_HARDLINK;
1901 req->flags |= REQ_F_LINK;
1902 io_req_complete_failed(req, req->result);
1903 }
1904
1905 /*
1906 * Don't initialise the fields below on every allocation, but do that in
1907 * advance and keep them valid across allocations.
1908 */
1909 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1910 {
1911 req->ctx = ctx;
1912 req->link = NULL;
1913 req->async_data = NULL;
1914 /* not necessary, but safer to zero */
1915 req->result = 0;
1916 }
1917
1918 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1919 struct io_submit_state *state)
1920 {
1921 spin_lock(&ctx->completion_lock);
1922 list_splice_init(&ctx->locked_free_list, &state->free_list);
1923 ctx->locked_free_nr = 0;
1924 spin_unlock(&ctx->completion_lock);
1925 }
1926
1927 /* Returns true IFF there are requests in the cache */
1928 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1929 {
1930 struct io_submit_state *state = &ctx->submit_state;
1931 int nr;
1932
1933 /*
1934 * If we have more than a batch's worth of requests in our IRQ side
1935 * locked cache, grab the lock and move them over to our submission
1936 * side cache.
1937 */
1938 if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1939 io_flush_cached_locked_reqs(ctx, state);
1940
1941 nr = state->free_reqs;
1942 while (!list_empty(&state->free_list)) {
1943 struct io_kiocb *req = list_first_entry(&state->free_list,
1944 struct io_kiocb, inflight_entry);
1945
1946 list_del(&req->inflight_entry);
1947 state->reqs[nr++] = req;
1948 if (nr == ARRAY_SIZE(state->reqs))
1949 break;
1950 }
1951
1952 state->free_reqs = nr;
1953 return nr != 0;
1954 }
1955
1956 /*
1957 * A request might get retired back into the request caches even before opcode
1958 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1959 * Because of that, io_alloc_req() should be called only under ->uring_lock
1960 * and with extra caution to not get a request that is still worked on.
1961 */
1962 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1963 __must_hold(&ctx->uring_lock)
1964 {
1965 struct io_submit_state *state = &ctx->submit_state;
1966 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1967 int ret, i;
1968
1969 BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1970
1971 if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1972 goto got_req;
1973
1974 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1975 state->reqs);
1976
1977 /*
1978 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1979 * retry single alloc to be on the safe side.
1980 */
1981 if (unlikely(ret <= 0)) {
1982 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1983 if (!state->reqs[0])
1984 return NULL;
1985 ret = 1;
1986 }
1987
1988 for (i = 0; i < ret; i++)
1989 io_preinit_req(state->reqs[i], ctx);
1990 state->free_reqs = ret;
1991 got_req:
1992 state->free_reqs--;
1993 return state->reqs[state->free_reqs];
1994 }
1995
1996 static inline void io_put_file(struct file *file)
1997 {
1998 if (file)
1999 fput(file);
2000 }
2001
2002 static void io_dismantle_req(struct io_kiocb *req)
2003 {
2004 unsigned int flags = req->flags;
2005
2006 if (io_req_needs_clean(req))
2007 io_clean_op(req);
2008 if (!(flags & REQ_F_FIXED_FILE))
2009 io_put_file(req->file);
2010 if (req->fixed_rsrc_refs)
2011 percpu_ref_put(req->fixed_rsrc_refs);
2012 if (req->async_data) {
2013 kfree(req->async_data);
2014 req->async_data = NULL;
2015 }
2016 }
2017
2018 static void __io_free_req(struct io_kiocb *req)
2019 {
2020 struct io_ring_ctx *ctx = req->ctx;
2021
2022 io_dismantle_req(req);
2023 io_put_task(req->task, 1);
2024
2025 spin_lock(&ctx->completion_lock);
2026 list_add(&req->inflight_entry, &ctx->locked_free_list);
2027 ctx->locked_free_nr++;
2028 spin_unlock(&ctx->completion_lock);
2029
2030 percpu_ref_put(&ctx->refs);
2031 }
2032
2033 static inline void io_remove_next_linked(struct io_kiocb *req)
2034 {
2035 struct io_kiocb *nxt = req->link;
2036
2037 req->link = nxt->link;
2038 nxt->link = NULL;
2039 }
2040
2041 static bool io_kill_linked_timeout(struct io_kiocb *req)
2042 __must_hold(&req->ctx->completion_lock)
2043 __must_hold(&req->ctx->timeout_lock)
2044 {
2045 struct io_kiocb *link = req->link;
2046
2047 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2048 struct io_timeout_data *io = link->async_data;
2049
2050 io_remove_next_linked(req);
2051 link->timeout.head = NULL;
2052 if (hrtimer_try_to_cancel(&io->timer) != -1) {
2053 list_del(&link->timeout.list);
2054 io_fill_cqe_req(link, -ECANCELED, 0);
2055 io_put_req_deferred(link);
2056 return true;
2057 }
2058 }
2059 return false;
2060 }
2061
2062 static void io_fail_links(struct io_kiocb *req)
2063 __must_hold(&req->ctx->completion_lock)
2064 {
2065 struct io_kiocb *nxt, *link = req->link;
2066
2067 req->link = NULL;
2068 while (link) {
2069 long res = -ECANCELED;
2070
2071 if (link->flags & REQ_F_FAIL)
2072 res = link->result;
2073
2074 nxt = link->link;
2075 link->link = NULL;
2076
2077 trace_io_uring_fail_link(req, link);
2078 io_fill_cqe_req(link, res, 0);
2079 io_put_req_deferred(link);
2080 link = nxt;
2081 }
2082 }
2083
2084 static bool io_disarm_next(struct io_kiocb *req)
2085 __must_hold(&req->ctx->completion_lock)
2086 {
2087 bool posted = false;
2088
2089 if (req->flags & REQ_F_ARM_LTIMEOUT) {
2090 struct io_kiocb *link = req->link;
2091
2092 req->flags &= ~REQ_F_ARM_LTIMEOUT;
2093 if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2094 io_remove_next_linked(req);
2095 io_fill_cqe_req(link, -ECANCELED, 0);
2096 io_put_req_deferred(link);
2097 posted = true;
2098 }
2099 } else if (req->flags & REQ_F_LINK_TIMEOUT) {
2100 struct io_ring_ctx *ctx = req->ctx;
2101
2102 spin_lock_irq(&ctx->timeout_lock);
2103 posted = io_kill_linked_timeout(req);
2104 spin_unlock_irq(&ctx->timeout_lock);
2105 }
2106 if (unlikely((req->flags & REQ_F_FAIL) &&
2107 !(req->flags & REQ_F_HARDLINK))) {
2108 posted |= (req->link != NULL);
2109 io_fail_links(req);
2110 }
2111 return posted;
2112 }
2113
2114 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2115 {
2116 struct io_kiocb *nxt;
2117
2118 /*
2119 * If LINK is set, we have dependent requests in this chain. If we
2120 * didn't fail this request, queue the first one up, moving any other
2121 * dependencies to the next request. In case of failure, fail the rest
2122 * of the chain.
2123 */
2124 if (req->flags & IO_DISARM_MASK) {
2125 struct io_ring_ctx *ctx = req->ctx;
2126 bool posted;
2127
2128 spin_lock(&ctx->completion_lock);
2129 posted = io_disarm_next(req);
2130 if (posted)
2131 io_commit_cqring(req->ctx);
2132 spin_unlock(&ctx->completion_lock);
2133 if (posted)
2134 io_cqring_ev_posted(ctx);
2135 }
2136 nxt = req->link;
2137 req->link = NULL;
2138 return nxt;
2139 }
2140
2141 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2142 {
2143 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2144 return NULL;
2145 return __io_req_find_next(req);
2146 }
2147
2148 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2149 {
2150 if (!ctx)
2151 return;
2152 if (*locked) {
2153 if (ctx->submit_state.compl_nr)
2154 io_submit_flush_completions(ctx);
2155 mutex_unlock(&ctx->uring_lock);
2156 *locked = false;
2157 }
2158 percpu_ref_put(&ctx->refs);
2159 }
2160
2161 static void tctx_task_work(struct callback_head *cb)
2162 {
2163 bool locked = false;
2164 struct io_ring_ctx *ctx = NULL;
2165 struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2166 task_work);
2167
2168 while (1) {
2169 struct io_wq_work_node *node;
2170
2171 if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2172 io_submit_flush_completions(ctx);
2173
2174 spin_lock_irq(&tctx->task_lock);
2175 node = tctx->task_list.first;
2176 INIT_WQ_LIST(&tctx->task_list);
2177 if (!node)
2178 tctx->task_running = false;
2179 spin_unlock_irq(&tctx->task_lock);
2180 if (!node)
2181 break;
2182
2183 do {
2184 struct io_wq_work_node *next = node->next;
2185 struct io_kiocb *req = container_of(node, struct io_kiocb,
2186 io_task_work.node);
2187
2188 if (req->ctx != ctx) {
2189 ctx_flush_and_put(ctx, &locked);
2190 ctx = req->ctx;
2191 /* if not contended, grab and improve batching */
2192 locked = mutex_trylock(&ctx->uring_lock);
2193 percpu_ref_get(&ctx->refs);
2194 }
2195 req->io_task_work.func(req, &locked);
2196 node = next;
2197 } while (node);
2198
2199 cond_resched();
2200 }
2201
2202 ctx_flush_and_put(ctx, &locked);
2203
2204 /* relaxed read is enough as only the task itself sets ->in_idle */
2205 if (unlikely(atomic_read(&tctx->in_idle)))
2206 io_uring_drop_tctx_refs(current);
2207 }
2208
2209 static void io_req_task_work_add(struct io_kiocb *req)
2210 {
2211 struct task_struct *tsk = req->task;
2212 struct io_uring_task *tctx = tsk->io_uring;
2213 enum task_work_notify_mode notify;
2214 struct io_wq_work_node *node;
2215 unsigned long flags;
2216 bool running;
2217
2218 WARN_ON_ONCE(!tctx);
2219
2220 spin_lock_irqsave(&tctx->task_lock, flags);
2221 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2222 running = tctx->task_running;
2223 if (!running)
2224 tctx->task_running = true;
2225 spin_unlock_irqrestore(&tctx->task_lock, flags);
2226
2227 /* task_work already pending, we're done */
2228 if (running)
2229 return;
2230
2231 /*
2232 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2233 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2234 * processing task_work. There's no reliable way to tell if TWA_RESUME
2235 * will do the job.
2236 */
2237 notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2238 if (!task_work_add(tsk, &tctx->task_work, notify)) {
2239 wake_up_process(tsk);
2240 return;
2241 }
2242
2243 spin_lock_irqsave(&tctx->task_lock, flags);
2244 tctx->task_running = false;
2245 node = tctx->task_list.first;
2246 INIT_WQ_LIST(&tctx->task_list);
2247 spin_unlock_irqrestore(&tctx->task_lock, flags);
2248
2249 while (node) {
2250 req = container_of(node, struct io_kiocb, io_task_work.node);
2251 node = node->next;
2252 if (llist_add(&req->io_task_work.fallback_node,
2253 &req->ctx->fallback_llist))
2254 schedule_delayed_work(&req->ctx->fallback_work, 1);
2255 }
2256 }
2257
2258 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2259 {
2260 struct io_ring_ctx *ctx = req->ctx;
2261
2262 /* not needed for normal modes, but SQPOLL depends on it */
2263 io_tw_lock(ctx, locked);
2264 io_req_complete_failed(req, req->result);
2265 }
2266
2267 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2268 {
2269 struct io_ring_ctx *ctx = req->ctx;
2270
2271 io_tw_lock(ctx, locked);
2272 /* req->task == current here, checking PF_EXITING is safe */
2273 if (likely(!(req->task->flags & PF_EXITING)))
2274 __io_queue_sqe(req);
2275 else
2276 io_req_complete_failed(req, -EFAULT);
2277 }
2278
2279 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2280 {
2281 req->result = ret;
2282 req->io_task_work.func = io_req_task_cancel;
2283 io_req_task_work_add(req);
2284 }
2285
2286 static void io_req_task_queue(struct io_kiocb *req)
2287 {
2288 req->io_task_work.func = io_req_task_submit;
2289 io_req_task_work_add(req);
2290 }
2291
2292 static void io_req_task_queue_reissue(struct io_kiocb *req)
2293 {
2294 req->io_task_work.func = io_queue_async_work;
2295 io_req_task_work_add(req);
2296 }
2297
2298 static inline void io_queue_next(struct io_kiocb *req)
2299 {
2300 struct io_kiocb *nxt = io_req_find_next(req);
2301
2302 if (nxt)
2303 io_req_task_queue(nxt);
2304 }
2305
2306 static void io_free_req(struct io_kiocb *req)
2307 {
2308 io_queue_next(req);
2309 __io_free_req(req);
2310 }
2311
2312 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2313 {
2314 io_free_req(req);
2315 }
2316
2317 struct req_batch {
2318 struct task_struct *task;
2319 int task_refs;
2320 int ctx_refs;
2321 };
2322
2323 static inline void io_init_req_batch(struct req_batch *rb)
2324 {
2325 rb->task_refs = 0;
2326 rb->ctx_refs = 0;
2327 rb->task = NULL;
2328 }
2329
2330 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2331 struct req_batch *rb)
2332 {
2333 if (rb->ctx_refs)
2334 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2335 if (rb->task)
2336 io_put_task(rb->task, rb->task_refs);
2337 }
2338
2339 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2340 struct io_submit_state *state)
2341 {
2342 io_queue_next(req);
2343 io_dismantle_req(req);
2344
2345 if (req->task != rb->task) {
2346 if (rb->task)
2347 io_put_task(rb->task, rb->task_refs);
2348 rb->task = req->task;
2349 rb->task_refs = 0;
2350 }
2351 rb->task_refs++;
2352 rb->ctx_refs++;
2353
2354 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2355 state->reqs[state->free_reqs++] = req;
2356 else
2357 list_add(&req->inflight_entry, &state->free_list);
2358 }
2359
2360 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2361 __must_hold(&ctx->uring_lock)
2362 {
2363 struct io_submit_state *state = &ctx->submit_state;
2364 int i, nr = state->compl_nr;
2365 struct req_batch rb;
2366
2367 spin_lock(&ctx->completion_lock);
2368 for (i = 0; i < nr; i++) {
2369 struct io_kiocb *req = state->compl_reqs[i];
2370
2371 __io_fill_cqe(ctx, req->user_data, req->result,
2372 req->compl.cflags);
2373 }
2374 io_commit_cqring(ctx);
2375 spin_unlock(&ctx->completion_lock);
2376 io_cqring_ev_posted(ctx);
2377
2378 io_init_req_batch(&rb);
2379 for (i = 0; i < nr; i++) {
2380 struct io_kiocb *req = state->compl_reqs[i];
2381
2382 if (req_ref_put_and_test(req))
2383 io_req_free_batch(&rb, req, &ctx->submit_state);
2384 }
2385
2386 io_req_free_batch_finish(ctx, &rb);
2387 state->compl_nr = 0;
2388 }
2389
2390 /*
2391 * Drop reference to request, return next in chain (if there is one) if this
2392 * was the last reference to this request.
2393 */
2394 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2395 {
2396 struct io_kiocb *nxt = NULL;
2397
2398 if (req_ref_put_and_test(req)) {
2399 nxt = io_req_find_next(req);
2400 __io_free_req(req);
2401 }
2402 return nxt;
2403 }
2404
2405 static inline void io_put_req(struct io_kiocb *req)
2406 {
2407 if (req_ref_put_and_test(req))
2408 io_free_req(req);
2409 }
2410
2411 static inline void io_put_req_deferred(struct io_kiocb *req)
2412 {
2413 if (req_ref_put_and_test(req)) {
2414 req->io_task_work.func = io_free_req_work;
2415 io_req_task_work_add(req);
2416 }
2417 }
2418
2419 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2420 {
2421 /* See comment at the top of this file */
2422 smp_rmb();
2423 return __io_cqring_events(ctx);
2424 }
2425
2426 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2427 {
2428 struct io_rings *rings = ctx->rings;
2429
2430 /* make sure SQ entry isn't read before tail */
2431 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2432 }
2433
2434 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2435 {
2436 unsigned int cflags;
2437
2438 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2439 cflags |= IORING_CQE_F_BUFFER;
2440 req->flags &= ~REQ_F_BUFFER_SELECTED;
2441 kfree(kbuf);
2442 return cflags;
2443 }
2444
2445 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2446 {
2447 struct io_buffer *kbuf;
2448
2449 if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2450 return 0;
2451 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2452 return io_put_kbuf(req, kbuf);
2453 }
2454
2455 static inline bool io_run_task_work(void)
2456 {
2457 if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2458 __set_current_state(TASK_RUNNING);
2459 tracehook_notify_signal();
2460 return true;
2461 }
2462
2463 return false;
2464 }
2465
2466 /*
2467 * Find and free completed poll iocbs
2468 */
2469 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2470 struct list_head *done)
2471 {
2472 struct req_batch rb;
2473 struct io_kiocb *req;
2474
2475 /* order with ->result store in io_complete_rw_iopoll() */
2476 smp_rmb();
2477
2478 io_init_req_batch(&rb);
2479 while (!list_empty(done)) {
2480 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2481 list_del(&req->inflight_entry);
2482
2483 io_fill_cqe_req(req, req->result, io_put_rw_kbuf(req));
2484 (*nr_events)++;
2485
2486 if (req_ref_put_and_test(req))
2487 io_req_free_batch(&rb, req, &ctx->submit_state);
2488 }
2489
2490 io_commit_cqring(ctx);
2491 io_cqring_ev_posted_iopoll(ctx);
2492 io_req_free_batch_finish(ctx, &rb);
2493 }
2494
2495 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2496 long min)
2497 {
2498 struct io_kiocb *req, *tmp;
2499 LIST_HEAD(done);
2500 bool spin;
2501
2502 /*
2503 * Only spin for completions if we don't have multiple devices hanging
2504 * off our complete list, and we're under the requested amount.
2505 */
2506 spin = !ctx->poll_multi_queue && *nr_events < min;
2507
2508 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2509 struct kiocb *kiocb = &req->rw.kiocb;
2510 int ret;
2511
2512 /*
2513 * Move completed and retryable entries to our local lists.
2514 * If we find a request that requires polling, break out
2515 * and complete those lists first, if we have entries there.
2516 */
2517 if (READ_ONCE(req->iopoll_completed)) {
2518 list_move_tail(&req->inflight_entry, &done);
2519 continue;
2520 }
2521 if (!list_empty(&done))
2522 break;
2523
2524 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2525 if (unlikely(ret < 0))
2526 return ret;
2527 else if (ret)
2528 spin = false;
2529
2530 /* iopoll may have completed current req */
2531 if (READ_ONCE(req->iopoll_completed))
2532 list_move_tail(&req->inflight_entry, &done);
2533 }
2534
2535 if (!list_empty(&done))
2536 io_iopoll_complete(ctx, nr_events, &done);
2537
2538 return 0;
2539 }
2540
2541 /*
2542 * We can't just wait for polled events to come to us, we have to actively
2543 * find and complete them.
2544 */
2545 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2546 {
2547 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2548 return;
2549
2550 mutex_lock(&ctx->uring_lock);
2551 while (!list_empty(&ctx->iopoll_list)) {
2552 unsigned int nr_events = 0;
2553
2554 io_do_iopoll(ctx, &nr_events, 0);
2555
2556 /* let it sleep and repeat later if can't complete a request */
2557 if (nr_events == 0)
2558 break;
2559 /*
2560 * Ensure we allow local-to-the-cpu processing to take place,
2561 * in this case we need to ensure that we reap all events.
2562 * Also let task_work, etc. to progress by releasing the mutex
2563 */
2564 if (need_resched()) {
2565 mutex_unlock(&ctx->uring_lock);
2566 cond_resched();
2567 mutex_lock(&ctx->uring_lock);
2568 }
2569 }
2570 mutex_unlock(&ctx->uring_lock);
2571 }
2572
2573 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2574 {
2575 unsigned int nr_events = 0;
2576 int ret = 0;
2577
2578 /*
2579 * We disallow the app entering submit/complete with polling, but we
2580 * still need to lock the ring to prevent racing with polled issue
2581 * that got punted to a workqueue.
2582 */
2583 mutex_lock(&ctx->uring_lock);
2584 /*
2585 * Don't enter poll loop if we already have events pending.
2586 * If we do, we can potentially be spinning for commands that
2587 * already triggered a CQE (eg in error).
2588 */
2589 if (test_bit(0, &ctx->check_cq_overflow))
2590 __io_cqring_overflow_flush(ctx, false);
2591 if (io_cqring_events(ctx))
2592 goto out;
2593 do {
2594 /*
2595 * If a submit got punted to a workqueue, we can have the
2596 * application entering polling for a command before it gets
2597 * issued. That app will hold the uring_lock for the duration
2598 * of the poll right here, so we need to take a breather every
2599 * now and then to ensure that the issue has a chance to add
2600 * the poll to the issued list. Otherwise we can spin here
2601 * forever, while the workqueue is stuck trying to acquire the
2602 * very same mutex.
2603 */
2604 if (list_empty(&ctx->iopoll_list)) {
2605 u32 tail = ctx->cached_cq_tail;
2606
2607 mutex_unlock(&ctx->uring_lock);
2608 io_run_task_work();
2609 mutex_lock(&ctx->uring_lock);
2610
2611 /* some requests don't go through iopoll_list */
2612 if (tail != ctx->cached_cq_tail ||
2613 list_empty(&ctx->iopoll_list))
2614 break;
2615 }
2616 ret = io_do_iopoll(ctx, &nr_events, min);
2617 } while (!ret && nr_events < min && !need_resched());
2618 out:
2619 mutex_unlock(&ctx->uring_lock);
2620 return ret;
2621 }
2622
2623 static void kiocb_end_write(struct io_kiocb *req)
2624 {
2625 /*
2626 * Tell lockdep we inherited freeze protection from submission
2627 * thread.
2628 */
2629 if (req->flags & REQ_F_ISREG) {
2630 struct super_block *sb = file_inode(req->file)->i_sb;
2631
2632 __sb_writers_acquired(sb, SB_FREEZE_WRITE);
2633 sb_end_write(sb);
2634 }
2635 }
2636
2637 #ifdef CONFIG_BLOCK
2638 static bool io_resubmit_prep(struct io_kiocb *req)
2639 {
2640 struct io_async_rw *rw = req->async_data;
2641
2642 if (!rw)
2643 return !io_req_prep_async(req);
2644 iov_iter_restore(&rw->iter, &rw->iter_state);
2645 return true;
2646 }
2647
2648 static bool io_rw_should_reissue(struct io_kiocb *req)
2649 {
2650 umode_t mode = file_inode(req->file)->i_mode;
2651 struct io_ring_ctx *ctx = req->ctx;
2652
2653 if (!S_ISBLK(mode) && !S_ISREG(mode))
2654 return false;
2655 if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2656 !(ctx->flags & IORING_SETUP_IOPOLL)))
2657 return false;
2658 /*
2659 * If ref is dying, we might be running poll reap from the exit work.
2660 * Don't attempt to reissue from that path, just let it fail with
2661 * -EAGAIN.
2662 */
2663 if (percpu_ref_is_dying(&ctx->refs))
2664 return false;
2665 /*
2666 * Play it safe and assume not safe to re-import and reissue if we're
2667 * not in the original thread group (or in task context).
2668 */
2669 if (!same_thread_group(req->task, current) || !in_task())
2670 return false;
2671 return true;
2672 }
2673 #else
2674 static bool io_resubmit_prep(struct io_kiocb *req)
2675 {
2676 return false;
2677 }
2678 static bool io_rw_should_reissue(struct io_kiocb *req)
2679 {
2680 return false;
2681 }
2682 #endif
2683
2684 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2685 {
2686 if (req->rw.kiocb.ki_flags & IOCB_WRITE) {
2687 kiocb_end_write(req);
2688 fsnotify_modify(req->file);
2689 } else {
2690 fsnotify_access(req->file);
2691 }
2692 if (res != req->result) {
2693 if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2694 io_rw_should_reissue(req)) {
2695 req->flags |= REQ_F_REISSUE;
2696 return true;
2697 }
2698 req_set_fail(req);
2699 req->result = res;
2700 }
2701 return false;
2702 }
2703
2704 static inline int io_fixup_rw_res(struct io_kiocb *req, unsigned res)
2705 {
2706 struct io_async_rw *io = req->async_data;
2707
2708 /* add previously done IO, if any */
2709 if (io && io->bytes_done > 0) {
2710 if (res < 0)
2711 res = io->bytes_done;
2712 else
2713 res += io->bytes_done;
2714 }
2715 return res;
2716 }
2717
2718 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2719 {
2720 unsigned int cflags = io_put_rw_kbuf(req);
2721 int res = req->result;
2722
2723 if (*locked) {
2724 struct io_ring_ctx *ctx = req->ctx;
2725 struct io_submit_state *state = &ctx->submit_state;
2726
2727 io_req_complete_state(req, res, cflags);
2728 state->compl_reqs[state->compl_nr++] = req;
2729 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2730 io_submit_flush_completions(ctx);
2731 } else {
2732 io_req_complete_post(req, res, cflags);
2733 }
2734 }
2735
2736 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2737 unsigned int issue_flags)
2738 {
2739 if (__io_complete_rw_common(req, res))
2740 return;
2741 __io_req_complete(req, issue_flags, io_fixup_rw_res(req, res), io_put_rw_kbuf(req));
2742 }
2743
2744 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2745 {
2746 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2747
2748 if (__io_complete_rw_common(req, res))
2749 return;
2750 req->result = io_fixup_rw_res(req, res);
2751 req->io_task_work.func = io_req_task_complete;
2752 io_req_task_work_add(req);
2753 }
2754
2755 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2756 {
2757 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2758
2759 if (kiocb->ki_flags & IOCB_WRITE)
2760 kiocb_end_write(req);
2761 if (unlikely(res != req->result)) {
2762 if (res == -EAGAIN && io_rw_should_reissue(req)) {
2763 req->flags |= REQ_F_REISSUE;
2764 return;
2765 }
2766 }
2767
2768 WRITE_ONCE(req->result, res);
2769 /* order with io_iopoll_complete() checking ->result */
2770 smp_wmb();
2771 WRITE_ONCE(req->iopoll_completed, 1);
2772 }
2773
2774 /*
2775 * After the iocb has been issued, it's safe to be found on the poll list.
2776 * Adding the kiocb to the list AFTER submission ensures that we don't
2777 * find it from a io_do_iopoll() thread before the issuer is done
2778 * accessing the kiocb cookie.
2779 */
2780 static void io_iopoll_req_issued(struct io_kiocb *req)
2781 {
2782 struct io_ring_ctx *ctx = req->ctx;
2783 const bool in_async = io_wq_current_is_worker();
2784
2785 /* workqueue context doesn't hold uring_lock, grab it now */
2786 if (unlikely(in_async))
2787 mutex_lock(&ctx->uring_lock);
2788
2789 /*
2790 * Track whether we have multiple files in our lists. This will impact
2791 * how we do polling eventually, not spinning if we're on potentially
2792 * different devices.
2793 */
2794 if (list_empty(&ctx->iopoll_list)) {
2795 ctx->poll_multi_queue = false;
2796 } else if (!ctx->poll_multi_queue) {
2797 struct io_kiocb *list_req;
2798 unsigned int queue_num0, queue_num1;
2799
2800 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2801 inflight_entry);
2802
2803 if (list_req->file != req->file) {
2804 ctx->poll_multi_queue = true;
2805 } else {
2806 queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2807 queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2808 if (queue_num0 != queue_num1)
2809 ctx->poll_multi_queue = true;
2810 }
2811 }
2812
2813 /*
2814 * For fast devices, IO may have already completed. If it has, add
2815 * it to the front so we find it first.
2816 */
2817 if (READ_ONCE(req->iopoll_completed))
2818 list_add(&req->inflight_entry, &ctx->iopoll_list);
2819 else
2820 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2821
2822 if (unlikely(in_async)) {
2823 /*
2824 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2825 * in sq thread task context or in io worker task context. If
2826 * current task context is sq thread, we don't need to check
2827 * whether should wake up sq thread.
2828 */
2829 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2830 wq_has_sleeper(&ctx->sq_data->wait))
2831 wake_up(&ctx->sq_data->wait);
2832
2833 mutex_unlock(&ctx->uring_lock);
2834 }
2835 }
2836
2837 static bool io_bdev_nowait(struct block_device *bdev)
2838 {
2839 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2840 }
2841
2842 /*
2843 * If we tracked the file through the SCM inflight mechanism, we could support
2844 * any file. For now, just ensure that anything potentially problematic is done
2845 * inline.
2846 */
2847 static bool __io_file_supports_nowait(struct file *file, int rw)
2848 {
2849 umode_t mode = file_inode(file)->i_mode;
2850
2851 if (S_ISBLK(mode)) {
2852 if (IS_ENABLED(CONFIG_BLOCK) &&
2853 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2854 return true;
2855 return false;
2856 }
2857 if (S_ISSOCK(mode))
2858 return true;
2859 if (S_ISREG(mode)) {
2860 if (IS_ENABLED(CONFIG_BLOCK) &&
2861 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2862 file->f_op != &io_uring_fops)
2863 return true;
2864 return false;
2865 }
2866
2867 /* any ->read/write should understand O_NONBLOCK */
2868 if (file->f_flags & O_NONBLOCK)
2869 return true;
2870
2871 if (!(file->f_mode & FMODE_NOWAIT))
2872 return false;
2873
2874 if (rw == READ)
2875 return file->f_op->read_iter != NULL;
2876
2877 return file->f_op->write_iter != NULL;
2878 }
2879
2880 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2881 {
2882 if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2883 return true;
2884 else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2885 return true;
2886
2887 return __io_file_supports_nowait(req->file, rw);
2888 }
2889
2890 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2891 int rw)
2892 {
2893 struct io_ring_ctx *ctx = req->ctx;
2894 struct kiocb *kiocb = &req->rw.kiocb;
2895 struct file *file = req->file;
2896 unsigned ioprio;
2897 int ret;
2898
2899 if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2900 req->flags |= REQ_F_ISREG;
2901
2902 kiocb->ki_pos = READ_ONCE(sqe->off);
2903 if (kiocb->ki_pos == -1) {
2904 if (!(file->f_mode & FMODE_STREAM)) {
2905 req->flags |= REQ_F_CUR_POS;
2906 kiocb->ki_pos = file->f_pos;
2907 } else {
2908 kiocb->ki_pos = 0;
2909 }
2910 }
2911 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2912 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2913 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2914 if (unlikely(ret))
2915 return ret;
2916
2917 /*
2918 * If the file is marked O_NONBLOCK, still allow retry for it if it
2919 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2920 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2921 */
2922 if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2923 ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2924 req->flags |= REQ_F_NOWAIT;
2925
2926 ioprio = READ_ONCE(sqe->ioprio);
2927 if (ioprio) {
2928 ret = ioprio_check_cap(ioprio);
2929 if (ret)
2930 return ret;
2931
2932 kiocb->ki_ioprio = ioprio;
2933 } else
2934 kiocb->ki_ioprio = get_current_ioprio();
2935
2936 if (ctx->flags & IORING_SETUP_IOPOLL) {
2937 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2938 !kiocb->ki_filp->f_op->iopoll)
2939 return -EOPNOTSUPP;
2940
2941 kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2942 kiocb->ki_complete = io_complete_rw_iopoll;
2943 req->iopoll_completed = 0;
2944 } else {
2945 if (kiocb->ki_flags & IOCB_HIPRI)
2946 return -EINVAL;
2947 kiocb->ki_complete = io_complete_rw;
2948 }
2949
2950 /* used for fixed read/write too - just read unconditionally */
2951 req->buf_index = READ_ONCE(sqe->buf_index);
2952 req->imu = NULL;
2953
2954 if (req->opcode == IORING_OP_READ_FIXED ||
2955 req->opcode == IORING_OP_WRITE_FIXED) {
2956 struct io_ring_ctx *ctx = req->ctx;
2957 u16 index;
2958
2959 if (unlikely(req->buf_index >= ctx->nr_user_bufs))
2960 return -EFAULT;
2961 index = array_index_nospec(req->buf_index, ctx->nr_user_bufs);
2962 req->imu = ctx->user_bufs[index];
2963 io_req_set_rsrc_node(req);
2964 }
2965
2966 req->rw.addr = READ_ONCE(sqe->addr);
2967 req->rw.len = READ_ONCE(sqe->len);
2968 return 0;
2969 }
2970
2971 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2972 {
2973 switch (ret) {
2974 case -EIOCBQUEUED:
2975 break;
2976 case -ERESTARTSYS:
2977 case -ERESTARTNOINTR:
2978 case -ERESTARTNOHAND:
2979 case -ERESTART_RESTARTBLOCK:
2980 /*
2981 * We can't just restart the syscall, since previously
2982 * submitted sqes may already be in progress. Just fail this
2983 * IO with EINTR.
2984 */
2985 ret = -EINTR;
2986 fallthrough;
2987 default:
2988 kiocb->ki_complete(kiocb, ret, 0);
2989 }
2990 }
2991
2992 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2993 unsigned int issue_flags)
2994 {
2995 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2996
2997 if (req->flags & REQ_F_CUR_POS)
2998 req->file->f_pos = kiocb->ki_pos;
2999 if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
3000 __io_complete_rw(req, ret, 0, issue_flags);
3001 else
3002 io_rw_done(kiocb, ret);
3003
3004 if (req->flags & REQ_F_REISSUE) {
3005 req->flags &= ~REQ_F_REISSUE;
3006 if (io_resubmit_prep(req)) {
3007 io_req_task_queue_reissue(req);
3008 } else {
3009 unsigned int cflags = io_put_rw_kbuf(req);
3010 struct io_ring_ctx *ctx = req->ctx;
3011
3012 ret = io_fixup_rw_res(req, ret);
3013 req_set_fail(req);
3014 if (!(issue_flags & IO_URING_F_NONBLOCK)) {
3015 mutex_lock(&ctx->uring_lock);
3016 __io_req_complete(req, issue_flags, ret, cflags);
3017 mutex_unlock(&ctx->uring_lock);
3018 } else {
3019 __io_req_complete(req, issue_flags, ret, cflags);
3020 }
3021 }
3022 }
3023 }
3024
3025 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
3026 struct io_mapped_ubuf *imu)
3027 {
3028 size_t len = req->rw.len;
3029 u64 buf_end, buf_addr = req->rw.addr;
3030 size_t offset;
3031
3032 if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
3033 return -EFAULT;
3034 /* not inside the mapped region */
3035 if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
3036 return -EFAULT;
3037
3038 /*
3039 * May not be a start of buffer, set size appropriately
3040 * and advance us to the beginning.
3041 */
3042 offset = buf_addr - imu->ubuf;
3043 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3044
3045 if (offset) {
3046 /*
3047 * Don't use iov_iter_advance() here, as it's really slow for
3048 * using the latter parts of a big fixed buffer - it iterates
3049 * over each segment manually. We can cheat a bit here, because
3050 * we know that:
3051 *
3052 * 1) it's a BVEC iter, we set it up
3053 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3054 * first and last bvec
3055 *
3056 * So just find our index, and adjust the iterator afterwards.
3057 * If the offset is within the first bvec (or the whole first
3058 * bvec, just use iov_iter_advance(). This makes it easier
3059 * since we can just skip the first segment, which may not
3060 * be PAGE_SIZE aligned.
3061 */
3062 const struct bio_vec *bvec = imu->bvec;
3063
3064 if (offset <= bvec->bv_len) {
3065 iov_iter_advance(iter, offset);
3066 } else {
3067 unsigned long seg_skip;
3068
3069 /* skip first vec */
3070 offset -= bvec->bv_len;
3071 seg_skip = 1 + (offset >> PAGE_SHIFT);
3072
3073 iter->bvec = bvec + seg_skip;
3074 iter->nr_segs -= seg_skip;
3075 iter->count -= bvec->bv_len + offset;
3076 iter->iov_offset = offset & ~PAGE_MASK;
3077 }
3078 }
3079
3080 return 0;
3081 }
3082
3083 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3084 {
3085 if (WARN_ON_ONCE(!req->imu))
3086 return -EFAULT;
3087 return __io_import_fixed(req, rw, iter, req->imu);
3088 }
3089
3090 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3091 {
3092 if (needs_lock)
3093 mutex_unlock(&ctx->uring_lock);
3094 }
3095
3096 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3097 {
3098 /*
3099 * "Normal" inline submissions always hold the uring_lock, since we
3100 * grab it from the system call. Same is true for the SQPOLL offload.
3101 * The only exception is when we've detached the request and issue it
3102 * from an async worker thread, grab the lock for that case.
3103 */
3104 if (needs_lock)
3105 mutex_lock(&ctx->uring_lock);
3106 }
3107
3108 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3109 int bgid, struct io_buffer *kbuf,
3110 bool needs_lock)
3111 {
3112 struct io_buffer *head;
3113
3114 if (req->flags & REQ_F_BUFFER_SELECTED)
3115 return kbuf;
3116
3117 io_ring_submit_lock(req->ctx, needs_lock);
3118
3119 lockdep_assert_held(&req->ctx->uring_lock);
3120
3121 head = xa_load(&req->ctx->io_buffers, bgid);
3122 if (head) {
3123 if (!list_empty(&head->list)) {
3124 kbuf = list_last_entry(&head->list, struct io_buffer,
3125 list);
3126 list_del(&kbuf->list);
3127 } else {
3128 kbuf = head;
3129 xa_erase(&req->ctx->io_buffers, bgid);
3130 }
3131 if (*len > kbuf->len)
3132 *len = kbuf->len;
3133 } else {
3134 kbuf = ERR_PTR(-ENOBUFS);
3135 }
3136
3137 io_ring_submit_unlock(req->ctx, needs_lock);
3138
3139 return kbuf;
3140 }
3141
3142 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3143 bool needs_lock)
3144 {
3145 struct io_buffer *kbuf;
3146 u16 bgid;
3147
3148 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3149 bgid = req->buf_index;
3150 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3151 if (IS_ERR(kbuf))
3152 return kbuf;
3153 req->rw.addr = (u64) (unsigned long) kbuf;
3154 req->flags |= REQ_F_BUFFER_SELECTED;
3155 return u64_to_user_ptr(kbuf->addr);
3156 }
3157
3158 #ifdef CONFIG_COMPAT
3159 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3160 bool needs_lock)
3161 {
3162 struct compat_iovec __user *uiov;
3163 compat_ssize_t clen;
3164 void __user *buf;
3165 ssize_t len;
3166
3167 uiov = u64_to_user_ptr(req->rw.addr);
3168 if (!access_ok(uiov, sizeof(*uiov)))
3169 return -EFAULT;
3170 if (__get_user(clen, &uiov->iov_len))
3171 return -EFAULT;
3172 if (clen < 0)
3173 return -EINVAL;
3174
3175 len = clen;
3176 buf = io_rw_buffer_select(req, &len, needs_lock);
3177 if (IS_ERR(buf))
3178 return PTR_ERR(buf);
3179 iov[0].iov_base = buf;
3180 iov[0].iov_len = (compat_size_t) len;
3181 return 0;
3182 }
3183 #endif
3184
3185 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3186 bool needs_lock)
3187 {
3188 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3189 void __user *buf;
3190 ssize_t len;
3191
3192 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3193 return -EFAULT;
3194
3195 len = iov[0].iov_len;
3196 if (len < 0)
3197 return -EINVAL;
3198 buf = io_rw_buffer_select(req, &len, needs_lock);
3199 if (IS_ERR(buf))
3200 return PTR_ERR(buf);
3201 iov[0].iov_base = buf;
3202 iov[0].iov_len = len;
3203 return 0;
3204 }
3205
3206 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3207 bool needs_lock)
3208 {
3209 if (req->flags & REQ_F_BUFFER_SELECTED) {
3210 struct io_buffer *kbuf;
3211
3212 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3213 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3214 iov[0].iov_len = kbuf->len;
3215 return 0;
3216 }
3217 if (req->rw.len != 1)
3218 return -EINVAL;
3219
3220 #ifdef CONFIG_COMPAT
3221 if (req->ctx->compat)
3222 return io_compat_import(req, iov, needs_lock);
3223 #endif
3224
3225 return __io_iov_buffer_select(req, iov, needs_lock);
3226 }
3227
3228 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3229 struct iov_iter *iter, bool needs_lock)
3230 {
3231 void __user *buf = u64_to_user_ptr(req->rw.addr);
3232 size_t sqe_len = req->rw.len;
3233 u8 opcode = req->opcode;
3234 ssize_t ret;
3235
3236 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3237 *iovec = NULL;
3238 return io_import_fixed(req, rw, iter);
3239 }
3240
3241 /* buffer index only valid with fixed read/write, or buffer select */
3242 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3243 return -EINVAL;
3244
3245 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3246 if (req->flags & REQ_F_BUFFER_SELECT) {
3247 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3248 if (IS_ERR(buf))
3249 return PTR_ERR(buf);
3250 req->rw.len = sqe_len;
3251 }
3252
3253 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3254 *iovec = NULL;
3255 return ret;
3256 }
3257
3258 if (req->flags & REQ_F_BUFFER_SELECT) {
3259 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3260 if (!ret)
3261 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3262 *iovec = NULL;
3263 return ret;
3264 }
3265
3266 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3267 req->ctx->compat);
3268 }
3269
3270 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3271 {
3272 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3273 }
3274
3275 /*
3276 * For files that don't have ->read_iter() and ->write_iter(), handle them
3277 * by looping over ->read() or ->write() manually.
3278 */
3279 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3280 {
3281 struct kiocb *kiocb = &req->rw.kiocb;
3282 struct file *file = req->file;
3283 ssize_t ret = 0;
3284
3285 /*
3286 * Don't support polled IO through this interface, and we can't
3287 * support non-blocking either. For the latter, this just causes
3288 * the kiocb to be handled from an async context.
3289 */
3290 if (kiocb->ki_flags & IOCB_HIPRI)
3291 return -EOPNOTSUPP;
3292 if (kiocb->ki_flags & IOCB_NOWAIT)
3293 return -EAGAIN;
3294
3295 while (iov_iter_count(iter)) {
3296 struct iovec iovec;
3297 ssize_t nr;
3298
3299 if (!iov_iter_is_bvec(iter)) {
3300 iovec = iov_iter_iovec(iter);
3301 } else {
3302 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3303 iovec.iov_len = req->rw.len;
3304 }
3305
3306 if (rw == READ) {
3307 nr = file->f_op->read(file, iovec.iov_base,
3308 iovec.iov_len, io_kiocb_ppos(kiocb));
3309 } else {
3310 nr = file->f_op->write(file, iovec.iov_base,
3311 iovec.iov_len, io_kiocb_ppos(kiocb));
3312 }
3313
3314 if (nr < 0) {
3315 if (!ret)
3316 ret = nr;
3317 break;
3318 }
3319 ret += nr;
3320 if (!iov_iter_is_bvec(iter)) {
3321 iov_iter_advance(iter, nr);
3322 } else {
3323 req->rw.addr += nr;
3324 req->rw.len -= nr;
3325 if (!req->rw.len)
3326 break;
3327 }
3328 if (nr != iovec.iov_len)
3329 break;
3330 }
3331
3332 return ret;
3333 }
3334
3335 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3336 const struct iovec *fast_iov, struct iov_iter *iter)
3337 {
3338 struct io_async_rw *rw = req->async_data;
3339
3340 memcpy(&rw->iter, iter, sizeof(*iter));
3341 rw->free_iovec = iovec;
3342 rw->bytes_done = 0;
3343 /* can only be fixed buffers, no need to do anything */
3344 if (iov_iter_is_bvec(iter))
3345 return;
3346 if (!iovec) {
3347 unsigned iov_off = 0;
3348
3349 rw->iter.iov = rw->fast_iov;
3350 if (iter->iov != fast_iov) {
3351 iov_off = iter->iov - fast_iov;
3352 rw->iter.iov += iov_off;
3353 }
3354 if (rw->fast_iov != fast_iov)
3355 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3356 sizeof(struct iovec) * iter->nr_segs);
3357 } else {
3358 req->flags |= REQ_F_NEED_CLEANUP;
3359 }
3360 }
3361
3362 static inline int io_alloc_async_data(struct io_kiocb *req)
3363 {
3364 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3365 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3366 return req->async_data == NULL;
3367 }
3368
3369 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3370 const struct iovec *fast_iov,
3371 struct iov_iter *iter, bool force)
3372 {
3373 if (!force && !io_op_defs[req->opcode].needs_async_setup)
3374 return 0;
3375 if (!req->async_data) {
3376 struct io_async_rw *iorw;
3377
3378 if (io_alloc_async_data(req)) {
3379 kfree(iovec);
3380 return -ENOMEM;
3381 }
3382
3383 io_req_map_rw(req, iovec, fast_iov, iter);
3384 iorw = req->async_data;
3385 /* we've copied and mapped the iter, ensure state is saved */
3386 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3387 }
3388 return 0;
3389 }
3390
3391 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3392 {
3393 struct io_async_rw *iorw = req->async_data;
3394 struct iovec *iov = iorw->fast_iov;
3395 int ret;
3396
3397 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3398 if (unlikely(ret < 0))
3399 return ret;
3400
3401 iorw->bytes_done = 0;
3402 iorw->free_iovec = iov;
3403 if (iov)
3404 req->flags |= REQ_F_NEED_CLEANUP;
3405 iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3406 return 0;
3407 }
3408
3409 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3410 {
3411 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3412 return -EBADF;
3413 return io_prep_rw(req, sqe, READ);
3414 }
3415
3416 /*
3417 * This is our waitqueue callback handler, registered through lock_page_async()
3418 * when we initially tried to do the IO with the iocb armed our waitqueue.
3419 * This gets called when the page is unlocked, and we generally expect that to
3420 * happen when the page IO is completed and the page is now uptodate. This will
3421 * queue a task_work based retry of the operation, attempting to copy the data
3422 * again. If the latter fails because the page was NOT uptodate, then we will
3423 * do a thread based blocking retry of the operation. That's the unexpected
3424 * slow path.
3425 */
3426 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3427 int sync, void *arg)
3428 {
3429 struct wait_page_queue *wpq;
3430 struct io_kiocb *req = wait->private;
3431 struct wait_page_key *key = arg;
3432
3433 wpq = container_of(wait, struct wait_page_queue, wait);
3434
3435 if (!wake_page_match(wpq, key))
3436 return 0;
3437
3438 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3439 list_del_init(&wait->entry);
3440 io_req_task_queue(req);
3441 return 1;
3442 }
3443
3444 /*
3445 * This controls whether a given IO request should be armed for async page
3446 * based retry. If we return false here, the request is handed to the async
3447 * worker threads for retry. If we're doing buffered reads on a regular file,
3448 * we prepare a private wait_page_queue entry and retry the operation. This
3449 * will either succeed because the page is now uptodate and unlocked, or it
3450 * will register a callback when the page is unlocked at IO completion. Through
3451 * that callback, io_uring uses task_work to setup a retry of the operation.
3452 * That retry will attempt the buffered read again. The retry will generally
3453 * succeed, or in rare cases where it fails, we then fall back to using the
3454 * async worker threads for a blocking retry.
3455 */
3456 static bool io_rw_should_retry(struct io_kiocb *req)
3457 {
3458 struct io_async_rw *rw = req->async_data;
3459 struct wait_page_queue *wait = &rw->wpq;
3460 struct kiocb *kiocb = &req->rw.kiocb;
3461
3462 /* never retry for NOWAIT, we just complete with -EAGAIN */
3463 if (req->flags & REQ_F_NOWAIT)
3464 return false;
3465
3466 /* Only for buffered IO */
3467 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3468 return false;
3469
3470 /*
3471 * just use poll if we can, and don't attempt if the fs doesn't
3472 * support callback based unlocks
3473 */
3474 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3475 return false;
3476
3477 wait->wait.func = io_async_buf_func;
3478 wait->wait.private = req;
3479 wait->wait.flags = 0;
3480 INIT_LIST_HEAD(&wait->wait.entry);
3481 kiocb->ki_flags |= IOCB_WAITQ;
3482 kiocb->ki_flags &= ~IOCB_NOWAIT;
3483 kiocb->ki_waitq = wait;
3484 return true;
3485 }
3486
3487 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3488 {
3489 if (req->file->f_op->read_iter)
3490 return call_read_iter(req->file, &req->rw.kiocb, iter);
3491 else if (req->file->f_op->read)
3492 return loop_rw_iter(READ, req, iter);
3493 else
3494 return -EINVAL;
3495 }
3496
3497 static bool need_read_all(struct io_kiocb *req)
3498 {
3499 return req->flags & REQ_F_ISREG ||
3500 S_ISBLK(file_inode(req->file)->i_mode);
3501 }
3502
3503 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3504 {
3505 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3506 struct kiocb *kiocb = &req->rw.kiocb;
3507 struct iov_iter __iter, *iter = &__iter;
3508 struct io_async_rw *rw = req->async_data;
3509 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3510 struct iov_iter_state __state, *state;
3511 ssize_t ret, ret2;
3512
3513 if (rw) {
3514 iter = &rw->iter;
3515 state = &rw->iter_state;
3516 /*
3517 * We come here from an earlier attempt, restore our state to
3518 * match in case it doesn't. It's cheap enough that we don't
3519 * need to make this conditional.
3520 */
3521 iov_iter_restore(iter, state);
3522 iovec = NULL;
3523 } else {
3524 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3525 if (ret < 0)
3526 return ret;
3527 state = &__state;
3528 iov_iter_save_state(iter, state);
3529 }
3530 req->result = iov_iter_count(iter);
3531
3532 /* Ensure we clear previously set non-block flag */
3533 if (!force_nonblock)
3534 kiocb->ki_flags &= ~IOCB_NOWAIT;
3535 else
3536 kiocb->ki_flags |= IOCB_NOWAIT;
3537
3538 /* If the file doesn't support async, just async punt */
3539 if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3540 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3541 return ret ?: -EAGAIN;
3542 }
3543
3544 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3545 if (unlikely(ret)) {
3546 kfree(iovec);
3547 return ret;
3548 }
3549
3550 ret = io_iter_do_read(req, iter);
3551
3552 if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3553 req->flags &= ~REQ_F_REISSUE;
3554 /* IOPOLL retry should happen for io-wq threads */
3555 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3556 goto done;
3557 /* no retry on NONBLOCK nor RWF_NOWAIT */
3558 if (req->flags & REQ_F_NOWAIT)
3559 goto done;
3560 ret = 0;
3561 } else if (ret == -EIOCBQUEUED) {
3562 goto out_free;
3563 } else if (ret <= 0 || ret == req->result || !force_nonblock ||
3564 (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3565 /* read all, failed, already did sync or don't want to retry */
3566 goto done;
3567 }
3568
3569 /*
3570 * Don't depend on the iter state matching what was consumed, or being
3571 * untouched in case of error. Restore it and we'll advance it
3572 * manually if we need to.
3573 */
3574 iov_iter_restore(iter, state);
3575
3576 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3577 if (ret2)
3578 return ret2;
3579
3580 iovec = NULL;
3581 rw = req->async_data;
3582 /*
3583 * Now use our persistent iterator and state, if we aren't already.
3584 * We've restored and mapped the iter to match.
3585 */
3586 if (iter != &rw->iter) {
3587 iter = &rw->iter;
3588 state = &rw->iter_state;
3589 }
3590
3591 do {
3592 /*
3593 * We end up here because of a partial read, either from
3594 * above or inside this loop. Advance the iter by the bytes
3595 * that were consumed.
3596 */
3597 iov_iter_advance(iter, ret);
3598 if (!iov_iter_count(iter))
3599 break;
3600 rw->bytes_done += ret;
3601 iov_iter_save_state(iter, state);
3602
3603 /* if we can retry, do so with the callbacks armed */
3604 if (!io_rw_should_retry(req)) {
3605 kiocb->ki_flags &= ~IOCB_WAITQ;
3606 return -EAGAIN;
3607 }
3608
3609 req->result = iov_iter_count(iter);
3610 /*
3611 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3612 * we get -EIOCBQUEUED, then we'll get a notification when the
3613 * desired page gets unlocked. We can also get a partial read
3614 * here, and if we do, then just retry at the new offset.
3615 */
3616 ret = io_iter_do_read(req, iter);
3617 if (ret == -EIOCBQUEUED)
3618 return 0;
3619 /* we got some bytes, but not all. retry. */
3620 kiocb->ki_flags &= ~IOCB_WAITQ;
3621 iov_iter_restore(iter, state);
3622 } while (ret > 0);
3623 done:
3624 kiocb_done(kiocb, ret, issue_flags);
3625 out_free:
3626 /* it's faster to check here then delegate to kfree */
3627 if (iovec)
3628 kfree(iovec);
3629 return 0;
3630 }
3631
3632 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3633 {
3634 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3635 return -EBADF;
3636 return io_prep_rw(req, sqe, WRITE);
3637 }
3638
3639 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3640 {
3641 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3642 struct kiocb *kiocb = &req->rw.kiocb;
3643 struct iov_iter __iter, *iter = &__iter;
3644 struct io_async_rw *rw = req->async_data;
3645 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3646 struct iov_iter_state __state, *state;
3647 ssize_t ret, ret2;
3648
3649 if (rw) {
3650 iter = &rw->iter;
3651 state = &rw->iter_state;
3652 iov_iter_restore(iter, state);
3653 iovec = NULL;
3654 } else {
3655 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3656 if (ret < 0)
3657 return ret;
3658 state = &__state;
3659 iov_iter_save_state(iter, state);
3660 }
3661 req->result = iov_iter_count(iter);
3662
3663 /* Ensure we clear previously set non-block flag */
3664 if (!force_nonblock)
3665 kiocb->ki_flags &= ~IOCB_NOWAIT;
3666 else
3667 kiocb->ki_flags |= IOCB_NOWAIT;
3668
3669 /* If the file doesn't support async, just async punt */
3670 if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3671 goto copy_iov;
3672
3673 /* file path doesn't support NOWAIT for non-direct_IO */
3674 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3675 (req->flags & REQ_F_ISREG))
3676 goto copy_iov;
3677
3678 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3679 if (unlikely(ret))
3680 goto out_free;
3681
3682 /*
3683 * Open-code file_start_write here to grab freeze protection,
3684 * which will be released by another thread in
3685 * io_complete_rw(). Fool lockdep by telling it the lock got
3686 * released so that it doesn't complain about the held lock when
3687 * we return to userspace.
3688 */
3689 if (req->flags & REQ_F_ISREG) {
3690 sb_start_write(file_inode(req->file)->i_sb);
3691 __sb_writers_release(file_inode(req->file)->i_sb,
3692 SB_FREEZE_WRITE);
3693 }
3694 kiocb->ki_flags |= IOCB_WRITE;
3695
3696 if (req->file->f_op->write_iter)
3697 ret2 = call_write_iter(req->file, kiocb, iter);
3698 else if (req->file->f_op->write)
3699 ret2 = loop_rw_iter(WRITE, req, iter);
3700 else
3701 ret2 = -EINVAL;
3702
3703 if (req->flags & REQ_F_REISSUE) {
3704 req->flags &= ~REQ_F_REISSUE;
3705 ret2 = -EAGAIN;
3706 }
3707
3708 /*
3709 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3710 * retry them without IOCB_NOWAIT.
3711 */
3712 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3713 ret2 = -EAGAIN;
3714 /* no retry on NONBLOCK nor RWF_NOWAIT */
3715 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3716 goto done;
3717 if (!force_nonblock || ret2 != -EAGAIN) {
3718 /* IOPOLL retry should happen for io-wq threads */
3719 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3720 goto copy_iov;
3721 done:
3722 kiocb_done(kiocb, ret2, issue_flags);
3723 } else {
3724 copy_iov:
3725 iov_iter_restore(iter, state);
3726 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3727 if (!ret) {
3728 if (kiocb->ki_flags & IOCB_WRITE)
3729 kiocb_end_write(req);
3730 return -EAGAIN;
3731 }
3732 return ret;
3733 }
3734 out_free:
3735 /* it's reportedly faster than delegating the null check to kfree() */
3736 if (iovec)
3737 kfree(iovec);
3738 return ret;
3739 }
3740
3741 static int io_renameat_prep(struct io_kiocb *req,
3742 const struct io_uring_sqe *sqe)
3743 {
3744 struct io_rename *ren = &req->rename;
3745 const char __user *oldf, *newf;
3746
3747 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3748 return -EINVAL;
3749 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3750 return -EINVAL;
3751 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3752 return -EBADF;
3753
3754 ren->old_dfd = READ_ONCE(sqe->fd);
3755 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3756 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3757 ren->new_dfd = READ_ONCE(sqe->len);
3758 ren->flags = READ_ONCE(sqe->rename_flags);
3759
3760 ren->oldpath = getname(oldf);
3761 if (IS_ERR(ren->oldpath))
3762 return PTR_ERR(ren->oldpath);
3763
3764 ren->newpath = getname(newf);
3765 if (IS_ERR(ren->newpath)) {
3766 putname(ren->oldpath);
3767 return PTR_ERR(ren->newpath);
3768 }
3769
3770 req->flags |= REQ_F_NEED_CLEANUP;
3771 return 0;
3772 }
3773
3774 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3775 {
3776 struct io_rename *ren = &req->rename;
3777 int ret;
3778
3779 if (issue_flags & IO_URING_F_NONBLOCK)
3780 return -EAGAIN;
3781
3782 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3783 ren->newpath, ren->flags);
3784
3785 req->flags &= ~REQ_F_NEED_CLEANUP;
3786 if (ret < 0)
3787 req_set_fail(req);
3788 io_req_complete(req, ret);
3789 return 0;
3790 }
3791
3792 static int io_unlinkat_prep(struct io_kiocb *req,
3793 const struct io_uring_sqe *sqe)
3794 {
3795 struct io_unlink *un = &req->unlink;
3796 const char __user *fname;
3797
3798 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3799 return -EINVAL;
3800 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3801 sqe->splice_fd_in)
3802 return -EINVAL;
3803 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3804 return -EBADF;
3805
3806 un->dfd = READ_ONCE(sqe->fd);
3807
3808 un->flags = READ_ONCE(sqe->unlink_flags);
3809 if (un->flags & ~AT_REMOVEDIR)
3810 return -EINVAL;
3811
3812 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3813 un->filename = getname(fname);
3814 if (IS_ERR(un->filename))
3815 return PTR_ERR(un->filename);
3816
3817 req->flags |= REQ_F_NEED_CLEANUP;
3818 return 0;
3819 }
3820
3821 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3822 {
3823 struct io_unlink *un = &req->unlink;
3824 int ret;
3825
3826 if (issue_flags & IO_URING_F_NONBLOCK)
3827 return -EAGAIN;
3828
3829 if (un->flags & AT_REMOVEDIR)
3830 ret = do_rmdir(un->dfd, un->filename);
3831 else
3832 ret = do_unlinkat(un->dfd, un->filename);
3833
3834 req->flags &= ~REQ_F_NEED_CLEANUP;
3835 if (ret < 0)
3836 req_set_fail(req);
3837 io_req_complete(req, ret);
3838 return 0;
3839 }
3840
3841 static int io_mkdirat_prep(struct io_kiocb *req,
3842 const struct io_uring_sqe *sqe)
3843 {
3844 struct io_mkdir *mkd = &req->mkdir;
3845 const char __user *fname;
3846
3847 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3848 return -EINVAL;
3849 if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3850 sqe->splice_fd_in)
3851 return -EINVAL;
3852 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3853 return -EBADF;
3854
3855 mkd->dfd = READ_ONCE(sqe->fd);
3856 mkd->mode = READ_ONCE(sqe->len);
3857
3858 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3859 mkd->filename = getname(fname);
3860 if (IS_ERR(mkd->filename))
3861 return PTR_ERR(mkd->filename);
3862
3863 req->flags |= REQ_F_NEED_CLEANUP;
3864 return 0;
3865 }
3866
3867 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3868 {
3869 struct io_mkdir *mkd = &req->mkdir;
3870 int ret;
3871
3872 if (issue_flags & IO_URING_F_NONBLOCK)
3873 return -EAGAIN;
3874
3875 ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3876
3877 req->flags &= ~REQ_F_NEED_CLEANUP;
3878 if (ret < 0)
3879 req_set_fail(req);
3880 io_req_complete(req, ret);
3881 return 0;
3882 }
3883
3884 static int io_symlinkat_prep(struct io_kiocb *req,
3885 const struct io_uring_sqe *sqe)
3886 {
3887 struct io_symlink *sl = &req->symlink;
3888 const char __user *oldpath, *newpath;
3889
3890 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3891 return -EINVAL;
3892 if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3893 sqe->splice_fd_in)
3894 return -EINVAL;
3895 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3896 return -EBADF;
3897
3898 sl->new_dfd = READ_ONCE(sqe->fd);
3899 oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3900 newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3901
3902 sl->oldpath = getname(oldpath);
3903 if (IS_ERR(sl->oldpath))
3904 return PTR_ERR(sl->oldpath);
3905
3906 sl->newpath = getname(newpath);
3907 if (IS_ERR(sl->newpath)) {
3908 putname(sl->oldpath);
3909 return PTR_ERR(sl->newpath);
3910 }
3911
3912 req->flags |= REQ_F_NEED_CLEANUP;
3913 return 0;
3914 }
3915
3916 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3917 {
3918 struct io_symlink *sl = &req->symlink;
3919 int ret;
3920
3921 if (issue_flags & IO_URING_F_NONBLOCK)
3922 return -EAGAIN;
3923
3924 ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3925
3926 req->flags &= ~REQ_F_NEED_CLEANUP;
3927 if (ret < 0)
3928 req_set_fail(req);
3929 io_req_complete(req, ret);
3930 return 0;
3931 }
3932
3933 static int io_linkat_prep(struct io_kiocb *req,
3934 const struct io_uring_sqe *sqe)
3935 {
3936 struct io_hardlink *lnk = &req->hardlink;
3937 const char __user *oldf, *newf;
3938
3939 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3940 return -EINVAL;
3941 if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3942 return -EINVAL;
3943 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3944 return -EBADF;
3945
3946 lnk->old_dfd = READ_ONCE(sqe->fd);
3947 lnk->new_dfd = READ_ONCE(sqe->len);
3948 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3949 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3950 lnk->flags = READ_ONCE(sqe->hardlink_flags);
3951
3952 lnk->oldpath = getname(oldf);
3953 if (IS_ERR(lnk->oldpath))
3954 return PTR_ERR(lnk->oldpath);
3955
3956 lnk->newpath = getname(newf);
3957 if (IS_ERR(lnk->newpath)) {
3958 putname(lnk->oldpath);
3959 return PTR_ERR(lnk->newpath);
3960 }
3961
3962 req->flags |= REQ_F_NEED_CLEANUP;
3963 return 0;
3964 }
3965
3966 static int io_linkat(struct io_kiocb *req, int issue_flags)
3967 {
3968 struct io_hardlink *lnk = &req->hardlink;
3969 int ret;
3970
3971 if (issue_flags & IO_URING_F_NONBLOCK)
3972 return -EAGAIN;
3973
3974 ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3975 lnk->newpath, lnk->flags);
3976
3977 req->flags &= ~REQ_F_NEED_CLEANUP;
3978 if (ret < 0)
3979 req_set_fail(req);
3980 io_req_complete(req, ret);
3981 return 0;
3982 }
3983
3984 static int io_shutdown_prep(struct io_kiocb *req,
3985 const struct io_uring_sqe *sqe)
3986 {
3987 #if defined(CONFIG_NET)
3988 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3989 return -EINVAL;
3990 if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3991 sqe->buf_index || sqe->splice_fd_in))
3992 return -EINVAL;
3993
3994 req->shutdown.how = READ_ONCE(sqe->len);
3995 return 0;
3996 #else
3997 return -EOPNOTSUPP;
3998 #endif
3999 }
4000
4001 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
4002 {
4003 #if defined(CONFIG_NET)
4004 struct socket *sock;
4005 int ret;
4006
4007 if (issue_flags & IO_URING_F_NONBLOCK)
4008 return -EAGAIN;
4009
4010 sock = sock_from_file(req->file);
4011 if (unlikely(!sock))
4012 return -ENOTSOCK;
4013
4014 ret = __sys_shutdown_sock(sock, req->shutdown.how);
4015 if (ret < 0)
4016 req_set_fail(req);
4017 io_req_complete(req, ret);
4018 return 0;
4019 #else
4020 return -EOPNOTSUPP;
4021 #endif
4022 }
4023
4024 static int __io_splice_prep(struct io_kiocb *req,
4025 const struct io_uring_sqe *sqe)
4026 {
4027 struct io_splice *sp = &req->splice;
4028 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
4029
4030 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4031 return -EINVAL;
4032
4033 sp->len = READ_ONCE(sqe->len);
4034 sp->flags = READ_ONCE(sqe->splice_flags);
4035 if (unlikely(sp->flags & ~valid_flags))
4036 return -EINVAL;
4037 sp->splice_fd_in = READ_ONCE(sqe->splice_fd_in);
4038 return 0;
4039 }
4040
4041 static int io_tee_prep(struct io_kiocb *req,
4042 const struct io_uring_sqe *sqe)
4043 {
4044 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
4045 return -EINVAL;
4046 return __io_splice_prep(req, sqe);
4047 }
4048
4049 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
4050 {
4051 struct io_splice *sp = &req->splice;
4052 struct file *out = sp->file_out;
4053 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4054 struct file *in;
4055 long ret = 0;
4056
4057 if (issue_flags & IO_URING_F_NONBLOCK)
4058 return -EAGAIN;
4059
4060 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4061 (sp->flags & SPLICE_F_FD_IN_FIXED));
4062 if (!in) {
4063 ret = -EBADF;
4064 goto done;
4065 }
4066
4067 if (sp->len)
4068 ret = do_tee(in, out, sp->len, flags);
4069
4070 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4071 io_put_file(in);
4072 done:
4073 if (ret != sp->len)
4074 req_set_fail(req);
4075 io_req_complete(req, ret);
4076 return 0;
4077 }
4078
4079 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4080 {
4081 struct io_splice *sp = &req->splice;
4082
4083 sp->off_in = READ_ONCE(sqe->splice_off_in);
4084 sp->off_out = READ_ONCE(sqe->off);
4085 return __io_splice_prep(req, sqe);
4086 }
4087
4088 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4089 {
4090 struct io_splice *sp = &req->splice;
4091 struct file *out = sp->file_out;
4092 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4093 loff_t *poff_in, *poff_out;
4094 struct file *in;
4095 long ret = 0;
4096
4097 if (issue_flags & IO_URING_F_NONBLOCK)
4098 return -EAGAIN;
4099
4100 in = io_file_get(req->ctx, req, sp->splice_fd_in,
4101 (sp->flags & SPLICE_F_FD_IN_FIXED));
4102 if (!in) {
4103 ret = -EBADF;
4104 goto done;
4105 }
4106
4107 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4108 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4109
4110 if (sp->len)
4111 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4112
4113 if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4114 io_put_file(in);
4115 done:
4116 if (ret != sp->len)
4117 req_set_fail(req);
4118 io_req_complete(req, ret);
4119 return 0;
4120 }
4121
4122 /*
4123 * IORING_OP_NOP just posts a completion event, nothing else.
4124 */
4125 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4126 {
4127 struct io_ring_ctx *ctx = req->ctx;
4128
4129 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4130 return -EINVAL;
4131
4132 __io_req_complete(req, issue_flags, 0, 0);
4133 return 0;
4134 }
4135
4136 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4137 {
4138 struct io_ring_ctx *ctx = req->ctx;
4139
4140 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4141 return -EINVAL;
4142 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4143 sqe->splice_fd_in))
4144 return -EINVAL;
4145
4146 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4147 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4148 return -EINVAL;
4149
4150 req->sync.off = READ_ONCE(sqe->off);
4151 req->sync.len = READ_ONCE(sqe->len);
4152 return 0;
4153 }
4154
4155 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4156 {
4157 loff_t end = req->sync.off + req->sync.len;
4158 int ret;
4159
4160 /* fsync always requires a blocking context */
4161 if (issue_flags & IO_URING_F_NONBLOCK)
4162 return -EAGAIN;
4163
4164 ret = vfs_fsync_range(req->file, req->sync.off,
4165 end > 0 ? end : LLONG_MAX,
4166 req->sync.flags & IORING_FSYNC_DATASYNC);
4167 if (ret < 0)
4168 req_set_fail(req);
4169 io_req_complete(req, ret);
4170 return 0;
4171 }
4172
4173 static int io_fallocate_prep(struct io_kiocb *req,
4174 const struct io_uring_sqe *sqe)
4175 {
4176 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4177 sqe->splice_fd_in)
4178 return -EINVAL;
4179 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4180 return -EINVAL;
4181
4182 req->sync.off = READ_ONCE(sqe->off);
4183 req->sync.len = READ_ONCE(sqe->addr);
4184 req->sync.mode = READ_ONCE(sqe->len);
4185 return 0;
4186 }
4187
4188 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4189 {
4190 int ret;
4191
4192 /* fallocate always requiring blocking context */
4193 if (issue_flags & IO_URING_F_NONBLOCK)
4194 return -EAGAIN;
4195 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4196 req->sync.len);
4197 if (ret < 0)
4198 req_set_fail(req);
4199 else
4200 fsnotify_modify(req->file);
4201 io_req_complete(req, ret);
4202 return 0;
4203 }
4204
4205 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4206 {
4207 const char __user *fname;
4208 int ret;
4209
4210 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4211 return -EINVAL;
4212 if (unlikely(sqe->ioprio || sqe->buf_index))
4213 return -EINVAL;
4214 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4215 return -EBADF;
4216
4217 /* open.how should be already initialised */
4218 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4219 req->open.how.flags |= O_LARGEFILE;
4220
4221 req->open.dfd = READ_ONCE(sqe->fd);
4222 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4223 req->open.filename = getname(fname);
4224 if (IS_ERR(req->open.filename)) {
4225 ret = PTR_ERR(req->open.filename);
4226 req->open.filename = NULL;
4227 return ret;
4228 }
4229
4230 req->open.file_slot = READ_ONCE(sqe->file_index);
4231 if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4232 return -EINVAL;
4233
4234 req->open.nofile = rlimit(RLIMIT_NOFILE);
4235 req->flags |= REQ_F_NEED_CLEANUP;
4236 return 0;
4237 }
4238
4239 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4240 {
4241 u64 mode = READ_ONCE(sqe->len);
4242 u64 flags = READ_ONCE(sqe->open_flags);
4243
4244 req->open.how = build_open_how(flags, mode);
4245 return __io_openat_prep(req, sqe);
4246 }
4247
4248 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4249 {
4250 struct open_how __user *how;
4251 size_t len;
4252 int ret;
4253
4254 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4255 len = READ_ONCE(sqe->len);
4256 if (len < OPEN_HOW_SIZE_VER0)
4257 return -EINVAL;
4258
4259 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4260 len);
4261 if (ret)
4262 return ret;
4263
4264 return __io_openat_prep(req, sqe);
4265 }
4266
4267 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4268 {
4269 struct open_flags op;
4270 struct file *file;
4271 bool resolve_nonblock, nonblock_set;
4272 bool fixed = !!req->open.file_slot;
4273 int ret;
4274
4275 ret = build_open_flags(&req->open.how, &op);
4276 if (ret)
4277 goto err;
4278 nonblock_set = op.open_flag & O_NONBLOCK;
4279 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4280 if (issue_flags & IO_URING_F_NONBLOCK) {
4281 /*
4282 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4283 * it'll always -EAGAIN
4284 */
4285 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4286 return -EAGAIN;
4287 op.lookup_flags |= LOOKUP_CACHED;
4288 op.open_flag |= O_NONBLOCK;
4289 }
4290
4291 if (!fixed) {
4292 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4293 if (ret < 0)
4294 goto err;
4295 }
4296
4297 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4298 if (IS_ERR(file)) {
4299 /*
4300 * We could hang on to this 'fd' on retrying, but seems like
4301 * marginal gain for something that is now known to be a slower
4302 * path. So just put it, and we'll get a new one when we retry.
4303 */
4304 if (!fixed)
4305 put_unused_fd(ret);
4306
4307 ret = PTR_ERR(file);
4308 /* only retry if RESOLVE_CACHED wasn't already set by application */
4309 if (ret == -EAGAIN &&
4310 (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4311 return -EAGAIN;
4312 goto err;
4313 }
4314
4315 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4316 file->f_flags &= ~O_NONBLOCK;
4317 fsnotify_open(file);
4318
4319 if (!fixed)
4320 fd_install(ret, file);
4321 else
4322 ret = io_install_fixed_file(req, file, issue_flags,
4323 req->open.file_slot - 1);
4324 err:
4325 putname(req->open.filename);
4326 req->flags &= ~REQ_F_NEED_CLEANUP;
4327 if (ret < 0)
4328 req_set_fail(req);
4329 __io_req_complete(req, issue_flags, ret, 0);
4330 return 0;
4331 }
4332
4333 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4334 {
4335 return io_openat2(req, issue_flags);
4336 }
4337
4338 static int io_remove_buffers_prep(struct io_kiocb *req,
4339 const struct io_uring_sqe *sqe)
4340 {
4341 struct io_provide_buf *p = &req->pbuf;
4342 u64 tmp;
4343
4344 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4345 sqe->splice_fd_in)
4346 return -EINVAL;
4347
4348 tmp = READ_ONCE(sqe->fd);
4349 if (!tmp || tmp > USHRT_MAX)
4350 return -EINVAL;
4351
4352 memset(p, 0, sizeof(*p));
4353 p->nbufs = tmp;
4354 p->bgid = READ_ONCE(sqe->buf_group);
4355 return 0;
4356 }
4357
4358 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4359 int bgid, unsigned nbufs)
4360 {
4361 unsigned i = 0;
4362
4363 /* shouldn't happen */
4364 if (!nbufs)
4365 return 0;
4366
4367 /* the head kbuf is the list itself */
4368 while (!list_empty(&buf->list)) {
4369 struct io_buffer *nxt;
4370
4371 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4372 list_del(&nxt->list);
4373 kfree(nxt);
4374 if (++i == nbufs)
4375 return i;
4376 cond_resched();
4377 }
4378 i++;
4379 kfree(buf);
4380 xa_erase(&ctx->io_buffers, bgid);
4381
4382 return i;
4383 }
4384
4385 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4386 {
4387 struct io_provide_buf *p = &req->pbuf;
4388 struct io_ring_ctx *ctx = req->ctx;
4389 struct io_buffer *head;
4390 int ret = 0;
4391 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4392
4393 io_ring_submit_lock(ctx, !force_nonblock);
4394
4395 lockdep_assert_held(&ctx->uring_lock);
4396
4397 ret = -ENOENT;
4398 head = xa_load(&ctx->io_buffers, p->bgid);
4399 if (head)
4400 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4401 if (ret < 0)
4402 req_set_fail(req);
4403
4404 /* complete before unlock, IOPOLL may need the lock */
4405 __io_req_complete(req, issue_flags, ret, 0);
4406 io_ring_submit_unlock(ctx, !force_nonblock);
4407 return 0;
4408 }
4409
4410 static int io_provide_buffers_prep(struct io_kiocb *req,
4411 const struct io_uring_sqe *sqe)
4412 {
4413 unsigned long size, tmp_check;
4414 struct io_provide_buf *p = &req->pbuf;
4415 u64 tmp;
4416
4417 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4418 return -EINVAL;
4419
4420 tmp = READ_ONCE(sqe->fd);
4421 if (!tmp || tmp > USHRT_MAX)
4422 return -E2BIG;
4423 p->nbufs = tmp;
4424 p->addr = READ_ONCE(sqe->addr);
4425 p->len = READ_ONCE(sqe->len);
4426
4427 if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4428 &size))
4429 return -EOVERFLOW;
4430 if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4431 return -EOVERFLOW;
4432
4433 size = (unsigned long)p->len * p->nbufs;
4434 if (!access_ok(u64_to_user_ptr(p->addr), size))
4435 return -EFAULT;
4436
4437 p->bgid = READ_ONCE(sqe->buf_group);
4438 tmp = READ_ONCE(sqe->off);
4439 if (tmp > USHRT_MAX)
4440 return -E2BIG;
4441 p->bid = tmp;
4442 return 0;
4443 }
4444
4445 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4446 {
4447 struct io_buffer *buf;
4448 u64 addr = pbuf->addr;
4449 int i, bid = pbuf->bid;
4450
4451 for (i = 0; i < pbuf->nbufs; i++) {
4452 buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4453 if (!buf)
4454 break;
4455
4456 buf->addr = addr;
4457 buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4458 buf->bid = bid;
4459 addr += pbuf->len;
4460 bid++;
4461 if (!*head) {
4462 INIT_LIST_HEAD(&buf->list);
4463 *head = buf;
4464 } else {
4465 list_add_tail(&buf->list, &(*head)->list);
4466 }
4467 cond_resched();
4468 }
4469
4470 return i ? i : -ENOMEM;
4471 }
4472
4473 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4474 {
4475 struct io_provide_buf *p = &req->pbuf;
4476 struct io_ring_ctx *ctx = req->ctx;
4477 struct io_buffer *head, *list;
4478 int ret = 0;
4479 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4480
4481 io_ring_submit_lock(ctx, !force_nonblock);
4482
4483 lockdep_assert_held(&ctx->uring_lock);
4484
4485 list = head = xa_load(&ctx->io_buffers, p->bgid);
4486
4487 ret = io_add_buffers(p, &head);
4488 if (ret >= 0 && !list) {
4489 ret = xa_insert(&ctx->io_buffers, p->bgid, head,
4490 GFP_KERNEL_ACCOUNT);
4491 if (ret < 0)
4492 __io_remove_buffers(ctx, head, p->bgid, -1U);
4493 }
4494 if (ret < 0)
4495 req_set_fail(req);
4496 /* complete before unlock, IOPOLL may need the lock */
4497 __io_req_complete(req, issue_flags, ret, 0);
4498 io_ring_submit_unlock(ctx, !force_nonblock);
4499 return 0;
4500 }
4501
4502 static int io_epoll_ctl_prep(struct io_kiocb *req,
4503 const struct io_uring_sqe *sqe)
4504 {
4505 #if defined(CONFIG_EPOLL)
4506 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4507 return -EINVAL;
4508 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4509 return -EINVAL;
4510
4511 req->epoll.epfd = READ_ONCE(sqe->fd);
4512 req->epoll.op = READ_ONCE(sqe->len);
4513 req->epoll.fd = READ_ONCE(sqe->off);
4514
4515 if (ep_op_has_event(req->epoll.op)) {
4516 struct epoll_event __user *ev;
4517
4518 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4519 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4520 return -EFAULT;
4521 }
4522
4523 return 0;
4524 #else
4525 return -EOPNOTSUPP;
4526 #endif
4527 }
4528
4529 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4530 {
4531 #if defined(CONFIG_EPOLL)
4532 struct io_epoll *ie = &req->epoll;
4533 int ret;
4534 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4535
4536 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4537 if (force_nonblock && ret == -EAGAIN)
4538 return -EAGAIN;
4539
4540 if (ret < 0)
4541 req_set_fail(req);
4542 __io_req_complete(req, issue_flags, ret, 0);
4543 return 0;
4544 #else
4545 return -EOPNOTSUPP;
4546 #endif
4547 }
4548
4549 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4550 {
4551 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4552 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4553 return -EINVAL;
4554 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4555 return -EINVAL;
4556
4557 req->madvise.addr = READ_ONCE(sqe->addr);
4558 req->madvise.len = READ_ONCE(sqe->len);
4559 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4560 return 0;
4561 #else
4562 return -EOPNOTSUPP;
4563 #endif
4564 }
4565
4566 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4567 {
4568 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4569 struct io_madvise *ma = &req->madvise;
4570 int ret;
4571
4572 if (issue_flags & IO_URING_F_NONBLOCK)
4573 return -EAGAIN;
4574
4575 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4576 if (ret < 0)
4577 req_set_fail(req);
4578 io_req_complete(req, ret);
4579 return 0;
4580 #else
4581 return -EOPNOTSUPP;
4582 #endif
4583 }
4584
4585 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4586 {
4587 if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4588 return -EINVAL;
4589 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4590 return -EINVAL;
4591
4592 req->fadvise.offset = READ_ONCE(sqe->off);
4593 req->fadvise.len = READ_ONCE(sqe->len);
4594 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4595 return 0;
4596 }
4597
4598 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4599 {
4600 struct io_fadvise *fa = &req->fadvise;
4601 int ret;
4602
4603 if (issue_flags & IO_URING_F_NONBLOCK) {
4604 switch (fa->advice) {
4605 case POSIX_FADV_NORMAL:
4606 case POSIX_FADV_RANDOM:
4607 case POSIX_FADV_SEQUENTIAL:
4608 break;
4609 default:
4610 return -EAGAIN;
4611 }
4612 }
4613
4614 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4615 if (ret < 0)
4616 req_set_fail(req);
4617 __io_req_complete(req, issue_flags, ret, 0);
4618 return 0;
4619 }
4620
4621 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4622 {
4623 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4624 return -EINVAL;
4625 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4626 return -EINVAL;
4627 if (req->flags & REQ_F_FIXED_FILE)
4628 return -EBADF;
4629
4630 req->statx.dfd = READ_ONCE(sqe->fd);
4631 req->statx.mask = READ_ONCE(sqe->len);
4632 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4633 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4634 req->statx.flags = READ_ONCE(sqe->statx_flags);
4635
4636 return 0;
4637 }
4638
4639 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4640 {
4641 struct io_statx *ctx = &req->statx;
4642 int ret;
4643
4644 if (issue_flags & IO_URING_F_NONBLOCK)
4645 return -EAGAIN;
4646
4647 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4648 ctx->buffer);
4649
4650 if (ret < 0)
4651 req_set_fail(req);
4652 io_req_complete(req, ret);
4653 return 0;
4654 }
4655
4656 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4657 {
4658 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4659 return -EINVAL;
4660 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4661 sqe->rw_flags || sqe->buf_index)
4662 return -EINVAL;
4663 if (req->flags & REQ_F_FIXED_FILE)
4664 return -EBADF;
4665
4666 req->close.fd = READ_ONCE(sqe->fd);
4667 req->close.file_slot = READ_ONCE(sqe->file_index);
4668 if (req->close.file_slot && req->close.fd)
4669 return -EINVAL;
4670
4671 return 0;
4672 }
4673
4674 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4675 {
4676 struct files_struct *files = current->files;
4677 struct io_close *close = &req->close;
4678 struct fdtable *fdt;
4679 struct file *file = NULL;
4680 int ret = -EBADF;
4681
4682 if (req->close.file_slot) {
4683 ret = io_close_fixed(req, issue_flags);
4684 goto err;
4685 }
4686
4687 spin_lock(&files->file_lock);
4688 fdt = files_fdtable(files);
4689 if (close->fd >= fdt->max_fds) {
4690 spin_unlock(&files->file_lock);
4691 goto err;
4692 }
4693 file = fdt->fd[close->fd];
4694 if (!file || file->f_op == &io_uring_fops) {
4695 spin_unlock(&files->file_lock);
4696 file = NULL;
4697 goto err;
4698 }
4699
4700 /* if the file has a flush method, be safe and punt to async */
4701 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4702 spin_unlock(&files->file_lock);
4703 return -EAGAIN;
4704 }
4705
4706 ret = __close_fd_get_file(close->fd, &file);
4707 spin_unlock(&files->file_lock);
4708 if (ret < 0) {
4709 if (ret == -ENOENT)
4710 ret = -EBADF;
4711 goto err;
4712 }
4713
4714 /* No ->flush() or already async, safely close from here */
4715 ret = filp_close(file, current->files);
4716 err:
4717 if (ret < 0)
4718 req_set_fail(req);
4719 if (file)
4720 fput(file);
4721 __io_req_complete(req, issue_flags, ret, 0);
4722 return 0;
4723 }
4724
4725 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4726 {
4727 struct io_ring_ctx *ctx = req->ctx;
4728
4729 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4730 return -EINVAL;
4731 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4732 sqe->splice_fd_in))
4733 return -EINVAL;
4734
4735 req->sync.off = READ_ONCE(sqe->off);
4736 req->sync.len = READ_ONCE(sqe->len);
4737 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4738 return 0;
4739 }
4740
4741 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4742 {
4743 int ret;
4744
4745 /* sync_file_range always requires a blocking context */
4746 if (issue_flags & IO_URING_F_NONBLOCK)
4747 return -EAGAIN;
4748
4749 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4750 req->sync.flags);
4751 if (ret < 0)
4752 req_set_fail(req);
4753 io_req_complete(req, ret);
4754 return 0;
4755 }
4756
4757 #if defined(CONFIG_NET)
4758 static int io_setup_async_msg(struct io_kiocb *req,
4759 struct io_async_msghdr *kmsg)
4760 {
4761 struct io_async_msghdr *async_msg = req->async_data;
4762
4763 if (async_msg)
4764 return -EAGAIN;
4765 if (io_alloc_async_data(req)) {
4766 kfree(kmsg->free_iov);
4767 return -ENOMEM;
4768 }
4769 async_msg = req->async_data;
4770 req->flags |= REQ_F_NEED_CLEANUP;
4771 memcpy(async_msg, kmsg, sizeof(*kmsg));
4772 if (async_msg->msg.msg_name)
4773 async_msg->msg.msg_name = &async_msg->addr;
4774 /* if were using fast_iov, set it to the new one */
4775 if (!async_msg->free_iov)
4776 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4777
4778 return -EAGAIN;
4779 }
4780
4781 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4782 struct io_async_msghdr *iomsg)
4783 {
4784 iomsg->msg.msg_name = &iomsg->addr;
4785 iomsg->free_iov = iomsg->fast_iov;
4786 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4787 req->sr_msg.msg_flags, &iomsg->free_iov);
4788 }
4789
4790 static int io_sendmsg_prep_async(struct io_kiocb *req)
4791 {
4792 int ret;
4793
4794 ret = io_sendmsg_copy_hdr(req, req->async_data);
4795 if (!ret)
4796 req->flags |= REQ_F_NEED_CLEANUP;
4797 return ret;
4798 }
4799
4800 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4801 {
4802 struct io_sr_msg *sr = &req->sr_msg;
4803
4804 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4805 return -EINVAL;
4806 if (unlikely(sqe->addr2 || sqe->file_index))
4807 return -EINVAL;
4808 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
4809 return -EINVAL;
4810
4811 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4812 sr->len = READ_ONCE(sqe->len);
4813 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4814 if (sr->msg_flags & MSG_DONTWAIT)
4815 req->flags |= REQ_F_NOWAIT;
4816
4817 #ifdef CONFIG_COMPAT
4818 if (req->ctx->compat)
4819 sr->msg_flags |= MSG_CMSG_COMPAT;
4820 #endif
4821 return 0;
4822 }
4823
4824 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4825 {
4826 struct io_async_msghdr iomsg, *kmsg;
4827 struct socket *sock;
4828 unsigned flags;
4829 int min_ret = 0;
4830 int ret;
4831
4832 sock = sock_from_file(req->file);
4833 if (unlikely(!sock))
4834 return -ENOTSOCK;
4835
4836 kmsg = req->async_data;
4837 if (!kmsg) {
4838 ret = io_sendmsg_copy_hdr(req, &iomsg);
4839 if (ret)
4840 return ret;
4841 kmsg = &iomsg;
4842 }
4843
4844 flags = req->sr_msg.msg_flags;
4845 if (issue_flags & IO_URING_F_NONBLOCK)
4846 flags |= MSG_DONTWAIT;
4847 if (flags & MSG_WAITALL)
4848 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4849
4850 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4851 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4852 return io_setup_async_msg(req, kmsg);
4853 if (ret == -ERESTARTSYS)
4854 ret = -EINTR;
4855
4856 /* fast path, check for non-NULL to avoid function call */
4857 if (kmsg->free_iov)
4858 kfree(kmsg->free_iov);
4859 req->flags &= ~REQ_F_NEED_CLEANUP;
4860 if (ret < min_ret)
4861 req_set_fail(req);
4862 __io_req_complete(req, issue_flags, ret, 0);
4863 return 0;
4864 }
4865
4866 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4867 {
4868 struct io_sr_msg *sr = &req->sr_msg;
4869 struct msghdr msg;
4870 struct iovec iov;
4871 struct socket *sock;
4872 unsigned flags;
4873 int min_ret = 0;
4874 int ret;
4875
4876 sock = sock_from_file(req->file);
4877 if (unlikely(!sock))
4878 return -ENOTSOCK;
4879
4880 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4881 if (unlikely(ret))
4882 return ret;
4883
4884 msg.msg_name = NULL;
4885 msg.msg_control = NULL;
4886 msg.msg_controllen = 0;
4887 msg.msg_namelen = 0;
4888
4889 flags = req->sr_msg.msg_flags;
4890 if (issue_flags & IO_URING_F_NONBLOCK)
4891 flags |= MSG_DONTWAIT;
4892 if (flags & MSG_WAITALL)
4893 min_ret = iov_iter_count(&msg.msg_iter);
4894
4895 msg.msg_flags = flags;
4896 ret = sock_sendmsg(sock, &msg);
4897 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4898 return -EAGAIN;
4899 if (ret == -ERESTARTSYS)
4900 ret = -EINTR;
4901
4902 if (ret < min_ret)
4903 req_set_fail(req);
4904 __io_req_complete(req, issue_flags, ret, 0);
4905 return 0;
4906 }
4907
4908 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4909 struct io_async_msghdr *iomsg)
4910 {
4911 struct io_sr_msg *sr = &req->sr_msg;
4912 struct iovec __user *uiov;
4913 size_t iov_len;
4914 int ret;
4915
4916 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4917 &iomsg->uaddr, &uiov, &iov_len);
4918 if (ret)
4919 return ret;
4920
4921 if (req->flags & REQ_F_BUFFER_SELECT) {
4922 if (iov_len > 1)
4923 return -EINVAL;
4924 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4925 return -EFAULT;
4926 sr->len = iomsg->fast_iov[0].iov_len;
4927 iomsg->free_iov = NULL;
4928 } else {
4929 iomsg->free_iov = iomsg->fast_iov;
4930 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4931 &iomsg->free_iov, &iomsg->msg.msg_iter,
4932 false);
4933 if (ret > 0)
4934 ret = 0;
4935 }
4936
4937 return ret;
4938 }
4939
4940 #ifdef CONFIG_COMPAT
4941 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4942 struct io_async_msghdr *iomsg)
4943 {
4944 struct io_sr_msg *sr = &req->sr_msg;
4945 struct compat_iovec __user *uiov;
4946 compat_uptr_t ptr;
4947 compat_size_t len;
4948 int ret;
4949
4950 ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4951 &ptr, &len);
4952 if (ret)
4953 return ret;
4954
4955 uiov = compat_ptr(ptr);
4956 if (req->flags & REQ_F_BUFFER_SELECT) {
4957 compat_ssize_t clen;
4958
4959 if (len > 1)
4960 return -EINVAL;
4961 if (!access_ok(uiov, sizeof(*uiov)))
4962 return -EFAULT;
4963 if (__get_user(clen, &uiov->iov_len))
4964 return -EFAULT;
4965 if (clen < 0)
4966 return -EINVAL;
4967 sr->len = clen;
4968 iomsg->free_iov = NULL;
4969 } else {
4970 iomsg->free_iov = iomsg->fast_iov;
4971 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4972 UIO_FASTIOV, &iomsg->free_iov,
4973 &iomsg->msg.msg_iter, true);
4974 if (ret < 0)
4975 return ret;
4976 }
4977
4978 return 0;
4979 }
4980 #endif
4981
4982 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4983 struct io_async_msghdr *iomsg)
4984 {
4985 iomsg->msg.msg_name = &iomsg->addr;
4986
4987 #ifdef CONFIG_COMPAT
4988 if (req->ctx->compat)
4989 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4990 #endif
4991
4992 return __io_recvmsg_copy_hdr(req, iomsg);
4993 }
4994
4995 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4996 bool needs_lock)
4997 {
4998 struct io_sr_msg *sr = &req->sr_msg;
4999 struct io_buffer *kbuf;
5000
5001 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
5002 if (IS_ERR(kbuf))
5003 return kbuf;
5004
5005 sr->kbuf = kbuf;
5006 req->flags |= REQ_F_BUFFER_SELECTED;
5007 return kbuf;
5008 }
5009
5010 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
5011 {
5012 return io_put_kbuf(req, req->sr_msg.kbuf);
5013 }
5014
5015 static int io_recvmsg_prep_async(struct io_kiocb *req)
5016 {
5017 int ret;
5018
5019 ret = io_recvmsg_copy_hdr(req, req->async_data);
5020 if (!ret)
5021 req->flags |= REQ_F_NEED_CLEANUP;
5022 return ret;
5023 }
5024
5025 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5026 {
5027 struct io_sr_msg *sr = &req->sr_msg;
5028
5029 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5030 return -EINVAL;
5031 if (unlikely(sqe->addr2 || sqe->file_index))
5032 return -EINVAL;
5033 if (unlikely(sqe->addr2 || sqe->file_index || sqe->ioprio))
5034 return -EINVAL;
5035
5036 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
5037 sr->len = READ_ONCE(sqe->len);
5038 sr->bgid = READ_ONCE(sqe->buf_group);
5039 sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
5040 if (sr->msg_flags & MSG_DONTWAIT)
5041 req->flags |= REQ_F_NOWAIT;
5042
5043 #ifdef CONFIG_COMPAT
5044 if (req->ctx->compat)
5045 sr->msg_flags |= MSG_CMSG_COMPAT;
5046 #endif
5047 return 0;
5048 }
5049
5050 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
5051 {
5052 struct io_async_msghdr iomsg, *kmsg;
5053 struct socket *sock;
5054 struct io_buffer *kbuf;
5055 unsigned flags;
5056 int min_ret = 0;
5057 int ret, cflags = 0;
5058 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5059
5060 sock = sock_from_file(req->file);
5061 if (unlikely(!sock))
5062 return -ENOTSOCK;
5063
5064 kmsg = req->async_data;
5065 if (!kmsg) {
5066 ret = io_recvmsg_copy_hdr(req, &iomsg);
5067 if (ret)
5068 return ret;
5069 kmsg = &iomsg;
5070 }
5071
5072 if (req->flags & REQ_F_BUFFER_SELECT) {
5073 kbuf = io_recv_buffer_select(req, !force_nonblock);
5074 if (IS_ERR(kbuf))
5075 return PTR_ERR(kbuf);
5076 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
5077 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
5078 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
5079 1, req->sr_msg.len);
5080 }
5081
5082 flags = req->sr_msg.msg_flags;
5083 if (force_nonblock)
5084 flags |= MSG_DONTWAIT;
5085 if (flags & MSG_WAITALL)
5086 min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5087
5088 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5089 kmsg->uaddr, flags);
5090 if (force_nonblock && ret == -EAGAIN)
5091 return io_setup_async_msg(req, kmsg);
5092 if (ret == -ERESTARTSYS)
5093 ret = -EINTR;
5094
5095 if (req->flags & REQ_F_BUFFER_SELECTED)
5096 cflags = io_put_recv_kbuf(req);
5097 /* fast path, check for non-NULL to avoid function call */
5098 if (kmsg->free_iov)
5099 kfree(kmsg->free_iov);
5100 req->flags &= ~REQ_F_NEED_CLEANUP;
5101 if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5102 req_set_fail(req);
5103 __io_req_complete(req, issue_flags, ret, cflags);
5104 return 0;
5105 }
5106
5107 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5108 {
5109 struct io_buffer *kbuf;
5110 struct io_sr_msg *sr = &req->sr_msg;
5111 struct msghdr msg;
5112 void __user *buf = sr->buf;
5113 struct socket *sock;
5114 struct iovec iov;
5115 unsigned flags;
5116 int min_ret = 0;
5117 int ret, cflags = 0;
5118 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5119
5120 sock = sock_from_file(req->file);
5121 if (unlikely(!sock))
5122 return -ENOTSOCK;
5123
5124 if (req->flags & REQ_F_BUFFER_SELECT) {
5125 kbuf = io_recv_buffer_select(req, !force_nonblock);
5126 if (IS_ERR(kbuf))
5127 return PTR_ERR(kbuf);
5128 buf = u64_to_user_ptr(kbuf->addr);
5129 }
5130
5131 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5132 if (unlikely(ret))
5133 goto out_free;
5134
5135 msg.msg_name = NULL;
5136 msg.msg_control = NULL;
5137 msg.msg_controllen = 0;
5138 msg.msg_namelen = 0;
5139 msg.msg_iocb = NULL;
5140 msg.msg_flags = 0;
5141
5142 flags = req->sr_msg.msg_flags;
5143 if (force_nonblock)
5144 flags |= MSG_DONTWAIT;
5145 if (flags & MSG_WAITALL)
5146 min_ret = iov_iter_count(&msg.msg_iter);
5147
5148 ret = sock_recvmsg(sock, &msg, flags);
5149 if (force_nonblock && ret == -EAGAIN)
5150 return -EAGAIN;
5151 if (ret == -ERESTARTSYS)
5152 ret = -EINTR;
5153 out_free:
5154 if (req->flags & REQ_F_BUFFER_SELECTED)
5155 cflags = io_put_recv_kbuf(req);
5156 if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5157 req_set_fail(req);
5158 __io_req_complete(req, issue_flags, ret, cflags);
5159 return 0;
5160 }
5161
5162 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5163 {
5164 struct io_accept *accept = &req->accept;
5165
5166 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5167 return -EINVAL;
5168 if (sqe->ioprio || sqe->len || sqe->buf_index)
5169 return -EINVAL;
5170
5171 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5172 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5173 accept->flags = READ_ONCE(sqe->accept_flags);
5174 accept->nofile = rlimit(RLIMIT_NOFILE);
5175
5176 accept->file_slot = READ_ONCE(sqe->file_index);
5177 if (accept->file_slot && (accept->flags & SOCK_CLOEXEC))
5178 return -EINVAL;
5179 if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5180 return -EINVAL;
5181 if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5182 accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5183 return 0;
5184 }
5185
5186 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5187 {
5188 struct io_accept *accept = &req->accept;
5189 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5190 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5191 bool fixed = !!accept->file_slot;
5192 struct file *file;
5193 int ret, fd;
5194
5195 if (req->file->f_flags & O_NONBLOCK)
5196 req->flags |= REQ_F_NOWAIT;
5197
5198 if (!fixed) {
5199 fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5200 if (unlikely(fd < 0))
5201 return fd;
5202 }
5203 file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5204 accept->flags);
5205 if (IS_ERR(file)) {
5206 if (!fixed)
5207 put_unused_fd(fd);
5208 ret = PTR_ERR(file);
5209 if (ret == -EAGAIN && force_nonblock)
5210 return -EAGAIN;
5211 if (ret == -ERESTARTSYS)
5212 ret = -EINTR;
5213 req_set_fail(req);
5214 } else if (!fixed) {
5215 fd_install(fd, file);
5216 ret = fd;
5217 } else {
5218 ret = io_install_fixed_file(req, file, issue_flags,
5219 accept->file_slot - 1);
5220 }
5221 __io_req_complete(req, issue_flags, ret, 0);
5222 return 0;
5223 }
5224
5225 static int io_connect_prep_async(struct io_kiocb *req)
5226 {
5227 struct io_async_connect *io = req->async_data;
5228 struct io_connect *conn = &req->connect;
5229
5230 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5231 }
5232
5233 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5234 {
5235 struct io_connect *conn = &req->connect;
5236
5237 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5238 return -EINVAL;
5239 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5240 sqe->splice_fd_in)
5241 return -EINVAL;
5242
5243 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5244 conn->addr_len = READ_ONCE(sqe->addr2);
5245 return 0;
5246 }
5247
5248 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5249 {
5250 struct io_async_connect __io, *io;
5251 unsigned file_flags;
5252 int ret;
5253 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5254
5255 if (req->async_data) {
5256 io = req->async_data;
5257 } else {
5258 ret = move_addr_to_kernel(req->connect.addr,
5259 req->connect.addr_len,
5260 &__io.address);
5261 if (ret)
5262 goto out;
5263 io = &__io;
5264 }
5265
5266 file_flags = force_nonblock ? O_NONBLOCK : 0;
5267
5268 ret = __sys_connect_file(req->file, &io->address,
5269 req->connect.addr_len, file_flags);
5270 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5271 if (req->async_data)
5272 return -EAGAIN;
5273 if (io_alloc_async_data(req)) {
5274 ret = -ENOMEM;
5275 goto out;
5276 }
5277 memcpy(req->async_data, &__io, sizeof(__io));
5278 return -EAGAIN;
5279 }
5280 if (ret == -ERESTARTSYS)
5281 ret = -EINTR;
5282 out:
5283 if (ret < 0)
5284 req_set_fail(req);
5285 __io_req_complete(req, issue_flags, ret, 0);
5286 return 0;
5287 }
5288 #else /* !CONFIG_NET */
5289 #define IO_NETOP_FN(op) \
5290 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5291 { \
5292 return -EOPNOTSUPP; \
5293 }
5294
5295 #define IO_NETOP_PREP(op) \
5296 IO_NETOP_FN(op) \
5297 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5298 { \
5299 return -EOPNOTSUPP; \
5300 } \
5301
5302 #define IO_NETOP_PREP_ASYNC(op) \
5303 IO_NETOP_PREP(op) \
5304 static int io_##op##_prep_async(struct io_kiocb *req) \
5305 { \
5306 return -EOPNOTSUPP; \
5307 }
5308
5309 IO_NETOP_PREP_ASYNC(sendmsg);
5310 IO_NETOP_PREP_ASYNC(recvmsg);
5311 IO_NETOP_PREP_ASYNC(connect);
5312 IO_NETOP_PREP(accept);
5313 IO_NETOP_FN(send);
5314 IO_NETOP_FN(recv);
5315 #endif /* CONFIG_NET */
5316
5317 struct io_poll_table {
5318 struct poll_table_struct pt;
5319 struct io_kiocb *req;
5320 int nr_entries;
5321 int error;
5322 };
5323
5324 #define IO_POLL_CANCEL_FLAG BIT(31)
5325 #define IO_POLL_RETRY_FLAG BIT(30)
5326 #define IO_POLL_REF_MASK GENMASK(29, 0)
5327
5328 /*
5329 * We usually have 1-2 refs taken, 128 is more than enough and we want to
5330 * maximise the margin between this amount and the moment when it overflows.
5331 */
5332 #define IO_POLL_REF_BIAS 128
5333
5334 static bool io_poll_get_ownership_slowpath(struct io_kiocb *req)
5335 {
5336 int v;
5337
5338 /*
5339 * poll_refs are already elevated and we don't have much hope for
5340 * grabbing the ownership. Instead of incrementing set a retry flag
5341 * to notify the loop that there might have been some change.
5342 */
5343 v = atomic_fetch_or(IO_POLL_RETRY_FLAG, &req->poll_refs);
5344 if (v & IO_POLL_REF_MASK)
5345 return false;
5346 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5347 }
5348
5349 /*
5350 * If refs part of ->poll_refs (see IO_POLL_REF_MASK) is 0, it's free. We can
5351 * bump it and acquire ownership. It's disallowed to modify requests while not
5352 * owning it, that prevents from races for enqueueing task_work's and b/w
5353 * arming poll and wakeups.
5354 */
5355 static inline bool io_poll_get_ownership(struct io_kiocb *req)
5356 {
5357 if (unlikely(atomic_read(&req->poll_refs) >= IO_POLL_REF_BIAS))
5358 return io_poll_get_ownership_slowpath(req);
5359 return !(atomic_fetch_inc(&req->poll_refs) & IO_POLL_REF_MASK);
5360 }
5361
5362 static void io_poll_mark_cancelled(struct io_kiocb *req)
5363 {
5364 atomic_or(IO_POLL_CANCEL_FLAG, &req->poll_refs);
5365 }
5366
5367 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5368 {
5369 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5370 if (req->opcode == IORING_OP_POLL_ADD)
5371 return req->async_data;
5372 return req->apoll->double_poll;
5373 }
5374
5375 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5376 {
5377 if (req->opcode == IORING_OP_POLL_ADD)
5378 return &req->poll;
5379 return &req->apoll->poll;
5380 }
5381
5382 static void io_poll_req_insert(struct io_kiocb *req)
5383 {
5384 struct io_ring_ctx *ctx = req->ctx;
5385 struct hlist_head *list;
5386
5387 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5388 hlist_add_head(&req->hash_node, list);
5389 }
5390
5391 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5392 wait_queue_func_t wake_func)
5393 {
5394 poll->head = NULL;
5395 #define IO_POLL_UNMASK (EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5396 /* mask in events that we always want/need */
5397 poll->events = events | IO_POLL_UNMASK;
5398 INIT_LIST_HEAD(&poll->wait.entry);
5399 init_waitqueue_func_entry(&poll->wait, wake_func);
5400 }
5401
5402 static inline void io_poll_remove_entry(struct io_poll_iocb *poll)
5403 {
5404 struct wait_queue_head *head = smp_load_acquire(&poll->head);
5405
5406 if (head) {
5407 spin_lock_irq(&head->lock);
5408 list_del_init(&poll->wait.entry);
5409 poll->head = NULL;
5410 spin_unlock_irq(&head->lock);
5411 }
5412 }
5413
5414 static void io_poll_remove_entries(struct io_kiocb *req)
5415 {
5416 struct io_poll_iocb *poll = io_poll_get_single(req);
5417 struct io_poll_iocb *poll_double = io_poll_get_double(req);
5418
5419 /*
5420 * While we hold the waitqueue lock and the waitqueue is nonempty,
5421 * wake_up_pollfree() will wait for us. However, taking the waitqueue
5422 * lock in the first place can race with the waitqueue being freed.
5423 *
5424 * We solve this as eventpoll does: by taking advantage of the fact that
5425 * all users of wake_up_pollfree() will RCU-delay the actual free. If
5426 * we enter rcu_read_lock() and see that the pointer to the queue is
5427 * non-NULL, we can then lock it without the memory being freed out from
5428 * under us.
5429 *
5430 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
5431 * case the caller deletes the entry from the queue, leaving it empty.
5432 * In that case, only RCU prevents the queue memory from being freed.
5433 */
5434 rcu_read_lock();
5435 io_poll_remove_entry(poll);
5436 if (poll_double)
5437 io_poll_remove_entry(poll_double);
5438 rcu_read_unlock();
5439 }
5440
5441 /*
5442 * All poll tw should go through this. Checks for poll events, manages
5443 * references, does rewait, etc.
5444 *
5445 * Returns a negative error on failure. >0 when no action require, which is
5446 * either spurious wakeup or multishot CQE is served. 0 when it's done with
5447 * the request, then the mask is stored in req->result.
5448 */
5449 static int io_poll_check_events(struct io_kiocb *req)
5450 {
5451 struct io_ring_ctx *ctx = req->ctx;
5452 struct io_poll_iocb *poll = io_poll_get_single(req);
5453 int v;
5454
5455 /* req->task == current here, checking PF_EXITING is safe */
5456 if (unlikely(req->task->flags & PF_EXITING))
5457 io_poll_mark_cancelled(req);
5458
5459 do {
5460 v = atomic_read(&req->poll_refs);
5461
5462 /* tw handler should be the owner, and so have some references */
5463 if (WARN_ON_ONCE(!(v & IO_POLL_REF_MASK)))
5464 return 0;
5465 if (v & IO_POLL_CANCEL_FLAG)
5466 return -ECANCELED;
5467 /*
5468 * cqe.res contains only events of the first wake up
5469 * and all others are be lost. Redo vfs_poll() to get
5470 * up to date state.
5471 */
5472 if ((v & IO_POLL_REF_MASK) != 1)
5473 req->result = 0;
5474 if (v & IO_POLL_RETRY_FLAG) {
5475 req->result = 0;
5476 /*
5477 * We won't find new events that came in between
5478 * vfs_poll and the ref put unless we clear the
5479 * flag in advance.
5480 */
5481 atomic_andnot(IO_POLL_RETRY_FLAG, &req->poll_refs);
5482 v &= ~IO_POLL_RETRY_FLAG;
5483 }
5484
5485 if (!req->result) {
5486 struct poll_table_struct pt = { ._key = poll->events };
5487
5488 req->result = vfs_poll(req->file, &pt) & poll->events;
5489 }
5490
5491 /* multishot, just fill an CQE and proceed */
5492 if (req->result && !(poll->events & EPOLLONESHOT)) {
5493 __poll_t mask = mangle_poll(req->result & poll->events);
5494 bool filled;
5495
5496 spin_lock(&ctx->completion_lock);
5497 filled = io_fill_cqe_aux(ctx, req->user_data, mask,
5498 IORING_CQE_F_MORE);
5499 io_commit_cqring(ctx);
5500 spin_unlock(&ctx->completion_lock);
5501 if (unlikely(!filled))
5502 return -ECANCELED;
5503 io_cqring_ev_posted(ctx);
5504 } else if (req->result) {
5505 return 0;
5506 }
5507
5508 /* force the next iteration to vfs_poll() */
5509 req->result = 0;
5510
5511 /*
5512 * Release all references, retry if someone tried to restart
5513 * task_work while we were executing it.
5514 */
5515 } while (atomic_sub_return(v & IO_POLL_REF_MASK, &req->poll_refs) &
5516 IO_POLL_REF_MASK);
5517
5518 return 1;
5519 }
5520
5521 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5522 {
5523 struct io_ring_ctx *ctx = req->ctx;
5524 int ret;
5525
5526 ret = io_poll_check_events(req);
5527 if (ret > 0)
5528 return;
5529
5530 if (!ret) {
5531 req->result = mangle_poll(req->result & req->poll.events);
5532 } else {
5533 req->result = ret;
5534 req_set_fail(req);
5535 }
5536
5537 io_poll_remove_entries(req);
5538 spin_lock(&ctx->completion_lock);
5539 hash_del(&req->hash_node);
5540 spin_unlock(&ctx->completion_lock);
5541 io_req_complete_post(req, req->result, 0);
5542 }
5543
5544 static void io_apoll_task_func(struct io_kiocb *req, bool *locked)
5545 {
5546 struct io_ring_ctx *ctx = req->ctx;
5547 int ret;
5548
5549 ret = io_poll_check_events(req);
5550 if (ret > 0)
5551 return;
5552
5553 io_poll_remove_entries(req);
5554 spin_lock(&ctx->completion_lock);
5555 hash_del(&req->hash_node);
5556 spin_unlock(&ctx->completion_lock);
5557
5558 if (!ret)
5559 io_req_task_submit(req, locked);
5560 else
5561 io_req_complete_failed(req, ret);
5562 }
5563
5564 static void __io_poll_execute(struct io_kiocb *req, int mask)
5565 {
5566 req->result = mask;
5567 if (req->opcode == IORING_OP_POLL_ADD)
5568 req->io_task_work.func = io_poll_task_func;
5569 else
5570 req->io_task_work.func = io_apoll_task_func;
5571
5572 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5573 io_req_task_work_add(req);
5574 }
5575
5576 static inline void io_poll_execute(struct io_kiocb *req, int res)
5577 {
5578 if (io_poll_get_ownership(req))
5579 __io_poll_execute(req, res);
5580 }
5581
5582 static void io_poll_cancel_req(struct io_kiocb *req)
5583 {
5584 io_poll_mark_cancelled(req);
5585 /* kick tw, which should complete the request */
5586 io_poll_execute(req, 0);
5587 }
5588
5589 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5590 void *key)
5591 {
5592 struct io_kiocb *req = wait->private;
5593 struct io_poll_iocb *poll = container_of(wait, struct io_poll_iocb,
5594 wait);
5595 __poll_t mask = key_to_poll(key);
5596
5597 if (unlikely(mask & POLLFREE)) {
5598 io_poll_mark_cancelled(req);
5599 /* we have to kick tw in case it's not already */
5600 io_poll_execute(req, 0);
5601
5602 /*
5603 * If the waitqueue is being freed early but someone is already
5604 * holds ownership over it, we have to tear down the request as
5605 * best we can. That means immediately removing the request from
5606 * its waitqueue and preventing all further accesses to the
5607 * waitqueue via the request.
5608 */
5609 list_del_init(&poll->wait.entry);
5610
5611 /*
5612 * Careful: this *must* be the last step, since as soon
5613 * as req->head is NULL'ed out, the request can be
5614 * completed and freed, since aio_poll_complete_work()
5615 * will no longer need to take the waitqueue lock.
5616 */
5617 smp_store_release(&poll->head, NULL);
5618 return 1;
5619 }
5620
5621 /* for instances that support it check for an event match first */
5622 if (mask && !(mask & poll->events))
5623 return 0;
5624
5625 if (io_poll_get_ownership(req))
5626 __io_poll_execute(req, mask);
5627 return 1;
5628 }
5629
5630 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5631 struct wait_queue_head *head,
5632 struct io_poll_iocb **poll_ptr)
5633 {
5634 struct io_kiocb *req = pt->req;
5635
5636 /*
5637 * The file being polled uses multiple waitqueues for poll handling
5638 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5639 * if this happens.
5640 */
5641 if (unlikely(pt->nr_entries)) {
5642 struct io_poll_iocb *first = poll;
5643
5644 /* double add on the same waitqueue head, ignore */
5645 if (first->head == head)
5646 return;
5647 /* already have a 2nd entry, fail a third attempt */
5648 if (*poll_ptr) {
5649 if ((*poll_ptr)->head == head)
5650 return;
5651 pt->error = -EINVAL;
5652 return;
5653 }
5654
5655 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5656 if (!poll) {
5657 pt->error = -ENOMEM;
5658 return;
5659 }
5660 io_init_poll_iocb(poll, first->events, first->wait.func);
5661 *poll_ptr = poll;
5662 }
5663
5664 pt->nr_entries++;
5665 poll->head = head;
5666 poll->wait.private = req;
5667
5668 if (poll->events & EPOLLEXCLUSIVE)
5669 add_wait_queue_exclusive(head, &poll->wait);
5670 else
5671 add_wait_queue(head, &poll->wait);
5672 }
5673
5674 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5675 struct poll_table_struct *p)
5676 {
5677 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5678
5679 __io_queue_proc(&pt->req->poll, pt, head,
5680 (struct io_poll_iocb **) &pt->req->async_data);
5681 }
5682
5683 static int __io_arm_poll_handler(struct io_kiocb *req,
5684 struct io_poll_iocb *poll,
5685 struct io_poll_table *ipt, __poll_t mask)
5686 {
5687 struct io_ring_ctx *ctx = req->ctx;
5688
5689 INIT_HLIST_NODE(&req->hash_node);
5690 io_init_poll_iocb(poll, mask, io_poll_wake);
5691 poll->file = req->file;
5692 poll->wait.private = req;
5693
5694 ipt->pt._key = mask;
5695 ipt->req = req;
5696 ipt->error = 0;
5697 ipt->nr_entries = 0;
5698
5699 /*
5700 * Take the ownership to delay any tw execution up until we're done
5701 * with poll arming. see io_poll_get_ownership().
5702 */
5703 atomic_set(&req->poll_refs, 1);
5704 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5705
5706 if (mask && (poll->events & EPOLLONESHOT)) {
5707 io_poll_remove_entries(req);
5708 /* no one else has access to the req, forget about the ref */
5709 return mask;
5710 }
5711 if (!mask && unlikely(ipt->error || !ipt->nr_entries)) {
5712 io_poll_remove_entries(req);
5713 if (!ipt->error)
5714 ipt->error = -EINVAL;
5715 return 0;
5716 }
5717
5718 spin_lock(&ctx->completion_lock);
5719 io_poll_req_insert(req);
5720 spin_unlock(&ctx->completion_lock);
5721
5722 if (mask) {
5723 /* can't multishot if failed, just queue the event we've got */
5724 if (unlikely(ipt->error || !ipt->nr_entries)) {
5725 poll->events |= EPOLLONESHOT;
5726 ipt->error = 0;
5727 }
5728 __io_poll_execute(req, mask);
5729 return 0;
5730 }
5731
5732 /*
5733 * Try to release ownership. If we see a change of state, e.g.
5734 * poll was waken up, queue up a tw, it'll deal with it.
5735 */
5736 if (atomic_cmpxchg(&req->poll_refs, 1, 0) != 1)
5737 __io_poll_execute(req, 0);
5738 return 0;
5739 }
5740
5741 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5742 struct poll_table_struct *p)
5743 {
5744 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5745 struct async_poll *apoll = pt->req->apoll;
5746
5747 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5748 }
5749
5750 enum {
5751 IO_APOLL_OK,
5752 IO_APOLL_ABORTED,
5753 IO_APOLL_READY
5754 };
5755
5756 static int io_arm_poll_handler(struct io_kiocb *req)
5757 {
5758 const struct io_op_def *def = &io_op_defs[req->opcode];
5759 struct io_ring_ctx *ctx = req->ctx;
5760 struct async_poll *apoll;
5761 struct io_poll_table ipt;
5762 __poll_t mask = EPOLLONESHOT | POLLERR | POLLPRI;
5763 int ret;
5764
5765 if (!req->file || !file_can_poll(req->file))
5766 return IO_APOLL_ABORTED;
5767 if (req->flags & REQ_F_POLLED)
5768 return IO_APOLL_ABORTED;
5769 if (!def->pollin && !def->pollout)
5770 return IO_APOLL_ABORTED;
5771
5772 if (def->pollin) {
5773 mask |= POLLIN | POLLRDNORM;
5774
5775 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5776 if ((req->opcode == IORING_OP_RECVMSG) &&
5777 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5778 mask &= ~POLLIN;
5779 } else {
5780 mask |= POLLOUT | POLLWRNORM;
5781 }
5782
5783 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5784 if (unlikely(!apoll))
5785 return IO_APOLL_ABORTED;
5786 apoll->double_poll = NULL;
5787 req->apoll = apoll;
5788 req->flags |= REQ_F_POLLED;
5789 ipt.pt._qproc = io_async_queue_proc;
5790
5791 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask);
5792 if (ret || ipt.error)
5793 return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5794
5795 trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5796 mask, apoll->poll.events);
5797 return IO_APOLL_OK;
5798 }
5799
5800 /*
5801 * Returns true if we found and killed one or more poll requests
5802 */
5803 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5804 bool cancel_all)
5805 {
5806 struct hlist_node *tmp;
5807 struct io_kiocb *req;
5808 bool found = false;
5809 int i;
5810
5811 spin_lock(&ctx->completion_lock);
5812 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5813 struct hlist_head *list;
5814
5815 list = &ctx->cancel_hash[i];
5816 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5817 if (io_match_task_safe(req, tsk, cancel_all)) {
5818 hlist_del_init(&req->hash_node);
5819 io_poll_cancel_req(req);
5820 found = true;
5821 }
5822 }
5823 }
5824 spin_unlock(&ctx->completion_lock);
5825 return found;
5826 }
5827
5828 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5829 bool poll_only)
5830 __must_hold(&ctx->completion_lock)
5831 {
5832 struct hlist_head *list;
5833 struct io_kiocb *req;
5834
5835 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5836 hlist_for_each_entry(req, list, hash_node) {
5837 if (sqe_addr != req->user_data)
5838 continue;
5839 if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5840 continue;
5841 return req;
5842 }
5843 return NULL;
5844 }
5845
5846 static bool io_poll_disarm(struct io_kiocb *req)
5847 __must_hold(&ctx->completion_lock)
5848 {
5849 if (!io_poll_get_ownership(req))
5850 return false;
5851 io_poll_remove_entries(req);
5852 hash_del(&req->hash_node);
5853 return true;
5854 }
5855
5856 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5857 bool poll_only)
5858 __must_hold(&ctx->completion_lock)
5859 {
5860 struct io_kiocb *req = io_poll_find(ctx, sqe_addr, poll_only);
5861
5862 if (!req)
5863 return -ENOENT;
5864 io_poll_cancel_req(req);
5865 return 0;
5866 }
5867
5868 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5869 unsigned int flags)
5870 {
5871 u32 events;
5872
5873 events = READ_ONCE(sqe->poll32_events);
5874 #ifdef __BIG_ENDIAN
5875 events = swahw32(events);
5876 #endif
5877 if (!(flags & IORING_POLL_ADD_MULTI))
5878 events |= EPOLLONESHOT;
5879 return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5880 }
5881
5882 static int io_poll_update_prep(struct io_kiocb *req,
5883 const struct io_uring_sqe *sqe)
5884 {
5885 struct io_poll_update *upd = &req->poll_update;
5886 u32 flags;
5887
5888 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5889 return -EINVAL;
5890 if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5891 return -EINVAL;
5892 flags = READ_ONCE(sqe->len);
5893 if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5894 IORING_POLL_ADD_MULTI))
5895 return -EINVAL;
5896 /* meaningless without update */
5897 if (flags == IORING_POLL_ADD_MULTI)
5898 return -EINVAL;
5899
5900 upd->old_user_data = READ_ONCE(sqe->addr);
5901 upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5902 upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5903
5904 upd->new_user_data = READ_ONCE(sqe->off);
5905 if (!upd->update_user_data && upd->new_user_data)
5906 return -EINVAL;
5907 if (upd->update_events)
5908 upd->events = io_poll_parse_events(sqe, flags);
5909 else if (sqe->poll32_events)
5910 return -EINVAL;
5911
5912 return 0;
5913 }
5914
5915 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5916 {
5917 struct io_poll_iocb *poll = &req->poll;
5918 u32 flags;
5919
5920 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5921 return -EINVAL;
5922 if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5923 return -EINVAL;
5924 flags = READ_ONCE(sqe->len);
5925 if (flags & ~IORING_POLL_ADD_MULTI)
5926 return -EINVAL;
5927
5928 io_req_set_refcount(req);
5929 poll->events = io_poll_parse_events(sqe, flags);
5930 return 0;
5931 }
5932
5933 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5934 {
5935 struct io_poll_iocb *poll = &req->poll;
5936 struct io_poll_table ipt;
5937 int ret;
5938
5939 ipt.pt._qproc = io_poll_queue_proc;
5940
5941 ret = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events);
5942 if (!ret && ipt.error)
5943 req_set_fail(req);
5944 ret = ret ?: ipt.error;
5945 if (ret)
5946 __io_req_complete(req, issue_flags, ret, 0);
5947 return 0;
5948 }
5949
5950 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5951 {
5952 struct io_ring_ctx *ctx = req->ctx;
5953 struct io_kiocb *preq;
5954 int ret2, ret = 0;
5955
5956 spin_lock(&ctx->completion_lock);
5957 preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5958 if (!preq || !io_poll_disarm(preq)) {
5959 spin_unlock(&ctx->completion_lock);
5960 ret = preq ? -EALREADY : -ENOENT;
5961 goto out;
5962 }
5963 spin_unlock(&ctx->completion_lock);
5964
5965 if (req->poll_update.update_events || req->poll_update.update_user_data) {
5966 /* only mask one event flags, keep behavior flags */
5967 if (req->poll_update.update_events) {
5968 preq->poll.events &= ~0xffff;
5969 preq->poll.events |= req->poll_update.events & 0xffff;
5970 preq->poll.events |= IO_POLL_UNMASK;
5971 }
5972 if (req->poll_update.update_user_data)
5973 preq->user_data = req->poll_update.new_user_data;
5974
5975 ret2 = io_poll_add(preq, issue_flags);
5976 /* successfully updated, don't complete poll request */
5977 if (!ret2)
5978 goto out;
5979 }
5980 req_set_fail(preq);
5981 io_req_complete(preq, -ECANCELED);
5982 out:
5983 if (ret < 0)
5984 req_set_fail(req);
5985 /* complete update request, we're done with it */
5986 io_req_complete(req, ret);
5987 return 0;
5988 }
5989
5990 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5991 {
5992 req_set_fail(req);
5993 io_req_complete_post(req, -ETIME, 0);
5994 }
5995
5996 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5997 {
5998 struct io_timeout_data *data = container_of(timer,
5999 struct io_timeout_data, timer);
6000 struct io_kiocb *req = data->req;
6001 struct io_ring_ctx *ctx = req->ctx;
6002 unsigned long flags;
6003
6004 spin_lock_irqsave(&ctx->timeout_lock, flags);
6005 list_del_init(&req->timeout.list);
6006 atomic_set(&req->ctx->cq_timeouts,
6007 atomic_read(&req->ctx->cq_timeouts) + 1);
6008 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6009
6010 req->io_task_work.func = io_req_task_timeout;
6011 io_req_task_work_add(req);
6012 return HRTIMER_NORESTART;
6013 }
6014
6015 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
6016 __u64 user_data)
6017 __must_hold(&ctx->timeout_lock)
6018 {
6019 struct io_timeout_data *io;
6020 struct io_kiocb *req;
6021 bool found = false;
6022
6023 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
6024 found = user_data == req->user_data;
6025 if (found)
6026 break;
6027 }
6028 if (!found)
6029 return ERR_PTR(-ENOENT);
6030
6031 io = req->async_data;
6032 if (hrtimer_try_to_cancel(&io->timer) == -1)
6033 return ERR_PTR(-EALREADY);
6034 list_del_init(&req->timeout.list);
6035 return req;
6036 }
6037
6038 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
6039 __must_hold(&ctx->completion_lock)
6040 __must_hold(&ctx->timeout_lock)
6041 {
6042 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6043
6044 if (IS_ERR(req))
6045 return PTR_ERR(req);
6046
6047 req_set_fail(req);
6048 io_fill_cqe_req(req, -ECANCELED, 0);
6049 io_put_req_deferred(req);
6050 return 0;
6051 }
6052
6053 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
6054 {
6055 switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
6056 case IORING_TIMEOUT_BOOTTIME:
6057 return CLOCK_BOOTTIME;
6058 case IORING_TIMEOUT_REALTIME:
6059 return CLOCK_REALTIME;
6060 default:
6061 /* can't happen, vetted at prep time */
6062 WARN_ON_ONCE(1);
6063 fallthrough;
6064 case 0:
6065 return CLOCK_MONOTONIC;
6066 }
6067 }
6068
6069 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6070 struct timespec64 *ts, enum hrtimer_mode mode)
6071 __must_hold(&ctx->timeout_lock)
6072 {
6073 struct io_timeout_data *io;
6074 struct io_kiocb *req;
6075 bool found = false;
6076
6077 list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6078 found = user_data == req->user_data;
6079 if (found)
6080 break;
6081 }
6082 if (!found)
6083 return -ENOENT;
6084
6085 io = req->async_data;
6086 if (hrtimer_try_to_cancel(&io->timer) == -1)
6087 return -EALREADY;
6088 hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6089 io->timer.function = io_link_timeout_fn;
6090 hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6091 return 0;
6092 }
6093
6094 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6095 struct timespec64 *ts, enum hrtimer_mode mode)
6096 __must_hold(&ctx->timeout_lock)
6097 {
6098 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6099 struct io_timeout_data *data;
6100
6101 if (IS_ERR(req))
6102 return PTR_ERR(req);
6103
6104 req->timeout.off = 0; /* noseq */
6105 data = req->async_data;
6106 list_add_tail(&req->timeout.list, &ctx->timeout_list);
6107 hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6108 data->timer.function = io_timeout_fn;
6109 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6110 return 0;
6111 }
6112
6113 static int io_timeout_remove_prep(struct io_kiocb *req,
6114 const struct io_uring_sqe *sqe)
6115 {
6116 struct io_timeout_rem *tr = &req->timeout_rem;
6117
6118 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6119 return -EINVAL;
6120 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6121 return -EINVAL;
6122 if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6123 return -EINVAL;
6124
6125 tr->ltimeout = false;
6126 tr->addr = READ_ONCE(sqe->addr);
6127 tr->flags = READ_ONCE(sqe->timeout_flags);
6128 if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6129 if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6130 return -EINVAL;
6131 if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6132 tr->ltimeout = true;
6133 if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6134 return -EINVAL;
6135 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6136 return -EFAULT;
6137 } else if (tr->flags) {
6138 /* timeout removal doesn't support flags */
6139 return -EINVAL;
6140 }
6141
6142 return 0;
6143 }
6144
6145 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6146 {
6147 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6148 : HRTIMER_MODE_REL;
6149 }
6150
6151 /*
6152 * Remove or update an existing timeout command
6153 */
6154 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6155 {
6156 struct io_timeout_rem *tr = &req->timeout_rem;
6157 struct io_ring_ctx *ctx = req->ctx;
6158 int ret;
6159
6160 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6161 spin_lock(&ctx->completion_lock);
6162 spin_lock_irq(&ctx->timeout_lock);
6163 ret = io_timeout_cancel(ctx, tr->addr);
6164 spin_unlock_irq(&ctx->timeout_lock);
6165 spin_unlock(&ctx->completion_lock);
6166 } else {
6167 enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6168
6169 spin_lock_irq(&ctx->timeout_lock);
6170 if (tr->ltimeout)
6171 ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6172 else
6173 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6174 spin_unlock_irq(&ctx->timeout_lock);
6175 }
6176
6177 if (ret < 0)
6178 req_set_fail(req);
6179 io_req_complete_post(req, ret, 0);
6180 return 0;
6181 }
6182
6183 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6184 bool is_timeout_link)
6185 {
6186 struct io_timeout_data *data;
6187 unsigned flags;
6188 u32 off = READ_ONCE(sqe->off);
6189
6190 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6191 return -EINVAL;
6192 if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6193 sqe->splice_fd_in)
6194 return -EINVAL;
6195 if (off && is_timeout_link)
6196 return -EINVAL;
6197 flags = READ_ONCE(sqe->timeout_flags);
6198 if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6199 return -EINVAL;
6200 /* more than one clock specified is invalid, obviously */
6201 if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6202 return -EINVAL;
6203
6204 INIT_LIST_HEAD(&req->timeout.list);
6205 req->timeout.off = off;
6206 if (unlikely(off && !req->ctx->off_timeout_used))
6207 req->ctx->off_timeout_used = true;
6208
6209 if (!req->async_data && io_alloc_async_data(req))
6210 return -ENOMEM;
6211
6212 data = req->async_data;
6213 data->req = req;
6214 data->flags = flags;
6215
6216 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6217 return -EFAULT;
6218
6219 INIT_LIST_HEAD(&req->timeout.list);
6220 data->mode = io_translate_timeout_mode(flags);
6221 hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6222
6223 if (is_timeout_link) {
6224 struct io_submit_link *link = &req->ctx->submit_state.link;
6225
6226 if (!link->head)
6227 return -EINVAL;
6228 if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6229 return -EINVAL;
6230 req->timeout.head = link->last;
6231 link->last->flags |= REQ_F_ARM_LTIMEOUT;
6232 }
6233 return 0;
6234 }
6235
6236 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6237 {
6238 struct io_ring_ctx *ctx = req->ctx;
6239 struct io_timeout_data *data = req->async_data;
6240 struct list_head *entry;
6241 u32 tail, off = req->timeout.off;
6242
6243 spin_lock_irq(&ctx->timeout_lock);
6244
6245 /*
6246 * sqe->off holds how many events that need to occur for this
6247 * timeout event to be satisfied. If it isn't set, then this is
6248 * a pure timeout request, sequence isn't used.
6249 */
6250 if (io_is_timeout_noseq(req)) {
6251 entry = ctx->timeout_list.prev;
6252 goto add;
6253 }
6254
6255 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6256 req->timeout.target_seq = tail + off;
6257
6258 /* Update the last seq here in case io_flush_timeouts() hasn't.
6259 * This is safe because ->completion_lock is held, and submissions
6260 * and completions are never mixed in the same ->completion_lock section.
6261 */
6262 ctx->cq_last_tm_flush = tail;
6263
6264 /*
6265 * Insertion sort, ensuring the first entry in the list is always
6266 * the one we need first.
6267 */
6268 list_for_each_prev(entry, &ctx->timeout_list) {
6269 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6270 timeout.list);
6271
6272 if (io_is_timeout_noseq(nxt))
6273 continue;
6274 /* nxt.seq is behind @tail, otherwise would've been completed */
6275 if (off >= nxt->timeout.target_seq - tail)
6276 break;
6277 }
6278 add:
6279 list_add(&req->timeout.list, entry);
6280 data->timer.function = io_timeout_fn;
6281 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6282 spin_unlock_irq(&ctx->timeout_lock);
6283 return 0;
6284 }
6285
6286 struct io_cancel_data {
6287 struct io_ring_ctx *ctx;
6288 u64 user_data;
6289 };
6290
6291 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6292 {
6293 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6294 struct io_cancel_data *cd = data;
6295
6296 return req->ctx == cd->ctx && req->user_data == cd->user_data;
6297 }
6298
6299 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6300 struct io_ring_ctx *ctx)
6301 {
6302 struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6303 enum io_wq_cancel cancel_ret;
6304 int ret = 0;
6305
6306 if (!tctx || !tctx->io_wq)
6307 return -ENOENT;
6308
6309 cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6310 switch (cancel_ret) {
6311 case IO_WQ_CANCEL_OK:
6312 ret = 0;
6313 break;
6314 case IO_WQ_CANCEL_RUNNING:
6315 ret = -EALREADY;
6316 break;
6317 case IO_WQ_CANCEL_NOTFOUND:
6318 ret = -ENOENT;
6319 break;
6320 }
6321
6322 return ret;
6323 }
6324
6325 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6326 {
6327 struct io_ring_ctx *ctx = req->ctx;
6328 int ret;
6329
6330 WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6331
6332 ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6333 if (ret != -ENOENT)
6334 return ret;
6335
6336 spin_lock(&ctx->completion_lock);
6337 spin_lock_irq(&ctx->timeout_lock);
6338 ret = io_timeout_cancel(ctx, sqe_addr);
6339 spin_unlock_irq(&ctx->timeout_lock);
6340 if (ret != -ENOENT)
6341 goto out;
6342 ret = io_poll_cancel(ctx, sqe_addr, false);
6343 out:
6344 spin_unlock(&ctx->completion_lock);
6345 return ret;
6346 }
6347
6348 static int io_async_cancel_prep(struct io_kiocb *req,
6349 const struct io_uring_sqe *sqe)
6350 {
6351 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6352 return -EINVAL;
6353 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6354 return -EINVAL;
6355 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6356 sqe->splice_fd_in)
6357 return -EINVAL;
6358
6359 req->cancel.addr = READ_ONCE(sqe->addr);
6360 return 0;
6361 }
6362
6363 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6364 {
6365 struct io_ring_ctx *ctx = req->ctx;
6366 u64 sqe_addr = req->cancel.addr;
6367 struct io_tctx_node *node;
6368 int ret;
6369
6370 ret = io_try_cancel_userdata(req, sqe_addr);
6371 if (ret != -ENOENT)
6372 goto done;
6373
6374 /* slow path, try all io-wq's */
6375 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6376 ret = -ENOENT;
6377 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6378 struct io_uring_task *tctx = node->task->io_uring;
6379
6380 ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6381 if (ret != -ENOENT)
6382 break;
6383 }
6384 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6385 done:
6386 if (ret < 0)
6387 req_set_fail(req);
6388 io_req_complete_post(req, ret, 0);
6389 return 0;
6390 }
6391
6392 static int io_rsrc_update_prep(struct io_kiocb *req,
6393 const struct io_uring_sqe *sqe)
6394 {
6395 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6396 return -EINVAL;
6397 if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6398 return -EINVAL;
6399
6400 req->rsrc_update.offset = READ_ONCE(sqe->off);
6401 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6402 if (!req->rsrc_update.nr_args)
6403 return -EINVAL;
6404 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6405 return 0;
6406 }
6407
6408 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6409 {
6410 struct io_ring_ctx *ctx = req->ctx;
6411 struct io_uring_rsrc_update2 up;
6412 int ret;
6413
6414 up.offset = req->rsrc_update.offset;
6415 up.data = req->rsrc_update.arg;
6416 up.nr = 0;
6417 up.tags = 0;
6418 up.resv = 0;
6419 up.resv2 = 0;
6420
6421 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6422 ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6423 &up, req->rsrc_update.nr_args);
6424 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6425
6426 if (ret < 0)
6427 req_set_fail(req);
6428 __io_req_complete(req, issue_flags, ret, 0);
6429 return 0;
6430 }
6431
6432 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6433 {
6434 switch (req->opcode) {
6435 case IORING_OP_NOP:
6436 return 0;
6437 case IORING_OP_READV:
6438 case IORING_OP_READ_FIXED:
6439 case IORING_OP_READ:
6440 return io_read_prep(req, sqe);
6441 case IORING_OP_WRITEV:
6442 case IORING_OP_WRITE_FIXED:
6443 case IORING_OP_WRITE:
6444 return io_write_prep(req, sqe);
6445 case IORING_OP_POLL_ADD:
6446 return io_poll_add_prep(req, sqe);
6447 case IORING_OP_POLL_REMOVE:
6448 return io_poll_update_prep(req, sqe);
6449 case IORING_OP_FSYNC:
6450 return io_fsync_prep(req, sqe);
6451 case IORING_OP_SYNC_FILE_RANGE:
6452 return io_sfr_prep(req, sqe);
6453 case IORING_OP_SENDMSG:
6454 case IORING_OP_SEND:
6455 return io_sendmsg_prep(req, sqe);
6456 case IORING_OP_RECVMSG:
6457 case IORING_OP_RECV:
6458 return io_recvmsg_prep(req, sqe);
6459 case IORING_OP_CONNECT:
6460 return io_connect_prep(req, sqe);
6461 case IORING_OP_TIMEOUT:
6462 return io_timeout_prep(req, sqe, false);
6463 case IORING_OP_TIMEOUT_REMOVE:
6464 return io_timeout_remove_prep(req, sqe);
6465 case IORING_OP_ASYNC_CANCEL:
6466 return io_async_cancel_prep(req, sqe);
6467 case IORING_OP_LINK_TIMEOUT:
6468 return io_timeout_prep(req, sqe, true);
6469 case IORING_OP_ACCEPT:
6470 return io_accept_prep(req, sqe);
6471 case IORING_OP_FALLOCATE:
6472 return io_fallocate_prep(req, sqe);
6473 case IORING_OP_OPENAT:
6474 return io_openat_prep(req, sqe);
6475 case IORING_OP_CLOSE:
6476 return io_close_prep(req, sqe);
6477 case IORING_OP_FILES_UPDATE:
6478 return io_rsrc_update_prep(req, sqe);
6479 case IORING_OP_STATX:
6480 return io_statx_prep(req, sqe);
6481 case IORING_OP_FADVISE:
6482 return io_fadvise_prep(req, sqe);
6483 case IORING_OP_MADVISE:
6484 return io_madvise_prep(req, sqe);
6485 case IORING_OP_OPENAT2:
6486 return io_openat2_prep(req, sqe);
6487 case IORING_OP_EPOLL_CTL:
6488 return io_epoll_ctl_prep(req, sqe);
6489 case IORING_OP_SPLICE:
6490 return io_splice_prep(req, sqe);
6491 case IORING_OP_PROVIDE_BUFFERS:
6492 return io_provide_buffers_prep(req, sqe);
6493 case IORING_OP_REMOVE_BUFFERS:
6494 return io_remove_buffers_prep(req, sqe);
6495 case IORING_OP_TEE:
6496 return io_tee_prep(req, sqe);
6497 case IORING_OP_SHUTDOWN:
6498 return io_shutdown_prep(req, sqe);
6499 case IORING_OP_RENAMEAT:
6500 return io_renameat_prep(req, sqe);
6501 case IORING_OP_UNLINKAT:
6502 return io_unlinkat_prep(req, sqe);
6503 case IORING_OP_MKDIRAT:
6504 return io_mkdirat_prep(req, sqe);
6505 case IORING_OP_SYMLINKAT:
6506 return io_symlinkat_prep(req, sqe);
6507 case IORING_OP_LINKAT:
6508 return io_linkat_prep(req, sqe);
6509 }
6510
6511 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6512 req->opcode);
6513 return -EINVAL;
6514 }
6515
6516 static int io_req_prep_async(struct io_kiocb *req)
6517 {
6518 if (!io_op_defs[req->opcode].needs_async_setup)
6519 return 0;
6520 if (WARN_ON_ONCE(req->async_data))
6521 return -EFAULT;
6522 if (io_alloc_async_data(req))
6523 return -EAGAIN;
6524
6525 switch (req->opcode) {
6526 case IORING_OP_READV:
6527 return io_rw_prep_async(req, READ);
6528 case IORING_OP_WRITEV:
6529 return io_rw_prep_async(req, WRITE);
6530 case IORING_OP_SENDMSG:
6531 return io_sendmsg_prep_async(req);
6532 case IORING_OP_RECVMSG:
6533 return io_recvmsg_prep_async(req);
6534 case IORING_OP_CONNECT:
6535 return io_connect_prep_async(req);
6536 }
6537 printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6538 req->opcode);
6539 return -EFAULT;
6540 }
6541
6542 static u32 io_get_sequence(struct io_kiocb *req)
6543 {
6544 u32 seq = req->ctx->cached_sq_head;
6545
6546 /* need original cached_sq_head, but it was increased for each req */
6547 io_for_each_link(req, req)
6548 seq--;
6549 return seq;
6550 }
6551
6552 static bool io_drain_req(struct io_kiocb *req)
6553 {
6554 struct io_kiocb *pos;
6555 struct io_ring_ctx *ctx = req->ctx;
6556 struct io_defer_entry *de;
6557 int ret;
6558 u32 seq;
6559
6560 if (req->flags & REQ_F_FAIL) {
6561 io_req_complete_fail_submit(req);
6562 return true;
6563 }
6564
6565 /*
6566 * If we need to drain a request in the middle of a link, drain the
6567 * head request and the next request/link after the current link.
6568 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6569 * maintained for every request of our link.
6570 */
6571 if (ctx->drain_next) {
6572 req->flags |= REQ_F_IO_DRAIN;
6573 ctx->drain_next = false;
6574 }
6575 /* not interested in head, start from the first linked */
6576 io_for_each_link(pos, req->link) {
6577 if (pos->flags & REQ_F_IO_DRAIN) {
6578 ctx->drain_next = true;
6579 req->flags |= REQ_F_IO_DRAIN;
6580 break;
6581 }
6582 }
6583
6584 /* Still need defer if there is pending req in defer list. */
6585 spin_lock(&ctx->completion_lock);
6586 if (likely(list_empty_careful(&ctx->defer_list) &&
6587 !(req->flags & REQ_F_IO_DRAIN))) {
6588 spin_unlock(&ctx->completion_lock);
6589 ctx->drain_active = false;
6590 return false;
6591 }
6592 spin_unlock(&ctx->completion_lock);
6593
6594 seq = io_get_sequence(req);
6595 /* Still a chance to pass the sequence check */
6596 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6597 return false;
6598
6599 ret = io_req_prep_async(req);
6600 if (ret)
6601 goto fail;
6602 io_prep_async_link(req);
6603 de = kmalloc(sizeof(*de), GFP_KERNEL);
6604 if (!de) {
6605 ret = -ENOMEM;
6606 fail:
6607 io_req_complete_failed(req, ret);
6608 return true;
6609 }
6610
6611 spin_lock(&ctx->completion_lock);
6612 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6613 spin_unlock(&ctx->completion_lock);
6614 kfree(de);
6615 io_queue_async_work(req, NULL);
6616 return true;
6617 }
6618
6619 trace_io_uring_defer(ctx, req, req->user_data);
6620 de->req = req;
6621 de->seq = seq;
6622 list_add_tail(&de->list, &ctx->defer_list);
6623 spin_unlock(&ctx->completion_lock);
6624 return true;
6625 }
6626
6627 static void io_clean_op(struct io_kiocb *req)
6628 {
6629 if (req->flags & REQ_F_BUFFER_SELECTED) {
6630 switch (req->opcode) {
6631 case IORING_OP_READV:
6632 case IORING_OP_READ_FIXED:
6633 case IORING_OP_READ:
6634 kfree((void *)(unsigned long)req->rw.addr);
6635 break;
6636 case IORING_OP_RECVMSG:
6637 case IORING_OP_RECV:
6638 kfree(req->sr_msg.kbuf);
6639 break;
6640 }
6641 }
6642
6643 if (req->flags & REQ_F_NEED_CLEANUP) {
6644 switch (req->opcode) {
6645 case IORING_OP_READV:
6646 case IORING_OP_READ_FIXED:
6647 case IORING_OP_READ:
6648 case IORING_OP_WRITEV:
6649 case IORING_OP_WRITE_FIXED:
6650 case IORING_OP_WRITE: {
6651 struct io_async_rw *io = req->async_data;
6652
6653 kfree(io->free_iovec);
6654 break;
6655 }
6656 case IORING_OP_RECVMSG:
6657 case IORING_OP_SENDMSG: {
6658 struct io_async_msghdr *io = req->async_data;
6659
6660 kfree(io->free_iov);
6661 break;
6662 }
6663 case IORING_OP_OPENAT:
6664 case IORING_OP_OPENAT2:
6665 if (req->open.filename)
6666 putname(req->open.filename);
6667 break;
6668 case IORING_OP_RENAMEAT:
6669 putname(req->rename.oldpath);
6670 putname(req->rename.newpath);
6671 break;
6672 case IORING_OP_UNLINKAT:
6673 putname(req->unlink.filename);
6674 break;
6675 case IORING_OP_MKDIRAT:
6676 putname(req->mkdir.filename);
6677 break;
6678 case IORING_OP_SYMLINKAT:
6679 putname(req->symlink.oldpath);
6680 putname(req->symlink.newpath);
6681 break;
6682 case IORING_OP_LINKAT:
6683 putname(req->hardlink.oldpath);
6684 putname(req->hardlink.newpath);
6685 break;
6686 }
6687 }
6688 if ((req->flags & REQ_F_POLLED) && req->apoll) {
6689 kfree(req->apoll->double_poll);
6690 kfree(req->apoll);
6691 req->apoll = NULL;
6692 }
6693 if (req->flags & REQ_F_INFLIGHT) {
6694 struct io_uring_task *tctx = req->task->io_uring;
6695
6696 atomic_dec(&tctx->inflight_tracked);
6697 }
6698 if (req->flags & REQ_F_CREDS)
6699 put_cred(req->creds);
6700
6701 req->flags &= ~IO_REQ_CLEAN_FLAGS;
6702 }
6703
6704 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6705 {
6706 struct io_ring_ctx *ctx = req->ctx;
6707 const struct cred *creds = NULL;
6708 int ret;
6709
6710 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6711 creds = override_creds(req->creds);
6712
6713 switch (req->opcode) {
6714 case IORING_OP_NOP:
6715 ret = io_nop(req, issue_flags);
6716 break;
6717 case IORING_OP_READV:
6718 case IORING_OP_READ_FIXED:
6719 case IORING_OP_READ:
6720 ret = io_read(req, issue_flags);
6721 break;
6722 case IORING_OP_WRITEV:
6723 case IORING_OP_WRITE_FIXED:
6724 case IORING_OP_WRITE:
6725 ret = io_write(req, issue_flags);
6726 break;
6727 case IORING_OP_FSYNC:
6728 ret = io_fsync(req, issue_flags);
6729 break;
6730 case IORING_OP_POLL_ADD:
6731 ret = io_poll_add(req, issue_flags);
6732 break;
6733 case IORING_OP_POLL_REMOVE:
6734 ret = io_poll_update(req, issue_flags);
6735 break;
6736 case IORING_OP_SYNC_FILE_RANGE:
6737 ret = io_sync_file_range(req, issue_flags);
6738 break;
6739 case IORING_OP_SENDMSG:
6740 ret = io_sendmsg(req, issue_flags);
6741 break;
6742 case IORING_OP_SEND:
6743 ret = io_send(req, issue_flags);
6744 break;
6745 case IORING_OP_RECVMSG:
6746 ret = io_recvmsg(req, issue_flags);
6747 break;
6748 case IORING_OP_RECV:
6749 ret = io_recv(req, issue_flags);
6750 break;
6751 case IORING_OP_TIMEOUT:
6752 ret = io_timeout(req, issue_flags);
6753 break;
6754 case IORING_OP_TIMEOUT_REMOVE:
6755 ret = io_timeout_remove(req, issue_flags);
6756 break;
6757 case IORING_OP_ACCEPT:
6758 ret = io_accept(req, issue_flags);
6759 break;
6760 case IORING_OP_CONNECT:
6761 ret = io_connect(req, issue_flags);
6762 break;
6763 case IORING_OP_ASYNC_CANCEL:
6764 ret = io_async_cancel(req, issue_flags);
6765 break;
6766 case IORING_OP_FALLOCATE:
6767 ret = io_fallocate(req, issue_flags);
6768 break;
6769 case IORING_OP_OPENAT:
6770 ret = io_openat(req, issue_flags);
6771 break;
6772 case IORING_OP_CLOSE:
6773 ret = io_close(req, issue_flags);
6774 break;
6775 case IORING_OP_FILES_UPDATE:
6776 ret = io_files_update(req, issue_flags);
6777 break;
6778 case IORING_OP_STATX:
6779 ret = io_statx(req, issue_flags);
6780 break;
6781 case IORING_OP_FADVISE:
6782 ret = io_fadvise(req, issue_flags);
6783 break;
6784 case IORING_OP_MADVISE:
6785 ret = io_madvise(req, issue_flags);
6786 break;
6787 case IORING_OP_OPENAT2:
6788 ret = io_openat2(req, issue_flags);
6789 break;
6790 case IORING_OP_EPOLL_CTL:
6791 ret = io_epoll_ctl(req, issue_flags);
6792 break;
6793 case IORING_OP_SPLICE:
6794 ret = io_splice(req, issue_flags);
6795 break;
6796 case IORING_OP_PROVIDE_BUFFERS:
6797 ret = io_provide_buffers(req, issue_flags);
6798 break;
6799 case IORING_OP_REMOVE_BUFFERS:
6800 ret = io_remove_buffers(req, issue_flags);
6801 break;
6802 case IORING_OP_TEE:
6803 ret = io_tee(req, issue_flags);
6804 break;
6805 case IORING_OP_SHUTDOWN:
6806 ret = io_shutdown(req, issue_flags);
6807 break;
6808 case IORING_OP_RENAMEAT:
6809 ret = io_renameat(req, issue_flags);
6810 break;
6811 case IORING_OP_UNLINKAT:
6812 ret = io_unlinkat(req, issue_flags);
6813 break;
6814 case IORING_OP_MKDIRAT:
6815 ret = io_mkdirat(req, issue_flags);
6816 break;
6817 case IORING_OP_SYMLINKAT:
6818 ret = io_symlinkat(req, issue_flags);
6819 break;
6820 case IORING_OP_LINKAT:
6821 ret = io_linkat(req, issue_flags);
6822 break;
6823 default:
6824 ret = -EINVAL;
6825 break;
6826 }
6827
6828 if (creds)
6829 revert_creds(creds);
6830 if (ret)
6831 return ret;
6832 /* If the op doesn't have a file, we're not polling for it */
6833 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6834 io_iopoll_req_issued(req);
6835
6836 return 0;
6837 }
6838
6839 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6840 {
6841 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6842
6843 req = io_put_req_find_next(req);
6844 return req ? &req->work : NULL;
6845 }
6846
6847 static void io_wq_submit_work(struct io_wq_work *work)
6848 {
6849 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6850 struct io_kiocb *timeout;
6851 int ret = 0;
6852
6853 /* one will be dropped by ->io_free_work() after returning to io-wq */
6854 if (!(req->flags & REQ_F_REFCOUNT))
6855 __io_req_set_refcount(req, 2);
6856 else
6857 req_ref_get(req);
6858
6859 timeout = io_prep_linked_timeout(req);
6860 if (timeout)
6861 io_queue_linked_timeout(timeout);
6862
6863 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6864 if (work->flags & IO_WQ_WORK_CANCEL)
6865 ret = -ECANCELED;
6866
6867 if (!ret) {
6868 do {
6869 ret = io_issue_sqe(req, 0);
6870 /*
6871 * We can get EAGAIN for polled IO even though we're
6872 * forcing a sync submission from here, since we can't
6873 * wait for request slots on the block side.
6874 */
6875 if (ret != -EAGAIN || !(req->ctx->flags & IORING_SETUP_IOPOLL))
6876 break;
6877 cond_resched();
6878 } while (1);
6879 }
6880
6881 /* avoid locking problems by failing it from a clean context */
6882 if (ret)
6883 io_req_task_queue_fail(req, ret);
6884 }
6885
6886 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6887 unsigned i)
6888 {
6889 return &table->files[i];
6890 }
6891
6892 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6893 int index)
6894 {
6895 struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6896
6897 return (struct file *) (slot->file_ptr & FFS_MASK);
6898 }
6899
6900 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6901 {
6902 unsigned long file_ptr = (unsigned long) file;
6903
6904 if (__io_file_supports_nowait(file, READ))
6905 file_ptr |= FFS_ASYNC_READ;
6906 if (__io_file_supports_nowait(file, WRITE))
6907 file_ptr |= FFS_ASYNC_WRITE;
6908 if (S_ISREG(file_inode(file)->i_mode))
6909 file_ptr |= FFS_ISREG;
6910 file_slot->file_ptr = file_ptr;
6911 }
6912
6913 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6914 struct io_kiocb *req, int fd)
6915 {
6916 struct file *file;
6917 unsigned long file_ptr;
6918
6919 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6920 return NULL;
6921 fd = array_index_nospec(fd, ctx->nr_user_files);
6922 file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6923 file = (struct file *) (file_ptr & FFS_MASK);
6924 file_ptr &= ~FFS_MASK;
6925 /* mask in overlapping REQ_F and FFS bits */
6926 req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6927 io_req_set_rsrc_node(req);
6928 return file;
6929 }
6930
6931 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6932 struct io_kiocb *req, int fd)
6933 {
6934 struct file *file = fget(fd);
6935
6936 trace_io_uring_file_get(ctx, fd);
6937
6938 /* we don't allow fixed io_uring files */
6939 if (file && unlikely(file->f_op == &io_uring_fops))
6940 io_req_track_inflight(req);
6941 return file;
6942 }
6943
6944 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6945 struct io_kiocb *req, int fd, bool fixed)
6946 {
6947 if (fixed)
6948 return io_file_get_fixed(ctx, req, fd);
6949 else
6950 return io_file_get_normal(ctx, req, fd);
6951 }
6952
6953 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6954 {
6955 struct io_kiocb *prev = req->timeout.prev;
6956 int ret = -ENOENT;
6957
6958 if (prev) {
6959 if (!(req->task->flags & PF_EXITING))
6960 ret = io_try_cancel_userdata(req, prev->user_data);
6961 io_req_complete_post(req, ret ?: -ETIME, 0);
6962 io_put_req(prev);
6963 } else {
6964 io_req_complete_post(req, -ETIME, 0);
6965 }
6966 }
6967
6968 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6969 {
6970 struct io_timeout_data *data = container_of(timer,
6971 struct io_timeout_data, timer);
6972 struct io_kiocb *prev, *req = data->req;
6973 struct io_ring_ctx *ctx = req->ctx;
6974 unsigned long flags;
6975
6976 spin_lock_irqsave(&ctx->timeout_lock, flags);
6977 prev = req->timeout.head;
6978 req->timeout.head = NULL;
6979
6980 /*
6981 * We don't expect the list to be empty, that will only happen if we
6982 * race with the completion of the linked work.
6983 */
6984 if (prev) {
6985 io_remove_next_linked(prev);
6986 if (!req_ref_inc_not_zero(prev))
6987 prev = NULL;
6988 }
6989 list_del(&req->timeout.list);
6990 req->timeout.prev = prev;
6991 spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6992
6993 req->io_task_work.func = io_req_task_link_timeout;
6994 io_req_task_work_add(req);
6995 return HRTIMER_NORESTART;
6996 }
6997
6998 static void io_queue_linked_timeout(struct io_kiocb *req)
6999 {
7000 struct io_ring_ctx *ctx = req->ctx;
7001
7002 spin_lock_irq(&ctx->timeout_lock);
7003 /*
7004 * If the back reference is NULL, then our linked request finished
7005 * before we got a chance to setup the timer
7006 */
7007 if (req->timeout.head) {
7008 struct io_timeout_data *data = req->async_data;
7009
7010 data->timer.function = io_link_timeout_fn;
7011 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
7012 data->mode);
7013 list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
7014 }
7015 spin_unlock_irq(&ctx->timeout_lock);
7016 /* drop submission reference */
7017 io_put_req(req);
7018 }
7019
7020 static void __io_queue_sqe(struct io_kiocb *req)
7021 __must_hold(&req->ctx->uring_lock)
7022 {
7023 struct io_kiocb *linked_timeout;
7024 int ret;
7025
7026 issue_sqe:
7027 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
7028
7029 /*
7030 * We async punt it if the file wasn't marked NOWAIT, or if the file
7031 * doesn't support non-blocking read/write attempts
7032 */
7033 if (likely(!ret)) {
7034 if (req->flags & REQ_F_COMPLETE_INLINE) {
7035 struct io_ring_ctx *ctx = req->ctx;
7036 struct io_submit_state *state = &ctx->submit_state;
7037
7038 state->compl_reqs[state->compl_nr++] = req;
7039 if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
7040 io_submit_flush_completions(ctx);
7041 return;
7042 }
7043
7044 linked_timeout = io_prep_linked_timeout(req);
7045 if (linked_timeout)
7046 io_queue_linked_timeout(linked_timeout);
7047 } else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
7048 linked_timeout = io_prep_linked_timeout(req);
7049
7050 switch (io_arm_poll_handler(req)) {
7051 case IO_APOLL_READY:
7052 if (linked_timeout)
7053 io_queue_linked_timeout(linked_timeout);
7054 goto issue_sqe;
7055 case IO_APOLL_ABORTED:
7056 /*
7057 * Queued up for async execution, worker will release
7058 * submit reference when the iocb is actually submitted.
7059 */
7060 io_queue_async_work(req, NULL);
7061 break;
7062 }
7063
7064 if (linked_timeout)
7065 io_queue_linked_timeout(linked_timeout);
7066 } else {
7067 io_req_complete_failed(req, ret);
7068 }
7069 }
7070
7071 static inline void io_queue_sqe(struct io_kiocb *req)
7072 __must_hold(&req->ctx->uring_lock)
7073 {
7074 if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7075 return;
7076
7077 if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7078 __io_queue_sqe(req);
7079 } else if (req->flags & REQ_F_FAIL) {
7080 io_req_complete_fail_submit(req);
7081 } else {
7082 int ret = io_req_prep_async(req);
7083
7084 if (unlikely(ret))
7085 io_req_complete_failed(req, ret);
7086 else
7087 io_queue_async_work(req, NULL);
7088 }
7089 }
7090
7091 /*
7092 * Check SQE restrictions (opcode and flags).
7093 *
7094 * Returns 'true' if SQE is allowed, 'false' otherwise.
7095 */
7096 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7097 struct io_kiocb *req,
7098 unsigned int sqe_flags)
7099 {
7100 if (likely(!ctx->restricted))
7101 return true;
7102
7103 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7104 return false;
7105
7106 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7107 ctx->restrictions.sqe_flags_required)
7108 return false;
7109
7110 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7111 ctx->restrictions.sqe_flags_required))
7112 return false;
7113
7114 return true;
7115 }
7116
7117 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7118 const struct io_uring_sqe *sqe)
7119 __must_hold(&ctx->uring_lock)
7120 {
7121 struct io_submit_state *state;
7122 unsigned int sqe_flags;
7123 int personality, ret = 0;
7124
7125 /* req is partially pre-initialised, see io_preinit_req() */
7126 req->opcode = READ_ONCE(sqe->opcode);
7127 /* same numerical values with corresponding REQ_F_*, safe to copy */
7128 req->flags = sqe_flags = READ_ONCE(sqe->flags);
7129 req->user_data = READ_ONCE(sqe->user_data);
7130 req->file = NULL;
7131 req->fixed_rsrc_refs = NULL;
7132 req->task = current;
7133
7134 /* enforce forwards compatibility on users */
7135 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7136 return -EINVAL;
7137 if (unlikely(req->opcode >= IORING_OP_LAST))
7138 return -EINVAL;
7139 if (!io_check_restriction(ctx, req, sqe_flags))
7140 return -EACCES;
7141
7142 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7143 !io_op_defs[req->opcode].buffer_select)
7144 return -EOPNOTSUPP;
7145 if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7146 ctx->drain_active = true;
7147
7148 personality = READ_ONCE(sqe->personality);
7149 if (personality) {
7150 req->creds = xa_load(&ctx->personalities, personality);
7151 if (!req->creds)
7152 return -EINVAL;
7153 get_cred(req->creds);
7154 req->flags |= REQ_F_CREDS;
7155 }
7156 state = &ctx->submit_state;
7157
7158 /*
7159 * Plug now if we have more than 1 IO left after this, and the target
7160 * is potentially a read/write to block based storage.
7161 */
7162 if (!state->plug_started && state->ios_left > 1 &&
7163 io_op_defs[req->opcode].plug) {
7164 blk_start_plug(&state->plug);
7165 state->plug_started = true;
7166 }
7167
7168 if (io_op_defs[req->opcode].needs_file) {
7169 req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7170 (sqe_flags & IOSQE_FIXED_FILE));
7171 if (unlikely(!req->file))
7172 ret = -EBADF;
7173 }
7174
7175 state->ios_left--;
7176 return ret;
7177 }
7178
7179 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7180 const struct io_uring_sqe *sqe)
7181 __must_hold(&ctx->uring_lock)
7182 {
7183 struct io_submit_link *link = &ctx->submit_state.link;
7184 int ret;
7185
7186 ret = io_init_req(ctx, req, sqe);
7187 if (unlikely(ret)) {
7188 fail_req:
7189 /* fail even hard links since we don't submit */
7190 if (link->head) {
7191 /*
7192 * we can judge a link req is failed or cancelled by if
7193 * REQ_F_FAIL is set, but the head is an exception since
7194 * it may be set REQ_F_FAIL because of other req's failure
7195 * so let's leverage req->result to distinguish if a head
7196 * is set REQ_F_FAIL because of its failure or other req's
7197 * failure so that we can set the correct ret code for it.
7198 * init result here to avoid affecting the normal path.
7199 */
7200 if (!(link->head->flags & REQ_F_FAIL))
7201 req_fail_link_node(link->head, -ECANCELED);
7202 } else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7203 /*
7204 * the current req is a normal req, we should return
7205 * error and thus break the submittion loop.
7206 */
7207 io_req_complete_failed(req, ret);
7208 return ret;
7209 }
7210 req_fail_link_node(req, ret);
7211 } else {
7212 ret = io_req_prep(req, sqe);
7213 if (unlikely(ret))
7214 goto fail_req;
7215 }
7216
7217 /* don't need @sqe from now on */
7218 trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7219 req->flags, true,
7220 ctx->flags & IORING_SETUP_SQPOLL);
7221
7222 /*
7223 * If we already have a head request, queue this one for async
7224 * submittal once the head completes. If we don't have a head but
7225 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7226 * submitted sync once the chain is complete. If none of those
7227 * conditions are true (normal request), then just queue it.
7228 */
7229 if (link->head) {
7230 struct io_kiocb *head = link->head;
7231
7232 if (!(req->flags & REQ_F_FAIL)) {
7233 ret = io_req_prep_async(req);
7234 if (unlikely(ret)) {
7235 req_fail_link_node(req, ret);
7236 if (!(head->flags & REQ_F_FAIL))
7237 req_fail_link_node(head, -ECANCELED);
7238 }
7239 }
7240 trace_io_uring_link(ctx, req, head);
7241 link->last->link = req;
7242 link->last = req;
7243
7244 /* last request of a link, enqueue the link */
7245 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7246 link->head = NULL;
7247 io_queue_sqe(head);
7248 }
7249 } else {
7250 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7251 link->head = req;
7252 link->last = req;
7253 } else {
7254 io_queue_sqe(req);
7255 }
7256 }
7257
7258 return 0;
7259 }
7260
7261 /*
7262 * Batched submission is done, ensure local IO is flushed out.
7263 */
7264 static void io_submit_state_end(struct io_submit_state *state,
7265 struct io_ring_ctx *ctx)
7266 {
7267 if (state->link.head)
7268 io_queue_sqe(state->link.head);
7269 if (state->compl_nr)
7270 io_submit_flush_completions(ctx);
7271 if (state->plug_started)
7272 blk_finish_plug(&state->plug);
7273 }
7274
7275 /*
7276 * Start submission side cache.
7277 */
7278 static void io_submit_state_start(struct io_submit_state *state,
7279 unsigned int max_ios)
7280 {
7281 state->plug_started = false;
7282 state->ios_left = max_ios;
7283 /* set only head, no need to init link_last in advance */
7284 state->link.head = NULL;
7285 }
7286
7287 static void io_commit_sqring(struct io_ring_ctx *ctx)
7288 {
7289 struct io_rings *rings = ctx->rings;
7290
7291 /*
7292 * Ensure any loads from the SQEs are done at this point,
7293 * since once we write the new head, the application could
7294 * write new data to them.
7295 */
7296 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7297 }
7298
7299 /*
7300 * Fetch an sqe, if one is available. Note this returns a pointer to memory
7301 * that is mapped by userspace. This means that care needs to be taken to
7302 * ensure that reads are stable, as we cannot rely on userspace always
7303 * being a good citizen. If members of the sqe are validated and then later
7304 * used, it's important that those reads are done through READ_ONCE() to
7305 * prevent a re-load down the line.
7306 */
7307 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7308 {
7309 unsigned head, mask = ctx->sq_entries - 1;
7310 unsigned sq_idx = ctx->cached_sq_head++ & mask;
7311
7312 /*
7313 * The cached sq head (or cq tail) serves two purposes:
7314 *
7315 * 1) allows us to batch the cost of updating the user visible
7316 * head updates.
7317 * 2) allows the kernel side to track the head on its own, even
7318 * though the application is the one updating it.
7319 */
7320 head = READ_ONCE(ctx->sq_array[sq_idx]);
7321 if (likely(head < ctx->sq_entries))
7322 return &ctx->sq_sqes[head];
7323
7324 /* drop invalid entries */
7325 ctx->cq_extra--;
7326 WRITE_ONCE(ctx->rings->sq_dropped,
7327 READ_ONCE(ctx->rings->sq_dropped) + 1);
7328 return NULL;
7329 }
7330
7331 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7332 __must_hold(&ctx->uring_lock)
7333 {
7334 int submitted = 0;
7335
7336 /* make sure SQ entry isn't read before tail */
7337 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7338 if (!percpu_ref_tryget_many(&ctx->refs, nr))
7339 return -EAGAIN;
7340 io_get_task_refs(nr);
7341
7342 io_submit_state_start(&ctx->submit_state, nr);
7343 while (submitted < nr) {
7344 const struct io_uring_sqe *sqe;
7345 struct io_kiocb *req;
7346
7347 req = io_alloc_req(ctx);
7348 if (unlikely(!req)) {
7349 if (!submitted)
7350 submitted = -EAGAIN;
7351 break;
7352 }
7353 sqe = io_get_sqe(ctx);
7354 if (unlikely(!sqe)) {
7355 list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7356 break;
7357 }
7358 /* will complete beyond this point, count as submitted */
7359 submitted++;
7360 if (io_submit_sqe(ctx, req, sqe))
7361 break;
7362 }
7363
7364 if (unlikely(submitted != nr)) {
7365 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7366 int unused = nr - ref_used;
7367
7368 current->io_uring->cached_refs += unused;
7369 percpu_ref_put_many(&ctx->refs, unused);
7370 }
7371
7372 io_submit_state_end(&ctx->submit_state, ctx);
7373 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7374 io_commit_sqring(ctx);
7375
7376 return submitted;
7377 }
7378
7379 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7380 {
7381 return READ_ONCE(sqd->state);
7382 }
7383
7384 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7385 {
7386 /* Tell userspace we may need a wakeup call */
7387 spin_lock(&ctx->completion_lock);
7388 WRITE_ONCE(ctx->rings->sq_flags,
7389 ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7390 spin_unlock(&ctx->completion_lock);
7391 }
7392
7393 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7394 {
7395 spin_lock(&ctx->completion_lock);
7396 WRITE_ONCE(ctx->rings->sq_flags,
7397 ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7398 spin_unlock(&ctx->completion_lock);
7399 }
7400
7401 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7402 {
7403 unsigned int to_submit;
7404 int ret = 0;
7405
7406 to_submit = io_sqring_entries(ctx);
7407 /* if we're handling multiple rings, cap submit size for fairness */
7408 if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7409 to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7410
7411 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7412 unsigned nr_events = 0;
7413 const struct cred *creds = NULL;
7414
7415 if (ctx->sq_creds != current_cred())
7416 creds = override_creds(ctx->sq_creds);
7417
7418 mutex_lock(&ctx->uring_lock);
7419 if (!list_empty(&ctx->iopoll_list))
7420 io_do_iopoll(ctx, &nr_events, 0);
7421
7422 /*
7423 * Don't submit if refs are dying, good for io_uring_register(),
7424 * but also it is relied upon by io_ring_exit_work()
7425 */
7426 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7427 !(ctx->flags & IORING_SETUP_R_DISABLED))
7428 ret = io_submit_sqes(ctx, to_submit);
7429 mutex_unlock(&ctx->uring_lock);
7430
7431 if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7432 wake_up(&ctx->sqo_sq_wait);
7433 if (creds)
7434 revert_creds(creds);
7435 }
7436
7437 return ret;
7438 }
7439
7440 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7441 {
7442 struct io_ring_ctx *ctx;
7443 unsigned sq_thread_idle = 0;
7444
7445 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7446 sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7447 sqd->sq_thread_idle = sq_thread_idle;
7448 }
7449
7450 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7451 {
7452 bool did_sig = false;
7453 struct ksignal ksig;
7454
7455 if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7456 signal_pending(current)) {
7457 mutex_unlock(&sqd->lock);
7458 if (signal_pending(current))
7459 did_sig = get_signal(&ksig);
7460 cond_resched();
7461 mutex_lock(&sqd->lock);
7462 }
7463 return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7464 }
7465
7466 static int io_sq_thread(void *data)
7467 {
7468 struct io_sq_data *sqd = data;
7469 struct io_ring_ctx *ctx;
7470 unsigned long timeout = 0;
7471 char buf[TASK_COMM_LEN];
7472 DEFINE_WAIT(wait);
7473
7474 snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7475 set_task_comm(current, buf);
7476
7477 if (sqd->sq_cpu != -1)
7478 set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7479 else
7480 set_cpus_allowed_ptr(current, cpu_online_mask);
7481 current->flags |= PF_NO_SETAFFINITY;
7482
7483 mutex_lock(&sqd->lock);
7484 while (1) {
7485 bool cap_entries, sqt_spin = false;
7486
7487 if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7488 if (io_sqd_handle_event(sqd))
7489 break;
7490 timeout = jiffies + sqd->sq_thread_idle;
7491 }
7492
7493 cap_entries = !list_is_singular(&sqd->ctx_list);
7494 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7495 int ret = __io_sq_thread(ctx, cap_entries);
7496
7497 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7498 sqt_spin = true;
7499 }
7500 if (io_run_task_work())
7501 sqt_spin = true;
7502
7503 if (sqt_spin || !time_after(jiffies, timeout)) {
7504 cond_resched();
7505 if (sqt_spin)
7506 timeout = jiffies + sqd->sq_thread_idle;
7507 continue;
7508 }
7509
7510 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7511 if (!io_sqd_events_pending(sqd) && !current->task_works) {
7512 bool needs_sched = true;
7513
7514 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7515 io_ring_set_wakeup_flag(ctx);
7516
7517 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7518 !list_empty_careful(&ctx->iopoll_list)) {
7519 needs_sched = false;
7520 break;
7521 }
7522 if (io_sqring_entries(ctx)) {
7523 needs_sched = false;
7524 break;
7525 }
7526 }
7527
7528 if (needs_sched) {
7529 mutex_unlock(&sqd->lock);
7530 schedule();
7531 mutex_lock(&sqd->lock);
7532 }
7533 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7534 io_ring_clear_wakeup_flag(ctx);
7535 }
7536
7537 finish_wait(&sqd->wait, &wait);
7538 timeout = jiffies + sqd->sq_thread_idle;
7539 }
7540
7541 io_uring_cancel_generic(true, sqd);
7542 sqd->thread = NULL;
7543 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7544 io_ring_set_wakeup_flag(ctx);
7545 io_run_task_work();
7546 mutex_unlock(&sqd->lock);
7547
7548 complete(&sqd->exited);
7549 do_exit(0);
7550 }
7551
7552 struct io_wait_queue {
7553 struct wait_queue_entry wq;
7554 struct io_ring_ctx *ctx;
7555 unsigned cq_tail;
7556 unsigned nr_timeouts;
7557 };
7558
7559 static inline bool io_should_wake(struct io_wait_queue *iowq)
7560 {
7561 struct io_ring_ctx *ctx = iowq->ctx;
7562 int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7563
7564 /*
7565 * Wake up if we have enough events, or if a timeout occurred since we
7566 * started waiting. For timeouts, we always want to return to userspace,
7567 * regardless of event count.
7568 */
7569 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7570 }
7571
7572 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7573 int wake_flags, void *key)
7574 {
7575 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7576 wq);
7577
7578 /*
7579 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7580 * the task, and the next invocation will do it.
7581 */
7582 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7583 return autoremove_wake_function(curr, mode, wake_flags, key);
7584 return -1;
7585 }
7586
7587 static int io_run_task_work_sig(void)
7588 {
7589 if (io_run_task_work())
7590 return 1;
7591 if (!signal_pending(current))
7592 return 0;
7593 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7594 return -ERESTARTSYS;
7595 return -EINTR;
7596 }
7597
7598 /* when returns >0, the caller should retry */
7599 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7600 struct io_wait_queue *iowq,
7601 ktime_t timeout)
7602 {
7603 int ret;
7604
7605 /* make sure we run task_work before checking for signals */
7606 ret = io_run_task_work_sig();
7607 if (ret || io_should_wake(iowq))
7608 return ret;
7609 /* let the caller flush overflows, retry */
7610 if (test_bit(0, &ctx->check_cq_overflow))
7611 return 1;
7612
7613 if (!schedule_hrtimeout(&timeout, HRTIMER_MODE_ABS))
7614 return -ETIME;
7615 return 1;
7616 }
7617
7618 /*
7619 * Wait until events become available, if we don't already have some. The
7620 * application must reap them itself, as they reside on the shared cq ring.
7621 */
7622 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7623 const sigset_t __user *sig, size_t sigsz,
7624 struct __kernel_timespec __user *uts)
7625 {
7626 struct io_wait_queue iowq;
7627 struct io_rings *rings = ctx->rings;
7628 ktime_t timeout = KTIME_MAX;
7629 int ret;
7630
7631 do {
7632 io_cqring_overflow_flush(ctx);
7633 if (io_cqring_events(ctx) >= min_events)
7634 return 0;
7635 if (!io_run_task_work())
7636 break;
7637 } while (1);
7638
7639 if (uts) {
7640 struct timespec64 ts;
7641
7642 if (get_timespec64(&ts, uts))
7643 return -EFAULT;
7644 timeout = ktime_add_ns(timespec64_to_ktime(ts), ktime_get_ns());
7645 }
7646
7647 if (sig) {
7648 #ifdef CONFIG_COMPAT
7649 if (in_compat_syscall())
7650 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7651 sigsz);
7652 else
7653 #endif
7654 ret = set_user_sigmask(sig, sigsz);
7655
7656 if (ret)
7657 return ret;
7658 }
7659
7660 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7661 iowq.wq.private = current;
7662 INIT_LIST_HEAD(&iowq.wq.entry);
7663 iowq.ctx = ctx;
7664 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7665 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7666
7667 trace_io_uring_cqring_wait(ctx, min_events);
7668 do {
7669 /* if we can't even flush overflow, don't wait for more */
7670 if (!io_cqring_overflow_flush(ctx)) {
7671 ret = -EBUSY;
7672 break;
7673 }
7674 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7675 TASK_INTERRUPTIBLE);
7676 ret = io_cqring_wait_schedule(ctx, &iowq, timeout);
7677 finish_wait(&ctx->cq_wait, &iowq.wq);
7678 cond_resched();
7679 } while (ret > 0);
7680
7681 restore_saved_sigmask_unless(ret == -EINTR);
7682
7683 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7684 }
7685
7686 static void io_free_page_table(void **table, size_t size)
7687 {
7688 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7689
7690 for (i = 0; i < nr_tables; i++)
7691 kfree(table[i]);
7692 kfree(table);
7693 }
7694
7695 static void **io_alloc_page_table(size_t size)
7696 {
7697 unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7698 size_t init_size = size;
7699 void **table;
7700
7701 table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7702 if (!table)
7703 return NULL;
7704
7705 for (i = 0; i < nr_tables; i++) {
7706 unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7707
7708 table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7709 if (!table[i]) {
7710 io_free_page_table(table, init_size);
7711 return NULL;
7712 }
7713 size -= this_size;
7714 }
7715 return table;
7716 }
7717
7718 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7719 {
7720 percpu_ref_exit(&ref_node->refs);
7721 kfree(ref_node);
7722 }
7723
7724 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7725 {
7726 struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7727 struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7728 unsigned long flags;
7729 bool first_add = false;
7730 unsigned long delay = HZ;
7731
7732 spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7733 node->done = true;
7734
7735 /* if we are mid-quiesce then do not delay */
7736 if (node->rsrc_data->quiesce)
7737 delay = 0;
7738
7739 while (!list_empty(&ctx->rsrc_ref_list)) {
7740 node = list_first_entry(&ctx->rsrc_ref_list,
7741 struct io_rsrc_node, node);
7742 /* recycle ref nodes in order */
7743 if (!node->done)
7744 break;
7745 list_del(&node->node);
7746 first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7747 }
7748 spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7749
7750 if (first_add)
7751 mod_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7752 }
7753
7754 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7755 {
7756 struct io_rsrc_node *ref_node;
7757
7758 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7759 if (!ref_node)
7760 return NULL;
7761
7762 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7763 0, GFP_KERNEL)) {
7764 kfree(ref_node);
7765 return NULL;
7766 }
7767 INIT_LIST_HEAD(&ref_node->node);
7768 INIT_LIST_HEAD(&ref_node->rsrc_list);
7769 ref_node->done = false;
7770 return ref_node;
7771 }
7772
7773 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7774 struct io_rsrc_data *data_to_kill)
7775 {
7776 WARN_ON_ONCE(!ctx->rsrc_backup_node);
7777 WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7778
7779 if (data_to_kill) {
7780 struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7781
7782 rsrc_node->rsrc_data = data_to_kill;
7783 spin_lock_irq(&ctx->rsrc_ref_lock);
7784 list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7785 spin_unlock_irq(&ctx->rsrc_ref_lock);
7786
7787 atomic_inc(&data_to_kill->refs);
7788 percpu_ref_kill(&rsrc_node->refs);
7789 ctx->rsrc_node = NULL;
7790 }
7791
7792 if (!ctx->rsrc_node) {
7793 ctx->rsrc_node = ctx->rsrc_backup_node;
7794 ctx->rsrc_backup_node = NULL;
7795 }
7796 }
7797
7798 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7799 {
7800 if (ctx->rsrc_backup_node)
7801 return 0;
7802 ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7803 return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7804 }
7805
7806 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7807 {
7808 int ret;
7809
7810 /* As we may drop ->uring_lock, other task may have started quiesce */
7811 if (data->quiesce)
7812 return -ENXIO;
7813
7814 data->quiesce = true;
7815 do {
7816 ret = io_rsrc_node_switch_start(ctx);
7817 if (ret)
7818 break;
7819 io_rsrc_node_switch(ctx, data);
7820
7821 /* kill initial ref, already quiesced if zero */
7822 if (atomic_dec_and_test(&data->refs))
7823 break;
7824 mutex_unlock(&ctx->uring_lock);
7825 flush_delayed_work(&ctx->rsrc_put_work);
7826 ret = wait_for_completion_interruptible(&data->done);
7827 if (!ret) {
7828 mutex_lock(&ctx->uring_lock);
7829 if (atomic_read(&data->refs) > 0) {
7830 /*
7831 * it has been revived by another thread while
7832 * we were unlocked
7833 */
7834 mutex_unlock(&ctx->uring_lock);
7835 } else {
7836 break;
7837 }
7838 }
7839
7840 atomic_inc(&data->refs);
7841 /* wait for all works potentially completing data->done */
7842 flush_delayed_work(&ctx->rsrc_put_work);
7843 reinit_completion(&data->done);
7844
7845 ret = io_run_task_work_sig();
7846 mutex_lock(&ctx->uring_lock);
7847 } while (ret >= 0);
7848 data->quiesce = false;
7849
7850 return ret;
7851 }
7852
7853 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7854 {
7855 unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7856 unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7857
7858 return &data->tags[table_idx][off];
7859 }
7860
7861 static void io_rsrc_data_free(struct io_rsrc_data *data)
7862 {
7863 size_t size = data->nr * sizeof(data->tags[0][0]);
7864
7865 if (data->tags)
7866 io_free_page_table((void **)data->tags, size);
7867 kfree(data);
7868 }
7869
7870 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7871 u64 __user *utags, unsigned nr,
7872 struct io_rsrc_data **pdata)
7873 {
7874 struct io_rsrc_data *data;
7875 int ret = -ENOMEM;
7876 unsigned i;
7877
7878 data = kzalloc(sizeof(*data), GFP_KERNEL);
7879 if (!data)
7880 return -ENOMEM;
7881 data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7882 if (!data->tags) {
7883 kfree(data);
7884 return -ENOMEM;
7885 }
7886
7887 data->nr = nr;
7888 data->ctx = ctx;
7889 data->do_put = do_put;
7890 if (utags) {
7891 ret = -EFAULT;
7892 for (i = 0; i < nr; i++) {
7893 u64 *tag_slot = io_get_tag_slot(data, i);
7894
7895 if (copy_from_user(tag_slot, &utags[i],
7896 sizeof(*tag_slot)))
7897 goto fail;
7898 }
7899 }
7900
7901 atomic_set(&data->refs, 1);
7902 init_completion(&data->done);
7903 *pdata = data;
7904 return 0;
7905 fail:
7906 io_rsrc_data_free(data);
7907 return ret;
7908 }
7909
7910 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7911 {
7912 table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7913 GFP_KERNEL_ACCOUNT);
7914 return !!table->files;
7915 }
7916
7917 static void io_free_file_tables(struct io_file_table *table)
7918 {
7919 kvfree(table->files);
7920 table->files = NULL;
7921 }
7922
7923 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7924 {
7925 #if defined(CONFIG_UNIX)
7926 if (ctx->ring_sock) {
7927 struct sock *sock = ctx->ring_sock->sk;
7928 struct sk_buff *skb;
7929
7930 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7931 kfree_skb(skb);
7932 }
7933 #else
7934 int i;
7935
7936 for (i = 0; i < ctx->nr_user_files; i++) {
7937 struct file *file;
7938
7939 file = io_file_from_index(ctx, i);
7940 if (file)
7941 fput(file);
7942 }
7943 #endif
7944 io_free_file_tables(&ctx->file_table);
7945 io_rsrc_data_free(ctx->file_data);
7946 ctx->file_data = NULL;
7947 ctx->nr_user_files = 0;
7948 }
7949
7950 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7951 {
7952 unsigned nr = ctx->nr_user_files;
7953 int ret;
7954
7955 if (!ctx->file_data)
7956 return -ENXIO;
7957
7958 /*
7959 * Quiesce may unlock ->uring_lock, and while it's not held
7960 * prevent new requests using the table.
7961 */
7962 ctx->nr_user_files = 0;
7963 ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7964 ctx->nr_user_files = nr;
7965 if (!ret)
7966 __io_sqe_files_unregister(ctx);
7967 return ret;
7968 }
7969
7970 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7971 __releases(&sqd->lock)
7972 {
7973 WARN_ON_ONCE(sqd->thread == current);
7974
7975 /*
7976 * Do the dance but not conditional clear_bit() because it'd race with
7977 * other threads incrementing park_pending and setting the bit.
7978 */
7979 clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7980 if (atomic_dec_return(&sqd->park_pending))
7981 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7982 mutex_unlock(&sqd->lock);
7983 }
7984
7985 static void io_sq_thread_park(struct io_sq_data *sqd)
7986 __acquires(&sqd->lock)
7987 {
7988 WARN_ON_ONCE(sqd->thread == current);
7989
7990 atomic_inc(&sqd->park_pending);
7991 set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7992 mutex_lock(&sqd->lock);
7993 if (sqd->thread)
7994 wake_up_process(sqd->thread);
7995 }
7996
7997 static void io_sq_thread_stop(struct io_sq_data *sqd)
7998 {
7999 WARN_ON_ONCE(sqd->thread == current);
8000 WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
8001
8002 set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
8003 mutex_lock(&sqd->lock);
8004 if (sqd->thread)
8005 wake_up_process(sqd->thread);
8006 mutex_unlock(&sqd->lock);
8007 wait_for_completion(&sqd->exited);
8008 }
8009
8010 static void io_put_sq_data(struct io_sq_data *sqd)
8011 {
8012 if (refcount_dec_and_test(&sqd->refs)) {
8013 WARN_ON_ONCE(atomic_read(&sqd->park_pending));
8014
8015 io_sq_thread_stop(sqd);
8016 kfree(sqd);
8017 }
8018 }
8019
8020 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
8021 {
8022 struct io_sq_data *sqd = ctx->sq_data;
8023
8024 if (sqd) {
8025 io_sq_thread_park(sqd);
8026 list_del_init(&ctx->sqd_list);
8027 io_sqd_update_thread_idle(sqd);
8028 io_sq_thread_unpark(sqd);
8029
8030 io_put_sq_data(sqd);
8031 ctx->sq_data = NULL;
8032 }
8033 }
8034
8035 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
8036 {
8037 struct io_ring_ctx *ctx_attach;
8038 struct io_sq_data *sqd;
8039 struct fd f;
8040
8041 f = fdget(p->wq_fd);
8042 if (!f.file)
8043 return ERR_PTR(-ENXIO);
8044 if (f.file->f_op != &io_uring_fops) {
8045 fdput(f);
8046 return ERR_PTR(-EINVAL);
8047 }
8048
8049 ctx_attach = f.file->private_data;
8050 sqd = ctx_attach->sq_data;
8051 if (!sqd) {
8052 fdput(f);
8053 return ERR_PTR(-EINVAL);
8054 }
8055 if (sqd->task_tgid != current->tgid) {
8056 fdput(f);
8057 return ERR_PTR(-EPERM);
8058 }
8059
8060 refcount_inc(&sqd->refs);
8061 fdput(f);
8062 return sqd;
8063 }
8064
8065 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
8066 bool *attached)
8067 {
8068 struct io_sq_data *sqd;
8069
8070 *attached = false;
8071 if (p->flags & IORING_SETUP_ATTACH_WQ) {
8072 sqd = io_attach_sq_data(p);
8073 if (!IS_ERR(sqd)) {
8074 *attached = true;
8075 return sqd;
8076 }
8077 /* fall through for EPERM case, setup new sqd/task */
8078 if (PTR_ERR(sqd) != -EPERM)
8079 return sqd;
8080 }
8081
8082 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
8083 if (!sqd)
8084 return ERR_PTR(-ENOMEM);
8085
8086 atomic_set(&sqd->park_pending, 0);
8087 refcount_set(&sqd->refs, 1);
8088 INIT_LIST_HEAD(&sqd->ctx_list);
8089 mutex_init(&sqd->lock);
8090 init_waitqueue_head(&sqd->wait);
8091 init_completion(&sqd->exited);
8092 return sqd;
8093 }
8094
8095 #if defined(CONFIG_UNIX)
8096 /*
8097 * Ensure the UNIX gc is aware of our file set, so we are certain that
8098 * the io_uring can be safely unregistered on process exit, even if we have
8099 * loops in the file referencing.
8100 */
8101 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8102 {
8103 struct sock *sk = ctx->ring_sock->sk;
8104 struct scm_fp_list *fpl;
8105 struct sk_buff *skb;
8106 int i, nr_files;
8107
8108 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8109 if (!fpl)
8110 return -ENOMEM;
8111
8112 skb = alloc_skb(0, GFP_KERNEL);
8113 if (!skb) {
8114 kfree(fpl);
8115 return -ENOMEM;
8116 }
8117
8118 skb->sk = sk;
8119
8120 nr_files = 0;
8121 fpl->user = get_uid(current_user());
8122 for (i = 0; i < nr; i++) {
8123 struct file *file = io_file_from_index(ctx, i + offset);
8124
8125 if (!file)
8126 continue;
8127 fpl->fp[nr_files] = get_file(file);
8128 unix_inflight(fpl->user, fpl->fp[nr_files]);
8129 nr_files++;
8130 }
8131
8132 if (nr_files) {
8133 fpl->max = SCM_MAX_FD;
8134 fpl->count = nr_files;
8135 UNIXCB(skb).fp = fpl;
8136 skb->scm_io_uring = 1;
8137 skb->destructor = unix_destruct_scm;
8138 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8139 skb_queue_head(&sk->sk_receive_queue, skb);
8140
8141 for (i = 0; i < nr; i++) {
8142 struct file *file = io_file_from_index(ctx, i + offset);
8143
8144 if (file)
8145 fput(file);
8146 }
8147 } else {
8148 kfree_skb(skb);
8149 free_uid(fpl->user);
8150 kfree(fpl);
8151 }
8152
8153 return 0;
8154 }
8155
8156 /*
8157 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8158 * causes regular reference counting to break down. We rely on the UNIX
8159 * garbage collection to take care of this problem for us.
8160 */
8161 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8162 {
8163 unsigned left, total;
8164 int ret = 0;
8165
8166 total = 0;
8167 left = ctx->nr_user_files;
8168 while (left) {
8169 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8170
8171 ret = __io_sqe_files_scm(ctx, this_files, total);
8172 if (ret)
8173 break;
8174 left -= this_files;
8175 total += this_files;
8176 }
8177
8178 if (!ret)
8179 return 0;
8180
8181 while (total < ctx->nr_user_files) {
8182 struct file *file = io_file_from_index(ctx, total);
8183
8184 if (file)
8185 fput(file);
8186 total++;
8187 }
8188
8189 return ret;
8190 }
8191 #else
8192 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8193 {
8194 return 0;
8195 }
8196 #endif
8197
8198 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8199 {
8200 struct file *file = prsrc->file;
8201 #if defined(CONFIG_UNIX)
8202 struct sock *sock = ctx->ring_sock->sk;
8203 struct sk_buff_head list, *head = &sock->sk_receive_queue;
8204 struct sk_buff *skb;
8205 int i;
8206
8207 __skb_queue_head_init(&list);
8208
8209 /*
8210 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8211 * remove this entry and rearrange the file array.
8212 */
8213 skb = skb_dequeue(head);
8214 while (skb) {
8215 struct scm_fp_list *fp;
8216
8217 fp = UNIXCB(skb).fp;
8218 for (i = 0; i < fp->count; i++) {
8219 int left;
8220
8221 if (fp->fp[i] != file)
8222 continue;
8223
8224 unix_notinflight(fp->user, fp->fp[i]);
8225 left = fp->count - 1 - i;
8226 if (left) {
8227 memmove(&fp->fp[i], &fp->fp[i + 1],
8228 left * sizeof(struct file *));
8229 }
8230 fp->count--;
8231 if (!fp->count) {
8232 kfree_skb(skb);
8233 skb = NULL;
8234 } else {
8235 __skb_queue_tail(&list, skb);
8236 }
8237 fput(file);
8238 file = NULL;
8239 break;
8240 }
8241
8242 if (!file)
8243 break;
8244
8245 __skb_queue_tail(&list, skb);
8246
8247 skb = skb_dequeue(head);
8248 }
8249
8250 if (skb_peek(&list)) {
8251 spin_lock_irq(&head->lock);
8252 while ((skb = __skb_dequeue(&list)) != NULL)
8253 __skb_queue_tail(head, skb);
8254 spin_unlock_irq(&head->lock);
8255 }
8256 #else
8257 fput(file);
8258 #endif
8259 }
8260
8261 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8262 {
8263 struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8264 struct io_ring_ctx *ctx = rsrc_data->ctx;
8265 struct io_rsrc_put *prsrc, *tmp;
8266
8267 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8268 list_del(&prsrc->list);
8269
8270 if (prsrc->tag) {
8271 bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8272
8273 io_ring_submit_lock(ctx, lock_ring);
8274 spin_lock(&ctx->completion_lock);
8275 io_fill_cqe_aux(ctx, prsrc->tag, 0, 0);
8276 io_commit_cqring(ctx);
8277 spin_unlock(&ctx->completion_lock);
8278 io_cqring_ev_posted(ctx);
8279 io_ring_submit_unlock(ctx, lock_ring);
8280 }
8281
8282 rsrc_data->do_put(ctx, prsrc);
8283 kfree(prsrc);
8284 }
8285
8286 io_rsrc_node_destroy(ref_node);
8287 if (atomic_dec_and_test(&rsrc_data->refs))
8288 complete(&rsrc_data->done);
8289 }
8290
8291 static void io_rsrc_put_work(struct work_struct *work)
8292 {
8293 struct io_ring_ctx *ctx;
8294 struct llist_node *node;
8295
8296 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8297 node = llist_del_all(&ctx->rsrc_put_llist);
8298
8299 while (node) {
8300 struct io_rsrc_node *ref_node;
8301 struct llist_node *next = node->next;
8302
8303 ref_node = llist_entry(node, struct io_rsrc_node, llist);
8304 __io_rsrc_put_work(ref_node);
8305 node = next;
8306 }
8307 }
8308
8309 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8310 unsigned nr_args, u64 __user *tags)
8311 {
8312 __s32 __user *fds = (__s32 __user *) arg;
8313 struct file *file;
8314 int fd, ret;
8315 unsigned i;
8316
8317 if (ctx->file_data)
8318 return -EBUSY;
8319 if (!nr_args)
8320 return -EINVAL;
8321 if (nr_args > IORING_MAX_FIXED_FILES)
8322 return -EMFILE;
8323 if (nr_args > rlimit(RLIMIT_NOFILE))
8324 return -EMFILE;
8325 ret = io_rsrc_node_switch_start(ctx);
8326 if (ret)
8327 return ret;
8328 ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8329 &ctx->file_data);
8330 if (ret)
8331 return ret;
8332
8333 ret = -ENOMEM;
8334 if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8335 goto out_free;
8336
8337 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8338 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8339 ret = -EFAULT;
8340 goto out_fput;
8341 }
8342 /* allow sparse sets */
8343 if (fd == -1) {
8344 ret = -EINVAL;
8345 if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8346 goto out_fput;
8347 continue;
8348 }
8349
8350 file = fget(fd);
8351 ret = -EBADF;
8352 if (unlikely(!file))
8353 goto out_fput;
8354
8355 /*
8356 * Don't allow io_uring instances to be registered. If UNIX
8357 * isn't enabled, then this causes a reference cycle and this
8358 * instance can never get freed. If UNIX is enabled we'll
8359 * handle it just fine, but there's still no point in allowing
8360 * a ring fd as it doesn't support regular read/write anyway.
8361 */
8362 if (file->f_op == &io_uring_fops) {
8363 fput(file);
8364 goto out_fput;
8365 }
8366 io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8367 }
8368
8369 ret = io_sqe_files_scm(ctx);
8370 if (ret) {
8371 __io_sqe_files_unregister(ctx);
8372 return ret;
8373 }
8374
8375 io_rsrc_node_switch(ctx, NULL);
8376 return ret;
8377 out_fput:
8378 for (i = 0; i < ctx->nr_user_files; i++) {
8379 file = io_file_from_index(ctx, i);
8380 if (file)
8381 fput(file);
8382 }
8383 io_free_file_tables(&ctx->file_table);
8384 ctx->nr_user_files = 0;
8385 out_free:
8386 io_rsrc_data_free(ctx->file_data);
8387 ctx->file_data = NULL;
8388 return ret;
8389 }
8390
8391 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8392 int index)
8393 {
8394 #if defined(CONFIG_UNIX)
8395 struct sock *sock = ctx->ring_sock->sk;
8396 struct sk_buff_head *head = &sock->sk_receive_queue;
8397 struct sk_buff *skb;
8398
8399 /*
8400 * See if we can merge this file into an existing skb SCM_RIGHTS
8401 * file set. If there's no room, fall back to allocating a new skb
8402 * and filling it in.
8403 */
8404 spin_lock_irq(&head->lock);
8405 skb = skb_peek(head);
8406 if (skb) {
8407 struct scm_fp_list *fpl = UNIXCB(skb).fp;
8408
8409 if (fpl->count < SCM_MAX_FD) {
8410 __skb_unlink(skb, head);
8411 spin_unlock_irq(&head->lock);
8412 fpl->fp[fpl->count] = get_file(file);
8413 unix_inflight(fpl->user, fpl->fp[fpl->count]);
8414 fpl->count++;
8415 spin_lock_irq(&head->lock);
8416 __skb_queue_head(head, skb);
8417 } else {
8418 skb = NULL;
8419 }
8420 }
8421 spin_unlock_irq(&head->lock);
8422
8423 if (skb) {
8424 fput(file);
8425 return 0;
8426 }
8427
8428 return __io_sqe_files_scm(ctx, 1, index);
8429 #else
8430 return 0;
8431 #endif
8432 }
8433
8434 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8435 struct io_rsrc_node *node, void *rsrc)
8436 {
8437 u64 *tag_slot = io_get_tag_slot(data, idx);
8438 struct io_rsrc_put *prsrc;
8439
8440 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8441 if (!prsrc)
8442 return -ENOMEM;
8443
8444 prsrc->tag = *tag_slot;
8445 *tag_slot = 0;
8446 prsrc->rsrc = rsrc;
8447 list_add(&prsrc->list, &node->rsrc_list);
8448 return 0;
8449 }
8450
8451 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8452 unsigned int issue_flags, u32 slot_index)
8453 {
8454 struct io_ring_ctx *ctx = req->ctx;
8455 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8456 bool needs_switch = false;
8457 struct io_fixed_file *file_slot;
8458 int ret = -EBADF;
8459
8460 io_ring_submit_lock(ctx, !force_nonblock);
8461 if (file->f_op == &io_uring_fops)
8462 goto err;
8463 ret = -ENXIO;
8464 if (!ctx->file_data)
8465 goto err;
8466 ret = -EINVAL;
8467 if (slot_index >= ctx->nr_user_files)
8468 goto err;
8469
8470 slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8471 file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8472
8473 if (file_slot->file_ptr) {
8474 struct file *old_file;
8475
8476 ret = io_rsrc_node_switch_start(ctx);
8477 if (ret)
8478 goto err;
8479
8480 old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8481 ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8482 ctx->rsrc_node, old_file);
8483 if (ret)
8484 goto err;
8485 file_slot->file_ptr = 0;
8486 needs_switch = true;
8487 }
8488
8489 *io_get_tag_slot(ctx->file_data, slot_index) = 0;
8490 io_fixed_file_set(file_slot, file);
8491 ret = io_sqe_file_register(ctx, file, slot_index);
8492 if (ret) {
8493 file_slot->file_ptr = 0;
8494 goto err;
8495 }
8496
8497 ret = 0;
8498 err:
8499 if (needs_switch)
8500 io_rsrc_node_switch(ctx, ctx->file_data);
8501 io_ring_submit_unlock(ctx, !force_nonblock);
8502 if (ret)
8503 fput(file);
8504 return ret;
8505 }
8506
8507 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8508 {
8509 unsigned int offset = req->close.file_slot - 1;
8510 struct io_ring_ctx *ctx = req->ctx;
8511 struct io_fixed_file *file_slot;
8512 struct file *file;
8513 int ret;
8514
8515 io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8516 ret = -ENXIO;
8517 if (unlikely(!ctx->file_data))
8518 goto out;
8519 ret = -EINVAL;
8520 if (offset >= ctx->nr_user_files)
8521 goto out;
8522 ret = io_rsrc_node_switch_start(ctx);
8523 if (ret)
8524 goto out;
8525
8526 offset = array_index_nospec(offset, ctx->nr_user_files);
8527 file_slot = io_fixed_file_slot(&ctx->file_table, offset);
8528 ret = -EBADF;
8529 if (!file_slot->file_ptr)
8530 goto out;
8531
8532 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8533 ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8534 if (ret)
8535 goto out;
8536
8537 file_slot->file_ptr = 0;
8538 io_rsrc_node_switch(ctx, ctx->file_data);
8539 ret = 0;
8540 out:
8541 io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8542 return ret;
8543 }
8544
8545 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8546 struct io_uring_rsrc_update2 *up,
8547 unsigned nr_args)
8548 {
8549 u64 __user *tags = u64_to_user_ptr(up->tags);
8550 __s32 __user *fds = u64_to_user_ptr(up->data);
8551 struct io_rsrc_data *data = ctx->file_data;
8552 struct io_fixed_file *file_slot;
8553 struct file *file;
8554 int fd, i, err = 0;
8555 unsigned int done;
8556 bool needs_switch = false;
8557
8558 if (!ctx->file_data)
8559 return -ENXIO;
8560 if (up->offset + nr_args > ctx->nr_user_files)
8561 return -EINVAL;
8562
8563 for (done = 0; done < nr_args; done++) {
8564 u64 tag = 0;
8565
8566 if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8567 copy_from_user(&fd, &fds[done], sizeof(fd))) {
8568 err = -EFAULT;
8569 break;
8570 }
8571 if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8572 err = -EINVAL;
8573 break;
8574 }
8575 if (fd == IORING_REGISTER_FILES_SKIP)
8576 continue;
8577
8578 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8579 file_slot = io_fixed_file_slot(&ctx->file_table, i);
8580
8581 if (file_slot->file_ptr) {
8582 file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8583 err = io_queue_rsrc_removal(data, i, ctx->rsrc_node, file);
8584 if (err)
8585 break;
8586 file_slot->file_ptr = 0;
8587 needs_switch = true;
8588 }
8589 if (fd != -1) {
8590 file = fget(fd);
8591 if (!file) {
8592 err = -EBADF;
8593 break;
8594 }
8595 /*
8596 * Don't allow io_uring instances to be registered. If
8597 * UNIX isn't enabled, then this causes a reference
8598 * cycle and this instance can never get freed. If UNIX
8599 * is enabled we'll handle it just fine, but there's
8600 * still no point in allowing a ring fd as it doesn't
8601 * support regular read/write anyway.
8602 */
8603 if (file->f_op == &io_uring_fops) {
8604 fput(file);
8605 err = -EBADF;
8606 break;
8607 }
8608 *io_get_tag_slot(data, i) = tag;
8609 io_fixed_file_set(file_slot, file);
8610 err = io_sqe_file_register(ctx, file, i);
8611 if (err) {
8612 file_slot->file_ptr = 0;
8613 fput(file);
8614 break;
8615 }
8616 }
8617 }
8618
8619 if (needs_switch)
8620 io_rsrc_node_switch(ctx, data);
8621 return done ? done : err;
8622 }
8623
8624 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8625 struct task_struct *task)
8626 {
8627 struct io_wq_hash *hash;
8628 struct io_wq_data data;
8629 unsigned int concurrency;
8630
8631 mutex_lock(&ctx->uring_lock);
8632 hash = ctx->hash_map;
8633 if (!hash) {
8634 hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8635 if (!hash) {
8636 mutex_unlock(&ctx->uring_lock);
8637 return ERR_PTR(-ENOMEM);
8638 }
8639 refcount_set(&hash->refs, 1);
8640 init_waitqueue_head(&hash->wait);
8641 ctx->hash_map = hash;
8642 }
8643 mutex_unlock(&ctx->uring_lock);
8644
8645 data.hash = hash;
8646 data.task = task;
8647 data.free_work = io_wq_free_work;
8648 data.do_work = io_wq_submit_work;
8649
8650 /* Do QD, or 4 * CPUS, whatever is smallest */
8651 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8652
8653 return io_wq_create(concurrency, &data);
8654 }
8655
8656 static int io_uring_alloc_task_context(struct task_struct *task,
8657 struct io_ring_ctx *ctx)
8658 {
8659 struct io_uring_task *tctx;
8660 int ret;
8661
8662 tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8663 if (unlikely(!tctx))
8664 return -ENOMEM;
8665
8666 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8667 if (unlikely(ret)) {
8668 kfree(tctx);
8669 return ret;
8670 }
8671
8672 tctx->io_wq = io_init_wq_offload(ctx, task);
8673 if (IS_ERR(tctx->io_wq)) {
8674 ret = PTR_ERR(tctx->io_wq);
8675 percpu_counter_destroy(&tctx->inflight);
8676 kfree(tctx);
8677 return ret;
8678 }
8679
8680 xa_init(&tctx->xa);
8681 init_waitqueue_head(&tctx->wait);
8682 atomic_set(&tctx->in_idle, 0);
8683 atomic_set(&tctx->inflight_tracked, 0);
8684 task->io_uring = tctx;
8685 spin_lock_init(&tctx->task_lock);
8686 INIT_WQ_LIST(&tctx->task_list);
8687 init_task_work(&tctx->task_work, tctx_task_work);
8688 return 0;
8689 }
8690
8691 void __io_uring_free(struct task_struct *tsk)
8692 {
8693 struct io_uring_task *tctx = tsk->io_uring;
8694
8695 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8696 WARN_ON_ONCE(tctx->io_wq);
8697 WARN_ON_ONCE(tctx->cached_refs);
8698
8699 percpu_counter_destroy(&tctx->inflight);
8700 kfree(tctx);
8701 tsk->io_uring = NULL;
8702 }
8703
8704 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8705 struct io_uring_params *p)
8706 {
8707 int ret;
8708
8709 /* Retain compatibility with failing for an invalid attach attempt */
8710 if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8711 IORING_SETUP_ATTACH_WQ) {
8712 struct fd f;
8713
8714 f = fdget(p->wq_fd);
8715 if (!f.file)
8716 return -ENXIO;
8717 if (f.file->f_op != &io_uring_fops) {
8718 fdput(f);
8719 return -EINVAL;
8720 }
8721 fdput(f);
8722 }
8723 if (ctx->flags & IORING_SETUP_SQPOLL) {
8724 struct task_struct *tsk;
8725 struct io_sq_data *sqd;
8726 bool attached;
8727
8728 sqd = io_get_sq_data(p, &attached);
8729 if (IS_ERR(sqd)) {
8730 ret = PTR_ERR(sqd);
8731 goto err;
8732 }
8733
8734 ctx->sq_creds = get_current_cred();
8735 ctx->sq_data = sqd;
8736 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8737 if (!ctx->sq_thread_idle)
8738 ctx->sq_thread_idle = HZ;
8739
8740 io_sq_thread_park(sqd);
8741 list_add(&ctx->sqd_list, &sqd->ctx_list);
8742 io_sqd_update_thread_idle(sqd);
8743 /* don't attach to a dying SQPOLL thread, would be racy */
8744 ret = (attached && !sqd->thread) ? -ENXIO : 0;
8745 io_sq_thread_unpark(sqd);
8746
8747 if (ret < 0)
8748 goto err;
8749 if (attached)
8750 return 0;
8751
8752 if (p->flags & IORING_SETUP_SQ_AFF) {
8753 int cpu = p->sq_thread_cpu;
8754
8755 ret = -EINVAL;
8756 if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8757 goto err_sqpoll;
8758 sqd->sq_cpu = cpu;
8759 } else {
8760 sqd->sq_cpu = -1;
8761 }
8762
8763 sqd->task_pid = current->pid;
8764 sqd->task_tgid = current->tgid;
8765 tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8766 if (IS_ERR(tsk)) {
8767 ret = PTR_ERR(tsk);
8768 goto err_sqpoll;
8769 }
8770
8771 sqd->thread = tsk;
8772 ret = io_uring_alloc_task_context(tsk, ctx);
8773 wake_up_new_task(tsk);
8774 if (ret)
8775 goto err;
8776 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8777 /* Can't have SQ_AFF without SQPOLL */
8778 ret = -EINVAL;
8779 goto err;
8780 }
8781
8782 return 0;
8783 err_sqpoll:
8784 complete(&ctx->sq_data->exited);
8785 err:
8786 io_sq_thread_finish(ctx);
8787 return ret;
8788 }
8789
8790 static inline void __io_unaccount_mem(struct user_struct *user,
8791 unsigned long nr_pages)
8792 {
8793 atomic_long_sub(nr_pages, &user->locked_vm);
8794 }
8795
8796 static inline int __io_account_mem(struct user_struct *user,
8797 unsigned long nr_pages)
8798 {
8799 unsigned long page_limit, cur_pages, new_pages;
8800
8801 /* Don't allow more pages than we can safely lock */
8802 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8803
8804 do {
8805 cur_pages = atomic_long_read(&user->locked_vm);
8806 new_pages = cur_pages + nr_pages;
8807 if (new_pages > page_limit)
8808 return -ENOMEM;
8809 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8810 new_pages) != cur_pages);
8811
8812 return 0;
8813 }
8814
8815 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8816 {
8817 if (ctx->user)
8818 __io_unaccount_mem(ctx->user, nr_pages);
8819
8820 if (ctx->mm_account)
8821 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8822 }
8823
8824 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8825 {
8826 int ret;
8827
8828 if (ctx->user) {
8829 ret = __io_account_mem(ctx->user, nr_pages);
8830 if (ret)
8831 return ret;
8832 }
8833
8834 if (ctx->mm_account)
8835 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8836
8837 return 0;
8838 }
8839
8840 static void io_mem_free(void *ptr)
8841 {
8842 struct page *page;
8843
8844 if (!ptr)
8845 return;
8846
8847 page = virt_to_head_page(ptr);
8848 if (put_page_testzero(page))
8849 free_compound_page(page);
8850 }
8851
8852 static void *io_mem_alloc(size_t size)
8853 {
8854 gfp_t gfp = GFP_KERNEL_ACCOUNT | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP;
8855
8856 return (void *) __get_free_pages(gfp, get_order(size));
8857 }
8858
8859 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8860 size_t *sq_offset)
8861 {
8862 struct io_rings *rings;
8863 size_t off, sq_array_size;
8864
8865 off = struct_size(rings, cqes, cq_entries);
8866 if (off == SIZE_MAX)
8867 return SIZE_MAX;
8868
8869 #ifdef CONFIG_SMP
8870 off = ALIGN(off, SMP_CACHE_BYTES);
8871 if (off == 0)
8872 return SIZE_MAX;
8873 #endif
8874
8875 if (sq_offset)
8876 *sq_offset = off;
8877
8878 sq_array_size = array_size(sizeof(u32), sq_entries);
8879 if (sq_array_size == SIZE_MAX)
8880 return SIZE_MAX;
8881
8882 if (check_add_overflow(off, sq_array_size, &off))
8883 return SIZE_MAX;
8884
8885 return off;
8886 }
8887
8888 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8889 {
8890 struct io_mapped_ubuf *imu = *slot;
8891 unsigned int i;
8892
8893 if (imu != ctx->dummy_ubuf) {
8894 for (i = 0; i < imu->nr_bvecs; i++)
8895 unpin_user_page(imu->bvec[i].bv_page);
8896 if (imu->acct_pages)
8897 io_unaccount_mem(ctx, imu->acct_pages);
8898 kvfree(imu);
8899 }
8900 *slot = NULL;
8901 }
8902
8903 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8904 {
8905 io_buffer_unmap(ctx, &prsrc->buf);
8906 prsrc->buf = NULL;
8907 }
8908
8909 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8910 {
8911 unsigned int i;
8912
8913 for (i = 0; i < ctx->nr_user_bufs; i++)
8914 io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8915 kfree(ctx->user_bufs);
8916 io_rsrc_data_free(ctx->buf_data);
8917 ctx->user_bufs = NULL;
8918 ctx->buf_data = NULL;
8919 ctx->nr_user_bufs = 0;
8920 }
8921
8922 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8923 {
8924 unsigned nr = ctx->nr_user_bufs;
8925 int ret;
8926
8927 if (!ctx->buf_data)
8928 return -ENXIO;
8929
8930 /*
8931 * Quiesce may unlock ->uring_lock, and while it's not held
8932 * prevent new requests using the table.
8933 */
8934 ctx->nr_user_bufs = 0;
8935 ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8936 ctx->nr_user_bufs = nr;
8937 if (!ret)
8938 __io_sqe_buffers_unregister(ctx);
8939 return ret;
8940 }
8941
8942 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8943 void __user *arg, unsigned index)
8944 {
8945 struct iovec __user *src;
8946
8947 #ifdef CONFIG_COMPAT
8948 if (ctx->compat) {
8949 struct compat_iovec __user *ciovs;
8950 struct compat_iovec ciov;
8951
8952 ciovs = (struct compat_iovec __user *) arg;
8953 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8954 return -EFAULT;
8955
8956 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8957 dst->iov_len = ciov.iov_len;
8958 return 0;
8959 }
8960 #endif
8961 src = (struct iovec __user *) arg;
8962 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8963 return -EFAULT;
8964 return 0;
8965 }
8966
8967 /*
8968 * Not super efficient, but this is just a registration time. And we do cache
8969 * the last compound head, so generally we'll only do a full search if we don't
8970 * match that one.
8971 *
8972 * We check if the given compound head page has already been accounted, to
8973 * avoid double accounting it. This allows us to account the full size of the
8974 * page, not just the constituent pages of a huge page.
8975 */
8976 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8977 int nr_pages, struct page *hpage)
8978 {
8979 int i, j;
8980
8981 /* check current page array */
8982 for (i = 0; i < nr_pages; i++) {
8983 if (!PageCompound(pages[i]))
8984 continue;
8985 if (compound_head(pages[i]) == hpage)
8986 return true;
8987 }
8988
8989 /* check previously registered pages */
8990 for (i = 0; i < ctx->nr_user_bufs; i++) {
8991 struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8992
8993 for (j = 0; j < imu->nr_bvecs; j++) {
8994 if (!PageCompound(imu->bvec[j].bv_page))
8995 continue;
8996 if (compound_head(imu->bvec[j].bv_page) == hpage)
8997 return true;
8998 }
8999 }
9000
9001 return false;
9002 }
9003
9004 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
9005 int nr_pages, struct io_mapped_ubuf *imu,
9006 struct page **last_hpage)
9007 {
9008 int i, ret;
9009
9010 imu->acct_pages = 0;
9011 for (i = 0; i < nr_pages; i++) {
9012 if (!PageCompound(pages[i])) {
9013 imu->acct_pages++;
9014 } else {
9015 struct page *hpage;
9016
9017 hpage = compound_head(pages[i]);
9018 if (hpage == *last_hpage)
9019 continue;
9020 *last_hpage = hpage;
9021 if (headpage_already_acct(ctx, pages, i, hpage))
9022 continue;
9023 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
9024 }
9025 }
9026
9027 if (!imu->acct_pages)
9028 return 0;
9029
9030 ret = io_account_mem(ctx, imu->acct_pages);
9031 if (ret)
9032 imu->acct_pages = 0;
9033 return ret;
9034 }
9035
9036 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
9037 struct io_mapped_ubuf **pimu,
9038 struct page **last_hpage)
9039 {
9040 struct io_mapped_ubuf *imu = NULL;
9041 struct vm_area_struct **vmas = NULL;
9042 struct page **pages = NULL;
9043 unsigned long off, start, end, ubuf;
9044 size_t size;
9045 int ret, pret, nr_pages, i;
9046
9047 if (!iov->iov_base) {
9048 *pimu = ctx->dummy_ubuf;
9049 return 0;
9050 }
9051
9052 ubuf = (unsigned long) iov->iov_base;
9053 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
9054 start = ubuf >> PAGE_SHIFT;
9055 nr_pages = end - start;
9056
9057 *pimu = NULL;
9058 ret = -ENOMEM;
9059
9060 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
9061 if (!pages)
9062 goto done;
9063
9064 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
9065 GFP_KERNEL);
9066 if (!vmas)
9067 goto done;
9068
9069 imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
9070 if (!imu)
9071 goto done;
9072
9073 ret = 0;
9074 mmap_read_lock(current->mm);
9075 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
9076 pages, vmas);
9077 if (pret == nr_pages) {
9078 /* don't support file backed memory */
9079 for (i = 0; i < nr_pages; i++) {
9080 struct vm_area_struct *vma = vmas[i];
9081
9082 if (vma_is_shmem(vma))
9083 continue;
9084 if (vma->vm_file &&
9085 !is_file_hugepages(vma->vm_file)) {
9086 ret = -EOPNOTSUPP;
9087 break;
9088 }
9089 }
9090 } else {
9091 ret = pret < 0 ? pret : -EFAULT;
9092 }
9093 mmap_read_unlock(current->mm);
9094 if (ret) {
9095 /*
9096 * if we did partial map, or found file backed vmas,
9097 * release any pages we did get
9098 */
9099 if (pret > 0)
9100 unpin_user_pages(pages, pret);
9101 goto done;
9102 }
9103
9104 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9105 if (ret) {
9106 unpin_user_pages(pages, pret);
9107 goto done;
9108 }
9109
9110 off = ubuf & ~PAGE_MASK;
9111 size = iov->iov_len;
9112 for (i = 0; i < nr_pages; i++) {
9113 size_t vec_len;
9114
9115 vec_len = min_t(size_t, size, PAGE_SIZE - off);
9116 imu->bvec[i].bv_page = pages[i];
9117 imu->bvec[i].bv_len = vec_len;
9118 imu->bvec[i].bv_offset = off;
9119 off = 0;
9120 size -= vec_len;
9121 }
9122 /* store original address for later verification */
9123 imu->ubuf = ubuf;
9124 imu->ubuf_end = ubuf + iov->iov_len;
9125 imu->nr_bvecs = nr_pages;
9126 *pimu = imu;
9127 ret = 0;
9128 done:
9129 if (ret)
9130 kvfree(imu);
9131 kvfree(pages);
9132 kvfree(vmas);
9133 return ret;
9134 }
9135
9136 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9137 {
9138 ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9139 return ctx->user_bufs ? 0 : -ENOMEM;
9140 }
9141
9142 static int io_buffer_validate(struct iovec *iov)
9143 {
9144 unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9145
9146 /*
9147 * Don't impose further limits on the size and buffer
9148 * constraints here, we'll -EINVAL later when IO is
9149 * submitted if they are wrong.
9150 */
9151 if (!iov->iov_base)
9152 return iov->iov_len ? -EFAULT : 0;
9153 if (!iov->iov_len)
9154 return -EFAULT;
9155
9156 /* arbitrary limit, but we need something */
9157 if (iov->iov_len > SZ_1G)
9158 return -EFAULT;
9159
9160 if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9161 return -EOVERFLOW;
9162
9163 return 0;
9164 }
9165
9166 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9167 unsigned int nr_args, u64 __user *tags)
9168 {
9169 struct page *last_hpage = NULL;
9170 struct io_rsrc_data *data;
9171 int i, ret;
9172 struct iovec iov;
9173
9174 if (ctx->user_bufs)
9175 return -EBUSY;
9176 if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9177 return -EINVAL;
9178 ret = io_rsrc_node_switch_start(ctx);
9179 if (ret)
9180 return ret;
9181 ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9182 if (ret)
9183 return ret;
9184 ret = io_buffers_map_alloc(ctx, nr_args);
9185 if (ret) {
9186 io_rsrc_data_free(data);
9187 return ret;
9188 }
9189
9190 for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9191 ret = io_copy_iov(ctx, &iov, arg, i);
9192 if (ret)
9193 break;
9194 ret = io_buffer_validate(&iov);
9195 if (ret)
9196 break;
9197 if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9198 ret = -EINVAL;
9199 break;
9200 }
9201
9202 ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9203 &last_hpage);
9204 if (ret)
9205 break;
9206 }
9207
9208 WARN_ON_ONCE(ctx->buf_data);
9209
9210 ctx->buf_data = data;
9211 if (ret)
9212 __io_sqe_buffers_unregister(ctx);
9213 else
9214 io_rsrc_node_switch(ctx, NULL);
9215 return ret;
9216 }
9217
9218 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9219 struct io_uring_rsrc_update2 *up,
9220 unsigned int nr_args)
9221 {
9222 u64 __user *tags = u64_to_user_ptr(up->tags);
9223 struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9224 struct page *last_hpage = NULL;
9225 bool needs_switch = false;
9226 __u32 done;
9227 int i, err;
9228
9229 if (!ctx->buf_data)
9230 return -ENXIO;
9231 if (up->offset + nr_args > ctx->nr_user_bufs)
9232 return -EINVAL;
9233
9234 for (done = 0; done < nr_args; done++) {
9235 struct io_mapped_ubuf *imu;
9236 int offset = up->offset + done;
9237 u64 tag = 0;
9238
9239 err = io_copy_iov(ctx, &iov, iovs, done);
9240 if (err)
9241 break;
9242 if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9243 err = -EFAULT;
9244 break;
9245 }
9246 err = io_buffer_validate(&iov);
9247 if (err)
9248 break;
9249 if (!iov.iov_base && tag) {
9250 err = -EINVAL;
9251 break;
9252 }
9253 err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9254 if (err)
9255 break;
9256
9257 i = array_index_nospec(offset, ctx->nr_user_bufs);
9258 if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9259 err = io_queue_rsrc_removal(ctx->buf_data, i,
9260 ctx->rsrc_node, ctx->user_bufs[i]);
9261 if (unlikely(err)) {
9262 io_buffer_unmap(ctx, &imu);
9263 break;
9264 }
9265 ctx->user_bufs[i] = NULL;
9266 needs_switch = true;
9267 }
9268
9269 ctx->user_bufs[i] = imu;
9270 *io_get_tag_slot(ctx->buf_data, offset) = tag;
9271 }
9272
9273 if (needs_switch)
9274 io_rsrc_node_switch(ctx, ctx->buf_data);
9275 return done ? done : err;
9276 }
9277
9278 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9279 {
9280 __s32 __user *fds = arg;
9281 int fd;
9282
9283 if (ctx->cq_ev_fd)
9284 return -EBUSY;
9285
9286 if (copy_from_user(&fd, fds, sizeof(*fds)))
9287 return -EFAULT;
9288
9289 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9290 if (IS_ERR(ctx->cq_ev_fd)) {
9291 int ret = PTR_ERR(ctx->cq_ev_fd);
9292
9293 ctx->cq_ev_fd = NULL;
9294 return ret;
9295 }
9296
9297 return 0;
9298 }
9299
9300 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9301 {
9302 if (ctx->cq_ev_fd) {
9303 eventfd_ctx_put(ctx->cq_ev_fd);
9304 ctx->cq_ev_fd = NULL;
9305 return 0;
9306 }
9307
9308 return -ENXIO;
9309 }
9310
9311 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9312 {
9313 struct io_buffer *buf;
9314 unsigned long index;
9315
9316 xa_for_each(&ctx->io_buffers, index, buf)
9317 __io_remove_buffers(ctx, buf, index, -1U);
9318 }
9319
9320 static void io_req_cache_free(struct list_head *list)
9321 {
9322 struct io_kiocb *req, *nxt;
9323
9324 list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9325 list_del(&req->inflight_entry);
9326 kmem_cache_free(req_cachep, req);
9327 }
9328 }
9329
9330 static void io_req_caches_free(struct io_ring_ctx *ctx)
9331 {
9332 struct io_submit_state *state = &ctx->submit_state;
9333
9334 mutex_lock(&ctx->uring_lock);
9335
9336 if (state->free_reqs) {
9337 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9338 state->free_reqs = 0;
9339 }
9340
9341 io_flush_cached_locked_reqs(ctx, state);
9342 io_req_cache_free(&state->free_list);
9343 mutex_unlock(&ctx->uring_lock);
9344 }
9345
9346 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9347 {
9348 if (data && !atomic_dec_and_test(&data->refs))
9349 wait_for_completion(&data->done);
9350 }
9351
9352 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9353 {
9354 io_sq_thread_finish(ctx);
9355
9356 /* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9357 io_wait_rsrc_data(ctx->buf_data);
9358 io_wait_rsrc_data(ctx->file_data);
9359
9360 mutex_lock(&ctx->uring_lock);
9361 if (ctx->buf_data)
9362 __io_sqe_buffers_unregister(ctx);
9363 if (ctx->file_data)
9364 __io_sqe_files_unregister(ctx);
9365 if (ctx->rings)
9366 __io_cqring_overflow_flush(ctx, true);
9367 mutex_unlock(&ctx->uring_lock);
9368 io_eventfd_unregister(ctx);
9369 io_destroy_buffers(ctx);
9370 if (ctx->sq_creds)
9371 put_cred(ctx->sq_creds);
9372
9373 /* there are no registered resources left, nobody uses it */
9374 if (ctx->rsrc_node)
9375 io_rsrc_node_destroy(ctx->rsrc_node);
9376 if (ctx->rsrc_backup_node)
9377 io_rsrc_node_destroy(ctx->rsrc_backup_node);
9378 flush_delayed_work(&ctx->rsrc_put_work);
9379
9380 WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9381 WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9382
9383 #if defined(CONFIG_UNIX)
9384 if (ctx->ring_sock) {
9385 ctx->ring_sock->file = NULL; /* so that iput() is called */
9386 sock_release(ctx->ring_sock);
9387 }
9388 #endif
9389 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9390
9391 if (ctx->mm_account) {
9392 mmdrop(ctx->mm_account);
9393 ctx->mm_account = NULL;
9394 }
9395
9396 io_mem_free(ctx->rings);
9397 io_mem_free(ctx->sq_sqes);
9398
9399 percpu_ref_exit(&ctx->refs);
9400 free_uid(ctx->user);
9401 io_req_caches_free(ctx);
9402 if (ctx->hash_map)
9403 io_wq_put_hash(ctx->hash_map);
9404 kfree(ctx->cancel_hash);
9405 kfree(ctx->dummy_ubuf);
9406 kfree(ctx);
9407 }
9408
9409 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9410 {
9411 struct io_ring_ctx *ctx = file->private_data;
9412 __poll_t mask = 0;
9413
9414 poll_wait(file, &ctx->poll_wait, wait);
9415 /*
9416 * synchronizes with barrier from wq_has_sleeper call in
9417 * io_commit_cqring
9418 */
9419 smp_rmb();
9420 if (!io_sqring_full(ctx))
9421 mask |= EPOLLOUT | EPOLLWRNORM;
9422
9423 /*
9424 * Don't flush cqring overflow list here, just do a simple check.
9425 * Otherwise there could possible be ABBA deadlock:
9426 * CPU0 CPU1
9427 * ---- ----
9428 * lock(&ctx->uring_lock);
9429 * lock(&ep->mtx);
9430 * lock(&ctx->uring_lock);
9431 * lock(&ep->mtx);
9432 *
9433 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9434 * pushs them to do the flush.
9435 */
9436 if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9437 mask |= EPOLLIN | EPOLLRDNORM;
9438
9439 return mask;
9440 }
9441
9442 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9443 {
9444 const struct cred *creds;
9445
9446 creds = xa_erase(&ctx->personalities, id);
9447 if (creds) {
9448 put_cred(creds);
9449 return 0;
9450 }
9451
9452 return -EINVAL;
9453 }
9454
9455 struct io_tctx_exit {
9456 struct callback_head task_work;
9457 struct completion completion;
9458 struct io_ring_ctx *ctx;
9459 };
9460
9461 static void io_tctx_exit_cb(struct callback_head *cb)
9462 {
9463 struct io_uring_task *tctx = current->io_uring;
9464 struct io_tctx_exit *work;
9465
9466 work = container_of(cb, struct io_tctx_exit, task_work);
9467 /*
9468 * When @in_idle, we're in cancellation and it's racy to remove the
9469 * node. It'll be removed by the end of cancellation, just ignore it.
9470 */
9471 if (!atomic_read(&tctx->in_idle))
9472 io_uring_del_tctx_node((unsigned long)work->ctx);
9473 complete(&work->completion);
9474 }
9475
9476 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9477 {
9478 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9479
9480 return req->ctx == data;
9481 }
9482
9483 static void io_ring_exit_work(struct work_struct *work)
9484 {
9485 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9486 unsigned long timeout = jiffies + HZ * 60 * 5;
9487 unsigned long interval = HZ / 20;
9488 struct io_tctx_exit exit;
9489 struct io_tctx_node *node;
9490 int ret;
9491
9492 /*
9493 * If we're doing polled IO and end up having requests being
9494 * submitted async (out-of-line), then completions can come in while
9495 * we're waiting for refs to drop. We need to reap these manually,
9496 * as nobody else will be looking for them.
9497 */
9498 do {
9499 io_uring_try_cancel_requests(ctx, NULL, true);
9500 if (ctx->sq_data) {
9501 struct io_sq_data *sqd = ctx->sq_data;
9502 struct task_struct *tsk;
9503
9504 io_sq_thread_park(sqd);
9505 tsk = sqd->thread;
9506 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9507 io_wq_cancel_cb(tsk->io_uring->io_wq,
9508 io_cancel_ctx_cb, ctx, true);
9509 io_sq_thread_unpark(sqd);
9510 }
9511
9512 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9513 /* there is little hope left, don't run it too often */
9514 interval = HZ * 60;
9515 }
9516 } while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9517
9518 init_completion(&exit.completion);
9519 init_task_work(&exit.task_work, io_tctx_exit_cb);
9520 exit.ctx = ctx;
9521 /*
9522 * Some may use context even when all refs and requests have been put,
9523 * and they are free to do so while still holding uring_lock or
9524 * completion_lock, see io_req_task_submit(). Apart from other work,
9525 * this lock/unlock section also waits them to finish.
9526 */
9527 mutex_lock(&ctx->uring_lock);
9528 while (!list_empty(&ctx->tctx_list)) {
9529 WARN_ON_ONCE(time_after(jiffies, timeout));
9530
9531 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9532 ctx_node);
9533 /* don't spin on a single task if cancellation failed */
9534 list_rotate_left(&ctx->tctx_list);
9535 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9536 if (WARN_ON_ONCE(ret))
9537 continue;
9538 wake_up_process(node->task);
9539
9540 mutex_unlock(&ctx->uring_lock);
9541 wait_for_completion(&exit.completion);
9542 mutex_lock(&ctx->uring_lock);
9543 }
9544 mutex_unlock(&ctx->uring_lock);
9545 spin_lock(&ctx->completion_lock);
9546 spin_unlock(&ctx->completion_lock);
9547
9548 io_ring_ctx_free(ctx);
9549 }
9550
9551 /* Returns true if we found and killed one or more timeouts */
9552 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9553 bool cancel_all)
9554 {
9555 struct io_kiocb *req, *tmp;
9556 int canceled = 0;
9557
9558 spin_lock(&ctx->completion_lock);
9559 spin_lock_irq(&ctx->timeout_lock);
9560 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9561 if (io_match_task(req, tsk, cancel_all)) {
9562 io_kill_timeout(req, -ECANCELED);
9563 canceled++;
9564 }
9565 }
9566 spin_unlock_irq(&ctx->timeout_lock);
9567 if (canceled != 0)
9568 io_commit_cqring(ctx);
9569 spin_unlock(&ctx->completion_lock);
9570 if (canceled != 0)
9571 io_cqring_ev_posted(ctx);
9572 return canceled != 0;
9573 }
9574
9575 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9576 {
9577 unsigned long index;
9578 struct creds *creds;
9579
9580 mutex_lock(&ctx->uring_lock);
9581 percpu_ref_kill(&ctx->refs);
9582 if (ctx->rings)
9583 __io_cqring_overflow_flush(ctx, true);
9584 xa_for_each(&ctx->personalities, index, creds)
9585 io_unregister_personality(ctx, index);
9586 mutex_unlock(&ctx->uring_lock);
9587
9588 io_kill_timeouts(ctx, NULL, true);
9589 io_poll_remove_all(ctx, NULL, true);
9590
9591 /* if we failed setting up the ctx, we might not have any rings */
9592 io_iopoll_try_reap_events(ctx);
9593
9594 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9595 /*
9596 * Use system_unbound_wq to avoid spawning tons of event kworkers
9597 * if we're exiting a ton of rings at the same time. It just adds
9598 * noise and overhead, there's no discernable change in runtime
9599 * over using system_wq.
9600 */
9601 queue_work(system_unbound_wq, &ctx->exit_work);
9602 }
9603
9604 static int io_uring_release(struct inode *inode, struct file *file)
9605 {
9606 struct io_ring_ctx *ctx = file->private_data;
9607
9608 file->private_data = NULL;
9609 io_ring_ctx_wait_and_kill(ctx);
9610 return 0;
9611 }
9612
9613 struct io_task_cancel {
9614 struct task_struct *task;
9615 bool all;
9616 };
9617
9618 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9619 {
9620 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9621 struct io_task_cancel *cancel = data;
9622
9623 return io_match_task_safe(req, cancel->task, cancel->all);
9624 }
9625
9626 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9627 struct task_struct *task, bool cancel_all)
9628 {
9629 struct io_defer_entry *de;
9630 LIST_HEAD(list);
9631
9632 spin_lock(&ctx->completion_lock);
9633 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9634 if (io_match_task_safe(de->req, task, cancel_all)) {
9635 list_cut_position(&list, &ctx->defer_list, &de->list);
9636 break;
9637 }
9638 }
9639 spin_unlock(&ctx->completion_lock);
9640 if (list_empty(&list))
9641 return false;
9642
9643 while (!list_empty(&list)) {
9644 de = list_first_entry(&list, struct io_defer_entry, list);
9645 list_del_init(&de->list);
9646 io_req_complete_failed(de->req, -ECANCELED);
9647 kfree(de);
9648 }
9649 return true;
9650 }
9651
9652 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9653 {
9654 struct io_tctx_node *node;
9655 enum io_wq_cancel cret;
9656 bool ret = false;
9657
9658 mutex_lock(&ctx->uring_lock);
9659 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9660 struct io_uring_task *tctx = node->task->io_uring;
9661
9662 /*
9663 * io_wq will stay alive while we hold uring_lock, because it's
9664 * killed after ctx nodes, which requires to take the lock.
9665 */
9666 if (!tctx || !tctx->io_wq)
9667 continue;
9668 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9669 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9670 }
9671 mutex_unlock(&ctx->uring_lock);
9672
9673 return ret;
9674 }
9675
9676 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9677 struct task_struct *task,
9678 bool cancel_all)
9679 {
9680 struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9681 struct io_uring_task *tctx = task ? task->io_uring : NULL;
9682
9683 while (1) {
9684 enum io_wq_cancel cret;
9685 bool ret = false;
9686
9687 if (!task) {
9688 ret |= io_uring_try_cancel_iowq(ctx);
9689 } else if (tctx && tctx->io_wq) {
9690 /*
9691 * Cancels requests of all rings, not only @ctx, but
9692 * it's fine as the task is in exit/exec.
9693 */
9694 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9695 &cancel, true);
9696 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9697 }
9698
9699 /* SQPOLL thread does its own polling */
9700 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9701 (ctx->sq_data && ctx->sq_data->thread == current)) {
9702 while (!list_empty_careful(&ctx->iopoll_list)) {
9703 io_iopoll_try_reap_events(ctx);
9704 ret = true;
9705 }
9706 }
9707
9708 ret |= io_cancel_defer_files(ctx, task, cancel_all);
9709 ret |= io_poll_remove_all(ctx, task, cancel_all);
9710 ret |= io_kill_timeouts(ctx, task, cancel_all);
9711 if (task)
9712 ret |= io_run_task_work();
9713 if (!ret)
9714 break;
9715 cond_resched();
9716 }
9717 }
9718
9719 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9720 {
9721 struct io_uring_task *tctx = current->io_uring;
9722 struct io_tctx_node *node;
9723 int ret;
9724
9725 if (unlikely(!tctx)) {
9726 ret = io_uring_alloc_task_context(current, ctx);
9727 if (unlikely(ret))
9728 return ret;
9729
9730 tctx = current->io_uring;
9731 if (ctx->iowq_limits_set) {
9732 unsigned int limits[2] = { ctx->iowq_limits[0],
9733 ctx->iowq_limits[1], };
9734
9735 ret = io_wq_max_workers(tctx->io_wq, limits);
9736 if (ret)
9737 return ret;
9738 }
9739 }
9740 if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9741 node = kmalloc(sizeof(*node), GFP_KERNEL);
9742 if (!node)
9743 return -ENOMEM;
9744 node->ctx = ctx;
9745 node->task = current;
9746
9747 ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9748 node, GFP_KERNEL));
9749 if (ret) {
9750 kfree(node);
9751 return ret;
9752 }
9753
9754 mutex_lock(&ctx->uring_lock);
9755 list_add(&node->ctx_node, &ctx->tctx_list);
9756 mutex_unlock(&ctx->uring_lock);
9757 }
9758 tctx->last = ctx;
9759 return 0;
9760 }
9761
9762 /*
9763 * Note that this task has used io_uring. We use it for cancelation purposes.
9764 */
9765 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9766 {
9767 struct io_uring_task *tctx = current->io_uring;
9768
9769 if (likely(tctx && tctx->last == ctx))
9770 return 0;
9771 return __io_uring_add_tctx_node(ctx);
9772 }
9773
9774 /*
9775 * Remove this io_uring_file -> task mapping.
9776 */
9777 static void io_uring_del_tctx_node(unsigned long index)
9778 {
9779 struct io_uring_task *tctx = current->io_uring;
9780 struct io_tctx_node *node;
9781
9782 if (!tctx)
9783 return;
9784 node = xa_erase(&tctx->xa, index);
9785 if (!node)
9786 return;
9787
9788 WARN_ON_ONCE(current != node->task);
9789 WARN_ON_ONCE(list_empty(&node->ctx_node));
9790
9791 mutex_lock(&node->ctx->uring_lock);
9792 list_del(&node->ctx_node);
9793 mutex_unlock(&node->ctx->uring_lock);
9794
9795 if (tctx->last == node->ctx)
9796 tctx->last = NULL;
9797 kfree(node);
9798 }
9799
9800 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9801 {
9802 struct io_wq *wq = tctx->io_wq;
9803 struct io_tctx_node *node;
9804 unsigned long index;
9805
9806 xa_for_each(&tctx->xa, index, node) {
9807 io_uring_del_tctx_node(index);
9808 cond_resched();
9809 }
9810 if (wq) {
9811 /*
9812 * Must be after io_uring_del_task_file() (removes nodes under
9813 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9814 */
9815 io_wq_put_and_exit(wq);
9816 tctx->io_wq = NULL;
9817 }
9818 }
9819
9820 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9821 {
9822 if (tracked)
9823 return atomic_read(&tctx->inflight_tracked);
9824 return percpu_counter_sum(&tctx->inflight);
9825 }
9826
9827 /*
9828 * Find any io_uring ctx that this task has registered or done IO on, and cancel
9829 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
9830 */
9831 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9832 {
9833 struct io_uring_task *tctx = current->io_uring;
9834 struct io_ring_ctx *ctx;
9835 s64 inflight;
9836 DEFINE_WAIT(wait);
9837
9838 WARN_ON_ONCE(sqd && sqd->thread != current);
9839
9840 if (!current->io_uring)
9841 return;
9842 if (tctx->io_wq)
9843 io_wq_exit_start(tctx->io_wq);
9844
9845 atomic_inc(&tctx->in_idle);
9846 do {
9847 io_uring_drop_tctx_refs(current);
9848 /* read completions before cancelations */
9849 inflight = tctx_inflight(tctx, !cancel_all);
9850 if (!inflight)
9851 break;
9852
9853 if (!sqd) {
9854 struct io_tctx_node *node;
9855 unsigned long index;
9856
9857 xa_for_each(&tctx->xa, index, node) {
9858 /* sqpoll task will cancel all its requests */
9859 if (node->ctx->sq_data)
9860 continue;
9861 io_uring_try_cancel_requests(node->ctx, current,
9862 cancel_all);
9863 }
9864 } else {
9865 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9866 io_uring_try_cancel_requests(ctx, current,
9867 cancel_all);
9868 }
9869
9870 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
9871 io_run_task_work();
9872 io_uring_drop_tctx_refs(current);
9873
9874 /*
9875 * If we've seen completions, retry without waiting. This
9876 * avoids a race where a completion comes in before we did
9877 * prepare_to_wait().
9878 */
9879 if (inflight == tctx_inflight(tctx, !cancel_all))
9880 schedule();
9881 finish_wait(&tctx->wait, &wait);
9882 } while (1);
9883
9884 io_uring_clean_tctx(tctx);
9885 if (cancel_all) {
9886 /*
9887 * We shouldn't run task_works after cancel, so just leave
9888 * ->in_idle set for normal exit.
9889 */
9890 atomic_dec(&tctx->in_idle);
9891 /* for exec all current's requests should be gone, kill tctx */
9892 __io_uring_free(current);
9893 }
9894 }
9895
9896 void __io_uring_cancel(bool cancel_all)
9897 {
9898 io_uring_cancel_generic(cancel_all, NULL);
9899 }
9900
9901 static void *io_uring_validate_mmap_request(struct file *file,
9902 loff_t pgoff, size_t sz)
9903 {
9904 struct io_ring_ctx *ctx = file->private_data;
9905 loff_t offset = pgoff << PAGE_SHIFT;
9906 struct page *page;
9907 void *ptr;
9908
9909 switch (offset) {
9910 case IORING_OFF_SQ_RING:
9911 case IORING_OFF_CQ_RING:
9912 ptr = ctx->rings;
9913 break;
9914 case IORING_OFF_SQES:
9915 ptr = ctx->sq_sqes;
9916 break;
9917 default:
9918 return ERR_PTR(-EINVAL);
9919 }
9920
9921 page = virt_to_head_page(ptr);
9922 if (sz > page_size(page))
9923 return ERR_PTR(-EINVAL);
9924
9925 return ptr;
9926 }
9927
9928 #ifdef CONFIG_MMU
9929
9930 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9931 {
9932 size_t sz = vma->vm_end - vma->vm_start;
9933 unsigned long pfn;
9934 void *ptr;
9935
9936 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9937 if (IS_ERR(ptr))
9938 return PTR_ERR(ptr);
9939
9940 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9941 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9942 }
9943
9944 #else /* !CONFIG_MMU */
9945
9946 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9947 {
9948 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9949 }
9950
9951 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9952 {
9953 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9954 }
9955
9956 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9957 unsigned long addr, unsigned long len,
9958 unsigned long pgoff, unsigned long flags)
9959 {
9960 void *ptr;
9961
9962 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9963 if (IS_ERR(ptr))
9964 return PTR_ERR(ptr);
9965
9966 return (unsigned long) ptr;
9967 }
9968
9969 #endif /* !CONFIG_MMU */
9970
9971 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9972 {
9973 DEFINE_WAIT(wait);
9974
9975 do {
9976 if (!io_sqring_full(ctx))
9977 break;
9978 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9979
9980 if (!io_sqring_full(ctx))
9981 break;
9982 schedule();
9983 } while (!signal_pending(current));
9984
9985 finish_wait(&ctx->sqo_sq_wait, &wait);
9986 return 0;
9987 }
9988
9989 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9990 struct __kernel_timespec __user **ts,
9991 const sigset_t __user **sig)
9992 {
9993 struct io_uring_getevents_arg arg;
9994
9995 /*
9996 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9997 * is just a pointer to the sigset_t.
9998 */
9999 if (!(flags & IORING_ENTER_EXT_ARG)) {
10000 *sig = (const sigset_t __user *) argp;
10001 *ts = NULL;
10002 return 0;
10003 }
10004
10005 /*
10006 * EXT_ARG is set - ensure we agree on the size of it and copy in our
10007 * timespec and sigset_t pointers if good.
10008 */
10009 if (*argsz != sizeof(arg))
10010 return -EINVAL;
10011 if (copy_from_user(&arg, argp, sizeof(arg)))
10012 return -EFAULT;
10013 if (arg.pad)
10014 return -EINVAL;
10015 *sig = u64_to_user_ptr(arg.sigmask);
10016 *argsz = arg.sigmask_sz;
10017 *ts = u64_to_user_ptr(arg.ts);
10018 return 0;
10019 }
10020
10021 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
10022 u32, min_complete, u32, flags, const void __user *, argp,
10023 size_t, argsz)
10024 {
10025 struct io_ring_ctx *ctx;
10026 int submitted = 0;
10027 struct fd f;
10028 long ret;
10029
10030 io_run_task_work();
10031
10032 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
10033 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
10034 return -EINVAL;
10035
10036 f = fdget(fd);
10037 if (unlikely(!f.file))
10038 return -EBADF;
10039
10040 ret = -EOPNOTSUPP;
10041 if (unlikely(f.file->f_op != &io_uring_fops))
10042 goto out_fput;
10043
10044 ret = -ENXIO;
10045 ctx = f.file->private_data;
10046 if (unlikely(!percpu_ref_tryget(&ctx->refs)))
10047 goto out_fput;
10048
10049 ret = -EBADFD;
10050 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
10051 goto out;
10052
10053 /*
10054 * For SQ polling, the thread will do all submissions and completions.
10055 * Just return the requested submit count, and wake the thread if
10056 * we were asked to.
10057 */
10058 ret = 0;
10059 if (ctx->flags & IORING_SETUP_SQPOLL) {
10060 io_cqring_overflow_flush(ctx);
10061
10062 if (unlikely(ctx->sq_data->thread == NULL)) {
10063 ret = -EOWNERDEAD;
10064 goto out;
10065 }
10066 if (flags & IORING_ENTER_SQ_WAKEUP)
10067 wake_up(&ctx->sq_data->wait);
10068 if (flags & IORING_ENTER_SQ_WAIT) {
10069 ret = io_sqpoll_wait_sq(ctx);
10070 if (ret)
10071 goto out;
10072 }
10073 submitted = to_submit;
10074 } else if (to_submit) {
10075 ret = io_uring_add_tctx_node(ctx);
10076 if (unlikely(ret))
10077 goto out;
10078 mutex_lock(&ctx->uring_lock);
10079 submitted = io_submit_sqes(ctx, to_submit);
10080 mutex_unlock(&ctx->uring_lock);
10081
10082 if (submitted != to_submit)
10083 goto out;
10084 }
10085 if (flags & IORING_ENTER_GETEVENTS) {
10086 const sigset_t __user *sig;
10087 struct __kernel_timespec __user *ts;
10088
10089 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10090 if (unlikely(ret))
10091 goto out;
10092
10093 min_complete = min(min_complete, ctx->cq_entries);
10094
10095 /*
10096 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10097 * space applications don't need to do io completion events
10098 * polling again, they can rely on io_sq_thread to do polling
10099 * work, which can reduce cpu usage and uring_lock contention.
10100 */
10101 if (ctx->flags & IORING_SETUP_IOPOLL &&
10102 !(ctx->flags & IORING_SETUP_SQPOLL)) {
10103 ret = io_iopoll_check(ctx, min_complete);
10104 } else {
10105 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10106 }
10107 }
10108
10109 out:
10110 percpu_ref_put(&ctx->refs);
10111 out_fput:
10112 fdput(f);
10113 return submitted ? submitted : ret;
10114 }
10115
10116 #ifdef CONFIG_PROC_FS
10117 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10118 const struct cred *cred)
10119 {
10120 struct user_namespace *uns = seq_user_ns(m);
10121 struct group_info *gi;
10122 kernel_cap_t cap;
10123 unsigned __capi;
10124 int g;
10125
10126 seq_printf(m, "%5d\n", id);
10127 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10128 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10129 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10130 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10131 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10132 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10133 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10134 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10135 seq_puts(m, "\n\tGroups:\t");
10136 gi = cred->group_info;
10137 for (g = 0; g < gi->ngroups; g++) {
10138 seq_put_decimal_ull(m, g ? " " : "",
10139 from_kgid_munged(uns, gi->gid[g]));
10140 }
10141 seq_puts(m, "\n\tCapEff:\t");
10142 cap = cred->cap_effective;
10143 CAP_FOR_EACH_U32(__capi)
10144 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10145 seq_putc(m, '\n');
10146 return 0;
10147 }
10148
10149 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10150 {
10151 struct io_sq_data *sq = NULL;
10152 bool has_lock;
10153 int i;
10154
10155 /*
10156 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10157 * since fdinfo case grabs it in the opposite direction of normal use
10158 * cases. If we fail to get the lock, we just don't iterate any
10159 * structures that could be going away outside the io_uring mutex.
10160 */
10161 has_lock = mutex_trylock(&ctx->uring_lock);
10162
10163 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10164 sq = ctx->sq_data;
10165 if (!sq->thread)
10166 sq = NULL;
10167 }
10168
10169 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10170 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10171 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10172 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10173 struct file *f = io_file_from_index(ctx, i);
10174
10175 if (f)
10176 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10177 else
10178 seq_printf(m, "%5u: <none>\n", i);
10179 }
10180 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10181 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10182 struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10183 unsigned int len = buf->ubuf_end - buf->ubuf;
10184
10185 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10186 }
10187 if (has_lock && !xa_empty(&ctx->personalities)) {
10188 unsigned long index;
10189 const struct cred *cred;
10190
10191 seq_printf(m, "Personalities:\n");
10192 xa_for_each(&ctx->personalities, index, cred)
10193 io_uring_show_cred(m, index, cred);
10194 }
10195 seq_printf(m, "PollList:\n");
10196 spin_lock(&ctx->completion_lock);
10197 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10198 struct hlist_head *list = &ctx->cancel_hash[i];
10199 struct io_kiocb *req;
10200
10201 hlist_for_each_entry(req, list, hash_node)
10202 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
10203 req->task->task_works != NULL);
10204 }
10205 spin_unlock(&ctx->completion_lock);
10206 if (has_lock)
10207 mutex_unlock(&ctx->uring_lock);
10208 }
10209
10210 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10211 {
10212 struct io_ring_ctx *ctx = f->private_data;
10213
10214 if (percpu_ref_tryget(&ctx->refs)) {
10215 __io_uring_show_fdinfo(ctx, m);
10216 percpu_ref_put(&ctx->refs);
10217 }
10218 }
10219 #endif
10220
10221 static const struct file_operations io_uring_fops = {
10222 .release = io_uring_release,
10223 .mmap = io_uring_mmap,
10224 #ifndef CONFIG_MMU
10225 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
10226 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
10227 #endif
10228 .poll = io_uring_poll,
10229 #ifdef CONFIG_PROC_FS
10230 .show_fdinfo = io_uring_show_fdinfo,
10231 #endif
10232 };
10233
10234 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10235 struct io_uring_params *p)
10236 {
10237 struct io_rings *rings;
10238 size_t size, sq_array_offset;
10239
10240 /* make sure these are sane, as we already accounted them */
10241 ctx->sq_entries = p->sq_entries;
10242 ctx->cq_entries = p->cq_entries;
10243
10244 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10245 if (size == SIZE_MAX)
10246 return -EOVERFLOW;
10247
10248 rings = io_mem_alloc(size);
10249 if (!rings)
10250 return -ENOMEM;
10251
10252 ctx->rings = rings;
10253 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10254 rings->sq_ring_mask = p->sq_entries - 1;
10255 rings->cq_ring_mask = p->cq_entries - 1;
10256 rings->sq_ring_entries = p->sq_entries;
10257 rings->cq_ring_entries = p->cq_entries;
10258
10259 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10260 if (size == SIZE_MAX) {
10261 io_mem_free(ctx->rings);
10262 ctx->rings = NULL;
10263 return -EOVERFLOW;
10264 }
10265
10266 ctx->sq_sqes = io_mem_alloc(size);
10267 if (!ctx->sq_sqes) {
10268 io_mem_free(ctx->rings);
10269 ctx->rings = NULL;
10270 return -ENOMEM;
10271 }
10272
10273 return 0;
10274 }
10275
10276 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10277 {
10278 int ret, fd;
10279
10280 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10281 if (fd < 0)
10282 return fd;
10283
10284 ret = io_uring_add_tctx_node(ctx);
10285 if (ret) {
10286 put_unused_fd(fd);
10287 return ret;
10288 }
10289 fd_install(fd, file);
10290 return fd;
10291 }
10292
10293 /*
10294 * Allocate an anonymous fd, this is what constitutes the application
10295 * visible backing of an io_uring instance. The application mmaps this
10296 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10297 * we have to tie this fd to a socket for file garbage collection purposes.
10298 */
10299 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10300 {
10301 struct file *file;
10302 #if defined(CONFIG_UNIX)
10303 int ret;
10304
10305 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10306 &ctx->ring_sock);
10307 if (ret)
10308 return ERR_PTR(ret);
10309 #endif
10310
10311 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10312 O_RDWR | O_CLOEXEC);
10313 #if defined(CONFIG_UNIX)
10314 if (IS_ERR(file)) {
10315 sock_release(ctx->ring_sock);
10316 ctx->ring_sock = NULL;
10317 } else {
10318 ctx->ring_sock->file = file;
10319 }
10320 #endif
10321 return file;
10322 }
10323
10324 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10325 struct io_uring_params __user *params)
10326 {
10327 struct io_ring_ctx *ctx;
10328 struct file *file;
10329 int ret;
10330
10331 if (!entries)
10332 return -EINVAL;
10333 if (entries > IORING_MAX_ENTRIES) {
10334 if (!(p->flags & IORING_SETUP_CLAMP))
10335 return -EINVAL;
10336 entries = IORING_MAX_ENTRIES;
10337 }
10338
10339 /*
10340 * Use twice as many entries for the CQ ring. It's possible for the
10341 * application to drive a higher depth than the size of the SQ ring,
10342 * since the sqes are only used at submission time. This allows for
10343 * some flexibility in overcommitting a bit. If the application has
10344 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10345 * of CQ ring entries manually.
10346 */
10347 p->sq_entries = roundup_pow_of_two(entries);
10348 if (p->flags & IORING_SETUP_CQSIZE) {
10349 /*
10350 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10351 * to a power-of-two, if it isn't already. We do NOT impose
10352 * any cq vs sq ring sizing.
10353 */
10354 if (!p->cq_entries)
10355 return -EINVAL;
10356 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10357 if (!(p->flags & IORING_SETUP_CLAMP))
10358 return -EINVAL;
10359 p->cq_entries = IORING_MAX_CQ_ENTRIES;
10360 }
10361 p->cq_entries = roundup_pow_of_two(p->cq_entries);
10362 if (p->cq_entries < p->sq_entries)
10363 return -EINVAL;
10364 } else {
10365 p->cq_entries = 2 * p->sq_entries;
10366 }
10367
10368 ctx = io_ring_ctx_alloc(p);
10369 if (!ctx)
10370 return -ENOMEM;
10371 ctx->compat = in_compat_syscall();
10372 if (!capable(CAP_IPC_LOCK))
10373 ctx->user = get_uid(current_user());
10374
10375 /*
10376 * This is just grabbed for accounting purposes. When a process exits,
10377 * the mm is exited and dropped before the files, hence we need to hang
10378 * on to this mm purely for the purposes of being able to unaccount
10379 * memory (locked/pinned vm). It's not used for anything else.
10380 */
10381 mmgrab(current->mm);
10382 ctx->mm_account = current->mm;
10383
10384 ret = io_allocate_scq_urings(ctx, p);
10385 if (ret)
10386 goto err;
10387
10388 ret = io_sq_offload_create(ctx, p);
10389 if (ret)
10390 goto err;
10391 /* always set a rsrc node */
10392 ret = io_rsrc_node_switch_start(ctx);
10393 if (ret)
10394 goto err;
10395 io_rsrc_node_switch(ctx, NULL);
10396
10397 memset(&p->sq_off, 0, sizeof(p->sq_off));
10398 p->sq_off.head = offsetof(struct io_rings, sq.head);
10399 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10400 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10401 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10402 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10403 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10404 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10405
10406 memset(&p->cq_off, 0, sizeof(p->cq_off));
10407 p->cq_off.head = offsetof(struct io_rings, cq.head);
10408 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10409 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10410 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10411 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10412 p->cq_off.cqes = offsetof(struct io_rings, cqes);
10413 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10414
10415 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10416 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10417 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10418 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10419 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10420 IORING_FEAT_RSRC_TAGS;
10421
10422 if (copy_to_user(params, p, sizeof(*p))) {
10423 ret = -EFAULT;
10424 goto err;
10425 }
10426
10427 file = io_uring_get_file(ctx);
10428 if (IS_ERR(file)) {
10429 ret = PTR_ERR(file);
10430 goto err;
10431 }
10432
10433 /*
10434 * Install ring fd as the very last thing, so we don't risk someone
10435 * having closed it before we finish setup
10436 */
10437 ret = io_uring_install_fd(ctx, file);
10438 if (ret < 0) {
10439 /* fput will clean it up */
10440 fput(file);
10441 return ret;
10442 }
10443
10444 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10445 return ret;
10446 err:
10447 io_ring_ctx_wait_and_kill(ctx);
10448 return ret;
10449 }
10450
10451 /*
10452 * Sets up an aio uring context, and returns the fd. Applications asks for a
10453 * ring size, we return the actual sq/cq ring sizes (among other things) in the
10454 * params structure passed in.
10455 */
10456 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10457 {
10458 struct io_uring_params p;
10459 int i;
10460
10461 if (copy_from_user(&p, params, sizeof(p)))
10462 return -EFAULT;
10463 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10464 if (p.resv[i])
10465 return -EINVAL;
10466 }
10467
10468 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10469 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10470 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10471 IORING_SETUP_R_DISABLED))
10472 return -EINVAL;
10473
10474 return io_uring_create(entries, &p, params);
10475 }
10476
10477 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10478 struct io_uring_params __user *, params)
10479 {
10480 return io_uring_setup(entries, params);
10481 }
10482
10483 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10484 {
10485 struct io_uring_probe *p;
10486 size_t size;
10487 int i, ret;
10488
10489 size = struct_size(p, ops, nr_args);
10490 if (size == SIZE_MAX)
10491 return -EOVERFLOW;
10492 p = kzalloc(size, GFP_KERNEL);
10493 if (!p)
10494 return -ENOMEM;
10495
10496 ret = -EFAULT;
10497 if (copy_from_user(p, arg, size))
10498 goto out;
10499 ret = -EINVAL;
10500 if (memchr_inv(p, 0, size))
10501 goto out;
10502
10503 p->last_op = IORING_OP_LAST - 1;
10504 if (nr_args > IORING_OP_LAST)
10505 nr_args = IORING_OP_LAST;
10506
10507 for (i = 0; i < nr_args; i++) {
10508 p->ops[i].op = i;
10509 if (!io_op_defs[i].not_supported)
10510 p->ops[i].flags = IO_URING_OP_SUPPORTED;
10511 }
10512 p->ops_len = i;
10513
10514 ret = 0;
10515 if (copy_to_user(arg, p, size))
10516 ret = -EFAULT;
10517 out:
10518 kfree(p);
10519 return ret;
10520 }
10521
10522 static int io_register_personality(struct io_ring_ctx *ctx)
10523 {
10524 const struct cred *creds;
10525 u32 id;
10526 int ret;
10527
10528 creds = get_current_cred();
10529
10530 ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10531 XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10532 if (ret < 0) {
10533 put_cred(creds);
10534 return ret;
10535 }
10536 return id;
10537 }
10538
10539 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10540 unsigned int nr_args)
10541 {
10542 struct io_uring_restriction *res;
10543 size_t size;
10544 int i, ret;
10545
10546 /* Restrictions allowed only if rings started disabled */
10547 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10548 return -EBADFD;
10549
10550 /* We allow only a single restrictions registration */
10551 if (ctx->restrictions.registered)
10552 return -EBUSY;
10553
10554 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10555 return -EINVAL;
10556
10557 size = array_size(nr_args, sizeof(*res));
10558 if (size == SIZE_MAX)
10559 return -EOVERFLOW;
10560
10561 res = memdup_user(arg, size);
10562 if (IS_ERR(res))
10563 return PTR_ERR(res);
10564
10565 ret = 0;
10566
10567 for (i = 0; i < nr_args; i++) {
10568 switch (res[i].opcode) {
10569 case IORING_RESTRICTION_REGISTER_OP:
10570 if (res[i].register_op >= IORING_REGISTER_LAST) {
10571 ret = -EINVAL;
10572 goto out;
10573 }
10574
10575 __set_bit(res[i].register_op,
10576 ctx->restrictions.register_op);
10577 break;
10578 case IORING_RESTRICTION_SQE_OP:
10579 if (res[i].sqe_op >= IORING_OP_LAST) {
10580 ret = -EINVAL;
10581 goto out;
10582 }
10583
10584 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10585 break;
10586 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10587 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10588 break;
10589 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10590 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10591 break;
10592 default:
10593 ret = -EINVAL;
10594 goto out;
10595 }
10596 }
10597
10598 out:
10599 /* Reset all restrictions if an error happened */
10600 if (ret != 0)
10601 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10602 else
10603 ctx->restrictions.registered = true;
10604
10605 kfree(res);
10606 return ret;
10607 }
10608
10609 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10610 {
10611 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10612 return -EBADFD;
10613
10614 if (ctx->restrictions.registered)
10615 ctx->restricted = 1;
10616
10617 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10618 if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10619 wake_up(&ctx->sq_data->wait);
10620 return 0;
10621 }
10622
10623 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10624 struct io_uring_rsrc_update2 *up,
10625 unsigned nr_args)
10626 {
10627 __u32 tmp;
10628 int err;
10629
10630 if (check_add_overflow(up->offset, nr_args, &tmp))
10631 return -EOVERFLOW;
10632 err = io_rsrc_node_switch_start(ctx);
10633 if (err)
10634 return err;
10635
10636 switch (type) {
10637 case IORING_RSRC_FILE:
10638 return __io_sqe_files_update(ctx, up, nr_args);
10639 case IORING_RSRC_BUFFER:
10640 return __io_sqe_buffers_update(ctx, up, nr_args);
10641 }
10642 return -EINVAL;
10643 }
10644
10645 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10646 unsigned nr_args)
10647 {
10648 struct io_uring_rsrc_update2 up;
10649
10650 if (!nr_args)
10651 return -EINVAL;
10652 memset(&up, 0, sizeof(up));
10653 if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10654 return -EFAULT;
10655 if (up.resv || up.resv2)
10656 return -EINVAL;
10657 return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10658 }
10659
10660 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10661 unsigned size, unsigned type)
10662 {
10663 struct io_uring_rsrc_update2 up;
10664
10665 if (size != sizeof(up))
10666 return -EINVAL;
10667 if (copy_from_user(&up, arg, sizeof(up)))
10668 return -EFAULT;
10669 if (!up.nr || up.resv || up.resv2)
10670 return -EINVAL;
10671 return __io_register_rsrc_update(ctx, type, &up, up.nr);
10672 }
10673
10674 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10675 unsigned int size, unsigned int type)
10676 {
10677 struct io_uring_rsrc_register rr;
10678
10679 /* keep it extendible */
10680 if (size != sizeof(rr))
10681 return -EINVAL;
10682
10683 memset(&rr, 0, sizeof(rr));
10684 if (copy_from_user(&rr, arg, size))
10685 return -EFAULT;
10686 if (!rr.nr || rr.resv || rr.resv2)
10687 return -EINVAL;
10688
10689 switch (type) {
10690 case IORING_RSRC_FILE:
10691 return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10692 rr.nr, u64_to_user_ptr(rr.tags));
10693 case IORING_RSRC_BUFFER:
10694 return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10695 rr.nr, u64_to_user_ptr(rr.tags));
10696 }
10697 return -EINVAL;
10698 }
10699
10700 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10701 unsigned len)
10702 {
10703 struct io_uring_task *tctx = current->io_uring;
10704 cpumask_var_t new_mask;
10705 int ret;
10706
10707 if (!tctx || !tctx->io_wq)
10708 return -EINVAL;
10709
10710 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10711 return -ENOMEM;
10712
10713 cpumask_clear(new_mask);
10714 if (len > cpumask_size())
10715 len = cpumask_size();
10716
10717 if (in_compat_syscall()) {
10718 ret = compat_get_bitmap(cpumask_bits(new_mask),
10719 (const compat_ulong_t __user *)arg,
10720 len * 8 /* CHAR_BIT */);
10721 } else {
10722 ret = copy_from_user(new_mask, arg, len);
10723 }
10724
10725 if (ret) {
10726 free_cpumask_var(new_mask);
10727 return -EFAULT;
10728 }
10729
10730 ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10731 free_cpumask_var(new_mask);
10732 return ret;
10733 }
10734
10735 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10736 {
10737 struct io_uring_task *tctx = current->io_uring;
10738
10739 if (!tctx || !tctx->io_wq)
10740 return -EINVAL;
10741
10742 return io_wq_cpu_affinity(tctx->io_wq, NULL);
10743 }
10744
10745 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10746 void __user *arg)
10747 __must_hold(&ctx->uring_lock)
10748 {
10749 struct io_tctx_node *node;
10750 struct io_uring_task *tctx = NULL;
10751 struct io_sq_data *sqd = NULL;
10752 __u32 new_count[2];
10753 int i, ret;
10754
10755 if (copy_from_user(new_count, arg, sizeof(new_count)))
10756 return -EFAULT;
10757 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10758 if (new_count[i] > INT_MAX)
10759 return -EINVAL;
10760
10761 if (ctx->flags & IORING_SETUP_SQPOLL) {
10762 sqd = ctx->sq_data;
10763 if (sqd) {
10764 /*
10765 * Observe the correct sqd->lock -> ctx->uring_lock
10766 * ordering. Fine to drop uring_lock here, we hold
10767 * a ref to the ctx.
10768 */
10769 refcount_inc(&sqd->refs);
10770 mutex_unlock(&ctx->uring_lock);
10771 mutex_lock(&sqd->lock);
10772 mutex_lock(&ctx->uring_lock);
10773 if (sqd->thread)
10774 tctx = sqd->thread->io_uring;
10775 }
10776 } else {
10777 tctx = current->io_uring;
10778 }
10779
10780 BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10781
10782 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10783 if (new_count[i])
10784 ctx->iowq_limits[i] = new_count[i];
10785 ctx->iowq_limits_set = true;
10786
10787 ret = -EINVAL;
10788 if (tctx && tctx->io_wq) {
10789 ret = io_wq_max_workers(tctx->io_wq, new_count);
10790 if (ret)
10791 goto err;
10792 } else {
10793 memset(new_count, 0, sizeof(new_count));
10794 }
10795
10796 if (sqd) {
10797 mutex_unlock(&sqd->lock);
10798 io_put_sq_data(sqd);
10799 }
10800
10801 if (copy_to_user(arg, new_count, sizeof(new_count)))
10802 return -EFAULT;
10803
10804 /* that's it for SQPOLL, only the SQPOLL task creates requests */
10805 if (sqd)
10806 return 0;
10807
10808 /* now propagate the restriction to all registered users */
10809 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10810 struct io_uring_task *tctx = node->task->io_uring;
10811
10812 if (WARN_ON_ONCE(!tctx->io_wq))
10813 continue;
10814
10815 for (i = 0; i < ARRAY_SIZE(new_count); i++)
10816 new_count[i] = ctx->iowq_limits[i];
10817 /* ignore errors, it always returns zero anyway */
10818 (void)io_wq_max_workers(tctx->io_wq, new_count);
10819 }
10820 return 0;
10821 err:
10822 if (sqd) {
10823 mutex_unlock(&sqd->lock);
10824 io_put_sq_data(sqd);
10825 }
10826 return ret;
10827 }
10828
10829 static bool io_register_op_must_quiesce(int op)
10830 {
10831 switch (op) {
10832 case IORING_REGISTER_BUFFERS:
10833 case IORING_UNREGISTER_BUFFERS:
10834 case IORING_REGISTER_FILES:
10835 case IORING_UNREGISTER_FILES:
10836 case IORING_REGISTER_FILES_UPDATE:
10837 case IORING_REGISTER_PROBE:
10838 case IORING_REGISTER_PERSONALITY:
10839 case IORING_UNREGISTER_PERSONALITY:
10840 case IORING_REGISTER_FILES2:
10841 case IORING_REGISTER_FILES_UPDATE2:
10842 case IORING_REGISTER_BUFFERS2:
10843 case IORING_REGISTER_BUFFERS_UPDATE:
10844 case IORING_REGISTER_IOWQ_AFF:
10845 case IORING_UNREGISTER_IOWQ_AFF:
10846 case IORING_REGISTER_IOWQ_MAX_WORKERS:
10847 return false;
10848 default:
10849 return true;
10850 }
10851 }
10852
10853 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10854 {
10855 long ret;
10856
10857 percpu_ref_kill(&ctx->refs);
10858
10859 /*
10860 * Drop uring mutex before waiting for references to exit. If another
10861 * thread is currently inside io_uring_enter() it might need to grab the
10862 * uring_lock to make progress. If we hold it here across the drain
10863 * wait, then we can deadlock. It's safe to drop the mutex here, since
10864 * no new references will come in after we've killed the percpu ref.
10865 */
10866 mutex_unlock(&ctx->uring_lock);
10867 do {
10868 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10869 if (!ret)
10870 break;
10871 ret = io_run_task_work_sig();
10872 } while (ret >= 0);
10873 mutex_lock(&ctx->uring_lock);
10874
10875 if (ret)
10876 io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10877 return ret;
10878 }
10879
10880 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10881 void __user *arg, unsigned nr_args)
10882 __releases(ctx->uring_lock)
10883 __acquires(ctx->uring_lock)
10884 {
10885 int ret;
10886
10887 /*
10888 * We're inside the ring mutex, if the ref is already dying, then
10889 * someone else killed the ctx or is already going through
10890 * io_uring_register().
10891 */
10892 if (percpu_ref_is_dying(&ctx->refs))
10893 return -ENXIO;
10894
10895 if (ctx->restricted) {
10896 if (opcode >= IORING_REGISTER_LAST)
10897 return -EINVAL;
10898 opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10899 if (!test_bit(opcode, ctx->restrictions.register_op))
10900 return -EACCES;
10901 }
10902
10903 if (io_register_op_must_quiesce(opcode)) {
10904 ret = io_ctx_quiesce(ctx);
10905 if (ret)
10906 return ret;
10907 }
10908
10909 switch (opcode) {
10910 case IORING_REGISTER_BUFFERS:
10911 ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10912 break;
10913 case IORING_UNREGISTER_BUFFERS:
10914 ret = -EINVAL;
10915 if (arg || nr_args)
10916 break;
10917 ret = io_sqe_buffers_unregister(ctx);
10918 break;
10919 case IORING_REGISTER_FILES:
10920 ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10921 break;
10922 case IORING_UNREGISTER_FILES:
10923 ret = -EINVAL;
10924 if (arg || nr_args)
10925 break;
10926 ret = io_sqe_files_unregister(ctx);
10927 break;
10928 case IORING_REGISTER_FILES_UPDATE:
10929 ret = io_register_files_update(ctx, arg, nr_args);
10930 break;
10931 case IORING_REGISTER_EVENTFD:
10932 case IORING_REGISTER_EVENTFD_ASYNC:
10933 ret = -EINVAL;
10934 if (nr_args != 1)
10935 break;
10936 ret = io_eventfd_register(ctx, arg);
10937 if (ret)
10938 break;
10939 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10940 ctx->eventfd_async = 1;
10941 else
10942 ctx->eventfd_async = 0;
10943 break;
10944 case IORING_UNREGISTER_EVENTFD:
10945 ret = -EINVAL;
10946 if (arg || nr_args)
10947 break;
10948 ret = io_eventfd_unregister(ctx);
10949 break;
10950 case IORING_REGISTER_PROBE:
10951 ret = -EINVAL;
10952 if (!arg || nr_args > 256)
10953 break;
10954 ret = io_probe(ctx, arg, nr_args);
10955 break;
10956 case IORING_REGISTER_PERSONALITY:
10957 ret = -EINVAL;
10958 if (arg || nr_args)
10959 break;
10960 ret = io_register_personality(ctx);
10961 break;
10962 case IORING_UNREGISTER_PERSONALITY:
10963 ret = -EINVAL;
10964 if (arg)
10965 break;
10966 ret = io_unregister_personality(ctx, nr_args);
10967 break;
10968 case IORING_REGISTER_ENABLE_RINGS:
10969 ret = -EINVAL;
10970 if (arg || nr_args)
10971 break;
10972 ret = io_register_enable_rings(ctx);
10973 break;
10974 case IORING_REGISTER_RESTRICTIONS:
10975 ret = io_register_restrictions(ctx, arg, nr_args);
10976 break;
10977 case IORING_REGISTER_FILES2:
10978 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10979 break;
10980 case IORING_REGISTER_FILES_UPDATE2:
10981 ret = io_register_rsrc_update(ctx, arg, nr_args,
10982 IORING_RSRC_FILE);
10983 break;
10984 case IORING_REGISTER_BUFFERS2:
10985 ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10986 break;
10987 case IORING_REGISTER_BUFFERS_UPDATE:
10988 ret = io_register_rsrc_update(ctx, arg, nr_args,
10989 IORING_RSRC_BUFFER);
10990 break;
10991 case IORING_REGISTER_IOWQ_AFF:
10992 ret = -EINVAL;
10993 if (!arg || !nr_args)
10994 break;
10995 ret = io_register_iowq_aff(ctx, arg, nr_args);
10996 break;
10997 case IORING_UNREGISTER_IOWQ_AFF:
10998 ret = -EINVAL;
10999 if (arg || nr_args)
11000 break;
11001 ret = io_unregister_iowq_aff(ctx);
11002 break;
11003 case IORING_REGISTER_IOWQ_MAX_WORKERS:
11004 ret = -EINVAL;
11005 if (!arg || nr_args != 2)
11006 break;
11007 ret = io_register_iowq_max_workers(ctx, arg);
11008 break;
11009 default:
11010 ret = -EINVAL;
11011 break;
11012 }
11013
11014 if (io_register_op_must_quiesce(opcode)) {
11015 /* bring the ctx back to life */
11016 percpu_ref_reinit(&ctx->refs);
11017 reinit_completion(&ctx->ref_comp);
11018 }
11019 return ret;
11020 }
11021
11022 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
11023 void __user *, arg, unsigned int, nr_args)
11024 {
11025 struct io_ring_ctx *ctx;
11026 long ret = -EBADF;
11027 struct fd f;
11028
11029 f = fdget(fd);
11030 if (!f.file)
11031 return -EBADF;
11032
11033 ret = -EOPNOTSUPP;
11034 if (f.file->f_op != &io_uring_fops)
11035 goto out_fput;
11036
11037 ctx = f.file->private_data;
11038
11039 io_run_task_work();
11040
11041 mutex_lock(&ctx->uring_lock);
11042 ret = __io_uring_register(ctx, opcode, arg, nr_args);
11043 mutex_unlock(&ctx->uring_lock);
11044 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
11045 ctx->cq_ev_fd != NULL, ret);
11046 out_fput:
11047 fdput(f);
11048 return ret;
11049 }
11050
11051 static int __init io_uring_init(void)
11052 {
11053 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
11054 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
11055 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
11056 } while (0)
11057
11058 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
11059 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
11060 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
11061 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
11062 BUILD_BUG_SQE_ELEM(1, __u8, flags);
11063 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
11064 BUILD_BUG_SQE_ELEM(4, __s32, fd);
11065 BUILD_BUG_SQE_ELEM(8, __u64, off);
11066 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
11067 BUILD_BUG_SQE_ELEM(16, __u64, addr);
11068 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
11069 BUILD_BUG_SQE_ELEM(24, __u32, len);
11070 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
11071 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
11072 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
11073 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
11074 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
11075 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
11076 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
11077 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
11078 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
11079 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
11080 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
11081 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
11082 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
11083 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
11084 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
11085 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
11086 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
11087 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
11088 BUILD_BUG_SQE_ELEM(42, __u16, personality);
11089 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
11090 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
11091
11092 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
11093 sizeof(struct io_uring_rsrc_update));
11094 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
11095 sizeof(struct io_uring_rsrc_update2));
11096
11097 /* ->buf_index is u16 */
11098 BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11099
11100 /* should fit into one byte */
11101 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11102
11103 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11104 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11105
11106 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11107 SLAB_ACCOUNT);
11108 return 0;
11109 };
11110 __initcall(io_uring_init);