]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge tag 'pm-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
266
267 /*
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
270 *
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
274 *
275 * The kernel modifies neither the indices array nor the entries
276 * array.
277 */
278 u32 *sq_array;
279 unsigned cached_sq_head;
280 unsigned sq_entries;
281 unsigned sq_mask;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
286
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
290
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct idr io_buffer_idr;
349
350 struct idr personality_idr;
351
352 struct {
353 unsigned cached_cq_tail;
354 unsigned cq_entries;
355 unsigned cq_mask;
356 atomic_t cq_timeouts;
357 unsigned cq_last_tm_flush;
358 unsigned long cq_check_overflow;
359 struct wait_queue_head cq_wait;
360 struct fasync_struct *cq_fasync;
361 struct eventfd_ctx *cq_ev_fd;
362 } ____cacheline_aligned_in_smp;
363
364 struct {
365 struct mutex uring_lock;
366 wait_queue_head_t wait;
367 } ____cacheline_aligned_in_smp;
368
369 struct {
370 spinlock_t completion_lock;
371
372 /*
373 * ->iopoll_list is protected by the ctx->uring_lock for
374 * io_uring instances that don't use IORING_SETUP_SQPOLL.
375 * For SQPOLL, only the single threaded io_sq_thread() will
376 * manipulate the list, hence no extra locking is needed there.
377 */
378 struct list_head iopoll_list;
379 struct hlist_head *cancel_hash;
380 unsigned cancel_hash_bits;
381 bool poll_multi_file;
382
383 spinlock_t inflight_lock;
384 struct list_head inflight_list;
385 } ____cacheline_aligned_in_smp;
386
387 struct delayed_work file_put_work;
388 struct llist_head file_put_llist;
389
390 struct work_struct exit_work;
391 struct io_restriction restrictions;
392 };
393
394 /*
395 * First field must be the file pointer in all the
396 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
397 */
398 struct io_poll_iocb {
399 struct file *file;
400 struct wait_queue_head *head;
401 __poll_t events;
402 bool done;
403 bool canceled;
404 struct wait_queue_entry wait;
405 };
406
407 struct io_poll_remove {
408 struct file *file;
409 u64 addr;
410 };
411
412 struct io_close {
413 struct file *file;
414 struct file *put_file;
415 int fd;
416 };
417
418 struct io_timeout_data {
419 struct io_kiocb *req;
420 struct hrtimer timer;
421 struct timespec64 ts;
422 enum hrtimer_mode mode;
423 };
424
425 struct io_accept {
426 struct file *file;
427 struct sockaddr __user *addr;
428 int __user *addr_len;
429 int flags;
430 unsigned long nofile;
431 };
432
433 struct io_sync {
434 struct file *file;
435 loff_t len;
436 loff_t off;
437 int flags;
438 int mode;
439 };
440
441 struct io_cancel {
442 struct file *file;
443 u64 addr;
444 };
445
446 struct io_timeout {
447 struct file *file;
448 u32 off;
449 u32 target_seq;
450 struct list_head list;
451 /* head of the link, used by linked timeouts only */
452 struct io_kiocb *head;
453 };
454
455 struct io_timeout_rem {
456 struct file *file;
457 u64 addr;
458
459 /* timeout update */
460 struct timespec64 ts;
461 u32 flags;
462 };
463
464 struct io_rw {
465 /* NOTE: kiocb has the file as the first member, so don't do it here */
466 struct kiocb kiocb;
467 u64 addr;
468 u64 len;
469 };
470
471 struct io_connect {
472 struct file *file;
473 struct sockaddr __user *addr;
474 int addr_len;
475 };
476
477 struct io_sr_msg {
478 struct file *file;
479 union {
480 struct user_msghdr __user *umsg;
481 void __user *buf;
482 };
483 int msg_flags;
484 int bgid;
485 size_t len;
486 struct io_buffer *kbuf;
487 };
488
489 struct io_open {
490 struct file *file;
491 int dfd;
492 bool ignore_nonblock;
493 struct filename *filename;
494 struct open_how how;
495 unsigned long nofile;
496 };
497
498 struct io_files_update {
499 struct file *file;
500 u64 arg;
501 u32 nr_args;
502 u32 offset;
503 };
504
505 struct io_fadvise {
506 struct file *file;
507 u64 offset;
508 u32 len;
509 u32 advice;
510 };
511
512 struct io_madvise {
513 struct file *file;
514 u64 addr;
515 u32 len;
516 u32 advice;
517 };
518
519 struct io_epoll {
520 struct file *file;
521 int epfd;
522 int op;
523 int fd;
524 struct epoll_event event;
525 };
526
527 struct io_splice {
528 struct file *file_out;
529 struct file *file_in;
530 loff_t off_out;
531 loff_t off_in;
532 u64 len;
533 unsigned int flags;
534 };
535
536 struct io_provide_buf {
537 struct file *file;
538 __u64 addr;
539 __s32 len;
540 __u32 bgid;
541 __u16 nbufs;
542 __u16 bid;
543 };
544
545 struct io_statx {
546 struct file *file;
547 int dfd;
548 unsigned int mask;
549 unsigned int flags;
550 const char __user *filename;
551 struct statx __user *buffer;
552 };
553
554 struct io_shutdown {
555 struct file *file;
556 int how;
557 };
558
559 struct io_rename {
560 struct file *file;
561 int old_dfd;
562 int new_dfd;
563 struct filename *oldpath;
564 struct filename *newpath;
565 int flags;
566 };
567
568 struct io_unlink {
569 struct file *file;
570 int dfd;
571 int flags;
572 struct filename *filename;
573 };
574
575 struct io_completion {
576 struct file *file;
577 struct list_head list;
578 int cflags;
579 };
580
581 struct io_async_connect {
582 struct sockaddr_storage address;
583 };
584
585 struct io_async_msghdr {
586 struct iovec fast_iov[UIO_FASTIOV];
587 struct iovec *iov;
588 struct sockaddr __user *uaddr;
589 struct msghdr msg;
590 struct sockaddr_storage addr;
591 };
592
593 struct io_async_rw {
594 struct iovec fast_iov[UIO_FASTIOV];
595 const struct iovec *free_iovec;
596 struct iov_iter iter;
597 size_t bytes_done;
598 struct wait_page_queue wpq;
599 };
600
601 enum {
602 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
603 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
604 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
605 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
606 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
607 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
608
609 REQ_F_FAIL_LINK_BIT,
610 REQ_F_INFLIGHT_BIT,
611 REQ_F_CUR_POS_BIT,
612 REQ_F_NOWAIT_BIT,
613 REQ_F_LINK_TIMEOUT_BIT,
614 REQ_F_ISREG_BIT,
615 REQ_F_NEED_CLEANUP_BIT,
616 REQ_F_POLLED_BIT,
617 REQ_F_BUFFER_SELECTED_BIT,
618 REQ_F_NO_FILE_TABLE_BIT,
619 REQ_F_WORK_INITIALIZED_BIT,
620 REQ_F_LTIMEOUT_ACTIVE_BIT,
621
622 /* not a real bit, just to check we're not overflowing the space */
623 __REQ_F_LAST_BIT,
624 };
625
626 enum {
627 /* ctx owns file */
628 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
629 /* drain existing IO first */
630 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
631 /* linked sqes */
632 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
633 /* doesn't sever on completion < 0 */
634 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
635 /* IOSQE_ASYNC */
636 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
637 /* IOSQE_BUFFER_SELECT */
638 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
639
640 /* fail rest of links */
641 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
642 /* on inflight list */
643 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
644 /* read/write uses file position */
645 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
646 /* must not punt to workers */
647 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
648 /* has or had linked timeout */
649 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
650 /* regular file */
651 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
652 /* needs cleanup */
653 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
654 /* already went through poll handler */
655 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
656 /* buffer already selected */
657 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
658 /* doesn't need file table for this request */
659 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
660 /* io_wq_work is initialized */
661 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
662 /* linked timeout is active, i.e. prepared by link's head */
663 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
664 };
665
666 struct async_poll {
667 struct io_poll_iocb poll;
668 struct io_poll_iocb *double_poll;
669 };
670
671 /*
672 * NOTE! Each of the iocb union members has the file pointer
673 * as the first entry in their struct definition. So you can
674 * access the file pointer through any of the sub-structs,
675 * or directly as just 'ki_filp' in this struct.
676 */
677 struct io_kiocb {
678 union {
679 struct file *file;
680 struct io_rw rw;
681 struct io_poll_iocb poll;
682 struct io_poll_remove poll_remove;
683 struct io_accept accept;
684 struct io_sync sync;
685 struct io_cancel cancel;
686 struct io_timeout timeout;
687 struct io_timeout_rem timeout_rem;
688 struct io_connect connect;
689 struct io_sr_msg sr_msg;
690 struct io_open open;
691 struct io_close close;
692 struct io_files_update files_update;
693 struct io_fadvise fadvise;
694 struct io_madvise madvise;
695 struct io_epoll epoll;
696 struct io_splice splice;
697 struct io_provide_buf pbuf;
698 struct io_statx statx;
699 struct io_shutdown shutdown;
700 struct io_rename rename;
701 struct io_unlink unlink;
702 /* use only after cleaning per-op data, see io_clean_op() */
703 struct io_completion compl;
704 };
705
706 /* opcode allocated if it needs to store data for async defer */
707 void *async_data;
708 u8 opcode;
709 /* polled IO has completed */
710 u8 iopoll_completed;
711
712 u16 buf_index;
713 u32 result;
714
715 struct io_ring_ctx *ctx;
716 unsigned int flags;
717 refcount_t refs;
718 struct task_struct *task;
719 u64 user_data;
720
721 struct io_kiocb *link;
722 struct percpu_ref *fixed_file_refs;
723
724 /*
725 * 1. used with ctx->iopoll_list with reads/writes
726 * 2. to track reqs with ->files (see io_op_def::file_table)
727 */
728 struct list_head inflight_entry;
729 struct callback_head task_work;
730 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
731 struct hlist_node hash_node;
732 struct async_poll *apoll;
733 struct io_wq_work work;
734 };
735
736 struct io_defer_entry {
737 struct list_head list;
738 struct io_kiocb *req;
739 u32 seq;
740 };
741
742 #define IO_IOPOLL_BATCH 8
743
744 struct io_comp_state {
745 unsigned int nr;
746 struct list_head list;
747 struct io_ring_ctx *ctx;
748 };
749
750 struct io_submit_state {
751 struct blk_plug plug;
752
753 /*
754 * io_kiocb alloc cache
755 */
756 void *reqs[IO_IOPOLL_BATCH];
757 unsigned int free_reqs;
758
759 bool plug_started;
760
761 /*
762 * Batch completion logic
763 */
764 struct io_comp_state comp;
765
766 /*
767 * File reference cache
768 */
769 struct file *file;
770 unsigned int fd;
771 unsigned int file_refs;
772 unsigned int ios_left;
773 };
774
775 struct io_op_def {
776 /* needs req->file assigned */
777 unsigned needs_file : 1;
778 /* don't fail if file grab fails */
779 unsigned needs_file_no_error : 1;
780 /* hash wq insertion if file is a regular file */
781 unsigned hash_reg_file : 1;
782 /* unbound wq insertion if file is a non-regular file */
783 unsigned unbound_nonreg_file : 1;
784 /* opcode is not supported by this kernel */
785 unsigned not_supported : 1;
786 /* set if opcode supports polled "wait" */
787 unsigned pollin : 1;
788 unsigned pollout : 1;
789 /* op supports buffer selection */
790 unsigned buffer_select : 1;
791 /* must always have async data allocated */
792 unsigned needs_async_data : 1;
793 /* should block plug */
794 unsigned plug : 1;
795 /* size of async data needed, if any */
796 unsigned short async_size;
797 unsigned work_flags;
798 };
799
800 static const struct io_op_def io_op_defs[] = {
801 [IORING_OP_NOP] = {},
802 [IORING_OP_READV] = {
803 .needs_file = 1,
804 .unbound_nonreg_file = 1,
805 .pollin = 1,
806 .buffer_select = 1,
807 .needs_async_data = 1,
808 .plug = 1,
809 .async_size = sizeof(struct io_async_rw),
810 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
811 },
812 [IORING_OP_WRITEV] = {
813 .needs_file = 1,
814 .hash_reg_file = 1,
815 .unbound_nonreg_file = 1,
816 .pollout = 1,
817 .needs_async_data = 1,
818 .plug = 1,
819 .async_size = sizeof(struct io_async_rw),
820 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
821 IO_WQ_WORK_FSIZE,
822 },
823 [IORING_OP_FSYNC] = {
824 .needs_file = 1,
825 .work_flags = IO_WQ_WORK_BLKCG,
826 },
827 [IORING_OP_READ_FIXED] = {
828 .needs_file = 1,
829 .unbound_nonreg_file = 1,
830 .pollin = 1,
831 .plug = 1,
832 .async_size = sizeof(struct io_async_rw),
833 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
834 },
835 [IORING_OP_WRITE_FIXED] = {
836 .needs_file = 1,
837 .hash_reg_file = 1,
838 .unbound_nonreg_file = 1,
839 .pollout = 1,
840 .plug = 1,
841 .async_size = sizeof(struct io_async_rw),
842 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
843 IO_WQ_WORK_MM,
844 },
845 [IORING_OP_POLL_ADD] = {
846 .needs_file = 1,
847 .unbound_nonreg_file = 1,
848 },
849 [IORING_OP_POLL_REMOVE] = {},
850 [IORING_OP_SYNC_FILE_RANGE] = {
851 .needs_file = 1,
852 .work_flags = IO_WQ_WORK_BLKCG,
853 },
854 [IORING_OP_SENDMSG] = {
855 .needs_file = 1,
856 .unbound_nonreg_file = 1,
857 .pollout = 1,
858 .needs_async_data = 1,
859 .async_size = sizeof(struct io_async_msghdr),
860 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
861 IO_WQ_WORK_FS,
862 },
863 [IORING_OP_RECVMSG] = {
864 .needs_file = 1,
865 .unbound_nonreg_file = 1,
866 .pollin = 1,
867 .buffer_select = 1,
868 .needs_async_data = 1,
869 .async_size = sizeof(struct io_async_msghdr),
870 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
871 IO_WQ_WORK_FS,
872 },
873 [IORING_OP_TIMEOUT] = {
874 .needs_async_data = 1,
875 .async_size = sizeof(struct io_timeout_data),
876 .work_flags = IO_WQ_WORK_MM,
877 },
878 [IORING_OP_TIMEOUT_REMOVE] = {
879 /* used by timeout updates' prep() */
880 .work_flags = IO_WQ_WORK_MM,
881 },
882 [IORING_OP_ACCEPT] = {
883 .needs_file = 1,
884 .unbound_nonreg_file = 1,
885 .pollin = 1,
886 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
887 },
888 [IORING_OP_ASYNC_CANCEL] = {},
889 [IORING_OP_LINK_TIMEOUT] = {
890 .needs_async_data = 1,
891 .async_size = sizeof(struct io_timeout_data),
892 .work_flags = IO_WQ_WORK_MM,
893 },
894 [IORING_OP_CONNECT] = {
895 .needs_file = 1,
896 .unbound_nonreg_file = 1,
897 .pollout = 1,
898 .needs_async_data = 1,
899 .async_size = sizeof(struct io_async_connect),
900 .work_flags = IO_WQ_WORK_MM,
901 },
902 [IORING_OP_FALLOCATE] = {
903 .needs_file = 1,
904 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
905 },
906 [IORING_OP_OPENAT] = {
907 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
908 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
909 },
910 [IORING_OP_CLOSE] = {
911 .needs_file = 1,
912 .needs_file_no_error = 1,
913 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
914 },
915 [IORING_OP_FILES_UPDATE] = {
916 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
917 },
918 [IORING_OP_STATX] = {
919 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
920 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
921 },
922 [IORING_OP_READ] = {
923 .needs_file = 1,
924 .unbound_nonreg_file = 1,
925 .pollin = 1,
926 .buffer_select = 1,
927 .plug = 1,
928 .async_size = sizeof(struct io_async_rw),
929 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
930 },
931 [IORING_OP_WRITE] = {
932 .needs_file = 1,
933 .unbound_nonreg_file = 1,
934 .pollout = 1,
935 .plug = 1,
936 .async_size = sizeof(struct io_async_rw),
937 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
938 IO_WQ_WORK_FSIZE,
939 },
940 [IORING_OP_FADVISE] = {
941 .needs_file = 1,
942 .work_flags = IO_WQ_WORK_BLKCG,
943 },
944 [IORING_OP_MADVISE] = {
945 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
946 },
947 [IORING_OP_SEND] = {
948 .needs_file = 1,
949 .unbound_nonreg_file = 1,
950 .pollout = 1,
951 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
952 },
953 [IORING_OP_RECV] = {
954 .needs_file = 1,
955 .unbound_nonreg_file = 1,
956 .pollin = 1,
957 .buffer_select = 1,
958 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
959 },
960 [IORING_OP_OPENAT2] = {
961 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
962 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
963 },
964 [IORING_OP_EPOLL_CTL] = {
965 .unbound_nonreg_file = 1,
966 .work_flags = IO_WQ_WORK_FILES,
967 },
968 [IORING_OP_SPLICE] = {
969 .needs_file = 1,
970 .hash_reg_file = 1,
971 .unbound_nonreg_file = 1,
972 .work_flags = IO_WQ_WORK_BLKCG,
973 },
974 [IORING_OP_PROVIDE_BUFFERS] = {},
975 [IORING_OP_REMOVE_BUFFERS] = {},
976 [IORING_OP_TEE] = {
977 .needs_file = 1,
978 .hash_reg_file = 1,
979 .unbound_nonreg_file = 1,
980 },
981 [IORING_OP_SHUTDOWN] = {
982 .needs_file = 1,
983 },
984 [IORING_OP_RENAMEAT] = {
985 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
986 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
987 },
988 [IORING_OP_UNLINKAT] = {
989 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
990 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
991 },
992 };
993
994 enum io_mem_account {
995 ACCT_LOCKED,
996 ACCT_PINNED,
997 };
998
999 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
1000 struct task_struct *task);
1001
1002 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1003 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1004 struct io_ring_ctx *ctx);
1005
1006 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1007 struct io_comp_state *cs);
1008 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1009 static void io_put_req(struct io_kiocb *req);
1010 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1011 static void io_double_put_req(struct io_kiocb *req);
1012 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1013 static void __io_queue_linked_timeout(struct io_kiocb *req);
1014 static void io_queue_linked_timeout(struct io_kiocb *req);
1015 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1016 struct io_uring_files_update *ip,
1017 unsigned nr_args);
1018 static void __io_clean_op(struct io_kiocb *req);
1019 static struct file *io_file_get(struct io_submit_state *state,
1020 struct io_kiocb *req, int fd, bool fixed);
1021 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1022 static void io_file_put_work(struct work_struct *work);
1023
1024 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1025 struct iovec **iovec, struct iov_iter *iter,
1026 bool needs_lock);
1027 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1028 const struct iovec *fast_iov,
1029 struct iov_iter *iter, bool force);
1030 static void io_req_drop_files(struct io_kiocb *req);
1031 static void io_req_task_queue(struct io_kiocb *req);
1032
1033 static struct kmem_cache *req_cachep;
1034
1035 static const struct file_operations io_uring_fops;
1036
1037 struct sock *io_uring_get_socket(struct file *file)
1038 {
1039 #if defined(CONFIG_UNIX)
1040 if (file->f_op == &io_uring_fops) {
1041 struct io_ring_ctx *ctx = file->private_data;
1042
1043 return ctx->ring_sock->sk;
1044 }
1045 #endif
1046 return NULL;
1047 }
1048 EXPORT_SYMBOL(io_uring_get_socket);
1049
1050 #define io_for_each_link(pos, head) \
1051 for (pos = (head); pos; pos = pos->link)
1052
1053 static inline void io_clean_op(struct io_kiocb *req)
1054 {
1055 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1056 __io_clean_op(req);
1057 }
1058
1059 static inline void io_set_resource_node(struct io_kiocb *req)
1060 {
1061 struct io_ring_ctx *ctx = req->ctx;
1062
1063 if (!req->fixed_file_refs) {
1064 req->fixed_file_refs = &ctx->file_data->node->refs;
1065 percpu_ref_get(req->fixed_file_refs);
1066 }
1067 }
1068
1069 static bool io_match_task(struct io_kiocb *head,
1070 struct task_struct *task,
1071 struct files_struct *files)
1072 {
1073 struct io_kiocb *req;
1074
1075 if (task && head->task != task) {
1076 /* in terms of cancelation, always match if req task is dead */
1077 if (head->task->flags & PF_EXITING)
1078 return true;
1079 return false;
1080 }
1081 if (!files)
1082 return true;
1083
1084 io_for_each_link(req, head) {
1085 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1086 continue;
1087 if (req->file && req->file->f_op == &io_uring_fops)
1088 return true;
1089 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1090 req->work.identity->files == files)
1091 return true;
1092 }
1093 return false;
1094 }
1095
1096 static void io_sq_thread_drop_mm_files(void)
1097 {
1098 struct files_struct *files = current->files;
1099 struct mm_struct *mm = current->mm;
1100
1101 if (mm) {
1102 kthread_unuse_mm(mm);
1103 mmput(mm);
1104 current->mm = NULL;
1105 }
1106 if (files) {
1107 struct nsproxy *nsproxy = current->nsproxy;
1108
1109 task_lock(current);
1110 current->files = NULL;
1111 current->nsproxy = NULL;
1112 task_unlock(current);
1113 put_files_struct(files);
1114 put_nsproxy(nsproxy);
1115 }
1116 }
1117
1118 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1119 {
1120 if (current->flags & PF_EXITING)
1121 return -EFAULT;
1122
1123 if (!current->files) {
1124 struct files_struct *files;
1125 struct nsproxy *nsproxy;
1126
1127 task_lock(ctx->sqo_task);
1128 files = ctx->sqo_task->files;
1129 if (!files) {
1130 task_unlock(ctx->sqo_task);
1131 return -EOWNERDEAD;
1132 }
1133 atomic_inc(&files->count);
1134 get_nsproxy(ctx->sqo_task->nsproxy);
1135 nsproxy = ctx->sqo_task->nsproxy;
1136 task_unlock(ctx->sqo_task);
1137
1138 task_lock(current);
1139 current->files = files;
1140 current->nsproxy = nsproxy;
1141 task_unlock(current);
1142 }
1143 return 0;
1144 }
1145
1146 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1147 {
1148 struct mm_struct *mm;
1149
1150 if (current->flags & PF_EXITING)
1151 return -EFAULT;
1152 if (current->mm)
1153 return 0;
1154
1155 /* Should never happen */
1156 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1157 return -EFAULT;
1158
1159 task_lock(ctx->sqo_task);
1160 mm = ctx->sqo_task->mm;
1161 if (unlikely(!mm || !mmget_not_zero(mm)))
1162 mm = NULL;
1163 task_unlock(ctx->sqo_task);
1164
1165 if (mm) {
1166 kthread_use_mm(mm);
1167 return 0;
1168 }
1169
1170 return -EFAULT;
1171 }
1172
1173 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1174 struct io_kiocb *req)
1175 {
1176 const struct io_op_def *def = &io_op_defs[req->opcode];
1177 int ret;
1178
1179 if (def->work_flags & IO_WQ_WORK_MM) {
1180 ret = __io_sq_thread_acquire_mm(ctx);
1181 if (unlikely(ret))
1182 return ret;
1183 }
1184
1185 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1186 ret = __io_sq_thread_acquire_files(ctx);
1187 if (unlikely(ret))
1188 return ret;
1189 }
1190
1191 return 0;
1192 }
1193
1194 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1195 struct cgroup_subsys_state **cur_css)
1196
1197 {
1198 #ifdef CONFIG_BLK_CGROUP
1199 /* puts the old one when swapping */
1200 if (*cur_css != ctx->sqo_blkcg_css) {
1201 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1202 *cur_css = ctx->sqo_blkcg_css;
1203 }
1204 #endif
1205 }
1206
1207 static void io_sq_thread_unassociate_blkcg(void)
1208 {
1209 #ifdef CONFIG_BLK_CGROUP
1210 kthread_associate_blkcg(NULL);
1211 #endif
1212 }
1213
1214 static inline void req_set_fail_links(struct io_kiocb *req)
1215 {
1216 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1217 req->flags |= REQ_F_FAIL_LINK;
1218 }
1219
1220 /*
1221 * None of these are dereferenced, they are simply used to check if any of
1222 * them have changed. If we're under current and check they are still the
1223 * same, we're fine to grab references to them for actual out-of-line use.
1224 */
1225 static void io_init_identity(struct io_identity *id)
1226 {
1227 id->files = current->files;
1228 id->mm = current->mm;
1229 #ifdef CONFIG_BLK_CGROUP
1230 rcu_read_lock();
1231 id->blkcg_css = blkcg_css();
1232 rcu_read_unlock();
1233 #endif
1234 id->creds = current_cred();
1235 id->nsproxy = current->nsproxy;
1236 id->fs = current->fs;
1237 id->fsize = rlimit(RLIMIT_FSIZE);
1238 #ifdef CONFIG_AUDIT
1239 id->loginuid = current->loginuid;
1240 id->sessionid = current->sessionid;
1241 #endif
1242 refcount_set(&id->count, 1);
1243 }
1244
1245 static inline void __io_req_init_async(struct io_kiocb *req)
1246 {
1247 memset(&req->work, 0, sizeof(req->work));
1248 req->flags |= REQ_F_WORK_INITIALIZED;
1249 }
1250
1251 /*
1252 * Note: must call io_req_init_async() for the first time you
1253 * touch any members of io_wq_work.
1254 */
1255 static inline void io_req_init_async(struct io_kiocb *req)
1256 {
1257 struct io_uring_task *tctx = current->io_uring;
1258
1259 if (req->flags & REQ_F_WORK_INITIALIZED)
1260 return;
1261
1262 __io_req_init_async(req);
1263
1264 /* Grab a ref if this isn't our static identity */
1265 req->work.identity = tctx->identity;
1266 if (tctx->identity != &tctx->__identity)
1267 refcount_inc(&req->work.identity->count);
1268 }
1269
1270 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1271 {
1272 return ctx->flags & IORING_SETUP_SQPOLL;
1273 }
1274
1275 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1276 {
1277 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1278
1279 complete(&ctx->ref_comp);
1280 }
1281
1282 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1283 {
1284 return !req->timeout.off;
1285 }
1286
1287 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1288 {
1289 struct io_ring_ctx *ctx;
1290 int hash_bits;
1291
1292 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1293 if (!ctx)
1294 return NULL;
1295
1296 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1297 if (!ctx->fallback_req)
1298 goto err;
1299
1300 /*
1301 * Use 5 bits less than the max cq entries, that should give us around
1302 * 32 entries per hash list if totally full and uniformly spread.
1303 */
1304 hash_bits = ilog2(p->cq_entries);
1305 hash_bits -= 5;
1306 if (hash_bits <= 0)
1307 hash_bits = 1;
1308 ctx->cancel_hash_bits = hash_bits;
1309 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1310 GFP_KERNEL);
1311 if (!ctx->cancel_hash)
1312 goto err;
1313 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1314
1315 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1316 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1317 goto err;
1318
1319 ctx->flags = p->flags;
1320 init_waitqueue_head(&ctx->sqo_sq_wait);
1321 INIT_LIST_HEAD(&ctx->sqd_list);
1322 init_waitqueue_head(&ctx->cq_wait);
1323 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1324 init_completion(&ctx->ref_comp);
1325 init_completion(&ctx->sq_thread_comp);
1326 idr_init(&ctx->io_buffer_idr);
1327 idr_init(&ctx->personality_idr);
1328 mutex_init(&ctx->uring_lock);
1329 init_waitqueue_head(&ctx->wait);
1330 spin_lock_init(&ctx->completion_lock);
1331 INIT_LIST_HEAD(&ctx->iopoll_list);
1332 INIT_LIST_HEAD(&ctx->defer_list);
1333 INIT_LIST_HEAD(&ctx->timeout_list);
1334 spin_lock_init(&ctx->inflight_lock);
1335 INIT_LIST_HEAD(&ctx->inflight_list);
1336 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1337 init_llist_head(&ctx->file_put_llist);
1338 return ctx;
1339 err:
1340 if (ctx->fallback_req)
1341 kmem_cache_free(req_cachep, ctx->fallback_req);
1342 kfree(ctx->cancel_hash);
1343 kfree(ctx);
1344 return NULL;
1345 }
1346
1347 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1348 {
1349 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1350 struct io_ring_ctx *ctx = req->ctx;
1351
1352 return seq != ctx->cached_cq_tail
1353 + READ_ONCE(ctx->cached_cq_overflow);
1354 }
1355
1356 return false;
1357 }
1358
1359 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1360 {
1361 struct io_rings *rings = ctx->rings;
1362
1363 /* order cqe stores with ring update */
1364 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1365 }
1366
1367 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1368 {
1369 if (req->work.identity == &tctx->__identity)
1370 return;
1371 if (refcount_dec_and_test(&req->work.identity->count))
1372 kfree(req->work.identity);
1373 }
1374
1375 static void io_req_clean_work(struct io_kiocb *req)
1376 {
1377 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1378 return;
1379
1380 req->flags &= ~REQ_F_WORK_INITIALIZED;
1381
1382 if (req->work.flags & IO_WQ_WORK_MM) {
1383 mmdrop(req->work.identity->mm);
1384 req->work.flags &= ~IO_WQ_WORK_MM;
1385 }
1386 #ifdef CONFIG_BLK_CGROUP
1387 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1388 css_put(req->work.identity->blkcg_css);
1389 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1390 }
1391 #endif
1392 if (req->work.flags & IO_WQ_WORK_CREDS) {
1393 put_cred(req->work.identity->creds);
1394 req->work.flags &= ~IO_WQ_WORK_CREDS;
1395 }
1396 if (req->work.flags & IO_WQ_WORK_FS) {
1397 struct fs_struct *fs = req->work.identity->fs;
1398
1399 spin_lock(&req->work.identity->fs->lock);
1400 if (--fs->users)
1401 fs = NULL;
1402 spin_unlock(&req->work.identity->fs->lock);
1403 if (fs)
1404 free_fs_struct(fs);
1405 req->work.flags &= ~IO_WQ_WORK_FS;
1406 }
1407 if (req->flags & REQ_F_INFLIGHT)
1408 io_req_drop_files(req);
1409
1410 io_put_identity(req->task->io_uring, req);
1411 }
1412
1413 /*
1414 * Create a private copy of io_identity, since some fields don't match
1415 * the current context.
1416 */
1417 static bool io_identity_cow(struct io_kiocb *req)
1418 {
1419 struct io_uring_task *tctx = current->io_uring;
1420 const struct cred *creds = NULL;
1421 struct io_identity *id;
1422
1423 if (req->work.flags & IO_WQ_WORK_CREDS)
1424 creds = req->work.identity->creds;
1425
1426 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1427 if (unlikely(!id)) {
1428 req->work.flags |= IO_WQ_WORK_CANCEL;
1429 return false;
1430 }
1431
1432 /*
1433 * We can safely just re-init the creds we copied Either the field
1434 * matches the current one, or we haven't grabbed it yet. The only
1435 * exception is ->creds, through registered personalities, so handle
1436 * that one separately.
1437 */
1438 io_init_identity(id);
1439 if (creds)
1440 id->creds = creds;
1441
1442 /* add one for this request */
1443 refcount_inc(&id->count);
1444
1445 /* drop tctx and req identity references, if needed */
1446 if (tctx->identity != &tctx->__identity &&
1447 refcount_dec_and_test(&tctx->identity->count))
1448 kfree(tctx->identity);
1449 if (req->work.identity != &tctx->__identity &&
1450 refcount_dec_and_test(&req->work.identity->count))
1451 kfree(req->work.identity);
1452
1453 req->work.identity = id;
1454 tctx->identity = id;
1455 return true;
1456 }
1457
1458 static bool io_grab_identity(struct io_kiocb *req)
1459 {
1460 const struct io_op_def *def = &io_op_defs[req->opcode];
1461 struct io_identity *id = req->work.identity;
1462 struct io_ring_ctx *ctx = req->ctx;
1463
1464 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1465 if (id->fsize != rlimit(RLIMIT_FSIZE))
1466 return false;
1467 req->work.flags |= IO_WQ_WORK_FSIZE;
1468 }
1469 #ifdef CONFIG_BLK_CGROUP
1470 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1471 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1472 rcu_read_lock();
1473 if (id->blkcg_css != blkcg_css()) {
1474 rcu_read_unlock();
1475 return false;
1476 }
1477 /*
1478 * This should be rare, either the cgroup is dying or the task
1479 * is moving cgroups. Just punt to root for the handful of ios.
1480 */
1481 if (css_tryget_online(id->blkcg_css))
1482 req->work.flags |= IO_WQ_WORK_BLKCG;
1483 rcu_read_unlock();
1484 }
1485 #endif
1486 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1487 if (id->creds != current_cred())
1488 return false;
1489 get_cred(id->creds);
1490 req->work.flags |= IO_WQ_WORK_CREDS;
1491 }
1492 #ifdef CONFIG_AUDIT
1493 if (!uid_eq(current->loginuid, id->loginuid) ||
1494 current->sessionid != id->sessionid)
1495 return false;
1496 #endif
1497 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1498 (def->work_flags & IO_WQ_WORK_FS)) {
1499 if (current->fs != id->fs)
1500 return false;
1501 spin_lock(&id->fs->lock);
1502 if (!id->fs->in_exec) {
1503 id->fs->users++;
1504 req->work.flags |= IO_WQ_WORK_FS;
1505 } else {
1506 req->work.flags |= IO_WQ_WORK_CANCEL;
1507 }
1508 spin_unlock(&current->fs->lock);
1509 }
1510 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1511 (def->work_flags & IO_WQ_WORK_FILES) &&
1512 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1513 if (id->files != current->files ||
1514 id->nsproxy != current->nsproxy)
1515 return false;
1516 atomic_inc(&id->files->count);
1517 get_nsproxy(id->nsproxy);
1518
1519 if (!(req->flags & REQ_F_INFLIGHT)) {
1520 req->flags |= REQ_F_INFLIGHT;
1521
1522 spin_lock_irq(&ctx->inflight_lock);
1523 list_add(&req->inflight_entry, &ctx->inflight_list);
1524 spin_unlock_irq(&ctx->inflight_lock);
1525 }
1526 req->work.flags |= IO_WQ_WORK_FILES;
1527 }
1528 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1529 (def->work_flags & IO_WQ_WORK_MM)) {
1530 if (id->mm != current->mm)
1531 return false;
1532 mmgrab(id->mm);
1533 req->work.flags |= IO_WQ_WORK_MM;
1534 }
1535
1536 return true;
1537 }
1538
1539 static void io_prep_async_work(struct io_kiocb *req)
1540 {
1541 const struct io_op_def *def = &io_op_defs[req->opcode];
1542 struct io_ring_ctx *ctx = req->ctx;
1543
1544 io_req_init_async(req);
1545
1546 if (req->flags & REQ_F_FORCE_ASYNC)
1547 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1548
1549 if (req->flags & REQ_F_ISREG) {
1550 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1551 io_wq_hash_work(&req->work, file_inode(req->file));
1552 } else {
1553 if (def->unbound_nonreg_file)
1554 req->work.flags |= IO_WQ_WORK_UNBOUND;
1555 }
1556
1557 /* if we fail grabbing identity, we must COW, regrab, and retry */
1558 if (io_grab_identity(req))
1559 return;
1560
1561 if (!io_identity_cow(req))
1562 return;
1563
1564 /* can't fail at this point */
1565 if (!io_grab_identity(req))
1566 WARN_ON(1);
1567 }
1568
1569 static void io_prep_async_link(struct io_kiocb *req)
1570 {
1571 struct io_kiocb *cur;
1572
1573 io_for_each_link(cur, req)
1574 io_prep_async_work(cur);
1575 }
1576
1577 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1578 {
1579 struct io_ring_ctx *ctx = req->ctx;
1580 struct io_kiocb *link = io_prep_linked_timeout(req);
1581
1582 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1583 &req->work, req->flags);
1584 io_wq_enqueue(ctx->io_wq, &req->work);
1585 return link;
1586 }
1587
1588 static void io_queue_async_work(struct io_kiocb *req)
1589 {
1590 struct io_kiocb *link;
1591
1592 /* init ->work of the whole link before punting */
1593 io_prep_async_link(req);
1594 link = __io_queue_async_work(req);
1595
1596 if (link)
1597 io_queue_linked_timeout(link);
1598 }
1599
1600 static void io_kill_timeout(struct io_kiocb *req)
1601 {
1602 struct io_timeout_data *io = req->async_data;
1603 int ret;
1604
1605 ret = hrtimer_try_to_cancel(&io->timer);
1606 if (ret != -1) {
1607 atomic_set(&req->ctx->cq_timeouts,
1608 atomic_read(&req->ctx->cq_timeouts) + 1);
1609 list_del_init(&req->timeout.list);
1610 io_cqring_fill_event(req, 0);
1611 io_put_req_deferred(req, 1);
1612 }
1613 }
1614
1615 /*
1616 * Returns true if we found and killed one or more timeouts
1617 */
1618 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1619 struct files_struct *files)
1620 {
1621 struct io_kiocb *req, *tmp;
1622 int canceled = 0;
1623
1624 spin_lock_irq(&ctx->completion_lock);
1625 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1626 if (io_match_task(req, tsk, files)) {
1627 io_kill_timeout(req);
1628 canceled++;
1629 }
1630 }
1631 spin_unlock_irq(&ctx->completion_lock);
1632 return canceled != 0;
1633 }
1634
1635 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1636 {
1637 do {
1638 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1639 struct io_defer_entry, list);
1640
1641 if (req_need_defer(de->req, de->seq))
1642 break;
1643 list_del_init(&de->list);
1644 io_req_task_queue(de->req);
1645 kfree(de);
1646 } while (!list_empty(&ctx->defer_list));
1647 }
1648
1649 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1650 {
1651 u32 seq;
1652
1653 if (list_empty(&ctx->timeout_list))
1654 return;
1655
1656 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1657
1658 do {
1659 u32 events_needed, events_got;
1660 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1661 struct io_kiocb, timeout.list);
1662
1663 if (io_is_timeout_noseq(req))
1664 break;
1665
1666 /*
1667 * Since seq can easily wrap around over time, subtract
1668 * the last seq at which timeouts were flushed before comparing.
1669 * Assuming not more than 2^31-1 events have happened since,
1670 * these subtractions won't have wrapped, so we can check if
1671 * target is in [last_seq, current_seq] by comparing the two.
1672 */
1673 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1674 events_got = seq - ctx->cq_last_tm_flush;
1675 if (events_got < events_needed)
1676 break;
1677
1678 list_del_init(&req->timeout.list);
1679 io_kill_timeout(req);
1680 } while (!list_empty(&ctx->timeout_list));
1681
1682 ctx->cq_last_tm_flush = seq;
1683 }
1684
1685 static void io_commit_cqring(struct io_ring_ctx *ctx)
1686 {
1687 io_flush_timeouts(ctx);
1688 __io_commit_cqring(ctx);
1689
1690 if (unlikely(!list_empty(&ctx->defer_list)))
1691 __io_queue_deferred(ctx);
1692 }
1693
1694 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1695 {
1696 struct io_rings *r = ctx->rings;
1697
1698 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1699 }
1700
1701 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1702 {
1703 struct io_rings *rings = ctx->rings;
1704 unsigned tail;
1705
1706 tail = ctx->cached_cq_tail;
1707 /*
1708 * writes to the cq entry need to come after reading head; the
1709 * control dependency is enough as we're using WRITE_ONCE to
1710 * fill the cq entry
1711 */
1712 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1713 return NULL;
1714
1715 ctx->cached_cq_tail++;
1716 return &rings->cqes[tail & ctx->cq_mask];
1717 }
1718
1719 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1720 {
1721 if (!ctx->cq_ev_fd)
1722 return false;
1723 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1724 return false;
1725 if (!ctx->eventfd_async)
1726 return true;
1727 return io_wq_current_is_worker();
1728 }
1729
1730 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1731 {
1732 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1733 }
1734
1735 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1736 {
1737 /* see waitqueue_active() comment */
1738 smp_mb();
1739
1740 if (waitqueue_active(&ctx->wait))
1741 wake_up(&ctx->wait);
1742 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1743 wake_up(&ctx->sq_data->wait);
1744 if (io_should_trigger_evfd(ctx))
1745 eventfd_signal(ctx->cq_ev_fd, 1);
1746 if (waitqueue_active(&ctx->cq_wait)) {
1747 wake_up_interruptible(&ctx->cq_wait);
1748 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1749 }
1750 }
1751
1752 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1753 {
1754 /* see waitqueue_active() comment */
1755 smp_mb();
1756
1757 if (ctx->flags & IORING_SETUP_SQPOLL) {
1758 if (waitqueue_active(&ctx->wait))
1759 wake_up(&ctx->wait);
1760 }
1761 if (io_should_trigger_evfd(ctx))
1762 eventfd_signal(ctx->cq_ev_fd, 1);
1763 if (waitqueue_active(&ctx->cq_wait)) {
1764 wake_up_interruptible(&ctx->cq_wait);
1765 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1766 }
1767 }
1768
1769 /* Returns true if there are no backlogged entries after the flush */
1770 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1771 struct task_struct *tsk,
1772 struct files_struct *files)
1773 {
1774 struct io_rings *rings = ctx->rings;
1775 struct io_kiocb *req, *tmp;
1776 struct io_uring_cqe *cqe;
1777 unsigned long flags;
1778 bool all_flushed, posted;
1779 LIST_HEAD(list);
1780
1781 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1782 return false;
1783
1784 posted = false;
1785 spin_lock_irqsave(&ctx->completion_lock, flags);
1786 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1787 if (!io_match_task(req, tsk, files))
1788 continue;
1789
1790 cqe = io_get_cqring(ctx);
1791 if (!cqe && !force)
1792 break;
1793
1794 list_move(&req->compl.list, &list);
1795 if (cqe) {
1796 WRITE_ONCE(cqe->user_data, req->user_data);
1797 WRITE_ONCE(cqe->res, req->result);
1798 WRITE_ONCE(cqe->flags, req->compl.cflags);
1799 } else {
1800 ctx->cached_cq_overflow++;
1801 WRITE_ONCE(ctx->rings->cq_overflow,
1802 ctx->cached_cq_overflow);
1803 }
1804 posted = true;
1805 }
1806
1807 all_flushed = list_empty(&ctx->cq_overflow_list);
1808 if (all_flushed) {
1809 clear_bit(0, &ctx->sq_check_overflow);
1810 clear_bit(0, &ctx->cq_check_overflow);
1811 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1812 }
1813
1814 if (posted)
1815 io_commit_cqring(ctx);
1816 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1817 if (posted)
1818 io_cqring_ev_posted(ctx);
1819
1820 while (!list_empty(&list)) {
1821 req = list_first_entry(&list, struct io_kiocb, compl.list);
1822 list_del(&req->compl.list);
1823 io_put_req(req);
1824 }
1825
1826 return all_flushed;
1827 }
1828
1829 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1830 struct task_struct *tsk,
1831 struct files_struct *files)
1832 {
1833 if (test_bit(0, &ctx->cq_check_overflow)) {
1834 /* iopoll syncs against uring_lock, not completion_lock */
1835 if (ctx->flags & IORING_SETUP_IOPOLL)
1836 mutex_lock(&ctx->uring_lock);
1837 __io_cqring_overflow_flush(ctx, force, tsk, files);
1838 if (ctx->flags & IORING_SETUP_IOPOLL)
1839 mutex_unlock(&ctx->uring_lock);
1840 }
1841 }
1842
1843 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1844 {
1845 struct io_ring_ctx *ctx = req->ctx;
1846 struct io_uring_cqe *cqe;
1847
1848 trace_io_uring_complete(ctx, req->user_data, res);
1849
1850 /*
1851 * If we can't get a cq entry, userspace overflowed the
1852 * submission (by quite a lot). Increment the overflow count in
1853 * the ring.
1854 */
1855 cqe = io_get_cqring(ctx);
1856 if (likely(cqe)) {
1857 WRITE_ONCE(cqe->user_data, req->user_data);
1858 WRITE_ONCE(cqe->res, res);
1859 WRITE_ONCE(cqe->flags, cflags);
1860 } else if (ctx->cq_overflow_flushed ||
1861 atomic_read(&req->task->io_uring->in_idle)) {
1862 /*
1863 * If we're in ring overflow flush mode, or in task cancel mode,
1864 * then we cannot store the request for later flushing, we need
1865 * to drop it on the floor.
1866 */
1867 ctx->cached_cq_overflow++;
1868 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1869 } else {
1870 if (list_empty(&ctx->cq_overflow_list)) {
1871 set_bit(0, &ctx->sq_check_overflow);
1872 set_bit(0, &ctx->cq_check_overflow);
1873 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1874 }
1875 io_clean_op(req);
1876 req->result = res;
1877 req->compl.cflags = cflags;
1878 refcount_inc(&req->refs);
1879 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1880 }
1881 }
1882
1883 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1884 {
1885 __io_cqring_fill_event(req, res, 0);
1886 }
1887
1888 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1889 {
1890 struct io_ring_ctx *ctx = req->ctx;
1891 unsigned long flags;
1892
1893 spin_lock_irqsave(&ctx->completion_lock, flags);
1894 __io_cqring_fill_event(req, res, cflags);
1895 io_commit_cqring(ctx);
1896 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1897
1898 io_cqring_ev_posted(ctx);
1899 }
1900
1901 static void io_submit_flush_completions(struct io_comp_state *cs)
1902 {
1903 struct io_ring_ctx *ctx = cs->ctx;
1904
1905 spin_lock_irq(&ctx->completion_lock);
1906 while (!list_empty(&cs->list)) {
1907 struct io_kiocb *req;
1908
1909 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1910 list_del(&req->compl.list);
1911 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1912
1913 /*
1914 * io_free_req() doesn't care about completion_lock unless one
1915 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1916 * because of a potential deadlock with req->work.fs->lock
1917 */
1918 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1919 |REQ_F_WORK_INITIALIZED)) {
1920 spin_unlock_irq(&ctx->completion_lock);
1921 io_put_req(req);
1922 spin_lock_irq(&ctx->completion_lock);
1923 } else {
1924 io_put_req(req);
1925 }
1926 }
1927 io_commit_cqring(ctx);
1928 spin_unlock_irq(&ctx->completion_lock);
1929
1930 io_cqring_ev_posted(ctx);
1931 cs->nr = 0;
1932 }
1933
1934 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1935 struct io_comp_state *cs)
1936 {
1937 if (!cs) {
1938 io_cqring_add_event(req, res, cflags);
1939 io_put_req(req);
1940 } else {
1941 io_clean_op(req);
1942 req->result = res;
1943 req->compl.cflags = cflags;
1944 list_add_tail(&req->compl.list, &cs->list);
1945 if (++cs->nr >= 32)
1946 io_submit_flush_completions(cs);
1947 }
1948 }
1949
1950 static void io_req_complete(struct io_kiocb *req, long res)
1951 {
1952 __io_req_complete(req, res, 0, NULL);
1953 }
1954
1955 static inline bool io_is_fallback_req(struct io_kiocb *req)
1956 {
1957 return req == (struct io_kiocb *)
1958 ((unsigned long) req->ctx->fallback_req & ~1UL);
1959 }
1960
1961 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1962 {
1963 struct io_kiocb *req;
1964
1965 req = ctx->fallback_req;
1966 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1967 return req;
1968
1969 return NULL;
1970 }
1971
1972 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1973 struct io_submit_state *state)
1974 {
1975 if (!state->free_reqs) {
1976 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1977 size_t sz;
1978 int ret;
1979
1980 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1981 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1982
1983 /*
1984 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1985 * retry single alloc to be on the safe side.
1986 */
1987 if (unlikely(ret <= 0)) {
1988 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1989 if (!state->reqs[0])
1990 goto fallback;
1991 ret = 1;
1992 }
1993 state->free_reqs = ret;
1994 }
1995
1996 state->free_reqs--;
1997 return state->reqs[state->free_reqs];
1998 fallback:
1999 return io_get_fallback_req(ctx);
2000 }
2001
2002 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2003 bool fixed)
2004 {
2005 if (!fixed)
2006 fput(file);
2007 }
2008
2009 static void io_dismantle_req(struct io_kiocb *req)
2010 {
2011 io_clean_op(req);
2012
2013 if (req->async_data)
2014 kfree(req->async_data);
2015 if (req->file)
2016 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2017 if (req->fixed_file_refs)
2018 percpu_ref_put(req->fixed_file_refs);
2019 io_req_clean_work(req);
2020 }
2021
2022 static void __io_free_req(struct io_kiocb *req)
2023 {
2024 struct io_uring_task *tctx = req->task->io_uring;
2025 struct io_ring_ctx *ctx = req->ctx;
2026
2027 io_dismantle_req(req);
2028
2029 percpu_counter_dec(&tctx->inflight);
2030 if (atomic_read(&tctx->in_idle))
2031 wake_up(&tctx->wait);
2032 put_task_struct(req->task);
2033
2034 if (likely(!io_is_fallback_req(req)))
2035 kmem_cache_free(req_cachep, req);
2036 else
2037 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2038 percpu_ref_put(&ctx->refs);
2039 }
2040
2041 static inline void io_remove_next_linked(struct io_kiocb *req)
2042 {
2043 struct io_kiocb *nxt = req->link;
2044
2045 req->link = nxt->link;
2046 nxt->link = NULL;
2047 }
2048
2049 static void io_kill_linked_timeout(struct io_kiocb *req)
2050 {
2051 struct io_ring_ctx *ctx = req->ctx;
2052 struct io_kiocb *link;
2053 bool cancelled = false;
2054 unsigned long flags;
2055
2056 spin_lock_irqsave(&ctx->completion_lock, flags);
2057 link = req->link;
2058
2059 /*
2060 * Can happen if a linked timeout fired and link had been like
2061 * req -> link t-out -> link t-out [-> ...]
2062 */
2063 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2064 struct io_timeout_data *io = link->async_data;
2065 int ret;
2066
2067 io_remove_next_linked(req);
2068 link->timeout.head = NULL;
2069 ret = hrtimer_try_to_cancel(&io->timer);
2070 if (ret != -1) {
2071 io_cqring_fill_event(link, -ECANCELED);
2072 io_commit_cqring(ctx);
2073 cancelled = true;
2074 }
2075 }
2076 req->flags &= ~REQ_F_LINK_TIMEOUT;
2077 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2078
2079 if (cancelled) {
2080 io_cqring_ev_posted(ctx);
2081 io_put_req(link);
2082 }
2083 }
2084
2085
2086 static void io_fail_links(struct io_kiocb *req)
2087 {
2088 struct io_kiocb *link, *nxt;
2089 struct io_ring_ctx *ctx = req->ctx;
2090 unsigned long flags;
2091
2092 spin_lock_irqsave(&ctx->completion_lock, flags);
2093 link = req->link;
2094 req->link = NULL;
2095
2096 while (link) {
2097 nxt = link->link;
2098 link->link = NULL;
2099
2100 trace_io_uring_fail_link(req, link);
2101 io_cqring_fill_event(link, -ECANCELED);
2102
2103 /*
2104 * It's ok to free under spinlock as they're not linked anymore,
2105 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2106 * work.fs->lock.
2107 */
2108 if (link->flags & REQ_F_WORK_INITIALIZED)
2109 io_put_req_deferred(link, 2);
2110 else
2111 io_double_put_req(link);
2112 link = nxt;
2113 }
2114 io_commit_cqring(ctx);
2115 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2116
2117 io_cqring_ev_posted(ctx);
2118 }
2119
2120 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2121 {
2122 if (req->flags & REQ_F_LINK_TIMEOUT)
2123 io_kill_linked_timeout(req);
2124
2125 /*
2126 * If LINK is set, we have dependent requests in this chain. If we
2127 * didn't fail this request, queue the first one up, moving any other
2128 * dependencies to the next request. In case of failure, fail the rest
2129 * of the chain.
2130 */
2131 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2132 struct io_kiocb *nxt = req->link;
2133
2134 req->link = NULL;
2135 return nxt;
2136 }
2137 io_fail_links(req);
2138 return NULL;
2139 }
2140
2141 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2142 {
2143 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2144 return NULL;
2145 return __io_req_find_next(req);
2146 }
2147
2148 static int io_req_task_work_add(struct io_kiocb *req)
2149 {
2150 struct task_struct *tsk = req->task;
2151 struct io_ring_ctx *ctx = req->ctx;
2152 enum task_work_notify_mode notify;
2153 int ret;
2154
2155 if (tsk->flags & PF_EXITING)
2156 return -ESRCH;
2157
2158 /*
2159 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2160 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2161 * processing task_work. There's no reliable way to tell if TWA_RESUME
2162 * will do the job.
2163 */
2164 notify = TWA_NONE;
2165 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2166 notify = TWA_SIGNAL;
2167
2168 ret = task_work_add(tsk, &req->task_work, notify);
2169 if (!ret)
2170 wake_up_process(tsk);
2171
2172 return ret;
2173 }
2174
2175 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2176 {
2177 struct io_ring_ctx *ctx = req->ctx;
2178
2179 spin_lock_irq(&ctx->completion_lock);
2180 io_cqring_fill_event(req, error);
2181 io_commit_cqring(ctx);
2182 spin_unlock_irq(&ctx->completion_lock);
2183
2184 io_cqring_ev_posted(ctx);
2185 req_set_fail_links(req);
2186 io_double_put_req(req);
2187 }
2188
2189 static void io_req_task_cancel(struct callback_head *cb)
2190 {
2191 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2192 struct io_ring_ctx *ctx = req->ctx;
2193
2194 __io_req_task_cancel(req, -ECANCELED);
2195 percpu_ref_put(&ctx->refs);
2196 }
2197
2198 static void __io_req_task_submit(struct io_kiocb *req)
2199 {
2200 struct io_ring_ctx *ctx = req->ctx;
2201
2202 mutex_lock(&ctx->uring_lock);
2203 if (!ctx->sqo_dead &&
2204 !__io_sq_thread_acquire_mm(ctx) &&
2205 !__io_sq_thread_acquire_files(ctx))
2206 __io_queue_sqe(req, NULL);
2207 else
2208 __io_req_task_cancel(req, -EFAULT);
2209 mutex_unlock(&ctx->uring_lock);
2210
2211 if (ctx->flags & IORING_SETUP_SQPOLL)
2212 io_sq_thread_drop_mm_files();
2213 }
2214
2215 static void io_req_task_submit(struct callback_head *cb)
2216 {
2217 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2218 struct io_ring_ctx *ctx = req->ctx;
2219
2220 __io_req_task_submit(req);
2221 percpu_ref_put(&ctx->refs);
2222 }
2223
2224 static void io_req_task_queue(struct io_kiocb *req)
2225 {
2226 int ret;
2227
2228 init_task_work(&req->task_work, io_req_task_submit);
2229 percpu_ref_get(&req->ctx->refs);
2230
2231 ret = io_req_task_work_add(req);
2232 if (unlikely(ret)) {
2233 struct task_struct *tsk;
2234
2235 init_task_work(&req->task_work, io_req_task_cancel);
2236 tsk = io_wq_get_task(req->ctx->io_wq);
2237 task_work_add(tsk, &req->task_work, TWA_NONE);
2238 wake_up_process(tsk);
2239 }
2240 }
2241
2242 static inline void io_queue_next(struct io_kiocb *req)
2243 {
2244 struct io_kiocb *nxt = io_req_find_next(req);
2245
2246 if (nxt)
2247 io_req_task_queue(nxt);
2248 }
2249
2250 static void io_free_req(struct io_kiocb *req)
2251 {
2252 io_queue_next(req);
2253 __io_free_req(req);
2254 }
2255
2256 struct req_batch {
2257 void *reqs[IO_IOPOLL_BATCH];
2258 int to_free;
2259
2260 struct task_struct *task;
2261 int task_refs;
2262 };
2263
2264 static inline void io_init_req_batch(struct req_batch *rb)
2265 {
2266 rb->to_free = 0;
2267 rb->task_refs = 0;
2268 rb->task = NULL;
2269 }
2270
2271 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2272 struct req_batch *rb)
2273 {
2274 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2275 percpu_ref_put_many(&ctx->refs, rb->to_free);
2276 rb->to_free = 0;
2277 }
2278
2279 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2280 struct req_batch *rb)
2281 {
2282 if (rb->to_free)
2283 __io_req_free_batch_flush(ctx, rb);
2284 if (rb->task) {
2285 struct io_uring_task *tctx = rb->task->io_uring;
2286
2287 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2288 if (atomic_read(&tctx->in_idle))
2289 wake_up(&tctx->wait);
2290 put_task_struct_many(rb->task, rb->task_refs);
2291 rb->task = NULL;
2292 }
2293 }
2294
2295 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2296 {
2297 if (unlikely(io_is_fallback_req(req))) {
2298 io_free_req(req);
2299 return;
2300 }
2301 io_queue_next(req);
2302
2303 if (req->task != rb->task) {
2304 if (rb->task) {
2305 struct io_uring_task *tctx = rb->task->io_uring;
2306
2307 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2308 if (atomic_read(&tctx->in_idle))
2309 wake_up(&tctx->wait);
2310 put_task_struct_many(rb->task, rb->task_refs);
2311 }
2312 rb->task = req->task;
2313 rb->task_refs = 0;
2314 }
2315 rb->task_refs++;
2316
2317 io_dismantle_req(req);
2318 rb->reqs[rb->to_free++] = req;
2319 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2320 __io_req_free_batch_flush(req->ctx, rb);
2321 }
2322
2323 /*
2324 * Drop reference to request, return next in chain (if there is one) if this
2325 * was the last reference to this request.
2326 */
2327 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2328 {
2329 struct io_kiocb *nxt = NULL;
2330
2331 if (refcount_dec_and_test(&req->refs)) {
2332 nxt = io_req_find_next(req);
2333 __io_free_req(req);
2334 }
2335 return nxt;
2336 }
2337
2338 static void io_put_req(struct io_kiocb *req)
2339 {
2340 if (refcount_dec_and_test(&req->refs))
2341 io_free_req(req);
2342 }
2343
2344 static void io_put_req_deferred_cb(struct callback_head *cb)
2345 {
2346 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2347
2348 io_free_req(req);
2349 }
2350
2351 static void io_free_req_deferred(struct io_kiocb *req)
2352 {
2353 int ret;
2354
2355 init_task_work(&req->task_work, io_put_req_deferred_cb);
2356 ret = io_req_task_work_add(req);
2357 if (unlikely(ret)) {
2358 struct task_struct *tsk;
2359
2360 tsk = io_wq_get_task(req->ctx->io_wq);
2361 task_work_add(tsk, &req->task_work, TWA_NONE);
2362 wake_up_process(tsk);
2363 }
2364 }
2365
2366 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2367 {
2368 if (refcount_sub_and_test(refs, &req->refs))
2369 io_free_req_deferred(req);
2370 }
2371
2372 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2373 {
2374 struct io_kiocb *nxt;
2375
2376 /*
2377 * A ref is owned by io-wq in which context we're. So, if that's the
2378 * last one, it's safe to steal next work. False negatives are Ok,
2379 * it just will be re-punted async in io_put_work()
2380 */
2381 if (refcount_read(&req->refs) != 1)
2382 return NULL;
2383
2384 nxt = io_req_find_next(req);
2385 return nxt ? &nxt->work : NULL;
2386 }
2387
2388 static void io_double_put_req(struct io_kiocb *req)
2389 {
2390 /* drop both submit and complete references */
2391 if (refcount_sub_and_test(2, &req->refs))
2392 io_free_req(req);
2393 }
2394
2395 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2396 {
2397 /* See comment at the top of this file */
2398 smp_rmb();
2399 return __io_cqring_events(ctx);
2400 }
2401
2402 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2403 {
2404 struct io_rings *rings = ctx->rings;
2405
2406 /* make sure SQ entry isn't read before tail */
2407 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2408 }
2409
2410 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2411 {
2412 unsigned int cflags;
2413
2414 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2415 cflags |= IORING_CQE_F_BUFFER;
2416 req->flags &= ~REQ_F_BUFFER_SELECTED;
2417 kfree(kbuf);
2418 return cflags;
2419 }
2420
2421 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2422 {
2423 struct io_buffer *kbuf;
2424
2425 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2426 return io_put_kbuf(req, kbuf);
2427 }
2428
2429 static inline bool io_run_task_work(void)
2430 {
2431 /*
2432 * Not safe to run on exiting task, and the task_work handling will
2433 * not add work to such a task.
2434 */
2435 if (unlikely(current->flags & PF_EXITING))
2436 return false;
2437 if (current->task_works) {
2438 __set_current_state(TASK_RUNNING);
2439 task_work_run();
2440 return true;
2441 }
2442
2443 return false;
2444 }
2445
2446 static void io_iopoll_queue(struct list_head *again)
2447 {
2448 struct io_kiocb *req;
2449
2450 do {
2451 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2452 list_del(&req->inflight_entry);
2453 __io_complete_rw(req, -EAGAIN, 0, NULL);
2454 } while (!list_empty(again));
2455 }
2456
2457 /*
2458 * Find and free completed poll iocbs
2459 */
2460 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2461 struct list_head *done)
2462 {
2463 struct req_batch rb;
2464 struct io_kiocb *req;
2465 LIST_HEAD(again);
2466
2467 /* order with ->result store in io_complete_rw_iopoll() */
2468 smp_rmb();
2469
2470 io_init_req_batch(&rb);
2471 while (!list_empty(done)) {
2472 int cflags = 0;
2473
2474 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2475 if (READ_ONCE(req->result) == -EAGAIN) {
2476 req->result = 0;
2477 req->iopoll_completed = 0;
2478 list_move_tail(&req->inflight_entry, &again);
2479 continue;
2480 }
2481 list_del(&req->inflight_entry);
2482
2483 if (req->flags & REQ_F_BUFFER_SELECTED)
2484 cflags = io_put_rw_kbuf(req);
2485
2486 __io_cqring_fill_event(req, req->result, cflags);
2487 (*nr_events)++;
2488
2489 if (refcount_dec_and_test(&req->refs))
2490 io_req_free_batch(&rb, req);
2491 }
2492
2493 io_commit_cqring(ctx);
2494 io_cqring_ev_posted_iopoll(ctx);
2495 io_req_free_batch_finish(ctx, &rb);
2496
2497 if (!list_empty(&again))
2498 io_iopoll_queue(&again);
2499 }
2500
2501 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2502 long min)
2503 {
2504 struct io_kiocb *req, *tmp;
2505 LIST_HEAD(done);
2506 bool spin;
2507 int ret;
2508
2509 /*
2510 * Only spin for completions if we don't have multiple devices hanging
2511 * off our complete list, and we're under the requested amount.
2512 */
2513 spin = !ctx->poll_multi_file && *nr_events < min;
2514
2515 ret = 0;
2516 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2517 struct kiocb *kiocb = &req->rw.kiocb;
2518
2519 /*
2520 * Move completed and retryable entries to our local lists.
2521 * If we find a request that requires polling, break out
2522 * and complete those lists first, if we have entries there.
2523 */
2524 if (READ_ONCE(req->iopoll_completed)) {
2525 list_move_tail(&req->inflight_entry, &done);
2526 continue;
2527 }
2528 if (!list_empty(&done))
2529 break;
2530
2531 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2532 if (ret < 0)
2533 break;
2534
2535 /* iopoll may have completed current req */
2536 if (READ_ONCE(req->iopoll_completed))
2537 list_move_tail(&req->inflight_entry, &done);
2538
2539 if (ret && spin)
2540 spin = false;
2541 ret = 0;
2542 }
2543
2544 if (!list_empty(&done))
2545 io_iopoll_complete(ctx, nr_events, &done);
2546
2547 return ret;
2548 }
2549
2550 /*
2551 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2552 * non-spinning poll check - we'll still enter the driver poll loop, but only
2553 * as a non-spinning completion check.
2554 */
2555 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2556 long min)
2557 {
2558 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2559 int ret;
2560
2561 ret = io_do_iopoll(ctx, nr_events, min);
2562 if (ret < 0)
2563 return ret;
2564 if (*nr_events >= min)
2565 return 0;
2566 }
2567
2568 return 1;
2569 }
2570
2571 /*
2572 * We can't just wait for polled events to come to us, we have to actively
2573 * find and complete them.
2574 */
2575 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2576 {
2577 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2578 return;
2579
2580 mutex_lock(&ctx->uring_lock);
2581 while (!list_empty(&ctx->iopoll_list)) {
2582 unsigned int nr_events = 0;
2583
2584 io_do_iopoll(ctx, &nr_events, 0);
2585
2586 /* let it sleep and repeat later if can't complete a request */
2587 if (nr_events == 0)
2588 break;
2589 /*
2590 * Ensure we allow local-to-the-cpu processing to take place,
2591 * in this case we need to ensure that we reap all events.
2592 * Also let task_work, etc. to progress by releasing the mutex
2593 */
2594 if (need_resched()) {
2595 mutex_unlock(&ctx->uring_lock);
2596 cond_resched();
2597 mutex_lock(&ctx->uring_lock);
2598 }
2599 }
2600 mutex_unlock(&ctx->uring_lock);
2601 }
2602
2603 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2604 {
2605 unsigned int nr_events = 0;
2606 int iters = 0, ret = 0;
2607
2608 /*
2609 * We disallow the app entering submit/complete with polling, but we
2610 * still need to lock the ring to prevent racing with polled issue
2611 * that got punted to a workqueue.
2612 */
2613 mutex_lock(&ctx->uring_lock);
2614 do {
2615 /*
2616 * Don't enter poll loop if we already have events pending.
2617 * If we do, we can potentially be spinning for commands that
2618 * already triggered a CQE (eg in error).
2619 */
2620 if (test_bit(0, &ctx->cq_check_overflow))
2621 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2622 if (io_cqring_events(ctx))
2623 break;
2624
2625 /*
2626 * If a submit got punted to a workqueue, we can have the
2627 * application entering polling for a command before it gets
2628 * issued. That app will hold the uring_lock for the duration
2629 * of the poll right here, so we need to take a breather every
2630 * now and then to ensure that the issue has a chance to add
2631 * the poll to the issued list. Otherwise we can spin here
2632 * forever, while the workqueue is stuck trying to acquire the
2633 * very same mutex.
2634 */
2635 if (!(++iters & 7)) {
2636 mutex_unlock(&ctx->uring_lock);
2637 io_run_task_work();
2638 mutex_lock(&ctx->uring_lock);
2639 }
2640
2641 ret = io_iopoll_getevents(ctx, &nr_events, min);
2642 if (ret <= 0)
2643 break;
2644 ret = 0;
2645 } while (min && !nr_events && !need_resched());
2646
2647 mutex_unlock(&ctx->uring_lock);
2648 return ret;
2649 }
2650
2651 static void kiocb_end_write(struct io_kiocb *req)
2652 {
2653 /*
2654 * Tell lockdep we inherited freeze protection from submission
2655 * thread.
2656 */
2657 if (req->flags & REQ_F_ISREG) {
2658 struct inode *inode = file_inode(req->file);
2659
2660 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2661 }
2662 file_end_write(req->file);
2663 }
2664
2665 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2666 struct io_comp_state *cs)
2667 {
2668 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2669 int cflags = 0;
2670
2671 if (kiocb->ki_flags & IOCB_WRITE)
2672 kiocb_end_write(req);
2673
2674 if (res != req->result)
2675 req_set_fail_links(req);
2676 if (req->flags & REQ_F_BUFFER_SELECTED)
2677 cflags = io_put_rw_kbuf(req);
2678 __io_req_complete(req, res, cflags, cs);
2679 }
2680
2681 #ifdef CONFIG_BLOCK
2682 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2683 {
2684 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2685 ssize_t ret = -ECANCELED;
2686 struct iov_iter iter;
2687 int rw;
2688
2689 if (error) {
2690 ret = error;
2691 goto end_req;
2692 }
2693
2694 switch (req->opcode) {
2695 case IORING_OP_READV:
2696 case IORING_OP_READ_FIXED:
2697 case IORING_OP_READ:
2698 rw = READ;
2699 break;
2700 case IORING_OP_WRITEV:
2701 case IORING_OP_WRITE_FIXED:
2702 case IORING_OP_WRITE:
2703 rw = WRITE;
2704 break;
2705 default:
2706 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2707 req->opcode);
2708 goto end_req;
2709 }
2710
2711 if (!req->async_data) {
2712 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2713 if (ret < 0)
2714 goto end_req;
2715 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2716 if (!ret)
2717 return true;
2718 kfree(iovec);
2719 } else {
2720 return true;
2721 }
2722 end_req:
2723 req_set_fail_links(req);
2724 return false;
2725 }
2726 #endif
2727
2728 static bool io_rw_reissue(struct io_kiocb *req, long res)
2729 {
2730 #ifdef CONFIG_BLOCK
2731 umode_t mode = file_inode(req->file)->i_mode;
2732 int ret;
2733
2734 if (!S_ISBLK(mode) && !S_ISREG(mode))
2735 return false;
2736 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2737 return false;
2738
2739 lockdep_assert_held(&req->ctx->uring_lock);
2740
2741 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2742
2743 if (io_resubmit_prep(req, ret)) {
2744 refcount_inc(&req->refs);
2745 io_queue_async_work(req);
2746 return true;
2747 }
2748
2749 #endif
2750 return false;
2751 }
2752
2753 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2754 struct io_comp_state *cs)
2755 {
2756 if (!io_rw_reissue(req, res))
2757 io_complete_rw_common(&req->rw.kiocb, res, cs);
2758 }
2759
2760 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2761 {
2762 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2763
2764 __io_complete_rw(req, res, res2, NULL);
2765 }
2766
2767 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2768 {
2769 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2770
2771 if (kiocb->ki_flags & IOCB_WRITE)
2772 kiocb_end_write(req);
2773
2774 if (res != -EAGAIN && res != req->result)
2775 req_set_fail_links(req);
2776
2777 WRITE_ONCE(req->result, res);
2778 /* order with io_poll_complete() checking ->result */
2779 smp_wmb();
2780 WRITE_ONCE(req->iopoll_completed, 1);
2781 }
2782
2783 /*
2784 * After the iocb has been issued, it's safe to be found on the poll list.
2785 * Adding the kiocb to the list AFTER submission ensures that we don't
2786 * find it from a io_iopoll_getevents() thread before the issuer is done
2787 * accessing the kiocb cookie.
2788 */
2789 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2790 {
2791 struct io_ring_ctx *ctx = req->ctx;
2792
2793 /*
2794 * Track whether we have multiple files in our lists. This will impact
2795 * how we do polling eventually, not spinning if we're on potentially
2796 * different devices.
2797 */
2798 if (list_empty(&ctx->iopoll_list)) {
2799 ctx->poll_multi_file = false;
2800 } else if (!ctx->poll_multi_file) {
2801 struct io_kiocb *list_req;
2802
2803 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2804 inflight_entry);
2805 if (list_req->file != req->file)
2806 ctx->poll_multi_file = true;
2807 }
2808
2809 /*
2810 * For fast devices, IO may have already completed. If it has, add
2811 * it to the front so we find it first.
2812 */
2813 if (READ_ONCE(req->iopoll_completed))
2814 list_add(&req->inflight_entry, &ctx->iopoll_list);
2815 else
2816 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2817
2818 /*
2819 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2820 * task context or in io worker task context. If current task context is
2821 * sq thread, we don't need to check whether should wake up sq thread.
2822 */
2823 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2824 wq_has_sleeper(&ctx->sq_data->wait))
2825 wake_up(&ctx->sq_data->wait);
2826 }
2827
2828 static inline void __io_state_file_put(struct io_submit_state *state)
2829 {
2830 fput_many(state->file, state->file_refs);
2831 state->file_refs = 0;
2832 }
2833
2834 static inline void io_state_file_put(struct io_submit_state *state)
2835 {
2836 if (state->file_refs)
2837 __io_state_file_put(state);
2838 }
2839
2840 /*
2841 * Get as many references to a file as we have IOs left in this submission,
2842 * assuming most submissions are for one file, or at least that each file
2843 * has more than one submission.
2844 */
2845 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2846 {
2847 if (!state)
2848 return fget(fd);
2849
2850 if (state->file_refs) {
2851 if (state->fd == fd) {
2852 state->file_refs--;
2853 return state->file;
2854 }
2855 __io_state_file_put(state);
2856 }
2857 state->file = fget_many(fd, state->ios_left);
2858 if (unlikely(!state->file))
2859 return NULL;
2860
2861 state->fd = fd;
2862 state->file_refs = state->ios_left - 1;
2863 return state->file;
2864 }
2865
2866 static bool io_bdev_nowait(struct block_device *bdev)
2867 {
2868 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2869 }
2870
2871 /*
2872 * If we tracked the file through the SCM inflight mechanism, we could support
2873 * any file. For now, just ensure that anything potentially problematic is done
2874 * inline.
2875 */
2876 static bool io_file_supports_async(struct file *file, int rw)
2877 {
2878 umode_t mode = file_inode(file)->i_mode;
2879
2880 if (S_ISBLK(mode)) {
2881 if (IS_ENABLED(CONFIG_BLOCK) &&
2882 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2883 return true;
2884 return false;
2885 }
2886 if (S_ISCHR(mode) || S_ISSOCK(mode))
2887 return true;
2888 if (S_ISREG(mode)) {
2889 if (IS_ENABLED(CONFIG_BLOCK) &&
2890 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2891 file->f_op != &io_uring_fops)
2892 return true;
2893 return false;
2894 }
2895
2896 /* any ->read/write should understand O_NONBLOCK */
2897 if (file->f_flags & O_NONBLOCK)
2898 return true;
2899
2900 if (!(file->f_mode & FMODE_NOWAIT))
2901 return false;
2902
2903 if (rw == READ)
2904 return file->f_op->read_iter != NULL;
2905
2906 return file->f_op->write_iter != NULL;
2907 }
2908
2909 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2910 {
2911 struct io_ring_ctx *ctx = req->ctx;
2912 struct kiocb *kiocb = &req->rw.kiocb;
2913 unsigned ioprio;
2914 int ret;
2915
2916 if (S_ISREG(file_inode(req->file)->i_mode))
2917 req->flags |= REQ_F_ISREG;
2918
2919 kiocb->ki_pos = READ_ONCE(sqe->off);
2920 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2921 req->flags |= REQ_F_CUR_POS;
2922 kiocb->ki_pos = req->file->f_pos;
2923 }
2924 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2925 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2926 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2927 if (unlikely(ret))
2928 return ret;
2929
2930 ioprio = READ_ONCE(sqe->ioprio);
2931 if (ioprio) {
2932 ret = ioprio_check_cap(ioprio);
2933 if (ret)
2934 return ret;
2935
2936 kiocb->ki_ioprio = ioprio;
2937 } else
2938 kiocb->ki_ioprio = get_current_ioprio();
2939
2940 /* don't allow async punt if RWF_NOWAIT was requested */
2941 if (kiocb->ki_flags & IOCB_NOWAIT)
2942 req->flags |= REQ_F_NOWAIT;
2943
2944 if (ctx->flags & IORING_SETUP_IOPOLL) {
2945 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2946 !kiocb->ki_filp->f_op->iopoll)
2947 return -EOPNOTSUPP;
2948
2949 kiocb->ki_flags |= IOCB_HIPRI;
2950 kiocb->ki_complete = io_complete_rw_iopoll;
2951 req->iopoll_completed = 0;
2952 } else {
2953 if (kiocb->ki_flags & IOCB_HIPRI)
2954 return -EINVAL;
2955 kiocb->ki_complete = io_complete_rw;
2956 }
2957
2958 req->rw.addr = READ_ONCE(sqe->addr);
2959 req->rw.len = READ_ONCE(sqe->len);
2960 req->buf_index = READ_ONCE(sqe->buf_index);
2961 return 0;
2962 }
2963
2964 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2965 {
2966 switch (ret) {
2967 case -EIOCBQUEUED:
2968 break;
2969 case -ERESTARTSYS:
2970 case -ERESTARTNOINTR:
2971 case -ERESTARTNOHAND:
2972 case -ERESTART_RESTARTBLOCK:
2973 /*
2974 * We can't just restart the syscall, since previously
2975 * submitted sqes may already be in progress. Just fail this
2976 * IO with EINTR.
2977 */
2978 ret = -EINTR;
2979 fallthrough;
2980 default:
2981 kiocb->ki_complete(kiocb, ret, 0);
2982 }
2983 }
2984
2985 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2986 struct io_comp_state *cs)
2987 {
2988 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2989 struct io_async_rw *io = req->async_data;
2990
2991 /* add previously done IO, if any */
2992 if (io && io->bytes_done > 0) {
2993 if (ret < 0)
2994 ret = io->bytes_done;
2995 else
2996 ret += io->bytes_done;
2997 }
2998
2999 if (req->flags & REQ_F_CUR_POS)
3000 req->file->f_pos = kiocb->ki_pos;
3001 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
3002 __io_complete_rw(req, ret, 0, cs);
3003 else
3004 io_rw_done(kiocb, ret);
3005 }
3006
3007 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
3008 struct iov_iter *iter)
3009 {
3010 struct io_ring_ctx *ctx = req->ctx;
3011 size_t len = req->rw.len;
3012 struct io_mapped_ubuf *imu;
3013 u16 index, buf_index = req->buf_index;
3014 size_t offset;
3015 u64 buf_addr;
3016
3017 if (unlikely(buf_index >= ctx->nr_user_bufs))
3018 return -EFAULT;
3019 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3020 imu = &ctx->user_bufs[index];
3021 buf_addr = req->rw.addr;
3022
3023 /* overflow */
3024 if (buf_addr + len < buf_addr)
3025 return -EFAULT;
3026 /* not inside the mapped region */
3027 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3028 return -EFAULT;
3029
3030 /*
3031 * May not be a start of buffer, set size appropriately
3032 * and advance us to the beginning.
3033 */
3034 offset = buf_addr - imu->ubuf;
3035 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3036
3037 if (offset) {
3038 /*
3039 * Don't use iov_iter_advance() here, as it's really slow for
3040 * using the latter parts of a big fixed buffer - it iterates
3041 * over each segment manually. We can cheat a bit here, because
3042 * we know that:
3043 *
3044 * 1) it's a BVEC iter, we set it up
3045 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3046 * first and last bvec
3047 *
3048 * So just find our index, and adjust the iterator afterwards.
3049 * If the offset is within the first bvec (or the whole first
3050 * bvec, just use iov_iter_advance(). This makes it easier
3051 * since we can just skip the first segment, which may not
3052 * be PAGE_SIZE aligned.
3053 */
3054 const struct bio_vec *bvec = imu->bvec;
3055
3056 if (offset <= bvec->bv_len) {
3057 iov_iter_advance(iter, offset);
3058 } else {
3059 unsigned long seg_skip;
3060
3061 /* skip first vec */
3062 offset -= bvec->bv_len;
3063 seg_skip = 1 + (offset >> PAGE_SHIFT);
3064
3065 iter->bvec = bvec + seg_skip;
3066 iter->nr_segs -= seg_skip;
3067 iter->count -= bvec->bv_len + offset;
3068 iter->iov_offset = offset & ~PAGE_MASK;
3069 }
3070 }
3071
3072 return len;
3073 }
3074
3075 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3076 {
3077 if (needs_lock)
3078 mutex_unlock(&ctx->uring_lock);
3079 }
3080
3081 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3082 {
3083 /*
3084 * "Normal" inline submissions always hold the uring_lock, since we
3085 * grab it from the system call. Same is true for the SQPOLL offload.
3086 * The only exception is when we've detached the request and issue it
3087 * from an async worker thread, grab the lock for that case.
3088 */
3089 if (needs_lock)
3090 mutex_lock(&ctx->uring_lock);
3091 }
3092
3093 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3094 int bgid, struct io_buffer *kbuf,
3095 bool needs_lock)
3096 {
3097 struct io_buffer *head;
3098
3099 if (req->flags & REQ_F_BUFFER_SELECTED)
3100 return kbuf;
3101
3102 io_ring_submit_lock(req->ctx, needs_lock);
3103
3104 lockdep_assert_held(&req->ctx->uring_lock);
3105
3106 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3107 if (head) {
3108 if (!list_empty(&head->list)) {
3109 kbuf = list_last_entry(&head->list, struct io_buffer,
3110 list);
3111 list_del(&kbuf->list);
3112 } else {
3113 kbuf = head;
3114 idr_remove(&req->ctx->io_buffer_idr, bgid);
3115 }
3116 if (*len > kbuf->len)
3117 *len = kbuf->len;
3118 } else {
3119 kbuf = ERR_PTR(-ENOBUFS);
3120 }
3121
3122 io_ring_submit_unlock(req->ctx, needs_lock);
3123
3124 return kbuf;
3125 }
3126
3127 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3128 bool needs_lock)
3129 {
3130 struct io_buffer *kbuf;
3131 u16 bgid;
3132
3133 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3134 bgid = req->buf_index;
3135 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3136 if (IS_ERR(kbuf))
3137 return kbuf;
3138 req->rw.addr = (u64) (unsigned long) kbuf;
3139 req->flags |= REQ_F_BUFFER_SELECTED;
3140 return u64_to_user_ptr(kbuf->addr);
3141 }
3142
3143 #ifdef CONFIG_COMPAT
3144 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3145 bool needs_lock)
3146 {
3147 struct compat_iovec __user *uiov;
3148 compat_ssize_t clen;
3149 void __user *buf;
3150 ssize_t len;
3151
3152 uiov = u64_to_user_ptr(req->rw.addr);
3153 if (!access_ok(uiov, sizeof(*uiov)))
3154 return -EFAULT;
3155 if (__get_user(clen, &uiov->iov_len))
3156 return -EFAULT;
3157 if (clen < 0)
3158 return -EINVAL;
3159
3160 len = clen;
3161 buf = io_rw_buffer_select(req, &len, needs_lock);
3162 if (IS_ERR(buf))
3163 return PTR_ERR(buf);
3164 iov[0].iov_base = buf;
3165 iov[0].iov_len = (compat_size_t) len;
3166 return 0;
3167 }
3168 #endif
3169
3170 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3171 bool needs_lock)
3172 {
3173 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3174 void __user *buf;
3175 ssize_t len;
3176
3177 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3178 return -EFAULT;
3179
3180 len = iov[0].iov_len;
3181 if (len < 0)
3182 return -EINVAL;
3183 buf = io_rw_buffer_select(req, &len, needs_lock);
3184 if (IS_ERR(buf))
3185 return PTR_ERR(buf);
3186 iov[0].iov_base = buf;
3187 iov[0].iov_len = len;
3188 return 0;
3189 }
3190
3191 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3192 bool needs_lock)
3193 {
3194 if (req->flags & REQ_F_BUFFER_SELECTED) {
3195 struct io_buffer *kbuf;
3196
3197 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3198 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3199 iov[0].iov_len = kbuf->len;
3200 return 0;
3201 }
3202 if (req->rw.len != 1)
3203 return -EINVAL;
3204
3205 #ifdef CONFIG_COMPAT
3206 if (req->ctx->compat)
3207 return io_compat_import(req, iov, needs_lock);
3208 #endif
3209
3210 return __io_iov_buffer_select(req, iov, needs_lock);
3211 }
3212
3213 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3214 struct iovec **iovec, struct iov_iter *iter,
3215 bool needs_lock)
3216 {
3217 void __user *buf = u64_to_user_ptr(req->rw.addr);
3218 size_t sqe_len = req->rw.len;
3219 ssize_t ret;
3220 u8 opcode;
3221
3222 opcode = req->opcode;
3223 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3224 *iovec = NULL;
3225 return io_import_fixed(req, rw, iter);
3226 }
3227
3228 /* buffer index only valid with fixed read/write, or buffer select */
3229 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3230 return -EINVAL;
3231
3232 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3233 if (req->flags & REQ_F_BUFFER_SELECT) {
3234 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3235 if (IS_ERR(buf))
3236 return PTR_ERR(buf);
3237 req->rw.len = sqe_len;
3238 }
3239
3240 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3241 *iovec = NULL;
3242 return ret;
3243 }
3244
3245 if (req->flags & REQ_F_BUFFER_SELECT) {
3246 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3247 if (!ret) {
3248 ret = (*iovec)->iov_len;
3249 iov_iter_init(iter, rw, *iovec, 1, ret);
3250 }
3251 *iovec = NULL;
3252 return ret;
3253 }
3254
3255 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3256 req->ctx->compat);
3257 }
3258
3259 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3260 {
3261 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3262 }
3263
3264 /*
3265 * For files that don't have ->read_iter() and ->write_iter(), handle them
3266 * by looping over ->read() or ->write() manually.
3267 */
3268 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3269 {
3270 struct kiocb *kiocb = &req->rw.kiocb;
3271 struct file *file = req->file;
3272 ssize_t ret = 0;
3273
3274 /*
3275 * Don't support polled IO through this interface, and we can't
3276 * support non-blocking either. For the latter, this just causes
3277 * the kiocb to be handled from an async context.
3278 */
3279 if (kiocb->ki_flags & IOCB_HIPRI)
3280 return -EOPNOTSUPP;
3281 if (kiocb->ki_flags & IOCB_NOWAIT)
3282 return -EAGAIN;
3283
3284 while (iov_iter_count(iter)) {
3285 struct iovec iovec;
3286 ssize_t nr;
3287
3288 if (!iov_iter_is_bvec(iter)) {
3289 iovec = iov_iter_iovec(iter);
3290 } else {
3291 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3292 iovec.iov_len = req->rw.len;
3293 }
3294
3295 if (rw == READ) {
3296 nr = file->f_op->read(file, iovec.iov_base,
3297 iovec.iov_len, io_kiocb_ppos(kiocb));
3298 } else {
3299 nr = file->f_op->write(file, iovec.iov_base,
3300 iovec.iov_len, io_kiocb_ppos(kiocb));
3301 }
3302
3303 if (nr < 0) {
3304 if (!ret)
3305 ret = nr;
3306 break;
3307 }
3308 ret += nr;
3309 if (nr != iovec.iov_len)
3310 break;
3311 req->rw.len -= nr;
3312 req->rw.addr += nr;
3313 iov_iter_advance(iter, nr);
3314 }
3315
3316 return ret;
3317 }
3318
3319 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3320 const struct iovec *fast_iov, struct iov_iter *iter)
3321 {
3322 struct io_async_rw *rw = req->async_data;
3323
3324 memcpy(&rw->iter, iter, sizeof(*iter));
3325 rw->free_iovec = iovec;
3326 rw->bytes_done = 0;
3327 /* can only be fixed buffers, no need to do anything */
3328 if (iov_iter_is_bvec(iter))
3329 return;
3330 if (!iovec) {
3331 unsigned iov_off = 0;
3332
3333 rw->iter.iov = rw->fast_iov;
3334 if (iter->iov != fast_iov) {
3335 iov_off = iter->iov - fast_iov;
3336 rw->iter.iov += iov_off;
3337 }
3338 if (rw->fast_iov != fast_iov)
3339 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3340 sizeof(struct iovec) * iter->nr_segs);
3341 } else {
3342 req->flags |= REQ_F_NEED_CLEANUP;
3343 }
3344 }
3345
3346 static inline int __io_alloc_async_data(struct io_kiocb *req)
3347 {
3348 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3349 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3350 return req->async_data == NULL;
3351 }
3352
3353 static int io_alloc_async_data(struct io_kiocb *req)
3354 {
3355 if (!io_op_defs[req->opcode].needs_async_data)
3356 return 0;
3357
3358 return __io_alloc_async_data(req);
3359 }
3360
3361 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3362 const struct iovec *fast_iov,
3363 struct iov_iter *iter, bool force)
3364 {
3365 if (!force && !io_op_defs[req->opcode].needs_async_data)
3366 return 0;
3367 if (!req->async_data) {
3368 if (__io_alloc_async_data(req))
3369 return -ENOMEM;
3370
3371 io_req_map_rw(req, iovec, fast_iov, iter);
3372 }
3373 return 0;
3374 }
3375
3376 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3377 {
3378 struct io_async_rw *iorw = req->async_data;
3379 struct iovec *iov = iorw->fast_iov;
3380 ssize_t ret;
3381
3382 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3383 if (unlikely(ret < 0))
3384 return ret;
3385
3386 iorw->bytes_done = 0;
3387 iorw->free_iovec = iov;
3388 if (iov)
3389 req->flags |= REQ_F_NEED_CLEANUP;
3390 return 0;
3391 }
3392
3393 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3394 {
3395 ssize_t ret;
3396
3397 ret = io_prep_rw(req, sqe);
3398 if (ret)
3399 return ret;
3400
3401 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3402 return -EBADF;
3403
3404 /* either don't need iovec imported or already have it */
3405 if (!req->async_data)
3406 return 0;
3407 return io_rw_prep_async(req, READ);
3408 }
3409
3410 /*
3411 * This is our waitqueue callback handler, registered through lock_page_async()
3412 * when we initially tried to do the IO with the iocb armed our waitqueue.
3413 * This gets called when the page is unlocked, and we generally expect that to
3414 * happen when the page IO is completed and the page is now uptodate. This will
3415 * queue a task_work based retry of the operation, attempting to copy the data
3416 * again. If the latter fails because the page was NOT uptodate, then we will
3417 * do a thread based blocking retry of the operation. That's the unexpected
3418 * slow path.
3419 */
3420 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3421 int sync, void *arg)
3422 {
3423 struct wait_page_queue *wpq;
3424 struct io_kiocb *req = wait->private;
3425 struct wait_page_key *key = arg;
3426 int ret;
3427
3428 wpq = container_of(wait, struct wait_page_queue, wait);
3429
3430 if (!wake_page_match(wpq, key))
3431 return 0;
3432
3433 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3434 list_del_init(&wait->entry);
3435
3436 init_task_work(&req->task_work, io_req_task_submit);
3437 percpu_ref_get(&req->ctx->refs);
3438
3439 /* submit ref gets dropped, acquire a new one */
3440 refcount_inc(&req->refs);
3441 ret = io_req_task_work_add(req);
3442 if (unlikely(ret)) {
3443 struct task_struct *tsk;
3444
3445 /* queue just for cancelation */
3446 init_task_work(&req->task_work, io_req_task_cancel);
3447 tsk = io_wq_get_task(req->ctx->io_wq);
3448 task_work_add(tsk, &req->task_work, TWA_NONE);
3449 wake_up_process(tsk);
3450 }
3451 return 1;
3452 }
3453
3454 /*
3455 * This controls whether a given IO request should be armed for async page
3456 * based retry. If we return false here, the request is handed to the async
3457 * worker threads for retry. If we're doing buffered reads on a regular file,
3458 * we prepare a private wait_page_queue entry and retry the operation. This
3459 * will either succeed because the page is now uptodate and unlocked, or it
3460 * will register a callback when the page is unlocked at IO completion. Through
3461 * that callback, io_uring uses task_work to setup a retry of the operation.
3462 * That retry will attempt the buffered read again. The retry will generally
3463 * succeed, or in rare cases where it fails, we then fall back to using the
3464 * async worker threads for a blocking retry.
3465 */
3466 static bool io_rw_should_retry(struct io_kiocb *req)
3467 {
3468 struct io_async_rw *rw = req->async_data;
3469 struct wait_page_queue *wait = &rw->wpq;
3470 struct kiocb *kiocb = &req->rw.kiocb;
3471
3472 /* never retry for NOWAIT, we just complete with -EAGAIN */
3473 if (req->flags & REQ_F_NOWAIT)
3474 return false;
3475
3476 /* Only for buffered IO */
3477 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3478 return false;
3479
3480 /*
3481 * just use poll if we can, and don't attempt if the fs doesn't
3482 * support callback based unlocks
3483 */
3484 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3485 return false;
3486
3487 wait->wait.func = io_async_buf_func;
3488 wait->wait.private = req;
3489 wait->wait.flags = 0;
3490 INIT_LIST_HEAD(&wait->wait.entry);
3491 kiocb->ki_flags |= IOCB_WAITQ;
3492 kiocb->ki_flags &= ~IOCB_NOWAIT;
3493 kiocb->ki_waitq = wait;
3494 return true;
3495 }
3496
3497 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3498 {
3499 if (req->file->f_op->read_iter)
3500 return call_read_iter(req->file, &req->rw.kiocb, iter);
3501 else if (req->file->f_op->read)
3502 return loop_rw_iter(READ, req, iter);
3503 else
3504 return -EINVAL;
3505 }
3506
3507 static int io_read(struct io_kiocb *req, bool force_nonblock,
3508 struct io_comp_state *cs)
3509 {
3510 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3511 struct kiocb *kiocb = &req->rw.kiocb;
3512 struct iov_iter __iter, *iter = &__iter;
3513 struct io_async_rw *rw = req->async_data;
3514 ssize_t io_size, ret, ret2;
3515 bool no_async;
3516
3517 if (rw) {
3518 iter = &rw->iter;
3519 iovec = NULL;
3520 } else {
3521 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3522 if (ret < 0)
3523 return ret;
3524 }
3525 io_size = iov_iter_count(iter);
3526 req->result = io_size;
3527 ret = 0;
3528
3529 /* Ensure we clear previously set non-block flag */
3530 if (!force_nonblock)
3531 kiocb->ki_flags &= ~IOCB_NOWAIT;
3532 else
3533 kiocb->ki_flags |= IOCB_NOWAIT;
3534
3535
3536 /* If the file doesn't support async, just async punt */
3537 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3538 if (no_async)
3539 goto copy_iov;
3540
3541 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3542 if (unlikely(ret))
3543 goto out_free;
3544
3545 ret = io_iter_do_read(req, iter);
3546
3547 if (!ret) {
3548 goto done;
3549 } else if (ret == -EIOCBQUEUED) {
3550 ret = 0;
3551 goto out_free;
3552 } else if (ret == -EAGAIN) {
3553 /* IOPOLL retry should happen for io-wq threads */
3554 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3555 goto done;
3556 /* no retry on NONBLOCK marked file */
3557 if (req->file->f_flags & O_NONBLOCK)
3558 goto done;
3559 /* some cases will consume bytes even on error returns */
3560 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3561 ret = 0;
3562 goto copy_iov;
3563 } else if (ret < 0) {
3564 /* make sure -ERESTARTSYS -> -EINTR is done */
3565 goto done;
3566 }
3567
3568 /* read it all, or we did blocking attempt. no retry. */
3569 if (!iov_iter_count(iter) || !force_nonblock ||
3570 (req->file->f_flags & O_NONBLOCK) || !(req->flags & REQ_F_ISREG))
3571 goto done;
3572
3573 io_size -= ret;
3574 copy_iov:
3575 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3576 if (ret2) {
3577 ret = ret2;
3578 goto out_free;
3579 }
3580 if (no_async)
3581 return -EAGAIN;
3582 rw = req->async_data;
3583 /* it's copied and will be cleaned with ->io */
3584 iovec = NULL;
3585 /* now use our persistent iterator, if we aren't already */
3586 iter = &rw->iter;
3587 retry:
3588 rw->bytes_done += ret;
3589 /* if we can retry, do so with the callbacks armed */
3590 if (!io_rw_should_retry(req)) {
3591 kiocb->ki_flags &= ~IOCB_WAITQ;
3592 return -EAGAIN;
3593 }
3594
3595 /*
3596 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3597 * get -EIOCBQUEUED, then we'll get a notification when the desired
3598 * page gets unlocked. We can also get a partial read here, and if we
3599 * do, then just retry at the new offset.
3600 */
3601 ret = io_iter_do_read(req, iter);
3602 if (ret == -EIOCBQUEUED) {
3603 ret = 0;
3604 goto out_free;
3605 } else if (ret > 0 && ret < io_size) {
3606 /* we got some bytes, but not all. retry. */
3607 goto retry;
3608 }
3609 done:
3610 kiocb_done(kiocb, ret, cs);
3611 ret = 0;
3612 out_free:
3613 /* it's reportedly faster than delegating the null check to kfree() */
3614 if (iovec)
3615 kfree(iovec);
3616 return ret;
3617 }
3618
3619 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3620 {
3621 ssize_t ret;
3622
3623 ret = io_prep_rw(req, sqe);
3624 if (ret)
3625 return ret;
3626
3627 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3628 return -EBADF;
3629
3630 /* either don't need iovec imported or already have it */
3631 if (!req->async_data)
3632 return 0;
3633 return io_rw_prep_async(req, WRITE);
3634 }
3635
3636 static int io_write(struct io_kiocb *req, bool force_nonblock,
3637 struct io_comp_state *cs)
3638 {
3639 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3640 struct kiocb *kiocb = &req->rw.kiocb;
3641 struct iov_iter __iter, *iter = &__iter;
3642 struct io_async_rw *rw = req->async_data;
3643 ssize_t ret, ret2, io_size;
3644
3645 if (rw) {
3646 iter = &rw->iter;
3647 iovec = NULL;
3648 } else {
3649 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3650 if (ret < 0)
3651 return ret;
3652 }
3653 io_size = iov_iter_count(iter);
3654 req->result = io_size;
3655
3656 /* Ensure we clear previously set non-block flag */
3657 if (!force_nonblock)
3658 kiocb->ki_flags &= ~IOCB_NOWAIT;
3659 else
3660 kiocb->ki_flags |= IOCB_NOWAIT;
3661
3662 /* If the file doesn't support async, just async punt */
3663 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3664 goto copy_iov;
3665
3666 /* file path doesn't support NOWAIT for non-direct_IO */
3667 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3668 (req->flags & REQ_F_ISREG))
3669 goto copy_iov;
3670
3671 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3672 if (unlikely(ret))
3673 goto out_free;
3674
3675 /*
3676 * Open-code file_start_write here to grab freeze protection,
3677 * which will be released by another thread in
3678 * io_complete_rw(). Fool lockdep by telling it the lock got
3679 * released so that it doesn't complain about the held lock when
3680 * we return to userspace.
3681 */
3682 if (req->flags & REQ_F_ISREG) {
3683 sb_start_write(file_inode(req->file)->i_sb);
3684 __sb_writers_release(file_inode(req->file)->i_sb,
3685 SB_FREEZE_WRITE);
3686 }
3687 kiocb->ki_flags |= IOCB_WRITE;
3688
3689 if (req->file->f_op->write_iter)
3690 ret2 = call_write_iter(req->file, kiocb, iter);
3691 else if (req->file->f_op->write)
3692 ret2 = loop_rw_iter(WRITE, req, iter);
3693 else
3694 ret2 = -EINVAL;
3695
3696 /*
3697 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3698 * retry them without IOCB_NOWAIT.
3699 */
3700 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3701 ret2 = -EAGAIN;
3702 /* no retry on NONBLOCK marked file */
3703 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3704 goto done;
3705 if (!force_nonblock || ret2 != -EAGAIN) {
3706 /* IOPOLL retry should happen for io-wq threads */
3707 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3708 goto copy_iov;
3709 done:
3710 kiocb_done(kiocb, ret2, cs);
3711 } else {
3712 copy_iov:
3713 /* some cases will consume bytes even on error returns */
3714 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3715 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3716 if (!ret)
3717 return -EAGAIN;
3718 }
3719 out_free:
3720 /* it's reportedly faster than delegating the null check to kfree() */
3721 if (iovec)
3722 kfree(iovec);
3723 return ret;
3724 }
3725
3726 static int io_renameat_prep(struct io_kiocb *req,
3727 const struct io_uring_sqe *sqe)
3728 {
3729 struct io_rename *ren = &req->rename;
3730 const char __user *oldf, *newf;
3731
3732 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3733 return -EBADF;
3734
3735 ren->old_dfd = READ_ONCE(sqe->fd);
3736 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3737 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3738 ren->new_dfd = READ_ONCE(sqe->len);
3739 ren->flags = READ_ONCE(sqe->rename_flags);
3740
3741 ren->oldpath = getname(oldf);
3742 if (IS_ERR(ren->oldpath))
3743 return PTR_ERR(ren->oldpath);
3744
3745 ren->newpath = getname(newf);
3746 if (IS_ERR(ren->newpath)) {
3747 putname(ren->oldpath);
3748 return PTR_ERR(ren->newpath);
3749 }
3750
3751 req->flags |= REQ_F_NEED_CLEANUP;
3752 return 0;
3753 }
3754
3755 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3756 {
3757 struct io_rename *ren = &req->rename;
3758 int ret;
3759
3760 if (force_nonblock)
3761 return -EAGAIN;
3762
3763 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3764 ren->newpath, ren->flags);
3765
3766 req->flags &= ~REQ_F_NEED_CLEANUP;
3767 if (ret < 0)
3768 req_set_fail_links(req);
3769 io_req_complete(req, ret);
3770 return 0;
3771 }
3772
3773 static int io_unlinkat_prep(struct io_kiocb *req,
3774 const struct io_uring_sqe *sqe)
3775 {
3776 struct io_unlink *un = &req->unlink;
3777 const char __user *fname;
3778
3779 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3780 return -EBADF;
3781
3782 un->dfd = READ_ONCE(sqe->fd);
3783
3784 un->flags = READ_ONCE(sqe->unlink_flags);
3785 if (un->flags & ~AT_REMOVEDIR)
3786 return -EINVAL;
3787
3788 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3789 un->filename = getname(fname);
3790 if (IS_ERR(un->filename))
3791 return PTR_ERR(un->filename);
3792
3793 req->flags |= REQ_F_NEED_CLEANUP;
3794 return 0;
3795 }
3796
3797 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3798 {
3799 struct io_unlink *un = &req->unlink;
3800 int ret;
3801
3802 if (force_nonblock)
3803 return -EAGAIN;
3804
3805 if (un->flags & AT_REMOVEDIR)
3806 ret = do_rmdir(un->dfd, un->filename);
3807 else
3808 ret = do_unlinkat(un->dfd, un->filename);
3809
3810 req->flags &= ~REQ_F_NEED_CLEANUP;
3811 if (ret < 0)
3812 req_set_fail_links(req);
3813 io_req_complete(req, ret);
3814 return 0;
3815 }
3816
3817 static int io_shutdown_prep(struct io_kiocb *req,
3818 const struct io_uring_sqe *sqe)
3819 {
3820 #if defined(CONFIG_NET)
3821 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3822 return -EINVAL;
3823 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3824 sqe->buf_index)
3825 return -EINVAL;
3826
3827 req->shutdown.how = READ_ONCE(sqe->len);
3828 return 0;
3829 #else
3830 return -EOPNOTSUPP;
3831 #endif
3832 }
3833
3834 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3835 {
3836 #if defined(CONFIG_NET)
3837 struct socket *sock;
3838 int ret;
3839
3840 if (force_nonblock)
3841 return -EAGAIN;
3842
3843 sock = sock_from_file(req->file);
3844 if (unlikely(!sock))
3845 return -ENOTSOCK;
3846
3847 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3848 if (ret < 0)
3849 req_set_fail_links(req);
3850 io_req_complete(req, ret);
3851 return 0;
3852 #else
3853 return -EOPNOTSUPP;
3854 #endif
3855 }
3856
3857 static int __io_splice_prep(struct io_kiocb *req,
3858 const struct io_uring_sqe *sqe)
3859 {
3860 struct io_splice* sp = &req->splice;
3861 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3862
3863 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3864 return -EINVAL;
3865
3866 sp->file_in = NULL;
3867 sp->len = READ_ONCE(sqe->len);
3868 sp->flags = READ_ONCE(sqe->splice_flags);
3869
3870 if (unlikely(sp->flags & ~valid_flags))
3871 return -EINVAL;
3872
3873 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3874 (sp->flags & SPLICE_F_FD_IN_FIXED));
3875 if (!sp->file_in)
3876 return -EBADF;
3877 req->flags |= REQ_F_NEED_CLEANUP;
3878
3879 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3880 /*
3881 * Splice operation will be punted aync, and here need to
3882 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3883 */
3884 io_req_init_async(req);
3885 req->work.flags |= IO_WQ_WORK_UNBOUND;
3886 }
3887
3888 return 0;
3889 }
3890
3891 static int io_tee_prep(struct io_kiocb *req,
3892 const struct io_uring_sqe *sqe)
3893 {
3894 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3895 return -EINVAL;
3896 return __io_splice_prep(req, sqe);
3897 }
3898
3899 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3900 {
3901 struct io_splice *sp = &req->splice;
3902 struct file *in = sp->file_in;
3903 struct file *out = sp->file_out;
3904 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3905 long ret = 0;
3906
3907 if (force_nonblock)
3908 return -EAGAIN;
3909 if (sp->len)
3910 ret = do_tee(in, out, sp->len, flags);
3911
3912 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3913 req->flags &= ~REQ_F_NEED_CLEANUP;
3914
3915 if (ret != sp->len)
3916 req_set_fail_links(req);
3917 io_req_complete(req, ret);
3918 return 0;
3919 }
3920
3921 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3922 {
3923 struct io_splice* sp = &req->splice;
3924
3925 sp->off_in = READ_ONCE(sqe->splice_off_in);
3926 sp->off_out = READ_ONCE(sqe->off);
3927 return __io_splice_prep(req, sqe);
3928 }
3929
3930 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3931 {
3932 struct io_splice *sp = &req->splice;
3933 struct file *in = sp->file_in;
3934 struct file *out = sp->file_out;
3935 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3936 loff_t *poff_in, *poff_out;
3937 long ret = 0;
3938
3939 if (force_nonblock)
3940 return -EAGAIN;
3941
3942 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3943 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3944
3945 if (sp->len)
3946 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3947
3948 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3949 req->flags &= ~REQ_F_NEED_CLEANUP;
3950
3951 if (ret != sp->len)
3952 req_set_fail_links(req);
3953 io_req_complete(req, ret);
3954 return 0;
3955 }
3956
3957 /*
3958 * IORING_OP_NOP just posts a completion event, nothing else.
3959 */
3960 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3961 {
3962 struct io_ring_ctx *ctx = req->ctx;
3963
3964 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3965 return -EINVAL;
3966
3967 __io_req_complete(req, 0, 0, cs);
3968 return 0;
3969 }
3970
3971 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3972 {
3973 struct io_ring_ctx *ctx = req->ctx;
3974
3975 if (!req->file)
3976 return -EBADF;
3977
3978 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3979 return -EINVAL;
3980 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3981 return -EINVAL;
3982
3983 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3984 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3985 return -EINVAL;
3986
3987 req->sync.off = READ_ONCE(sqe->off);
3988 req->sync.len = READ_ONCE(sqe->len);
3989 return 0;
3990 }
3991
3992 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3993 {
3994 loff_t end = req->sync.off + req->sync.len;
3995 int ret;
3996
3997 /* fsync always requires a blocking context */
3998 if (force_nonblock)
3999 return -EAGAIN;
4000
4001 ret = vfs_fsync_range(req->file, req->sync.off,
4002 end > 0 ? end : LLONG_MAX,
4003 req->sync.flags & IORING_FSYNC_DATASYNC);
4004 if (ret < 0)
4005 req_set_fail_links(req);
4006 io_req_complete(req, ret);
4007 return 0;
4008 }
4009
4010 static int io_fallocate_prep(struct io_kiocb *req,
4011 const struct io_uring_sqe *sqe)
4012 {
4013 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
4014 return -EINVAL;
4015 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4016 return -EINVAL;
4017
4018 req->sync.off = READ_ONCE(sqe->off);
4019 req->sync.len = READ_ONCE(sqe->addr);
4020 req->sync.mode = READ_ONCE(sqe->len);
4021 return 0;
4022 }
4023
4024 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
4025 {
4026 int ret;
4027
4028 /* fallocate always requiring blocking context */
4029 if (force_nonblock)
4030 return -EAGAIN;
4031 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4032 req->sync.len);
4033 if (ret < 0)
4034 req_set_fail_links(req);
4035 io_req_complete(req, ret);
4036 return 0;
4037 }
4038
4039 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4040 {
4041 const char __user *fname;
4042 int ret;
4043
4044 if (unlikely(sqe->ioprio || sqe->buf_index))
4045 return -EINVAL;
4046 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4047 return -EBADF;
4048
4049 /* open.how should be already initialised */
4050 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4051 req->open.how.flags |= O_LARGEFILE;
4052
4053 req->open.dfd = READ_ONCE(sqe->fd);
4054 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4055 req->open.filename = getname(fname);
4056 if (IS_ERR(req->open.filename)) {
4057 ret = PTR_ERR(req->open.filename);
4058 req->open.filename = NULL;
4059 return ret;
4060 }
4061 req->open.nofile = rlimit(RLIMIT_NOFILE);
4062 req->open.ignore_nonblock = false;
4063 req->flags |= REQ_F_NEED_CLEANUP;
4064 return 0;
4065 }
4066
4067 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4068 {
4069 u64 flags, mode;
4070
4071 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4072 return -EINVAL;
4073 mode = READ_ONCE(sqe->len);
4074 flags = READ_ONCE(sqe->open_flags);
4075 req->open.how = build_open_how(flags, mode);
4076 return __io_openat_prep(req, sqe);
4077 }
4078
4079 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4080 {
4081 struct open_how __user *how;
4082 size_t len;
4083 int ret;
4084
4085 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4086 return -EINVAL;
4087 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4088 len = READ_ONCE(sqe->len);
4089 if (len < OPEN_HOW_SIZE_VER0)
4090 return -EINVAL;
4091
4092 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4093 len);
4094 if (ret)
4095 return ret;
4096
4097 return __io_openat_prep(req, sqe);
4098 }
4099
4100 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4101 {
4102 struct open_flags op;
4103 struct file *file;
4104 int ret;
4105
4106 if (force_nonblock && !req->open.ignore_nonblock)
4107 return -EAGAIN;
4108
4109 ret = build_open_flags(&req->open.how, &op);
4110 if (ret)
4111 goto err;
4112
4113 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4114 if (ret < 0)
4115 goto err;
4116
4117 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4118 if (IS_ERR(file)) {
4119 put_unused_fd(ret);
4120 ret = PTR_ERR(file);
4121 /*
4122 * A work-around to ensure that /proc/self works that way
4123 * that it should - if we get -EOPNOTSUPP back, then assume
4124 * that proc_self_get_link() failed us because we're in async
4125 * context. We should be safe to retry this from the task
4126 * itself with force_nonblock == false set, as it should not
4127 * block on lookup. Would be nice to know this upfront and
4128 * avoid the async dance, but doesn't seem feasible.
4129 */
4130 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4131 req->open.ignore_nonblock = true;
4132 refcount_inc(&req->refs);
4133 io_req_task_queue(req);
4134 return 0;
4135 }
4136 } else {
4137 fsnotify_open(file);
4138 fd_install(ret, file);
4139 }
4140 err:
4141 putname(req->open.filename);
4142 req->flags &= ~REQ_F_NEED_CLEANUP;
4143 if (ret < 0)
4144 req_set_fail_links(req);
4145 io_req_complete(req, ret);
4146 return 0;
4147 }
4148
4149 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4150 {
4151 return io_openat2(req, force_nonblock);
4152 }
4153
4154 static int io_remove_buffers_prep(struct io_kiocb *req,
4155 const struct io_uring_sqe *sqe)
4156 {
4157 struct io_provide_buf *p = &req->pbuf;
4158 u64 tmp;
4159
4160 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4161 return -EINVAL;
4162
4163 tmp = READ_ONCE(sqe->fd);
4164 if (!tmp || tmp > USHRT_MAX)
4165 return -EINVAL;
4166
4167 memset(p, 0, sizeof(*p));
4168 p->nbufs = tmp;
4169 p->bgid = READ_ONCE(sqe->buf_group);
4170 return 0;
4171 }
4172
4173 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4174 int bgid, unsigned nbufs)
4175 {
4176 unsigned i = 0;
4177
4178 /* shouldn't happen */
4179 if (!nbufs)
4180 return 0;
4181
4182 /* the head kbuf is the list itself */
4183 while (!list_empty(&buf->list)) {
4184 struct io_buffer *nxt;
4185
4186 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4187 list_del(&nxt->list);
4188 kfree(nxt);
4189 if (++i == nbufs)
4190 return i;
4191 }
4192 i++;
4193 kfree(buf);
4194 idr_remove(&ctx->io_buffer_idr, bgid);
4195
4196 return i;
4197 }
4198
4199 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4200 struct io_comp_state *cs)
4201 {
4202 struct io_provide_buf *p = &req->pbuf;
4203 struct io_ring_ctx *ctx = req->ctx;
4204 struct io_buffer *head;
4205 int ret = 0;
4206
4207 io_ring_submit_lock(ctx, !force_nonblock);
4208
4209 lockdep_assert_held(&ctx->uring_lock);
4210
4211 ret = -ENOENT;
4212 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4213 if (head)
4214 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4215 if (ret < 0)
4216 req_set_fail_links(req);
4217
4218 /* need to hold the lock to complete IOPOLL requests */
4219 if (ctx->flags & IORING_SETUP_IOPOLL) {
4220 __io_req_complete(req, ret, 0, cs);
4221 io_ring_submit_unlock(ctx, !force_nonblock);
4222 } else {
4223 io_ring_submit_unlock(ctx, !force_nonblock);
4224 __io_req_complete(req, ret, 0, cs);
4225 }
4226 return 0;
4227 }
4228
4229 static int io_provide_buffers_prep(struct io_kiocb *req,
4230 const struct io_uring_sqe *sqe)
4231 {
4232 struct io_provide_buf *p = &req->pbuf;
4233 u64 tmp;
4234
4235 if (sqe->ioprio || sqe->rw_flags)
4236 return -EINVAL;
4237
4238 tmp = READ_ONCE(sqe->fd);
4239 if (!tmp || tmp > USHRT_MAX)
4240 return -E2BIG;
4241 p->nbufs = tmp;
4242 p->addr = READ_ONCE(sqe->addr);
4243 p->len = READ_ONCE(sqe->len);
4244
4245 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4246 return -EFAULT;
4247
4248 p->bgid = READ_ONCE(sqe->buf_group);
4249 tmp = READ_ONCE(sqe->off);
4250 if (tmp > USHRT_MAX)
4251 return -E2BIG;
4252 p->bid = tmp;
4253 return 0;
4254 }
4255
4256 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4257 {
4258 struct io_buffer *buf;
4259 u64 addr = pbuf->addr;
4260 int i, bid = pbuf->bid;
4261
4262 for (i = 0; i < pbuf->nbufs; i++) {
4263 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4264 if (!buf)
4265 break;
4266
4267 buf->addr = addr;
4268 buf->len = pbuf->len;
4269 buf->bid = bid;
4270 addr += pbuf->len;
4271 bid++;
4272 if (!*head) {
4273 INIT_LIST_HEAD(&buf->list);
4274 *head = buf;
4275 } else {
4276 list_add_tail(&buf->list, &(*head)->list);
4277 }
4278 }
4279
4280 return i ? i : -ENOMEM;
4281 }
4282
4283 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4284 struct io_comp_state *cs)
4285 {
4286 struct io_provide_buf *p = &req->pbuf;
4287 struct io_ring_ctx *ctx = req->ctx;
4288 struct io_buffer *head, *list;
4289 int ret = 0;
4290
4291 io_ring_submit_lock(ctx, !force_nonblock);
4292
4293 lockdep_assert_held(&ctx->uring_lock);
4294
4295 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4296
4297 ret = io_add_buffers(p, &head);
4298 if (ret < 0)
4299 goto out;
4300
4301 if (!list) {
4302 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4303 GFP_KERNEL);
4304 if (ret < 0) {
4305 __io_remove_buffers(ctx, head, p->bgid, -1U);
4306 goto out;
4307 }
4308 }
4309 out:
4310 if (ret < 0)
4311 req_set_fail_links(req);
4312
4313 /* need to hold the lock to complete IOPOLL requests */
4314 if (ctx->flags & IORING_SETUP_IOPOLL) {
4315 __io_req_complete(req, ret, 0, cs);
4316 io_ring_submit_unlock(ctx, !force_nonblock);
4317 } else {
4318 io_ring_submit_unlock(ctx, !force_nonblock);
4319 __io_req_complete(req, ret, 0, cs);
4320 }
4321 return 0;
4322 }
4323
4324 static int io_epoll_ctl_prep(struct io_kiocb *req,
4325 const struct io_uring_sqe *sqe)
4326 {
4327 #if defined(CONFIG_EPOLL)
4328 if (sqe->ioprio || sqe->buf_index)
4329 return -EINVAL;
4330 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4331 return -EINVAL;
4332
4333 req->epoll.epfd = READ_ONCE(sqe->fd);
4334 req->epoll.op = READ_ONCE(sqe->len);
4335 req->epoll.fd = READ_ONCE(sqe->off);
4336
4337 if (ep_op_has_event(req->epoll.op)) {
4338 struct epoll_event __user *ev;
4339
4340 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4341 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4342 return -EFAULT;
4343 }
4344
4345 return 0;
4346 #else
4347 return -EOPNOTSUPP;
4348 #endif
4349 }
4350
4351 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4352 struct io_comp_state *cs)
4353 {
4354 #if defined(CONFIG_EPOLL)
4355 struct io_epoll *ie = &req->epoll;
4356 int ret;
4357
4358 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4359 if (force_nonblock && ret == -EAGAIN)
4360 return -EAGAIN;
4361
4362 if (ret < 0)
4363 req_set_fail_links(req);
4364 __io_req_complete(req, ret, 0, cs);
4365 return 0;
4366 #else
4367 return -EOPNOTSUPP;
4368 #endif
4369 }
4370
4371 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4372 {
4373 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4374 if (sqe->ioprio || sqe->buf_index || sqe->off)
4375 return -EINVAL;
4376 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4377 return -EINVAL;
4378
4379 req->madvise.addr = READ_ONCE(sqe->addr);
4380 req->madvise.len = READ_ONCE(sqe->len);
4381 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4382 return 0;
4383 #else
4384 return -EOPNOTSUPP;
4385 #endif
4386 }
4387
4388 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4389 {
4390 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4391 struct io_madvise *ma = &req->madvise;
4392 int ret;
4393
4394 if (force_nonblock)
4395 return -EAGAIN;
4396
4397 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4398 if (ret < 0)
4399 req_set_fail_links(req);
4400 io_req_complete(req, ret);
4401 return 0;
4402 #else
4403 return -EOPNOTSUPP;
4404 #endif
4405 }
4406
4407 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4408 {
4409 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4410 return -EINVAL;
4411 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4412 return -EINVAL;
4413
4414 req->fadvise.offset = READ_ONCE(sqe->off);
4415 req->fadvise.len = READ_ONCE(sqe->len);
4416 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4417 return 0;
4418 }
4419
4420 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4421 {
4422 struct io_fadvise *fa = &req->fadvise;
4423 int ret;
4424
4425 if (force_nonblock) {
4426 switch (fa->advice) {
4427 case POSIX_FADV_NORMAL:
4428 case POSIX_FADV_RANDOM:
4429 case POSIX_FADV_SEQUENTIAL:
4430 break;
4431 default:
4432 return -EAGAIN;
4433 }
4434 }
4435
4436 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4437 if (ret < 0)
4438 req_set_fail_links(req);
4439 io_req_complete(req, ret);
4440 return 0;
4441 }
4442
4443 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4444 {
4445 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4446 return -EINVAL;
4447 if (sqe->ioprio || sqe->buf_index)
4448 return -EINVAL;
4449 if (req->flags & REQ_F_FIXED_FILE)
4450 return -EBADF;
4451
4452 req->statx.dfd = READ_ONCE(sqe->fd);
4453 req->statx.mask = READ_ONCE(sqe->len);
4454 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4455 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4456 req->statx.flags = READ_ONCE(sqe->statx_flags);
4457
4458 return 0;
4459 }
4460
4461 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4462 {
4463 struct io_statx *ctx = &req->statx;
4464 int ret;
4465
4466 if (force_nonblock) {
4467 /* only need file table for an actual valid fd */
4468 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4469 req->flags |= REQ_F_NO_FILE_TABLE;
4470 return -EAGAIN;
4471 }
4472
4473 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4474 ctx->buffer);
4475
4476 if (ret < 0)
4477 req_set_fail_links(req);
4478 io_req_complete(req, ret);
4479 return 0;
4480 }
4481
4482 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4483 {
4484 /*
4485 * If we queue this for async, it must not be cancellable. That would
4486 * leave the 'file' in an undeterminate state, and here need to modify
4487 * io_wq_work.flags, so initialize io_wq_work firstly.
4488 */
4489 io_req_init_async(req);
4490
4491 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4492 return -EINVAL;
4493 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4494 sqe->rw_flags || sqe->buf_index)
4495 return -EINVAL;
4496 if (req->flags & REQ_F_FIXED_FILE)
4497 return -EBADF;
4498
4499 req->close.fd = READ_ONCE(sqe->fd);
4500 if ((req->file && req->file->f_op == &io_uring_fops))
4501 return -EBADF;
4502
4503 req->close.put_file = NULL;
4504 return 0;
4505 }
4506
4507 static int io_close(struct io_kiocb *req, bool force_nonblock,
4508 struct io_comp_state *cs)
4509 {
4510 struct io_close *close = &req->close;
4511 int ret;
4512
4513 /* might be already done during nonblock submission */
4514 if (!close->put_file) {
4515 ret = close_fd_get_file(close->fd, &close->put_file);
4516 if (ret < 0)
4517 return (ret == -ENOENT) ? -EBADF : ret;
4518 }
4519
4520 /* if the file has a flush method, be safe and punt to async */
4521 if (close->put_file->f_op->flush && force_nonblock) {
4522 /* not safe to cancel at this point */
4523 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4524 /* was never set, but play safe */
4525 req->flags &= ~REQ_F_NOWAIT;
4526 /* avoid grabbing files - we don't need the files */
4527 req->flags |= REQ_F_NO_FILE_TABLE;
4528 return -EAGAIN;
4529 }
4530
4531 /* No ->flush() or already async, safely close from here */
4532 ret = filp_close(close->put_file, req->work.identity->files);
4533 if (ret < 0)
4534 req_set_fail_links(req);
4535 fput(close->put_file);
4536 close->put_file = NULL;
4537 __io_req_complete(req, ret, 0, cs);
4538 return 0;
4539 }
4540
4541 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4542 {
4543 struct io_ring_ctx *ctx = req->ctx;
4544
4545 if (!req->file)
4546 return -EBADF;
4547
4548 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4549 return -EINVAL;
4550 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4551 return -EINVAL;
4552
4553 req->sync.off = READ_ONCE(sqe->off);
4554 req->sync.len = READ_ONCE(sqe->len);
4555 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4556 return 0;
4557 }
4558
4559 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4560 {
4561 int ret;
4562
4563 /* sync_file_range always requires a blocking context */
4564 if (force_nonblock)
4565 return -EAGAIN;
4566
4567 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4568 req->sync.flags);
4569 if (ret < 0)
4570 req_set_fail_links(req);
4571 io_req_complete(req, ret);
4572 return 0;
4573 }
4574
4575 #if defined(CONFIG_NET)
4576 static int io_setup_async_msg(struct io_kiocb *req,
4577 struct io_async_msghdr *kmsg)
4578 {
4579 struct io_async_msghdr *async_msg = req->async_data;
4580
4581 if (async_msg)
4582 return -EAGAIN;
4583 if (io_alloc_async_data(req)) {
4584 if (kmsg->iov != kmsg->fast_iov)
4585 kfree(kmsg->iov);
4586 return -ENOMEM;
4587 }
4588 async_msg = req->async_data;
4589 req->flags |= REQ_F_NEED_CLEANUP;
4590 memcpy(async_msg, kmsg, sizeof(*kmsg));
4591 return -EAGAIN;
4592 }
4593
4594 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4595 struct io_async_msghdr *iomsg)
4596 {
4597 iomsg->iov = iomsg->fast_iov;
4598 iomsg->msg.msg_name = &iomsg->addr;
4599 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4600 req->sr_msg.msg_flags, &iomsg->iov);
4601 }
4602
4603 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4604 {
4605 struct io_async_msghdr *async_msg = req->async_data;
4606 struct io_sr_msg *sr = &req->sr_msg;
4607 int ret;
4608
4609 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4610 return -EINVAL;
4611
4612 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4613 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4614 sr->len = READ_ONCE(sqe->len);
4615
4616 #ifdef CONFIG_COMPAT
4617 if (req->ctx->compat)
4618 sr->msg_flags |= MSG_CMSG_COMPAT;
4619 #endif
4620
4621 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4622 return 0;
4623 ret = io_sendmsg_copy_hdr(req, async_msg);
4624 if (!ret)
4625 req->flags |= REQ_F_NEED_CLEANUP;
4626 return ret;
4627 }
4628
4629 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4630 struct io_comp_state *cs)
4631 {
4632 struct io_async_msghdr iomsg, *kmsg;
4633 struct socket *sock;
4634 unsigned flags;
4635 int ret;
4636
4637 sock = sock_from_file(req->file);
4638 if (unlikely(!sock))
4639 return -ENOTSOCK;
4640
4641 if (req->async_data) {
4642 kmsg = req->async_data;
4643 kmsg->msg.msg_name = &kmsg->addr;
4644 /* if iov is set, it's allocated already */
4645 if (!kmsg->iov)
4646 kmsg->iov = kmsg->fast_iov;
4647 kmsg->msg.msg_iter.iov = kmsg->iov;
4648 } else {
4649 ret = io_sendmsg_copy_hdr(req, &iomsg);
4650 if (ret)
4651 return ret;
4652 kmsg = &iomsg;
4653 }
4654
4655 flags = req->sr_msg.msg_flags;
4656 if (flags & MSG_DONTWAIT)
4657 req->flags |= REQ_F_NOWAIT;
4658 else if (force_nonblock)
4659 flags |= MSG_DONTWAIT;
4660
4661 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4662 if (force_nonblock && ret == -EAGAIN)
4663 return io_setup_async_msg(req, kmsg);
4664 if (ret == -ERESTARTSYS)
4665 ret = -EINTR;
4666
4667 if (kmsg->iov != kmsg->fast_iov)
4668 kfree(kmsg->iov);
4669 req->flags &= ~REQ_F_NEED_CLEANUP;
4670 if (ret < 0)
4671 req_set_fail_links(req);
4672 __io_req_complete(req, ret, 0, cs);
4673 return 0;
4674 }
4675
4676 static int io_send(struct io_kiocb *req, bool force_nonblock,
4677 struct io_comp_state *cs)
4678 {
4679 struct io_sr_msg *sr = &req->sr_msg;
4680 struct msghdr msg;
4681 struct iovec iov;
4682 struct socket *sock;
4683 unsigned flags;
4684 int ret;
4685
4686 sock = sock_from_file(req->file);
4687 if (unlikely(!sock))
4688 return -ENOTSOCK;
4689
4690 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4691 if (unlikely(ret))
4692 return ret;
4693
4694 msg.msg_name = NULL;
4695 msg.msg_control = NULL;
4696 msg.msg_controllen = 0;
4697 msg.msg_namelen = 0;
4698
4699 flags = req->sr_msg.msg_flags;
4700 if (flags & MSG_DONTWAIT)
4701 req->flags |= REQ_F_NOWAIT;
4702 else if (force_nonblock)
4703 flags |= MSG_DONTWAIT;
4704
4705 msg.msg_flags = flags;
4706 ret = sock_sendmsg(sock, &msg);
4707 if (force_nonblock && ret == -EAGAIN)
4708 return -EAGAIN;
4709 if (ret == -ERESTARTSYS)
4710 ret = -EINTR;
4711
4712 if (ret < 0)
4713 req_set_fail_links(req);
4714 __io_req_complete(req, ret, 0, cs);
4715 return 0;
4716 }
4717
4718 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4719 struct io_async_msghdr *iomsg)
4720 {
4721 struct io_sr_msg *sr = &req->sr_msg;
4722 struct iovec __user *uiov;
4723 size_t iov_len;
4724 int ret;
4725
4726 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4727 &iomsg->uaddr, &uiov, &iov_len);
4728 if (ret)
4729 return ret;
4730
4731 if (req->flags & REQ_F_BUFFER_SELECT) {
4732 if (iov_len > 1)
4733 return -EINVAL;
4734 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4735 return -EFAULT;
4736 sr->len = iomsg->iov[0].iov_len;
4737 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4738 sr->len);
4739 iomsg->iov = NULL;
4740 } else {
4741 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4742 &iomsg->iov, &iomsg->msg.msg_iter,
4743 false);
4744 if (ret > 0)
4745 ret = 0;
4746 }
4747
4748 return ret;
4749 }
4750
4751 #ifdef CONFIG_COMPAT
4752 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4753 struct io_async_msghdr *iomsg)
4754 {
4755 struct compat_msghdr __user *msg_compat;
4756 struct io_sr_msg *sr = &req->sr_msg;
4757 struct compat_iovec __user *uiov;
4758 compat_uptr_t ptr;
4759 compat_size_t len;
4760 int ret;
4761
4762 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4763 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4764 &ptr, &len);
4765 if (ret)
4766 return ret;
4767
4768 uiov = compat_ptr(ptr);
4769 if (req->flags & REQ_F_BUFFER_SELECT) {
4770 compat_ssize_t clen;
4771
4772 if (len > 1)
4773 return -EINVAL;
4774 if (!access_ok(uiov, sizeof(*uiov)))
4775 return -EFAULT;
4776 if (__get_user(clen, &uiov->iov_len))
4777 return -EFAULT;
4778 if (clen < 0)
4779 return -EINVAL;
4780 sr->len = clen;
4781 iomsg->iov[0].iov_len = clen;
4782 iomsg->iov = NULL;
4783 } else {
4784 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4785 UIO_FASTIOV, &iomsg->iov,
4786 &iomsg->msg.msg_iter, true);
4787 if (ret < 0)
4788 return ret;
4789 }
4790
4791 return 0;
4792 }
4793 #endif
4794
4795 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4796 struct io_async_msghdr *iomsg)
4797 {
4798 iomsg->msg.msg_name = &iomsg->addr;
4799 iomsg->iov = iomsg->fast_iov;
4800
4801 #ifdef CONFIG_COMPAT
4802 if (req->ctx->compat)
4803 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4804 #endif
4805
4806 return __io_recvmsg_copy_hdr(req, iomsg);
4807 }
4808
4809 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4810 bool needs_lock)
4811 {
4812 struct io_sr_msg *sr = &req->sr_msg;
4813 struct io_buffer *kbuf;
4814
4815 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4816 if (IS_ERR(kbuf))
4817 return kbuf;
4818
4819 sr->kbuf = kbuf;
4820 req->flags |= REQ_F_BUFFER_SELECTED;
4821 return kbuf;
4822 }
4823
4824 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4825 {
4826 return io_put_kbuf(req, req->sr_msg.kbuf);
4827 }
4828
4829 static int io_recvmsg_prep(struct io_kiocb *req,
4830 const struct io_uring_sqe *sqe)
4831 {
4832 struct io_async_msghdr *async_msg = req->async_data;
4833 struct io_sr_msg *sr = &req->sr_msg;
4834 int ret;
4835
4836 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4837 return -EINVAL;
4838
4839 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4840 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4841 sr->len = READ_ONCE(sqe->len);
4842 sr->bgid = READ_ONCE(sqe->buf_group);
4843
4844 #ifdef CONFIG_COMPAT
4845 if (req->ctx->compat)
4846 sr->msg_flags |= MSG_CMSG_COMPAT;
4847 #endif
4848
4849 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4850 return 0;
4851 ret = io_recvmsg_copy_hdr(req, async_msg);
4852 if (!ret)
4853 req->flags |= REQ_F_NEED_CLEANUP;
4854 return ret;
4855 }
4856
4857 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4858 struct io_comp_state *cs)
4859 {
4860 struct io_async_msghdr iomsg, *kmsg;
4861 struct socket *sock;
4862 struct io_buffer *kbuf;
4863 unsigned flags;
4864 int ret, cflags = 0;
4865
4866 sock = sock_from_file(req->file);
4867 if (unlikely(!sock))
4868 return -ENOTSOCK;
4869
4870 if (req->async_data) {
4871 kmsg = req->async_data;
4872 kmsg->msg.msg_name = &kmsg->addr;
4873 /* if iov is set, it's allocated already */
4874 if (!kmsg->iov)
4875 kmsg->iov = kmsg->fast_iov;
4876 kmsg->msg.msg_iter.iov = kmsg->iov;
4877 } else {
4878 ret = io_recvmsg_copy_hdr(req, &iomsg);
4879 if (ret)
4880 return ret;
4881 kmsg = &iomsg;
4882 }
4883
4884 if (req->flags & REQ_F_BUFFER_SELECT) {
4885 kbuf = io_recv_buffer_select(req, !force_nonblock);
4886 if (IS_ERR(kbuf))
4887 return PTR_ERR(kbuf);
4888 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4889 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4890 1, req->sr_msg.len);
4891 }
4892
4893 flags = req->sr_msg.msg_flags;
4894 if (flags & MSG_DONTWAIT)
4895 req->flags |= REQ_F_NOWAIT;
4896 else if (force_nonblock)
4897 flags |= MSG_DONTWAIT;
4898
4899 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4900 kmsg->uaddr, flags);
4901 if (force_nonblock && ret == -EAGAIN)
4902 return io_setup_async_msg(req, kmsg);
4903 if (ret == -ERESTARTSYS)
4904 ret = -EINTR;
4905
4906 if (req->flags & REQ_F_BUFFER_SELECTED)
4907 cflags = io_put_recv_kbuf(req);
4908 if (kmsg->iov != kmsg->fast_iov)
4909 kfree(kmsg->iov);
4910 req->flags &= ~REQ_F_NEED_CLEANUP;
4911 if (ret < 0)
4912 req_set_fail_links(req);
4913 __io_req_complete(req, ret, cflags, cs);
4914 return 0;
4915 }
4916
4917 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4918 struct io_comp_state *cs)
4919 {
4920 struct io_buffer *kbuf;
4921 struct io_sr_msg *sr = &req->sr_msg;
4922 struct msghdr msg;
4923 void __user *buf = sr->buf;
4924 struct socket *sock;
4925 struct iovec iov;
4926 unsigned flags;
4927 int ret, cflags = 0;
4928
4929 sock = sock_from_file(req->file);
4930 if (unlikely(!sock))
4931 return -ENOTSOCK;
4932
4933 if (req->flags & REQ_F_BUFFER_SELECT) {
4934 kbuf = io_recv_buffer_select(req, !force_nonblock);
4935 if (IS_ERR(kbuf))
4936 return PTR_ERR(kbuf);
4937 buf = u64_to_user_ptr(kbuf->addr);
4938 }
4939
4940 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4941 if (unlikely(ret))
4942 goto out_free;
4943
4944 msg.msg_name = NULL;
4945 msg.msg_control = NULL;
4946 msg.msg_controllen = 0;
4947 msg.msg_namelen = 0;
4948 msg.msg_iocb = NULL;
4949 msg.msg_flags = 0;
4950
4951 flags = req->sr_msg.msg_flags;
4952 if (flags & MSG_DONTWAIT)
4953 req->flags |= REQ_F_NOWAIT;
4954 else if (force_nonblock)
4955 flags |= MSG_DONTWAIT;
4956
4957 ret = sock_recvmsg(sock, &msg, flags);
4958 if (force_nonblock && ret == -EAGAIN)
4959 return -EAGAIN;
4960 if (ret == -ERESTARTSYS)
4961 ret = -EINTR;
4962 out_free:
4963 if (req->flags & REQ_F_BUFFER_SELECTED)
4964 cflags = io_put_recv_kbuf(req);
4965 if (ret < 0)
4966 req_set_fail_links(req);
4967 __io_req_complete(req, ret, cflags, cs);
4968 return 0;
4969 }
4970
4971 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4972 {
4973 struct io_accept *accept = &req->accept;
4974
4975 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4976 return -EINVAL;
4977 if (sqe->ioprio || sqe->len || sqe->buf_index)
4978 return -EINVAL;
4979
4980 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4981 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4982 accept->flags = READ_ONCE(sqe->accept_flags);
4983 accept->nofile = rlimit(RLIMIT_NOFILE);
4984 return 0;
4985 }
4986
4987 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4988 struct io_comp_state *cs)
4989 {
4990 struct io_accept *accept = &req->accept;
4991 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4992 int ret;
4993
4994 if (req->file->f_flags & O_NONBLOCK)
4995 req->flags |= REQ_F_NOWAIT;
4996
4997 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4998 accept->addr_len, accept->flags,
4999 accept->nofile);
5000 if (ret == -EAGAIN && force_nonblock)
5001 return -EAGAIN;
5002 if (ret < 0) {
5003 if (ret == -ERESTARTSYS)
5004 ret = -EINTR;
5005 req_set_fail_links(req);
5006 }
5007 __io_req_complete(req, ret, 0, cs);
5008 return 0;
5009 }
5010
5011 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5012 {
5013 struct io_connect *conn = &req->connect;
5014 struct io_async_connect *io = req->async_data;
5015
5016 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5017 return -EINVAL;
5018 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5019 return -EINVAL;
5020
5021 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5022 conn->addr_len = READ_ONCE(sqe->addr2);
5023
5024 if (!io)
5025 return 0;
5026
5027 return move_addr_to_kernel(conn->addr, conn->addr_len,
5028 &io->address);
5029 }
5030
5031 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5032 struct io_comp_state *cs)
5033 {
5034 struct io_async_connect __io, *io;
5035 unsigned file_flags;
5036 int ret;
5037
5038 if (req->async_data) {
5039 io = req->async_data;
5040 } else {
5041 ret = move_addr_to_kernel(req->connect.addr,
5042 req->connect.addr_len,
5043 &__io.address);
5044 if (ret)
5045 goto out;
5046 io = &__io;
5047 }
5048
5049 file_flags = force_nonblock ? O_NONBLOCK : 0;
5050
5051 ret = __sys_connect_file(req->file, &io->address,
5052 req->connect.addr_len, file_flags);
5053 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5054 if (req->async_data)
5055 return -EAGAIN;
5056 if (io_alloc_async_data(req)) {
5057 ret = -ENOMEM;
5058 goto out;
5059 }
5060 io = req->async_data;
5061 memcpy(req->async_data, &__io, sizeof(__io));
5062 return -EAGAIN;
5063 }
5064 if (ret == -ERESTARTSYS)
5065 ret = -EINTR;
5066 out:
5067 if (ret < 0)
5068 req_set_fail_links(req);
5069 __io_req_complete(req, ret, 0, cs);
5070 return 0;
5071 }
5072 #else /* !CONFIG_NET */
5073 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5074 {
5075 return -EOPNOTSUPP;
5076 }
5077
5078 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5079 struct io_comp_state *cs)
5080 {
5081 return -EOPNOTSUPP;
5082 }
5083
5084 static int io_send(struct io_kiocb *req, bool force_nonblock,
5085 struct io_comp_state *cs)
5086 {
5087 return -EOPNOTSUPP;
5088 }
5089
5090 static int io_recvmsg_prep(struct io_kiocb *req,
5091 const struct io_uring_sqe *sqe)
5092 {
5093 return -EOPNOTSUPP;
5094 }
5095
5096 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5097 struct io_comp_state *cs)
5098 {
5099 return -EOPNOTSUPP;
5100 }
5101
5102 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5103 struct io_comp_state *cs)
5104 {
5105 return -EOPNOTSUPP;
5106 }
5107
5108 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5109 {
5110 return -EOPNOTSUPP;
5111 }
5112
5113 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5114 struct io_comp_state *cs)
5115 {
5116 return -EOPNOTSUPP;
5117 }
5118
5119 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5120 {
5121 return -EOPNOTSUPP;
5122 }
5123
5124 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5125 struct io_comp_state *cs)
5126 {
5127 return -EOPNOTSUPP;
5128 }
5129 #endif /* CONFIG_NET */
5130
5131 struct io_poll_table {
5132 struct poll_table_struct pt;
5133 struct io_kiocb *req;
5134 int error;
5135 };
5136
5137 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5138 __poll_t mask, task_work_func_t func)
5139 {
5140 int ret;
5141
5142 /* for instances that support it check for an event match first: */
5143 if (mask && !(mask & poll->events))
5144 return 0;
5145
5146 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5147
5148 list_del_init(&poll->wait.entry);
5149
5150 req->result = mask;
5151 init_task_work(&req->task_work, func);
5152 percpu_ref_get(&req->ctx->refs);
5153
5154 /*
5155 * If this fails, then the task is exiting. When a task exits, the
5156 * work gets canceled, so just cancel this request as well instead
5157 * of executing it. We can't safely execute it anyway, as we may not
5158 * have the needed state needed for it anyway.
5159 */
5160 ret = io_req_task_work_add(req);
5161 if (unlikely(ret)) {
5162 struct task_struct *tsk;
5163
5164 WRITE_ONCE(poll->canceled, true);
5165 tsk = io_wq_get_task(req->ctx->io_wq);
5166 task_work_add(tsk, &req->task_work, TWA_NONE);
5167 wake_up_process(tsk);
5168 }
5169 return 1;
5170 }
5171
5172 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5173 __acquires(&req->ctx->completion_lock)
5174 {
5175 struct io_ring_ctx *ctx = req->ctx;
5176
5177 if (!req->result && !READ_ONCE(poll->canceled)) {
5178 struct poll_table_struct pt = { ._key = poll->events };
5179
5180 req->result = vfs_poll(req->file, &pt) & poll->events;
5181 }
5182
5183 spin_lock_irq(&ctx->completion_lock);
5184 if (!req->result && !READ_ONCE(poll->canceled)) {
5185 add_wait_queue(poll->head, &poll->wait);
5186 return true;
5187 }
5188
5189 return false;
5190 }
5191
5192 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5193 {
5194 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5195 if (req->opcode == IORING_OP_POLL_ADD)
5196 return req->async_data;
5197 return req->apoll->double_poll;
5198 }
5199
5200 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5201 {
5202 if (req->opcode == IORING_OP_POLL_ADD)
5203 return &req->poll;
5204 return &req->apoll->poll;
5205 }
5206
5207 static void io_poll_remove_double(struct io_kiocb *req)
5208 {
5209 struct io_poll_iocb *poll = io_poll_get_double(req);
5210
5211 lockdep_assert_held(&req->ctx->completion_lock);
5212
5213 if (poll && poll->head) {
5214 struct wait_queue_head *head = poll->head;
5215
5216 spin_lock(&head->lock);
5217 list_del_init(&poll->wait.entry);
5218 if (poll->wait.private)
5219 refcount_dec(&req->refs);
5220 poll->head = NULL;
5221 spin_unlock(&head->lock);
5222 }
5223 }
5224
5225 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5226 {
5227 struct io_ring_ctx *ctx = req->ctx;
5228
5229 io_poll_remove_double(req);
5230 req->poll.done = true;
5231 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5232 io_commit_cqring(ctx);
5233 }
5234
5235 static void io_poll_task_func(struct callback_head *cb)
5236 {
5237 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5238 struct io_ring_ctx *ctx = req->ctx;
5239 struct io_kiocb *nxt;
5240
5241 if (io_poll_rewait(req, &req->poll)) {
5242 spin_unlock_irq(&ctx->completion_lock);
5243 } else {
5244 hash_del(&req->hash_node);
5245 io_poll_complete(req, req->result, 0);
5246 spin_unlock_irq(&ctx->completion_lock);
5247
5248 nxt = io_put_req_find_next(req);
5249 io_cqring_ev_posted(ctx);
5250 if (nxt)
5251 __io_req_task_submit(nxt);
5252 }
5253
5254 percpu_ref_put(&ctx->refs);
5255 }
5256
5257 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5258 int sync, void *key)
5259 {
5260 struct io_kiocb *req = wait->private;
5261 struct io_poll_iocb *poll = io_poll_get_single(req);
5262 __poll_t mask = key_to_poll(key);
5263
5264 /* for instances that support it check for an event match first: */
5265 if (mask && !(mask & poll->events))
5266 return 0;
5267
5268 list_del_init(&wait->entry);
5269
5270 if (poll && poll->head) {
5271 bool done;
5272
5273 spin_lock(&poll->head->lock);
5274 done = list_empty(&poll->wait.entry);
5275 if (!done)
5276 list_del_init(&poll->wait.entry);
5277 /* make sure double remove sees this as being gone */
5278 wait->private = NULL;
5279 spin_unlock(&poll->head->lock);
5280 if (!done) {
5281 /* use wait func handler, so it matches the rq type */
5282 poll->wait.func(&poll->wait, mode, sync, key);
5283 }
5284 }
5285 refcount_dec(&req->refs);
5286 return 1;
5287 }
5288
5289 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5290 wait_queue_func_t wake_func)
5291 {
5292 poll->head = NULL;
5293 poll->done = false;
5294 poll->canceled = false;
5295 poll->events = events;
5296 INIT_LIST_HEAD(&poll->wait.entry);
5297 init_waitqueue_func_entry(&poll->wait, wake_func);
5298 }
5299
5300 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5301 struct wait_queue_head *head,
5302 struct io_poll_iocb **poll_ptr)
5303 {
5304 struct io_kiocb *req = pt->req;
5305
5306 /*
5307 * If poll->head is already set, it's because the file being polled
5308 * uses multiple waitqueues for poll handling (eg one for read, one
5309 * for write). Setup a separate io_poll_iocb if this happens.
5310 */
5311 if (unlikely(poll->head)) {
5312 struct io_poll_iocb *poll_one = poll;
5313
5314 /* already have a 2nd entry, fail a third attempt */
5315 if (*poll_ptr) {
5316 pt->error = -EINVAL;
5317 return;
5318 }
5319 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5320 if (!poll) {
5321 pt->error = -ENOMEM;
5322 return;
5323 }
5324 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5325 refcount_inc(&req->refs);
5326 poll->wait.private = req;
5327 *poll_ptr = poll;
5328 }
5329
5330 pt->error = 0;
5331 poll->head = head;
5332
5333 if (poll->events & EPOLLEXCLUSIVE)
5334 add_wait_queue_exclusive(head, &poll->wait);
5335 else
5336 add_wait_queue(head, &poll->wait);
5337 }
5338
5339 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5340 struct poll_table_struct *p)
5341 {
5342 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5343 struct async_poll *apoll = pt->req->apoll;
5344
5345 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5346 }
5347
5348 static void io_async_task_func(struct callback_head *cb)
5349 {
5350 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5351 struct async_poll *apoll = req->apoll;
5352 struct io_ring_ctx *ctx = req->ctx;
5353
5354 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5355
5356 if (io_poll_rewait(req, &apoll->poll)) {
5357 spin_unlock_irq(&ctx->completion_lock);
5358 percpu_ref_put(&ctx->refs);
5359 return;
5360 }
5361
5362 /* If req is still hashed, it cannot have been canceled. Don't check. */
5363 if (hash_hashed(&req->hash_node))
5364 hash_del(&req->hash_node);
5365
5366 io_poll_remove_double(req);
5367 spin_unlock_irq(&ctx->completion_lock);
5368
5369 if (!READ_ONCE(apoll->poll.canceled))
5370 __io_req_task_submit(req);
5371 else
5372 __io_req_task_cancel(req, -ECANCELED);
5373
5374 percpu_ref_put(&ctx->refs);
5375 kfree(apoll->double_poll);
5376 kfree(apoll);
5377 }
5378
5379 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5380 void *key)
5381 {
5382 struct io_kiocb *req = wait->private;
5383 struct io_poll_iocb *poll = &req->apoll->poll;
5384
5385 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5386 key_to_poll(key));
5387
5388 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5389 }
5390
5391 static void io_poll_req_insert(struct io_kiocb *req)
5392 {
5393 struct io_ring_ctx *ctx = req->ctx;
5394 struct hlist_head *list;
5395
5396 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5397 hlist_add_head(&req->hash_node, list);
5398 }
5399
5400 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5401 struct io_poll_iocb *poll,
5402 struct io_poll_table *ipt, __poll_t mask,
5403 wait_queue_func_t wake_func)
5404 __acquires(&ctx->completion_lock)
5405 {
5406 struct io_ring_ctx *ctx = req->ctx;
5407 bool cancel = false;
5408
5409 INIT_HLIST_NODE(&req->hash_node);
5410 io_init_poll_iocb(poll, mask, wake_func);
5411 poll->file = req->file;
5412 poll->wait.private = req;
5413
5414 ipt->pt._key = mask;
5415 ipt->req = req;
5416 ipt->error = -EINVAL;
5417
5418 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5419
5420 spin_lock_irq(&ctx->completion_lock);
5421 if (likely(poll->head)) {
5422 spin_lock(&poll->head->lock);
5423 if (unlikely(list_empty(&poll->wait.entry))) {
5424 if (ipt->error)
5425 cancel = true;
5426 ipt->error = 0;
5427 mask = 0;
5428 }
5429 if (mask || ipt->error)
5430 list_del_init(&poll->wait.entry);
5431 else if (cancel)
5432 WRITE_ONCE(poll->canceled, true);
5433 else if (!poll->done) /* actually waiting for an event */
5434 io_poll_req_insert(req);
5435 spin_unlock(&poll->head->lock);
5436 }
5437
5438 return mask;
5439 }
5440
5441 static bool io_arm_poll_handler(struct io_kiocb *req)
5442 {
5443 const struct io_op_def *def = &io_op_defs[req->opcode];
5444 struct io_ring_ctx *ctx = req->ctx;
5445 struct async_poll *apoll;
5446 struct io_poll_table ipt;
5447 __poll_t mask, ret;
5448 int rw;
5449
5450 if (!req->file || !file_can_poll(req->file))
5451 return false;
5452 if (req->flags & REQ_F_POLLED)
5453 return false;
5454 if (def->pollin)
5455 rw = READ;
5456 else if (def->pollout)
5457 rw = WRITE;
5458 else
5459 return false;
5460 /* if we can't nonblock try, then no point in arming a poll handler */
5461 if (!io_file_supports_async(req->file, rw))
5462 return false;
5463
5464 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5465 if (unlikely(!apoll))
5466 return false;
5467 apoll->double_poll = NULL;
5468
5469 req->flags |= REQ_F_POLLED;
5470 req->apoll = apoll;
5471
5472 mask = 0;
5473 if (def->pollin)
5474 mask |= POLLIN | POLLRDNORM;
5475 if (def->pollout)
5476 mask |= POLLOUT | POLLWRNORM;
5477
5478 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5479 if ((req->opcode == IORING_OP_RECVMSG) &&
5480 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5481 mask &= ~POLLIN;
5482
5483 mask |= POLLERR | POLLPRI;
5484
5485 ipt.pt._qproc = io_async_queue_proc;
5486
5487 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5488 io_async_wake);
5489 if (ret || ipt.error) {
5490 io_poll_remove_double(req);
5491 spin_unlock_irq(&ctx->completion_lock);
5492 kfree(apoll->double_poll);
5493 kfree(apoll);
5494 return false;
5495 }
5496 spin_unlock_irq(&ctx->completion_lock);
5497 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5498 apoll->poll.events);
5499 return true;
5500 }
5501
5502 static bool __io_poll_remove_one(struct io_kiocb *req,
5503 struct io_poll_iocb *poll)
5504 {
5505 bool do_complete = false;
5506
5507 spin_lock(&poll->head->lock);
5508 WRITE_ONCE(poll->canceled, true);
5509 if (!list_empty(&poll->wait.entry)) {
5510 list_del_init(&poll->wait.entry);
5511 do_complete = true;
5512 }
5513 spin_unlock(&poll->head->lock);
5514 hash_del(&req->hash_node);
5515 return do_complete;
5516 }
5517
5518 static bool io_poll_remove_one(struct io_kiocb *req)
5519 {
5520 bool do_complete;
5521
5522 io_poll_remove_double(req);
5523
5524 if (req->opcode == IORING_OP_POLL_ADD) {
5525 do_complete = __io_poll_remove_one(req, &req->poll);
5526 } else {
5527 struct async_poll *apoll = req->apoll;
5528
5529 /* non-poll requests have submit ref still */
5530 do_complete = __io_poll_remove_one(req, &apoll->poll);
5531 if (do_complete) {
5532 io_put_req(req);
5533 kfree(apoll->double_poll);
5534 kfree(apoll);
5535 }
5536 }
5537
5538 if (do_complete) {
5539 io_cqring_fill_event(req, -ECANCELED);
5540 io_commit_cqring(req->ctx);
5541 req_set_fail_links(req);
5542 io_put_req_deferred(req, 1);
5543 }
5544
5545 return do_complete;
5546 }
5547
5548 /*
5549 * Returns true if we found and killed one or more poll requests
5550 */
5551 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5552 struct files_struct *files)
5553 {
5554 struct hlist_node *tmp;
5555 struct io_kiocb *req;
5556 int posted = 0, i;
5557
5558 spin_lock_irq(&ctx->completion_lock);
5559 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5560 struct hlist_head *list;
5561
5562 list = &ctx->cancel_hash[i];
5563 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5564 if (io_match_task(req, tsk, files))
5565 posted += io_poll_remove_one(req);
5566 }
5567 }
5568 spin_unlock_irq(&ctx->completion_lock);
5569
5570 if (posted)
5571 io_cqring_ev_posted(ctx);
5572
5573 return posted != 0;
5574 }
5575
5576 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5577 {
5578 struct hlist_head *list;
5579 struct io_kiocb *req;
5580
5581 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5582 hlist_for_each_entry(req, list, hash_node) {
5583 if (sqe_addr != req->user_data)
5584 continue;
5585 if (io_poll_remove_one(req))
5586 return 0;
5587 return -EALREADY;
5588 }
5589
5590 return -ENOENT;
5591 }
5592
5593 static int io_poll_remove_prep(struct io_kiocb *req,
5594 const struct io_uring_sqe *sqe)
5595 {
5596 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5597 return -EINVAL;
5598 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5599 sqe->poll_events)
5600 return -EINVAL;
5601
5602 req->poll_remove.addr = READ_ONCE(sqe->addr);
5603 return 0;
5604 }
5605
5606 /*
5607 * Find a running poll command that matches one specified in sqe->addr,
5608 * and remove it if found.
5609 */
5610 static int io_poll_remove(struct io_kiocb *req)
5611 {
5612 struct io_ring_ctx *ctx = req->ctx;
5613 int ret;
5614
5615 spin_lock_irq(&ctx->completion_lock);
5616 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5617 spin_unlock_irq(&ctx->completion_lock);
5618
5619 if (ret < 0)
5620 req_set_fail_links(req);
5621 io_req_complete(req, ret);
5622 return 0;
5623 }
5624
5625 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5626 void *key)
5627 {
5628 struct io_kiocb *req = wait->private;
5629 struct io_poll_iocb *poll = &req->poll;
5630
5631 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5632 }
5633
5634 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5635 struct poll_table_struct *p)
5636 {
5637 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5638
5639 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5640 }
5641
5642 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5643 {
5644 struct io_poll_iocb *poll = &req->poll;
5645 u32 events;
5646
5647 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5648 return -EINVAL;
5649 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5650 return -EINVAL;
5651
5652 events = READ_ONCE(sqe->poll32_events);
5653 #ifdef __BIG_ENDIAN
5654 events = swahw32(events);
5655 #endif
5656 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5657 (events & EPOLLEXCLUSIVE);
5658 return 0;
5659 }
5660
5661 static int io_poll_add(struct io_kiocb *req)
5662 {
5663 struct io_poll_iocb *poll = &req->poll;
5664 struct io_ring_ctx *ctx = req->ctx;
5665 struct io_poll_table ipt;
5666 __poll_t mask;
5667
5668 ipt.pt._qproc = io_poll_queue_proc;
5669
5670 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5671 io_poll_wake);
5672
5673 if (mask) { /* no async, we'd stolen it */
5674 ipt.error = 0;
5675 io_poll_complete(req, mask, 0);
5676 }
5677 spin_unlock_irq(&ctx->completion_lock);
5678
5679 if (mask) {
5680 io_cqring_ev_posted(ctx);
5681 io_put_req(req);
5682 }
5683 return ipt.error;
5684 }
5685
5686 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5687 {
5688 struct io_timeout_data *data = container_of(timer,
5689 struct io_timeout_data, timer);
5690 struct io_kiocb *req = data->req;
5691 struct io_ring_ctx *ctx = req->ctx;
5692 unsigned long flags;
5693
5694 spin_lock_irqsave(&ctx->completion_lock, flags);
5695 list_del_init(&req->timeout.list);
5696 atomic_set(&req->ctx->cq_timeouts,
5697 atomic_read(&req->ctx->cq_timeouts) + 1);
5698
5699 io_cqring_fill_event(req, -ETIME);
5700 io_commit_cqring(ctx);
5701 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5702
5703 io_cqring_ev_posted(ctx);
5704 req_set_fail_links(req);
5705 io_put_req(req);
5706 return HRTIMER_NORESTART;
5707 }
5708
5709 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5710 __u64 user_data)
5711 {
5712 struct io_timeout_data *io;
5713 struct io_kiocb *req;
5714 int ret = -ENOENT;
5715
5716 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5717 if (user_data == req->user_data) {
5718 ret = 0;
5719 break;
5720 }
5721 }
5722
5723 if (ret == -ENOENT)
5724 return ERR_PTR(ret);
5725
5726 io = req->async_data;
5727 ret = hrtimer_try_to_cancel(&io->timer);
5728 if (ret == -1)
5729 return ERR_PTR(-EALREADY);
5730 list_del_init(&req->timeout.list);
5731 return req;
5732 }
5733
5734 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5735 {
5736 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5737
5738 if (IS_ERR(req))
5739 return PTR_ERR(req);
5740
5741 req_set_fail_links(req);
5742 io_cqring_fill_event(req, -ECANCELED);
5743 io_put_req_deferred(req, 1);
5744 return 0;
5745 }
5746
5747 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5748 struct timespec64 *ts, enum hrtimer_mode mode)
5749 {
5750 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5751 struct io_timeout_data *data;
5752
5753 if (IS_ERR(req))
5754 return PTR_ERR(req);
5755
5756 req->timeout.off = 0; /* noseq */
5757 data = req->async_data;
5758 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5759 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5760 data->timer.function = io_timeout_fn;
5761 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5762 return 0;
5763 }
5764
5765 static int io_timeout_remove_prep(struct io_kiocb *req,
5766 const struct io_uring_sqe *sqe)
5767 {
5768 struct io_timeout_rem *tr = &req->timeout_rem;
5769
5770 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5771 return -EINVAL;
5772 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5773 return -EINVAL;
5774 if (sqe->ioprio || sqe->buf_index || sqe->len)
5775 return -EINVAL;
5776
5777 tr->addr = READ_ONCE(sqe->addr);
5778 tr->flags = READ_ONCE(sqe->timeout_flags);
5779 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5780 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5781 return -EINVAL;
5782 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5783 return -EFAULT;
5784 } else if (tr->flags) {
5785 /* timeout removal doesn't support flags */
5786 return -EINVAL;
5787 }
5788
5789 return 0;
5790 }
5791
5792 /*
5793 * Remove or update an existing timeout command
5794 */
5795 static int io_timeout_remove(struct io_kiocb *req)
5796 {
5797 struct io_timeout_rem *tr = &req->timeout_rem;
5798 struct io_ring_ctx *ctx = req->ctx;
5799 int ret;
5800
5801 spin_lock_irq(&ctx->completion_lock);
5802 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5803 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5804 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5805
5806 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5807 } else {
5808 ret = io_timeout_cancel(ctx, tr->addr);
5809 }
5810
5811 io_cqring_fill_event(req, ret);
5812 io_commit_cqring(ctx);
5813 spin_unlock_irq(&ctx->completion_lock);
5814 io_cqring_ev_posted(ctx);
5815 if (ret < 0)
5816 req_set_fail_links(req);
5817 io_put_req(req);
5818 return 0;
5819 }
5820
5821 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5822 bool is_timeout_link)
5823 {
5824 struct io_timeout_data *data;
5825 unsigned flags;
5826 u32 off = READ_ONCE(sqe->off);
5827
5828 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5829 return -EINVAL;
5830 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5831 return -EINVAL;
5832 if (off && is_timeout_link)
5833 return -EINVAL;
5834 flags = READ_ONCE(sqe->timeout_flags);
5835 if (flags & ~IORING_TIMEOUT_ABS)
5836 return -EINVAL;
5837
5838 req->timeout.off = off;
5839
5840 if (!req->async_data && io_alloc_async_data(req))
5841 return -ENOMEM;
5842
5843 data = req->async_data;
5844 data->req = req;
5845
5846 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5847 return -EFAULT;
5848
5849 if (flags & IORING_TIMEOUT_ABS)
5850 data->mode = HRTIMER_MODE_ABS;
5851 else
5852 data->mode = HRTIMER_MODE_REL;
5853
5854 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5855 return 0;
5856 }
5857
5858 static int io_timeout(struct io_kiocb *req)
5859 {
5860 struct io_ring_ctx *ctx = req->ctx;
5861 struct io_timeout_data *data = req->async_data;
5862 struct list_head *entry;
5863 u32 tail, off = req->timeout.off;
5864
5865 spin_lock_irq(&ctx->completion_lock);
5866
5867 /*
5868 * sqe->off holds how many events that need to occur for this
5869 * timeout event to be satisfied. If it isn't set, then this is
5870 * a pure timeout request, sequence isn't used.
5871 */
5872 if (io_is_timeout_noseq(req)) {
5873 entry = ctx->timeout_list.prev;
5874 goto add;
5875 }
5876
5877 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5878 req->timeout.target_seq = tail + off;
5879
5880 /* Update the last seq here in case io_flush_timeouts() hasn't.
5881 * This is safe because ->completion_lock is held, and submissions
5882 * and completions are never mixed in the same ->completion_lock section.
5883 */
5884 ctx->cq_last_tm_flush = tail;
5885
5886 /*
5887 * Insertion sort, ensuring the first entry in the list is always
5888 * the one we need first.
5889 */
5890 list_for_each_prev(entry, &ctx->timeout_list) {
5891 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5892 timeout.list);
5893
5894 if (io_is_timeout_noseq(nxt))
5895 continue;
5896 /* nxt.seq is behind @tail, otherwise would've been completed */
5897 if (off >= nxt->timeout.target_seq - tail)
5898 break;
5899 }
5900 add:
5901 list_add(&req->timeout.list, entry);
5902 data->timer.function = io_timeout_fn;
5903 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5904 spin_unlock_irq(&ctx->completion_lock);
5905 return 0;
5906 }
5907
5908 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5909 {
5910 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5911
5912 return req->user_data == (unsigned long) data;
5913 }
5914
5915 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5916 {
5917 enum io_wq_cancel cancel_ret;
5918 int ret = 0;
5919
5920 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5921 switch (cancel_ret) {
5922 case IO_WQ_CANCEL_OK:
5923 ret = 0;
5924 break;
5925 case IO_WQ_CANCEL_RUNNING:
5926 ret = -EALREADY;
5927 break;
5928 case IO_WQ_CANCEL_NOTFOUND:
5929 ret = -ENOENT;
5930 break;
5931 }
5932
5933 return ret;
5934 }
5935
5936 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5937 struct io_kiocb *req, __u64 sqe_addr,
5938 int success_ret)
5939 {
5940 unsigned long flags;
5941 int ret;
5942
5943 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5944 if (ret != -ENOENT) {
5945 spin_lock_irqsave(&ctx->completion_lock, flags);
5946 goto done;
5947 }
5948
5949 spin_lock_irqsave(&ctx->completion_lock, flags);
5950 ret = io_timeout_cancel(ctx, sqe_addr);
5951 if (ret != -ENOENT)
5952 goto done;
5953 ret = io_poll_cancel(ctx, sqe_addr);
5954 done:
5955 if (!ret)
5956 ret = success_ret;
5957 io_cqring_fill_event(req, ret);
5958 io_commit_cqring(ctx);
5959 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5960 io_cqring_ev_posted(ctx);
5961
5962 if (ret < 0)
5963 req_set_fail_links(req);
5964 io_put_req(req);
5965 }
5966
5967 static int io_async_cancel_prep(struct io_kiocb *req,
5968 const struct io_uring_sqe *sqe)
5969 {
5970 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5971 return -EINVAL;
5972 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5973 return -EINVAL;
5974 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5975 return -EINVAL;
5976
5977 req->cancel.addr = READ_ONCE(sqe->addr);
5978 return 0;
5979 }
5980
5981 static int io_async_cancel(struct io_kiocb *req)
5982 {
5983 struct io_ring_ctx *ctx = req->ctx;
5984
5985 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5986 return 0;
5987 }
5988
5989 static int io_files_update_prep(struct io_kiocb *req,
5990 const struct io_uring_sqe *sqe)
5991 {
5992 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5993 return -EINVAL;
5994 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5995 return -EINVAL;
5996 if (sqe->ioprio || sqe->rw_flags)
5997 return -EINVAL;
5998
5999 req->files_update.offset = READ_ONCE(sqe->off);
6000 req->files_update.nr_args = READ_ONCE(sqe->len);
6001 if (!req->files_update.nr_args)
6002 return -EINVAL;
6003 req->files_update.arg = READ_ONCE(sqe->addr);
6004 return 0;
6005 }
6006
6007 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
6008 struct io_comp_state *cs)
6009 {
6010 struct io_ring_ctx *ctx = req->ctx;
6011 struct io_uring_files_update up;
6012 int ret;
6013
6014 if (force_nonblock)
6015 return -EAGAIN;
6016
6017 up.offset = req->files_update.offset;
6018 up.fds = req->files_update.arg;
6019
6020 mutex_lock(&ctx->uring_lock);
6021 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
6022 mutex_unlock(&ctx->uring_lock);
6023
6024 if (ret < 0)
6025 req_set_fail_links(req);
6026 __io_req_complete(req, ret, 0, cs);
6027 return 0;
6028 }
6029
6030 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6031 {
6032 switch (req->opcode) {
6033 case IORING_OP_NOP:
6034 return 0;
6035 case IORING_OP_READV:
6036 case IORING_OP_READ_FIXED:
6037 case IORING_OP_READ:
6038 return io_read_prep(req, sqe);
6039 case IORING_OP_WRITEV:
6040 case IORING_OP_WRITE_FIXED:
6041 case IORING_OP_WRITE:
6042 return io_write_prep(req, sqe);
6043 case IORING_OP_POLL_ADD:
6044 return io_poll_add_prep(req, sqe);
6045 case IORING_OP_POLL_REMOVE:
6046 return io_poll_remove_prep(req, sqe);
6047 case IORING_OP_FSYNC:
6048 return io_prep_fsync(req, sqe);
6049 case IORING_OP_SYNC_FILE_RANGE:
6050 return io_prep_sfr(req, sqe);
6051 case IORING_OP_SENDMSG:
6052 case IORING_OP_SEND:
6053 return io_sendmsg_prep(req, sqe);
6054 case IORING_OP_RECVMSG:
6055 case IORING_OP_RECV:
6056 return io_recvmsg_prep(req, sqe);
6057 case IORING_OP_CONNECT:
6058 return io_connect_prep(req, sqe);
6059 case IORING_OP_TIMEOUT:
6060 return io_timeout_prep(req, sqe, false);
6061 case IORING_OP_TIMEOUT_REMOVE:
6062 return io_timeout_remove_prep(req, sqe);
6063 case IORING_OP_ASYNC_CANCEL:
6064 return io_async_cancel_prep(req, sqe);
6065 case IORING_OP_LINK_TIMEOUT:
6066 return io_timeout_prep(req, sqe, true);
6067 case IORING_OP_ACCEPT:
6068 return io_accept_prep(req, sqe);
6069 case IORING_OP_FALLOCATE:
6070 return io_fallocate_prep(req, sqe);
6071 case IORING_OP_OPENAT:
6072 return io_openat_prep(req, sqe);
6073 case IORING_OP_CLOSE:
6074 return io_close_prep(req, sqe);
6075 case IORING_OP_FILES_UPDATE:
6076 return io_files_update_prep(req, sqe);
6077 case IORING_OP_STATX:
6078 return io_statx_prep(req, sqe);
6079 case IORING_OP_FADVISE:
6080 return io_fadvise_prep(req, sqe);
6081 case IORING_OP_MADVISE:
6082 return io_madvise_prep(req, sqe);
6083 case IORING_OP_OPENAT2:
6084 return io_openat2_prep(req, sqe);
6085 case IORING_OP_EPOLL_CTL:
6086 return io_epoll_ctl_prep(req, sqe);
6087 case IORING_OP_SPLICE:
6088 return io_splice_prep(req, sqe);
6089 case IORING_OP_PROVIDE_BUFFERS:
6090 return io_provide_buffers_prep(req, sqe);
6091 case IORING_OP_REMOVE_BUFFERS:
6092 return io_remove_buffers_prep(req, sqe);
6093 case IORING_OP_TEE:
6094 return io_tee_prep(req, sqe);
6095 case IORING_OP_SHUTDOWN:
6096 return io_shutdown_prep(req, sqe);
6097 case IORING_OP_RENAMEAT:
6098 return io_renameat_prep(req, sqe);
6099 case IORING_OP_UNLINKAT:
6100 return io_unlinkat_prep(req, sqe);
6101 }
6102
6103 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6104 req->opcode);
6105 return-EINVAL;
6106 }
6107
6108 static int io_req_defer_prep(struct io_kiocb *req,
6109 const struct io_uring_sqe *sqe)
6110 {
6111 if (!sqe)
6112 return 0;
6113 if (io_alloc_async_data(req))
6114 return -EAGAIN;
6115 return io_req_prep(req, sqe);
6116 }
6117
6118 static u32 io_get_sequence(struct io_kiocb *req)
6119 {
6120 struct io_kiocb *pos;
6121 struct io_ring_ctx *ctx = req->ctx;
6122 u32 total_submitted, nr_reqs = 0;
6123
6124 io_for_each_link(pos, req)
6125 nr_reqs++;
6126
6127 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6128 return total_submitted - nr_reqs;
6129 }
6130
6131 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6132 {
6133 struct io_ring_ctx *ctx = req->ctx;
6134 struct io_defer_entry *de;
6135 int ret;
6136 u32 seq;
6137
6138 /* Still need defer if there is pending req in defer list. */
6139 if (likely(list_empty_careful(&ctx->defer_list) &&
6140 !(req->flags & REQ_F_IO_DRAIN)))
6141 return 0;
6142
6143 seq = io_get_sequence(req);
6144 /* Still a chance to pass the sequence check */
6145 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6146 return 0;
6147
6148 if (!req->async_data) {
6149 ret = io_req_defer_prep(req, sqe);
6150 if (ret)
6151 return ret;
6152 }
6153 io_prep_async_link(req);
6154 de = kmalloc(sizeof(*de), GFP_KERNEL);
6155 if (!de)
6156 return -ENOMEM;
6157
6158 spin_lock_irq(&ctx->completion_lock);
6159 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6160 spin_unlock_irq(&ctx->completion_lock);
6161 kfree(de);
6162 io_queue_async_work(req);
6163 return -EIOCBQUEUED;
6164 }
6165
6166 trace_io_uring_defer(ctx, req, req->user_data);
6167 de->req = req;
6168 de->seq = seq;
6169 list_add_tail(&de->list, &ctx->defer_list);
6170 spin_unlock_irq(&ctx->completion_lock);
6171 return -EIOCBQUEUED;
6172 }
6173
6174 static void io_req_drop_files(struct io_kiocb *req)
6175 {
6176 struct io_ring_ctx *ctx = req->ctx;
6177 struct io_uring_task *tctx = req->task->io_uring;
6178 unsigned long flags;
6179
6180 if (req->work.flags & IO_WQ_WORK_FILES) {
6181 put_files_struct(req->work.identity->files);
6182 put_nsproxy(req->work.identity->nsproxy);
6183 }
6184 spin_lock_irqsave(&ctx->inflight_lock, flags);
6185 list_del(&req->inflight_entry);
6186 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6187 req->flags &= ~REQ_F_INFLIGHT;
6188 req->work.flags &= ~IO_WQ_WORK_FILES;
6189 if (atomic_read(&tctx->in_idle))
6190 wake_up(&tctx->wait);
6191 }
6192
6193 static void __io_clean_op(struct io_kiocb *req)
6194 {
6195 if (req->flags & REQ_F_BUFFER_SELECTED) {
6196 switch (req->opcode) {
6197 case IORING_OP_READV:
6198 case IORING_OP_READ_FIXED:
6199 case IORING_OP_READ:
6200 kfree((void *)(unsigned long)req->rw.addr);
6201 break;
6202 case IORING_OP_RECVMSG:
6203 case IORING_OP_RECV:
6204 kfree(req->sr_msg.kbuf);
6205 break;
6206 }
6207 req->flags &= ~REQ_F_BUFFER_SELECTED;
6208 }
6209
6210 if (req->flags & REQ_F_NEED_CLEANUP) {
6211 switch (req->opcode) {
6212 case IORING_OP_READV:
6213 case IORING_OP_READ_FIXED:
6214 case IORING_OP_READ:
6215 case IORING_OP_WRITEV:
6216 case IORING_OP_WRITE_FIXED:
6217 case IORING_OP_WRITE: {
6218 struct io_async_rw *io = req->async_data;
6219 if (io->free_iovec)
6220 kfree(io->free_iovec);
6221 break;
6222 }
6223 case IORING_OP_RECVMSG:
6224 case IORING_OP_SENDMSG: {
6225 struct io_async_msghdr *io = req->async_data;
6226 if (io->iov != io->fast_iov)
6227 kfree(io->iov);
6228 break;
6229 }
6230 case IORING_OP_SPLICE:
6231 case IORING_OP_TEE:
6232 io_put_file(req, req->splice.file_in,
6233 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6234 break;
6235 case IORING_OP_OPENAT:
6236 case IORING_OP_OPENAT2:
6237 if (req->open.filename)
6238 putname(req->open.filename);
6239 break;
6240 case IORING_OP_RENAMEAT:
6241 putname(req->rename.oldpath);
6242 putname(req->rename.newpath);
6243 break;
6244 case IORING_OP_UNLINKAT:
6245 putname(req->unlink.filename);
6246 break;
6247 }
6248 req->flags &= ~REQ_F_NEED_CLEANUP;
6249 }
6250 }
6251
6252 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6253 struct io_comp_state *cs)
6254 {
6255 struct io_ring_ctx *ctx = req->ctx;
6256 int ret;
6257
6258 switch (req->opcode) {
6259 case IORING_OP_NOP:
6260 ret = io_nop(req, cs);
6261 break;
6262 case IORING_OP_READV:
6263 case IORING_OP_READ_FIXED:
6264 case IORING_OP_READ:
6265 ret = io_read(req, force_nonblock, cs);
6266 break;
6267 case IORING_OP_WRITEV:
6268 case IORING_OP_WRITE_FIXED:
6269 case IORING_OP_WRITE:
6270 ret = io_write(req, force_nonblock, cs);
6271 break;
6272 case IORING_OP_FSYNC:
6273 ret = io_fsync(req, force_nonblock);
6274 break;
6275 case IORING_OP_POLL_ADD:
6276 ret = io_poll_add(req);
6277 break;
6278 case IORING_OP_POLL_REMOVE:
6279 ret = io_poll_remove(req);
6280 break;
6281 case IORING_OP_SYNC_FILE_RANGE:
6282 ret = io_sync_file_range(req, force_nonblock);
6283 break;
6284 case IORING_OP_SENDMSG:
6285 ret = io_sendmsg(req, force_nonblock, cs);
6286 break;
6287 case IORING_OP_SEND:
6288 ret = io_send(req, force_nonblock, cs);
6289 break;
6290 case IORING_OP_RECVMSG:
6291 ret = io_recvmsg(req, force_nonblock, cs);
6292 break;
6293 case IORING_OP_RECV:
6294 ret = io_recv(req, force_nonblock, cs);
6295 break;
6296 case IORING_OP_TIMEOUT:
6297 ret = io_timeout(req);
6298 break;
6299 case IORING_OP_TIMEOUT_REMOVE:
6300 ret = io_timeout_remove(req);
6301 break;
6302 case IORING_OP_ACCEPT:
6303 ret = io_accept(req, force_nonblock, cs);
6304 break;
6305 case IORING_OP_CONNECT:
6306 ret = io_connect(req, force_nonblock, cs);
6307 break;
6308 case IORING_OP_ASYNC_CANCEL:
6309 ret = io_async_cancel(req);
6310 break;
6311 case IORING_OP_FALLOCATE:
6312 ret = io_fallocate(req, force_nonblock);
6313 break;
6314 case IORING_OP_OPENAT:
6315 ret = io_openat(req, force_nonblock);
6316 break;
6317 case IORING_OP_CLOSE:
6318 ret = io_close(req, force_nonblock, cs);
6319 break;
6320 case IORING_OP_FILES_UPDATE:
6321 ret = io_files_update(req, force_nonblock, cs);
6322 break;
6323 case IORING_OP_STATX:
6324 ret = io_statx(req, force_nonblock);
6325 break;
6326 case IORING_OP_FADVISE:
6327 ret = io_fadvise(req, force_nonblock);
6328 break;
6329 case IORING_OP_MADVISE:
6330 ret = io_madvise(req, force_nonblock);
6331 break;
6332 case IORING_OP_OPENAT2:
6333 ret = io_openat2(req, force_nonblock);
6334 break;
6335 case IORING_OP_EPOLL_CTL:
6336 ret = io_epoll_ctl(req, force_nonblock, cs);
6337 break;
6338 case IORING_OP_SPLICE:
6339 ret = io_splice(req, force_nonblock);
6340 break;
6341 case IORING_OP_PROVIDE_BUFFERS:
6342 ret = io_provide_buffers(req, force_nonblock, cs);
6343 break;
6344 case IORING_OP_REMOVE_BUFFERS:
6345 ret = io_remove_buffers(req, force_nonblock, cs);
6346 break;
6347 case IORING_OP_TEE:
6348 ret = io_tee(req, force_nonblock);
6349 break;
6350 case IORING_OP_SHUTDOWN:
6351 ret = io_shutdown(req, force_nonblock);
6352 break;
6353 case IORING_OP_RENAMEAT:
6354 ret = io_renameat(req, force_nonblock);
6355 break;
6356 case IORING_OP_UNLINKAT:
6357 ret = io_unlinkat(req, force_nonblock);
6358 break;
6359 default:
6360 ret = -EINVAL;
6361 break;
6362 }
6363
6364 if (ret)
6365 return ret;
6366
6367 /* If the op doesn't have a file, we're not polling for it */
6368 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6369 const bool in_async = io_wq_current_is_worker();
6370
6371 /* workqueue context doesn't hold uring_lock, grab it now */
6372 if (in_async)
6373 mutex_lock(&ctx->uring_lock);
6374
6375 io_iopoll_req_issued(req, in_async);
6376
6377 if (in_async)
6378 mutex_unlock(&ctx->uring_lock);
6379 }
6380
6381 return 0;
6382 }
6383
6384 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6385 {
6386 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6387 struct io_kiocb *timeout;
6388 int ret = 0;
6389
6390 timeout = io_prep_linked_timeout(req);
6391 if (timeout)
6392 io_queue_linked_timeout(timeout);
6393
6394 /* if NO_CANCEL is set, we must still run the work */
6395 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6396 IO_WQ_WORK_CANCEL) {
6397 ret = -ECANCELED;
6398 }
6399
6400 if (!ret) {
6401 do {
6402 ret = io_issue_sqe(req, false, NULL);
6403 /*
6404 * We can get EAGAIN for polled IO even though we're
6405 * forcing a sync submission from here, since we can't
6406 * wait for request slots on the block side.
6407 */
6408 if (ret != -EAGAIN)
6409 break;
6410 cond_resched();
6411 } while (1);
6412 }
6413
6414 if (ret) {
6415 struct io_ring_ctx *lock_ctx = NULL;
6416
6417 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6418 lock_ctx = req->ctx;
6419
6420 /*
6421 * io_iopoll_complete() does not hold completion_lock to
6422 * complete polled io, so here for polled io, we can not call
6423 * io_req_complete() directly, otherwise there maybe concurrent
6424 * access to cqring, defer_list, etc, which is not safe. Given
6425 * that io_iopoll_complete() is always called under uring_lock,
6426 * so here for polled io, we also get uring_lock to complete
6427 * it.
6428 */
6429 if (lock_ctx)
6430 mutex_lock(&lock_ctx->uring_lock);
6431
6432 req_set_fail_links(req);
6433 io_req_complete(req, ret);
6434
6435 if (lock_ctx)
6436 mutex_unlock(&lock_ctx->uring_lock);
6437 }
6438
6439 return io_steal_work(req);
6440 }
6441
6442 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6443 int index)
6444 {
6445 struct fixed_file_table *table;
6446
6447 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6448 return table->files[index & IORING_FILE_TABLE_MASK];
6449 }
6450
6451 static struct file *io_file_get(struct io_submit_state *state,
6452 struct io_kiocb *req, int fd, bool fixed)
6453 {
6454 struct io_ring_ctx *ctx = req->ctx;
6455 struct file *file;
6456
6457 if (fixed) {
6458 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6459 return NULL;
6460 fd = array_index_nospec(fd, ctx->nr_user_files);
6461 file = io_file_from_index(ctx, fd);
6462 io_set_resource_node(req);
6463 } else {
6464 trace_io_uring_file_get(ctx, fd);
6465 file = __io_file_get(state, fd);
6466 }
6467
6468 if (file && file->f_op == &io_uring_fops &&
6469 !(req->flags & REQ_F_INFLIGHT)) {
6470 io_req_init_async(req);
6471 req->flags |= REQ_F_INFLIGHT;
6472
6473 spin_lock_irq(&ctx->inflight_lock);
6474 list_add(&req->inflight_entry, &ctx->inflight_list);
6475 spin_unlock_irq(&ctx->inflight_lock);
6476 }
6477
6478 return file;
6479 }
6480
6481 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6482 {
6483 struct io_timeout_data *data = container_of(timer,
6484 struct io_timeout_data, timer);
6485 struct io_kiocb *prev, *req = data->req;
6486 struct io_ring_ctx *ctx = req->ctx;
6487 unsigned long flags;
6488
6489 spin_lock_irqsave(&ctx->completion_lock, flags);
6490 prev = req->timeout.head;
6491 req->timeout.head = NULL;
6492
6493 /*
6494 * We don't expect the list to be empty, that will only happen if we
6495 * race with the completion of the linked work.
6496 */
6497 if (prev && refcount_inc_not_zero(&prev->refs))
6498 io_remove_next_linked(prev);
6499 else
6500 prev = NULL;
6501 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6502
6503 if (prev) {
6504 req_set_fail_links(prev);
6505 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6506 io_put_req(prev);
6507 } else {
6508 io_req_complete(req, -ETIME);
6509 }
6510 return HRTIMER_NORESTART;
6511 }
6512
6513 static void __io_queue_linked_timeout(struct io_kiocb *req)
6514 {
6515 /*
6516 * If the back reference is NULL, then our linked request finished
6517 * before we got a chance to setup the timer
6518 */
6519 if (req->timeout.head) {
6520 struct io_timeout_data *data = req->async_data;
6521
6522 data->timer.function = io_link_timeout_fn;
6523 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6524 data->mode);
6525 }
6526 }
6527
6528 static void io_queue_linked_timeout(struct io_kiocb *req)
6529 {
6530 struct io_ring_ctx *ctx = req->ctx;
6531
6532 spin_lock_irq(&ctx->completion_lock);
6533 __io_queue_linked_timeout(req);
6534 spin_unlock_irq(&ctx->completion_lock);
6535
6536 /* drop submission reference */
6537 io_put_req(req);
6538 }
6539
6540 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6541 {
6542 struct io_kiocb *nxt = req->link;
6543
6544 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6545 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6546 return NULL;
6547
6548 nxt->timeout.head = req;
6549 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6550 req->flags |= REQ_F_LINK_TIMEOUT;
6551 return nxt;
6552 }
6553
6554 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6555 {
6556 struct io_kiocb *linked_timeout;
6557 const struct cred *old_creds = NULL;
6558 int ret;
6559
6560 again:
6561 linked_timeout = io_prep_linked_timeout(req);
6562
6563 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6564 (req->work.flags & IO_WQ_WORK_CREDS) &&
6565 req->work.identity->creds != current_cred()) {
6566 if (old_creds)
6567 revert_creds(old_creds);
6568 if (old_creds == req->work.identity->creds)
6569 old_creds = NULL; /* restored original creds */
6570 else
6571 old_creds = override_creds(req->work.identity->creds);
6572 }
6573
6574 ret = io_issue_sqe(req, true, cs);
6575
6576 /*
6577 * We async punt it if the file wasn't marked NOWAIT, or if the file
6578 * doesn't support non-blocking read/write attempts
6579 */
6580 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6581 if (!io_arm_poll_handler(req)) {
6582 /*
6583 * Queued up for async execution, worker will release
6584 * submit reference when the iocb is actually submitted.
6585 */
6586 io_queue_async_work(req);
6587 }
6588
6589 if (linked_timeout)
6590 io_queue_linked_timeout(linked_timeout);
6591 } else if (likely(!ret)) {
6592 /* drop submission reference */
6593 req = io_put_req_find_next(req);
6594 if (linked_timeout)
6595 io_queue_linked_timeout(linked_timeout);
6596
6597 if (req) {
6598 if (!(req->flags & REQ_F_FORCE_ASYNC))
6599 goto again;
6600 io_queue_async_work(req);
6601 }
6602 } else {
6603 /* un-prep timeout, so it'll be killed as any other linked */
6604 req->flags &= ~REQ_F_LINK_TIMEOUT;
6605 req_set_fail_links(req);
6606 io_put_req(req);
6607 io_req_complete(req, ret);
6608 }
6609
6610 if (old_creds)
6611 revert_creds(old_creds);
6612 }
6613
6614 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6615 struct io_comp_state *cs)
6616 {
6617 int ret;
6618
6619 ret = io_req_defer(req, sqe);
6620 if (ret) {
6621 if (ret != -EIOCBQUEUED) {
6622 fail_req:
6623 req_set_fail_links(req);
6624 io_put_req(req);
6625 io_req_complete(req, ret);
6626 }
6627 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6628 if (!req->async_data) {
6629 ret = io_req_defer_prep(req, sqe);
6630 if (unlikely(ret))
6631 goto fail_req;
6632 }
6633 io_queue_async_work(req);
6634 } else {
6635 if (sqe) {
6636 ret = io_req_prep(req, sqe);
6637 if (unlikely(ret))
6638 goto fail_req;
6639 }
6640 __io_queue_sqe(req, cs);
6641 }
6642 }
6643
6644 static inline void io_queue_link_head(struct io_kiocb *req,
6645 struct io_comp_state *cs)
6646 {
6647 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6648 io_put_req(req);
6649 io_req_complete(req, -ECANCELED);
6650 } else
6651 io_queue_sqe(req, NULL, cs);
6652 }
6653
6654 struct io_submit_link {
6655 struct io_kiocb *head;
6656 struct io_kiocb *last;
6657 };
6658
6659 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6660 struct io_submit_link *link, struct io_comp_state *cs)
6661 {
6662 struct io_ring_ctx *ctx = req->ctx;
6663 int ret;
6664
6665 /*
6666 * If we already have a head request, queue this one for async
6667 * submittal once the head completes. If we don't have a head but
6668 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6669 * submitted sync once the chain is complete. If none of those
6670 * conditions are true (normal request), then just queue it.
6671 */
6672 if (link->head) {
6673 struct io_kiocb *head = link->head;
6674
6675 /*
6676 * Taking sequential execution of a link, draining both sides
6677 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6678 * requests in the link. So, it drains the head and the
6679 * next after the link request. The last one is done via
6680 * drain_next flag to persist the effect across calls.
6681 */
6682 if (req->flags & REQ_F_IO_DRAIN) {
6683 head->flags |= REQ_F_IO_DRAIN;
6684 ctx->drain_next = 1;
6685 }
6686 ret = io_req_defer_prep(req, sqe);
6687 if (unlikely(ret)) {
6688 /* fail even hard links since we don't submit */
6689 head->flags |= REQ_F_FAIL_LINK;
6690 return ret;
6691 }
6692 trace_io_uring_link(ctx, req, head);
6693 link->last->link = req;
6694 link->last = req;
6695
6696 /* last request of a link, enqueue the link */
6697 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6698 io_queue_link_head(head, cs);
6699 link->head = NULL;
6700 }
6701 } else {
6702 if (unlikely(ctx->drain_next)) {
6703 req->flags |= REQ_F_IO_DRAIN;
6704 ctx->drain_next = 0;
6705 }
6706 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6707 ret = io_req_defer_prep(req, sqe);
6708 if (unlikely(ret))
6709 req->flags |= REQ_F_FAIL_LINK;
6710 link->head = req;
6711 link->last = req;
6712 } else {
6713 io_queue_sqe(req, sqe, cs);
6714 }
6715 }
6716
6717 return 0;
6718 }
6719
6720 /*
6721 * Batched submission is done, ensure local IO is flushed out.
6722 */
6723 static void io_submit_state_end(struct io_submit_state *state)
6724 {
6725 if (!list_empty(&state->comp.list))
6726 io_submit_flush_completions(&state->comp);
6727 if (state->plug_started)
6728 blk_finish_plug(&state->plug);
6729 io_state_file_put(state);
6730 if (state->free_reqs)
6731 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6732 }
6733
6734 /*
6735 * Start submission side cache.
6736 */
6737 static void io_submit_state_start(struct io_submit_state *state,
6738 struct io_ring_ctx *ctx, unsigned int max_ios)
6739 {
6740 state->plug_started = false;
6741 state->comp.nr = 0;
6742 INIT_LIST_HEAD(&state->comp.list);
6743 state->comp.ctx = ctx;
6744 state->free_reqs = 0;
6745 state->file_refs = 0;
6746 state->ios_left = max_ios;
6747 }
6748
6749 static void io_commit_sqring(struct io_ring_ctx *ctx)
6750 {
6751 struct io_rings *rings = ctx->rings;
6752
6753 /*
6754 * Ensure any loads from the SQEs are done at this point,
6755 * since once we write the new head, the application could
6756 * write new data to them.
6757 */
6758 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6759 }
6760
6761 /*
6762 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6763 * that is mapped by userspace. This means that care needs to be taken to
6764 * ensure that reads are stable, as we cannot rely on userspace always
6765 * being a good citizen. If members of the sqe are validated and then later
6766 * used, it's important that those reads are done through READ_ONCE() to
6767 * prevent a re-load down the line.
6768 */
6769 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6770 {
6771 u32 *sq_array = ctx->sq_array;
6772 unsigned head;
6773
6774 /*
6775 * The cached sq head (or cq tail) serves two purposes:
6776 *
6777 * 1) allows us to batch the cost of updating the user visible
6778 * head updates.
6779 * 2) allows the kernel side to track the head on its own, even
6780 * though the application is the one updating it.
6781 */
6782 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6783 if (likely(head < ctx->sq_entries))
6784 return &ctx->sq_sqes[head];
6785
6786 /* drop invalid entries */
6787 ctx->cached_sq_dropped++;
6788 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6789 return NULL;
6790 }
6791
6792 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6793 {
6794 ctx->cached_sq_head++;
6795 }
6796
6797 /*
6798 * Check SQE restrictions (opcode and flags).
6799 *
6800 * Returns 'true' if SQE is allowed, 'false' otherwise.
6801 */
6802 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6803 struct io_kiocb *req,
6804 unsigned int sqe_flags)
6805 {
6806 if (!ctx->restricted)
6807 return true;
6808
6809 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6810 return false;
6811
6812 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6813 ctx->restrictions.sqe_flags_required)
6814 return false;
6815
6816 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6817 ctx->restrictions.sqe_flags_required))
6818 return false;
6819
6820 return true;
6821 }
6822
6823 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6824 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6825 IOSQE_BUFFER_SELECT)
6826
6827 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6828 const struct io_uring_sqe *sqe,
6829 struct io_submit_state *state)
6830 {
6831 unsigned int sqe_flags;
6832 int id, ret;
6833
6834 req->opcode = READ_ONCE(sqe->opcode);
6835 req->user_data = READ_ONCE(sqe->user_data);
6836 req->async_data = NULL;
6837 req->file = NULL;
6838 req->ctx = ctx;
6839 req->flags = 0;
6840 req->link = NULL;
6841 req->fixed_file_refs = NULL;
6842 /* one is dropped after submission, the other at completion */
6843 refcount_set(&req->refs, 2);
6844 req->task = current;
6845 req->result = 0;
6846
6847 if (unlikely(req->opcode >= IORING_OP_LAST))
6848 return -EINVAL;
6849
6850 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6851 return -EFAULT;
6852
6853 sqe_flags = READ_ONCE(sqe->flags);
6854 /* enforce forwards compatibility on users */
6855 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6856 return -EINVAL;
6857
6858 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6859 return -EACCES;
6860
6861 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6862 !io_op_defs[req->opcode].buffer_select)
6863 return -EOPNOTSUPP;
6864
6865 id = READ_ONCE(sqe->personality);
6866 if (id) {
6867 struct io_identity *iod;
6868
6869 iod = idr_find(&ctx->personality_idr, id);
6870 if (unlikely(!iod))
6871 return -EINVAL;
6872 refcount_inc(&iod->count);
6873
6874 __io_req_init_async(req);
6875 get_cred(iod->creds);
6876 req->work.identity = iod;
6877 req->work.flags |= IO_WQ_WORK_CREDS;
6878 }
6879
6880 /* same numerical values with corresponding REQ_F_*, safe to copy */
6881 req->flags |= sqe_flags;
6882
6883 /*
6884 * Plug now if we have more than 1 IO left after this, and the target
6885 * is potentially a read/write to block based storage.
6886 */
6887 if (!state->plug_started && state->ios_left > 1 &&
6888 io_op_defs[req->opcode].plug) {
6889 blk_start_plug(&state->plug);
6890 state->plug_started = true;
6891 }
6892
6893 ret = 0;
6894 if (io_op_defs[req->opcode].needs_file) {
6895 bool fixed = req->flags & REQ_F_FIXED_FILE;
6896
6897 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6898 if (unlikely(!req->file &&
6899 !io_op_defs[req->opcode].needs_file_no_error))
6900 ret = -EBADF;
6901 }
6902
6903 state->ios_left--;
6904 return ret;
6905 }
6906
6907 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6908 {
6909 struct io_submit_state state;
6910 struct io_submit_link link;
6911 int i, submitted = 0;
6912
6913 /* if we have a backlog and couldn't flush it all, return BUSY */
6914 if (test_bit(0, &ctx->sq_check_overflow)) {
6915 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6916 return -EBUSY;
6917 }
6918
6919 /* make sure SQ entry isn't read before tail */
6920 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6921
6922 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6923 return -EAGAIN;
6924
6925 percpu_counter_add(&current->io_uring->inflight, nr);
6926 refcount_add(nr, &current->usage);
6927
6928 io_submit_state_start(&state, ctx, nr);
6929 link.head = NULL;
6930
6931 for (i = 0; i < nr; i++) {
6932 const struct io_uring_sqe *sqe;
6933 struct io_kiocb *req;
6934 int err;
6935
6936 sqe = io_get_sqe(ctx);
6937 if (unlikely(!sqe)) {
6938 io_consume_sqe(ctx);
6939 break;
6940 }
6941 req = io_alloc_req(ctx, &state);
6942 if (unlikely(!req)) {
6943 if (!submitted)
6944 submitted = -EAGAIN;
6945 break;
6946 }
6947 io_consume_sqe(ctx);
6948 /* will complete beyond this point, count as submitted */
6949 submitted++;
6950
6951 err = io_init_req(ctx, req, sqe, &state);
6952 if (unlikely(err)) {
6953 fail_req:
6954 io_put_req(req);
6955 io_req_complete(req, err);
6956 break;
6957 }
6958
6959 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6960 true, io_async_submit(ctx));
6961 err = io_submit_sqe(req, sqe, &link, &state.comp);
6962 if (err)
6963 goto fail_req;
6964 }
6965
6966 if (unlikely(submitted != nr)) {
6967 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6968 struct io_uring_task *tctx = current->io_uring;
6969 int unused = nr - ref_used;
6970
6971 percpu_ref_put_many(&ctx->refs, unused);
6972 percpu_counter_sub(&tctx->inflight, unused);
6973 put_task_struct_many(current, unused);
6974 }
6975 if (link.head)
6976 io_queue_link_head(link.head, &state.comp);
6977 io_submit_state_end(&state);
6978
6979 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6980 io_commit_sqring(ctx);
6981
6982 return submitted;
6983 }
6984
6985 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6986 {
6987 /* Tell userspace we may need a wakeup call */
6988 spin_lock_irq(&ctx->completion_lock);
6989 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6990 spin_unlock_irq(&ctx->completion_lock);
6991 }
6992
6993 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6994 {
6995 spin_lock_irq(&ctx->completion_lock);
6996 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6997 spin_unlock_irq(&ctx->completion_lock);
6998 }
6999
7000 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7001 {
7002 unsigned int to_submit;
7003 int ret = 0;
7004
7005 to_submit = io_sqring_entries(ctx);
7006 /* if we're handling multiple rings, cap submit size for fairness */
7007 if (cap_entries && to_submit > 8)
7008 to_submit = 8;
7009
7010 if (!list_empty(&ctx->iopoll_list) || to_submit) {
7011 unsigned nr_events = 0;
7012
7013 mutex_lock(&ctx->uring_lock);
7014 if (!list_empty(&ctx->iopoll_list))
7015 io_do_iopoll(ctx, &nr_events, 0);
7016
7017 if (to_submit && !ctx->sqo_dead &&
7018 likely(!percpu_ref_is_dying(&ctx->refs)))
7019 ret = io_submit_sqes(ctx, to_submit);
7020 mutex_unlock(&ctx->uring_lock);
7021 }
7022
7023 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
7024 wake_up(&ctx->sqo_sq_wait);
7025
7026 return ret;
7027 }
7028
7029 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7030 {
7031 struct io_ring_ctx *ctx;
7032 unsigned sq_thread_idle = 0;
7033
7034 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7035 if (sq_thread_idle < ctx->sq_thread_idle)
7036 sq_thread_idle = ctx->sq_thread_idle;
7037 }
7038
7039 sqd->sq_thread_idle = sq_thread_idle;
7040 }
7041
7042 static void io_sqd_init_new(struct io_sq_data *sqd)
7043 {
7044 struct io_ring_ctx *ctx;
7045
7046 while (!list_empty(&sqd->ctx_new_list)) {
7047 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7048 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7049 complete(&ctx->sq_thread_comp);
7050 }
7051
7052 io_sqd_update_thread_idle(sqd);
7053 }
7054
7055 static int io_sq_thread(void *data)
7056 {
7057 struct cgroup_subsys_state *cur_css = NULL;
7058 struct files_struct *old_files = current->files;
7059 struct nsproxy *old_nsproxy = current->nsproxy;
7060 const struct cred *old_cred = NULL;
7061 struct io_sq_data *sqd = data;
7062 struct io_ring_ctx *ctx;
7063 unsigned long timeout = 0;
7064 DEFINE_WAIT(wait);
7065
7066 task_lock(current);
7067 current->files = NULL;
7068 current->nsproxy = NULL;
7069 task_unlock(current);
7070
7071 while (!kthread_should_stop()) {
7072 int ret;
7073 bool cap_entries, sqt_spin, needs_sched;
7074
7075 /*
7076 * Any changes to the sqd lists are synchronized through the
7077 * kthread parking. This synchronizes the thread vs users,
7078 * the users are synchronized on the sqd->ctx_lock.
7079 */
7080 if (kthread_should_park()) {
7081 kthread_parkme();
7082 /*
7083 * When sq thread is unparked, in case the previous park operation
7084 * comes from io_put_sq_data(), which means that sq thread is going
7085 * to be stopped, so here needs to have a check.
7086 */
7087 if (kthread_should_stop())
7088 break;
7089 }
7090
7091 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7092 io_sqd_init_new(sqd);
7093 timeout = jiffies + sqd->sq_thread_idle;
7094 }
7095
7096 sqt_spin = false;
7097 cap_entries = !list_is_singular(&sqd->ctx_list);
7098 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7099 if (current->cred != ctx->creds) {
7100 if (old_cred)
7101 revert_creds(old_cred);
7102 old_cred = override_creds(ctx->creds);
7103 }
7104 io_sq_thread_associate_blkcg(ctx, &cur_css);
7105 #ifdef CONFIG_AUDIT
7106 current->loginuid = ctx->loginuid;
7107 current->sessionid = ctx->sessionid;
7108 #endif
7109
7110 ret = __io_sq_thread(ctx, cap_entries);
7111 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7112 sqt_spin = true;
7113
7114 io_sq_thread_drop_mm_files();
7115 }
7116
7117 if (sqt_spin || !time_after(jiffies, timeout)) {
7118 io_run_task_work();
7119 io_sq_thread_drop_mm_files();
7120 cond_resched();
7121 if (sqt_spin)
7122 timeout = jiffies + sqd->sq_thread_idle;
7123 continue;
7124 }
7125
7126 if (kthread_should_park())
7127 continue;
7128
7129 needs_sched = true;
7130 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7131 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7132 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7133 !list_empty_careful(&ctx->iopoll_list)) {
7134 needs_sched = false;
7135 break;
7136 }
7137 if (io_sqring_entries(ctx)) {
7138 needs_sched = false;
7139 break;
7140 }
7141 }
7142
7143 if (needs_sched) {
7144 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7145 io_ring_set_wakeup_flag(ctx);
7146
7147 schedule();
7148 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7149 io_ring_clear_wakeup_flag(ctx);
7150 }
7151
7152 finish_wait(&sqd->wait, &wait);
7153 timeout = jiffies + sqd->sq_thread_idle;
7154 }
7155
7156 io_run_task_work();
7157 io_sq_thread_drop_mm_files();
7158
7159 if (cur_css)
7160 io_sq_thread_unassociate_blkcg();
7161 if (old_cred)
7162 revert_creds(old_cred);
7163
7164 task_lock(current);
7165 current->files = old_files;
7166 current->nsproxy = old_nsproxy;
7167 task_unlock(current);
7168
7169 kthread_parkme();
7170
7171 return 0;
7172 }
7173
7174 struct io_wait_queue {
7175 struct wait_queue_entry wq;
7176 struct io_ring_ctx *ctx;
7177 unsigned to_wait;
7178 unsigned nr_timeouts;
7179 };
7180
7181 static inline bool io_should_wake(struct io_wait_queue *iowq)
7182 {
7183 struct io_ring_ctx *ctx = iowq->ctx;
7184
7185 /*
7186 * Wake up if we have enough events, or if a timeout occurred since we
7187 * started waiting. For timeouts, we always want to return to userspace,
7188 * regardless of event count.
7189 */
7190 return io_cqring_events(ctx) >= iowq->to_wait ||
7191 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7192 }
7193
7194 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7195 int wake_flags, void *key)
7196 {
7197 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7198 wq);
7199
7200 /*
7201 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7202 * the task, and the next invocation will do it.
7203 */
7204 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7205 return autoremove_wake_function(curr, mode, wake_flags, key);
7206 return -1;
7207 }
7208
7209 static int io_run_task_work_sig(void)
7210 {
7211 if (io_run_task_work())
7212 return 1;
7213 if (!signal_pending(current))
7214 return 0;
7215 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7216 return -ERESTARTSYS;
7217 return -EINTR;
7218 }
7219
7220 /*
7221 * Wait until events become available, if we don't already have some. The
7222 * application must reap them itself, as they reside on the shared cq ring.
7223 */
7224 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7225 const sigset_t __user *sig, size_t sigsz,
7226 struct __kernel_timespec __user *uts)
7227 {
7228 struct io_wait_queue iowq = {
7229 .wq = {
7230 .private = current,
7231 .func = io_wake_function,
7232 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7233 },
7234 .ctx = ctx,
7235 .to_wait = min_events,
7236 };
7237 struct io_rings *rings = ctx->rings;
7238 struct timespec64 ts;
7239 signed long timeout = 0;
7240 int ret = 0;
7241
7242 do {
7243 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7244 if (io_cqring_events(ctx) >= min_events)
7245 return 0;
7246 if (!io_run_task_work())
7247 break;
7248 } while (1);
7249
7250 if (sig) {
7251 #ifdef CONFIG_COMPAT
7252 if (in_compat_syscall())
7253 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7254 sigsz);
7255 else
7256 #endif
7257 ret = set_user_sigmask(sig, sigsz);
7258
7259 if (ret)
7260 return ret;
7261 }
7262
7263 if (uts) {
7264 if (get_timespec64(&ts, uts))
7265 return -EFAULT;
7266 timeout = timespec64_to_jiffies(&ts);
7267 }
7268
7269 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7270 trace_io_uring_cqring_wait(ctx, min_events);
7271 do {
7272 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7273 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7274 TASK_INTERRUPTIBLE);
7275 /* make sure we run task_work before checking for signals */
7276 ret = io_run_task_work_sig();
7277 if (ret > 0) {
7278 finish_wait(&ctx->wait, &iowq.wq);
7279 continue;
7280 }
7281 else if (ret < 0)
7282 break;
7283 if (io_should_wake(&iowq))
7284 break;
7285 if (test_bit(0, &ctx->cq_check_overflow)) {
7286 finish_wait(&ctx->wait, &iowq.wq);
7287 continue;
7288 }
7289 if (uts) {
7290 timeout = schedule_timeout(timeout);
7291 if (timeout == 0) {
7292 ret = -ETIME;
7293 break;
7294 }
7295 } else {
7296 schedule();
7297 }
7298 } while (1);
7299 finish_wait(&ctx->wait, &iowq.wq);
7300
7301 restore_saved_sigmask_unless(ret == -EINTR);
7302
7303 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7304 }
7305
7306 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7307 {
7308 #if defined(CONFIG_UNIX)
7309 if (ctx->ring_sock) {
7310 struct sock *sock = ctx->ring_sock->sk;
7311 struct sk_buff *skb;
7312
7313 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7314 kfree_skb(skb);
7315 }
7316 #else
7317 int i;
7318
7319 for (i = 0; i < ctx->nr_user_files; i++) {
7320 struct file *file;
7321
7322 file = io_file_from_index(ctx, i);
7323 if (file)
7324 fput(file);
7325 }
7326 #endif
7327 }
7328
7329 static void io_file_ref_kill(struct percpu_ref *ref)
7330 {
7331 struct fixed_file_data *data;
7332
7333 data = container_of(ref, struct fixed_file_data, refs);
7334 complete(&data->done);
7335 }
7336
7337 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7338 struct fixed_file_ref_node *ref_node)
7339 {
7340 spin_lock_bh(&file_data->lock);
7341 file_data->node = ref_node;
7342 list_add_tail(&ref_node->node, &file_data->ref_list);
7343 spin_unlock_bh(&file_data->lock);
7344 percpu_ref_get(&file_data->refs);
7345 }
7346
7347 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7348 {
7349 struct fixed_file_data *data = ctx->file_data;
7350 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7351 unsigned nr_tables, i;
7352 int ret;
7353
7354 if (!data)
7355 return -ENXIO;
7356 backup_node = alloc_fixed_file_ref_node(ctx);
7357 if (!backup_node)
7358 return -ENOMEM;
7359
7360 spin_lock_bh(&data->lock);
7361 ref_node = data->node;
7362 spin_unlock_bh(&data->lock);
7363 if (ref_node)
7364 percpu_ref_kill(&ref_node->refs);
7365
7366 percpu_ref_kill(&data->refs);
7367
7368 /* wait for all refs nodes to complete */
7369 flush_delayed_work(&ctx->file_put_work);
7370 do {
7371 ret = wait_for_completion_interruptible(&data->done);
7372 if (!ret)
7373 break;
7374 ret = io_run_task_work_sig();
7375 if (ret < 0) {
7376 percpu_ref_resurrect(&data->refs);
7377 reinit_completion(&data->done);
7378 io_sqe_files_set_node(data, backup_node);
7379 return ret;
7380 }
7381 } while (1);
7382
7383 __io_sqe_files_unregister(ctx);
7384 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7385 for (i = 0; i < nr_tables; i++)
7386 kfree(data->table[i].files);
7387 kfree(data->table);
7388 percpu_ref_exit(&data->refs);
7389 kfree(data);
7390 ctx->file_data = NULL;
7391 ctx->nr_user_files = 0;
7392 destroy_fixed_file_ref_node(backup_node);
7393 return 0;
7394 }
7395
7396 static void io_put_sq_data(struct io_sq_data *sqd)
7397 {
7398 if (refcount_dec_and_test(&sqd->refs)) {
7399 /*
7400 * The park is a bit of a work-around, without it we get
7401 * warning spews on shutdown with SQPOLL set and affinity
7402 * set to a single CPU.
7403 */
7404 if (sqd->thread) {
7405 kthread_park(sqd->thread);
7406 kthread_stop(sqd->thread);
7407 }
7408
7409 kfree(sqd);
7410 }
7411 }
7412
7413 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7414 {
7415 struct io_ring_ctx *ctx_attach;
7416 struct io_sq_data *sqd;
7417 struct fd f;
7418
7419 f = fdget(p->wq_fd);
7420 if (!f.file)
7421 return ERR_PTR(-ENXIO);
7422 if (f.file->f_op != &io_uring_fops) {
7423 fdput(f);
7424 return ERR_PTR(-EINVAL);
7425 }
7426
7427 ctx_attach = f.file->private_data;
7428 sqd = ctx_attach->sq_data;
7429 if (!sqd) {
7430 fdput(f);
7431 return ERR_PTR(-EINVAL);
7432 }
7433
7434 refcount_inc(&sqd->refs);
7435 fdput(f);
7436 return sqd;
7437 }
7438
7439 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7440 {
7441 struct io_sq_data *sqd;
7442
7443 if (p->flags & IORING_SETUP_ATTACH_WQ)
7444 return io_attach_sq_data(p);
7445
7446 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7447 if (!sqd)
7448 return ERR_PTR(-ENOMEM);
7449
7450 refcount_set(&sqd->refs, 1);
7451 INIT_LIST_HEAD(&sqd->ctx_list);
7452 INIT_LIST_HEAD(&sqd->ctx_new_list);
7453 mutex_init(&sqd->ctx_lock);
7454 mutex_init(&sqd->lock);
7455 init_waitqueue_head(&sqd->wait);
7456 return sqd;
7457 }
7458
7459 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7460 __releases(&sqd->lock)
7461 {
7462 if (!sqd->thread)
7463 return;
7464 kthread_unpark(sqd->thread);
7465 mutex_unlock(&sqd->lock);
7466 }
7467
7468 static void io_sq_thread_park(struct io_sq_data *sqd)
7469 __acquires(&sqd->lock)
7470 {
7471 if (!sqd->thread)
7472 return;
7473 mutex_lock(&sqd->lock);
7474 kthread_park(sqd->thread);
7475 }
7476
7477 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7478 {
7479 struct io_sq_data *sqd = ctx->sq_data;
7480
7481 if (sqd) {
7482 if (sqd->thread) {
7483 /*
7484 * We may arrive here from the error branch in
7485 * io_sq_offload_create() where the kthread is created
7486 * without being waked up, thus wake it up now to make
7487 * sure the wait will complete.
7488 */
7489 wake_up_process(sqd->thread);
7490 wait_for_completion(&ctx->sq_thread_comp);
7491
7492 io_sq_thread_park(sqd);
7493 }
7494
7495 mutex_lock(&sqd->ctx_lock);
7496 list_del(&ctx->sqd_list);
7497 io_sqd_update_thread_idle(sqd);
7498 mutex_unlock(&sqd->ctx_lock);
7499
7500 if (sqd->thread)
7501 io_sq_thread_unpark(sqd);
7502
7503 io_put_sq_data(sqd);
7504 ctx->sq_data = NULL;
7505 }
7506 }
7507
7508 static void io_finish_async(struct io_ring_ctx *ctx)
7509 {
7510 io_sq_thread_stop(ctx);
7511
7512 if (ctx->io_wq) {
7513 io_wq_destroy(ctx->io_wq);
7514 ctx->io_wq = NULL;
7515 }
7516 }
7517
7518 #if defined(CONFIG_UNIX)
7519 /*
7520 * Ensure the UNIX gc is aware of our file set, so we are certain that
7521 * the io_uring can be safely unregistered on process exit, even if we have
7522 * loops in the file referencing.
7523 */
7524 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7525 {
7526 struct sock *sk = ctx->ring_sock->sk;
7527 struct scm_fp_list *fpl;
7528 struct sk_buff *skb;
7529 int i, nr_files;
7530
7531 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7532 if (!fpl)
7533 return -ENOMEM;
7534
7535 skb = alloc_skb(0, GFP_KERNEL);
7536 if (!skb) {
7537 kfree(fpl);
7538 return -ENOMEM;
7539 }
7540
7541 skb->sk = sk;
7542
7543 nr_files = 0;
7544 fpl->user = get_uid(ctx->user);
7545 for (i = 0; i < nr; i++) {
7546 struct file *file = io_file_from_index(ctx, i + offset);
7547
7548 if (!file)
7549 continue;
7550 fpl->fp[nr_files] = get_file(file);
7551 unix_inflight(fpl->user, fpl->fp[nr_files]);
7552 nr_files++;
7553 }
7554
7555 if (nr_files) {
7556 fpl->max = SCM_MAX_FD;
7557 fpl->count = nr_files;
7558 UNIXCB(skb).fp = fpl;
7559 skb->destructor = unix_destruct_scm;
7560 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7561 skb_queue_head(&sk->sk_receive_queue, skb);
7562
7563 for (i = 0; i < nr_files; i++)
7564 fput(fpl->fp[i]);
7565 } else {
7566 kfree_skb(skb);
7567 kfree(fpl);
7568 }
7569
7570 return 0;
7571 }
7572
7573 /*
7574 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7575 * causes regular reference counting to break down. We rely on the UNIX
7576 * garbage collection to take care of this problem for us.
7577 */
7578 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7579 {
7580 unsigned left, total;
7581 int ret = 0;
7582
7583 total = 0;
7584 left = ctx->nr_user_files;
7585 while (left) {
7586 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7587
7588 ret = __io_sqe_files_scm(ctx, this_files, total);
7589 if (ret)
7590 break;
7591 left -= this_files;
7592 total += this_files;
7593 }
7594
7595 if (!ret)
7596 return 0;
7597
7598 while (total < ctx->nr_user_files) {
7599 struct file *file = io_file_from_index(ctx, total);
7600
7601 if (file)
7602 fput(file);
7603 total++;
7604 }
7605
7606 return ret;
7607 }
7608 #else
7609 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7610 {
7611 return 0;
7612 }
7613 #endif
7614
7615 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7616 unsigned nr_tables, unsigned nr_files)
7617 {
7618 int i;
7619
7620 for (i = 0; i < nr_tables; i++) {
7621 struct fixed_file_table *table = &file_data->table[i];
7622 unsigned this_files;
7623
7624 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7625 table->files = kcalloc(this_files, sizeof(struct file *),
7626 GFP_KERNEL);
7627 if (!table->files)
7628 break;
7629 nr_files -= this_files;
7630 }
7631
7632 if (i == nr_tables)
7633 return 0;
7634
7635 for (i = 0; i < nr_tables; i++) {
7636 struct fixed_file_table *table = &file_data->table[i];
7637 kfree(table->files);
7638 }
7639 return 1;
7640 }
7641
7642 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7643 {
7644 #if defined(CONFIG_UNIX)
7645 struct sock *sock = ctx->ring_sock->sk;
7646 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7647 struct sk_buff *skb;
7648 int i;
7649
7650 __skb_queue_head_init(&list);
7651
7652 /*
7653 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7654 * remove this entry and rearrange the file array.
7655 */
7656 skb = skb_dequeue(head);
7657 while (skb) {
7658 struct scm_fp_list *fp;
7659
7660 fp = UNIXCB(skb).fp;
7661 for (i = 0; i < fp->count; i++) {
7662 int left;
7663
7664 if (fp->fp[i] != file)
7665 continue;
7666
7667 unix_notinflight(fp->user, fp->fp[i]);
7668 left = fp->count - 1 - i;
7669 if (left) {
7670 memmove(&fp->fp[i], &fp->fp[i + 1],
7671 left * sizeof(struct file *));
7672 }
7673 fp->count--;
7674 if (!fp->count) {
7675 kfree_skb(skb);
7676 skb = NULL;
7677 } else {
7678 __skb_queue_tail(&list, skb);
7679 }
7680 fput(file);
7681 file = NULL;
7682 break;
7683 }
7684
7685 if (!file)
7686 break;
7687
7688 __skb_queue_tail(&list, skb);
7689
7690 skb = skb_dequeue(head);
7691 }
7692
7693 if (skb_peek(&list)) {
7694 spin_lock_irq(&head->lock);
7695 while ((skb = __skb_dequeue(&list)) != NULL)
7696 __skb_queue_tail(head, skb);
7697 spin_unlock_irq(&head->lock);
7698 }
7699 #else
7700 fput(file);
7701 #endif
7702 }
7703
7704 struct io_file_put {
7705 struct list_head list;
7706 struct file *file;
7707 };
7708
7709 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7710 {
7711 struct fixed_file_data *file_data = ref_node->file_data;
7712 struct io_ring_ctx *ctx = file_data->ctx;
7713 struct io_file_put *pfile, *tmp;
7714
7715 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7716 list_del(&pfile->list);
7717 io_ring_file_put(ctx, pfile->file);
7718 kfree(pfile);
7719 }
7720
7721 percpu_ref_exit(&ref_node->refs);
7722 kfree(ref_node);
7723 percpu_ref_put(&file_data->refs);
7724 }
7725
7726 static void io_file_put_work(struct work_struct *work)
7727 {
7728 struct io_ring_ctx *ctx;
7729 struct llist_node *node;
7730
7731 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7732 node = llist_del_all(&ctx->file_put_llist);
7733
7734 while (node) {
7735 struct fixed_file_ref_node *ref_node;
7736 struct llist_node *next = node->next;
7737
7738 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7739 __io_file_put_work(ref_node);
7740 node = next;
7741 }
7742 }
7743
7744 static void io_file_data_ref_zero(struct percpu_ref *ref)
7745 {
7746 struct fixed_file_ref_node *ref_node;
7747 struct fixed_file_data *data;
7748 struct io_ring_ctx *ctx;
7749 bool first_add = false;
7750 int delay = HZ;
7751
7752 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7753 data = ref_node->file_data;
7754 ctx = data->ctx;
7755
7756 spin_lock_bh(&data->lock);
7757 ref_node->done = true;
7758
7759 while (!list_empty(&data->ref_list)) {
7760 ref_node = list_first_entry(&data->ref_list,
7761 struct fixed_file_ref_node, node);
7762 /* recycle ref nodes in order */
7763 if (!ref_node->done)
7764 break;
7765 list_del(&ref_node->node);
7766 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7767 }
7768 spin_unlock_bh(&data->lock);
7769
7770 if (percpu_ref_is_dying(&data->refs))
7771 delay = 0;
7772
7773 if (!delay)
7774 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7775 else if (first_add)
7776 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7777 }
7778
7779 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7780 struct io_ring_ctx *ctx)
7781 {
7782 struct fixed_file_ref_node *ref_node;
7783
7784 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7785 if (!ref_node)
7786 return NULL;
7787
7788 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7789 0, GFP_KERNEL)) {
7790 kfree(ref_node);
7791 return NULL;
7792 }
7793 INIT_LIST_HEAD(&ref_node->node);
7794 INIT_LIST_HEAD(&ref_node->file_list);
7795 ref_node->file_data = ctx->file_data;
7796 ref_node->done = false;
7797 return ref_node;
7798 }
7799
7800 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7801 {
7802 percpu_ref_exit(&ref_node->refs);
7803 kfree(ref_node);
7804 }
7805
7806 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7807 unsigned nr_args)
7808 {
7809 __s32 __user *fds = (__s32 __user *) arg;
7810 unsigned nr_tables, i;
7811 struct file *file;
7812 int fd, ret = -ENOMEM;
7813 struct fixed_file_ref_node *ref_node;
7814 struct fixed_file_data *file_data;
7815
7816 if (ctx->file_data)
7817 return -EBUSY;
7818 if (!nr_args)
7819 return -EINVAL;
7820 if (nr_args > IORING_MAX_FIXED_FILES)
7821 return -EMFILE;
7822
7823 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7824 if (!file_data)
7825 return -ENOMEM;
7826 file_data->ctx = ctx;
7827 init_completion(&file_data->done);
7828 INIT_LIST_HEAD(&file_data->ref_list);
7829 spin_lock_init(&file_data->lock);
7830
7831 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7832 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7833 GFP_KERNEL);
7834 if (!file_data->table)
7835 goto out_free;
7836
7837 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7838 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7839 goto out_free;
7840
7841 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7842 goto out_ref;
7843 ctx->file_data = file_data;
7844
7845 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7846 struct fixed_file_table *table;
7847 unsigned index;
7848
7849 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7850 ret = -EFAULT;
7851 goto out_fput;
7852 }
7853 /* allow sparse sets */
7854 if (fd == -1)
7855 continue;
7856
7857 file = fget(fd);
7858 ret = -EBADF;
7859 if (!file)
7860 goto out_fput;
7861
7862 /*
7863 * Don't allow io_uring instances to be registered. If UNIX
7864 * isn't enabled, then this causes a reference cycle and this
7865 * instance can never get freed. If UNIX is enabled we'll
7866 * handle it just fine, but there's still no point in allowing
7867 * a ring fd as it doesn't support regular read/write anyway.
7868 */
7869 if (file->f_op == &io_uring_fops) {
7870 fput(file);
7871 goto out_fput;
7872 }
7873 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7874 index = i & IORING_FILE_TABLE_MASK;
7875 table->files[index] = file;
7876 }
7877
7878 ret = io_sqe_files_scm(ctx);
7879 if (ret) {
7880 io_sqe_files_unregister(ctx);
7881 return ret;
7882 }
7883
7884 ref_node = alloc_fixed_file_ref_node(ctx);
7885 if (!ref_node) {
7886 io_sqe_files_unregister(ctx);
7887 return -ENOMEM;
7888 }
7889
7890 io_sqe_files_set_node(file_data, ref_node);
7891 return ret;
7892 out_fput:
7893 for (i = 0; i < ctx->nr_user_files; i++) {
7894 file = io_file_from_index(ctx, i);
7895 if (file)
7896 fput(file);
7897 }
7898 for (i = 0; i < nr_tables; i++)
7899 kfree(file_data->table[i].files);
7900 ctx->nr_user_files = 0;
7901 out_ref:
7902 percpu_ref_exit(&file_data->refs);
7903 out_free:
7904 kfree(file_data->table);
7905 kfree(file_data);
7906 ctx->file_data = NULL;
7907 return ret;
7908 }
7909
7910 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7911 int index)
7912 {
7913 #if defined(CONFIG_UNIX)
7914 struct sock *sock = ctx->ring_sock->sk;
7915 struct sk_buff_head *head = &sock->sk_receive_queue;
7916 struct sk_buff *skb;
7917
7918 /*
7919 * See if we can merge this file into an existing skb SCM_RIGHTS
7920 * file set. If there's no room, fall back to allocating a new skb
7921 * and filling it in.
7922 */
7923 spin_lock_irq(&head->lock);
7924 skb = skb_peek(head);
7925 if (skb) {
7926 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7927
7928 if (fpl->count < SCM_MAX_FD) {
7929 __skb_unlink(skb, head);
7930 spin_unlock_irq(&head->lock);
7931 fpl->fp[fpl->count] = get_file(file);
7932 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7933 fpl->count++;
7934 spin_lock_irq(&head->lock);
7935 __skb_queue_head(head, skb);
7936 } else {
7937 skb = NULL;
7938 }
7939 }
7940 spin_unlock_irq(&head->lock);
7941
7942 if (skb) {
7943 fput(file);
7944 return 0;
7945 }
7946
7947 return __io_sqe_files_scm(ctx, 1, index);
7948 #else
7949 return 0;
7950 #endif
7951 }
7952
7953 static int io_queue_file_removal(struct fixed_file_data *data,
7954 struct file *file)
7955 {
7956 struct io_file_put *pfile;
7957 struct fixed_file_ref_node *ref_node = data->node;
7958
7959 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7960 if (!pfile)
7961 return -ENOMEM;
7962
7963 pfile->file = file;
7964 list_add(&pfile->list, &ref_node->file_list);
7965
7966 return 0;
7967 }
7968
7969 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7970 struct io_uring_files_update *up,
7971 unsigned nr_args)
7972 {
7973 struct fixed_file_data *data = ctx->file_data;
7974 struct fixed_file_ref_node *ref_node;
7975 struct file *file;
7976 __s32 __user *fds;
7977 int fd, i, err;
7978 __u32 done;
7979 bool needs_switch = false;
7980
7981 if (check_add_overflow(up->offset, nr_args, &done))
7982 return -EOVERFLOW;
7983 if (done > ctx->nr_user_files)
7984 return -EINVAL;
7985
7986 ref_node = alloc_fixed_file_ref_node(ctx);
7987 if (!ref_node)
7988 return -ENOMEM;
7989
7990 done = 0;
7991 fds = u64_to_user_ptr(up->fds);
7992 while (nr_args) {
7993 struct fixed_file_table *table;
7994 unsigned index;
7995
7996 err = 0;
7997 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7998 err = -EFAULT;
7999 break;
8000 }
8001 i = array_index_nospec(up->offset, ctx->nr_user_files);
8002 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
8003 index = i & IORING_FILE_TABLE_MASK;
8004 if (table->files[index]) {
8005 file = table->files[index];
8006 err = io_queue_file_removal(data, file);
8007 if (err)
8008 break;
8009 table->files[index] = NULL;
8010 needs_switch = true;
8011 }
8012 if (fd != -1) {
8013 file = fget(fd);
8014 if (!file) {
8015 err = -EBADF;
8016 break;
8017 }
8018 /*
8019 * Don't allow io_uring instances to be registered. If
8020 * UNIX isn't enabled, then this causes a reference
8021 * cycle and this instance can never get freed. If UNIX
8022 * is enabled we'll handle it just fine, but there's
8023 * still no point in allowing a ring fd as it doesn't
8024 * support regular read/write anyway.
8025 */
8026 if (file->f_op == &io_uring_fops) {
8027 fput(file);
8028 err = -EBADF;
8029 break;
8030 }
8031 table->files[index] = file;
8032 err = io_sqe_file_register(ctx, file, i);
8033 if (err) {
8034 table->files[index] = NULL;
8035 fput(file);
8036 break;
8037 }
8038 }
8039 nr_args--;
8040 done++;
8041 up->offset++;
8042 }
8043
8044 if (needs_switch) {
8045 percpu_ref_kill(&data->node->refs);
8046 io_sqe_files_set_node(data, ref_node);
8047 } else
8048 destroy_fixed_file_ref_node(ref_node);
8049
8050 return done ? done : err;
8051 }
8052
8053 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8054 unsigned nr_args)
8055 {
8056 struct io_uring_files_update up;
8057
8058 if (!ctx->file_data)
8059 return -ENXIO;
8060 if (!nr_args)
8061 return -EINVAL;
8062 if (copy_from_user(&up, arg, sizeof(up)))
8063 return -EFAULT;
8064 if (up.resv)
8065 return -EINVAL;
8066
8067 return __io_sqe_files_update(ctx, &up, nr_args);
8068 }
8069
8070 static void io_free_work(struct io_wq_work *work)
8071 {
8072 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8073
8074 /* Consider that io_steal_work() relies on this ref */
8075 io_put_req(req);
8076 }
8077
8078 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8079 struct io_uring_params *p)
8080 {
8081 struct io_wq_data data;
8082 struct fd f;
8083 struct io_ring_ctx *ctx_attach;
8084 unsigned int concurrency;
8085 int ret = 0;
8086
8087 data.user = ctx->user;
8088 data.free_work = io_free_work;
8089 data.do_work = io_wq_submit_work;
8090
8091 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8092 /* Do QD, or 4 * CPUS, whatever is smallest */
8093 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8094
8095 ctx->io_wq = io_wq_create(concurrency, &data);
8096 if (IS_ERR(ctx->io_wq)) {
8097 ret = PTR_ERR(ctx->io_wq);
8098 ctx->io_wq = NULL;
8099 }
8100 return ret;
8101 }
8102
8103 f = fdget(p->wq_fd);
8104 if (!f.file)
8105 return -EBADF;
8106
8107 if (f.file->f_op != &io_uring_fops) {
8108 ret = -EINVAL;
8109 goto out_fput;
8110 }
8111
8112 ctx_attach = f.file->private_data;
8113 /* @io_wq is protected by holding the fd */
8114 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8115 ret = -EINVAL;
8116 goto out_fput;
8117 }
8118
8119 ctx->io_wq = ctx_attach->io_wq;
8120 out_fput:
8121 fdput(f);
8122 return ret;
8123 }
8124
8125 static int io_uring_alloc_task_context(struct task_struct *task)
8126 {
8127 struct io_uring_task *tctx;
8128 int ret;
8129
8130 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8131 if (unlikely(!tctx))
8132 return -ENOMEM;
8133
8134 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8135 if (unlikely(ret)) {
8136 kfree(tctx);
8137 return ret;
8138 }
8139
8140 xa_init(&tctx->xa);
8141 init_waitqueue_head(&tctx->wait);
8142 tctx->last = NULL;
8143 atomic_set(&tctx->in_idle, 0);
8144 tctx->sqpoll = false;
8145 io_init_identity(&tctx->__identity);
8146 tctx->identity = &tctx->__identity;
8147 task->io_uring = tctx;
8148 return 0;
8149 }
8150
8151 void __io_uring_free(struct task_struct *tsk)
8152 {
8153 struct io_uring_task *tctx = tsk->io_uring;
8154
8155 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8156 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8157 if (tctx->identity != &tctx->__identity)
8158 kfree(tctx->identity);
8159 percpu_counter_destroy(&tctx->inflight);
8160 kfree(tctx);
8161 tsk->io_uring = NULL;
8162 }
8163
8164 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8165 struct io_uring_params *p)
8166 {
8167 int ret;
8168
8169 if (ctx->flags & IORING_SETUP_SQPOLL) {
8170 struct io_sq_data *sqd;
8171
8172 ret = -EPERM;
8173 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8174 goto err;
8175
8176 sqd = io_get_sq_data(p);
8177 if (IS_ERR(sqd)) {
8178 ret = PTR_ERR(sqd);
8179 goto err;
8180 }
8181
8182 ctx->sq_data = sqd;
8183 io_sq_thread_park(sqd);
8184 mutex_lock(&sqd->ctx_lock);
8185 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8186 mutex_unlock(&sqd->ctx_lock);
8187 io_sq_thread_unpark(sqd);
8188
8189 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8190 if (!ctx->sq_thread_idle)
8191 ctx->sq_thread_idle = HZ;
8192
8193 if (sqd->thread)
8194 goto done;
8195
8196 if (p->flags & IORING_SETUP_SQ_AFF) {
8197 int cpu = p->sq_thread_cpu;
8198
8199 ret = -EINVAL;
8200 if (cpu >= nr_cpu_ids)
8201 goto err;
8202 if (!cpu_online(cpu))
8203 goto err;
8204
8205 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8206 cpu, "io_uring-sq");
8207 } else {
8208 sqd->thread = kthread_create(io_sq_thread, sqd,
8209 "io_uring-sq");
8210 }
8211 if (IS_ERR(sqd->thread)) {
8212 ret = PTR_ERR(sqd->thread);
8213 sqd->thread = NULL;
8214 goto err;
8215 }
8216 ret = io_uring_alloc_task_context(sqd->thread);
8217 if (ret)
8218 goto err;
8219 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8220 /* Can't have SQ_AFF without SQPOLL */
8221 ret = -EINVAL;
8222 goto err;
8223 }
8224
8225 done:
8226 ret = io_init_wq_offload(ctx, p);
8227 if (ret)
8228 goto err;
8229
8230 return 0;
8231 err:
8232 io_finish_async(ctx);
8233 return ret;
8234 }
8235
8236 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8237 {
8238 struct io_sq_data *sqd = ctx->sq_data;
8239
8240 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8241 wake_up_process(sqd->thread);
8242 }
8243
8244 static inline void __io_unaccount_mem(struct user_struct *user,
8245 unsigned long nr_pages)
8246 {
8247 atomic_long_sub(nr_pages, &user->locked_vm);
8248 }
8249
8250 static inline int __io_account_mem(struct user_struct *user,
8251 unsigned long nr_pages)
8252 {
8253 unsigned long page_limit, cur_pages, new_pages;
8254
8255 /* Don't allow more pages than we can safely lock */
8256 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8257
8258 do {
8259 cur_pages = atomic_long_read(&user->locked_vm);
8260 new_pages = cur_pages + nr_pages;
8261 if (new_pages > page_limit)
8262 return -ENOMEM;
8263 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8264 new_pages) != cur_pages);
8265
8266 return 0;
8267 }
8268
8269 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8270 enum io_mem_account acct)
8271 {
8272 if (ctx->limit_mem)
8273 __io_unaccount_mem(ctx->user, nr_pages);
8274
8275 if (ctx->mm_account) {
8276 if (acct == ACCT_LOCKED) {
8277 mmap_write_lock(ctx->mm_account);
8278 ctx->mm_account->locked_vm -= nr_pages;
8279 mmap_write_unlock(ctx->mm_account);
8280 }else if (acct == ACCT_PINNED) {
8281 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8282 }
8283 }
8284 }
8285
8286 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8287 enum io_mem_account acct)
8288 {
8289 int ret;
8290
8291 if (ctx->limit_mem) {
8292 ret = __io_account_mem(ctx->user, nr_pages);
8293 if (ret)
8294 return ret;
8295 }
8296
8297 if (ctx->mm_account) {
8298 if (acct == ACCT_LOCKED) {
8299 mmap_write_lock(ctx->mm_account);
8300 ctx->mm_account->locked_vm += nr_pages;
8301 mmap_write_unlock(ctx->mm_account);
8302 } else if (acct == ACCT_PINNED) {
8303 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8304 }
8305 }
8306
8307 return 0;
8308 }
8309
8310 static void io_mem_free(void *ptr)
8311 {
8312 struct page *page;
8313
8314 if (!ptr)
8315 return;
8316
8317 page = virt_to_head_page(ptr);
8318 if (put_page_testzero(page))
8319 free_compound_page(page);
8320 }
8321
8322 static void *io_mem_alloc(size_t size)
8323 {
8324 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8325 __GFP_NORETRY;
8326
8327 return (void *) __get_free_pages(gfp_flags, get_order(size));
8328 }
8329
8330 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8331 size_t *sq_offset)
8332 {
8333 struct io_rings *rings;
8334 size_t off, sq_array_size;
8335
8336 off = struct_size(rings, cqes, cq_entries);
8337 if (off == SIZE_MAX)
8338 return SIZE_MAX;
8339
8340 #ifdef CONFIG_SMP
8341 off = ALIGN(off, SMP_CACHE_BYTES);
8342 if (off == 0)
8343 return SIZE_MAX;
8344 #endif
8345
8346 if (sq_offset)
8347 *sq_offset = off;
8348
8349 sq_array_size = array_size(sizeof(u32), sq_entries);
8350 if (sq_array_size == SIZE_MAX)
8351 return SIZE_MAX;
8352
8353 if (check_add_overflow(off, sq_array_size, &off))
8354 return SIZE_MAX;
8355
8356 return off;
8357 }
8358
8359 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8360 {
8361 size_t pages;
8362
8363 pages = (size_t)1 << get_order(
8364 rings_size(sq_entries, cq_entries, NULL));
8365 pages += (size_t)1 << get_order(
8366 array_size(sizeof(struct io_uring_sqe), sq_entries));
8367
8368 return pages;
8369 }
8370
8371 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8372 {
8373 int i, j;
8374
8375 if (!ctx->user_bufs)
8376 return -ENXIO;
8377
8378 for (i = 0; i < ctx->nr_user_bufs; i++) {
8379 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8380
8381 for (j = 0; j < imu->nr_bvecs; j++)
8382 unpin_user_page(imu->bvec[j].bv_page);
8383
8384 if (imu->acct_pages)
8385 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8386 kvfree(imu->bvec);
8387 imu->nr_bvecs = 0;
8388 }
8389
8390 kfree(ctx->user_bufs);
8391 ctx->user_bufs = NULL;
8392 ctx->nr_user_bufs = 0;
8393 return 0;
8394 }
8395
8396 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8397 void __user *arg, unsigned index)
8398 {
8399 struct iovec __user *src;
8400
8401 #ifdef CONFIG_COMPAT
8402 if (ctx->compat) {
8403 struct compat_iovec __user *ciovs;
8404 struct compat_iovec ciov;
8405
8406 ciovs = (struct compat_iovec __user *) arg;
8407 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8408 return -EFAULT;
8409
8410 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8411 dst->iov_len = ciov.iov_len;
8412 return 0;
8413 }
8414 #endif
8415 src = (struct iovec __user *) arg;
8416 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8417 return -EFAULT;
8418 return 0;
8419 }
8420
8421 /*
8422 * Not super efficient, but this is just a registration time. And we do cache
8423 * the last compound head, so generally we'll only do a full search if we don't
8424 * match that one.
8425 *
8426 * We check if the given compound head page has already been accounted, to
8427 * avoid double accounting it. This allows us to account the full size of the
8428 * page, not just the constituent pages of a huge page.
8429 */
8430 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8431 int nr_pages, struct page *hpage)
8432 {
8433 int i, j;
8434
8435 /* check current page array */
8436 for (i = 0; i < nr_pages; i++) {
8437 if (!PageCompound(pages[i]))
8438 continue;
8439 if (compound_head(pages[i]) == hpage)
8440 return true;
8441 }
8442
8443 /* check previously registered pages */
8444 for (i = 0; i < ctx->nr_user_bufs; i++) {
8445 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8446
8447 for (j = 0; j < imu->nr_bvecs; j++) {
8448 if (!PageCompound(imu->bvec[j].bv_page))
8449 continue;
8450 if (compound_head(imu->bvec[j].bv_page) == hpage)
8451 return true;
8452 }
8453 }
8454
8455 return false;
8456 }
8457
8458 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8459 int nr_pages, struct io_mapped_ubuf *imu,
8460 struct page **last_hpage)
8461 {
8462 int i, ret;
8463
8464 for (i = 0; i < nr_pages; i++) {
8465 if (!PageCompound(pages[i])) {
8466 imu->acct_pages++;
8467 } else {
8468 struct page *hpage;
8469
8470 hpage = compound_head(pages[i]);
8471 if (hpage == *last_hpage)
8472 continue;
8473 *last_hpage = hpage;
8474 if (headpage_already_acct(ctx, pages, i, hpage))
8475 continue;
8476 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8477 }
8478 }
8479
8480 if (!imu->acct_pages)
8481 return 0;
8482
8483 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8484 if (ret)
8485 imu->acct_pages = 0;
8486 return ret;
8487 }
8488
8489 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8490 unsigned nr_args)
8491 {
8492 struct vm_area_struct **vmas = NULL;
8493 struct page **pages = NULL;
8494 struct page *last_hpage = NULL;
8495 int i, j, got_pages = 0;
8496 int ret = -EINVAL;
8497
8498 if (ctx->user_bufs)
8499 return -EBUSY;
8500 if (!nr_args || nr_args > UIO_MAXIOV)
8501 return -EINVAL;
8502
8503 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8504 GFP_KERNEL);
8505 if (!ctx->user_bufs)
8506 return -ENOMEM;
8507
8508 for (i = 0; i < nr_args; i++) {
8509 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8510 unsigned long off, start, end, ubuf;
8511 int pret, nr_pages;
8512 struct iovec iov;
8513 size_t size;
8514
8515 ret = io_copy_iov(ctx, &iov, arg, i);
8516 if (ret)
8517 goto err;
8518
8519 /*
8520 * Don't impose further limits on the size and buffer
8521 * constraints here, we'll -EINVAL later when IO is
8522 * submitted if they are wrong.
8523 */
8524 ret = -EFAULT;
8525 if (!iov.iov_base || !iov.iov_len)
8526 goto err;
8527
8528 /* arbitrary limit, but we need something */
8529 if (iov.iov_len > SZ_1G)
8530 goto err;
8531
8532 ubuf = (unsigned long) iov.iov_base;
8533 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8534 start = ubuf >> PAGE_SHIFT;
8535 nr_pages = end - start;
8536
8537 ret = 0;
8538 if (!pages || nr_pages > got_pages) {
8539 kvfree(vmas);
8540 kvfree(pages);
8541 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8542 GFP_KERNEL);
8543 vmas = kvmalloc_array(nr_pages,
8544 sizeof(struct vm_area_struct *),
8545 GFP_KERNEL);
8546 if (!pages || !vmas) {
8547 ret = -ENOMEM;
8548 goto err;
8549 }
8550 got_pages = nr_pages;
8551 }
8552
8553 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8554 GFP_KERNEL);
8555 ret = -ENOMEM;
8556 if (!imu->bvec)
8557 goto err;
8558
8559 ret = 0;
8560 mmap_read_lock(current->mm);
8561 pret = pin_user_pages(ubuf, nr_pages,
8562 FOLL_WRITE | FOLL_LONGTERM,
8563 pages, vmas);
8564 if (pret == nr_pages) {
8565 /* don't support file backed memory */
8566 for (j = 0; j < nr_pages; j++) {
8567 struct vm_area_struct *vma = vmas[j];
8568
8569 if (vma->vm_file &&
8570 !is_file_hugepages(vma->vm_file)) {
8571 ret = -EOPNOTSUPP;
8572 break;
8573 }
8574 }
8575 } else {
8576 ret = pret < 0 ? pret : -EFAULT;
8577 }
8578 mmap_read_unlock(current->mm);
8579 if (ret) {
8580 /*
8581 * if we did partial map, or found file backed vmas,
8582 * release any pages we did get
8583 */
8584 if (pret > 0)
8585 unpin_user_pages(pages, pret);
8586 kvfree(imu->bvec);
8587 goto err;
8588 }
8589
8590 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8591 if (ret) {
8592 unpin_user_pages(pages, pret);
8593 kvfree(imu->bvec);
8594 goto err;
8595 }
8596
8597 off = ubuf & ~PAGE_MASK;
8598 size = iov.iov_len;
8599 for (j = 0; j < nr_pages; j++) {
8600 size_t vec_len;
8601
8602 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8603 imu->bvec[j].bv_page = pages[j];
8604 imu->bvec[j].bv_len = vec_len;
8605 imu->bvec[j].bv_offset = off;
8606 off = 0;
8607 size -= vec_len;
8608 }
8609 /* store original address for later verification */
8610 imu->ubuf = ubuf;
8611 imu->len = iov.iov_len;
8612 imu->nr_bvecs = nr_pages;
8613
8614 ctx->nr_user_bufs++;
8615 }
8616 kvfree(pages);
8617 kvfree(vmas);
8618 return 0;
8619 err:
8620 kvfree(pages);
8621 kvfree(vmas);
8622 io_sqe_buffer_unregister(ctx);
8623 return ret;
8624 }
8625
8626 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8627 {
8628 __s32 __user *fds = arg;
8629 int fd;
8630
8631 if (ctx->cq_ev_fd)
8632 return -EBUSY;
8633
8634 if (copy_from_user(&fd, fds, sizeof(*fds)))
8635 return -EFAULT;
8636
8637 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8638 if (IS_ERR(ctx->cq_ev_fd)) {
8639 int ret = PTR_ERR(ctx->cq_ev_fd);
8640 ctx->cq_ev_fd = NULL;
8641 return ret;
8642 }
8643
8644 return 0;
8645 }
8646
8647 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8648 {
8649 if (ctx->cq_ev_fd) {
8650 eventfd_ctx_put(ctx->cq_ev_fd);
8651 ctx->cq_ev_fd = NULL;
8652 return 0;
8653 }
8654
8655 return -ENXIO;
8656 }
8657
8658 static int __io_destroy_buffers(int id, void *p, void *data)
8659 {
8660 struct io_ring_ctx *ctx = data;
8661 struct io_buffer *buf = p;
8662
8663 __io_remove_buffers(ctx, buf, id, -1U);
8664 return 0;
8665 }
8666
8667 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8668 {
8669 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8670 idr_destroy(&ctx->io_buffer_idr);
8671 }
8672
8673 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8674 {
8675 io_finish_async(ctx);
8676 io_sqe_buffer_unregister(ctx);
8677
8678 if (ctx->sqo_task) {
8679 put_task_struct(ctx->sqo_task);
8680 ctx->sqo_task = NULL;
8681 mmdrop(ctx->mm_account);
8682 ctx->mm_account = NULL;
8683 }
8684
8685 #ifdef CONFIG_BLK_CGROUP
8686 if (ctx->sqo_blkcg_css)
8687 css_put(ctx->sqo_blkcg_css);
8688 #endif
8689
8690 io_sqe_files_unregister(ctx);
8691 io_eventfd_unregister(ctx);
8692 io_destroy_buffers(ctx);
8693 idr_destroy(&ctx->personality_idr);
8694
8695 #if defined(CONFIG_UNIX)
8696 if (ctx->ring_sock) {
8697 ctx->ring_sock->file = NULL; /* so that iput() is called */
8698 sock_release(ctx->ring_sock);
8699 }
8700 #endif
8701
8702 io_mem_free(ctx->rings);
8703 io_mem_free(ctx->sq_sqes);
8704
8705 percpu_ref_exit(&ctx->refs);
8706 free_uid(ctx->user);
8707 put_cred(ctx->creds);
8708 kfree(ctx->cancel_hash);
8709 kmem_cache_free(req_cachep, ctx->fallback_req);
8710 kfree(ctx);
8711 }
8712
8713 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8714 {
8715 struct io_ring_ctx *ctx = file->private_data;
8716 __poll_t mask = 0;
8717
8718 poll_wait(file, &ctx->cq_wait, wait);
8719 /*
8720 * synchronizes with barrier from wq_has_sleeper call in
8721 * io_commit_cqring
8722 */
8723 smp_rmb();
8724 if (!io_sqring_full(ctx))
8725 mask |= EPOLLOUT | EPOLLWRNORM;
8726 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8727 if (io_cqring_events(ctx))
8728 mask |= EPOLLIN | EPOLLRDNORM;
8729
8730 return mask;
8731 }
8732
8733 static int io_uring_fasync(int fd, struct file *file, int on)
8734 {
8735 struct io_ring_ctx *ctx = file->private_data;
8736
8737 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8738 }
8739
8740 static int io_remove_personalities(int id, void *p, void *data)
8741 {
8742 struct io_ring_ctx *ctx = data;
8743 struct io_identity *iod;
8744
8745 iod = idr_remove(&ctx->personality_idr, id);
8746 if (iod) {
8747 put_cred(iod->creds);
8748 if (refcount_dec_and_test(&iod->count))
8749 kfree(iod);
8750 }
8751 return 0;
8752 }
8753
8754 static void io_ring_exit_work(struct work_struct *work)
8755 {
8756 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8757 exit_work);
8758
8759 /*
8760 * If we're doing polled IO and end up having requests being
8761 * submitted async (out-of-line), then completions can come in while
8762 * we're waiting for refs to drop. We need to reap these manually,
8763 * as nobody else will be looking for them.
8764 */
8765 do {
8766 __io_uring_cancel_task_requests(ctx, NULL);
8767 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8768 io_ring_ctx_free(ctx);
8769 }
8770
8771 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8772 {
8773 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8774
8775 return req->ctx == data;
8776 }
8777
8778 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8779 {
8780 mutex_lock(&ctx->uring_lock);
8781 percpu_ref_kill(&ctx->refs);
8782
8783 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8784 ctx->sqo_dead = 1;
8785
8786 /* if force is set, the ring is going away. always drop after that */
8787 ctx->cq_overflow_flushed = 1;
8788 if (ctx->rings)
8789 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8790 mutex_unlock(&ctx->uring_lock);
8791
8792 io_kill_timeouts(ctx, NULL, NULL);
8793 io_poll_remove_all(ctx, NULL, NULL);
8794
8795 if (ctx->io_wq)
8796 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8797
8798 /* if we failed setting up the ctx, we might not have any rings */
8799 io_iopoll_try_reap_events(ctx);
8800 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8801
8802 /*
8803 * Do this upfront, so we won't have a grace period where the ring
8804 * is closed but resources aren't reaped yet. This can cause
8805 * spurious failure in setting up a new ring.
8806 */
8807 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8808 ACCT_LOCKED);
8809
8810 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8811 /*
8812 * Use system_unbound_wq to avoid spawning tons of event kworkers
8813 * if we're exiting a ton of rings at the same time. It just adds
8814 * noise and overhead, there's no discernable change in runtime
8815 * over using system_wq.
8816 */
8817 queue_work(system_unbound_wq, &ctx->exit_work);
8818 }
8819
8820 static int io_uring_release(struct inode *inode, struct file *file)
8821 {
8822 struct io_ring_ctx *ctx = file->private_data;
8823
8824 file->private_data = NULL;
8825 io_ring_ctx_wait_and_kill(ctx);
8826 return 0;
8827 }
8828
8829 struct io_task_cancel {
8830 struct task_struct *task;
8831 struct files_struct *files;
8832 };
8833
8834 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8835 {
8836 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8837 struct io_task_cancel *cancel = data;
8838 bool ret;
8839
8840 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8841 unsigned long flags;
8842 struct io_ring_ctx *ctx = req->ctx;
8843
8844 /* protect against races with linked timeouts */
8845 spin_lock_irqsave(&ctx->completion_lock, flags);
8846 ret = io_match_task(req, cancel->task, cancel->files);
8847 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8848 } else {
8849 ret = io_match_task(req, cancel->task, cancel->files);
8850 }
8851 return ret;
8852 }
8853
8854 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8855 struct task_struct *task,
8856 struct files_struct *files)
8857 {
8858 struct io_defer_entry *de = NULL;
8859 LIST_HEAD(list);
8860
8861 spin_lock_irq(&ctx->completion_lock);
8862 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8863 if (io_match_task(de->req, task, files)) {
8864 list_cut_position(&list, &ctx->defer_list, &de->list);
8865 break;
8866 }
8867 }
8868 spin_unlock_irq(&ctx->completion_lock);
8869
8870 while (!list_empty(&list)) {
8871 de = list_first_entry(&list, struct io_defer_entry, list);
8872 list_del_init(&de->list);
8873 req_set_fail_links(de->req);
8874 io_put_req(de->req);
8875 io_req_complete(de->req, -ECANCELED);
8876 kfree(de);
8877 }
8878 }
8879
8880 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8881 struct task_struct *task,
8882 struct files_struct *files)
8883 {
8884 struct io_kiocb *req;
8885 int cnt = 0;
8886
8887 spin_lock_irq(&ctx->inflight_lock);
8888 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8889 cnt += io_match_task(req, task, files);
8890 spin_unlock_irq(&ctx->inflight_lock);
8891 return cnt;
8892 }
8893
8894 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8895 struct task_struct *task,
8896 struct files_struct *files)
8897 {
8898 while (!list_empty_careful(&ctx->inflight_list)) {
8899 struct io_task_cancel cancel = { .task = task, .files = files };
8900 DEFINE_WAIT(wait);
8901 int inflight;
8902
8903 inflight = io_uring_count_inflight(ctx, task, files);
8904 if (!inflight)
8905 break;
8906
8907 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8908 io_poll_remove_all(ctx, task, files);
8909 io_kill_timeouts(ctx, task, files);
8910 io_cqring_overflow_flush(ctx, true, task, files);
8911 /* cancellations _may_ trigger task work */
8912 io_run_task_work();
8913
8914 prepare_to_wait(&task->io_uring->wait, &wait,
8915 TASK_UNINTERRUPTIBLE);
8916 if (inflight == io_uring_count_inflight(ctx, task, files))
8917 schedule();
8918 finish_wait(&task->io_uring->wait, &wait);
8919 }
8920 }
8921
8922 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8923 struct task_struct *task)
8924 {
8925 while (1) {
8926 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8927 enum io_wq_cancel cret;
8928 bool ret = false;
8929
8930 if (ctx->io_wq) {
8931 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8932 &cancel, true);
8933 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8934 }
8935
8936 /* SQPOLL thread does its own polling */
8937 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8938 while (!list_empty_careful(&ctx->iopoll_list)) {
8939 io_iopoll_try_reap_events(ctx);
8940 ret = true;
8941 }
8942 }
8943
8944 ret |= io_poll_remove_all(ctx, task, NULL);
8945 ret |= io_kill_timeouts(ctx, task, NULL);
8946 ret |= io_run_task_work();
8947 if (!ret)
8948 break;
8949 cond_resched();
8950 }
8951 }
8952
8953 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
8954 {
8955 mutex_lock(&ctx->uring_lock);
8956 ctx->sqo_dead = 1;
8957 mutex_unlock(&ctx->uring_lock);
8958
8959 /* make sure callers enter the ring to get error */
8960 if (ctx->rings)
8961 io_ring_set_wakeup_flag(ctx);
8962 }
8963
8964 /*
8965 * We need to iteratively cancel requests, in case a request has dependent
8966 * hard links. These persist even for failure of cancelations, hence keep
8967 * looping until none are found.
8968 */
8969 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8970 struct files_struct *files)
8971 {
8972 struct task_struct *task = current;
8973
8974 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8975 io_disable_sqo_submit(ctx);
8976 task = ctx->sq_data->thread;
8977 atomic_inc(&task->io_uring->in_idle);
8978 io_sq_thread_park(ctx->sq_data);
8979 }
8980
8981 io_cancel_defer_files(ctx, task, files);
8982 io_cqring_overflow_flush(ctx, true, task, files);
8983
8984 io_uring_cancel_files(ctx, task, files);
8985 if (!files)
8986 __io_uring_cancel_task_requests(ctx, task);
8987
8988 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8989 atomic_dec(&task->io_uring->in_idle);
8990 io_sq_thread_unpark(ctx->sq_data);
8991 }
8992 }
8993
8994 /*
8995 * Note that this task has used io_uring. We use it for cancelation purposes.
8996 */
8997 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8998 {
8999 struct io_uring_task *tctx = current->io_uring;
9000 int ret;
9001
9002 if (unlikely(!tctx)) {
9003 ret = io_uring_alloc_task_context(current);
9004 if (unlikely(ret))
9005 return ret;
9006 tctx = current->io_uring;
9007 }
9008 if (tctx->last != file) {
9009 void *old = xa_load(&tctx->xa, (unsigned long)file);
9010
9011 if (!old) {
9012 get_file(file);
9013 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9014 file, GFP_KERNEL));
9015 if (ret) {
9016 fput(file);
9017 return ret;
9018 }
9019 }
9020 tctx->last = file;
9021 }
9022
9023 /*
9024 * This is race safe in that the task itself is doing this, hence it
9025 * cannot be going through the exit/cancel paths at the same time.
9026 * This cannot be modified while exit/cancel is running.
9027 */
9028 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9029 tctx->sqpoll = true;
9030
9031 return 0;
9032 }
9033
9034 /*
9035 * Remove this io_uring_file -> task mapping.
9036 */
9037 static void io_uring_del_task_file(struct file *file)
9038 {
9039 struct io_uring_task *tctx = current->io_uring;
9040
9041 if (tctx->last == file)
9042 tctx->last = NULL;
9043 file = xa_erase(&tctx->xa, (unsigned long)file);
9044 if (file)
9045 fput(file);
9046 }
9047
9048 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9049 {
9050 struct file *file;
9051 unsigned long index;
9052
9053 xa_for_each(&tctx->xa, index, file)
9054 io_uring_del_task_file(file);
9055 }
9056
9057 void __io_uring_files_cancel(struct files_struct *files)
9058 {
9059 struct io_uring_task *tctx = current->io_uring;
9060 struct file *file;
9061 unsigned long index;
9062
9063 /* make sure overflow events are dropped */
9064 atomic_inc(&tctx->in_idle);
9065 xa_for_each(&tctx->xa, index, file)
9066 io_uring_cancel_task_requests(file->private_data, files);
9067 atomic_dec(&tctx->in_idle);
9068
9069 if (files)
9070 io_uring_remove_task_files(tctx);
9071 }
9072
9073 static s64 tctx_inflight(struct io_uring_task *tctx)
9074 {
9075 unsigned long index;
9076 struct file *file;
9077 s64 inflight;
9078
9079 inflight = percpu_counter_sum(&tctx->inflight);
9080 if (!tctx->sqpoll)
9081 return inflight;
9082
9083 /*
9084 * If we have SQPOLL rings, then we need to iterate and find them, and
9085 * add the pending count for those.
9086 */
9087 xa_for_each(&tctx->xa, index, file) {
9088 struct io_ring_ctx *ctx = file->private_data;
9089
9090 if (ctx->flags & IORING_SETUP_SQPOLL) {
9091 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9092
9093 inflight += percpu_counter_sum(&__tctx->inflight);
9094 }
9095 }
9096
9097 return inflight;
9098 }
9099
9100 /*
9101 * Find any io_uring fd that this task has registered or done IO on, and cancel
9102 * requests.
9103 */
9104 void __io_uring_task_cancel(void)
9105 {
9106 struct io_uring_task *tctx = current->io_uring;
9107 DEFINE_WAIT(wait);
9108 s64 inflight;
9109
9110 /* make sure overflow events are dropped */
9111 atomic_inc(&tctx->in_idle);
9112
9113 /* trigger io_disable_sqo_submit() */
9114 if (tctx->sqpoll)
9115 __io_uring_files_cancel(NULL);
9116
9117 do {
9118 /* read completions before cancelations */
9119 inflight = tctx_inflight(tctx);
9120 if (!inflight)
9121 break;
9122 __io_uring_files_cancel(NULL);
9123
9124 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9125
9126 /*
9127 * If we've seen completions, retry without waiting. This
9128 * avoids a race where a completion comes in before we did
9129 * prepare_to_wait().
9130 */
9131 if (inflight == tctx_inflight(tctx))
9132 schedule();
9133 finish_wait(&tctx->wait, &wait);
9134 } while (1);
9135
9136 atomic_dec(&tctx->in_idle);
9137
9138 io_uring_remove_task_files(tctx);
9139 }
9140
9141 static int io_uring_flush(struct file *file, void *data)
9142 {
9143 struct io_uring_task *tctx = current->io_uring;
9144 struct io_ring_ctx *ctx = file->private_data;
9145
9146 if (fatal_signal_pending(current) || (current->flags & PF_EXITING))
9147 io_uring_cancel_task_requests(ctx, NULL);
9148
9149 if (!tctx)
9150 return 0;
9151
9152 /* we should have cancelled and erased it before PF_EXITING */
9153 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9154 xa_load(&tctx->xa, (unsigned long)file));
9155
9156 /*
9157 * fput() is pending, will be 2 if the only other ref is our potential
9158 * task file note. If the task is exiting, drop regardless of count.
9159 */
9160 if (atomic_long_read(&file->f_count) != 2)
9161 return 0;
9162
9163 if (ctx->flags & IORING_SETUP_SQPOLL) {
9164 /* there is only one file note, which is owned by sqo_task */
9165 WARN_ON_ONCE(ctx->sqo_task != current &&
9166 xa_load(&tctx->xa, (unsigned long)file));
9167 /* sqo_dead check is for when this happens after cancellation */
9168 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9169 !xa_load(&tctx->xa, (unsigned long)file));
9170
9171 io_disable_sqo_submit(ctx);
9172 }
9173
9174 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9175 io_uring_del_task_file(file);
9176 return 0;
9177 }
9178
9179 static void *io_uring_validate_mmap_request(struct file *file,
9180 loff_t pgoff, size_t sz)
9181 {
9182 struct io_ring_ctx *ctx = file->private_data;
9183 loff_t offset = pgoff << PAGE_SHIFT;
9184 struct page *page;
9185 void *ptr;
9186
9187 switch (offset) {
9188 case IORING_OFF_SQ_RING:
9189 case IORING_OFF_CQ_RING:
9190 ptr = ctx->rings;
9191 break;
9192 case IORING_OFF_SQES:
9193 ptr = ctx->sq_sqes;
9194 break;
9195 default:
9196 return ERR_PTR(-EINVAL);
9197 }
9198
9199 page = virt_to_head_page(ptr);
9200 if (sz > page_size(page))
9201 return ERR_PTR(-EINVAL);
9202
9203 return ptr;
9204 }
9205
9206 #ifdef CONFIG_MMU
9207
9208 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9209 {
9210 size_t sz = vma->vm_end - vma->vm_start;
9211 unsigned long pfn;
9212 void *ptr;
9213
9214 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9215 if (IS_ERR(ptr))
9216 return PTR_ERR(ptr);
9217
9218 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9219 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9220 }
9221
9222 #else /* !CONFIG_MMU */
9223
9224 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9225 {
9226 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9227 }
9228
9229 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9230 {
9231 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9232 }
9233
9234 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9235 unsigned long addr, unsigned long len,
9236 unsigned long pgoff, unsigned long flags)
9237 {
9238 void *ptr;
9239
9240 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9241 if (IS_ERR(ptr))
9242 return PTR_ERR(ptr);
9243
9244 return (unsigned long) ptr;
9245 }
9246
9247 #endif /* !CONFIG_MMU */
9248
9249 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9250 {
9251 int ret = 0;
9252 DEFINE_WAIT(wait);
9253
9254 do {
9255 if (!io_sqring_full(ctx))
9256 break;
9257
9258 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9259
9260 if (unlikely(ctx->sqo_dead)) {
9261 ret = -EOWNERDEAD;
9262 goto out;
9263 }
9264
9265 if (!io_sqring_full(ctx))
9266 break;
9267
9268 schedule();
9269 } while (!signal_pending(current));
9270
9271 finish_wait(&ctx->sqo_sq_wait, &wait);
9272 out:
9273 return ret;
9274 }
9275
9276 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9277 struct __kernel_timespec __user **ts,
9278 const sigset_t __user **sig)
9279 {
9280 struct io_uring_getevents_arg arg;
9281
9282 /*
9283 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9284 * is just a pointer to the sigset_t.
9285 */
9286 if (!(flags & IORING_ENTER_EXT_ARG)) {
9287 *sig = (const sigset_t __user *) argp;
9288 *ts = NULL;
9289 return 0;
9290 }
9291
9292 /*
9293 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9294 * timespec and sigset_t pointers if good.
9295 */
9296 if (*argsz != sizeof(arg))
9297 return -EINVAL;
9298 if (copy_from_user(&arg, argp, sizeof(arg)))
9299 return -EFAULT;
9300 *sig = u64_to_user_ptr(arg.sigmask);
9301 *argsz = arg.sigmask_sz;
9302 *ts = u64_to_user_ptr(arg.ts);
9303 return 0;
9304 }
9305
9306 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9307 u32, min_complete, u32, flags, const void __user *, argp,
9308 size_t, argsz)
9309 {
9310 struct io_ring_ctx *ctx;
9311 long ret = -EBADF;
9312 int submitted = 0;
9313 struct fd f;
9314
9315 io_run_task_work();
9316
9317 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9318 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9319 return -EINVAL;
9320
9321 f = fdget(fd);
9322 if (!f.file)
9323 return -EBADF;
9324
9325 ret = -EOPNOTSUPP;
9326 if (f.file->f_op != &io_uring_fops)
9327 goto out_fput;
9328
9329 ret = -ENXIO;
9330 ctx = f.file->private_data;
9331 if (!percpu_ref_tryget(&ctx->refs))
9332 goto out_fput;
9333
9334 ret = -EBADFD;
9335 if (ctx->flags & IORING_SETUP_R_DISABLED)
9336 goto out;
9337
9338 /*
9339 * For SQ polling, the thread will do all submissions and completions.
9340 * Just return the requested submit count, and wake the thread if
9341 * we were asked to.
9342 */
9343 ret = 0;
9344 if (ctx->flags & IORING_SETUP_SQPOLL) {
9345 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9346
9347 ret = -EOWNERDEAD;
9348 if (unlikely(ctx->sqo_dead))
9349 goto out;
9350 if (flags & IORING_ENTER_SQ_WAKEUP)
9351 wake_up(&ctx->sq_data->wait);
9352 if (flags & IORING_ENTER_SQ_WAIT) {
9353 ret = io_sqpoll_wait_sq(ctx);
9354 if (ret)
9355 goto out;
9356 }
9357 submitted = to_submit;
9358 } else if (to_submit) {
9359 ret = io_uring_add_task_file(ctx, f.file);
9360 if (unlikely(ret))
9361 goto out;
9362 mutex_lock(&ctx->uring_lock);
9363 submitted = io_submit_sqes(ctx, to_submit);
9364 mutex_unlock(&ctx->uring_lock);
9365
9366 if (submitted != to_submit)
9367 goto out;
9368 }
9369 if (flags & IORING_ENTER_GETEVENTS) {
9370 const sigset_t __user *sig;
9371 struct __kernel_timespec __user *ts;
9372
9373 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9374 if (unlikely(ret))
9375 goto out;
9376
9377 min_complete = min(min_complete, ctx->cq_entries);
9378
9379 /*
9380 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9381 * space applications don't need to do io completion events
9382 * polling again, they can rely on io_sq_thread to do polling
9383 * work, which can reduce cpu usage and uring_lock contention.
9384 */
9385 if (ctx->flags & IORING_SETUP_IOPOLL &&
9386 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9387 ret = io_iopoll_check(ctx, min_complete);
9388 } else {
9389 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9390 }
9391 }
9392
9393 out:
9394 percpu_ref_put(&ctx->refs);
9395 out_fput:
9396 fdput(f);
9397 return submitted ? submitted : ret;
9398 }
9399
9400 #ifdef CONFIG_PROC_FS
9401 static int io_uring_show_cred(int id, void *p, void *data)
9402 {
9403 struct io_identity *iod = p;
9404 const struct cred *cred = iod->creds;
9405 struct seq_file *m = data;
9406 struct user_namespace *uns = seq_user_ns(m);
9407 struct group_info *gi;
9408 kernel_cap_t cap;
9409 unsigned __capi;
9410 int g;
9411
9412 seq_printf(m, "%5d\n", id);
9413 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9414 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9415 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9416 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9417 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9418 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9419 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9420 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9421 seq_puts(m, "\n\tGroups:\t");
9422 gi = cred->group_info;
9423 for (g = 0; g < gi->ngroups; g++) {
9424 seq_put_decimal_ull(m, g ? " " : "",
9425 from_kgid_munged(uns, gi->gid[g]));
9426 }
9427 seq_puts(m, "\n\tCapEff:\t");
9428 cap = cred->cap_effective;
9429 CAP_FOR_EACH_U32(__capi)
9430 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9431 seq_putc(m, '\n');
9432 return 0;
9433 }
9434
9435 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9436 {
9437 struct io_sq_data *sq = NULL;
9438 bool has_lock;
9439 int i;
9440
9441 /*
9442 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9443 * since fdinfo case grabs it in the opposite direction of normal use
9444 * cases. If we fail to get the lock, we just don't iterate any
9445 * structures that could be going away outside the io_uring mutex.
9446 */
9447 has_lock = mutex_trylock(&ctx->uring_lock);
9448
9449 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9450 sq = ctx->sq_data;
9451
9452 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9453 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9454 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9455 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9456 struct fixed_file_table *table;
9457 struct file *f;
9458
9459 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9460 f = table->files[i & IORING_FILE_TABLE_MASK];
9461 if (f)
9462 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9463 else
9464 seq_printf(m, "%5u: <none>\n", i);
9465 }
9466 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9467 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9468 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9469
9470 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9471 (unsigned int) buf->len);
9472 }
9473 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9474 seq_printf(m, "Personalities:\n");
9475 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9476 }
9477 seq_printf(m, "PollList:\n");
9478 spin_lock_irq(&ctx->completion_lock);
9479 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9480 struct hlist_head *list = &ctx->cancel_hash[i];
9481 struct io_kiocb *req;
9482
9483 hlist_for_each_entry(req, list, hash_node)
9484 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9485 req->task->task_works != NULL);
9486 }
9487 spin_unlock_irq(&ctx->completion_lock);
9488 if (has_lock)
9489 mutex_unlock(&ctx->uring_lock);
9490 }
9491
9492 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9493 {
9494 struct io_ring_ctx *ctx = f->private_data;
9495
9496 if (percpu_ref_tryget(&ctx->refs)) {
9497 __io_uring_show_fdinfo(ctx, m);
9498 percpu_ref_put(&ctx->refs);
9499 }
9500 }
9501 #endif
9502
9503 static const struct file_operations io_uring_fops = {
9504 .release = io_uring_release,
9505 .flush = io_uring_flush,
9506 .mmap = io_uring_mmap,
9507 #ifndef CONFIG_MMU
9508 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9509 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9510 #endif
9511 .poll = io_uring_poll,
9512 .fasync = io_uring_fasync,
9513 #ifdef CONFIG_PROC_FS
9514 .show_fdinfo = io_uring_show_fdinfo,
9515 #endif
9516 };
9517
9518 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9519 struct io_uring_params *p)
9520 {
9521 struct io_rings *rings;
9522 size_t size, sq_array_offset;
9523
9524 /* make sure these are sane, as we already accounted them */
9525 ctx->sq_entries = p->sq_entries;
9526 ctx->cq_entries = p->cq_entries;
9527
9528 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9529 if (size == SIZE_MAX)
9530 return -EOVERFLOW;
9531
9532 rings = io_mem_alloc(size);
9533 if (!rings)
9534 return -ENOMEM;
9535
9536 ctx->rings = rings;
9537 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9538 rings->sq_ring_mask = p->sq_entries - 1;
9539 rings->cq_ring_mask = p->cq_entries - 1;
9540 rings->sq_ring_entries = p->sq_entries;
9541 rings->cq_ring_entries = p->cq_entries;
9542 ctx->sq_mask = rings->sq_ring_mask;
9543 ctx->cq_mask = rings->cq_ring_mask;
9544
9545 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9546 if (size == SIZE_MAX) {
9547 io_mem_free(ctx->rings);
9548 ctx->rings = NULL;
9549 return -EOVERFLOW;
9550 }
9551
9552 ctx->sq_sqes = io_mem_alloc(size);
9553 if (!ctx->sq_sqes) {
9554 io_mem_free(ctx->rings);
9555 ctx->rings = NULL;
9556 return -ENOMEM;
9557 }
9558
9559 return 0;
9560 }
9561
9562 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9563 {
9564 int ret, fd;
9565
9566 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9567 if (fd < 0)
9568 return fd;
9569
9570 ret = io_uring_add_task_file(ctx, file);
9571 if (ret) {
9572 put_unused_fd(fd);
9573 return ret;
9574 }
9575 fd_install(fd, file);
9576 return fd;
9577 }
9578
9579 /*
9580 * Allocate an anonymous fd, this is what constitutes the application
9581 * visible backing of an io_uring instance. The application mmaps this
9582 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9583 * we have to tie this fd to a socket for file garbage collection purposes.
9584 */
9585 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9586 {
9587 struct file *file;
9588 #if defined(CONFIG_UNIX)
9589 int ret;
9590
9591 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9592 &ctx->ring_sock);
9593 if (ret)
9594 return ERR_PTR(ret);
9595 #endif
9596
9597 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9598 O_RDWR | O_CLOEXEC);
9599 #if defined(CONFIG_UNIX)
9600 if (IS_ERR(file)) {
9601 sock_release(ctx->ring_sock);
9602 ctx->ring_sock = NULL;
9603 } else {
9604 ctx->ring_sock->file = file;
9605 }
9606 #endif
9607 return file;
9608 }
9609
9610 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9611 struct io_uring_params __user *params)
9612 {
9613 struct user_struct *user = NULL;
9614 struct io_ring_ctx *ctx;
9615 struct file *file;
9616 bool limit_mem;
9617 int ret;
9618
9619 if (!entries)
9620 return -EINVAL;
9621 if (entries > IORING_MAX_ENTRIES) {
9622 if (!(p->flags & IORING_SETUP_CLAMP))
9623 return -EINVAL;
9624 entries = IORING_MAX_ENTRIES;
9625 }
9626
9627 /*
9628 * Use twice as many entries for the CQ ring. It's possible for the
9629 * application to drive a higher depth than the size of the SQ ring,
9630 * since the sqes are only used at submission time. This allows for
9631 * some flexibility in overcommitting a bit. If the application has
9632 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9633 * of CQ ring entries manually.
9634 */
9635 p->sq_entries = roundup_pow_of_two(entries);
9636 if (p->flags & IORING_SETUP_CQSIZE) {
9637 /*
9638 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9639 * to a power-of-two, if it isn't already. We do NOT impose
9640 * any cq vs sq ring sizing.
9641 */
9642 if (!p->cq_entries)
9643 return -EINVAL;
9644 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9645 if (!(p->flags & IORING_SETUP_CLAMP))
9646 return -EINVAL;
9647 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9648 }
9649 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9650 if (p->cq_entries < p->sq_entries)
9651 return -EINVAL;
9652 } else {
9653 p->cq_entries = 2 * p->sq_entries;
9654 }
9655
9656 user = get_uid(current_user());
9657 limit_mem = !capable(CAP_IPC_LOCK);
9658
9659 if (limit_mem) {
9660 ret = __io_account_mem(user,
9661 ring_pages(p->sq_entries, p->cq_entries));
9662 if (ret) {
9663 free_uid(user);
9664 return ret;
9665 }
9666 }
9667
9668 ctx = io_ring_ctx_alloc(p);
9669 if (!ctx) {
9670 if (limit_mem)
9671 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9672 p->cq_entries));
9673 free_uid(user);
9674 return -ENOMEM;
9675 }
9676 ctx->compat = in_compat_syscall();
9677 ctx->user = user;
9678 ctx->creds = get_current_cred();
9679 #ifdef CONFIG_AUDIT
9680 ctx->loginuid = current->loginuid;
9681 ctx->sessionid = current->sessionid;
9682 #endif
9683 ctx->sqo_task = get_task_struct(current);
9684
9685 /*
9686 * This is just grabbed for accounting purposes. When a process exits,
9687 * the mm is exited and dropped before the files, hence we need to hang
9688 * on to this mm purely for the purposes of being able to unaccount
9689 * memory (locked/pinned vm). It's not used for anything else.
9690 */
9691 mmgrab(current->mm);
9692 ctx->mm_account = current->mm;
9693
9694 #ifdef CONFIG_BLK_CGROUP
9695 /*
9696 * The sq thread will belong to the original cgroup it was inited in.
9697 * If the cgroup goes offline (e.g. disabling the io controller), then
9698 * issued bios will be associated with the closest cgroup later in the
9699 * block layer.
9700 */
9701 rcu_read_lock();
9702 ctx->sqo_blkcg_css = blkcg_css();
9703 ret = css_tryget_online(ctx->sqo_blkcg_css);
9704 rcu_read_unlock();
9705 if (!ret) {
9706 /* don't init against a dying cgroup, have the user try again */
9707 ctx->sqo_blkcg_css = NULL;
9708 ret = -ENODEV;
9709 goto err;
9710 }
9711 #endif
9712
9713 /*
9714 * Account memory _before_ installing the file descriptor. Once
9715 * the descriptor is installed, it can get closed at any time. Also
9716 * do this before hitting the general error path, as ring freeing
9717 * will un-account as well.
9718 */
9719 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9720 ACCT_LOCKED);
9721 ctx->limit_mem = limit_mem;
9722
9723 ret = io_allocate_scq_urings(ctx, p);
9724 if (ret)
9725 goto err;
9726
9727 ret = io_sq_offload_create(ctx, p);
9728 if (ret)
9729 goto err;
9730
9731 if (!(p->flags & IORING_SETUP_R_DISABLED))
9732 io_sq_offload_start(ctx);
9733
9734 memset(&p->sq_off, 0, sizeof(p->sq_off));
9735 p->sq_off.head = offsetof(struct io_rings, sq.head);
9736 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9737 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9738 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9739 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9740 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9741 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9742
9743 memset(&p->cq_off, 0, sizeof(p->cq_off));
9744 p->cq_off.head = offsetof(struct io_rings, cq.head);
9745 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9746 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9747 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9748 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9749 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9750 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9751
9752 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9753 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9754 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9755 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9756 IORING_FEAT_EXT_ARG;
9757
9758 if (copy_to_user(params, p, sizeof(*p))) {
9759 ret = -EFAULT;
9760 goto err;
9761 }
9762
9763 file = io_uring_get_file(ctx);
9764 if (IS_ERR(file)) {
9765 ret = PTR_ERR(file);
9766 goto err;
9767 }
9768
9769 /*
9770 * Install ring fd as the very last thing, so we don't risk someone
9771 * having closed it before we finish setup
9772 */
9773 ret = io_uring_install_fd(ctx, file);
9774 if (ret < 0) {
9775 io_disable_sqo_submit(ctx);
9776 /* fput will clean it up */
9777 fput(file);
9778 return ret;
9779 }
9780
9781 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9782 return ret;
9783 err:
9784 io_disable_sqo_submit(ctx);
9785 io_ring_ctx_wait_and_kill(ctx);
9786 return ret;
9787 }
9788
9789 /*
9790 * Sets up an aio uring context, and returns the fd. Applications asks for a
9791 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9792 * params structure passed in.
9793 */
9794 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9795 {
9796 struct io_uring_params p;
9797 int i;
9798
9799 if (copy_from_user(&p, params, sizeof(p)))
9800 return -EFAULT;
9801 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9802 if (p.resv[i])
9803 return -EINVAL;
9804 }
9805
9806 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9807 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9808 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9809 IORING_SETUP_R_DISABLED))
9810 return -EINVAL;
9811
9812 return io_uring_create(entries, &p, params);
9813 }
9814
9815 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9816 struct io_uring_params __user *, params)
9817 {
9818 return io_uring_setup(entries, params);
9819 }
9820
9821 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9822 {
9823 struct io_uring_probe *p;
9824 size_t size;
9825 int i, ret;
9826
9827 size = struct_size(p, ops, nr_args);
9828 if (size == SIZE_MAX)
9829 return -EOVERFLOW;
9830 p = kzalloc(size, GFP_KERNEL);
9831 if (!p)
9832 return -ENOMEM;
9833
9834 ret = -EFAULT;
9835 if (copy_from_user(p, arg, size))
9836 goto out;
9837 ret = -EINVAL;
9838 if (memchr_inv(p, 0, size))
9839 goto out;
9840
9841 p->last_op = IORING_OP_LAST - 1;
9842 if (nr_args > IORING_OP_LAST)
9843 nr_args = IORING_OP_LAST;
9844
9845 for (i = 0; i < nr_args; i++) {
9846 p->ops[i].op = i;
9847 if (!io_op_defs[i].not_supported)
9848 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9849 }
9850 p->ops_len = i;
9851
9852 ret = 0;
9853 if (copy_to_user(arg, p, size))
9854 ret = -EFAULT;
9855 out:
9856 kfree(p);
9857 return ret;
9858 }
9859
9860 static int io_register_personality(struct io_ring_ctx *ctx)
9861 {
9862 struct io_identity *id;
9863 int ret;
9864
9865 id = kmalloc(sizeof(*id), GFP_KERNEL);
9866 if (unlikely(!id))
9867 return -ENOMEM;
9868
9869 io_init_identity(id);
9870 id->creds = get_current_cred();
9871
9872 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9873 if (ret < 0) {
9874 put_cred(id->creds);
9875 kfree(id);
9876 }
9877 return ret;
9878 }
9879
9880 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9881 {
9882 struct io_identity *iod;
9883
9884 iod = idr_remove(&ctx->personality_idr, id);
9885 if (iod) {
9886 put_cred(iod->creds);
9887 if (refcount_dec_and_test(&iod->count))
9888 kfree(iod);
9889 return 0;
9890 }
9891
9892 return -EINVAL;
9893 }
9894
9895 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9896 unsigned int nr_args)
9897 {
9898 struct io_uring_restriction *res;
9899 size_t size;
9900 int i, ret;
9901
9902 /* Restrictions allowed only if rings started disabled */
9903 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9904 return -EBADFD;
9905
9906 /* We allow only a single restrictions registration */
9907 if (ctx->restrictions.registered)
9908 return -EBUSY;
9909
9910 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9911 return -EINVAL;
9912
9913 size = array_size(nr_args, sizeof(*res));
9914 if (size == SIZE_MAX)
9915 return -EOVERFLOW;
9916
9917 res = memdup_user(arg, size);
9918 if (IS_ERR(res))
9919 return PTR_ERR(res);
9920
9921 ret = 0;
9922
9923 for (i = 0; i < nr_args; i++) {
9924 switch (res[i].opcode) {
9925 case IORING_RESTRICTION_REGISTER_OP:
9926 if (res[i].register_op >= IORING_REGISTER_LAST) {
9927 ret = -EINVAL;
9928 goto out;
9929 }
9930
9931 __set_bit(res[i].register_op,
9932 ctx->restrictions.register_op);
9933 break;
9934 case IORING_RESTRICTION_SQE_OP:
9935 if (res[i].sqe_op >= IORING_OP_LAST) {
9936 ret = -EINVAL;
9937 goto out;
9938 }
9939
9940 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9941 break;
9942 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9943 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9944 break;
9945 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9946 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9947 break;
9948 default:
9949 ret = -EINVAL;
9950 goto out;
9951 }
9952 }
9953
9954 out:
9955 /* Reset all restrictions if an error happened */
9956 if (ret != 0)
9957 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9958 else
9959 ctx->restrictions.registered = true;
9960
9961 kfree(res);
9962 return ret;
9963 }
9964
9965 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9966 {
9967 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9968 return -EBADFD;
9969
9970 if (ctx->restrictions.registered)
9971 ctx->restricted = 1;
9972
9973 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9974
9975 io_sq_offload_start(ctx);
9976
9977 return 0;
9978 }
9979
9980 static bool io_register_op_must_quiesce(int op)
9981 {
9982 switch (op) {
9983 case IORING_UNREGISTER_FILES:
9984 case IORING_REGISTER_FILES_UPDATE:
9985 case IORING_REGISTER_PROBE:
9986 case IORING_REGISTER_PERSONALITY:
9987 case IORING_UNREGISTER_PERSONALITY:
9988 return false;
9989 default:
9990 return true;
9991 }
9992 }
9993
9994 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9995 void __user *arg, unsigned nr_args)
9996 __releases(ctx->uring_lock)
9997 __acquires(ctx->uring_lock)
9998 {
9999 int ret;
10000
10001 /*
10002 * We're inside the ring mutex, if the ref is already dying, then
10003 * someone else killed the ctx or is already going through
10004 * io_uring_register().
10005 */
10006 if (percpu_ref_is_dying(&ctx->refs))
10007 return -ENXIO;
10008
10009 if (io_register_op_must_quiesce(opcode)) {
10010 percpu_ref_kill(&ctx->refs);
10011
10012 /*
10013 * Drop uring mutex before waiting for references to exit. If
10014 * another thread is currently inside io_uring_enter() it might
10015 * need to grab the uring_lock to make progress. If we hold it
10016 * here across the drain wait, then we can deadlock. It's safe
10017 * to drop the mutex here, since no new references will come in
10018 * after we've killed the percpu ref.
10019 */
10020 mutex_unlock(&ctx->uring_lock);
10021 do {
10022 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10023 if (!ret)
10024 break;
10025 ret = io_run_task_work_sig();
10026 if (ret < 0)
10027 break;
10028 } while (1);
10029
10030 mutex_lock(&ctx->uring_lock);
10031
10032 if (ret) {
10033 percpu_ref_resurrect(&ctx->refs);
10034 goto out_quiesce;
10035 }
10036 }
10037
10038 if (ctx->restricted) {
10039 if (opcode >= IORING_REGISTER_LAST) {
10040 ret = -EINVAL;
10041 goto out;
10042 }
10043
10044 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10045 ret = -EACCES;
10046 goto out;
10047 }
10048 }
10049
10050 switch (opcode) {
10051 case IORING_REGISTER_BUFFERS:
10052 ret = io_sqe_buffer_register(ctx, arg, nr_args);
10053 break;
10054 case IORING_UNREGISTER_BUFFERS:
10055 ret = -EINVAL;
10056 if (arg || nr_args)
10057 break;
10058 ret = io_sqe_buffer_unregister(ctx);
10059 break;
10060 case IORING_REGISTER_FILES:
10061 ret = io_sqe_files_register(ctx, arg, nr_args);
10062 break;
10063 case IORING_UNREGISTER_FILES:
10064 ret = -EINVAL;
10065 if (arg || nr_args)
10066 break;
10067 ret = io_sqe_files_unregister(ctx);
10068 break;
10069 case IORING_REGISTER_FILES_UPDATE:
10070 ret = io_sqe_files_update(ctx, arg, nr_args);
10071 break;
10072 case IORING_REGISTER_EVENTFD:
10073 case IORING_REGISTER_EVENTFD_ASYNC:
10074 ret = -EINVAL;
10075 if (nr_args != 1)
10076 break;
10077 ret = io_eventfd_register(ctx, arg);
10078 if (ret)
10079 break;
10080 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10081 ctx->eventfd_async = 1;
10082 else
10083 ctx->eventfd_async = 0;
10084 break;
10085 case IORING_UNREGISTER_EVENTFD:
10086 ret = -EINVAL;
10087 if (arg || nr_args)
10088 break;
10089 ret = io_eventfd_unregister(ctx);
10090 break;
10091 case IORING_REGISTER_PROBE:
10092 ret = -EINVAL;
10093 if (!arg || nr_args > 256)
10094 break;
10095 ret = io_probe(ctx, arg, nr_args);
10096 break;
10097 case IORING_REGISTER_PERSONALITY:
10098 ret = -EINVAL;
10099 if (arg || nr_args)
10100 break;
10101 ret = io_register_personality(ctx);
10102 break;
10103 case IORING_UNREGISTER_PERSONALITY:
10104 ret = -EINVAL;
10105 if (arg)
10106 break;
10107 ret = io_unregister_personality(ctx, nr_args);
10108 break;
10109 case IORING_REGISTER_ENABLE_RINGS:
10110 ret = -EINVAL;
10111 if (arg || nr_args)
10112 break;
10113 ret = io_register_enable_rings(ctx);
10114 break;
10115 case IORING_REGISTER_RESTRICTIONS:
10116 ret = io_register_restrictions(ctx, arg, nr_args);
10117 break;
10118 default:
10119 ret = -EINVAL;
10120 break;
10121 }
10122
10123 out:
10124 if (io_register_op_must_quiesce(opcode)) {
10125 /* bring the ctx back to life */
10126 percpu_ref_reinit(&ctx->refs);
10127 out_quiesce:
10128 reinit_completion(&ctx->ref_comp);
10129 }
10130 return ret;
10131 }
10132
10133 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10134 void __user *, arg, unsigned int, nr_args)
10135 {
10136 struct io_ring_ctx *ctx;
10137 long ret = -EBADF;
10138 struct fd f;
10139
10140 f = fdget(fd);
10141 if (!f.file)
10142 return -EBADF;
10143
10144 ret = -EOPNOTSUPP;
10145 if (f.file->f_op != &io_uring_fops)
10146 goto out_fput;
10147
10148 ctx = f.file->private_data;
10149
10150 mutex_lock(&ctx->uring_lock);
10151 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10152 mutex_unlock(&ctx->uring_lock);
10153 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10154 ctx->cq_ev_fd != NULL, ret);
10155 out_fput:
10156 fdput(f);
10157 return ret;
10158 }
10159
10160 static int __init io_uring_init(void)
10161 {
10162 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10163 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10164 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10165 } while (0)
10166
10167 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10168 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10169 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10170 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10171 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10172 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10173 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10174 BUILD_BUG_SQE_ELEM(8, __u64, off);
10175 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10176 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10177 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10178 BUILD_BUG_SQE_ELEM(24, __u32, len);
10179 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10180 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10181 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10182 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10183 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10184 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10185 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10186 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10187 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10188 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10189 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10190 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10191 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10192 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10193 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10194 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10195 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10196 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10197 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10198
10199 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10200 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10201 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10202 return 0;
10203 };
10204 __initcall(io_uring_init);