]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - fs/io_uring.c
Merge tag 'optee-rcu-sched-trace-for-v5.11' of git://git.linaro.org/people/jens.wikla...
[mirror_ubuntu-hirsute-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265 unsigned int sqo_dead: 1;
266
267 /*
268 * Ring buffer of indices into array of io_uring_sqe, which is
269 * mmapped by the application using the IORING_OFF_SQES offset.
270 *
271 * This indirection could e.g. be used to assign fixed
272 * io_uring_sqe entries to operations and only submit them to
273 * the queue when needed.
274 *
275 * The kernel modifies neither the indices array nor the entries
276 * array.
277 */
278 u32 *sq_array;
279 unsigned cached_sq_head;
280 unsigned sq_entries;
281 unsigned sq_mask;
282 unsigned sq_thread_idle;
283 unsigned cached_sq_dropped;
284 unsigned cached_cq_overflow;
285 unsigned long sq_check_overflow;
286
287 struct list_head defer_list;
288 struct list_head timeout_list;
289 struct list_head cq_overflow_list;
290
291 struct io_uring_sqe *sq_sqes;
292 } ____cacheline_aligned_in_smp;
293
294 struct io_rings *rings;
295
296 /* IO offload */
297 struct io_wq *io_wq;
298
299 /*
300 * For SQPOLL usage - we hold a reference to the parent task, so we
301 * have access to the ->files
302 */
303 struct task_struct *sqo_task;
304
305 /* Only used for accounting purposes */
306 struct mm_struct *mm_account;
307
308 #ifdef CONFIG_BLK_CGROUP
309 struct cgroup_subsys_state *sqo_blkcg_css;
310 #endif
311
312 struct io_sq_data *sq_data; /* if using sq thread polling */
313
314 struct wait_queue_head sqo_sq_wait;
315 struct list_head sqd_list;
316
317 /*
318 * If used, fixed file set. Writers must ensure that ->refs is dead,
319 * readers must ensure that ->refs is alive as long as the file* is
320 * used. Only updated through io_uring_register(2).
321 */
322 struct fixed_file_data *file_data;
323 unsigned nr_user_files;
324
325 /* if used, fixed mapped user buffers */
326 unsigned nr_user_bufs;
327 struct io_mapped_ubuf *user_bufs;
328
329 struct user_struct *user;
330
331 const struct cred *creds;
332
333 #ifdef CONFIG_AUDIT
334 kuid_t loginuid;
335 unsigned int sessionid;
336 #endif
337
338 struct completion ref_comp;
339 struct completion sq_thread_comp;
340
341 /* if all else fails... */
342 struct io_kiocb *fallback_req;
343
344 #if defined(CONFIG_UNIX)
345 struct socket *ring_sock;
346 #endif
347
348 struct idr io_buffer_idr;
349
350 struct idr personality_idr;
351
352 struct {
353 unsigned cached_cq_tail;
354 unsigned cq_entries;
355 unsigned cq_mask;
356 atomic_t cq_timeouts;
357 unsigned long cq_check_overflow;
358 struct wait_queue_head cq_wait;
359 struct fasync_struct *cq_fasync;
360 struct eventfd_ctx *cq_ev_fd;
361 } ____cacheline_aligned_in_smp;
362
363 struct {
364 struct mutex uring_lock;
365 wait_queue_head_t wait;
366 } ____cacheline_aligned_in_smp;
367
368 struct {
369 spinlock_t completion_lock;
370
371 /*
372 * ->iopoll_list is protected by the ctx->uring_lock for
373 * io_uring instances that don't use IORING_SETUP_SQPOLL.
374 * For SQPOLL, only the single threaded io_sq_thread() will
375 * manipulate the list, hence no extra locking is needed there.
376 */
377 struct list_head iopoll_list;
378 struct hlist_head *cancel_hash;
379 unsigned cancel_hash_bits;
380 bool poll_multi_file;
381
382 spinlock_t inflight_lock;
383 struct list_head inflight_list;
384 } ____cacheline_aligned_in_smp;
385
386 struct delayed_work file_put_work;
387 struct llist_head file_put_llist;
388
389 struct work_struct exit_work;
390 struct io_restriction restrictions;
391 };
392
393 /*
394 * First field must be the file pointer in all the
395 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
396 */
397 struct io_poll_iocb {
398 struct file *file;
399 struct wait_queue_head *head;
400 __poll_t events;
401 bool done;
402 bool canceled;
403 struct wait_queue_entry wait;
404 };
405
406 struct io_poll_remove {
407 struct file *file;
408 u64 addr;
409 };
410
411 struct io_close {
412 struct file *file;
413 struct file *put_file;
414 int fd;
415 };
416
417 struct io_timeout_data {
418 struct io_kiocb *req;
419 struct hrtimer timer;
420 struct timespec64 ts;
421 enum hrtimer_mode mode;
422 };
423
424 struct io_accept {
425 struct file *file;
426 struct sockaddr __user *addr;
427 int __user *addr_len;
428 int flags;
429 unsigned long nofile;
430 };
431
432 struct io_sync {
433 struct file *file;
434 loff_t len;
435 loff_t off;
436 int flags;
437 int mode;
438 };
439
440 struct io_cancel {
441 struct file *file;
442 u64 addr;
443 };
444
445 struct io_timeout {
446 struct file *file;
447 u32 off;
448 u32 target_seq;
449 struct list_head list;
450 /* head of the link, used by linked timeouts only */
451 struct io_kiocb *head;
452 };
453
454 struct io_timeout_rem {
455 struct file *file;
456 u64 addr;
457
458 /* timeout update */
459 struct timespec64 ts;
460 u32 flags;
461 };
462
463 struct io_rw {
464 /* NOTE: kiocb has the file as the first member, so don't do it here */
465 struct kiocb kiocb;
466 u64 addr;
467 u64 len;
468 };
469
470 struct io_connect {
471 struct file *file;
472 struct sockaddr __user *addr;
473 int addr_len;
474 };
475
476 struct io_sr_msg {
477 struct file *file;
478 union {
479 struct user_msghdr __user *umsg;
480 void __user *buf;
481 };
482 int msg_flags;
483 int bgid;
484 size_t len;
485 struct io_buffer *kbuf;
486 };
487
488 struct io_open {
489 struct file *file;
490 int dfd;
491 bool ignore_nonblock;
492 struct filename *filename;
493 struct open_how how;
494 unsigned long nofile;
495 };
496
497 struct io_files_update {
498 struct file *file;
499 u64 arg;
500 u32 nr_args;
501 u32 offset;
502 };
503
504 struct io_fadvise {
505 struct file *file;
506 u64 offset;
507 u32 len;
508 u32 advice;
509 };
510
511 struct io_madvise {
512 struct file *file;
513 u64 addr;
514 u32 len;
515 u32 advice;
516 };
517
518 struct io_epoll {
519 struct file *file;
520 int epfd;
521 int op;
522 int fd;
523 struct epoll_event event;
524 };
525
526 struct io_splice {
527 struct file *file_out;
528 struct file *file_in;
529 loff_t off_out;
530 loff_t off_in;
531 u64 len;
532 unsigned int flags;
533 };
534
535 struct io_provide_buf {
536 struct file *file;
537 __u64 addr;
538 __s32 len;
539 __u32 bgid;
540 __u16 nbufs;
541 __u16 bid;
542 };
543
544 struct io_statx {
545 struct file *file;
546 int dfd;
547 unsigned int mask;
548 unsigned int flags;
549 const char __user *filename;
550 struct statx __user *buffer;
551 };
552
553 struct io_shutdown {
554 struct file *file;
555 int how;
556 };
557
558 struct io_rename {
559 struct file *file;
560 int old_dfd;
561 int new_dfd;
562 struct filename *oldpath;
563 struct filename *newpath;
564 int flags;
565 };
566
567 struct io_unlink {
568 struct file *file;
569 int dfd;
570 int flags;
571 struct filename *filename;
572 };
573
574 struct io_completion {
575 struct file *file;
576 struct list_head list;
577 int cflags;
578 };
579
580 struct io_async_connect {
581 struct sockaddr_storage address;
582 };
583
584 struct io_async_msghdr {
585 struct iovec fast_iov[UIO_FASTIOV];
586 struct iovec *iov;
587 struct sockaddr __user *uaddr;
588 struct msghdr msg;
589 struct sockaddr_storage addr;
590 };
591
592 struct io_async_rw {
593 struct iovec fast_iov[UIO_FASTIOV];
594 const struct iovec *free_iovec;
595 struct iov_iter iter;
596 size_t bytes_done;
597 struct wait_page_queue wpq;
598 };
599
600 enum {
601 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
602 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
603 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
604 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
605 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
606 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
607
608 REQ_F_FAIL_LINK_BIT,
609 REQ_F_INFLIGHT_BIT,
610 REQ_F_CUR_POS_BIT,
611 REQ_F_NOWAIT_BIT,
612 REQ_F_LINK_TIMEOUT_BIT,
613 REQ_F_ISREG_BIT,
614 REQ_F_NEED_CLEANUP_BIT,
615 REQ_F_POLLED_BIT,
616 REQ_F_BUFFER_SELECTED_BIT,
617 REQ_F_NO_FILE_TABLE_BIT,
618 REQ_F_WORK_INITIALIZED_BIT,
619 REQ_F_LTIMEOUT_ACTIVE_BIT,
620
621 /* not a real bit, just to check we're not overflowing the space */
622 __REQ_F_LAST_BIT,
623 };
624
625 enum {
626 /* ctx owns file */
627 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
628 /* drain existing IO first */
629 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
630 /* linked sqes */
631 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
632 /* doesn't sever on completion < 0 */
633 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
634 /* IOSQE_ASYNC */
635 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
636 /* IOSQE_BUFFER_SELECT */
637 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
638
639 /* fail rest of links */
640 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
641 /* on inflight list */
642 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
643 /* read/write uses file position */
644 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
645 /* must not punt to workers */
646 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
647 /* has or had linked timeout */
648 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
649 /* regular file */
650 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
651 /* needs cleanup */
652 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
653 /* already went through poll handler */
654 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
655 /* buffer already selected */
656 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
657 /* doesn't need file table for this request */
658 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
659 /* io_wq_work is initialized */
660 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
661 /* linked timeout is active, i.e. prepared by link's head */
662 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
663 };
664
665 struct async_poll {
666 struct io_poll_iocb poll;
667 struct io_poll_iocb *double_poll;
668 };
669
670 /*
671 * NOTE! Each of the iocb union members has the file pointer
672 * as the first entry in their struct definition. So you can
673 * access the file pointer through any of the sub-structs,
674 * or directly as just 'ki_filp' in this struct.
675 */
676 struct io_kiocb {
677 union {
678 struct file *file;
679 struct io_rw rw;
680 struct io_poll_iocb poll;
681 struct io_poll_remove poll_remove;
682 struct io_accept accept;
683 struct io_sync sync;
684 struct io_cancel cancel;
685 struct io_timeout timeout;
686 struct io_timeout_rem timeout_rem;
687 struct io_connect connect;
688 struct io_sr_msg sr_msg;
689 struct io_open open;
690 struct io_close close;
691 struct io_files_update files_update;
692 struct io_fadvise fadvise;
693 struct io_madvise madvise;
694 struct io_epoll epoll;
695 struct io_splice splice;
696 struct io_provide_buf pbuf;
697 struct io_statx statx;
698 struct io_shutdown shutdown;
699 struct io_rename rename;
700 struct io_unlink unlink;
701 /* use only after cleaning per-op data, see io_clean_op() */
702 struct io_completion compl;
703 };
704
705 /* opcode allocated if it needs to store data for async defer */
706 void *async_data;
707 u8 opcode;
708 /* polled IO has completed */
709 u8 iopoll_completed;
710
711 u16 buf_index;
712 u32 result;
713
714 struct io_ring_ctx *ctx;
715 unsigned int flags;
716 refcount_t refs;
717 struct task_struct *task;
718 u64 user_data;
719
720 struct io_kiocb *link;
721 struct percpu_ref *fixed_file_refs;
722
723 /*
724 * 1. used with ctx->iopoll_list with reads/writes
725 * 2. to track reqs with ->files (see io_op_def::file_table)
726 */
727 struct list_head inflight_entry;
728 struct callback_head task_work;
729 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
730 struct hlist_node hash_node;
731 struct async_poll *apoll;
732 struct io_wq_work work;
733 };
734
735 struct io_defer_entry {
736 struct list_head list;
737 struct io_kiocb *req;
738 u32 seq;
739 };
740
741 #define IO_IOPOLL_BATCH 8
742
743 struct io_comp_state {
744 unsigned int nr;
745 struct list_head list;
746 struct io_ring_ctx *ctx;
747 };
748
749 struct io_submit_state {
750 struct blk_plug plug;
751
752 /*
753 * io_kiocb alloc cache
754 */
755 void *reqs[IO_IOPOLL_BATCH];
756 unsigned int free_reqs;
757
758 bool plug_started;
759
760 /*
761 * Batch completion logic
762 */
763 struct io_comp_state comp;
764
765 /*
766 * File reference cache
767 */
768 struct file *file;
769 unsigned int fd;
770 unsigned int file_refs;
771 unsigned int ios_left;
772 };
773
774 struct io_op_def {
775 /* needs req->file assigned */
776 unsigned needs_file : 1;
777 /* don't fail if file grab fails */
778 unsigned needs_file_no_error : 1;
779 /* hash wq insertion if file is a regular file */
780 unsigned hash_reg_file : 1;
781 /* unbound wq insertion if file is a non-regular file */
782 unsigned unbound_nonreg_file : 1;
783 /* opcode is not supported by this kernel */
784 unsigned not_supported : 1;
785 /* set if opcode supports polled "wait" */
786 unsigned pollin : 1;
787 unsigned pollout : 1;
788 /* op supports buffer selection */
789 unsigned buffer_select : 1;
790 /* must always have async data allocated */
791 unsigned needs_async_data : 1;
792 /* should block plug */
793 unsigned plug : 1;
794 /* size of async data needed, if any */
795 unsigned short async_size;
796 unsigned work_flags;
797 };
798
799 static const struct io_op_def io_op_defs[] = {
800 [IORING_OP_NOP] = {},
801 [IORING_OP_READV] = {
802 .needs_file = 1,
803 .unbound_nonreg_file = 1,
804 .pollin = 1,
805 .buffer_select = 1,
806 .needs_async_data = 1,
807 .plug = 1,
808 .async_size = sizeof(struct io_async_rw),
809 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
810 },
811 [IORING_OP_WRITEV] = {
812 .needs_file = 1,
813 .hash_reg_file = 1,
814 .unbound_nonreg_file = 1,
815 .pollout = 1,
816 .needs_async_data = 1,
817 .plug = 1,
818 .async_size = sizeof(struct io_async_rw),
819 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
820 IO_WQ_WORK_FSIZE,
821 },
822 [IORING_OP_FSYNC] = {
823 .needs_file = 1,
824 .work_flags = IO_WQ_WORK_BLKCG,
825 },
826 [IORING_OP_READ_FIXED] = {
827 .needs_file = 1,
828 .unbound_nonreg_file = 1,
829 .pollin = 1,
830 .plug = 1,
831 .async_size = sizeof(struct io_async_rw),
832 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
833 },
834 [IORING_OP_WRITE_FIXED] = {
835 .needs_file = 1,
836 .hash_reg_file = 1,
837 .unbound_nonreg_file = 1,
838 .pollout = 1,
839 .plug = 1,
840 .async_size = sizeof(struct io_async_rw),
841 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
842 IO_WQ_WORK_MM,
843 },
844 [IORING_OP_POLL_ADD] = {
845 .needs_file = 1,
846 .unbound_nonreg_file = 1,
847 },
848 [IORING_OP_POLL_REMOVE] = {},
849 [IORING_OP_SYNC_FILE_RANGE] = {
850 .needs_file = 1,
851 .work_flags = IO_WQ_WORK_BLKCG,
852 },
853 [IORING_OP_SENDMSG] = {
854 .needs_file = 1,
855 .unbound_nonreg_file = 1,
856 .pollout = 1,
857 .needs_async_data = 1,
858 .async_size = sizeof(struct io_async_msghdr),
859 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
860 },
861 [IORING_OP_RECVMSG] = {
862 .needs_file = 1,
863 .unbound_nonreg_file = 1,
864 .pollin = 1,
865 .buffer_select = 1,
866 .needs_async_data = 1,
867 .async_size = sizeof(struct io_async_msghdr),
868 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
869 },
870 [IORING_OP_TIMEOUT] = {
871 .needs_async_data = 1,
872 .async_size = sizeof(struct io_timeout_data),
873 .work_flags = IO_WQ_WORK_MM,
874 },
875 [IORING_OP_TIMEOUT_REMOVE] = {
876 /* used by timeout updates' prep() */
877 .work_flags = IO_WQ_WORK_MM,
878 },
879 [IORING_OP_ACCEPT] = {
880 .needs_file = 1,
881 .unbound_nonreg_file = 1,
882 .pollin = 1,
883 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
884 },
885 [IORING_OP_ASYNC_CANCEL] = {},
886 [IORING_OP_LINK_TIMEOUT] = {
887 .needs_async_data = 1,
888 .async_size = sizeof(struct io_timeout_data),
889 .work_flags = IO_WQ_WORK_MM,
890 },
891 [IORING_OP_CONNECT] = {
892 .needs_file = 1,
893 .unbound_nonreg_file = 1,
894 .pollout = 1,
895 .needs_async_data = 1,
896 .async_size = sizeof(struct io_async_connect),
897 .work_flags = IO_WQ_WORK_MM,
898 },
899 [IORING_OP_FALLOCATE] = {
900 .needs_file = 1,
901 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
902 },
903 [IORING_OP_OPENAT] = {
904 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
905 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
906 },
907 [IORING_OP_CLOSE] = {
908 .needs_file = 1,
909 .needs_file_no_error = 1,
910 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
911 },
912 [IORING_OP_FILES_UPDATE] = {
913 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
914 },
915 [IORING_OP_STATX] = {
916 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
917 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
918 },
919 [IORING_OP_READ] = {
920 .needs_file = 1,
921 .unbound_nonreg_file = 1,
922 .pollin = 1,
923 .buffer_select = 1,
924 .plug = 1,
925 .async_size = sizeof(struct io_async_rw),
926 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
927 },
928 [IORING_OP_WRITE] = {
929 .needs_file = 1,
930 .unbound_nonreg_file = 1,
931 .pollout = 1,
932 .plug = 1,
933 .async_size = sizeof(struct io_async_rw),
934 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
935 IO_WQ_WORK_FSIZE,
936 },
937 [IORING_OP_FADVISE] = {
938 .needs_file = 1,
939 .work_flags = IO_WQ_WORK_BLKCG,
940 },
941 [IORING_OP_MADVISE] = {
942 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
943 },
944 [IORING_OP_SEND] = {
945 .needs_file = 1,
946 .unbound_nonreg_file = 1,
947 .pollout = 1,
948 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
949 },
950 [IORING_OP_RECV] = {
951 .needs_file = 1,
952 .unbound_nonreg_file = 1,
953 .pollin = 1,
954 .buffer_select = 1,
955 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
956 },
957 [IORING_OP_OPENAT2] = {
958 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
959 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
960 },
961 [IORING_OP_EPOLL_CTL] = {
962 .unbound_nonreg_file = 1,
963 .work_flags = IO_WQ_WORK_FILES,
964 },
965 [IORING_OP_SPLICE] = {
966 .needs_file = 1,
967 .hash_reg_file = 1,
968 .unbound_nonreg_file = 1,
969 .work_flags = IO_WQ_WORK_BLKCG,
970 },
971 [IORING_OP_PROVIDE_BUFFERS] = {},
972 [IORING_OP_REMOVE_BUFFERS] = {},
973 [IORING_OP_TEE] = {
974 .needs_file = 1,
975 .hash_reg_file = 1,
976 .unbound_nonreg_file = 1,
977 },
978 [IORING_OP_SHUTDOWN] = {
979 .needs_file = 1,
980 },
981 [IORING_OP_RENAMEAT] = {
982 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
983 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
984 },
985 [IORING_OP_UNLINKAT] = {
986 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
987 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
988 },
989 };
990
991 enum io_mem_account {
992 ACCT_LOCKED,
993 ACCT_PINNED,
994 };
995
996 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
997 struct task_struct *task);
998
999 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
1000 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1001 struct io_ring_ctx *ctx);
1002
1003 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1004 struct io_comp_state *cs);
1005 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1006 static void io_put_req(struct io_kiocb *req);
1007 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1008 static void io_double_put_req(struct io_kiocb *req);
1009 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1010 static void __io_queue_linked_timeout(struct io_kiocb *req);
1011 static void io_queue_linked_timeout(struct io_kiocb *req);
1012 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1013 struct io_uring_files_update *ip,
1014 unsigned nr_args);
1015 static void __io_clean_op(struct io_kiocb *req);
1016 static struct file *io_file_get(struct io_submit_state *state,
1017 struct io_kiocb *req, int fd, bool fixed);
1018 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1019 static void io_file_put_work(struct work_struct *work);
1020
1021 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1022 struct iovec **iovec, struct iov_iter *iter,
1023 bool needs_lock);
1024 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1025 const struct iovec *fast_iov,
1026 struct iov_iter *iter, bool force);
1027
1028 static struct kmem_cache *req_cachep;
1029
1030 static const struct file_operations io_uring_fops;
1031
1032 struct sock *io_uring_get_socket(struct file *file)
1033 {
1034 #if defined(CONFIG_UNIX)
1035 if (file->f_op == &io_uring_fops) {
1036 struct io_ring_ctx *ctx = file->private_data;
1037
1038 return ctx->ring_sock->sk;
1039 }
1040 #endif
1041 return NULL;
1042 }
1043 EXPORT_SYMBOL(io_uring_get_socket);
1044
1045 #define io_for_each_link(pos, head) \
1046 for (pos = (head); pos; pos = pos->link)
1047
1048 static inline void io_clean_op(struct io_kiocb *req)
1049 {
1050 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1051 REQ_F_INFLIGHT))
1052 __io_clean_op(req);
1053 }
1054
1055 static inline void io_set_resource_node(struct io_kiocb *req)
1056 {
1057 struct io_ring_ctx *ctx = req->ctx;
1058
1059 if (!req->fixed_file_refs) {
1060 req->fixed_file_refs = &ctx->file_data->node->refs;
1061 percpu_ref_get(req->fixed_file_refs);
1062 }
1063 }
1064
1065 static bool io_match_task(struct io_kiocb *head,
1066 struct task_struct *task,
1067 struct files_struct *files)
1068 {
1069 struct io_kiocb *req;
1070
1071 if (task && head->task != task)
1072 return false;
1073 if (!files)
1074 return true;
1075
1076 io_for_each_link(req, head) {
1077 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1078 (req->work.flags & IO_WQ_WORK_FILES) &&
1079 req->work.identity->files == files)
1080 return true;
1081 }
1082 return false;
1083 }
1084
1085 static void io_sq_thread_drop_mm_files(void)
1086 {
1087 struct files_struct *files = current->files;
1088 struct mm_struct *mm = current->mm;
1089
1090 if (mm) {
1091 kthread_unuse_mm(mm);
1092 mmput(mm);
1093 current->mm = NULL;
1094 }
1095 if (files) {
1096 struct nsproxy *nsproxy = current->nsproxy;
1097
1098 task_lock(current);
1099 current->files = NULL;
1100 current->nsproxy = NULL;
1101 task_unlock(current);
1102 put_files_struct(files);
1103 put_nsproxy(nsproxy);
1104 }
1105 }
1106
1107 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1108 {
1109 if (!current->files) {
1110 struct files_struct *files;
1111 struct nsproxy *nsproxy;
1112
1113 task_lock(ctx->sqo_task);
1114 files = ctx->sqo_task->files;
1115 if (!files) {
1116 task_unlock(ctx->sqo_task);
1117 return -EOWNERDEAD;
1118 }
1119 atomic_inc(&files->count);
1120 get_nsproxy(ctx->sqo_task->nsproxy);
1121 nsproxy = ctx->sqo_task->nsproxy;
1122 task_unlock(ctx->sqo_task);
1123
1124 task_lock(current);
1125 current->files = files;
1126 current->nsproxy = nsproxy;
1127 task_unlock(current);
1128 }
1129 return 0;
1130 }
1131
1132 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1133 {
1134 struct mm_struct *mm;
1135
1136 if (current->mm)
1137 return 0;
1138
1139 /* Should never happen */
1140 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1141 return -EFAULT;
1142
1143 task_lock(ctx->sqo_task);
1144 mm = ctx->sqo_task->mm;
1145 if (unlikely(!mm || !mmget_not_zero(mm)))
1146 mm = NULL;
1147 task_unlock(ctx->sqo_task);
1148
1149 if (mm) {
1150 kthread_use_mm(mm);
1151 return 0;
1152 }
1153
1154 return -EFAULT;
1155 }
1156
1157 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1158 struct io_kiocb *req)
1159 {
1160 const struct io_op_def *def = &io_op_defs[req->opcode];
1161 int ret;
1162
1163 if (def->work_flags & IO_WQ_WORK_MM) {
1164 ret = __io_sq_thread_acquire_mm(ctx);
1165 if (unlikely(ret))
1166 return ret;
1167 }
1168
1169 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1170 ret = __io_sq_thread_acquire_files(ctx);
1171 if (unlikely(ret))
1172 return ret;
1173 }
1174
1175 return 0;
1176 }
1177
1178 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1179 struct cgroup_subsys_state **cur_css)
1180
1181 {
1182 #ifdef CONFIG_BLK_CGROUP
1183 /* puts the old one when swapping */
1184 if (*cur_css != ctx->sqo_blkcg_css) {
1185 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1186 *cur_css = ctx->sqo_blkcg_css;
1187 }
1188 #endif
1189 }
1190
1191 static void io_sq_thread_unassociate_blkcg(void)
1192 {
1193 #ifdef CONFIG_BLK_CGROUP
1194 kthread_associate_blkcg(NULL);
1195 #endif
1196 }
1197
1198 static inline void req_set_fail_links(struct io_kiocb *req)
1199 {
1200 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1201 req->flags |= REQ_F_FAIL_LINK;
1202 }
1203
1204 /*
1205 * None of these are dereferenced, they are simply used to check if any of
1206 * them have changed. If we're under current and check they are still the
1207 * same, we're fine to grab references to them for actual out-of-line use.
1208 */
1209 static void io_init_identity(struct io_identity *id)
1210 {
1211 id->files = current->files;
1212 id->mm = current->mm;
1213 #ifdef CONFIG_BLK_CGROUP
1214 rcu_read_lock();
1215 id->blkcg_css = blkcg_css();
1216 rcu_read_unlock();
1217 #endif
1218 id->creds = current_cred();
1219 id->nsproxy = current->nsproxy;
1220 id->fs = current->fs;
1221 id->fsize = rlimit(RLIMIT_FSIZE);
1222 #ifdef CONFIG_AUDIT
1223 id->loginuid = current->loginuid;
1224 id->sessionid = current->sessionid;
1225 #endif
1226 refcount_set(&id->count, 1);
1227 }
1228
1229 static inline void __io_req_init_async(struct io_kiocb *req)
1230 {
1231 memset(&req->work, 0, sizeof(req->work));
1232 req->flags |= REQ_F_WORK_INITIALIZED;
1233 }
1234
1235 /*
1236 * Note: must call io_req_init_async() for the first time you
1237 * touch any members of io_wq_work.
1238 */
1239 static inline void io_req_init_async(struct io_kiocb *req)
1240 {
1241 struct io_uring_task *tctx = current->io_uring;
1242
1243 if (req->flags & REQ_F_WORK_INITIALIZED)
1244 return;
1245
1246 __io_req_init_async(req);
1247
1248 /* Grab a ref if this isn't our static identity */
1249 req->work.identity = tctx->identity;
1250 if (tctx->identity != &tctx->__identity)
1251 refcount_inc(&req->work.identity->count);
1252 }
1253
1254 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1255 {
1256 return ctx->flags & IORING_SETUP_SQPOLL;
1257 }
1258
1259 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1260 {
1261 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1262
1263 complete(&ctx->ref_comp);
1264 }
1265
1266 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1267 {
1268 return !req->timeout.off;
1269 }
1270
1271 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1272 {
1273 struct io_ring_ctx *ctx;
1274 int hash_bits;
1275
1276 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1277 if (!ctx)
1278 return NULL;
1279
1280 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1281 if (!ctx->fallback_req)
1282 goto err;
1283
1284 /*
1285 * Use 5 bits less than the max cq entries, that should give us around
1286 * 32 entries per hash list if totally full and uniformly spread.
1287 */
1288 hash_bits = ilog2(p->cq_entries);
1289 hash_bits -= 5;
1290 if (hash_bits <= 0)
1291 hash_bits = 1;
1292 ctx->cancel_hash_bits = hash_bits;
1293 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1294 GFP_KERNEL);
1295 if (!ctx->cancel_hash)
1296 goto err;
1297 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1298
1299 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1300 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1301 goto err;
1302
1303 ctx->flags = p->flags;
1304 init_waitqueue_head(&ctx->sqo_sq_wait);
1305 INIT_LIST_HEAD(&ctx->sqd_list);
1306 init_waitqueue_head(&ctx->cq_wait);
1307 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1308 init_completion(&ctx->ref_comp);
1309 init_completion(&ctx->sq_thread_comp);
1310 idr_init(&ctx->io_buffer_idr);
1311 idr_init(&ctx->personality_idr);
1312 mutex_init(&ctx->uring_lock);
1313 init_waitqueue_head(&ctx->wait);
1314 spin_lock_init(&ctx->completion_lock);
1315 INIT_LIST_HEAD(&ctx->iopoll_list);
1316 INIT_LIST_HEAD(&ctx->defer_list);
1317 INIT_LIST_HEAD(&ctx->timeout_list);
1318 spin_lock_init(&ctx->inflight_lock);
1319 INIT_LIST_HEAD(&ctx->inflight_list);
1320 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1321 init_llist_head(&ctx->file_put_llist);
1322 return ctx;
1323 err:
1324 if (ctx->fallback_req)
1325 kmem_cache_free(req_cachep, ctx->fallback_req);
1326 kfree(ctx->cancel_hash);
1327 kfree(ctx);
1328 return NULL;
1329 }
1330
1331 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1332 {
1333 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1334 struct io_ring_ctx *ctx = req->ctx;
1335
1336 return seq != ctx->cached_cq_tail
1337 + READ_ONCE(ctx->cached_cq_overflow);
1338 }
1339
1340 return false;
1341 }
1342
1343 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1344 {
1345 struct io_rings *rings = ctx->rings;
1346
1347 /* order cqe stores with ring update */
1348 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1349 }
1350
1351 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1352 {
1353 if (req->work.identity == &tctx->__identity)
1354 return;
1355 if (refcount_dec_and_test(&req->work.identity->count))
1356 kfree(req->work.identity);
1357 }
1358
1359 static void io_req_clean_work(struct io_kiocb *req)
1360 {
1361 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1362 return;
1363
1364 req->flags &= ~REQ_F_WORK_INITIALIZED;
1365
1366 if (req->work.flags & IO_WQ_WORK_MM) {
1367 mmdrop(req->work.identity->mm);
1368 req->work.flags &= ~IO_WQ_WORK_MM;
1369 }
1370 #ifdef CONFIG_BLK_CGROUP
1371 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1372 css_put(req->work.identity->blkcg_css);
1373 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1374 }
1375 #endif
1376 if (req->work.flags & IO_WQ_WORK_CREDS) {
1377 put_cred(req->work.identity->creds);
1378 req->work.flags &= ~IO_WQ_WORK_CREDS;
1379 }
1380 if (req->work.flags & IO_WQ_WORK_FS) {
1381 struct fs_struct *fs = req->work.identity->fs;
1382
1383 spin_lock(&req->work.identity->fs->lock);
1384 if (--fs->users)
1385 fs = NULL;
1386 spin_unlock(&req->work.identity->fs->lock);
1387 if (fs)
1388 free_fs_struct(fs);
1389 req->work.flags &= ~IO_WQ_WORK_FS;
1390 }
1391
1392 io_put_identity(req->task->io_uring, req);
1393 }
1394
1395 /*
1396 * Create a private copy of io_identity, since some fields don't match
1397 * the current context.
1398 */
1399 static bool io_identity_cow(struct io_kiocb *req)
1400 {
1401 struct io_uring_task *tctx = current->io_uring;
1402 const struct cred *creds = NULL;
1403 struct io_identity *id;
1404
1405 if (req->work.flags & IO_WQ_WORK_CREDS)
1406 creds = req->work.identity->creds;
1407
1408 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1409 if (unlikely(!id)) {
1410 req->work.flags |= IO_WQ_WORK_CANCEL;
1411 return false;
1412 }
1413
1414 /*
1415 * We can safely just re-init the creds we copied Either the field
1416 * matches the current one, or we haven't grabbed it yet. The only
1417 * exception is ->creds, through registered personalities, so handle
1418 * that one separately.
1419 */
1420 io_init_identity(id);
1421 if (creds)
1422 id->creds = creds;
1423
1424 /* add one for this request */
1425 refcount_inc(&id->count);
1426
1427 /* drop tctx and req identity references, if needed */
1428 if (tctx->identity != &tctx->__identity &&
1429 refcount_dec_and_test(&tctx->identity->count))
1430 kfree(tctx->identity);
1431 if (req->work.identity != &tctx->__identity &&
1432 refcount_dec_and_test(&req->work.identity->count))
1433 kfree(req->work.identity);
1434
1435 req->work.identity = id;
1436 tctx->identity = id;
1437 return true;
1438 }
1439
1440 static bool io_grab_identity(struct io_kiocb *req)
1441 {
1442 const struct io_op_def *def = &io_op_defs[req->opcode];
1443 struct io_identity *id = req->work.identity;
1444 struct io_ring_ctx *ctx = req->ctx;
1445
1446 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1447 if (id->fsize != rlimit(RLIMIT_FSIZE))
1448 return false;
1449 req->work.flags |= IO_WQ_WORK_FSIZE;
1450 }
1451 #ifdef CONFIG_BLK_CGROUP
1452 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1453 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1454 rcu_read_lock();
1455 if (id->blkcg_css != blkcg_css()) {
1456 rcu_read_unlock();
1457 return false;
1458 }
1459 /*
1460 * This should be rare, either the cgroup is dying or the task
1461 * is moving cgroups. Just punt to root for the handful of ios.
1462 */
1463 if (css_tryget_online(id->blkcg_css))
1464 req->work.flags |= IO_WQ_WORK_BLKCG;
1465 rcu_read_unlock();
1466 }
1467 #endif
1468 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1469 if (id->creds != current_cred())
1470 return false;
1471 get_cred(id->creds);
1472 req->work.flags |= IO_WQ_WORK_CREDS;
1473 }
1474 #ifdef CONFIG_AUDIT
1475 if (!uid_eq(current->loginuid, id->loginuid) ||
1476 current->sessionid != id->sessionid)
1477 return false;
1478 #endif
1479 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1480 (def->work_flags & IO_WQ_WORK_FS)) {
1481 if (current->fs != id->fs)
1482 return false;
1483 spin_lock(&id->fs->lock);
1484 if (!id->fs->in_exec) {
1485 id->fs->users++;
1486 req->work.flags |= IO_WQ_WORK_FS;
1487 } else {
1488 req->work.flags |= IO_WQ_WORK_CANCEL;
1489 }
1490 spin_unlock(&current->fs->lock);
1491 }
1492 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1493 (def->work_flags & IO_WQ_WORK_FILES) &&
1494 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1495 if (id->files != current->files ||
1496 id->nsproxy != current->nsproxy)
1497 return false;
1498 atomic_inc(&id->files->count);
1499 get_nsproxy(id->nsproxy);
1500 req->flags |= REQ_F_INFLIGHT;
1501
1502 spin_lock_irq(&ctx->inflight_lock);
1503 list_add(&req->inflight_entry, &ctx->inflight_list);
1504 spin_unlock_irq(&ctx->inflight_lock);
1505 req->work.flags |= IO_WQ_WORK_FILES;
1506 }
1507 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1508 (def->work_flags & IO_WQ_WORK_MM)) {
1509 if (id->mm != current->mm)
1510 return false;
1511 mmgrab(id->mm);
1512 req->work.flags |= IO_WQ_WORK_MM;
1513 }
1514
1515 return true;
1516 }
1517
1518 static void io_prep_async_work(struct io_kiocb *req)
1519 {
1520 const struct io_op_def *def = &io_op_defs[req->opcode];
1521 struct io_ring_ctx *ctx = req->ctx;
1522
1523 io_req_init_async(req);
1524
1525 if (req->flags & REQ_F_FORCE_ASYNC)
1526 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1527
1528 if (req->flags & REQ_F_ISREG) {
1529 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1530 io_wq_hash_work(&req->work, file_inode(req->file));
1531 } else {
1532 if (def->unbound_nonreg_file)
1533 req->work.flags |= IO_WQ_WORK_UNBOUND;
1534 }
1535
1536 /* if we fail grabbing identity, we must COW, regrab, and retry */
1537 if (io_grab_identity(req))
1538 return;
1539
1540 if (!io_identity_cow(req))
1541 return;
1542
1543 /* can't fail at this point */
1544 if (!io_grab_identity(req))
1545 WARN_ON(1);
1546 }
1547
1548 static void io_prep_async_link(struct io_kiocb *req)
1549 {
1550 struct io_kiocb *cur;
1551
1552 io_for_each_link(cur, req)
1553 io_prep_async_work(cur);
1554 }
1555
1556 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1557 {
1558 struct io_ring_ctx *ctx = req->ctx;
1559 struct io_kiocb *link = io_prep_linked_timeout(req);
1560
1561 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1562 &req->work, req->flags);
1563 io_wq_enqueue(ctx->io_wq, &req->work);
1564 return link;
1565 }
1566
1567 static void io_queue_async_work(struct io_kiocb *req)
1568 {
1569 struct io_kiocb *link;
1570
1571 /* init ->work of the whole link before punting */
1572 io_prep_async_link(req);
1573 link = __io_queue_async_work(req);
1574
1575 if (link)
1576 io_queue_linked_timeout(link);
1577 }
1578
1579 static void io_kill_timeout(struct io_kiocb *req)
1580 {
1581 struct io_timeout_data *io = req->async_data;
1582 int ret;
1583
1584 ret = hrtimer_try_to_cancel(&io->timer);
1585 if (ret != -1) {
1586 atomic_set(&req->ctx->cq_timeouts,
1587 atomic_read(&req->ctx->cq_timeouts) + 1);
1588 list_del_init(&req->timeout.list);
1589 io_cqring_fill_event(req, 0);
1590 io_put_req_deferred(req, 1);
1591 }
1592 }
1593
1594 /*
1595 * Returns true if we found and killed one or more timeouts
1596 */
1597 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1598 struct files_struct *files)
1599 {
1600 struct io_kiocb *req, *tmp;
1601 int canceled = 0;
1602
1603 spin_lock_irq(&ctx->completion_lock);
1604 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1605 if (io_match_task(req, tsk, files)) {
1606 io_kill_timeout(req);
1607 canceled++;
1608 }
1609 }
1610 spin_unlock_irq(&ctx->completion_lock);
1611 return canceled != 0;
1612 }
1613
1614 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1615 {
1616 do {
1617 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1618 struct io_defer_entry, list);
1619 struct io_kiocb *link;
1620
1621 if (req_need_defer(de->req, de->seq))
1622 break;
1623 list_del_init(&de->list);
1624 /* punt-init is done before queueing for defer */
1625 link = __io_queue_async_work(de->req);
1626 if (link) {
1627 __io_queue_linked_timeout(link);
1628 /* drop submission reference */
1629 io_put_req_deferred(link, 1);
1630 }
1631 kfree(de);
1632 } while (!list_empty(&ctx->defer_list));
1633 }
1634
1635 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1636 {
1637 while (!list_empty(&ctx->timeout_list)) {
1638 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1639 struct io_kiocb, timeout.list);
1640
1641 if (io_is_timeout_noseq(req))
1642 break;
1643 if (req->timeout.target_seq != ctx->cached_cq_tail
1644 - atomic_read(&ctx->cq_timeouts))
1645 break;
1646
1647 list_del_init(&req->timeout.list);
1648 io_kill_timeout(req);
1649 }
1650 }
1651
1652 static void io_commit_cqring(struct io_ring_ctx *ctx)
1653 {
1654 io_flush_timeouts(ctx);
1655 __io_commit_cqring(ctx);
1656
1657 if (unlikely(!list_empty(&ctx->defer_list)))
1658 __io_queue_deferred(ctx);
1659 }
1660
1661 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1662 {
1663 struct io_rings *r = ctx->rings;
1664
1665 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1666 }
1667
1668 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1669 {
1670 struct io_rings *rings = ctx->rings;
1671 unsigned tail;
1672
1673 tail = ctx->cached_cq_tail;
1674 /*
1675 * writes to the cq entry need to come after reading head; the
1676 * control dependency is enough as we're using WRITE_ONCE to
1677 * fill the cq entry
1678 */
1679 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1680 return NULL;
1681
1682 ctx->cached_cq_tail++;
1683 return &rings->cqes[tail & ctx->cq_mask];
1684 }
1685
1686 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1687 {
1688 if (!ctx->cq_ev_fd)
1689 return false;
1690 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1691 return false;
1692 if (!ctx->eventfd_async)
1693 return true;
1694 return io_wq_current_is_worker();
1695 }
1696
1697 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1698 {
1699 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1700 }
1701
1702 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1703 {
1704 /* see waitqueue_active() comment */
1705 smp_mb();
1706
1707 if (waitqueue_active(&ctx->wait))
1708 wake_up(&ctx->wait);
1709 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1710 wake_up(&ctx->sq_data->wait);
1711 if (io_should_trigger_evfd(ctx))
1712 eventfd_signal(ctx->cq_ev_fd, 1);
1713 if (waitqueue_active(&ctx->cq_wait)) {
1714 wake_up_interruptible(&ctx->cq_wait);
1715 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1716 }
1717 }
1718
1719 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1720 {
1721 /* see waitqueue_active() comment */
1722 smp_mb();
1723
1724 if (ctx->flags & IORING_SETUP_SQPOLL) {
1725 if (waitqueue_active(&ctx->wait))
1726 wake_up(&ctx->wait);
1727 }
1728 if (io_should_trigger_evfd(ctx))
1729 eventfd_signal(ctx->cq_ev_fd, 1);
1730 if (waitqueue_active(&ctx->cq_wait)) {
1731 wake_up_interruptible(&ctx->cq_wait);
1732 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1733 }
1734 }
1735
1736 /* Returns true if there are no backlogged entries after the flush */
1737 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1738 struct task_struct *tsk,
1739 struct files_struct *files)
1740 {
1741 struct io_rings *rings = ctx->rings;
1742 struct io_kiocb *req, *tmp;
1743 struct io_uring_cqe *cqe;
1744 unsigned long flags;
1745 bool all_flushed;
1746 LIST_HEAD(list);
1747
1748 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1749 return false;
1750
1751 spin_lock_irqsave(&ctx->completion_lock, flags);
1752 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1753 if (!io_match_task(req, tsk, files))
1754 continue;
1755
1756 cqe = io_get_cqring(ctx);
1757 if (!cqe && !force)
1758 break;
1759
1760 list_move(&req->compl.list, &list);
1761 if (cqe) {
1762 WRITE_ONCE(cqe->user_data, req->user_data);
1763 WRITE_ONCE(cqe->res, req->result);
1764 WRITE_ONCE(cqe->flags, req->compl.cflags);
1765 } else {
1766 ctx->cached_cq_overflow++;
1767 WRITE_ONCE(ctx->rings->cq_overflow,
1768 ctx->cached_cq_overflow);
1769 }
1770 }
1771
1772 all_flushed = list_empty(&ctx->cq_overflow_list);
1773 if (all_flushed) {
1774 clear_bit(0, &ctx->sq_check_overflow);
1775 clear_bit(0, &ctx->cq_check_overflow);
1776 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1777 }
1778
1779 io_commit_cqring(ctx);
1780 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1781 io_cqring_ev_posted(ctx);
1782
1783 while (!list_empty(&list)) {
1784 req = list_first_entry(&list, struct io_kiocb, compl.list);
1785 list_del(&req->compl.list);
1786 io_put_req(req);
1787 }
1788
1789 return all_flushed;
1790 }
1791
1792 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1793 struct task_struct *tsk,
1794 struct files_struct *files)
1795 {
1796 if (test_bit(0, &ctx->cq_check_overflow)) {
1797 /* iopoll syncs against uring_lock, not completion_lock */
1798 if (ctx->flags & IORING_SETUP_IOPOLL)
1799 mutex_lock(&ctx->uring_lock);
1800 __io_cqring_overflow_flush(ctx, force, tsk, files);
1801 if (ctx->flags & IORING_SETUP_IOPOLL)
1802 mutex_unlock(&ctx->uring_lock);
1803 }
1804 }
1805
1806 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1807 {
1808 struct io_ring_ctx *ctx = req->ctx;
1809 struct io_uring_cqe *cqe;
1810
1811 trace_io_uring_complete(ctx, req->user_data, res);
1812
1813 /*
1814 * If we can't get a cq entry, userspace overflowed the
1815 * submission (by quite a lot). Increment the overflow count in
1816 * the ring.
1817 */
1818 cqe = io_get_cqring(ctx);
1819 if (likely(cqe)) {
1820 WRITE_ONCE(cqe->user_data, req->user_data);
1821 WRITE_ONCE(cqe->res, res);
1822 WRITE_ONCE(cqe->flags, cflags);
1823 } else if (ctx->cq_overflow_flushed ||
1824 atomic_read(&req->task->io_uring->in_idle)) {
1825 /*
1826 * If we're in ring overflow flush mode, or in task cancel mode,
1827 * then we cannot store the request for later flushing, we need
1828 * to drop it on the floor.
1829 */
1830 ctx->cached_cq_overflow++;
1831 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1832 } else {
1833 if (list_empty(&ctx->cq_overflow_list)) {
1834 set_bit(0, &ctx->sq_check_overflow);
1835 set_bit(0, &ctx->cq_check_overflow);
1836 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1837 }
1838 io_clean_op(req);
1839 req->result = res;
1840 req->compl.cflags = cflags;
1841 refcount_inc(&req->refs);
1842 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1843 }
1844 }
1845
1846 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1847 {
1848 __io_cqring_fill_event(req, res, 0);
1849 }
1850
1851 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1852 {
1853 struct io_ring_ctx *ctx = req->ctx;
1854 unsigned long flags;
1855
1856 spin_lock_irqsave(&ctx->completion_lock, flags);
1857 __io_cqring_fill_event(req, res, cflags);
1858 io_commit_cqring(ctx);
1859 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1860
1861 io_cqring_ev_posted(ctx);
1862 }
1863
1864 static void io_submit_flush_completions(struct io_comp_state *cs)
1865 {
1866 struct io_ring_ctx *ctx = cs->ctx;
1867
1868 spin_lock_irq(&ctx->completion_lock);
1869 while (!list_empty(&cs->list)) {
1870 struct io_kiocb *req;
1871
1872 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1873 list_del(&req->compl.list);
1874 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1875
1876 /*
1877 * io_free_req() doesn't care about completion_lock unless one
1878 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1879 * because of a potential deadlock with req->work.fs->lock
1880 */
1881 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1882 |REQ_F_WORK_INITIALIZED)) {
1883 spin_unlock_irq(&ctx->completion_lock);
1884 io_put_req(req);
1885 spin_lock_irq(&ctx->completion_lock);
1886 } else {
1887 io_put_req(req);
1888 }
1889 }
1890 io_commit_cqring(ctx);
1891 spin_unlock_irq(&ctx->completion_lock);
1892
1893 io_cqring_ev_posted(ctx);
1894 cs->nr = 0;
1895 }
1896
1897 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1898 struct io_comp_state *cs)
1899 {
1900 if (!cs) {
1901 io_cqring_add_event(req, res, cflags);
1902 io_put_req(req);
1903 } else {
1904 io_clean_op(req);
1905 req->result = res;
1906 req->compl.cflags = cflags;
1907 list_add_tail(&req->compl.list, &cs->list);
1908 if (++cs->nr >= 32)
1909 io_submit_flush_completions(cs);
1910 }
1911 }
1912
1913 static void io_req_complete(struct io_kiocb *req, long res)
1914 {
1915 __io_req_complete(req, res, 0, NULL);
1916 }
1917
1918 static inline bool io_is_fallback_req(struct io_kiocb *req)
1919 {
1920 return req == (struct io_kiocb *)
1921 ((unsigned long) req->ctx->fallback_req & ~1UL);
1922 }
1923
1924 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1925 {
1926 struct io_kiocb *req;
1927
1928 req = ctx->fallback_req;
1929 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1930 return req;
1931
1932 return NULL;
1933 }
1934
1935 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1936 struct io_submit_state *state)
1937 {
1938 if (!state->free_reqs) {
1939 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1940 size_t sz;
1941 int ret;
1942
1943 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1944 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1945
1946 /*
1947 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1948 * retry single alloc to be on the safe side.
1949 */
1950 if (unlikely(ret <= 0)) {
1951 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1952 if (!state->reqs[0])
1953 goto fallback;
1954 ret = 1;
1955 }
1956 state->free_reqs = ret;
1957 }
1958
1959 state->free_reqs--;
1960 return state->reqs[state->free_reqs];
1961 fallback:
1962 return io_get_fallback_req(ctx);
1963 }
1964
1965 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1966 bool fixed)
1967 {
1968 if (!fixed)
1969 fput(file);
1970 }
1971
1972 static void io_dismantle_req(struct io_kiocb *req)
1973 {
1974 io_clean_op(req);
1975
1976 if (req->async_data)
1977 kfree(req->async_data);
1978 if (req->file)
1979 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1980 if (req->fixed_file_refs)
1981 percpu_ref_put(req->fixed_file_refs);
1982 io_req_clean_work(req);
1983 }
1984
1985 static void __io_free_req(struct io_kiocb *req)
1986 {
1987 struct io_uring_task *tctx = req->task->io_uring;
1988 struct io_ring_ctx *ctx = req->ctx;
1989
1990 io_dismantle_req(req);
1991
1992 percpu_counter_dec(&tctx->inflight);
1993 if (atomic_read(&tctx->in_idle))
1994 wake_up(&tctx->wait);
1995 put_task_struct(req->task);
1996
1997 if (likely(!io_is_fallback_req(req)))
1998 kmem_cache_free(req_cachep, req);
1999 else
2000 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
2001 percpu_ref_put(&ctx->refs);
2002 }
2003
2004 static inline void io_remove_next_linked(struct io_kiocb *req)
2005 {
2006 struct io_kiocb *nxt = req->link;
2007
2008 req->link = nxt->link;
2009 nxt->link = NULL;
2010 }
2011
2012 static void io_kill_linked_timeout(struct io_kiocb *req)
2013 {
2014 struct io_ring_ctx *ctx = req->ctx;
2015 struct io_kiocb *link;
2016 bool cancelled = false;
2017 unsigned long flags;
2018
2019 spin_lock_irqsave(&ctx->completion_lock, flags);
2020 link = req->link;
2021
2022 /*
2023 * Can happen if a linked timeout fired and link had been like
2024 * req -> link t-out -> link t-out [-> ...]
2025 */
2026 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2027 struct io_timeout_data *io = link->async_data;
2028 int ret;
2029
2030 io_remove_next_linked(req);
2031 link->timeout.head = NULL;
2032 ret = hrtimer_try_to_cancel(&io->timer);
2033 if (ret != -1) {
2034 io_cqring_fill_event(link, -ECANCELED);
2035 io_commit_cqring(ctx);
2036 cancelled = true;
2037 }
2038 }
2039 req->flags &= ~REQ_F_LINK_TIMEOUT;
2040 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2041
2042 if (cancelled) {
2043 io_cqring_ev_posted(ctx);
2044 io_put_req(link);
2045 }
2046 }
2047
2048
2049 static void io_fail_links(struct io_kiocb *req)
2050 {
2051 struct io_kiocb *link, *nxt;
2052 struct io_ring_ctx *ctx = req->ctx;
2053 unsigned long flags;
2054
2055 spin_lock_irqsave(&ctx->completion_lock, flags);
2056 link = req->link;
2057 req->link = NULL;
2058
2059 while (link) {
2060 nxt = link->link;
2061 link->link = NULL;
2062
2063 trace_io_uring_fail_link(req, link);
2064 io_cqring_fill_event(link, -ECANCELED);
2065
2066 /*
2067 * It's ok to free under spinlock as they're not linked anymore,
2068 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2069 * work.fs->lock.
2070 */
2071 if (link->flags & REQ_F_WORK_INITIALIZED)
2072 io_put_req_deferred(link, 2);
2073 else
2074 io_double_put_req(link);
2075 link = nxt;
2076 }
2077 io_commit_cqring(ctx);
2078 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2079
2080 io_cqring_ev_posted(ctx);
2081 }
2082
2083 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2084 {
2085 if (req->flags & REQ_F_LINK_TIMEOUT)
2086 io_kill_linked_timeout(req);
2087
2088 /*
2089 * If LINK is set, we have dependent requests in this chain. If we
2090 * didn't fail this request, queue the first one up, moving any other
2091 * dependencies to the next request. In case of failure, fail the rest
2092 * of the chain.
2093 */
2094 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2095 struct io_kiocb *nxt = req->link;
2096
2097 req->link = NULL;
2098 return nxt;
2099 }
2100 io_fail_links(req);
2101 return NULL;
2102 }
2103
2104 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2105 {
2106 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2107 return NULL;
2108 return __io_req_find_next(req);
2109 }
2110
2111 static int io_req_task_work_add(struct io_kiocb *req)
2112 {
2113 struct task_struct *tsk = req->task;
2114 struct io_ring_ctx *ctx = req->ctx;
2115 enum task_work_notify_mode notify;
2116 int ret;
2117
2118 if (tsk->flags & PF_EXITING)
2119 return -ESRCH;
2120
2121 /*
2122 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2123 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2124 * processing task_work. There's no reliable way to tell if TWA_RESUME
2125 * will do the job.
2126 */
2127 notify = TWA_NONE;
2128 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2129 notify = TWA_SIGNAL;
2130
2131 ret = task_work_add(tsk, &req->task_work, notify);
2132 if (!ret)
2133 wake_up_process(tsk);
2134
2135 return ret;
2136 }
2137
2138 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2139 {
2140 struct io_ring_ctx *ctx = req->ctx;
2141
2142 spin_lock_irq(&ctx->completion_lock);
2143 io_cqring_fill_event(req, error);
2144 io_commit_cqring(ctx);
2145 spin_unlock_irq(&ctx->completion_lock);
2146
2147 io_cqring_ev_posted(ctx);
2148 req_set_fail_links(req);
2149 io_double_put_req(req);
2150 }
2151
2152 static void io_req_task_cancel(struct callback_head *cb)
2153 {
2154 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2155 struct io_ring_ctx *ctx = req->ctx;
2156
2157 __io_req_task_cancel(req, -ECANCELED);
2158 percpu_ref_put(&ctx->refs);
2159 }
2160
2161 static void __io_req_task_submit(struct io_kiocb *req)
2162 {
2163 struct io_ring_ctx *ctx = req->ctx;
2164
2165 mutex_lock(&ctx->uring_lock);
2166 if (!ctx->sqo_dead &&
2167 !__io_sq_thread_acquire_mm(ctx) &&
2168 !__io_sq_thread_acquire_files(ctx))
2169 __io_queue_sqe(req, NULL);
2170 else
2171 __io_req_task_cancel(req, -EFAULT);
2172 mutex_unlock(&ctx->uring_lock);
2173 }
2174
2175 static void io_req_task_submit(struct callback_head *cb)
2176 {
2177 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2178 struct io_ring_ctx *ctx = req->ctx;
2179
2180 __io_req_task_submit(req);
2181 percpu_ref_put(&ctx->refs);
2182 }
2183
2184 static void io_req_task_queue(struct io_kiocb *req)
2185 {
2186 int ret;
2187
2188 init_task_work(&req->task_work, io_req_task_submit);
2189 percpu_ref_get(&req->ctx->refs);
2190
2191 ret = io_req_task_work_add(req);
2192 if (unlikely(ret)) {
2193 struct task_struct *tsk;
2194
2195 init_task_work(&req->task_work, io_req_task_cancel);
2196 tsk = io_wq_get_task(req->ctx->io_wq);
2197 task_work_add(tsk, &req->task_work, TWA_NONE);
2198 wake_up_process(tsk);
2199 }
2200 }
2201
2202 static inline void io_queue_next(struct io_kiocb *req)
2203 {
2204 struct io_kiocb *nxt = io_req_find_next(req);
2205
2206 if (nxt)
2207 io_req_task_queue(nxt);
2208 }
2209
2210 static void io_free_req(struct io_kiocb *req)
2211 {
2212 io_queue_next(req);
2213 __io_free_req(req);
2214 }
2215
2216 struct req_batch {
2217 void *reqs[IO_IOPOLL_BATCH];
2218 int to_free;
2219
2220 struct task_struct *task;
2221 int task_refs;
2222 };
2223
2224 static inline void io_init_req_batch(struct req_batch *rb)
2225 {
2226 rb->to_free = 0;
2227 rb->task_refs = 0;
2228 rb->task = NULL;
2229 }
2230
2231 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2232 struct req_batch *rb)
2233 {
2234 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2235 percpu_ref_put_many(&ctx->refs, rb->to_free);
2236 rb->to_free = 0;
2237 }
2238
2239 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2240 struct req_batch *rb)
2241 {
2242 if (rb->to_free)
2243 __io_req_free_batch_flush(ctx, rb);
2244 if (rb->task) {
2245 struct io_uring_task *tctx = rb->task->io_uring;
2246
2247 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2248 put_task_struct_many(rb->task, rb->task_refs);
2249 rb->task = NULL;
2250 }
2251 }
2252
2253 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2254 {
2255 if (unlikely(io_is_fallback_req(req))) {
2256 io_free_req(req);
2257 return;
2258 }
2259 io_queue_next(req);
2260
2261 if (req->task != rb->task) {
2262 if (rb->task) {
2263 struct io_uring_task *tctx = rb->task->io_uring;
2264
2265 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2266 put_task_struct_many(rb->task, rb->task_refs);
2267 }
2268 rb->task = req->task;
2269 rb->task_refs = 0;
2270 }
2271 rb->task_refs++;
2272
2273 io_dismantle_req(req);
2274 rb->reqs[rb->to_free++] = req;
2275 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2276 __io_req_free_batch_flush(req->ctx, rb);
2277 }
2278
2279 /*
2280 * Drop reference to request, return next in chain (if there is one) if this
2281 * was the last reference to this request.
2282 */
2283 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2284 {
2285 struct io_kiocb *nxt = NULL;
2286
2287 if (refcount_dec_and_test(&req->refs)) {
2288 nxt = io_req_find_next(req);
2289 __io_free_req(req);
2290 }
2291 return nxt;
2292 }
2293
2294 static void io_put_req(struct io_kiocb *req)
2295 {
2296 if (refcount_dec_and_test(&req->refs))
2297 io_free_req(req);
2298 }
2299
2300 static void io_put_req_deferred_cb(struct callback_head *cb)
2301 {
2302 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2303
2304 io_free_req(req);
2305 }
2306
2307 static void io_free_req_deferred(struct io_kiocb *req)
2308 {
2309 int ret;
2310
2311 init_task_work(&req->task_work, io_put_req_deferred_cb);
2312 ret = io_req_task_work_add(req);
2313 if (unlikely(ret)) {
2314 struct task_struct *tsk;
2315
2316 tsk = io_wq_get_task(req->ctx->io_wq);
2317 task_work_add(tsk, &req->task_work, TWA_NONE);
2318 wake_up_process(tsk);
2319 }
2320 }
2321
2322 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2323 {
2324 if (refcount_sub_and_test(refs, &req->refs))
2325 io_free_req_deferred(req);
2326 }
2327
2328 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2329 {
2330 struct io_kiocb *nxt;
2331
2332 /*
2333 * A ref is owned by io-wq in which context we're. So, if that's the
2334 * last one, it's safe to steal next work. False negatives are Ok,
2335 * it just will be re-punted async in io_put_work()
2336 */
2337 if (refcount_read(&req->refs) != 1)
2338 return NULL;
2339
2340 nxt = io_req_find_next(req);
2341 return nxt ? &nxt->work : NULL;
2342 }
2343
2344 static void io_double_put_req(struct io_kiocb *req)
2345 {
2346 /* drop both submit and complete references */
2347 if (refcount_sub_and_test(2, &req->refs))
2348 io_free_req(req);
2349 }
2350
2351 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2352 {
2353 /* See comment at the top of this file */
2354 smp_rmb();
2355 return __io_cqring_events(ctx);
2356 }
2357
2358 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2359 {
2360 struct io_rings *rings = ctx->rings;
2361
2362 /* make sure SQ entry isn't read before tail */
2363 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2364 }
2365
2366 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2367 {
2368 unsigned int cflags;
2369
2370 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2371 cflags |= IORING_CQE_F_BUFFER;
2372 req->flags &= ~REQ_F_BUFFER_SELECTED;
2373 kfree(kbuf);
2374 return cflags;
2375 }
2376
2377 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2378 {
2379 struct io_buffer *kbuf;
2380
2381 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2382 return io_put_kbuf(req, kbuf);
2383 }
2384
2385 static inline bool io_run_task_work(void)
2386 {
2387 /*
2388 * Not safe to run on exiting task, and the task_work handling will
2389 * not add work to such a task.
2390 */
2391 if (unlikely(current->flags & PF_EXITING))
2392 return false;
2393 if (current->task_works) {
2394 __set_current_state(TASK_RUNNING);
2395 task_work_run();
2396 return true;
2397 }
2398
2399 return false;
2400 }
2401
2402 static void io_iopoll_queue(struct list_head *again)
2403 {
2404 struct io_kiocb *req;
2405
2406 do {
2407 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2408 list_del(&req->inflight_entry);
2409 __io_complete_rw(req, -EAGAIN, 0, NULL);
2410 } while (!list_empty(again));
2411 }
2412
2413 /*
2414 * Find and free completed poll iocbs
2415 */
2416 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2417 struct list_head *done)
2418 {
2419 struct req_batch rb;
2420 struct io_kiocb *req;
2421 LIST_HEAD(again);
2422
2423 /* order with ->result store in io_complete_rw_iopoll() */
2424 smp_rmb();
2425
2426 io_init_req_batch(&rb);
2427 while (!list_empty(done)) {
2428 int cflags = 0;
2429
2430 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2431 if (READ_ONCE(req->result) == -EAGAIN) {
2432 req->result = 0;
2433 req->iopoll_completed = 0;
2434 list_move_tail(&req->inflight_entry, &again);
2435 continue;
2436 }
2437 list_del(&req->inflight_entry);
2438
2439 if (req->flags & REQ_F_BUFFER_SELECTED)
2440 cflags = io_put_rw_kbuf(req);
2441
2442 __io_cqring_fill_event(req, req->result, cflags);
2443 (*nr_events)++;
2444
2445 if (refcount_dec_and_test(&req->refs))
2446 io_req_free_batch(&rb, req);
2447 }
2448
2449 io_commit_cqring(ctx);
2450 io_cqring_ev_posted_iopoll(ctx);
2451 io_req_free_batch_finish(ctx, &rb);
2452
2453 if (!list_empty(&again))
2454 io_iopoll_queue(&again);
2455 }
2456
2457 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2458 long min)
2459 {
2460 struct io_kiocb *req, *tmp;
2461 LIST_HEAD(done);
2462 bool spin;
2463 int ret;
2464
2465 /*
2466 * Only spin for completions if we don't have multiple devices hanging
2467 * off our complete list, and we're under the requested amount.
2468 */
2469 spin = !ctx->poll_multi_file && *nr_events < min;
2470
2471 ret = 0;
2472 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2473 struct kiocb *kiocb = &req->rw.kiocb;
2474
2475 /*
2476 * Move completed and retryable entries to our local lists.
2477 * If we find a request that requires polling, break out
2478 * and complete those lists first, if we have entries there.
2479 */
2480 if (READ_ONCE(req->iopoll_completed)) {
2481 list_move_tail(&req->inflight_entry, &done);
2482 continue;
2483 }
2484 if (!list_empty(&done))
2485 break;
2486
2487 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2488 if (ret < 0)
2489 break;
2490
2491 /* iopoll may have completed current req */
2492 if (READ_ONCE(req->iopoll_completed))
2493 list_move_tail(&req->inflight_entry, &done);
2494
2495 if (ret && spin)
2496 spin = false;
2497 ret = 0;
2498 }
2499
2500 if (!list_empty(&done))
2501 io_iopoll_complete(ctx, nr_events, &done);
2502
2503 return ret;
2504 }
2505
2506 /*
2507 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2508 * non-spinning poll check - we'll still enter the driver poll loop, but only
2509 * as a non-spinning completion check.
2510 */
2511 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2512 long min)
2513 {
2514 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2515 int ret;
2516
2517 ret = io_do_iopoll(ctx, nr_events, min);
2518 if (ret < 0)
2519 return ret;
2520 if (*nr_events >= min)
2521 return 0;
2522 }
2523
2524 return 1;
2525 }
2526
2527 /*
2528 * We can't just wait for polled events to come to us, we have to actively
2529 * find and complete them.
2530 */
2531 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2532 {
2533 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2534 return;
2535
2536 mutex_lock(&ctx->uring_lock);
2537 while (!list_empty(&ctx->iopoll_list)) {
2538 unsigned int nr_events = 0;
2539
2540 io_do_iopoll(ctx, &nr_events, 0);
2541
2542 /* let it sleep and repeat later if can't complete a request */
2543 if (nr_events == 0)
2544 break;
2545 /*
2546 * Ensure we allow local-to-the-cpu processing to take place,
2547 * in this case we need to ensure that we reap all events.
2548 * Also let task_work, etc. to progress by releasing the mutex
2549 */
2550 if (need_resched()) {
2551 mutex_unlock(&ctx->uring_lock);
2552 cond_resched();
2553 mutex_lock(&ctx->uring_lock);
2554 }
2555 }
2556 mutex_unlock(&ctx->uring_lock);
2557 }
2558
2559 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2560 {
2561 unsigned int nr_events = 0;
2562 int iters = 0, ret = 0;
2563
2564 /*
2565 * We disallow the app entering submit/complete with polling, but we
2566 * still need to lock the ring to prevent racing with polled issue
2567 * that got punted to a workqueue.
2568 */
2569 mutex_lock(&ctx->uring_lock);
2570 do {
2571 /*
2572 * Don't enter poll loop if we already have events pending.
2573 * If we do, we can potentially be spinning for commands that
2574 * already triggered a CQE (eg in error).
2575 */
2576 if (test_bit(0, &ctx->cq_check_overflow))
2577 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2578 if (io_cqring_events(ctx))
2579 break;
2580
2581 /*
2582 * If a submit got punted to a workqueue, we can have the
2583 * application entering polling for a command before it gets
2584 * issued. That app will hold the uring_lock for the duration
2585 * of the poll right here, so we need to take a breather every
2586 * now and then to ensure that the issue has a chance to add
2587 * the poll to the issued list. Otherwise we can spin here
2588 * forever, while the workqueue is stuck trying to acquire the
2589 * very same mutex.
2590 */
2591 if (!(++iters & 7)) {
2592 mutex_unlock(&ctx->uring_lock);
2593 io_run_task_work();
2594 mutex_lock(&ctx->uring_lock);
2595 }
2596
2597 ret = io_iopoll_getevents(ctx, &nr_events, min);
2598 if (ret <= 0)
2599 break;
2600 ret = 0;
2601 } while (min && !nr_events && !need_resched());
2602
2603 mutex_unlock(&ctx->uring_lock);
2604 return ret;
2605 }
2606
2607 static void kiocb_end_write(struct io_kiocb *req)
2608 {
2609 /*
2610 * Tell lockdep we inherited freeze protection from submission
2611 * thread.
2612 */
2613 if (req->flags & REQ_F_ISREG) {
2614 struct inode *inode = file_inode(req->file);
2615
2616 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2617 }
2618 file_end_write(req->file);
2619 }
2620
2621 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2622 struct io_comp_state *cs)
2623 {
2624 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2625 int cflags = 0;
2626
2627 if (kiocb->ki_flags & IOCB_WRITE)
2628 kiocb_end_write(req);
2629
2630 if (res != req->result)
2631 req_set_fail_links(req);
2632 if (req->flags & REQ_F_BUFFER_SELECTED)
2633 cflags = io_put_rw_kbuf(req);
2634 __io_req_complete(req, res, cflags, cs);
2635 }
2636
2637 #ifdef CONFIG_BLOCK
2638 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2639 {
2640 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2641 ssize_t ret = -ECANCELED;
2642 struct iov_iter iter;
2643 int rw;
2644
2645 if (error) {
2646 ret = error;
2647 goto end_req;
2648 }
2649
2650 switch (req->opcode) {
2651 case IORING_OP_READV:
2652 case IORING_OP_READ_FIXED:
2653 case IORING_OP_READ:
2654 rw = READ;
2655 break;
2656 case IORING_OP_WRITEV:
2657 case IORING_OP_WRITE_FIXED:
2658 case IORING_OP_WRITE:
2659 rw = WRITE;
2660 break;
2661 default:
2662 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2663 req->opcode);
2664 goto end_req;
2665 }
2666
2667 if (!req->async_data) {
2668 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2669 if (ret < 0)
2670 goto end_req;
2671 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2672 if (!ret)
2673 return true;
2674 kfree(iovec);
2675 } else {
2676 return true;
2677 }
2678 end_req:
2679 req_set_fail_links(req);
2680 return false;
2681 }
2682 #endif
2683
2684 static bool io_rw_reissue(struct io_kiocb *req, long res)
2685 {
2686 #ifdef CONFIG_BLOCK
2687 umode_t mode = file_inode(req->file)->i_mode;
2688 int ret;
2689
2690 if (!S_ISBLK(mode) && !S_ISREG(mode))
2691 return false;
2692 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2693 return false;
2694
2695 lockdep_assert_held(&req->ctx->uring_lock);
2696
2697 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2698
2699 if (io_resubmit_prep(req, ret)) {
2700 refcount_inc(&req->refs);
2701 io_queue_async_work(req);
2702 return true;
2703 }
2704
2705 #endif
2706 return false;
2707 }
2708
2709 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2710 struct io_comp_state *cs)
2711 {
2712 if (!io_rw_reissue(req, res))
2713 io_complete_rw_common(&req->rw.kiocb, res, cs);
2714 }
2715
2716 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2717 {
2718 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2719
2720 __io_complete_rw(req, res, res2, NULL);
2721 }
2722
2723 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2724 {
2725 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2726
2727 if (kiocb->ki_flags & IOCB_WRITE)
2728 kiocb_end_write(req);
2729
2730 if (res != -EAGAIN && res != req->result)
2731 req_set_fail_links(req);
2732
2733 WRITE_ONCE(req->result, res);
2734 /* order with io_poll_complete() checking ->result */
2735 smp_wmb();
2736 WRITE_ONCE(req->iopoll_completed, 1);
2737 }
2738
2739 /*
2740 * After the iocb has been issued, it's safe to be found on the poll list.
2741 * Adding the kiocb to the list AFTER submission ensures that we don't
2742 * find it from a io_iopoll_getevents() thread before the issuer is done
2743 * accessing the kiocb cookie.
2744 */
2745 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2746 {
2747 struct io_ring_ctx *ctx = req->ctx;
2748
2749 /*
2750 * Track whether we have multiple files in our lists. This will impact
2751 * how we do polling eventually, not spinning if we're on potentially
2752 * different devices.
2753 */
2754 if (list_empty(&ctx->iopoll_list)) {
2755 ctx->poll_multi_file = false;
2756 } else if (!ctx->poll_multi_file) {
2757 struct io_kiocb *list_req;
2758
2759 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2760 inflight_entry);
2761 if (list_req->file != req->file)
2762 ctx->poll_multi_file = true;
2763 }
2764
2765 /*
2766 * For fast devices, IO may have already completed. If it has, add
2767 * it to the front so we find it first.
2768 */
2769 if (READ_ONCE(req->iopoll_completed))
2770 list_add(&req->inflight_entry, &ctx->iopoll_list);
2771 else
2772 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2773
2774 /*
2775 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2776 * task context or in io worker task context. If current task context is
2777 * sq thread, we don't need to check whether should wake up sq thread.
2778 */
2779 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2780 wq_has_sleeper(&ctx->sq_data->wait))
2781 wake_up(&ctx->sq_data->wait);
2782 }
2783
2784 static inline void __io_state_file_put(struct io_submit_state *state)
2785 {
2786 fput_many(state->file, state->file_refs);
2787 state->file_refs = 0;
2788 }
2789
2790 static inline void io_state_file_put(struct io_submit_state *state)
2791 {
2792 if (state->file_refs)
2793 __io_state_file_put(state);
2794 }
2795
2796 /*
2797 * Get as many references to a file as we have IOs left in this submission,
2798 * assuming most submissions are for one file, or at least that each file
2799 * has more than one submission.
2800 */
2801 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2802 {
2803 if (!state)
2804 return fget(fd);
2805
2806 if (state->file_refs) {
2807 if (state->fd == fd) {
2808 state->file_refs--;
2809 return state->file;
2810 }
2811 __io_state_file_put(state);
2812 }
2813 state->file = fget_many(fd, state->ios_left);
2814 if (unlikely(!state->file))
2815 return NULL;
2816
2817 state->fd = fd;
2818 state->file_refs = state->ios_left - 1;
2819 return state->file;
2820 }
2821
2822 static bool io_bdev_nowait(struct block_device *bdev)
2823 {
2824 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2825 }
2826
2827 /*
2828 * If we tracked the file through the SCM inflight mechanism, we could support
2829 * any file. For now, just ensure that anything potentially problematic is done
2830 * inline.
2831 */
2832 static bool io_file_supports_async(struct file *file, int rw)
2833 {
2834 umode_t mode = file_inode(file)->i_mode;
2835
2836 if (S_ISBLK(mode)) {
2837 if (IS_ENABLED(CONFIG_BLOCK) &&
2838 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2839 return true;
2840 return false;
2841 }
2842 if (S_ISCHR(mode) || S_ISSOCK(mode))
2843 return true;
2844 if (S_ISREG(mode)) {
2845 if (IS_ENABLED(CONFIG_BLOCK) &&
2846 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2847 file->f_op != &io_uring_fops)
2848 return true;
2849 return false;
2850 }
2851
2852 /* any ->read/write should understand O_NONBLOCK */
2853 if (file->f_flags & O_NONBLOCK)
2854 return true;
2855
2856 if (!(file->f_mode & FMODE_NOWAIT))
2857 return false;
2858
2859 if (rw == READ)
2860 return file->f_op->read_iter != NULL;
2861
2862 return file->f_op->write_iter != NULL;
2863 }
2864
2865 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2866 {
2867 struct io_ring_ctx *ctx = req->ctx;
2868 struct kiocb *kiocb = &req->rw.kiocb;
2869 unsigned ioprio;
2870 int ret;
2871
2872 if (S_ISREG(file_inode(req->file)->i_mode))
2873 req->flags |= REQ_F_ISREG;
2874
2875 kiocb->ki_pos = READ_ONCE(sqe->off);
2876 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2877 req->flags |= REQ_F_CUR_POS;
2878 kiocb->ki_pos = req->file->f_pos;
2879 }
2880 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2881 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2882 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2883 if (unlikely(ret))
2884 return ret;
2885
2886 ioprio = READ_ONCE(sqe->ioprio);
2887 if (ioprio) {
2888 ret = ioprio_check_cap(ioprio);
2889 if (ret)
2890 return ret;
2891
2892 kiocb->ki_ioprio = ioprio;
2893 } else
2894 kiocb->ki_ioprio = get_current_ioprio();
2895
2896 /* don't allow async punt if RWF_NOWAIT was requested */
2897 if (kiocb->ki_flags & IOCB_NOWAIT)
2898 req->flags |= REQ_F_NOWAIT;
2899
2900 if (ctx->flags & IORING_SETUP_IOPOLL) {
2901 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2902 !kiocb->ki_filp->f_op->iopoll)
2903 return -EOPNOTSUPP;
2904
2905 kiocb->ki_flags |= IOCB_HIPRI;
2906 kiocb->ki_complete = io_complete_rw_iopoll;
2907 req->iopoll_completed = 0;
2908 } else {
2909 if (kiocb->ki_flags & IOCB_HIPRI)
2910 return -EINVAL;
2911 kiocb->ki_complete = io_complete_rw;
2912 }
2913
2914 req->rw.addr = READ_ONCE(sqe->addr);
2915 req->rw.len = READ_ONCE(sqe->len);
2916 req->buf_index = READ_ONCE(sqe->buf_index);
2917 return 0;
2918 }
2919
2920 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2921 {
2922 switch (ret) {
2923 case -EIOCBQUEUED:
2924 break;
2925 case -ERESTARTSYS:
2926 case -ERESTARTNOINTR:
2927 case -ERESTARTNOHAND:
2928 case -ERESTART_RESTARTBLOCK:
2929 /*
2930 * We can't just restart the syscall, since previously
2931 * submitted sqes may already be in progress. Just fail this
2932 * IO with EINTR.
2933 */
2934 ret = -EINTR;
2935 fallthrough;
2936 default:
2937 kiocb->ki_complete(kiocb, ret, 0);
2938 }
2939 }
2940
2941 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2942 struct io_comp_state *cs)
2943 {
2944 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2945 struct io_async_rw *io = req->async_data;
2946
2947 /* add previously done IO, if any */
2948 if (io && io->bytes_done > 0) {
2949 if (ret < 0)
2950 ret = io->bytes_done;
2951 else
2952 ret += io->bytes_done;
2953 }
2954
2955 if (req->flags & REQ_F_CUR_POS)
2956 req->file->f_pos = kiocb->ki_pos;
2957 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2958 __io_complete_rw(req, ret, 0, cs);
2959 else
2960 io_rw_done(kiocb, ret);
2961 }
2962
2963 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2964 struct iov_iter *iter)
2965 {
2966 struct io_ring_ctx *ctx = req->ctx;
2967 size_t len = req->rw.len;
2968 struct io_mapped_ubuf *imu;
2969 u16 index, buf_index = req->buf_index;
2970 size_t offset;
2971 u64 buf_addr;
2972
2973 if (unlikely(buf_index >= ctx->nr_user_bufs))
2974 return -EFAULT;
2975 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2976 imu = &ctx->user_bufs[index];
2977 buf_addr = req->rw.addr;
2978
2979 /* overflow */
2980 if (buf_addr + len < buf_addr)
2981 return -EFAULT;
2982 /* not inside the mapped region */
2983 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2984 return -EFAULT;
2985
2986 /*
2987 * May not be a start of buffer, set size appropriately
2988 * and advance us to the beginning.
2989 */
2990 offset = buf_addr - imu->ubuf;
2991 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2992
2993 if (offset) {
2994 /*
2995 * Don't use iov_iter_advance() here, as it's really slow for
2996 * using the latter parts of a big fixed buffer - it iterates
2997 * over each segment manually. We can cheat a bit here, because
2998 * we know that:
2999 *
3000 * 1) it's a BVEC iter, we set it up
3001 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3002 * first and last bvec
3003 *
3004 * So just find our index, and adjust the iterator afterwards.
3005 * If the offset is within the first bvec (or the whole first
3006 * bvec, just use iov_iter_advance(). This makes it easier
3007 * since we can just skip the first segment, which may not
3008 * be PAGE_SIZE aligned.
3009 */
3010 const struct bio_vec *bvec = imu->bvec;
3011
3012 if (offset <= bvec->bv_len) {
3013 iov_iter_advance(iter, offset);
3014 } else {
3015 unsigned long seg_skip;
3016
3017 /* skip first vec */
3018 offset -= bvec->bv_len;
3019 seg_skip = 1 + (offset >> PAGE_SHIFT);
3020
3021 iter->bvec = bvec + seg_skip;
3022 iter->nr_segs -= seg_skip;
3023 iter->count -= bvec->bv_len + offset;
3024 iter->iov_offset = offset & ~PAGE_MASK;
3025 }
3026 }
3027
3028 return len;
3029 }
3030
3031 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3032 {
3033 if (needs_lock)
3034 mutex_unlock(&ctx->uring_lock);
3035 }
3036
3037 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3038 {
3039 /*
3040 * "Normal" inline submissions always hold the uring_lock, since we
3041 * grab it from the system call. Same is true for the SQPOLL offload.
3042 * The only exception is when we've detached the request and issue it
3043 * from an async worker thread, grab the lock for that case.
3044 */
3045 if (needs_lock)
3046 mutex_lock(&ctx->uring_lock);
3047 }
3048
3049 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3050 int bgid, struct io_buffer *kbuf,
3051 bool needs_lock)
3052 {
3053 struct io_buffer *head;
3054
3055 if (req->flags & REQ_F_BUFFER_SELECTED)
3056 return kbuf;
3057
3058 io_ring_submit_lock(req->ctx, needs_lock);
3059
3060 lockdep_assert_held(&req->ctx->uring_lock);
3061
3062 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3063 if (head) {
3064 if (!list_empty(&head->list)) {
3065 kbuf = list_last_entry(&head->list, struct io_buffer,
3066 list);
3067 list_del(&kbuf->list);
3068 } else {
3069 kbuf = head;
3070 idr_remove(&req->ctx->io_buffer_idr, bgid);
3071 }
3072 if (*len > kbuf->len)
3073 *len = kbuf->len;
3074 } else {
3075 kbuf = ERR_PTR(-ENOBUFS);
3076 }
3077
3078 io_ring_submit_unlock(req->ctx, needs_lock);
3079
3080 return kbuf;
3081 }
3082
3083 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3084 bool needs_lock)
3085 {
3086 struct io_buffer *kbuf;
3087 u16 bgid;
3088
3089 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3090 bgid = req->buf_index;
3091 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3092 if (IS_ERR(kbuf))
3093 return kbuf;
3094 req->rw.addr = (u64) (unsigned long) kbuf;
3095 req->flags |= REQ_F_BUFFER_SELECTED;
3096 return u64_to_user_ptr(kbuf->addr);
3097 }
3098
3099 #ifdef CONFIG_COMPAT
3100 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3101 bool needs_lock)
3102 {
3103 struct compat_iovec __user *uiov;
3104 compat_ssize_t clen;
3105 void __user *buf;
3106 ssize_t len;
3107
3108 uiov = u64_to_user_ptr(req->rw.addr);
3109 if (!access_ok(uiov, sizeof(*uiov)))
3110 return -EFAULT;
3111 if (__get_user(clen, &uiov->iov_len))
3112 return -EFAULT;
3113 if (clen < 0)
3114 return -EINVAL;
3115
3116 len = clen;
3117 buf = io_rw_buffer_select(req, &len, needs_lock);
3118 if (IS_ERR(buf))
3119 return PTR_ERR(buf);
3120 iov[0].iov_base = buf;
3121 iov[0].iov_len = (compat_size_t) len;
3122 return 0;
3123 }
3124 #endif
3125
3126 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3127 bool needs_lock)
3128 {
3129 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3130 void __user *buf;
3131 ssize_t len;
3132
3133 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3134 return -EFAULT;
3135
3136 len = iov[0].iov_len;
3137 if (len < 0)
3138 return -EINVAL;
3139 buf = io_rw_buffer_select(req, &len, needs_lock);
3140 if (IS_ERR(buf))
3141 return PTR_ERR(buf);
3142 iov[0].iov_base = buf;
3143 iov[0].iov_len = len;
3144 return 0;
3145 }
3146
3147 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3148 bool needs_lock)
3149 {
3150 if (req->flags & REQ_F_BUFFER_SELECTED) {
3151 struct io_buffer *kbuf;
3152
3153 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3154 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3155 iov[0].iov_len = kbuf->len;
3156 return 0;
3157 }
3158 if (req->rw.len != 1)
3159 return -EINVAL;
3160
3161 #ifdef CONFIG_COMPAT
3162 if (req->ctx->compat)
3163 return io_compat_import(req, iov, needs_lock);
3164 #endif
3165
3166 return __io_iov_buffer_select(req, iov, needs_lock);
3167 }
3168
3169 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3170 struct iovec **iovec, struct iov_iter *iter,
3171 bool needs_lock)
3172 {
3173 void __user *buf = u64_to_user_ptr(req->rw.addr);
3174 size_t sqe_len = req->rw.len;
3175 ssize_t ret;
3176 u8 opcode;
3177
3178 opcode = req->opcode;
3179 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3180 *iovec = NULL;
3181 return io_import_fixed(req, rw, iter);
3182 }
3183
3184 /* buffer index only valid with fixed read/write, or buffer select */
3185 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3186 return -EINVAL;
3187
3188 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3189 if (req->flags & REQ_F_BUFFER_SELECT) {
3190 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3191 if (IS_ERR(buf))
3192 return PTR_ERR(buf);
3193 req->rw.len = sqe_len;
3194 }
3195
3196 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3197 *iovec = NULL;
3198 return ret;
3199 }
3200
3201 if (req->flags & REQ_F_BUFFER_SELECT) {
3202 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3203 if (!ret) {
3204 ret = (*iovec)->iov_len;
3205 iov_iter_init(iter, rw, *iovec, 1, ret);
3206 }
3207 *iovec = NULL;
3208 return ret;
3209 }
3210
3211 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3212 req->ctx->compat);
3213 }
3214
3215 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3216 {
3217 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3218 }
3219
3220 /*
3221 * For files that don't have ->read_iter() and ->write_iter(), handle them
3222 * by looping over ->read() or ->write() manually.
3223 */
3224 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3225 {
3226 struct kiocb *kiocb = &req->rw.kiocb;
3227 struct file *file = req->file;
3228 ssize_t ret = 0;
3229
3230 /*
3231 * Don't support polled IO through this interface, and we can't
3232 * support non-blocking either. For the latter, this just causes
3233 * the kiocb to be handled from an async context.
3234 */
3235 if (kiocb->ki_flags & IOCB_HIPRI)
3236 return -EOPNOTSUPP;
3237 if (kiocb->ki_flags & IOCB_NOWAIT)
3238 return -EAGAIN;
3239
3240 while (iov_iter_count(iter)) {
3241 struct iovec iovec;
3242 ssize_t nr;
3243
3244 if (!iov_iter_is_bvec(iter)) {
3245 iovec = iov_iter_iovec(iter);
3246 } else {
3247 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3248 iovec.iov_len = req->rw.len;
3249 }
3250
3251 if (rw == READ) {
3252 nr = file->f_op->read(file, iovec.iov_base,
3253 iovec.iov_len, io_kiocb_ppos(kiocb));
3254 } else {
3255 nr = file->f_op->write(file, iovec.iov_base,
3256 iovec.iov_len, io_kiocb_ppos(kiocb));
3257 }
3258
3259 if (nr < 0) {
3260 if (!ret)
3261 ret = nr;
3262 break;
3263 }
3264 ret += nr;
3265 if (nr != iovec.iov_len)
3266 break;
3267 req->rw.len -= nr;
3268 req->rw.addr += nr;
3269 iov_iter_advance(iter, nr);
3270 }
3271
3272 return ret;
3273 }
3274
3275 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3276 const struct iovec *fast_iov, struct iov_iter *iter)
3277 {
3278 struct io_async_rw *rw = req->async_data;
3279
3280 memcpy(&rw->iter, iter, sizeof(*iter));
3281 rw->free_iovec = iovec;
3282 rw->bytes_done = 0;
3283 /* can only be fixed buffers, no need to do anything */
3284 if (iov_iter_is_bvec(iter))
3285 return;
3286 if (!iovec) {
3287 unsigned iov_off = 0;
3288
3289 rw->iter.iov = rw->fast_iov;
3290 if (iter->iov != fast_iov) {
3291 iov_off = iter->iov - fast_iov;
3292 rw->iter.iov += iov_off;
3293 }
3294 if (rw->fast_iov != fast_iov)
3295 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3296 sizeof(struct iovec) * iter->nr_segs);
3297 } else {
3298 req->flags |= REQ_F_NEED_CLEANUP;
3299 }
3300 }
3301
3302 static inline int __io_alloc_async_data(struct io_kiocb *req)
3303 {
3304 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3305 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3306 return req->async_data == NULL;
3307 }
3308
3309 static int io_alloc_async_data(struct io_kiocb *req)
3310 {
3311 if (!io_op_defs[req->opcode].needs_async_data)
3312 return 0;
3313
3314 return __io_alloc_async_data(req);
3315 }
3316
3317 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3318 const struct iovec *fast_iov,
3319 struct iov_iter *iter, bool force)
3320 {
3321 if (!force && !io_op_defs[req->opcode].needs_async_data)
3322 return 0;
3323 if (!req->async_data) {
3324 if (__io_alloc_async_data(req))
3325 return -ENOMEM;
3326
3327 io_req_map_rw(req, iovec, fast_iov, iter);
3328 }
3329 return 0;
3330 }
3331
3332 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3333 {
3334 struct io_async_rw *iorw = req->async_data;
3335 struct iovec *iov = iorw->fast_iov;
3336 ssize_t ret;
3337
3338 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3339 if (unlikely(ret < 0))
3340 return ret;
3341
3342 iorw->bytes_done = 0;
3343 iorw->free_iovec = iov;
3344 if (iov)
3345 req->flags |= REQ_F_NEED_CLEANUP;
3346 return 0;
3347 }
3348
3349 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3350 {
3351 ssize_t ret;
3352
3353 ret = io_prep_rw(req, sqe);
3354 if (ret)
3355 return ret;
3356
3357 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3358 return -EBADF;
3359
3360 /* either don't need iovec imported or already have it */
3361 if (!req->async_data)
3362 return 0;
3363 return io_rw_prep_async(req, READ);
3364 }
3365
3366 /*
3367 * This is our waitqueue callback handler, registered through lock_page_async()
3368 * when we initially tried to do the IO with the iocb armed our waitqueue.
3369 * This gets called when the page is unlocked, and we generally expect that to
3370 * happen when the page IO is completed and the page is now uptodate. This will
3371 * queue a task_work based retry of the operation, attempting to copy the data
3372 * again. If the latter fails because the page was NOT uptodate, then we will
3373 * do a thread based blocking retry of the operation. That's the unexpected
3374 * slow path.
3375 */
3376 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3377 int sync, void *arg)
3378 {
3379 struct wait_page_queue *wpq;
3380 struct io_kiocb *req = wait->private;
3381 struct wait_page_key *key = arg;
3382 int ret;
3383
3384 wpq = container_of(wait, struct wait_page_queue, wait);
3385
3386 if (!wake_page_match(wpq, key))
3387 return 0;
3388
3389 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3390 list_del_init(&wait->entry);
3391
3392 init_task_work(&req->task_work, io_req_task_submit);
3393 percpu_ref_get(&req->ctx->refs);
3394
3395 /* submit ref gets dropped, acquire a new one */
3396 refcount_inc(&req->refs);
3397 ret = io_req_task_work_add(req);
3398 if (unlikely(ret)) {
3399 struct task_struct *tsk;
3400
3401 /* queue just for cancelation */
3402 init_task_work(&req->task_work, io_req_task_cancel);
3403 tsk = io_wq_get_task(req->ctx->io_wq);
3404 task_work_add(tsk, &req->task_work, TWA_NONE);
3405 wake_up_process(tsk);
3406 }
3407 return 1;
3408 }
3409
3410 /*
3411 * This controls whether a given IO request should be armed for async page
3412 * based retry. If we return false here, the request is handed to the async
3413 * worker threads for retry. If we're doing buffered reads on a regular file,
3414 * we prepare a private wait_page_queue entry and retry the operation. This
3415 * will either succeed because the page is now uptodate and unlocked, or it
3416 * will register a callback when the page is unlocked at IO completion. Through
3417 * that callback, io_uring uses task_work to setup a retry of the operation.
3418 * That retry will attempt the buffered read again. The retry will generally
3419 * succeed, or in rare cases where it fails, we then fall back to using the
3420 * async worker threads for a blocking retry.
3421 */
3422 static bool io_rw_should_retry(struct io_kiocb *req)
3423 {
3424 struct io_async_rw *rw = req->async_data;
3425 struct wait_page_queue *wait = &rw->wpq;
3426 struct kiocb *kiocb = &req->rw.kiocb;
3427
3428 /* never retry for NOWAIT, we just complete with -EAGAIN */
3429 if (req->flags & REQ_F_NOWAIT)
3430 return false;
3431
3432 /* Only for buffered IO */
3433 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3434 return false;
3435
3436 /*
3437 * just use poll if we can, and don't attempt if the fs doesn't
3438 * support callback based unlocks
3439 */
3440 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3441 return false;
3442
3443 wait->wait.func = io_async_buf_func;
3444 wait->wait.private = req;
3445 wait->wait.flags = 0;
3446 INIT_LIST_HEAD(&wait->wait.entry);
3447 kiocb->ki_flags |= IOCB_WAITQ;
3448 kiocb->ki_flags &= ~IOCB_NOWAIT;
3449 kiocb->ki_waitq = wait;
3450 return true;
3451 }
3452
3453 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3454 {
3455 if (req->file->f_op->read_iter)
3456 return call_read_iter(req->file, &req->rw.kiocb, iter);
3457 else if (req->file->f_op->read)
3458 return loop_rw_iter(READ, req, iter);
3459 else
3460 return -EINVAL;
3461 }
3462
3463 static int io_read(struct io_kiocb *req, bool force_nonblock,
3464 struct io_comp_state *cs)
3465 {
3466 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3467 struct kiocb *kiocb = &req->rw.kiocb;
3468 struct iov_iter __iter, *iter = &__iter;
3469 struct io_async_rw *rw = req->async_data;
3470 ssize_t io_size, ret, ret2;
3471 bool no_async;
3472
3473 if (rw) {
3474 iter = &rw->iter;
3475 iovec = NULL;
3476 } else {
3477 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3478 if (ret < 0)
3479 return ret;
3480 }
3481 io_size = iov_iter_count(iter);
3482 req->result = io_size;
3483 ret = 0;
3484
3485 /* Ensure we clear previously set non-block flag */
3486 if (!force_nonblock)
3487 kiocb->ki_flags &= ~IOCB_NOWAIT;
3488 else
3489 kiocb->ki_flags |= IOCB_NOWAIT;
3490
3491
3492 /* If the file doesn't support async, just async punt */
3493 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3494 if (no_async)
3495 goto copy_iov;
3496
3497 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3498 if (unlikely(ret))
3499 goto out_free;
3500
3501 ret = io_iter_do_read(req, iter);
3502
3503 if (!ret) {
3504 goto done;
3505 } else if (ret == -EIOCBQUEUED) {
3506 ret = 0;
3507 goto out_free;
3508 } else if (ret == -EAGAIN) {
3509 /* IOPOLL retry should happen for io-wq threads */
3510 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3511 goto done;
3512 /* no retry on NONBLOCK marked file */
3513 if (req->file->f_flags & O_NONBLOCK)
3514 goto done;
3515 /* some cases will consume bytes even on error returns */
3516 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3517 ret = 0;
3518 goto copy_iov;
3519 } else if (ret < 0) {
3520 /* make sure -ERESTARTSYS -> -EINTR is done */
3521 goto done;
3522 }
3523
3524 /* read it all, or we did blocking attempt. no retry. */
3525 if (!iov_iter_count(iter) || !force_nonblock ||
3526 (req->file->f_flags & O_NONBLOCK))
3527 goto done;
3528
3529 io_size -= ret;
3530 copy_iov:
3531 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3532 if (ret2) {
3533 ret = ret2;
3534 goto out_free;
3535 }
3536 if (no_async)
3537 return -EAGAIN;
3538 rw = req->async_data;
3539 /* it's copied and will be cleaned with ->io */
3540 iovec = NULL;
3541 /* now use our persistent iterator, if we aren't already */
3542 iter = &rw->iter;
3543 retry:
3544 rw->bytes_done += ret;
3545 /* if we can retry, do so with the callbacks armed */
3546 if (!io_rw_should_retry(req)) {
3547 kiocb->ki_flags &= ~IOCB_WAITQ;
3548 return -EAGAIN;
3549 }
3550
3551 /*
3552 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3553 * get -EIOCBQUEUED, then we'll get a notification when the desired
3554 * page gets unlocked. We can also get a partial read here, and if we
3555 * do, then just retry at the new offset.
3556 */
3557 ret = io_iter_do_read(req, iter);
3558 if (ret == -EIOCBQUEUED) {
3559 ret = 0;
3560 goto out_free;
3561 } else if (ret > 0 && ret < io_size) {
3562 /* we got some bytes, but not all. retry. */
3563 goto retry;
3564 }
3565 done:
3566 kiocb_done(kiocb, ret, cs);
3567 ret = 0;
3568 out_free:
3569 /* it's reportedly faster than delegating the null check to kfree() */
3570 if (iovec)
3571 kfree(iovec);
3572 return ret;
3573 }
3574
3575 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3576 {
3577 ssize_t ret;
3578
3579 ret = io_prep_rw(req, sqe);
3580 if (ret)
3581 return ret;
3582
3583 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3584 return -EBADF;
3585
3586 /* either don't need iovec imported or already have it */
3587 if (!req->async_data)
3588 return 0;
3589 return io_rw_prep_async(req, WRITE);
3590 }
3591
3592 static int io_write(struct io_kiocb *req, bool force_nonblock,
3593 struct io_comp_state *cs)
3594 {
3595 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3596 struct kiocb *kiocb = &req->rw.kiocb;
3597 struct iov_iter __iter, *iter = &__iter;
3598 struct io_async_rw *rw = req->async_data;
3599 ssize_t ret, ret2, io_size;
3600
3601 if (rw) {
3602 iter = &rw->iter;
3603 iovec = NULL;
3604 } else {
3605 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3606 if (ret < 0)
3607 return ret;
3608 }
3609 io_size = iov_iter_count(iter);
3610 req->result = io_size;
3611
3612 /* Ensure we clear previously set non-block flag */
3613 if (!force_nonblock)
3614 kiocb->ki_flags &= ~IOCB_NOWAIT;
3615 else
3616 kiocb->ki_flags |= IOCB_NOWAIT;
3617
3618 /* If the file doesn't support async, just async punt */
3619 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3620 goto copy_iov;
3621
3622 /* file path doesn't support NOWAIT for non-direct_IO */
3623 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3624 (req->flags & REQ_F_ISREG))
3625 goto copy_iov;
3626
3627 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3628 if (unlikely(ret))
3629 goto out_free;
3630
3631 /*
3632 * Open-code file_start_write here to grab freeze protection,
3633 * which will be released by another thread in
3634 * io_complete_rw(). Fool lockdep by telling it the lock got
3635 * released so that it doesn't complain about the held lock when
3636 * we return to userspace.
3637 */
3638 if (req->flags & REQ_F_ISREG) {
3639 sb_start_write(file_inode(req->file)->i_sb);
3640 __sb_writers_release(file_inode(req->file)->i_sb,
3641 SB_FREEZE_WRITE);
3642 }
3643 kiocb->ki_flags |= IOCB_WRITE;
3644
3645 if (req->file->f_op->write_iter)
3646 ret2 = call_write_iter(req->file, kiocb, iter);
3647 else if (req->file->f_op->write)
3648 ret2 = loop_rw_iter(WRITE, req, iter);
3649 else
3650 ret2 = -EINVAL;
3651
3652 /*
3653 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3654 * retry them without IOCB_NOWAIT.
3655 */
3656 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3657 ret2 = -EAGAIN;
3658 /* no retry on NONBLOCK marked file */
3659 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3660 goto done;
3661 if (!force_nonblock || ret2 != -EAGAIN) {
3662 /* IOPOLL retry should happen for io-wq threads */
3663 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3664 goto copy_iov;
3665 done:
3666 kiocb_done(kiocb, ret2, cs);
3667 } else {
3668 copy_iov:
3669 /* some cases will consume bytes even on error returns */
3670 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3671 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3672 if (!ret)
3673 return -EAGAIN;
3674 }
3675 out_free:
3676 /* it's reportedly faster than delegating the null check to kfree() */
3677 if (iovec)
3678 kfree(iovec);
3679 return ret;
3680 }
3681
3682 static int io_renameat_prep(struct io_kiocb *req,
3683 const struct io_uring_sqe *sqe)
3684 {
3685 struct io_rename *ren = &req->rename;
3686 const char __user *oldf, *newf;
3687
3688 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3689 return -EBADF;
3690
3691 ren->old_dfd = READ_ONCE(sqe->fd);
3692 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3693 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3694 ren->new_dfd = READ_ONCE(sqe->len);
3695 ren->flags = READ_ONCE(sqe->rename_flags);
3696
3697 ren->oldpath = getname(oldf);
3698 if (IS_ERR(ren->oldpath))
3699 return PTR_ERR(ren->oldpath);
3700
3701 ren->newpath = getname(newf);
3702 if (IS_ERR(ren->newpath)) {
3703 putname(ren->oldpath);
3704 return PTR_ERR(ren->newpath);
3705 }
3706
3707 req->flags |= REQ_F_NEED_CLEANUP;
3708 return 0;
3709 }
3710
3711 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3712 {
3713 struct io_rename *ren = &req->rename;
3714 int ret;
3715
3716 if (force_nonblock)
3717 return -EAGAIN;
3718
3719 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3720 ren->newpath, ren->flags);
3721
3722 req->flags &= ~REQ_F_NEED_CLEANUP;
3723 if (ret < 0)
3724 req_set_fail_links(req);
3725 io_req_complete(req, ret);
3726 return 0;
3727 }
3728
3729 static int io_unlinkat_prep(struct io_kiocb *req,
3730 const struct io_uring_sqe *sqe)
3731 {
3732 struct io_unlink *un = &req->unlink;
3733 const char __user *fname;
3734
3735 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3736 return -EBADF;
3737
3738 un->dfd = READ_ONCE(sqe->fd);
3739
3740 un->flags = READ_ONCE(sqe->unlink_flags);
3741 if (un->flags & ~AT_REMOVEDIR)
3742 return -EINVAL;
3743
3744 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3745 un->filename = getname(fname);
3746 if (IS_ERR(un->filename))
3747 return PTR_ERR(un->filename);
3748
3749 req->flags |= REQ_F_NEED_CLEANUP;
3750 return 0;
3751 }
3752
3753 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3754 {
3755 struct io_unlink *un = &req->unlink;
3756 int ret;
3757
3758 if (force_nonblock)
3759 return -EAGAIN;
3760
3761 if (un->flags & AT_REMOVEDIR)
3762 ret = do_rmdir(un->dfd, un->filename);
3763 else
3764 ret = do_unlinkat(un->dfd, un->filename);
3765
3766 req->flags &= ~REQ_F_NEED_CLEANUP;
3767 if (ret < 0)
3768 req_set_fail_links(req);
3769 io_req_complete(req, ret);
3770 return 0;
3771 }
3772
3773 static int io_shutdown_prep(struct io_kiocb *req,
3774 const struct io_uring_sqe *sqe)
3775 {
3776 #if defined(CONFIG_NET)
3777 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3778 return -EINVAL;
3779 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3780 sqe->buf_index)
3781 return -EINVAL;
3782
3783 req->shutdown.how = READ_ONCE(sqe->len);
3784 return 0;
3785 #else
3786 return -EOPNOTSUPP;
3787 #endif
3788 }
3789
3790 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3791 {
3792 #if defined(CONFIG_NET)
3793 struct socket *sock;
3794 int ret;
3795
3796 if (force_nonblock)
3797 return -EAGAIN;
3798
3799 sock = sock_from_file(req->file);
3800 if (unlikely(!sock))
3801 return -ENOTSOCK;
3802
3803 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3804 if (ret < 0)
3805 req_set_fail_links(req);
3806 io_req_complete(req, ret);
3807 return 0;
3808 #else
3809 return -EOPNOTSUPP;
3810 #endif
3811 }
3812
3813 static int __io_splice_prep(struct io_kiocb *req,
3814 const struct io_uring_sqe *sqe)
3815 {
3816 struct io_splice* sp = &req->splice;
3817 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3818
3819 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3820 return -EINVAL;
3821
3822 sp->file_in = NULL;
3823 sp->len = READ_ONCE(sqe->len);
3824 sp->flags = READ_ONCE(sqe->splice_flags);
3825
3826 if (unlikely(sp->flags & ~valid_flags))
3827 return -EINVAL;
3828
3829 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3830 (sp->flags & SPLICE_F_FD_IN_FIXED));
3831 if (!sp->file_in)
3832 return -EBADF;
3833 req->flags |= REQ_F_NEED_CLEANUP;
3834
3835 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3836 /*
3837 * Splice operation will be punted aync, and here need to
3838 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3839 */
3840 io_req_init_async(req);
3841 req->work.flags |= IO_WQ_WORK_UNBOUND;
3842 }
3843
3844 return 0;
3845 }
3846
3847 static int io_tee_prep(struct io_kiocb *req,
3848 const struct io_uring_sqe *sqe)
3849 {
3850 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3851 return -EINVAL;
3852 return __io_splice_prep(req, sqe);
3853 }
3854
3855 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3856 {
3857 struct io_splice *sp = &req->splice;
3858 struct file *in = sp->file_in;
3859 struct file *out = sp->file_out;
3860 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3861 long ret = 0;
3862
3863 if (force_nonblock)
3864 return -EAGAIN;
3865 if (sp->len)
3866 ret = do_tee(in, out, sp->len, flags);
3867
3868 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3869 req->flags &= ~REQ_F_NEED_CLEANUP;
3870
3871 if (ret != sp->len)
3872 req_set_fail_links(req);
3873 io_req_complete(req, ret);
3874 return 0;
3875 }
3876
3877 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3878 {
3879 struct io_splice* sp = &req->splice;
3880
3881 sp->off_in = READ_ONCE(sqe->splice_off_in);
3882 sp->off_out = READ_ONCE(sqe->off);
3883 return __io_splice_prep(req, sqe);
3884 }
3885
3886 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3887 {
3888 struct io_splice *sp = &req->splice;
3889 struct file *in = sp->file_in;
3890 struct file *out = sp->file_out;
3891 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3892 loff_t *poff_in, *poff_out;
3893 long ret = 0;
3894
3895 if (force_nonblock)
3896 return -EAGAIN;
3897
3898 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3899 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3900
3901 if (sp->len)
3902 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3903
3904 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3905 req->flags &= ~REQ_F_NEED_CLEANUP;
3906
3907 if (ret != sp->len)
3908 req_set_fail_links(req);
3909 io_req_complete(req, ret);
3910 return 0;
3911 }
3912
3913 /*
3914 * IORING_OP_NOP just posts a completion event, nothing else.
3915 */
3916 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3917 {
3918 struct io_ring_ctx *ctx = req->ctx;
3919
3920 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3921 return -EINVAL;
3922
3923 __io_req_complete(req, 0, 0, cs);
3924 return 0;
3925 }
3926
3927 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3928 {
3929 struct io_ring_ctx *ctx = req->ctx;
3930
3931 if (!req->file)
3932 return -EBADF;
3933
3934 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3935 return -EINVAL;
3936 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3937 return -EINVAL;
3938
3939 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3940 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3941 return -EINVAL;
3942
3943 req->sync.off = READ_ONCE(sqe->off);
3944 req->sync.len = READ_ONCE(sqe->len);
3945 return 0;
3946 }
3947
3948 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3949 {
3950 loff_t end = req->sync.off + req->sync.len;
3951 int ret;
3952
3953 /* fsync always requires a blocking context */
3954 if (force_nonblock)
3955 return -EAGAIN;
3956
3957 ret = vfs_fsync_range(req->file, req->sync.off,
3958 end > 0 ? end : LLONG_MAX,
3959 req->sync.flags & IORING_FSYNC_DATASYNC);
3960 if (ret < 0)
3961 req_set_fail_links(req);
3962 io_req_complete(req, ret);
3963 return 0;
3964 }
3965
3966 static int io_fallocate_prep(struct io_kiocb *req,
3967 const struct io_uring_sqe *sqe)
3968 {
3969 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3970 return -EINVAL;
3971 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3972 return -EINVAL;
3973
3974 req->sync.off = READ_ONCE(sqe->off);
3975 req->sync.len = READ_ONCE(sqe->addr);
3976 req->sync.mode = READ_ONCE(sqe->len);
3977 return 0;
3978 }
3979
3980 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3981 {
3982 int ret;
3983
3984 /* fallocate always requiring blocking context */
3985 if (force_nonblock)
3986 return -EAGAIN;
3987 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3988 req->sync.len);
3989 if (ret < 0)
3990 req_set_fail_links(req);
3991 io_req_complete(req, ret);
3992 return 0;
3993 }
3994
3995 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3996 {
3997 const char __user *fname;
3998 int ret;
3999
4000 if (unlikely(sqe->ioprio || sqe->buf_index))
4001 return -EINVAL;
4002 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4003 return -EBADF;
4004
4005 /* open.how should be already initialised */
4006 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4007 req->open.how.flags |= O_LARGEFILE;
4008
4009 req->open.dfd = READ_ONCE(sqe->fd);
4010 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4011 req->open.filename = getname(fname);
4012 if (IS_ERR(req->open.filename)) {
4013 ret = PTR_ERR(req->open.filename);
4014 req->open.filename = NULL;
4015 return ret;
4016 }
4017 req->open.nofile = rlimit(RLIMIT_NOFILE);
4018 req->open.ignore_nonblock = false;
4019 req->flags |= REQ_F_NEED_CLEANUP;
4020 return 0;
4021 }
4022
4023 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4024 {
4025 u64 flags, mode;
4026
4027 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4028 return -EINVAL;
4029 mode = READ_ONCE(sqe->len);
4030 flags = READ_ONCE(sqe->open_flags);
4031 req->open.how = build_open_how(flags, mode);
4032 return __io_openat_prep(req, sqe);
4033 }
4034
4035 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4036 {
4037 struct open_how __user *how;
4038 size_t len;
4039 int ret;
4040
4041 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4042 return -EINVAL;
4043 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4044 len = READ_ONCE(sqe->len);
4045 if (len < OPEN_HOW_SIZE_VER0)
4046 return -EINVAL;
4047
4048 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4049 len);
4050 if (ret)
4051 return ret;
4052
4053 return __io_openat_prep(req, sqe);
4054 }
4055
4056 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4057 {
4058 struct open_flags op;
4059 struct file *file;
4060 int ret;
4061
4062 if (force_nonblock && !req->open.ignore_nonblock)
4063 return -EAGAIN;
4064
4065 ret = build_open_flags(&req->open.how, &op);
4066 if (ret)
4067 goto err;
4068
4069 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4070 if (ret < 0)
4071 goto err;
4072
4073 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4074 if (IS_ERR(file)) {
4075 put_unused_fd(ret);
4076 ret = PTR_ERR(file);
4077 /*
4078 * A work-around to ensure that /proc/self works that way
4079 * that it should - if we get -EOPNOTSUPP back, then assume
4080 * that proc_self_get_link() failed us because we're in async
4081 * context. We should be safe to retry this from the task
4082 * itself with force_nonblock == false set, as it should not
4083 * block on lookup. Would be nice to know this upfront and
4084 * avoid the async dance, but doesn't seem feasible.
4085 */
4086 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4087 req->open.ignore_nonblock = true;
4088 refcount_inc(&req->refs);
4089 io_req_task_queue(req);
4090 return 0;
4091 }
4092 } else {
4093 fsnotify_open(file);
4094 fd_install(ret, file);
4095 }
4096 err:
4097 putname(req->open.filename);
4098 req->flags &= ~REQ_F_NEED_CLEANUP;
4099 if (ret < 0)
4100 req_set_fail_links(req);
4101 io_req_complete(req, ret);
4102 return 0;
4103 }
4104
4105 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4106 {
4107 return io_openat2(req, force_nonblock);
4108 }
4109
4110 static int io_remove_buffers_prep(struct io_kiocb *req,
4111 const struct io_uring_sqe *sqe)
4112 {
4113 struct io_provide_buf *p = &req->pbuf;
4114 u64 tmp;
4115
4116 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4117 return -EINVAL;
4118
4119 tmp = READ_ONCE(sqe->fd);
4120 if (!tmp || tmp > USHRT_MAX)
4121 return -EINVAL;
4122
4123 memset(p, 0, sizeof(*p));
4124 p->nbufs = tmp;
4125 p->bgid = READ_ONCE(sqe->buf_group);
4126 return 0;
4127 }
4128
4129 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4130 int bgid, unsigned nbufs)
4131 {
4132 unsigned i = 0;
4133
4134 /* shouldn't happen */
4135 if (!nbufs)
4136 return 0;
4137
4138 /* the head kbuf is the list itself */
4139 while (!list_empty(&buf->list)) {
4140 struct io_buffer *nxt;
4141
4142 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4143 list_del(&nxt->list);
4144 kfree(nxt);
4145 if (++i == nbufs)
4146 return i;
4147 }
4148 i++;
4149 kfree(buf);
4150 idr_remove(&ctx->io_buffer_idr, bgid);
4151
4152 return i;
4153 }
4154
4155 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4156 struct io_comp_state *cs)
4157 {
4158 struct io_provide_buf *p = &req->pbuf;
4159 struct io_ring_ctx *ctx = req->ctx;
4160 struct io_buffer *head;
4161 int ret = 0;
4162
4163 io_ring_submit_lock(ctx, !force_nonblock);
4164
4165 lockdep_assert_held(&ctx->uring_lock);
4166
4167 ret = -ENOENT;
4168 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4169 if (head)
4170 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4171 if (ret < 0)
4172 req_set_fail_links(req);
4173
4174 /* need to hold the lock to complete IOPOLL requests */
4175 if (ctx->flags & IORING_SETUP_IOPOLL) {
4176 __io_req_complete(req, ret, 0, cs);
4177 io_ring_submit_unlock(ctx, !force_nonblock);
4178 } else {
4179 io_ring_submit_unlock(ctx, !force_nonblock);
4180 __io_req_complete(req, ret, 0, cs);
4181 }
4182 return 0;
4183 }
4184
4185 static int io_provide_buffers_prep(struct io_kiocb *req,
4186 const struct io_uring_sqe *sqe)
4187 {
4188 struct io_provide_buf *p = &req->pbuf;
4189 u64 tmp;
4190
4191 if (sqe->ioprio || sqe->rw_flags)
4192 return -EINVAL;
4193
4194 tmp = READ_ONCE(sqe->fd);
4195 if (!tmp || tmp > USHRT_MAX)
4196 return -E2BIG;
4197 p->nbufs = tmp;
4198 p->addr = READ_ONCE(sqe->addr);
4199 p->len = READ_ONCE(sqe->len);
4200
4201 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4202 return -EFAULT;
4203
4204 p->bgid = READ_ONCE(sqe->buf_group);
4205 tmp = READ_ONCE(sqe->off);
4206 if (tmp > USHRT_MAX)
4207 return -E2BIG;
4208 p->bid = tmp;
4209 return 0;
4210 }
4211
4212 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4213 {
4214 struct io_buffer *buf;
4215 u64 addr = pbuf->addr;
4216 int i, bid = pbuf->bid;
4217
4218 for (i = 0; i < pbuf->nbufs; i++) {
4219 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4220 if (!buf)
4221 break;
4222
4223 buf->addr = addr;
4224 buf->len = pbuf->len;
4225 buf->bid = bid;
4226 addr += pbuf->len;
4227 bid++;
4228 if (!*head) {
4229 INIT_LIST_HEAD(&buf->list);
4230 *head = buf;
4231 } else {
4232 list_add_tail(&buf->list, &(*head)->list);
4233 }
4234 }
4235
4236 return i ? i : -ENOMEM;
4237 }
4238
4239 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4240 struct io_comp_state *cs)
4241 {
4242 struct io_provide_buf *p = &req->pbuf;
4243 struct io_ring_ctx *ctx = req->ctx;
4244 struct io_buffer *head, *list;
4245 int ret = 0;
4246
4247 io_ring_submit_lock(ctx, !force_nonblock);
4248
4249 lockdep_assert_held(&ctx->uring_lock);
4250
4251 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4252
4253 ret = io_add_buffers(p, &head);
4254 if (ret < 0)
4255 goto out;
4256
4257 if (!list) {
4258 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4259 GFP_KERNEL);
4260 if (ret < 0) {
4261 __io_remove_buffers(ctx, head, p->bgid, -1U);
4262 goto out;
4263 }
4264 }
4265 out:
4266 if (ret < 0)
4267 req_set_fail_links(req);
4268
4269 /* need to hold the lock to complete IOPOLL requests */
4270 if (ctx->flags & IORING_SETUP_IOPOLL) {
4271 __io_req_complete(req, ret, 0, cs);
4272 io_ring_submit_unlock(ctx, !force_nonblock);
4273 } else {
4274 io_ring_submit_unlock(ctx, !force_nonblock);
4275 __io_req_complete(req, ret, 0, cs);
4276 }
4277 return 0;
4278 }
4279
4280 static int io_epoll_ctl_prep(struct io_kiocb *req,
4281 const struct io_uring_sqe *sqe)
4282 {
4283 #if defined(CONFIG_EPOLL)
4284 if (sqe->ioprio || sqe->buf_index)
4285 return -EINVAL;
4286 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4287 return -EINVAL;
4288
4289 req->epoll.epfd = READ_ONCE(sqe->fd);
4290 req->epoll.op = READ_ONCE(sqe->len);
4291 req->epoll.fd = READ_ONCE(sqe->off);
4292
4293 if (ep_op_has_event(req->epoll.op)) {
4294 struct epoll_event __user *ev;
4295
4296 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4297 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4298 return -EFAULT;
4299 }
4300
4301 return 0;
4302 #else
4303 return -EOPNOTSUPP;
4304 #endif
4305 }
4306
4307 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4308 struct io_comp_state *cs)
4309 {
4310 #if defined(CONFIG_EPOLL)
4311 struct io_epoll *ie = &req->epoll;
4312 int ret;
4313
4314 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4315 if (force_nonblock && ret == -EAGAIN)
4316 return -EAGAIN;
4317
4318 if (ret < 0)
4319 req_set_fail_links(req);
4320 __io_req_complete(req, ret, 0, cs);
4321 return 0;
4322 #else
4323 return -EOPNOTSUPP;
4324 #endif
4325 }
4326
4327 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4328 {
4329 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4330 if (sqe->ioprio || sqe->buf_index || sqe->off)
4331 return -EINVAL;
4332 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4333 return -EINVAL;
4334
4335 req->madvise.addr = READ_ONCE(sqe->addr);
4336 req->madvise.len = READ_ONCE(sqe->len);
4337 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4338 return 0;
4339 #else
4340 return -EOPNOTSUPP;
4341 #endif
4342 }
4343
4344 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4345 {
4346 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4347 struct io_madvise *ma = &req->madvise;
4348 int ret;
4349
4350 if (force_nonblock)
4351 return -EAGAIN;
4352
4353 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4354 if (ret < 0)
4355 req_set_fail_links(req);
4356 io_req_complete(req, ret);
4357 return 0;
4358 #else
4359 return -EOPNOTSUPP;
4360 #endif
4361 }
4362
4363 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4364 {
4365 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4366 return -EINVAL;
4367 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4368 return -EINVAL;
4369
4370 req->fadvise.offset = READ_ONCE(sqe->off);
4371 req->fadvise.len = READ_ONCE(sqe->len);
4372 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4373 return 0;
4374 }
4375
4376 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4377 {
4378 struct io_fadvise *fa = &req->fadvise;
4379 int ret;
4380
4381 if (force_nonblock) {
4382 switch (fa->advice) {
4383 case POSIX_FADV_NORMAL:
4384 case POSIX_FADV_RANDOM:
4385 case POSIX_FADV_SEQUENTIAL:
4386 break;
4387 default:
4388 return -EAGAIN;
4389 }
4390 }
4391
4392 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4393 if (ret < 0)
4394 req_set_fail_links(req);
4395 io_req_complete(req, ret);
4396 return 0;
4397 }
4398
4399 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4400 {
4401 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4402 return -EINVAL;
4403 if (sqe->ioprio || sqe->buf_index)
4404 return -EINVAL;
4405 if (req->flags & REQ_F_FIXED_FILE)
4406 return -EBADF;
4407
4408 req->statx.dfd = READ_ONCE(sqe->fd);
4409 req->statx.mask = READ_ONCE(sqe->len);
4410 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4411 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4412 req->statx.flags = READ_ONCE(sqe->statx_flags);
4413
4414 return 0;
4415 }
4416
4417 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4418 {
4419 struct io_statx *ctx = &req->statx;
4420 int ret;
4421
4422 if (force_nonblock) {
4423 /* only need file table for an actual valid fd */
4424 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4425 req->flags |= REQ_F_NO_FILE_TABLE;
4426 return -EAGAIN;
4427 }
4428
4429 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4430 ctx->buffer);
4431
4432 if (ret < 0)
4433 req_set_fail_links(req);
4434 io_req_complete(req, ret);
4435 return 0;
4436 }
4437
4438 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4439 {
4440 /*
4441 * If we queue this for async, it must not be cancellable. That would
4442 * leave the 'file' in an undeterminate state, and here need to modify
4443 * io_wq_work.flags, so initialize io_wq_work firstly.
4444 */
4445 io_req_init_async(req);
4446 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4447
4448 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4449 return -EINVAL;
4450 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4451 sqe->rw_flags || sqe->buf_index)
4452 return -EINVAL;
4453 if (req->flags & REQ_F_FIXED_FILE)
4454 return -EBADF;
4455
4456 req->close.fd = READ_ONCE(sqe->fd);
4457 if ((req->file && req->file->f_op == &io_uring_fops))
4458 return -EBADF;
4459
4460 req->close.put_file = NULL;
4461 return 0;
4462 }
4463
4464 static int io_close(struct io_kiocb *req, bool force_nonblock,
4465 struct io_comp_state *cs)
4466 {
4467 struct io_close *close = &req->close;
4468 int ret;
4469
4470 /* might be already done during nonblock submission */
4471 if (!close->put_file) {
4472 ret = close_fd_get_file(close->fd, &close->put_file);
4473 if (ret < 0)
4474 return (ret == -ENOENT) ? -EBADF : ret;
4475 }
4476
4477 /* if the file has a flush method, be safe and punt to async */
4478 if (close->put_file->f_op->flush && force_nonblock) {
4479 /* was never set, but play safe */
4480 req->flags &= ~REQ_F_NOWAIT;
4481 /* avoid grabbing files - we don't need the files */
4482 req->flags |= REQ_F_NO_FILE_TABLE;
4483 return -EAGAIN;
4484 }
4485
4486 /* No ->flush() or already async, safely close from here */
4487 ret = filp_close(close->put_file, req->work.identity->files);
4488 if (ret < 0)
4489 req_set_fail_links(req);
4490 fput(close->put_file);
4491 close->put_file = NULL;
4492 __io_req_complete(req, ret, 0, cs);
4493 return 0;
4494 }
4495
4496 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4497 {
4498 struct io_ring_ctx *ctx = req->ctx;
4499
4500 if (!req->file)
4501 return -EBADF;
4502
4503 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4504 return -EINVAL;
4505 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4506 return -EINVAL;
4507
4508 req->sync.off = READ_ONCE(sqe->off);
4509 req->sync.len = READ_ONCE(sqe->len);
4510 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4511 return 0;
4512 }
4513
4514 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4515 {
4516 int ret;
4517
4518 /* sync_file_range always requires a blocking context */
4519 if (force_nonblock)
4520 return -EAGAIN;
4521
4522 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4523 req->sync.flags);
4524 if (ret < 0)
4525 req_set_fail_links(req);
4526 io_req_complete(req, ret);
4527 return 0;
4528 }
4529
4530 #if defined(CONFIG_NET)
4531 static int io_setup_async_msg(struct io_kiocb *req,
4532 struct io_async_msghdr *kmsg)
4533 {
4534 struct io_async_msghdr *async_msg = req->async_data;
4535
4536 if (async_msg)
4537 return -EAGAIN;
4538 if (io_alloc_async_data(req)) {
4539 if (kmsg->iov != kmsg->fast_iov)
4540 kfree(kmsg->iov);
4541 return -ENOMEM;
4542 }
4543 async_msg = req->async_data;
4544 req->flags |= REQ_F_NEED_CLEANUP;
4545 memcpy(async_msg, kmsg, sizeof(*kmsg));
4546 return -EAGAIN;
4547 }
4548
4549 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4550 struct io_async_msghdr *iomsg)
4551 {
4552 iomsg->iov = iomsg->fast_iov;
4553 iomsg->msg.msg_name = &iomsg->addr;
4554 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4555 req->sr_msg.msg_flags, &iomsg->iov);
4556 }
4557
4558 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4559 {
4560 struct io_async_msghdr *async_msg = req->async_data;
4561 struct io_sr_msg *sr = &req->sr_msg;
4562 int ret;
4563
4564 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4565 return -EINVAL;
4566
4567 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4568 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4569 sr->len = READ_ONCE(sqe->len);
4570
4571 #ifdef CONFIG_COMPAT
4572 if (req->ctx->compat)
4573 sr->msg_flags |= MSG_CMSG_COMPAT;
4574 #endif
4575
4576 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4577 return 0;
4578 ret = io_sendmsg_copy_hdr(req, async_msg);
4579 if (!ret)
4580 req->flags |= REQ_F_NEED_CLEANUP;
4581 return ret;
4582 }
4583
4584 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4585 struct io_comp_state *cs)
4586 {
4587 struct io_async_msghdr iomsg, *kmsg;
4588 struct socket *sock;
4589 unsigned flags;
4590 int ret;
4591
4592 sock = sock_from_file(req->file);
4593 if (unlikely(!sock))
4594 return -ENOTSOCK;
4595
4596 if (req->async_data) {
4597 kmsg = req->async_data;
4598 kmsg->msg.msg_name = &kmsg->addr;
4599 /* if iov is set, it's allocated already */
4600 if (!kmsg->iov)
4601 kmsg->iov = kmsg->fast_iov;
4602 kmsg->msg.msg_iter.iov = kmsg->iov;
4603 } else {
4604 ret = io_sendmsg_copy_hdr(req, &iomsg);
4605 if (ret)
4606 return ret;
4607 kmsg = &iomsg;
4608 }
4609
4610 flags = req->sr_msg.msg_flags;
4611 if (flags & MSG_DONTWAIT)
4612 req->flags |= REQ_F_NOWAIT;
4613 else if (force_nonblock)
4614 flags |= MSG_DONTWAIT;
4615
4616 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4617 if (force_nonblock && ret == -EAGAIN)
4618 return io_setup_async_msg(req, kmsg);
4619 if (ret == -ERESTARTSYS)
4620 ret = -EINTR;
4621
4622 if (kmsg->iov != kmsg->fast_iov)
4623 kfree(kmsg->iov);
4624 req->flags &= ~REQ_F_NEED_CLEANUP;
4625 if (ret < 0)
4626 req_set_fail_links(req);
4627 __io_req_complete(req, ret, 0, cs);
4628 return 0;
4629 }
4630
4631 static int io_send(struct io_kiocb *req, bool force_nonblock,
4632 struct io_comp_state *cs)
4633 {
4634 struct io_sr_msg *sr = &req->sr_msg;
4635 struct msghdr msg;
4636 struct iovec iov;
4637 struct socket *sock;
4638 unsigned flags;
4639 int ret;
4640
4641 sock = sock_from_file(req->file);
4642 if (unlikely(!sock))
4643 return -ENOTSOCK;
4644
4645 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4646 if (unlikely(ret))
4647 return ret;
4648
4649 msg.msg_name = NULL;
4650 msg.msg_control = NULL;
4651 msg.msg_controllen = 0;
4652 msg.msg_namelen = 0;
4653
4654 flags = req->sr_msg.msg_flags;
4655 if (flags & MSG_DONTWAIT)
4656 req->flags |= REQ_F_NOWAIT;
4657 else if (force_nonblock)
4658 flags |= MSG_DONTWAIT;
4659
4660 msg.msg_flags = flags;
4661 ret = sock_sendmsg(sock, &msg);
4662 if (force_nonblock && ret == -EAGAIN)
4663 return -EAGAIN;
4664 if (ret == -ERESTARTSYS)
4665 ret = -EINTR;
4666
4667 if (ret < 0)
4668 req_set_fail_links(req);
4669 __io_req_complete(req, ret, 0, cs);
4670 return 0;
4671 }
4672
4673 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4674 struct io_async_msghdr *iomsg)
4675 {
4676 struct io_sr_msg *sr = &req->sr_msg;
4677 struct iovec __user *uiov;
4678 size_t iov_len;
4679 int ret;
4680
4681 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4682 &iomsg->uaddr, &uiov, &iov_len);
4683 if (ret)
4684 return ret;
4685
4686 if (req->flags & REQ_F_BUFFER_SELECT) {
4687 if (iov_len > 1)
4688 return -EINVAL;
4689 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4690 return -EFAULT;
4691 sr->len = iomsg->iov[0].iov_len;
4692 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4693 sr->len);
4694 iomsg->iov = NULL;
4695 } else {
4696 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4697 &iomsg->iov, &iomsg->msg.msg_iter,
4698 false);
4699 if (ret > 0)
4700 ret = 0;
4701 }
4702
4703 return ret;
4704 }
4705
4706 #ifdef CONFIG_COMPAT
4707 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4708 struct io_async_msghdr *iomsg)
4709 {
4710 struct compat_msghdr __user *msg_compat;
4711 struct io_sr_msg *sr = &req->sr_msg;
4712 struct compat_iovec __user *uiov;
4713 compat_uptr_t ptr;
4714 compat_size_t len;
4715 int ret;
4716
4717 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4718 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4719 &ptr, &len);
4720 if (ret)
4721 return ret;
4722
4723 uiov = compat_ptr(ptr);
4724 if (req->flags & REQ_F_BUFFER_SELECT) {
4725 compat_ssize_t clen;
4726
4727 if (len > 1)
4728 return -EINVAL;
4729 if (!access_ok(uiov, sizeof(*uiov)))
4730 return -EFAULT;
4731 if (__get_user(clen, &uiov->iov_len))
4732 return -EFAULT;
4733 if (clen < 0)
4734 return -EINVAL;
4735 sr->len = clen;
4736 iomsg->iov[0].iov_len = clen;
4737 iomsg->iov = NULL;
4738 } else {
4739 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4740 UIO_FASTIOV, &iomsg->iov,
4741 &iomsg->msg.msg_iter, true);
4742 if (ret < 0)
4743 return ret;
4744 }
4745
4746 return 0;
4747 }
4748 #endif
4749
4750 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4751 struct io_async_msghdr *iomsg)
4752 {
4753 iomsg->msg.msg_name = &iomsg->addr;
4754 iomsg->iov = iomsg->fast_iov;
4755
4756 #ifdef CONFIG_COMPAT
4757 if (req->ctx->compat)
4758 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4759 #endif
4760
4761 return __io_recvmsg_copy_hdr(req, iomsg);
4762 }
4763
4764 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4765 bool needs_lock)
4766 {
4767 struct io_sr_msg *sr = &req->sr_msg;
4768 struct io_buffer *kbuf;
4769
4770 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4771 if (IS_ERR(kbuf))
4772 return kbuf;
4773
4774 sr->kbuf = kbuf;
4775 req->flags |= REQ_F_BUFFER_SELECTED;
4776 return kbuf;
4777 }
4778
4779 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4780 {
4781 return io_put_kbuf(req, req->sr_msg.kbuf);
4782 }
4783
4784 static int io_recvmsg_prep(struct io_kiocb *req,
4785 const struct io_uring_sqe *sqe)
4786 {
4787 struct io_async_msghdr *async_msg = req->async_data;
4788 struct io_sr_msg *sr = &req->sr_msg;
4789 int ret;
4790
4791 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4792 return -EINVAL;
4793
4794 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4795 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4796 sr->len = READ_ONCE(sqe->len);
4797 sr->bgid = READ_ONCE(sqe->buf_group);
4798
4799 #ifdef CONFIG_COMPAT
4800 if (req->ctx->compat)
4801 sr->msg_flags |= MSG_CMSG_COMPAT;
4802 #endif
4803
4804 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4805 return 0;
4806 ret = io_recvmsg_copy_hdr(req, async_msg);
4807 if (!ret)
4808 req->flags |= REQ_F_NEED_CLEANUP;
4809 return ret;
4810 }
4811
4812 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4813 struct io_comp_state *cs)
4814 {
4815 struct io_async_msghdr iomsg, *kmsg;
4816 struct socket *sock;
4817 struct io_buffer *kbuf;
4818 unsigned flags;
4819 int ret, cflags = 0;
4820
4821 sock = sock_from_file(req->file);
4822 if (unlikely(!sock))
4823 return -ENOTSOCK;
4824
4825 if (req->async_data) {
4826 kmsg = req->async_data;
4827 kmsg->msg.msg_name = &kmsg->addr;
4828 /* if iov is set, it's allocated already */
4829 if (!kmsg->iov)
4830 kmsg->iov = kmsg->fast_iov;
4831 kmsg->msg.msg_iter.iov = kmsg->iov;
4832 } else {
4833 ret = io_recvmsg_copy_hdr(req, &iomsg);
4834 if (ret)
4835 return ret;
4836 kmsg = &iomsg;
4837 }
4838
4839 if (req->flags & REQ_F_BUFFER_SELECT) {
4840 kbuf = io_recv_buffer_select(req, !force_nonblock);
4841 if (IS_ERR(kbuf))
4842 return PTR_ERR(kbuf);
4843 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4844 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4845 1, req->sr_msg.len);
4846 }
4847
4848 flags = req->sr_msg.msg_flags;
4849 if (flags & MSG_DONTWAIT)
4850 req->flags |= REQ_F_NOWAIT;
4851 else if (force_nonblock)
4852 flags |= MSG_DONTWAIT;
4853
4854 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4855 kmsg->uaddr, flags);
4856 if (force_nonblock && ret == -EAGAIN)
4857 return io_setup_async_msg(req, kmsg);
4858 if (ret == -ERESTARTSYS)
4859 ret = -EINTR;
4860
4861 if (req->flags & REQ_F_BUFFER_SELECTED)
4862 cflags = io_put_recv_kbuf(req);
4863 if (kmsg->iov != kmsg->fast_iov)
4864 kfree(kmsg->iov);
4865 req->flags &= ~REQ_F_NEED_CLEANUP;
4866 if (ret < 0)
4867 req_set_fail_links(req);
4868 __io_req_complete(req, ret, cflags, cs);
4869 return 0;
4870 }
4871
4872 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4873 struct io_comp_state *cs)
4874 {
4875 struct io_buffer *kbuf;
4876 struct io_sr_msg *sr = &req->sr_msg;
4877 struct msghdr msg;
4878 void __user *buf = sr->buf;
4879 struct socket *sock;
4880 struct iovec iov;
4881 unsigned flags;
4882 int ret, cflags = 0;
4883
4884 sock = sock_from_file(req->file);
4885 if (unlikely(!sock))
4886 return -ENOTSOCK;
4887
4888 if (req->flags & REQ_F_BUFFER_SELECT) {
4889 kbuf = io_recv_buffer_select(req, !force_nonblock);
4890 if (IS_ERR(kbuf))
4891 return PTR_ERR(kbuf);
4892 buf = u64_to_user_ptr(kbuf->addr);
4893 }
4894
4895 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4896 if (unlikely(ret))
4897 goto out_free;
4898
4899 msg.msg_name = NULL;
4900 msg.msg_control = NULL;
4901 msg.msg_controllen = 0;
4902 msg.msg_namelen = 0;
4903 msg.msg_iocb = NULL;
4904 msg.msg_flags = 0;
4905
4906 flags = req->sr_msg.msg_flags;
4907 if (flags & MSG_DONTWAIT)
4908 req->flags |= REQ_F_NOWAIT;
4909 else if (force_nonblock)
4910 flags |= MSG_DONTWAIT;
4911
4912 ret = sock_recvmsg(sock, &msg, flags);
4913 if (force_nonblock && ret == -EAGAIN)
4914 return -EAGAIN;
4915 if (ret == -ERESTARTSYS)
4916 ret = -EINTR;
4917 out_free:
4918 if (req->flags & REQ_F_BUFFER_SELECTED)
4919 cflags = io_put_recv_kbuf(req);
4920 if (ret < 0)
4921 req_set_fail_links(req);
4922 __io_req_complete(req, ret, cflags, cs);
4923 return 0;
4924 }
4925
4926 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4927 {
4928 struct io_accept *accept = &req->accept;
4929
4930 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4931 return -EINVAL;
4932 if (sqe->ioprio || sqe->len || sqe->buf_index)
4933 return -EINVAL;
4934
4935 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4936 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4937 accept->flags = READ_ONCE(sqe->accept_flags);
4938 accept->nofile = rlimit(RLIMIT_NOFILE);
4939 return 0;
4940 }
4941
4942 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4943 struct io_comp_state *cs)
4944 {
4945 struct io_accept *accept = &req->accept;
4946 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4947 int ret;
4948
4949 if (req->file->f_flags & O_NONBLOCK)
4950 req->flags |= REQ_F_NOWAIT;
4951
4952 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4953 accept->addr_len, accept->flags,
4954 accept->nofile);
4955 if (ret == -EAGAIN && force_nonblock)
4956 return -EAGAIN;
4957 if (ret < 0) {
4958 if (ret == -ERESTARTSYS)
4959 ret = -EINTR;
4960 req_set_fail_links(req);
4961 }
4962 __io_req_complete(req, ret, 0, cs);
4963 return 0;
4964 }
4965
4966 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4967 {
4968 struct io_connect *conn = &req->connect;
4969 struct io_async_connect *io = req->async_data;
4970
4971 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4972 return -EINVAL;
4973 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4974 return -EINVAL;
4975
4976 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4977 conn->addr_len = READ_ONCE(sqe->addr2);
4978
4979 if (!io)
4980 return 0;
4981
4982 return move_addr_to_kernel(conn->addr, conn->addr_len,
4983 &io->address);
4984 }
4985
4986 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4987 struct io_comp_state *cs)
4988 {
4989 struct io_async_connect __io, *io;
4990 unsigned file_flags;
4991 int ret;
4992
4993 if (req->async_data) {
4994 io = req->async_data;
4995 } else {
4996 ret = move_addr_to_kernel(req->connect.addr,
4997 req->connect.addr_len,
4998 &__io.address);
4999 if (ret)
5000 goto out;
5001 io = &__io;
5002 }
5003
5004 file_flags = force_nonblock ? O_NONBLOCK : 0;
5005
5006 ret = __sys_connect_file(req->file, &io->address,
5007 req->connect.addr_len, file_flags);
5008 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5009 if (req->async_data)
5010 return -EAGAIN;
5011 if (io_alloc_async_data(req)) {
5012 ret = -ENOMEM;
5013 goto out;
5014 }
5015 io = req->async_data;
5016 memcpy(req->async_data, &__io, sizeof(__io));
5017 return -EAGAIN;
5018 }
5019 if (ret == -ERESTARTSYS)
5020 ret = -EINTR;
5021 out:
5022 if (ret < 0)
5023 req_set_fail_links(req);
5024 __io_req_complete(req, ret, 0, cs);
5025 return 0;
5026 }
5027 #else /* !CONFIG_NET */
5028 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5029 {
5030 return -EOPNOTSUPP;
5031 }
5032
5033 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5034 struct io_comp_state *cs)
5035 {
5036 return -EOPNOTSUPP;
5037 }
5038
5039 static int io_send(struct io_kiocb *req, bool force_nonblock,
5040 struct io_comp_state *cs)
5041 {
5042 return -EOPNOTSUPP;
5043 }
5044
5045 static int io_recvmsg_prep(struct io_kiocb *req,
5046 const struct io_uring_sqe *sqe)
5047 {
5048 return -EOPNOTSUPP;
5049 }
5050
5051 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5052 struct io_comp_state *cs)
5053 {
5054 return -EOPNOTSUPP;
5055 }
5056
5057 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5058 struct io_comp_state *cs)
5059 {
5060 return -EOPNOTSUPP;
5061 }
5062
5063 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5064 {
5065 return -EOPNOTSUPP;
5066 }
5067
5068 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5069 struct io_comp_state *cs)
5070 {
5071 return -EOPNOTSUPP;
5072 }
5073
5074 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5075 {
5076 return -EOPNOTSUPP;
5077 }
5078
5079 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5080 struct io_comp_state *cs)
5081 {
5082 return -EOPNOTSUPP;
5083 }
5084 #endif /* CONFIG_NET */
5085
5086 struct io_poll_table {
5087 struct poll_table_struct pt;
5088 struct io_kiocb *req;
5089 int error;
5090 };
5091
5092 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5093 __poll_t mask, task_work_func_t func)
5094 {
5095 int ret;
5096
5097 /* for instances that support it check for an event match first: */
5098 if (mask && !(mask & poll->events))
5099 return 0;
5100
5101 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5102
5103 list_del_init(&poll->wait.entry);
5104
5105 req->result = mask;
5106 init_task_work(&req->task_work, func);
5107 percpu_ref_get(&req->ctx->refs);
5108
5109 /*
5110 * If this fails, then the task is exiting. When a task exits, the
5111 * work gets canceled, so just cancel this request as well instead
5112 * of executing it. We can't safely execute it anyway, as we may not
5113 * have the needed state needed for it anyway.
5114 */
5115 ret = io_req_task_work_add(req);
5116 if (unlikely(ret)) {
5117 struct task_struct *tsk;
5118
5119 WRITE_ONCE(poll->canceled, true);
5120 tsk = io_wq_get_task(req->ctx->io_wq);
5121 task_work_add(tsk, &req->task_work, TWA_NONE);
5122 wake_up_process(tsk);
5123 }
5124 return 1;
5125 }
5126
5127 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5128 __acquires(&req->ctx->completion_lock)
5129 {
5130 struct io_ring_ctx *ctx = req->ctx;
5131
5132 if (!req->result && !READ_ONCE(poll->canceled)) {
5133 struct poll_table_struct pt = { ._key = poll->events };
5134
5135 req->result = vfs_poll(req->file, &pt) & poll->events;
5136 }
5137
5138 spin_lock_irq(&ctx->completion_lock);
5139 if (!req->result && !READ_ONCE(poll->canceled)) {
5140 add_wait_queue(poll->head, &poll->wait);
5141 return true;
5142 }
5143
5144 return false;
5145 }
5146
5147 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5148 {
5149 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5150 if (req->opcode == IORING_OP_POLL_ADD)
5151 return req->async_data;
5152 return req->apoll->double_poll;
5153 }
5154
5155 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5156 {
5157 if (req->opcode == IORING_OP_POLL_ADD)
5158 return &req->poll;
5159 return &req->apoll->poll;
5160 }
5161
5162 static void io_poll_remove_double(struct io_kiocb *req)
5163 {
5164 struct io_poll_iocb *poll = io_poll_get_double(req);
5165
5166 lockdep_assert_held(&req->ctx->completion_lock);
5167
5168 if (poll && poll->head) {
5169 struct wait_queue_head *head = poll->head;
5170
5171 spin_lock(&head->lock);
5172 list_del_init(&poll->wait.entry);
5173 if (poll->wait.private)
5174 refcount_dec(&req->refs);
5175 poll->head = NULL;
5176 spin_unlock(&head->lock);
5177 }
5178 }
5179
5180 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5181 {
5182 struct io_ring_ctx *ctx = req->ctx;
5183
5184 io_poll_remove_double(req);
5185 req->poll.done = true;
5186 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5187 io_commit_cqring(ctx);
5188 }
5189
5190 static void io_poll_task_func(struct callback_head *cb)
5191 {
5192 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5193 struct io_ring_ctx *ctx = req->ctx;
5194 struct io_kiocb *nxt;
5195
5196 if (io_poll_rewait(req, &req->poll)) {
5197 spin_unlock_irq(&ctx->completion_lock);
5198 } else {
5199 hash_del(&req->hash_node);
5200 io_poll_complete(req, req->result, 0);
5201 spin_unlock_irq(&ctx->completion_lock);
5202
5203 nxt = io_put_req_find_next(req);
5204 io_cqring_ev_posted(ctx);
5205 if (nxt)
5206 __io_req_task_submit(nxt);
5207 }
5208
5209 percpu_ref_put(&ctx->refs);
5210 }
5211
5212 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5213 int sync, void *key)
5214 {
5215 struct io_kiocb *req = wait->private;
5216 struct io_poll_iocb *poll = io_poll_get_single(req);
5217 __poll_t mask = key_to_poll(key);
5218
5219 /* for instances that support it check for an event match first: */
5220 if (mask && !(mask & poll->events))
5221 return 0;
5222
5223 list_del_init(&wait->entry);
5224
5225 if (poll && poll->head) {
5226 bool done;
5227
5228 spin_lock(&poll->head->lock);
5229 done = list_empty(&poll->wait.entry);
5230 if (!done)
5231 list_del_init(&poll->wait.entry);
5232 /* make sure double remove sees this as being gone */
5233 wait->private = NULL;
5234 spin_unlock(&poll->head->lock);
5235 if (!done) {
5236 /* use wait func handler, so it matches the rq type */
5237 poll->wait.func(&poll->wait, mode, sync, key);
5238 }
5239 }
5240 refcount_dec(&req->refs);
5241 return 1;
5242 }
5243
5244 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5245 wait_queue_func_t wake_func)
5246 {
5247 poll->head = NULL;
5248 poll->done = false;
5249 poll->canceled = false;
5250 poll->events = events;
5251 INIT_LIST_HEAD(&poll->wait.entry);
5252 init_waitqueue_func_entry(&poll->wait, wake_func);
5253 }
5254
5255 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5256 struct wait_queue_head *head,
5257 struct io_poll_iocb **poll_ptr)
5258 {
5259 struct io_kiocb *req = pt->req;
5260
5261 /*
5262 * If poll->head is already set, it's because the file being polled
5263 * uses multiple waitqueues for poll handling (eg one for read, one
5264 * for write). Setup a separate io_poll_iocb if this happens.
5265 */
5266 if (unlikely(poll->head)) {
5267 struct io_poll_iocb *poll_one = poll;
5268
5269 /* already have a 2nd entry, fail a third attempt */
5270 if (*poll_ptr) {
5271 pt->error = -EINVAL;
5272 return;
5273 }
5274 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5275 if (!poll) {
5276 pt->error = -ENOMEM;
5277 return;
5278 }
5279 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5280 refcount_inc(&req->refs);
5281 poll->wait.private = req;
5282 *poll_ptr = poll;
5283 }
5284
5285 pt->error = 0;
5286 poll->head = head;
5287
5288 if (poll->events & EPOLLEXCLUSIVE)
5289 add_wait_queue_exclusive(head, &poll->wait);
5290 else
5291 add_wait_queue(head, &poll->wait);
5292 }
5293
5294 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5295 struct poll_table_struct *p)
5296 {
5297 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5298 struct async_poll *apoll = pt->req->apoll;
5299
5300 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5301 }
5302
5303 static void io_async_task_func(struct callback_head *cb)
5304 {
5305 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5306 struct async_poll *apoll = req->apoll;
5307 struct io_ring_ctx *ctx = req->ctx;
5308
5309 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5310
5311 if (io_poll_rewait(req, &apoll->poll)) {
5312 spin_unlock_irq(&ctx->completion_lock);
5313 percpu_ref_put(&ctx->refs);
5314 return;
5315 }
5316
5317 /* If req is still hashed, it cannot have been canceled. Don't check. */
5318 if (hash_hashed(&req->hash_node))
5319 hash_del(&req->hash_node);
5320
5321 io_poll_remove_double(req);
5322 spin_unlock_irq(&ctx->completion_lock);
5323
5324 if (!READ_ONCE(apoll->poll.canceled))
5325 __io_req_task_submit(req);
5326 else
5327 __io_req_task_cancel(req, -ECANCELED);
5328
5329 percpu_ref_put(&ctx->refs);
5330 kfree(apoll->double_poll);
5331 kfree(apoll);
5332 }
5333
5334 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5335 void *key)
5336 {
5337 struct io_kiocb *req = wait->private;
5338 struct io_poll_iocb *poll = &req->apoll->poll;
5339
5340 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5341 key_to_poll(key));
5342
5343 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5344 }
5345
5346 static void io_poll_req_insert(struct io_kiocb *req)
5347 {
5348 struct io_ring_ctx *ctx = req->ctx;
5349 struct hlist_head *list;
5350
5351 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5352 hlist_add_head(&req->hash_node, list);
5353 }
5354
5355 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5356 struct io_poll_iocb *poll,
5357 struct io_poll_table *ipt, __poll_t mask,
5358 wait_queue_func_t wake_func)
5359 __acquires(&ctx->completion_lock)
5360 {
5361 struct io_ring_ctx *ctx = req->ctx;
5362 bool cancel = false;
5363
5364 INIT_HLIST_NODE(&req->hash_node);
5365 io_init_poll_iocb(poll, mask, wake_func);
5366 poll->file = req->file;
5367 poll->wait.private = req;
5368
5369 ipt->pt._key = mask;
5370 ipt->req = req;
5371 ipt->error = -EINVAL;
5372
5373 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5374
5375 spin_lock_irq(&ctx->completion_lock);
5376 if (likely(poll->head)) {
5377 spin_lock(&poll->head->lock);
5378 if (unlikely(list_empty(&poll->wait.entry))) {
5379 if (ipt->error)
5380 cancel = true;
5381 ipt->error = 0;
5382 mask = 0;
5383 }
5384 if (mask || ipt->error)
5385 list_del_init(&poll->wait.entry);
5386 else if (cancel)
5387 WRITE_ONCE(poll->canceled, true);
5388 else if (!poll->done) /* actually waiting for an event */
5389 io_poll_req_insert(req);
5390 spin_unlock(&poll->head->lock);
5391 }
5392
5393 return mask;
5394 }
5395
5396 static bool io_arm_poll_handler(struct io_kiocb *req)
5397 {
5398 const struct io_op_def *def = &io_op_defs[req->opcode];
5399 struct io_ring_ctx *ctx = req->ctx;
5400 struct async_poll *apoll;
5401 struct io_poll_table ipt;
5402 __poll_t mask, ret;
5403 int rw;
5404
5405 if (!req->file || !file_can_poll(req->file))
5406 return false;
5407 if (req->flags & REQ_F_POLLED)
5408 return false;
5409 if (def->pollin)
5410 rw = READ;
5411 else if (def->pollout)
5412 rw = WRITE;
5413 else
5414 return false;
5415 /* if we can't nonblock try, then no point in arming a poll handler */
5416 if (!io_file_supports_async(req->file, rw))
5417 return false;
5418
5419 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5420 if (unlikely(!apoll))
5421 return false;
5422 apoll->double_poll = NULL;
5423
5424 req->flags |= REQ_F_POLLED;
5425 req->apoll = apoll;
5426
5427 mask = 0;
5428 if (def->pollin)
5429 mask |= POLLIN | POLLRDNORM;
5430 if (def->pollout)
5431 mask |= POLLOUT | POLLWRNORM;
5432
5433 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5434 if ((req->opcode == IORING_OP_RECVMSG) &&
5435 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5436 mask &= ~POLLIN;
5437
5438 mask |= POLLERR | POLLPRI;
5439
5440 ipt.pt._qproc = io_async_queue_proc;
5441
5442 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5443 io_async_wake);
5444 if (ret || ipt.error) {
5445 io_poll_remove_double(req);
5446 spin_unlock_irq(&ctx->completion_lock);
5447 kfree(apoll->double_poll);
5448 kfree(apoll);
5449 return false;
5450 }
5451 spin_unlock_irq(&ctx->completion_lock);
5452 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5453 apoll->poll.events);
5454 return true;
5455 }
5456
5457 static bool __io_poll_remove_one(struct io_kiocb *req,
5458 struct io_poll_iocb *poll)
5459 {
5460 bool do_complete = false;
5461
5462 spin_lock(&poll->head->lock);
5463 WRITE_ONCE(poll->canceled, true);
5464 if (!list_empty(&poll->wait.entry)) {
5465 list_del_init(&poll->wait.entry);
5466 do_complete = true;
5467 }
5468 spin_unlock(&poll->head->lock);
5469 hash_del(&req->hash_node);
5470 return do_complete;
5471 }
5472
5473 static bool io_poll_remove_one(struct io_kiocb *req)
5474 {
5475 bool do_complete;
5476
5477 io_poll_remove_double(req);
5478
5479 if (req->opcode == IORING_OP_POLL_ADD) {
5480 do_complete = __io_poll_remove_one(req, &req->poll);
5481 } else {
5482 struct async_poll *apoll = req->apoll;
5483
5484 /* non-poll requests have submit ref still */
5485 do_complete = __io_poll_remove_one(req, &apoll->poll);
5486 if (do_complete) {
5487 io_put_req(req);
5488 kfree(apoll->double_poll);
5489 kfree(apoll);
5490 }
5491 }
5492
5493 if (do_complete) {
5494 io_cqring_fill_event(req, -ECANCELED);
5495 io_commit_cqring(req->ctx);
5496 req_set_fail_links(req);
5497 io_put_req_deferred(req, 1);
5498 }
5499
5500 return do_complete;
5501 }
5502
5503 /*
5504 * Returns true if we found and killed one or more poll requests
5505 */
5506 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5507 struct files_struct *files)
5508 {
5509 struct hlist_node *tmp;
5510 struct io_kiocb *req;
5511 int posted = 0, i;
5512
5513 spin_lock_irq(&ctx->completion_lock);
5514 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5515 struct hlist_head *list;
5516
5517 list = &ctx->cancel_hash[i];
5518 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5519 if (io_match_task(req, tsk, files))
5520 posted += io_poll_remove_one(req);
5521 }
5522 }
5523 spin_unlock_irq(&ctx->completion_lock);
5524
5525 if (posted)
5526 io_cqring_ev_posted(ctx);
5527
5528 return posted != 0;
5529 }
5530
5531 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5532 {
5533 struct hlist_head *list;
5534 struct io_kiocb *req;
5535
5536 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5537 hlist_for_each_entry(req, list, hash_node) {
5538 if (sqe_addr != req->user_data)
5539 continue;
5540 if (io_poll_remove_one(req))
5541 return 0;
5542 return -EALREADY;
5543 }
5544
5545 return -ENOENT;
5546 }
5547
5548 static int io_poll_remove_prep(struct io_kiocb *req,
5549 const struct io_uring_sqe *sqe)
5550 {
5551 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5552 return -EINVAL;
5553 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5554 sqe->poll_events)
5555 return -EINVAL;
5556
5557 req->poll_remove.addr = READ_ONCE(sqe->addr);
5558 return 0;
5559 }
5560
5561 /*
5562 * Find a running poll command that matches one specified in sqe->addr,
5563 * and remove it if found.
5564 */
5565 static int io_poll_remove(struct io_kiocb *req)
5566 {
5567 struct io_ring_ctx *ctx = req->ctx;
5568 int ret;
5569
5570 spin_lock_irq(&ctx->completion_lock);
5571 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5572 spin_unlock_irq(&ctx->completion_lock);
5573
5574 if (ret < 0)
5575 req_set_fail_links(req);
5576 io_req_complete(req, ret);
5577 return 0;
5578 }
5579
5580 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5581 void *key)
5582 {
5583 struct io_kiocb *req = wait->private;
5584 struct io_poll_iocb *poll = &req->poll;
5585
5586 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5587 }
5588
5589 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5590 struct poll_table_struct *p)
5591 {
5592 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5593
5594 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5595 }
5596
5597 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5598 {
5599 struct io_poll_iocb *poll = &req->poll;
5600 u32 events;
5601
5602 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5603 return -EINVAL;
5604 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5605 return -EINVAL;
5606
5607 events = READ_ONCE(sqe->poll32_events);
5608 #ifdef __BIG_ENDIAN
5609 events = swahw32(events);
5610 #endif
5611 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5612 (events & EPOLLEXCLUSIVE);
5613 return 0;
5614 }
5615
5616 static int io_poll_add(struct io_kiocb *req)
5617 {
5618 struct io_poll_iocb *poll = &req->poll;
5619 struct io_ring_ctx *ctx = req->ctx;
5620 struct io_poll_table ipt;
5621 __poll_t mask;
5622
5623 ipt.pt._qproc = io_poll_queue_proc;
5624
5625 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5626 io_poll_wake);
5627
5628 if (mask) { /* no async, we'd stolen it */
5629 ipt.error = 0;
5630 io_poll_complete(req, mask, 0);
5631 }
5632 spin_unlock_irq(&ctx->completion_lock);
5633
5634 if (mask) {
5635 io_cqring_ev_posted(ctx);
5636 io_put_req(req);
5637 }
5638 return ipt.error;
5639 }
5640
5641 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5642 {
5643 struct io_timeout_data *data = container_of(timer,
5644 struct io_timeout_data, timer);
5645 struct io_kiocb *req = data->req;
5646 struct io_ring_ctx *ctx = req->ctx;
5647 unsigned long flags;
5648
5649 spin_lock_irqsave(&ctx->completion_lock, flags);
5650 list_del_init(&req->timeout.list);
5651 atomic_set(&req->ctx->cq_timeouts,
5652 atomic_read(&req->ctx->cq_timeouts) + 1);
5653
5654 io_cqring_fill_event(req, -ETIME);
5655 io_commit_cqring(ctx);
5656 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5657
5658 io_cqring_ev_posted(ctx);
5659 req_set_fail_links(req);
5660 io_put_req(req);
5661 return HRTIMER_NORESTART;
5662 }
5663
5664 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5665 __u64 user_data)
5666 {
5667 struct io_timeout_data *io;
5668 struct io_kiocb *req;
5669 int ret = -ENOENT;
5670
5671 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5672 if (user_data == req->user_data) {
5673 ret = 0;
5674 break;
5675 }
5676 }
5677
5678 if (ret == -ENOENT)
5679 return ERR_PTR(ret);
5680
5681 io = req->async_data;
5682 ret = hrtimer_try_to_cancel(&io->timer);
5683 if (ret == -1)
5684 return ERR_PTR(-EALREADY);
5685 list_del_init(&req->timeout.list);
5686 return req;
5687 }
5688
5689 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5690 {
5691 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5692
5693 if (IS_ERR(req))
5694 return PTR_ERR(req);
5695
5696 req_set_fail_links(req);
5697 io_cqring_fill_event(req, -ECANCELED);
5698 io_put_req_deferred(req, 1);
5699 return 0;
5700 }
5701
5702 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5703 struct timespec64 *ts, enum hrtimer_mode mode)
5704 {
5705 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5706 struct io_timeout_data *data;
5707
5708 if (IS_ERR(req))
5709 return PTR_ERR(req);
5710
5711 req->timeout.off = 0; /* noseq */
5712 data = req->async_data;
5713 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5714 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5715 data->timer.function = io_timeout_fn;
5716 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5717 return 0;
5718 }
5719
5720 static int io_timeout_remove_prep(struct io_kiocb *req,
5721 const struct io_uring_sqe *sqe)
5722 {
5723 struct io_timeout_rem *tr = &req->timeout_rem;
5724
5725 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5726 return -EINVAL;
5727 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5728 return -EINVAL;
5729 if (sqe->ioprio || sqe->buf_index || sqe->len)
5730 return -EINVAL;
5731
5732 tr->addr = READ_ONCE(sqe->addr);
5733 tr->flags = READ_ONCE(sqe->timeout_flags);
5734 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5735 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5736 return -EINVAL;
5737 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5738 return -EFAULT;
5739 } else if (tr->flags) {
5740 /* timeout removal doesn't support flags */
5741 return -EINVAL;
5742 }
5743
5744 return 0;
5745 }
5746
5747 /*
5748 * Remove or update an existing timeout command
5749 */
5750 static int io_timeout_remove(struct io_kiocb *req)
5751 {
5752 struct io_timeout_rem *tr = &req->timeout_rem;
5753 struct io_ring_ctx *ctx = req->ctx;
5754 int ret;
5755
5756 spin_lock_irq(&ctx->completion_lock);
5757 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5758 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5759 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5760
5761 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5762 } else {
5763 ret = io_timeout_cancel(ctx, tr->addr);
5764 }
5765
5766 io_cqring_fill_event(req, ret);
5767 io_commit_cqring(ctx);
5768 spin_unlock_irq(&ctx->completion_lock);
5769 io_cqring_ev_posted(ctx);
5770 if (ret < 0)
5771 req_set_fail_links(req);
5772 io_put_req(req);
5773 return 0;
5774 }
5775
5776 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5777 bool is_timeout_link)
5778 {
5779 struct io_timeout_data *data;
5780 unsigned flags;
5781 u32 off = READ_ONCE(sqe->off);
5782
5783 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5784 return -EINVAL;
5785 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5786 return -EINVAL;
5787 if (off && is_timeout_link)
5788 return -EINVAL;
5789 flags = READ_ONCE(sqe->timeout_flags);
5790 if (flags & ~IORING_TIMEOUT_ABS)
5791 return -EINVAL;
5792
5793 req->timeout.off = off;
5794
5795 if (!req->async_data && io_alloc_async_data(req))
5796 return -ENOMEM;
5797
5798 data = req->async_data;
5799 data->req = req;
5800
5801 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5802 return -EFAULT;
5803
5804 if (flags & IORING_TIMEOUT_ABS)
5805 data->mode = HRTIMER_MODE_ABS;
5806 else
5807 data->mode = HRTIMER_MODE_REL;
5808
5809 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5810 return 0;
5811 }
5812
5813 static int io_timeout(struct io_kiocb *req)
5814 {
5815 struct io_ring_ctx *ctx = req->ctx;
5816 struct io_timeout_data *data = req->async_data;
5817 struct list_head *entry;
5818 u32 tail, off = req->timeout.off;
5819
5820 spin_lock_irq(&ctx->completion_lock);
5821
5822 /*
5823 * sqe->off holds how many events that need to occur for this
5824 * timeout event to be satisfied. If it isn't set, then this is
5825 * a pure timeout request, sequence isn't used.
5826 */
5827 if (io_is_timeout_noseq(req)) {
5828 entry = ctx->timeout_list.prev;
5829 goto add;
5830 }
5831
5832 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5833 req->timeout.target_seq = tail + off;
5834
5835 /*
5836 * Insertion sort, ensuring the first entry in the list is always
5837 * the one we need first.
5838 */
5839 list_for_each_prev(entry, &ctx->timeout_list) {
5840 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5841 timeout.list);
5842
5843 if (io_is_timeout_noseq(nxt))
5844 continue;
5845 /* nxt.seq is behind @tail, otherwise would've been completed */
5846 if (off >= nxt->timeout.target_seq - tail)
5847 break;
5848 }
5849 add:
5850 list_add(&req->timeout.list, entry);
5851 data->timer.function = io_timeout_fn;
5852 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5853 spin_unlock_irq(&ctx->completion_lock);
5854 return 0;
5855 }
5856
5857 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5858 {
5859 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5860
5861 return req->user_data == (unsigned long) data;
5862 }
5863
5864 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5865 {
5866 enum io_wq_cancel cancel_ret;
5867 int ret = 0;
5868
5869 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5870 switch (cancel_ret) {
5871 case IO_WQ_CANCEL_OK:
5872 ret = 0;
5873 break;
5874 case IO_WQ_CANCEL_RUNNING:
5875 ret = -EALREADY;
5876 break;
5877 case IO_WQ_CANCEL_NOTFOUND:
5878 ret = -ENOENT;
5879 break;
5880 }
5881
5882 return ret;
5883 }
5884
5885 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5886 struct io_kiocb *req, __u64 sqe_addr,
5887 int success_ret)
5888 {
5889 unsigned long flags;
5890 int ret;
5891
5892 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5893 if (ret != -ENOENT) {
5894 spin_lock_irqsave(&ctx->completion_lock, flags);
5895 goto done;
5896 }
5897
5898 spin_lock_irqsave(&ctx->completion_lock, flags);
5899 ret = io_timeout_cancel(ctx, sqe_addr);
5900 if (ret != -ENOENT)
5901 goto done;
5902 ret = io_poll_cancel(ctx, sqe_addr);
5903 done:
5904 if (!ret)
5905 ret = success_ret;
5906 io_cqring_fill_event(req, ret);
5907 io_commit_cqring(ctx);
5908 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5909 io_cqring_ev_posted(ctx);
5910
5911 if (ret < 0)
5912 req_set_fail_links(req);
5913 io_put_req(req);
5914 }
5915
5916 static int io_async_cancel_prep(struct io_kiocb *req,
5917 const struct io_uring_sqe *sqe)
5918 {
5919 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5920 return -EINVAL;
5921 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5922 return -EINVAL;
5923 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5924 return -EINVAL;
5925
5926 req->cancel.addr = READ_ONCE(sqe->addr);
5927 return 0;
5928 }
5929
5930 static int io_async_cancel(struct io_kiocb *req)
5931 {
5932 struct io_ring_ctx *ctx = req->ctx;
5933
5934 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5935 return 0;
5936 }
5937
5938 static int io_files_update_prep(struct io_kiocb *req,
5939 const struct io_uring_sqe *sqe)
5940 {
5941 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5942 return -EINVAL;
5943 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5944 return -EINVAL;
5945 if (sqe->ioprio || sqe->rw_flags)
5946 return -EINVAL;
5947
5948 req->files_update.offset = READ_ONCE(sqe->off);
5949 req->files_update.nr_args = READ_ONCE(sqe->len);
5950 if (!req->files_update.nr_args)
5951 return -EINVAL;
5952 req->files_update.arg = READ_ONCE(sqe->addr);
5953 return 0;
5954 }
5955
5956 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5957 struct io_comp_state *cs)
5958 {
5959 struct io_ring_ctx *ctx = req->ctx;
5960 struct io_uring_files_update up;
5961 int ret;
5962
5963 if (force_nonblock)
5964 return -EAGAIN;
5965
5966 up.offset = req->files_update.offset;
5967 up.fds = req->files_update.arg;
5968
5969 mutex_lock(&ctx->uring_lock);
5970 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5971 mutex_unlock(&ctx->uring_lock);
5972
5973 if (ret < 0)
5974 req_set_fail_links(req);
5975 __io_req_complete(req, ret, 0, cs);
5976 return 0;
5977 }
5978
5979 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5980 {
5981 switch (req->opcode) {
5982 case IORING_OP_NOP:
5983 return 0;
5984 case IORING_OP_READV:
5985 case IORING_OP_READ_FIXED:
5986 case IORING_OP_READ:
5987 return io_read_prep(req, sqe);
5988 case IORING_OP_WRITEV:
5989 case IORING_OP_WRITE_FIXED:
5990 case IORING_OP_WRITE:
5991 return io_write_prep(req, sqe);
5992 case IORING_OP_POLL_ADD:
5993 return io_poll_add_prep(req, sqe);
5994 case IORING_OP_POLL_REMOVE:
5995 return io_poll_remove_prep(req, sqe);
5996 case IORING_OP_FSYNC:
5997 return io_prep_fsync(req, sqe);
5998 case IORING_OP_SYNC_FILE_RANGE:
5999 return io_prep_sfr(req, sqe);
6000 case IORING_OP_SENDMSG:
6001 case IORING_OP_SEND:
6002 return io_sendmsg_prep(req, sqe);
6003 case IORING_OP_RECVMSG:
6004 case IORING_OP_RECV:
6005 return io_recvmsg_prep(req, sqe);
6006 case IORING_OP_CONNECT:
6007 return io_connect_prep(req, sqe);
6008 case IORING_OP_TIMEOUT:
6009 return io_timeout_prep(req, sqe, false);
6010 case IORING_OP_TIMEOUT_REMOVE:
6011 return io_timeout_remove_prep(req, sqe);
6012 case IORING_OP_ASYNC_CANCEL:
6013 return io_async_cancel_prep(req, sqe);
6014 case IORING_OP_LINK_TIMEOUT:
6015 return io_timeout_prep(req, sqe, true);
6016 case IORING_OP_ACCEPT:
6017 return io_accept_prep(req, sqe);
6018 case IORING_OP_FALLOCATE:
6019 return io_fallocate_prep(req, sqe);
6020 case IORING_OP_OPENAT:
6021 return io_openat_prep(req, sqe);
6022 case IORING_OP_CLOSE:
6023 return io_close_prep(req, sqe);
6024 case IORING_OP_FILES_UPDATE:
6025 return io_files_update_prep(req, sqe);
6026 case IORING_OP_STATX:
6027 return io_statx_prep(req, sqe);
6028 case IORING_OP_FADVISE:
6029 return io_fadvise_prep(req, sqe);
6030 case IORING_OP_MADVISE:
6031 return io_madvise_prep(req, sqe);
6032 case IORING_OP_OPENAT2:
6033 return io_openat2_prep(req, sqe);
6034 case IORING_OP_EPOLL_CTL:
6035 return io_epoll_ctl_prep(req, sqe);
6036 case IORING_OP_SPLICE:
6037 return io_splice_prep(req, sqe);
6038 case IORING_OP_PROVIDE_BUFFERS:
6039 return io_provide_buffers_prep(req, sqe);
6040 case IORING_OP_REMOVE_BUFFERS:
6041 return io_remove_buffers_prep(req, sqe);
6042 case IORING_OP_TEE:
6043 return io_tee_prep(req, sqe);
6044 case IORING_OP_SHUTDOWN:
6045 return io_shutdown_prep(req, sqe);
6046 case IORING_OP_RENAMEAT:
6047 return io_renameat_prep(req, sqe);
6048 case IORING_OP_UNLINKAT:
6049 return io_unlinkat_prep(req, sqe);
6050 }
6051
6052 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6053 req->opcode);
6054 return-EINVAL;
6055 }
6056
6057 static int io_req_defer_prep(struct io_kiocb *req,
6058 const struct io_uring_sqe *sqe)
6059 {
6060 if (!sqe)
6061 return 0;
6062 if (io_alloc_async_data(req))
6063 return -EAGAIN;
6064 return io_req_prep(req, sqe);
6065 }
6066
6067 static u32 io_get_sequence(struct io_kiocb *req)
6068 {
6069 struct io_kiocb *pos;
6070 struct io_ring_ctx *ctx = req->ctx;
6071 u32 total_submitted, nr_reqs = 0;
6072
6073 io_for_each_link(pos, req)
6074 nr_reqs++;
6075
6076 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6077 return total_submitted - nr_reqs;
6078 }
6079
6080 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6081 {
6082 struct io_ring_ctx *ctx = req->ctx;
6083 struct io_defer_entry *de;
6084 int ret;
6085 u32 seq;
6086
6087 /* Still need defer if there is pending req in defer list. */
6088 if (likely(list_empty_careful(&ctx->defer_list) &&
6089 !(req->flags & REQ_F_IO_DRAIN)))
6090 return 0;
6091
6092 seq = io_get_sequence(req);
6093 /* Still a chance to pass the sequence check */
6094 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6095 return 0;
6096
6097 if (!req->async_data) {
6098 ret = io_req_defer_prep(req, sqe);
6099 if (ret)
6100 return ret;
6101 }
6102 io_prep_async_link(req);
6103 de = kmalloc(sizeof(*de), GFP_KERNEL);
6104 if (!de)
6105 return -ENOMEM;
6106
6107 spin_lock_irq(&ctx->completion_lock);
6108 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6109 spin_unlock_irq(&ctx->completion_lock);
6110 kfree(de);
6111 io_queue_async_work(req);
6112 return -EIOCBQUEUED;
6113 }
6114
6115 trace_io_uring_defer(ctx, req, req->user_data);
6116 de->req = req;
6117 de->seq = seq;
6118 list_add_tail(&de->list, &ctx->defer_list);
6119 spin_unlock_irq(&ctx->completion_lock);
6120 return -EIOCBQUEUED;
6121 }
6122
6123 static void io_req_drop_files(struct io_kiocb *req)
6124 {
6125 struct io_ring_ctx *ctx = req->ctx;
6126 struct io_uring_task *tctx = req->task->io_uring;
6127 unsigned long flags;
6128
6129 put_files_struct(req->work.identity->files);
6130 put_nsproxy(req->work.identity->nsproxy);
6131 spin_lock_irqsave(&ctx->inflight_lock, flags);
6132 list_del(&req->inflight_entry);
6133 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6134 req->flags &= ~REQ_F_INFLIGHT;
6135 req->work.flags &= ~IO_WQ_WORK_FILES;
6136 if (atomic_read(&tctx->in_idle))
6137 wake_up(&tctx->wait);
6138 }
6139
6140 static void __io_clean_op(struct io_kiocb *req)
6141 {
6142 if (req->flags & REQ_F_BUFFER_SELECTED) {
6143 switch (req->opcode) {
6144 case IORING_OP_READV:
6145 case IORING_OP_READ_FIXED:
6146 case IORING_OP_READ:
6147 kfree((void *)(unsigned long)req->rw.addr);
6148 break;
6149 case IORING_OP_RECVMSG:
6150 case IORING_OP_RECV:
6151 kfree(req->sr_msg.kbuf);
6152 break;
6153 }
6154 req->flags &= ~REQ_F_BUFFER_SELECTED;
6155 }
6156
6157 if (req->flags & REQ_F_NEED_CLEANUP) {
6158 switch (req->opcode) {
6159 case IORING_OP_READV:
6160 case IORING_OP_READ_FIXED:
6161 case IORING_OP_READ:
6162 case IORING_OP_WRITEV:
6163 case IORING_OP_WRITE_FIXED:
6164 case IORING_OP_WRITE: {
6165 struct io_async_rw *io = req->async_data;
6166 if (io->free_iovec)
6167 kfree(io->free_iovec);
6168 break;
6169 }
6170 case IORING_OP_RECVMSG:
6171 case IORING_OP_SENDMSG: {
6172 struct io_async_msghdr *io = req->async_data;
6173 if (io->iov != io->fast_iov)
6174 kfree(io->iov);
6175 break;
6176 }
6177 case IORING_OP_SPLICE:
6178 case IORING_OP_TEE:
6179 io_put_file(req, req->splice.file_in,
6180 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6181 break;
6182 case IORING_OP_OPENAT:
6183 case IORING_OP_OPENAT2:
6184 if (req->open.filename)
6185 putname(req->open.filename);
6186 break;
6187 case IORING_OP_RENAMEAT:
6188 putname(req->rename.oldpath);
6189 putname(req->rename.newpath);
6190 break;
6191 case IORING_OP_UNLINKAT:
6192 putname(req->unlink.filename);
6193 break;
6194 }
6195 req->flags &= ~REQ_F_NEED_CLEANUP;
6196 }
6197
6198 if (req->flags & REQ_F_INFLIGHT)
6199 io_req_drop_files(req);
6200 }
6201
6202 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6203 struct io_comp_state *cs)
6204 {
6205 struct io_ring_ctx *ctx = req->ctx;
6206 int ret;
6207
6208 switch (req->opcode) {
6209 case IORING_OP_NOP:
6210 ret = io_nop(req, cs);
6211 break;
6212 case IORING_OP_READV:
6213 case IORING_OP_READ_FIXED:
6214 case IORING_OP_READ:
6215 ret = io_read(req, force_nonblock, cs);
6216 break;
6217 case IORING_OP_WRITEV:
6218 case IORING_OP_WRITE_FIXED:
6219 case IORING_OP_WRITE:
6220 ret = io_write(req, force_nonblock, cs);
6221 break;
6222 case IORING_OP_FSYNC:
6223 ret = io_fsync(req, force_nonblock);
6224 break;
6225 case IORING_OP_POLL_ADD:
6226 ret = io_poll_add(req);
6227 break;
6228 case IORING_OP_POLL_REMOVE:
6229 ret = io_poll_remove(req);
6230 break;
6231 case IORING_OP_SYNC_FILE_RANGE:
6232 ret = io_sync_file_range(req, force_nonblock);
6233 break;
6234 case IORING_OP_SENDMSG:
6235 ret = io_sendmsg(req, force_nonblock, cs);
6236 break;
6237 case IORING_OP_SEND:
6238 ret = io_send(req, force_nonblock, cs);
6239 break;
6240 case IORING_OP_RECVMSG:
6241 ret = io_recvmsg(req, force_nonblock, cs);
6242 break;
6243 case IORING_OP_RECV:
6244 ret = io_recv(req, force_nonblock, cs);
6245 break;
6246 case IORING_OP_TIMEOUT:
6247 ret = io_timeout(req);
6248 break;
6249 case IORING_OP_TIMEOUT_REMOVE:
6250 ret = io_timeout_remove(req);
6251 break;
6252 case IORING_OP_ACCEPT:
6253 ret = io_accept(req, force_nonblock, cs);
6254 break;
6255 case IORING_OP_CONNECT:
6256 ret = io_connect(req, force_nonblock, cs);
6257 break;
6258 case IORING_OP_ASYNC_CANCEL:
6259 ret = io_async_cancel(req);
6260 break;
6261 case IORING_OP_FALLOCATE:
6262 ret = io_fallocate(req, force_nonblock);
6263 break;
6264 case IORING_OP_OPENAT:
6265 ret = io_openat(req, force_nonblock);
6266 break;
6267 case IORING_OP_CLOSE:
6268 ret = io_close(req, force_nonblock, cs);
6269 break;
6270 case IORING_OP_FILES_UPDATE:
6271 ret = io_files_update(req, force_nonblock, cs);
6272 break;
6273 case IORING_OP_STATX:
6274 ret = io_statx(req, force_nonblock);
6275 break;
6276 case IORING_OP_FADVISE:
6277 ret = io_fadvise(req, force_nonblock);
6278 break;
6279 case IORING_OP_MADVISE:
6280 ret = io_madvise(req, force_nonblock);
6281 break;
6282 case IORING_OP_OPENAT2:
6283 ret = io_openat2(req, force_nonblock);
6284 break;
6285 case IORING_OP_EPOLL_CTL:
6286 ret = io_epoll_ctl(req, force_nonblock, cs);
6287 break;
6288 case IORING_OP_SPLICE:
6289 ret = io_splice(req, force_nonblock);
6290 break;
6291 case IORING_OP_PROVIDE_BUFFERS:
6292 ret = io_provide_buffers(req, force_nonblock, cs);
6293 break;
6294 case IORING_OP_REMOVE_BUFFERS:
6295 ret = io_remove_buffers(req, force_nonblock, cs);
6296 break;
6297 case IORING_OP_TEE:
6298 ret = io_tee(req, force_nonblock);
6299 break;
6300 case IORING_OP_SHUTDOWN:
6301 ret = io_shutdown(req, force_nonblock);
6302 break;
6303 case IORING_OP_RENAMEAT:
6304 ret = io_renameat(req, force_nonblock);
6305 break;
6306 case IORING_OP_UNLINKAT:
6307 ret = io_unlinkat(req, force_nonblock);
6308 break;
6309 default:
6310 ret = -EINVAL;
6311 break;
6312 }
6313
6314 if (ret)
6315 return ret;
6316
6317 /* If the op doesn't have a file, we're not polling for it */
6318 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6319 const bool in_async = io_wq_current_is_worker();
6320
6321 /* workqueue context doesn't hold uring_lock, grab it now */
6322 if (in_async)
6323 mutex_lock(&ctx->uring_lock);
6324
6325 io_iopoll_req_issued(req, in_async);
6326
6327 if (in_async)
6328 mutex_unlock(&ctx->uring_lock);
6329 }
6330
6331 return 0;
6332 }
6333
6334 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6335 {
6336 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6337 struct io_kiocb *timeout;
6338 int ret = 0;
6339
6340 timeout = io_prep_linked_timeout(req);
6341 if (timeout)
6342 io_queue_linked_timeout(timeout);
6343
6344 /* if NO_CANCEL is set, we must still run the work */
6345 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6346 IO_WQ_WORK_CANCEL) {
6347 ret = -ECANCELED;
6348 }
6349
6350 if (!ret) {
6351 do {
6352 ret = io_issue_sqe(req, false, NULL);
6353 /*
6354 * We can get EAGAIN for polled IO even though we're
6355 * forcing a sync submission from here, since we can't
6356 * wait for request slots on the block side.
6357 */
6358 if (ret != -EAGAIN)
6359 break;
6360 cond_resched();
6361 } while (1);
6362 }
6363
6364 if (ret) {
6365 struct io_ring_ctx *lock_ctx = NULL;
6366
6367 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6368 lock_ctx = req->ctx;
6369
6370 /*
6371 * io_iopoll_complete() does not hold completion_lock to
6372 * complete polled io, so here for polled io, we can not call
6373 * io_req_complete() directly, otherwise there maybe concurrent
6374 * access to cqring, defer_list, etc, which is not safe. Given
6375 * that io_iopoll_complete() is always called under uring_lock,
6376 * so here for polled io, we also get uring_lock to complete
6377 * it.
6378 */
6379 if (lock_ctx)
6380 mutex_lock(&lock_ctx->uring_lock);
6381
6382 req_set_fail_links(req);
6383 io_req_complete(req, ret);
6384
6385 if (lock_ctx)
6386 mutex_unlock(&lock_ctx->uring_lock);
6387 }
6388
6389 return io_steal_work(req);
6390 }
6391
6392 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6393 int index)
6394 {
6395 struct fixed_file_table *table;
6396
6397 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6398 return table->files[index & IORING_FILE_TABLE_MASK];
6399 }
6400
6401 static struct file *io_file_get(struct io_submit_state *state,
6402 struct io_kiocb *req, int fd, bool fixed)
6403 {
6404 struct io_ring_ctx *ctx = req->ctx;
6405 struct file *file;
6406
6407 if (fixed) {
6408 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6409 return NULL;
6410 fd = array_index_nospec(fd, ctx->nr_user_files);
6411 file = io_file_from_index(ctx, fd);
6412 io_set_resource_node(req);
6413 } else {
6414 trace_io_uring_file_get(ctx, fd);
6415 file = __io_file_get(state, fd);
6416 }
6417
6418 return file;
6419 }
6420
6421 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6422 {
6423 struct io_timeout_data *data = container_of(timer,
6424 struct io_timeout_data, timer);
6425 struct io_kiocb *prev, *req = data->req;
6426 struct io_ring_ctx *ctx = req->ctx;
6427 unsigned long flags;
6428
6429 spin_lock_irqsave(&ctx->completion_lock, flags);
6430 prev = req->timeout.head;
6431 req->timeout.head = NULL;
6432
6433 /*
6434 * We don't expect the list to be empty, that will only happen if we
6435 * race with the completion of the linked work.
6436 */
6437 if (prev && refcount_inc_not_zero(&prev->refs))
6438 io_remove_next_linked(prev);
6439 else
6440 prev = NULL;
6441 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6442
6443 if (prev) {
6444 req_set_fail_links(prev);
6445 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6446 io_put_req(prev);
6447 } else {
6448 io_req_complete(req, -ETIME);
6449 }
6450 return HRTIMER_NORESTART;
6451 }
6452
6453 static void __io_queue_linked_timeout(struct io_kiocb *req)
6454 {
6455 /*
6456 * If the back reference is NULL, then our linked request finished
6457 * before we got a chance to setup the timer
6458 */
6459 if (req->timeout.head) {
6460 struct io_timeout_data *data = req->async_data;
6461
6462 data->timer.function = io_link_timeout_fn;
6463 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6464 data->mode);
6465 }
6466 }
6467
6468 static void io_queue_linked_timeout(struct io_kiocb *req)
6469 {
6470 struct io_ring_ctx *ctx = req->ctx;
6471
6472 spin_lock_irq(&ctx->completion_lock);
6473 __io_queue_linked_timeout(req);
6474 spin_unlock_irq(&ctx->completion_lock);
6475
6476 /* drop submission reference */
6477 io_put_req(req);
6478 }
6479
6480 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6481 {
6482 struct io_kiocb *nxt = req->link;
6483
6484 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6485 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6486 return NULL;
6487
6488 nxt->timeout.head = req;
6489 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6490 req->flags |= REQ_F_LINK_TIMEOUT;
6491 return nxt;
6492 }
6493
6494 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6495 {
6496 struct io_kiocb *linked_timeout;
6497 const struct cred *old_creds = NULL;
6498 int ret;
6499
6500 again:
6501 linked_timeout = io_prep_linked_timeout(req);
6502
6503 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6504 (req->work.flags & IO_WQ_WORK_CREDS) &&
6505 req->work.identity->creds != current_cred()) {
6506 if (old_creds)
6507 revert_creds(old_creds);
6508 if (old_creds == req->work.identity->creds)
6509 old_creds = NULL; /* restored original creds */
6510 else
6511 old_creds = override_creds(req->work.identity->creds);
6512 }
6513
6514 ret = io_issue_sqe(req, true, cs);
6515
6516 /*
6517 * We async punt it if the file wasn't marked NOWAIT, or if the file
6518 * doesn't support non-blocking read/write attempts
6519 */
6520 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6521 if (!io_arm_poll_handler(req)) {
6522 /*
6523 * Queued up for async execution, worker will release
6524 * submit reference when the iocb is actually submitted.
6525 */
6526 io_queue_async_work(req);
6527 }
6528
6529 if (linked_timeout)
6530 io_queue_linked_timeout(linked_timeout);
6531 } else if (likely(!ret)) {
6532 /* drop submission reference */
6533 req = io_put_req_find_next(req);
6534 if (linked_timeout)
6535 io_queue_linked_timeout(linked_timeout);
6536
6537 if (req) {
6538 if (!(req->flags & REQ_F_FORCE_ASYNC))
6539 goto again;
6540 io_queue_async_work(req);
6541 }
6542 } else {
6543 /* un-prep timeout, so it'll be killed as any other linked */
6544 req->flags &= ~REQ_F_LINK_TIMEOUT;
6545 req_set_fail_links(req);
6546 io_put_req(req);
6547 io_req_complete(req, ret);
6548 }
6549
6550 if (old_creds)
6551 revert_creds(old_creds);
6552 }
6553
6554 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6555 struct io_comp_state *cs)
6556 {
6557 int ret;
6558
6559 ret = io_req_defer(req, sqe);
6560 if (ret) {
6561 if (ret != -EIOCBQUEUED) {
6562 fail_req:
6563 req_set_fail_links(req);
6564 io_put_req(req);
6565 io_req_complete(req, ret);
6566 }
6567 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6568 if (!req->async_data) {
6569 ret = io_req_defer_prep(req, sqe);
6570 if (unlikely(ret))
6571 goto fail_req;
6572 }
6573 io_queue_async_work(req);
6574 } else {
6575 if (sqe) {
6576 ret = io_req_prep(req, sqe);
6577 if (unlikely(ret))
6578 goto fail_req;
6579 }
6580 __io_queue_sqe(req, cs);
6581 }
6582 }
6583
6584 static inline void io_queue_link_head(struct io_kiocb *req,
6585 struct io_comp_state *cs)
6586 {
6587 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6588 io_put_req(req);
6589 io_req_complete(req, -ECANCELED);
6590 } else
6591 io_queue_sqe(req, NULL, cs);
6592 }
6593
6594 struct io_submit_link {
6595 struct io_kiocb *head;
6596 struct io_kiocb *last;
6597 };
6598
6599 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6600 struct io_submit_link *link, struct io_comp_state *cs)
6601 {
6602 struct io_ring_ctx *ctx = req->ctx;
6603 int ret;
6604
6605 /*
6606 * If we already have a head request, queue this one for async
6607 * submittal once the head completes. If we don't have a head but
6608 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6609 * submitted sync once the chain is complete. If none of those
6610 * conditions are true (normal request), then just queue it.
6611 */
6612 if (link->head) {
6613 struct io_kiocb *head = link->head;
6614
6615 /*
6616 * Taking sequential execution of a link, draining both sides
6617 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6618 * requests in the link. So, it drains the head and the
6619 * next after the link request. The last one is done via
6620 * drain_next flag to persist the effect across calls.
6621 */
6622 if (req->flags & REQ_F_IO_DRAIN) {
6623 head->flags |= REQ_F_IO_DRAIN;
6624 ctx->drain_next = 1;
6625 }
6626 ret = io_req_defer_prep(req, sqe);
6627 if (unlikely(ret)) {
6628 /* fail even hard links since we don't submit */
6629 head->flags |= REQ_F_FAIL_LINK;
6630 return ret;
6631 }
6632 trace_io_uring_link(ctx, req, head);
6633 link->last->link = req;
6634 link->last = req;
6635
6636 /* last request of a link, enqueue the link */
6637 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6638 io_queue_link_head(head, cs);
6639 link->head = NULL;
6640 }
6641 } else {
6642 if (unlikely(ctx->drain_next)) {
6643 req->flags |= REQ_F_IO_DRAIN;
6644 ctx->drain_next = 0;
6645 }
6646 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6647 ret = io_req_defer_prep(req, sqe);
6648 if (unlikely(ret))
6649 req->flags |= REQ_F_FAIL_LINK;
6650 link->head = req;
6651 link->last = req;
6652 } else {
6653 io_queue_sqe(req, sqe, cs);
6654 }
6655 }
6656
6657 return 0;
6658 }
6659
6660 /*
6661 * Batched submission is done, ensure local IO is flushed out.
6662 */
6663 static void io_submit_state_end(struct io_submit_state *state)
6664 {
6665 if (!list_empty(&state->comp.list))
6666 io_submit_flush_completions(&state->comp);
6667 if (state->plug_started)
6668 blk_finish_plug(&state->plug);
6669 io_state_file_put(state);
6670 if (state->free_reqs)
6671 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6672 }
6673
6674 /*
6675 * Start submission side cache.
6676 */
6677 static void io_submit_state_start(struct io_submit_state *state,
6678 struct io_ring_ctx *ctx, unsigned int max_ios)
6679 {
6680 state->plug_started = false;
6681 state->comp.nr = 0;
6682 INIT_LIST_HEAD(&state->comp.list);
6683 state->comp.ctx = ctx;
6684 state->free_reqs = 0;
6685 state->file_refs = 0;
6686 state->ios_left = max_ios;
6687 }
6688
6689 static void io_commit_sqring(struct io_ring_ctx *ctx)
6690 {
6691 struct io_rings *rings = ctx->rings;
6692
6693 /*
6694 * Ensure any loads from the SQEs are done at this point,
6695 * since once we write the new head, the application could
6696 * write new data to them.
6697 */
6698 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6699 }
6700
6701 /*
6702 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6703 * that is mapped by userspace. This means that care needs to be taken to
6704 * ensure that reads are stable, as we cannot rely on userspace always
6705 * being a good citizen. If members of the sqe are validated and then later
6706 * used, it's important that those reads are done through READ_ONCE() to
6707 * prevent a re-load down the line.
6708 */
6709 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6710 {
6711 u32 *sq_array = ctx->sq_array;
6712 unsigned head;
6713
6714 /*
6715 * The cached sq head (or cq tail) serves two purposes:
6716 *
6717 * 1) allows us to batch the cost of updating the user visible
6718 * head updates.
6719 * 2) allows the kernel side to track the head on its own, even
6720 * though the application is the one updating it.
6721 */
6722 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6723 if (likely(head < ctx->sq_entries))
6724 return &ctx->sq_sqes[head];
6725
6726 /* drop invalid entries */
6727 ctx->cached_sq_dropped++;
6728 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6729 return NULL;
6730 }
6731
6732 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6733 {
6734 ctx->cached_sq_head++;
6735 }
6736
6737 /*
6738 * Check SQE restrictions (opcode and flags).
6739 *
6740 * Returns 'true' if SQE is allowed, 'false' otherwise.
6741 */
6742 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6743 struct io_kiocb *req,
6744 unsigned int sqe_flags)
6745 {
6746 if (!ctx->restricted)
6747 return true;
6748
6749 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6750 return false;
6751
6752 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6753 ctx->restrictions.sqe_flags_required)
6754 return false;
6755
6756 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6757 ctx->restrictions.sqe_flags_required))
6758 return false;
6759
6760 return true;
6761 }
6762
6763 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6764 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6765 IOSQE_BUFFER_SELECT)
6766
6767 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6768 const struct io_uring_sqe *sqe,
6769 struct io_submit_state *state)
6770 {
6771 unsigned int sqe_flags;
6772 int id, ret;
6773
6774 req->opcode = READ_ONCE(sqe->opcode);
6775 req->user_data = READ_ONCE(sqe->user_data);
6776 req->async_data = NULL;
6777 req->file = NULL;
6778 req->ctx = ctx;
6779 req->flags = 0;
6780 req->link = NULL;
6781 req->fixed_file_refs = NULL;
6782 /* one is dropped after submission, the other at completion */
6783 refcount_set(&req->refs, 2);
6784 req->task = current;
6785 req->result = 0;
6786
6787 if (unlikely(req->opcode >= IORING_OP_LAST))
6788 return -EINVAL;
6789
6790 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6791 return -EFAULT;
6792
6793 sqe_flags = READ_ONCE(sqe->flags);
6794 /* enforce forwards compatibility on users */
6795 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6796 return -EINVAL;
6797
6798 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6799 return -EACCES;
6800
6801 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6802 !io_op_defs[req->opcode].buffer_select)
6803 return -EOPNOTSUPP;
6804
6805 id = READ_ONCE(sqe->personality);
6806 if (id) {
6807 struct io_identity *iod;
6808
6809 iod = idr_find(&ctx->personality_idr, id);
6810 if (unlikely(!iod))
6811 return -EINVAL;
6812 refcount_inc(&iod->count);
6813
6814 __io_req_init_async(req);
6815 get_cred(iod->creds);
6816 req->work.identity = iod;
6817 req->work.flags |= IO_WQ_WORK_CREDS;
6818 }
6819
6820 /* same numerical values with corresponding REQ_F_*, safe to copy */
6821 req->flags |= sqe_flags;
6822
6823 /*
6824 * Plug now if we have more than 1 IO left after this, and the target
6825 * is potentially a read/write to block based storage.
6826 */
6827 if (!state->plug_started && state->ios_left > 1 &&
6828 io_op_defs[req->opcode].plug) {
6829 blk_start_plug(&state->plug);
6830 state->plug_started = true;
6831 }
6832
6833 ret = 0;
6834 if (io_op_defs[req->opcode].needs_file) {
6835 bool fixed = req->flags & REQ_F_FIXED_FILE;
6836
6837 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6838 if (unlikely(!req->file &&
6839 !io_op_defs[req->opcode].needs_file_no_error))
6840 ret = -EBADF;
6841 }
6842
6843 state->ios_left--;
6844 return ret;
6845 }
6846
6847 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6848 {
6849 struct io_submit_state state;
6850 struct io_submit_link link;
6851 int i, submitted = 0;
6852
6853 /* if we have a backlog and couldn't flush it all, return BUSY */
6854 if (test_bit(0, &ctx->sq_check_overflow)) {
6855 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6856 return -EBUSY;
6857 }
6858
6859 /* make sure SQ entry isn't read before tail */
6860 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6861
6862 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6863 return -EAGAIN;
6864
6865 percpu_counter_add(&current->io_uring->inflight, nr);
6866 refcount_add(nr, &current->usage);
6867
6868 io_submit_state_start(&state, ctx, nr);
6869 link.head = NULL;
6870
6871 for (i = 0; i < nr; i++) {
6872 const struct io_uring_sqe *sqe;
6873 struct io_kiocb *req;
6874 int err;
6875
6876 sqe = io_get_sqe(ctx);
6877 if (unlikely(!sqe)) {
6878 io_consume_sqe(ctx);
6879 break;
6880 }
6881 req = io_alloc_req(ctx, &state);
6882 if (unlikely(!req)) {
6883 if (!submitted)
6884 submitted = -EAGAIN;
6885 break;
6886 }
6887 io_consume_sqe(ctx);
6888 /* will complete beyond this point, count as submitted */
6889 submitted++;
6890
6891 err = io_init_req(ctx, req, sqe, &state);
6892 if (unlikely(err)) {
6893 fail_req:
6894 io_put_req(req);
6895 io_req_complete(req, err);
6896 break;
6897 }
6898
6899 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6900 true, io_async_submit(ctx));
6901 err = io_submit_sqe(req, sqe, &link, &state.comp);
6902 if (err)
6903 goto fail_req;
6904 }
6905
6906 if (unlikely(submitted != nr)) {
6907 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6908 struct io_uring_task *tctx = current->io_uring;
6909 int unused = nr - ref_used;
6910
6911 percpu_ref_put_many(&ctx->refs, unused);
6912 percpu_counter_sub(&tctx->inflight, unused);
6913 put_task_struct_many(current, unused);
6914 }
6915 if (link.head)
6916 io_queue_link_head(link.head, &state.comp);
6917 io_submit_state_end(&state);
6918
6919 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6920 io_commit_sqring(ctx);
6921
6922 return submitted;
6923 }
6924
6925 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6926 {
6927 /* Tell userspace we may need a wakeup call */
6928 spin_lock_irq(&ctx->completion_lock);
6929 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6930 spin_unlock_irq(&ctx->completion_lock);
6931 }
6932
6933 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6934 {
6935 spin_lock_irq(&ctx->completion_lock);
6936 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6937 spin_unlock_irq(&ctx->completion_lock);
6938 }
6939
6940 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6941 {
6942 unsigned int to_submit;
6943 int ret = 0;
6944
6945 to_submit = io_sqring_entries(ctx);
6946 /* if we're handling multiple rings, cap submit size for fairness */
6947 if (cap_entries && to_submit > 8)
6948 to_submit = 8;
6949
6950 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6951 unsigned nr_events = 0;
6952
6953 mutex_lock(&ctx->uring_lock);
6954 if (!list_empty(&ctx->iopoll_list))
6955 io_do_iopoll(ctx, &nr_events, 0);
6956
6957 if (to_submit && !ctx->sqo_dead &&
6958 likely(!percpu_ref_is_dying(&ctx->refs)))
6959 ret = io_submit_sqes(ctx, to_submit);
6960 mutex_unlock(&ctx->uring_lock);
6961 }
6962
6963 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6964 wake_up(&ctx->sqo_sq_wait);
6965
6966 return ret;
6967 }
6968
6969 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6970 {
6971 struct io_ring_ctx *ctx;
6972 unsigned sq_thread_idle = 0;
6973
6974 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6975 if (sq_thread_idle < ctx->sq_thread_idle)
6976 sq_thread_idle = ctx->sq_thread_idle;
6977 }
6978
6979 sqd->sq_thread_idle = sq_thread_idle;
6980 }
6981
6982 static void io_sqd_init_new(struct io_sq_data *sqd)
6983 {
6984 struct io_ring_ctx *ctx;
6985
6986 while (!list_empty(&sqd->ctx_new_list)) {
6987 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6988 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6989 complete(&ctx->sq_thread_comp);
6990 }
6991
6992 io_sqd_update_thread_idle(sqd);
6993 }
6994
6995 static int io_sq_thread(void *data)
6996 {
6997 struct cgroup_subsys_state *cur_css = NULL;
6998 struct files_struct *old_files = current->files;
6999 struct nsproxy *old_nsproxy = current->nsproxy;
7000 const struct cred *old_cred = NULL;
7001 struct io_sq_data *sqd = data;
7002 struct io_ring_ctx *ctx;
7003 unsigned long timeout = 0;
7004 DEFINE_WAIT(wait);
7005
7006 task_lock(current);
7007 current->files = NULL;
7008 current->nsproxy = NULL;
7009 task_unlock(current);
7010
7011 while (!kthread_should_stop()) {
7012 int ret;
7013 bool cap_entries, sqt_spin, needs_sched;
7014
7015 /*
7016 * Any changes to the sqd lists are synchronized through the
7017 * kthread parking. This synchronizes the thread vs users,
7018 * the users are synchronized on the sqd->ctx_lock.
7019 */
7020 if (kthread_should_park()) {
7021 kthread_parkme();
7022 /*
7023 * When sq thread is unparked, in case the previous park operation
7024 * comes from io_put_sq_data(), which means that sq thread is going
7025 * to be stopped, so here needs to have a check.
7026 */
7027 if (kthread_should_stop())
7028 break;
7029 }
7030
7031 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7032 io_sqd_init_new(sqd);
7033 timeout = jiffies + sqd->sq_thread_idle;
7034 }
7035
7036 sqt_spin = false;
7037 cap_entries = !list_is_singular(&sqd->ctx_list);
7038 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7039 if (current->cred != ctx->creds) {
7040 if (old_cred)
7041 revert_creds(old_cred);
7042 old_cred = override_creds(ctx->creds);
7043 }
7044 io_sq_thread_associate_blkcg(ctx, &cur_css);
7045 #ifdef CONFIG_AUDIT
7046 current->loginuid = ctx->loginuid;
7047 current->sessionid = ctx->sessionid;
7048 #endif
7049
7050 ret = __io_sq_thread(ctx, cap_entries);
7051 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7052 sqt_spin = true;
7053
7054 io_sq_thread_drop_mm_files();
7055 }
7056
7057 if (sqt_spin || !time_after(jiffies, timeout)) {
7058 io_run_task_work();
7059 cond_resched();
7060 if (sqt_spin)
7061 timeout = jiffies + sqd->sq_thread_idle;
7062 continue;
7063 }
7064
7065 if (kthread_should_park())
7066 continue;
7067
7068 needs_sched = true;
7069 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7070 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7071 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7072 !list_empty_careful(&ctx->iopoll_list)) {
7073 needs_sched = false;
7074 break;
7075 }
7076 if (io_sqring_entries(ctx)) {
7077 needs_sched = false;
7078 break;
7079 }
7080 }
7081
7082 if (needs_sched) {
7083 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7084 io_ring_set_wakeup_flag(ctx);
7085
7086 schedule();
7087 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7088 io_ring_clear_wakeup_flag(ctx);
7089 }
7090
7091 finish_wait(&sqd->wait, &wait);
7092 timeout = jiffies + sqd->sq_thread_idle;
7093 }
7094
7095 io_run_task_work();
7096
7097 if (cur_css)
7098 io_sq_thread_unassociate_blkcg();
7099 if (old_cred)
7100 revert_creds(old_cred);
7101
7102 task_lock(current);
7103 current->files = old_files;
7104 current->nsproxy = old_nsproxy;
7105 task_unlock(current);
7106
7107 kthread_parkme();
7108
7109 return 0;
7110 }
7111
7112 struct io_wait_queue {
7113 struct wait_queue_entry wq;
7114 struct io_ring_ctx *ctx;
7115 unsigned to_wait;
7116 unsigned nr_timeouts;
7117 };
7118
7119 static inline bool io_should_wake(struct io_wait_queue *iowq)
7120 {
7121 struct io_ring_ctx *ctx = iowq->ctx;
7122
7123 /*
7124 * Wake up if we have enough events, or if a timeout occurred since we
7125 * started waiting. For timeouts, we always want to return to userspace,
7126 * regardless of event count.
7127 */
7128 return io_cqring_events(ctx) >= iowq->to_wait ||
7129 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7130 }
7131
7132 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7133 int wake_flags, void *key)
7134 {
7135 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7136 wq);
7137
7138 /*
7139 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7140 * the task, and the next invocation will do it.
7141 */
7142 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7143 return autoremove_wake_function(curr, mode, wake_flags, key);
7144 return -1;
7145 }
7146
7147 static int io_run_task_work_sig(void)
7148 {
7149 if (io_run_task_work())
7150 return 1;
7151 if (!signal_pending(current))
7152 return 0;
7153 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7154 return -ERESTARTSYS;
7155 return -EINTR;
7156 }
7157
7158 /*
7159 * Wait until events become available, if we don't already have some. The
7160 * application must reap them itself, as they reside on the shared cq ring.
7161 */
7162 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7163 const sigset_t __user *sig, size_t sigsz,
7164 struct __kernel_timespec __user *uts)
7165 {
7166 struct io_wait_queue iowq = {
7167 .wq = {
7168 .private = current,
7169 .func = io_wake_function,
7170 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7171 },
7172 .ctx = ctx,
7173 .to_wait = min_events,
7174 };
7175 struct io_rings *rings = ctx->rings;
7176 struct timespec64 ts;
7177 signed long timeout = 0;
7178 int ret = 0;
7179
7180 do {
7181 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7182 if (io_cqring_events(ctx) >= min_events)
7183 return 0;
7184 if (!io_run_task_work())
7185 break;
7186 } while (1);
7187
7188 if (sig) {
7189 #ifdef CONFIG_COMPAT
7190 if (in_compat_syscall())
7191 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7192 sigsz);
7193 else
7194 #endif
7195 ret = set_user_sigmask(sig, sigsz);
7196
7197 if (ret)
7198 return ret;
7199 }
7200
7201 if (uts) {
7202 if (get_timespec64(&ts, uts))
7203 return -EFAULT;
7204 timeout = timespec64_to_jiffies(&ts);
7205 }
7206
7207 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7208 trace_io_uring_cqring_wait(ctx, min_events);
7209 do {
7210 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7211 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7212 TASK_INTERRUPTIBLE);
7213 /* make sure we run task_work before checking for signals */
7214 ret = io_run_task_work_sig();
7215 if (ret > 0)
7216 continue;
7217 else if (ret < 0)
7218 break;
7219 if (io_should_wake(&iowq))
7220 break;
7221 if (test_bit(0, &ctx->cq_check_overflow))
7222 continue;
7223 if (uts) {
7224 timeout = schedule_timeout(timeout);
7225 if (timeout == 0) {
7226 ret = -ETIME;
7227 break;
7228 }
7229 } else {
7230 schedule();
7231 }
7232 } while (1);
7233 finish_wait(&ctx->wait, &iowq.wq);
7234
7235 restore_saved_sigmask_unless(ret == -EINTR);
7236
7237 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7238 }
7239
7240 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7241 {
7242 #if defined(CONFIG_UNIX)
7243 if (ctx->ring_sock) {
7244 struct sock *sock = ctx->ring_sock->sk;
7245 struct sk_buff *skb;
7246
7247 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7248 kfree_skb(skb);
7249 }
7250 #else
7251 int i;
7252
7253 for (i = 0; i < ctx->nr_user_files; i++) {
7254 struct file *file;
7255
7256 file = io_file_from_index(ctx, i);
7257 if (file)
7258 fput(file);
7259 }
7260 #endif
7261 }
7262
7263 static void io_file_ref_kill(struct percpu_ref *ref)
7264 {
7265 struct fixed_file_data *data;
7266
7267 data = container_of(ref, struct fixed_file_data, refs);
7268 complete(&data->done);
7269 }
7270
7271 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7272 struct fixed_file_ref_node *ref_node)
7273 {
7274 spin_lock_bh(&file_data->lock);
7275 file_data->node = ref_node;
7276 list_add_tail(&ref_node->node, &file_data->ref_list);
7277 spin_unlock_bh(&file_data->lock);
7278 percpu_ref_get(&file_data->refs);
7279 }
7280
7281 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7282 {
7283 struct fixed_file_data *data = ctx->file_data;
7284 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7285 unsigned nr_tables, i;
7286 int ret;
7287
7288 if (!data)
7289 return -ENXIO;
7290 backup_node = alloc_fixed_file_ref_node(ctx);
7291 if (!backup_node)
7292 return -ENOMEM;
7293
7294 spin_lock_bh(&data->lock);
7295 ref_node = data->node;
7296 spin_unlock_bh(&data->lock);
7297 if (ref_node)
7298 percpu_ref_kill(&ref_node->refs);
7299
7300 percpu_ref_kill(&data->refs);
7301
7302 /* wait for all refs nodes to complete */
7303 flush_delayed_work(&ctx->file_put_work);
7304 do {
7305 ret = wait_for_completion_interruptible(&data->done);
7306 if (!ret)
7307 break;
7308 ret = io_run_task_work_sig();
7309 if (ret < 0) {
7310 percpu_ref_resurrect(&data->refs);
7311 reinit_completion(&data->done);
7312 io_sqe_files_set_node(data, backup_node);
7313 return ret;
7314 }
7315 } while (1);
7316
7317 __io_sqe_files_unregister(ctx);
7318 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7319 for (i = 0; i < nr_tables; i++)
7320 kfree(data->table[i].files);
7321 kfree(data->table);
7322 percpu_ref_exit(&data->refs);
7323 kfree(data);
7324 ctx->file_data = NULL;
7325 ctx->nr_user_files = 0;
7326 destroy_fixed_file_ref_node(backup_node);
7327 return 0;
7328 }
7329
7330 static void io_put_sq_data(struct io_sq_data *sqd)
7331 {
7332 if (refcount_dec_and_test(&sqd->refs)) {
7333 /*
7334 * The park is a bit of a work-around, without it we get
7335 * warning spews on shutdown with SQPOLL set and affinity
7336 * set to a single CPU.
7337 */
7338 if (sqd->thread) {
7339 kthread_park(sqd->thread);
7340 kthread_stop(sqd->thread);
7341 }
7342
7343 kfree(sqd);
7344 }
7345 }
7346
7347 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7348 {
7349 struct io_ring_ctx *ctx_attach;
7350 struct io_sq_data *sqd;
7351 struct fd f;
7352
7353 f = fdget(p->wq_fd);
7354 if (!f.file)
7355 return ERR_PTR(-ENXIO);
7356 if (f.file->f_op != &io_uring_fops) {
7357 fdput(f);
7358 return ERR_PTR(-EINVAL);
7359 }
7360
7361 ctx_attach = f.file->private_data;
7362 sqd = ctx_attach->sq_data;
7363 if (!sqd) {
7364 fdput(f);
7365 return ERR_PTR(-EINVAL);
7366 }
7367
7368 refcount_inc(&sqd->refs);
7369 fdput(f);
7370 return sqd;
7371 }
7372
7373 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7374 {
7375 struct io_sq_data *sqd;
7376
7377 if (p->flags & IORING_SETUP_ATTACH_WQ)
7378 return io_attach_sq_data(p);
7379
7380 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7381 if (!sqd)
7382 return ERR_PTR(-ENOMEM);
7383
7384 refcount_set(&sqd->refs, 1);
7385 INIT_LIST_HEAD(&sqd->ctx_list);
7386 INIT_LIST_HEAD(&sqd->ctx_new_list);
7387 mutex_init(&sqd->ctx_lock);
7388 mutex_init(&sqd->lock);
7389 init_waitqueue_head(&sqd->wait);
7390 return sqd;
7391 }
7392
7393 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7394 __releases(&sqd->lock)
7395 {
7396 if (!sqd->thread)
7397 return;
7398 kthread_unpark(sqd->thread);
7399 mutex_unlock(&sqd->lock);
7400 }
7401
7402 static void io_sq_thread_park(struct io_sq_data *sqd)
7403 __acquires(&sqd->lock)
7404 {
7405 if (!sqd->thread)
7406 return;
7407 mutex_lock(&sqd->lock);
7408 kthread_park(sqd->thread);
7409 }
7410
7411 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7412 {
7413 struct io_sq_data *sqd = ctx->sq_data;
7414
7415 if (sqd) {
7416 if (sqd->thread) {
7417 /*
7418 * We may arrive here from the error branch in
7419 * io_sq_offload_create() where the kthread is created
7420 * without being waked up, thus wake it up now to make
7421 * sure the wait will complete.
7422 */
7423 wake_up_process(sqd->thread);
7424 wait_for_completion(&ctx->sq_thread_comp);
7425
7426 io_sq_thread_park(sqd);
7427 }
7428
7429 mutex_lock(&sqd->ctx_lock);
7430 list_del(&ctx->sqd_list);
7431 io_sqd_update_thread_idle(sqd);
7432 mutex_unlock(&sqd->ctx_lock);
7433
7434 if (sqd->thread)
7435 io_sq_thread_unpark(sqd);
7436
7437 io_put_sq_data(sqd);
7438 ctx->sq_data = NULL;
7439 }
7440 }
7441
7442 static void io_finish_async(struct io_ring_ctx *ctx)
7443 {
7444 io_sq_thread_stop(ctx);
7445
7446 if (ctx->io_wq) {
7447 io_wq_destroy(ctx->io_wq);
7448 ctx->io_wq = NULL;
7449 }
7450 }
7451
7452 #if defined(CONFIG_UNIX)
7453 /*
7454 * Ensure the UNIX gc is aware of our file set, so we are certain that
7455 * the io_uring can be safely unregistered on process exit, even if we have
7456 * loops in the file referencing.
7457 */
7458 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7459 {
7460 struct sock *sk = ctx->ring_sock->sk;
7461 struct scm_fp_list *fpl;
7462 struct sk_buff *skb;
7463 int i, nr_files;
7464
7465 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7466 if (!fpl)
7467 return -ENOMEM;
7468
7469 skb = alloc_skb(0, GFP_KERNEL);
7470 if (!skb) {
7471 kfree(fpl);
7472 return -ENOMEM;
7473 }
7474
7475 skb->sk = sk;
7476
7477 nr_files = 0;
7478 fpl->user = get_uid(ctx->user);
7479 for (i = 0; i < nr; i++) {
7480 struct file *file = io_file_from_index(ctx, i + offset);
7481
7482 if (!file)
7483 continue;
7484 fpl->fp[nr_files] = get_file(file);
7485 unix_inflight(fpl->user, fpl->fp[nr_files]);
7486 nr_files++;
7487 }
7488
7489 if (nr_files) {
7490 fpl->max = SCM_MAX_FD;
7491 fpl->count = nr_files;
7492 UNIXCB(skb).fp = fpl;
7493 skb->destructor = unix_destruct_scm;
7494 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7495 skb_queue_head(&sk->sk_receive_queue, skb);
7496
7497 for (i = 0; i < nr_files; i++)
7498 fput(fpl->fp[i]);
7499 } else {
7500 kfree_skb(skb);
7501 kfree(fpl);
7502 }
7503
7504 return 0;
7505 }
7506
7507 /*
7508 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7509 * causes regular reference counting to break down. We rely on the UNIX
7510 * garbage collection to take care of this problem for us.
7511 */
7512 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7513 {
7514 unsigned left, total;
7515 int ret = 0;
7516
7517 total = 0;
7518 left = ctx->nr_user_files;
7519 while (left) {
7520 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7521
7522 ret = __io_sqe_files_scm(ctx, this_files, total);
7523 if (ret)
7524 break;
7525 left -= this_files;
7526 total += this_files;
7527 }
7528
7529 if (!ret)
7530 return 0;
7531
7532 while (total < ctx->nr_user_files) {
7533 struct file *file = io_file_from_index(ctx, total);
7534
7535 if (file)
7536 fput(file);
7537 total++;
7538 }
7539
7540 return ret;
7541 }
7542 #else
7543 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7544 {
7545 return 0;
7546 }
7547 #endif
7548
7549 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7550 unsigned nr_tables, unsigned nr_files)
7551 {
7552 int i;
7553
7554 for (i = 0; i < nr_tables; i++) {
7555 struct fixed_file_table *table = &file_data->table[i];
7556 unsigned this_files;
7557
7558 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7559 table->files = kcalloc(this_files, sizeof(struct file *),
7560 GFP_KERNEL);
7561 if (!table->files)
7562 break;
7563 nr_files -= this_files;
7564 }
7565
7566 if (i == nr_tables)
7567 return 0;
7568
7569 for (i = 0; i < nr_tables; i++) {
7570 struct fixed_file_table *table = &file_data->table[i];
7571 kfree(table->files);
7572 }
7573 return 1;
7574 }
7575
7576 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7577 {
7578 #if defined(CONFIG_UNIX)
7579 struct sock *sock = ctx->ring_sock->sk;
7580 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7581 struct sk_buff *skb;
7582 int i;
7583
7584 __skb_queue_head_init(&list);
7585
7586 /*
7587 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7588 * remove this entry and rearrange the file array.
7589 */
7590 skb = skb_dequeue(head);
7591 while (skb) {
7592 struct scm_fp_list *fp;
7593
7594 fp = UNIXCB(skb).fp;
7595 for (i = 0; i < fp->count; i++) {
7596 int left;
7597
7598 if (fp->fp[i] != file)
7599 continue;
7600
7601 unix_notinflight(fp->user, fp->fp[i]);
7602 left = fp->count - 1 - i;
7603 if (left) {
7604 memmove(&fp->fp[i], &fp->fp[i + 1],
7605 left * sizeof(struct file *));
7606 }
7607 fp->count--;
7608 if (!fp->count) {
7609 kfree_skb(skb);
7610 skb = NULL;
7611 } else {
7612 __skb_queue_tail(&list, skb);
7613 }
7614 fput(file);
7615 file = NULL;
7616 break;
7617 }
7618
7619 if (!file)
7620 break;
7621
7622 __skb_queue_tail(&list, skb);
7623
7624 skb = skb_dequeue(head);
7625 }
7626
7627 if (skb_peek(&list)) {
7628 spin_lock_irq(&head->lock);
7629 while ((skb = __skb_dequeue(&list)) != NULL)
7630 __skb_queue_tail(head, skb);
7631 spin_unlock_irq(&head->lock);
7632 }
7633 #else
7634 fput(file);
7635 #endif
7636 }
7637
7638 struct io_file_put {
7639 struct list_head list;
7640 struct file *file;
7641 };
7642
7643 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7644 {
7645 struct fixed_file_data *file_data = ref_node->file_data;
7646 struct io_ring_ctx *ctx = file_data->ctx;
7647 struct io_file_put *pfile, *tmp;
7648
7649 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7650 list_del(&pfile->list);
7651 io_ring_file_put(ctx, pfile->file);
7652 kfree(pfile);
7653 }
7654
7655 percpu_ref_exit(&ref_node->refs);
7656 kfree(ref_node);
7657 percpu_ref_put(&file_data->refs);
7658 }
7659
7660 static void io_file_put_work(struct work_struct *work)
7661 {
7662 struct io_ring_ctx *ctx;
7663 struct llist_node *node;
7664
7665 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7666 node = llist_del_all(&ctx->file_put_llist);
7667
7668 while (node) {
7669 struct fixed_file_ref_node *ref_node;
7670 struct llist_node *next = node->next;
7671
7672 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7673 __io_file_put_work(ref_node);
7674 node = next;
7675 }
7676 }
7677
7678 static void io_file_data_ref_zero(struct percpu_ref *ref)
7679 {
7680 struct fixed_file_ref_node *ref_node;
7681 struct fixed_file_data *data;
7682 struct io_ring_ctx *ctx;
7683 bool first_add = false;
7684 int delay = HZ;
7685
7686 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7687 data = ref_node->file_data;
7688 ctx = data->ctx;
7689
7690 spin_lock_bh(&data->lock);
7691 ref_node->done = true;
7692
7693 while (!list_empty(&data->ref_list)) {
7694 ref_node = list_first_entry(&data->ref_list,
7695 struct fixed_file_ref_node, node);
7696 /* recycle ref nodes in order */
7697 if (!ref_node->done)
7698 break;
7699 list_del(&ref_node->node);
7700 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7701 }
7702 spin_unlock_bh(&data->lock);
7703
7704 if (percpu_ref_is_dying(&data->refs))
7705 delay = 0;
7706
7707 if (!delay)
7708 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7709 else if (first_add)
7710 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7711 }
7712
7713 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7714 struct io_ring_ctx *ctx)
7715 {
7716 struct fixed_file_ref_node *ref_node;
7717
7718 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7719 if (!ref_node)
7720 return NULL;
7721
7722 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7723 0, GFP_KERNEL)) {
7724 kfree(ref_node);
7725 return NULL;
7726 }
7727 INIT_LIST_HEAD(&ref_node->node);
7728 INIT_LIST_HEAD(&ref_node->file_list);
7729 ref_node->file_data = ctx->file_data;
7730 ref_node->done = false;
7731 return ref_node;
7732 }
7733
7734 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7735 {
7736 percpu_ref_exit(&ref_node->refs);
7737 kfree(ref_node);
7738 }
7739
7740 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7741 unsigned nr_args)
7742 {
7743 __s32 __user *fds = (__s32 __user *) arg;
7744 unsigned nr_tables, i;
7745 struct file *file;
7746 int fd, ret = -ENOMEM;
7747 struct fixed_file_ref_node *ref_node;
7748 struct fixed_file_data *file_data;
7749
7750 if (ctx->file_data)
7751 return -EBUSY;
7752 if (!nr_args)
7753 return -EINVAL;
7754 if (nr_args > IORING_MAX_FIXED_FILES)
7755 return -EMFILE;
7756
7757 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7758 if (!file_data)
7759 return -ENOMEM;
7760 file_data->ctx = ctx;
7761 init_completion(&file_data->done);
7762 INIT_LIST_HEAD(&file_data->ref_list);
7763 spin_lock_init(&file_data->lock);
7764
7765 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7766 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7767 GFP_KERNEL);
7768 if (!file_data->table)
7769 goto out_free;
7770
7771 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7772 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7773 goto out_free;
7774
7775 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7776 goto out_ref;
7777 ctx->file_data = file_data;
7778
7779 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7780 struct fixed_file_table *table;
7781 unsigned index;
7782
7783 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7784 ret = -EFAULT;
7785 goto out_fput;
7786 }
7787 /* allow sparse sets */
7788 if (fd == -1)
7789 continue;
7790
7791 file = fget(fd);
7792 ret = -EBADF;
7793 if (!file)
7794 goto out_fput;
7795
7796 /*
7797 * Don't allow io_uring instances to be registered. If UNIX
7798 * isn't enabled, then this causes a reference cycle and this
7799 * instance can never get freed. If UNIX is enabled we'll
7800 * handle it just fine, but there's still no point in allowing
7801 * a ring fd as it doesn't support regular read/write anyway.
7802 */
7803 if (file->f_op == &io_uring_fops) {
7804 fput(file);
7805 goto out_fput;
7806 }
7807 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7808 index = i & IORING_FILE_TABLE_MASK;
7809 table->files[index] = file;
7810 }
7811
7812 ret = io_sqe_files_scm(ctx);
7813 if (ret) {
7814 io_sqe_files_unregister(ctx);
7815 return ret;
7816 }
7817
7818 ref_node = alloc_fixed_file_ref_node(ctx);
7819 if (!ref_node) {
7820 io_sqe_files_unregister(ctx);
7821 return -ENOMEM;
7822 }
7823
7824 io_sqe_files_set_node(file_data, ref_node);
7825 return ret;
7826 out_fput:
7827 for (i = 0; i < ctx->nr_user_files; i++) {
7828 file = io_file_from_index(ctx, i);
7829 if (file)
7830 fput(file);
7831 }
7832 for (i = 0; i < nr_tables; i++)
7833 kfree(file_data->table[i].files);
7834 ctx->nr_user_files = 0;
7835 out_ref:
7836 percpu_ref_exit(&file_data->refs);
7837 out_free:
7838 kfree(file_data->table);
7839 kfree(file_data);
7840 ctx->file_data = NULL;
7841 return ret;
7842 }
7843
7844 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7845 int index)
7846 {
7847 #if defined(CONFIG_UNIX)
7848 struct sock *sock = ctx->ring_sock->sk;
7849 struct sk_buff_head *head = &sock->sk_receive_queue;
7850 struct sk_buff *skb;
7851
7852 /*
7853 * See if we can merge this file into an existing skb SCM_RIGHTS
7854 * file set. If there's no room, fall back to allocating a new skb
7855 * and filling it in.
7856 */
7857 spin_lock_irq(&head->lock);
7858 skb = skb_peek(head);
7859 if (skb) {
7860 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7861
7862 if (fpl->count < SCM_MAX_FD) {
7863 __skb_unlink(skb, head);
7864 spin_unlock_irq(&head->lock);
7865 fpl->fp[fpl->count] = get_file(file);
7866 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7867 fpl->count++;
7868 spin_lock_irq(&head->lock);
7869 __skb_queue_head(head, skb);
7870 } else {
7871 skb = NULL;
7872 }
7873 }
7874 spin_unlock_irq(&head->lock);
7875
7876 if (skb) {
7877 fput(file);
7878 return 0;
7879 }
7880
7881 return __io_sqe_files_scm(ctx, 1, index);
7882 #else
7883 return 0;
7884 #endif
7885 }
7886
7887 static int io_queue_file_removal(struct fixed_file_data *data,
7888 struct file *file)
7889 {
7890 struct io_file_put *pfile;
7891 struct fixed_file_ref_node *ref_node = data->node;
7892
7893 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7894 if (!pfile)
7895 return -ENOMEM;
7896
7897 pfile->file = file;
7898 list_add(&pfile->list, &ref_node->file_list);
7899
7900 return 0;
7901 }
7902
7903 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7904 struct io_uring_files_update *up,
7905 unsigned nr_args)
7906 {
7907 struct fixed_file_data *data = ctx->file_data;
7908 struct fixed_file_ref_node *ref_node;
7909 struct file *file;
7910 __s32 __user *fds;
7911 int fd, i, err;
7912 __u32 done;
7913 bool needs_switch = false;
7914
7915 if (check_add_overflow(up->offset, nr_args, &done))
7916 return -EOVERFLOW;
7917 if (done > ctx->nr_user_files)
7918 return -EINVAL;
7919
7920 ref_node = alloc_fixed_file_ref_node(ctx);
7921 if (!ref_node)
7922 return -ENOMEM;
7923
7924 done = 0;
7925 fds = u64_to_user_ptr(up->fds);
7926 while (nr_args) {
7927 struct fixed_file_table *table;
7928 unsigned index;
7929
7930 err = 0;
7931 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7932 err = -EFAULT;
7933 break;
7934 }
7935 i = array_index_nospec(up->offset, ctx->nr_user_files);
7936 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7937 index = i & IORING_FILE_TABLE_MASK;
7938 if (table->files[index]) {
7939 file = table->files[index];
7940 err = io_queue_file_removal(data, file);
7941 if (err)
7942 break;
7943 table->files[index] = NULL;
7944 needs_switch = true;
7945 }
7946 if (fd != -1) {
7947 file = fget(fd);
7948 if (!file) {
7949 err = -EBADF;
7950 break;
7951 }
7952 /*
7953 * Don't allow io_uring instances to be registered. If
7954 * UNIX isn't enabled, then this causes a reference
7955 * cycle and this instance can never get freed. If UNIX
7956 * is enabled we'll handle it just fine, but there's
7957 * still no point in allowing a ring fd as it doesn't
7958 * support regular read/write anyway.
7959 */
7960 if (file->f_op == &io_uring_fops) {
7961 fput(file);
7962 err = -EBADF;
7963 break;
7964 }
7965 table->files[index] = file;
7966 err = io_sqe_file_register(ctx, file, i);
7967 if (err) {
7968 table->files[index] = NULL;
7969 fput(file);
7970 break;
7971 }
7972 }
7973 nr_args--;
7974 done++;
7975 up->offset++;
7976 }
7977
7978 if (needs_switch) {
7979 percpu_ref_kill(&data->node->refs);
7980 io_sqe_files_set_node(data, ref_node);
7981 } else
7982 destroy_fixed_file_ref_node(ref_node);
7983
7984 return done ? done : err;
7985 }
7986
7987 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7988 unsigned nr_args)
7989 {
7990 struct io_uring_files_update up;
7991
7992 if (!ctx->file_data)
7993 return -ENXIO;
7994 if (!nr_args)
7995 return -EINVAL;
7996 if (copy_from_user(&up, arg, sizeof(up)))
7997 return -EFAULT;
7998 if (up.resv)
7999 return -EINVAL;
8000
8001 return __io_sqe_files_update(ctx, &up, nr_args);
8002 }
8003
8004 static void io_free_work(struct io_wq_work *work)
8005 {
8006 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8007
8008 /* Consider that io_steal_work() relies on this ref */
8009 io_put_req(req);
8010 }
8011
8012 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8013 struct io_uring_params *p)
8014 {
8015 struct io_wq_data data;
8016 struct fd f;
8017 struct io_ring_ctx *ctx_attach;
8018 unsigned int concurrency;
8019 int ret = 0;
8020
8021 data.user = ctx->user;
8022 data.free_work = io_free_work;
8023 data.do_work = io_wq_submit_work;
8024
8025 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8026 /* Do QD, or 4 * CPUS, whatever is smallest */
8027 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8028
8029 ctx->io_wq = io_wq_create(concurrency, &data);
8030 if (IS_ERR(ctx->io_wq)) {
8031 ret = PTR_ERR(ctx->io_wq);
8032 ctx->io_wq = NULL;
8033 }
8034 return ret;
8035 }
8036
8037 f = fdget(p->wq_fd);
8038 if (!f.file)
8039 return -EBADF;
8040
8041 if (f.file->f_op != &io_uring_fops) {
8042 ret = -EINVAL;
8043 goto out_fput;
8044 }
8045
8046 ctx_attach = f.file->private_data;
8047 /* @io_wq is protected by holding the fd */
8048 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8049 ret = -EINVAL;
8050 goto out_fput;
8051 }
8052
8053 ctx->io_wq = ctx_attach->io_wq;
8054 out_fput:
8055 fdput(f);
8056 return ret;
8057 }
8058
8059 static int io_uring_alloc_task_context(struct task_struct *task)
8060 {
8061 struct io_uring_task *tctx;
8062 int ret;
8063
8064 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8065 if (unlikely(!tctx))
8066 return -ENOMEM;
8067
8068 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8069 if (unlikely(ret)) {
8070 kfree(tctx);
8071 return ret;
8072 }
8073
8074 xa_init(&tctx->xa);
8075 init_waitqueue_head(&tctx->wait);
8076 tctx->last = NULL;
8077 atomic_set(&tctx->in_idle, 0);
8078 tctx->sqpoll = false;
8079 io_init_identity(&tctx->__identity);
8080 tctx->identity = &tctx->__identity;
8081 task->io_uring = tctx;
8082 return 0;
8083 }
8084
8085 void __io_uring_free(struct task_struct *tsk)
8086 {
8087 struct io_uring_task *tctx = tsk->io_uring;
8088
8089 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8090 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8091 if (tctx->identity != &tctx->__identity)
8092 kfree(tctx->identity);
8093 percpu_counter_destroy(&tctx->inflight);
8094 kfree(tctx);
8095 tsk->io_uring = NULL;
8096 }
8097
8098 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8099 struct io_uring_params *p)
8100 {
8101 int ret;
8102
8103 if (ctx->flags & IORING_SETUP_SQPOLL) {
8104 struct io_sq_data *sqd;
8105
8106 ret = -EPERM;
8107 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8108 goto err;
8109
8110 sqd = io_get_sq_data(p);
8111 if (IS_ERR(sqd)) {
8112 ret = PTR_ERR(sqd);
8113 goto err;
8114 }
8115
8116 ctx->sq_data = sqd;
8117 io_sq_thread_park(sqd);
8118 mutex_lock(&sqd->ctx_lock);
8119 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8120 mutex_unlock(&sqd->ctx_lock);
8121 io_sq_thread_unpark(sqd);
8122
8123 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8124 if (!ctx->sq_thread_idle)
8125 ctx->sq_thread_idle = HZ;
8126
8127 if (sqd->thread)
8128 goto done;
8129
8130 if (p->flags & IORING_SETUP_SQ_AFF) {
8131 int cpu = p->sq_thread_cpu;
8132
8133 ret = -EINVAL;
8134 if (cpu >= nr_cpu_ids)
8135 goto err;
8136 if (!cpu_online(cpu))
8137 goto err;
8138
8139 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8140 cpu, "io_uring-sq");
8141 } else {
8142 sqd->thread = kthread_create(io_sq_thread, sqd,
8143 "io_uring-sq");
8144 }
8145 if (IS_ERR(sqd->thread)) {
8146 ret = PTR_ERR(sqd->thread);
8147 sqd->thread = NULL;
8148 goto err;
8149 }
8150 ret = io_uring_alloc_task_context(sqd->thread);
8151 if (ret)
8152 goto err;
8153 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8154 /* Can't have SQ_AFF without SQPOLL */
8155 ret = -EINVAL;
8156 goto err;
8157 }
8158
8159 done:
8160 ret = io_init_wq_offload(ctx, p);
8161 if (ret)
8162 goto err;
8163
8164 return 0;
8165 err:
8166 io_finish_async(ctx);
8167 return ret;
8168 }
8169
8170 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8171 {
8172 struct io_sq_data *sqd = ctx->sq_data;
8173
8174 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8175 wake_up_process(sqd->thread);
8176 }
8177
8178 static inline void __io_unaccount_mem(struct user_struct *user,
8179 unsigned long nr_pages)
8180 {
8181 atomic_long_sub(nr_pages, &user->locked_vm);
8182 }
8183
8184 static inline int __io_account_mem(struct user_struct *user,
8185 unsigned long nr_pages)
8186 {
8187 unsigned long page_limit, cur_pages, new_pages;
8188
8189 /* Don't allow more pages than we can safely lock */
8190 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8191
8192 do {
8193 cur_pages = atomic_long_read(&user->locked_vm);
8194 new_pages = cur_pages + nr_pages;
8195 if (new_pages > page_limit)
8196 return -ENOMEM;
8197 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8198 new_pages) != cur_pages);
8199
8200 return 0;
8201 }
8202
8203 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8204 enum io_mem_account acct)
8205 {
8206 if (ctx->limit_mem)
8207 __io_unaccount_mem(ctx->user, nr_pages);
8208
8209 if (ctx->mm_account) {
8210 if (acct == ACCT_LOCKED) {
8211 mmap_write_lock(ctx->mm_account);
8212 ctx->mm_account->locked_vm -= nr_pages;
8213 mmap_write_unlock(ctx->mm_account);
8214 }else if (acct == ACCT_PINNED) {
8215 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8216 }
8217 }
8218 }
8219
8220 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8221 enum io_mem_account acct)
8222 {
8223 int ret;
8224
8225 if (ctx->limit_mem) {
8226 ret = __io_account_mem(ctx->user, nr_pages);
8227 if (ret)
8228 return ret;
8229 }
8230
8231 if (ctx->mm_account) {
8232 if (acct == ACCT_LOCKED) {
8233 mmap_write_lock(ctx->mm_account);
8234 ctx->mm_account->locked_vm += nr_pages;
8235 mmap_write_unlock(ctx->mm_account);
8236 } else if (acct == ACCT_PINNED) {
8237 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8238 }
8239 }
8240
8241 return 0;
8242 }
8243
8244 static void io_mem_free(void *ptr)
8245 {
8246 struct page *page;
8247
8248 if (!ptr)
8249 return;
8250
8251 page = virt_to_head_page(ptr);
8252 if (put_page_testzero(page))
8253 free_compound_page(page);
8254 }
8255
8256 static void *io_mem_alloc(size_t size)
8257 {
8258 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8259 __GFP_NORETRY;
8260
8261 return (void *) __get_free_pages(gfp_flags, get_order(size));
8262 }
8263
8264 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8265 size_t *sq_offset)
8266 {
8267 struct io_rings *rings;
8268 size_t off, sq_array_size;
8269
8270 off = struct_size(rings, cqes, cq_entries);
8271 if (off == SIZE_MAX)
8272 return SIZE_MAX;
8273
8274 #ifdef CONFIG_SMP
8275 off = ALIGN(off, SMP_CACHE_BYTES);
8276 if (off == 0)
8277 return SIZE_MAX;
8278 #endif
8279
8280 if (sq_offset)
8281 *sq_offset = off;
8282
8283 sq_array_size = array_size(sizeof(u32), sq_entries);
8284 if (sq_array_size == SIZE_MAX)
8285 return SIZE_MAX;
8286
8287 if (check_add_overflow(off, sq_array_size, &off))
8288 return SIZE_MAX;
8289
8290 return off;
8291 }
8292
8293 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8294 {
8295 size_t pages;
8296
8297 pages = (size_t)1 << get_order(
8298 rings_size(sq_entries, cq_entries, NULL));
8299 pages += (size_t)1 << get_order(
8300 array_size(sizeof(struct io_uring_sqe), sq_entries));
8301
8302 return pages;
8303 }
8304
8305 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8306 {
8307 int i, j;
8308
8309 if (!ctx->user_bufs)
8310 return -ENXIO;
8311
8312 for (i = 0; i < ctx->nr_user_bufs; i++) {
8313 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8314
8315 for (j = 0; j < imu->nr_bvecs; j++)
8316 unpin_user_page(imu->bvec[j].bv_page);
8317
8318 if (imu->acct_pages)
8319 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8320 kvfree(imu->bvec);
8321 imu->nr_bvecs = 0;
8322 }
8323
8324 kfree(ctx->user_bufs);
8325 ctx->user_bufs = NULL;
8326 ctx->nr_user_bufs = 0;
8327 return 0;
8328 }
8329
8330 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8331 void __user *arg, unsigned index)
8332 {
8333 struct iovec __user *src;
8334
8335 #ifdef CONFIG_COMPAT
8336 if (ctx->compat) {
8337 struct compat_iovec __user *ciovs;
8338 struct compat_iovec ciov;
8339
8340 ciovs = (struct compat_iovec __user *) arg;
8341 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8342 return -EFAULT;
8343
8344 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8345 dst->iov_len = ciov.iov_len;
8346 return 0;
8347 }
8348 #endif
8349 src = (struct iovec __user *) arg;
8350 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8351 return -EFAULT;
8352 return 0;
8353 }
8354
8355 /*
8356 * Not super efficient, but this is just a registration time. And we do cache
8357 * the last compound head, so generally we'll only do a full search if we don't
8358 * match that one.
8359 *
8360 * We check if the given compound head page has already been accounted, to
8361 * avoid double accounting it. This allows us to account the full size of the
8362 * page, not just the constituent pages of a huge page.
8363 */
8364 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8365 int nr_pages, struct page *hpage)
8366 {
8367 int i, j;
8368
8369 /* check current page array */
8370 for (i = 0; i < nr_pages; i++) {
8371 if (!PageCompound(pages[i]))
8372 continue;
8373 if (compound_head(pages[i]) == hpage)
8374 return true;
8375 }
8376
8377 /* check previously registered pages */
8378 for (i = 0; i < ctx->nr_user_bufs; i++) {
8379 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8380
8381 for (j = 0; j < imu->nr_bvecs; j++) {
8382 if (!PageCompound(imu->bvec[j].bv_page))
8383 continue;
8384 if (compound_head(imu->bvec[j].bv_page) == hpage)
8385 return true;
8386 }
8387 }
8388
8389 return false;
8390 }
8391
8392 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8393 int nr_pages, struct io_mapped_ubuf *imu,
8394 struct page **last_hpage)
8395 {
8396 int i, ret;
8397
8398 for (i = 0; i < nr_pages; i++) {
8399 if (!PageCompound(pages[i])) {
8400 imu->acct_pages++;
8401 } else {
8402 struct page *hpage;
8403
8404 hpage = compound_head(pages[i]);
8405 if (hpage == *last_hpage)
8406 continue;
8407 *last_hpage = hpage;
8408 if (headpage_already_acct(ctx, pages, i, hpage))
8409 continue;
8410 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8411 }
8412 }
8413
8414 if (!imu->acct_pages)
8415 return 0;
8416
8417 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8418 if (ret)
8419 imu->acct_pages = 0;
8420 return ret;
8421 }
8422
8423 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8424 unsigned nr_args)
8425 {
8426 struct vm_area_struct **vmas = NULL;
8427 struct page **pages = NULL;
8428 struct page *last_hpage = NULL;
8429 int i, j, got_pages = 0;
8430 int ret = -EINVAL;
8431
8432 if (ctx->user_bufs)
8433 return -EBUSY;
8434 if (!nr_args || nr_args > UIO_MAXIOV)
8435 return -EINVAL;
8436
8437 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8438 GFP_KERNEL);
8439 if (!ctx->user_bufs)
8440 return -ENOMEM;
8441
8442 for (i = 0; i < nr_args; i++) {
8443 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8444 unsigned long off, start, end, ubuf;
8445 int pret, nr_pages;
8446 struct iovec iov;
8447 size_t size;
8448
8449 ret = io_copy_iov(ctx, &iov, arg, i);
8450 if (ret)
8451 goto err;
8452
8453 /*
8454 * Don't impose further limits on the size and buffer
8455 * constraints here, we'll -EINVAL later when IO is
8456 * submitted if they are wrong.
8457 */
8458 ret = -EFAULT;
8459 if (!iov.iov_base || !iov.iov_len)
8460 goto err;
8461
8462 /* arbitrary limit, but we need something */
8463 if (iov.iov_len > SZ_1G)
8464 goto err;
8465
8466 ubuf = (unsigned long) iov.iov_base;
8467 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8468 start = ubuf >> PAGE_SHIFT;
8469 nr_pages = end - start;
8470
8471 ret = 0;
8472 if (!pages || nr_pages > got_pages) {
8473 kvfree(vmas);
8474 kvfree(pages);
8475 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8476 GFP_KERNEL);
8477 vmas = kvmalloc_array(nr_pages,
8478 sizeof(struct vm_area_struct *),
8479 GFP_KERNEL);
8480 if (!pages || !vmas) {
8481 ret = -ENOMEM;
8482 goto err;
8483 }
8484 got_pages = nr_pages;
8485 }
8486
8487 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8488 GFP_KERNEL);
8489 ret = -ENOMEM;
8490 if (!imu->bvec)
8491 goto err;
8492
8493 ret = 0;
8494 mmap_read_lock(current->mm);
8495 pret = pin_user_pages(ubuf, nr_pages,
8496 FOLL_WRITE | FOLL_LONGTERM,
8497 pages, vmas);
8498 if (pret == nr_pages) {
8499 /* don't support file backed memory */
8500 for (j = 0; j < nr_pages; j++) {
8501 struct vm_area_struct *vma = vmas[j];
8502
8503 if (vma->vm_file &&
8504 !is_file_hugepages(vma->vm_file)) {
8505 ret = -EOPNOTSUPP;
8506 break;
8507 }
8508 }
8509 } else {
8510 ret = pret < 0 ? pret : -EFAULT;
8511 }
8512 mmap_read_unlock(current->mm);
8513 if (ret) {
8514 /*
8515 * if we did partial map, or found file backed vmas,
8516 * release any pages we did get
8517 */
8518 if (pret > 0)
8519 unpin_user_pages(pages, pret);
8520 kvfree(imu->bvec);
8521 goto err;
8522 }
8523
8524 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8525 if (ret) {
8526 unpin_user_pages(pages, pret);
8527 kvfree(imu->bvec);
8528 goto err;
8529 }
8530
8531 off = ubuf & ~PAGE_MASK;
8532 size = iov.iov_len;
8533 for (j = 0; j < nr_pages; j++) {
8534 size_t vec_len;
8535
8536 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8537 imu->bvec[j].bv_page = pages[j];
8538 imu->bvec[j].bv_len = vec_len;
8539 imu->bvec[j].bv_offset = off;
8540 off = 0;
8541 size -= vec_len;
8542 }
8543 /* store original address for later verification */
8544 imu->ubuf = ubuf;
8545 imu->len = iov.iov_len;
8546 imu->nr_bvecs = nr_pages;
8547
8548 ctx->nr_user_bufs++;
8549 }
8550 kvfree(pages);
8551 kvfree(vmas);
8552 return 0;
8553 err:
8554 kvfree(pages);
8555 kvfree(vmas);
8556 io_sqe_buffer_unregister(ctx);
8557 return ret;
8558 }
8559
8560 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8561 {
8562 __s32 __user *fds = arg;
8563 int fd;
8564
8565 if (ctx->cq_ev_fd)
8566 return -EBUSY;
8567
8568 if (copy_from_user(&fd, fds, sizeof(*fds)))
8569 return -EFAULT;
8570
8571 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8572 if (IS_ERR(ctx->cq_ev_fd)) {
8573 int ret = PTR_ERR(ctx->cq_ev_fd);
8574 ctx->cq_ev_fd = NULL;
8575 return ret;
8576 }
8577
8578 return 0;
8579 }
8580
8581 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8582 {
8583 if (ctx->cq_ev_fd) {
8584 eventfd_ctx_put(ctx->cq_ev_fd);
8585 ctx->cq_ev_fd = NULL;
8586 return 0;
8587 }
8588
8589 return -ENXIO;
8590 }
8591
8592 static int __io_destroy_buffers(int id, void *p, void *data)
8593 {
8594 struct io_ring_ctx *ctx = data;
8595 struct io_buffer *buf = p;
8596
8597 __io_remove_buffers(ctx, buf, id, -1U);
8598 return 0;
8599 }
8600
8601 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8602 {
8603 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8604 idr_destroy(&ctx->io_buffer_idr);
8605 }
8606
8607 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8608 {
8609 io_finish_async(ctx);
8610 io_sqe_buffer_unregister(ctx);
8611
8612 if (ctx->sqo_task) {
8613 put_task_struct(ctx->sqo_task);
8614 ctx->sqo_task = NULL;
8615 mmdrop(ctx->mm_account);
8616 ctx->mm_account = NULL;
8617 }
8618
8619 #ifdef CONFIG_BLK_CGROUP
8620 if (ctx->sqo_blkcg_css)
8621 css_put(ctx->sqo_blkcg_css);
8622 #endif
8623
8624 io_sqe_files_unregister(ctx);
8625 io_eventfd_unregister(ctx);
8626 io_destroy_buffers(ctx);
8627 idr_destroy(&ctx->personality_idr);
8628
8629 #if defined(CONFIG_UNIX)
8630 if (ctx->ring_sock) {
8631 ctx->ring_sock->file = NULL; /* so that iput() is called */
8632 sock_release(ctx->ring_sock);
8633 }
8634 #endif
8635
8636 io_mem_free(ctx->rings);
8637 io_mem_free(ctx->sq_sqes);
8638
8639 percpu_ref_exit(&ctx->refs);
8640 free_uid(ctx->user);
8641 put_cred(ctx->creds);
8642 kfree(ctx->cancel_hash);
8643 kmem_cache_free(req_cachep, ctx->fallback_req);
8644 kfree(ctx);
8645 }
8646
8647 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8648 {
8649 struct io_ring_ctx *ctx = file->private_data;
8650 __poll_t mask = 0;
8651
8652 poll_wait(file, &ctx->cq_wait, wait);
8653 /*
8654 * synchronizes with barrier from wq_has_sleeper call in
8655 * io_commit_cqring
8656 */
8657 smp_rmb();
8658 if (!io_sqring_full(ctx))
8659 mask |= EPOLLOUT | EPOLLWRNORM;
8660 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8661 if (io_cqring_events(ctx))
8662 mask |= EPOLLIN | EPOLLRDNORM;
8663
8664 return mask;
8665 }
8666
8667 static int io_uring_fasync(int fd, struct file *file, int on)
8668 {
8669 struct io_ring_ctx *ctx = file->private_data;
8670
8671 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8672 }
8673
8674 static int io_remove_personalities(int id, void *p, void *data)
8675 {
8676 struct io_ring_ctx *ctx = data;
8677 struct io_identity *iod;
8678
8679 iod = idr_remove(&ctx->personality_idr, id);
8680 if (iod) {
8681 put_cred(iod->creds);
8682 if (refcount_dec_and_test(&iod->count))
8683 kfree(iod);
8684 }
8685 return 0;
8686 }
8687
8688 static void io_ring_exit_work(struct work_struct *work)
8689 {
8690 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8691 exit_work);
8692
8693 /*
8694 * If we're doing polled IO and end up having requests being
8695 * submitted async (out-of-line), then completions can come in while
8696 * we're waiting for refs to drop. We need to reap these manually,
8697 * as nobody else will be looking for them.
8698 */
8699 do {
8700 __io_uring_cancel_task_requests(ctx, NULL);
8701 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8702 io_ring_ctx_free(ctx);
8703 }
8704
8705 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8706 {
8707 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8708
8709 return req->ctx == data;
8710 }
8711
8712 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8713 {
8714 mutex_lock(&ctx->uring_lock);
8715 percpu_ref_kill(&ctx->refs);
8716
8717 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8718 ctx->sqo_dead = 1;
8719
8720 /* if force is set, the ring is going away. always drop after that */
8721 ctx->cq_overflow_flushed = 1;
8722 if (ctx->rings)
8723 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8724 mutex_unlock(&ctx->uring_lock);
8725
8726 io_kill_timeouts(ctx, NULL, NULL);
8727 io_poll_remove_all(ctx, NULL, NULL);
8728
8729 if (ctx->io_wq)
8730 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8731
8732 /* if we failed setting up the ctx, we might not have any rings */
8733 io_iopoll_try_reap_events(ctx);
8734 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8735
8736 /*
8737 * Do this upfront, so we won't have a grace period where the ring
8738 * is closed but resources aren't reaped yet. This can cause
8739 * spurious failure in setting up a new ring.
8740 */
8741 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8742 ACCT_LOCKED);
8743
8744 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8745 /*
8746 * Use system_unbound_wq to avoid spawning tons of event kworkers
8747 * if we're exiting a ton of rings at the same time. It just adds
8748 * noise and overhead, there's no discernable change in runtime
8749 * over using system_wq.
8750 */
8751 queue_work(system_unbound_wq, &ctx->exit_work);
8752 }
8753
8754 static int io_uring_release(struct inode *inode, struct file *file)
8755 {
8756 struct io_ring_ctx *ctx = file->private_data;
8757
8758 file->private_data = NULL;
8759 io_ring_ctx_wait_and_kill(ctx);
8760 return 0;
8761 }
8762
8763 struct io_task_cancel {
8764 struct task_struct *task;
8765 struct files_struct *files;
8766 };
8767
8768 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8769 {
8770 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8771 struct io_task_cancel *cancel = data;
8772 bool ret;
8773
8774 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8775 unsigned long flags;
8776 struct io_ring_ctx *ctx = req->ctx;
8777
8778 /* protect against races with linked timeouts */
8779 spin_lock_irqsave(&ctx->completion_lock, flags);
8780 ret = io_match_task(req, cancel->task, cancel->files);
8781 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8782 } else {
8783 ret = io_match_task(req, cancel->task, cancel->files);
8784 }
8785 return ret;
8786 }
8787
8788 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8789 struct task_struct *task,
8790 struct files_struct *files)
8791 {
8792 struct io_defer_entry *de = NULL;
8793 LIST_HEAD(list);
8794
8795 spin_lock_irq(&ctx->completion_lock);
8796 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8797 if (io_match_task(de->req, task, files)) {
8798 list_cut_position(&list, &ctx->defer_list, &de->list);
8799 break;
8800 }
8801 }
8802 spin_unlock_irq(&ctx->completion_lock);
8803
8804 while (!list_empty(&list)) {
8805 de = list_first_entry(&list, struct io_defer_entry, list);
8806 list_del_init(&de->list);
8807 req_set_fail_links(de->req);
8808 io_put_req(de->req);
8809 io_req_complete(de->req, -ECANCELED);
8810 kfree(de);
8811 }
8812 }
8813
8814 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8815 struct task_struct *task,
8816 struct files_struct *files)
8817 {
8818 while (!list_empty_careful(&ctx->inflight_list)) {
8819 struct io_task_cancel cancel = { .task = task, .files = files };
8820 struct io_kiocb *req;
8821 DEFINE_WAIT(wait);
8822 bool found = false;
8823
8824 spin_lock_irq(&ctx->inflight_lock);
8825 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8826 if (req->task != task ||
8827 req->work.identity->files != files)
8828 continue;
8829 found = true;
8830 break;
8831 }
8832 if (found)
8833 prepare_to_wait(&task->io_uring->wait, &wait,
8834 TASK_UNINTERRUPTIBLE);
8835 spin_unlock_irq(&ctx->inflight_lock);
8836
8837 /* We need to keep going until we don't find a matching req */
8838 if (!found)
8839 break;
8840
8841 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8842 io_poll_remove_all(ctx, task, files);
8843 io_kill_timeouts(ctx, task, files);
8844 /* cancellations _may_ trigger task work */
8845 io_run_task_work();
8846 schedule();
8847 finish_wait(&task->io_uring->wait, &wait);
8848 }
8849 }
8850
8851 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8852 struct task_struct *task)
8853 {
8854 while (1) {
8855 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8856 enum io_wq_cancel cret;
8857 bool ret = false;
8858
8859 if (ctx->io_wq) {
8860 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8861 &cancel, true);
8862 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8863 }
8864
8865 /* SQPOLL thread does its own polling */
8866 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8867 while (!list_empty_careful(&ctx->iopoll_list)) {
8868 io_iopoll_try_reap_events(ctx);
8869 ret = true;
8870 }
8871 }
8872
8873 ret |= io_poll_remove_all(ctx, task, NULL);
8874 ret |= io_kill_timeouts(ctx, task, NULL);
8875 ret |= io_run_task_work();
8876 if (!ret)
8877 break;
8878 cond_resched();
8879 }
8880 }
8881
8882 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
8883 {
8884 WARN_ON_ONCE(ctx->sqo_task != current);
8885
8886 mutex_lock(&ctx->uring_lock);
8887 ctx->sqo_dead = 1;
8888 mutex_unlock(&ctx->uring_lock);
8889
8890 /* make sure callers enter the ring to get error */
8891 io_ring_set_wakeup_flag(ctx);
8892 }
8893
8894 /*
8895 * We need to iteratively cancel requests, in case a request has dependent
8896 * hard links. These persist even for failure of cancelations, hence keep
8897 * looping until none are found.
8898 */
8899 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8900 struct files_struct *files)
8901 {
8902 struct task_struct *task = current;
8903
8904 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8905 /* for SQPOLL only sqo_task has task notes */
8906 io_disable_sqo_submit(ctx);
8907 task = ctx->sq_data->thread;
8908 atomic_inc(&task->io_uring->in_idle);
8909 io_sq_thread_park(ctx->sq_data);
8910 }
8911
8912 io_cancel_defer_files(ctx, task, files);
8913 io_cqring_overflow_flush(ctx, true, task, files);
8914
8915 if (!files)
8916 __io_uring_cancel_task_requests(ctx, task);
8917 else
8918 io_uring_cancel_files(ctx, task, files);
8919
8920 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8921 atomic_dec(&task->io_uring->in_idle);
8922 /*
8923 * If the files that are going away are the ones in the thread
8924 * identity, clear them out.
8925 */
8926 if (task->io_uring->identity->files == files)
8927 task->io_uring->identity->files = NULL;
8928 io_sq_thread_unpark(ctx->sq_data);
8929 }
8930 }
8931
8932 /*
8933 * Note that this task has used io_uring. We use it for cancelation purposes.
8934 */
8935 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8936 {
8937 struct io_uring_task *tctx = current->io_uring;
8938 int ret;
8939
8940 if (unlikely(!tctx)) {
8941 ret = io_uring_alloc_task_context(current);
8942 if (unlikely(ret))
8943 return ret;
8944 tctx = current->io_uring;
8945 }
8946 if (tctx->last != file) {
8947 void *old = xa_load(&tctx->xa, (unsigned long)file);
8948
8949 if (!old) {
8950 get_file(file);
8951 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8952 file, GFP_KERNEL));
8953 if (ret) {
8954 fput(file);
8955 return ret;
8956 }
8957 }
8958 tctx->last = file;
8959 }
8960
8961 /*
8962 * This is race safe in that the task itself is doing this, hence it
8963 * cannot be going through the exit/cancel paths at the same time.
8964 * This cannot be modified while exit/cancel is running.
8965 */
8966 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8967 tctx->sqpoll = true;
8968
8969 return 0;
8970 }
8971
8972 /*
8973 * Remove this io_uring_file -> task mapping.
8974 */
8975 static void io_uring_del_task_file(struct file *file)
8976 {
8977 struct io_uring_task *tctx = current->io_uring;
8978
8979 if (tctx->last == file)
8980 tctx->last = NULL;
8981 file = xa_erase(&tctx->xa, (unsigned long)file);
8982 if (file)
8983 fput(file);
8984 }
8985
8986 static void io_uring_remove_task_files(struct io_uring_task *tctx)
8987 {
8988 struct file *file;
8989 unsigned long index;
8990
8991 xa_for_each(&tctx->xa, index, file)
8992 io_uring_del_task_file(file);
8993 }
8994
8995 void __io_uring_files_cancel(struct files_struct *files)
8996 {
8997 struct io_uring_task *tctx = current->io_uring;
8998 struct file *file;
8999 unsigned long index;
9000
9001 /* make sure overflow events are dropped */
9002 atomic_inc(&tctx->in_idle);
9003 xa_for_each(&tctx->xa, index, file)
9004 io_uring_cancel_task_requests(file->private_data, files);
9005 atomic_dec(&tctx->in_idle);
9006
9007 if (files)
9008 io_uring_remove_task_files(tctx);
9009 }
9010
9011 static s64 tctx_inflight(struct io_uring_task *tctx)
9012 {
9013 unsigned long index;
9014 struct file *file;
9015 s64 inflight;
9016
9017 inflight = percpu_counter_sum(&tctx->inflight);
9018 if (!tctx->sqpoll)
9019 return inflight;
9020
9021 /*
9022 * If we have SQPOLL rings, then we need to iterate and find them, and
9023 * add the pending count for those.
9024 */
9025 xa_for_each(&tctx->xa, index, file) {
9026 struct io_ring_ctx *ctx = file->private_data;
9027
9028 if (ctx->flags & IORING_SETUP_SQPOLL) {
9029 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9030
9031 inflight += percpu_counter_sum(&__tctx->inflight);
9032 }
9033 }
9034
9035 return inflight;
9036 }
9037
9038 /*
9039 * Find any io_uring fd that this task has registered or done IO on, and cancel
9040 * requests.
9041 */
9042 void __io_uring_task_cancel(void)
9043 {
9044 struct io_uring_task *tctx = current->io_uring;
9045 DEFINE_WAIT(wait);
9046 s64 inflight;
9047
9048 /* make sure overflow events are dropped */
9049 atomic_inc(&tctx->in_idle);
9050
9051 do {
9052 /* read completions before cancelations */
9053 inflight = tctx_inflight(tctx);
9054 if (!inflight)
9055 break;
9056 __io_uring_files_cancel(NULL);
9057
9058 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9059
9060 /*
9061 * If we've seen completions, retry. This avoids a race where
9062 * a completion comes in before we did prepare_to_wait().
9063 */
9064 if (inflight != tctx_inflight(tctx))
9065 continue;
9066 schedule();
9067 finish_wait(&tctx->wait, &wait);
9068 } while (1);
9069
9070 atomic_dec(&tctx->in_idle);
9071
9072 io_uring_remove_task_files(tctx);
9073 }
9074
9075 static int io_uring_flush(struct file *file, void *data)
9076 {
9077 struct io_uring_task *tctx = current->io_uring;
9078 struct io_ring_ctx *ctx = file->private_data;
9079
9080 if (!tctx)
9081 return 0;
9082
9083 /* we should have cancelled and erased it before PF_EXITING */
9084 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9085 xa_load(&tctx->xa, (unsigned long)file));
9086
9087 /*
9088 * fput() is pending, will be 2 if the only other ref is our potential
9089 * task file note. If the task is exiting, drop regardless of count.
9090 */
9091 if (atomic_long_read(&file->f_count) != 2)
9092 return 0;
9093
9094 if (ctx->flags & IORING_SETUP_SQPOLL) {
9095 /* there is only one file note, which is owned by sqo_task */
9096 WARN_ON_ONCE((ctx->sqo_task == current) ==
9097 !xa_load(&tctx->xa, (unsigned long)file));
9098
9099 io_disable_sqo_submit(ctx);
9100 }
9101
9102 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9103 io_uring_del_task_file(file);
9104 return 0;
9105 }
9106
9107 static void *io_uring_validate_mmap_request(struct file *file,
9108 loff_t pgoff, size_t sz)
9109 {
9110 struct io_ring_ctx *ctx = file->private_data;
9111 loff_t offset = pgoff << PAGE_SHIFT;
9112 struct page *page;
9113 void *ptr;
9114
9115 switch (offset) {
9116 case IORING_OFF_SQ_RING:
9117 case IORING_OFF_CQ_RING:
9118 ptr = ctx->rings;
9119 break;
9120 case IORING_OFF_SQES:
9121 ptr = ctx->sq_sqes;
9122 break;
9123 default:
9124 return ERR_PTR(-EINVAL);
9125 }
9126
9127 page = virt_to_head_page(ptr);
9128 if (sz > page_size(page))
9129 return ERR_PTR(-EINVAL);
9130
9131 return ptr;
9132 }
9133
9134 #ifdef CONFIG_MMU
9135
9136 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9137 {
9138 size_t sz = vma->vm_end - vma->vm_start;
9139 unsigned long pfn;
9140 void *ptr;
9141
9142 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9143 if (IS_ERR(ptr))
9144 return PTR_ERR(ptr);
9145
9146 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9147 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9148 }
9149
9150 #else /* !CONFIG_MMU */
9151
9152 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9153 {
9154 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9155 }
9156
9157 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9158 {
9159 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9160 }
9161
9162 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9163 unsigned long addr, unsigned long len,
9164 unsigned long pgoff, unsigned long flags)
9165 {
9166 void *ptr;
9167
9168 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9169 if (IS_ERR(ptr))
9170 return PTR_ERR(ptr);
9171
9172 return (unsigned long) ptr;
9173 }
9174
9175 #endif /* !CONFIG_MMU */
9176
9177 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9178 {
9179 int ret = 0;
9180 DEFINE_WAIT(wait);
9181
9182 do {
9183 if (!io_sqring_full(ctx))
9184 break;
9185
9186 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9187
9188 if (unlikely(ctx->sqo_dead)) {
9189 ret = -EOWNERDEAD;
9190 goto out;
9191 }
9192
9193 if (!io_sqring_full(ctx))
9194 break;
9195
9196 schedule();
9197 } while (!signal_pending(current));
9198
9199 finish_wait(&ctx->sqo_sq_wait, &wait);
9200 out:
9201 return ret;
9202 }
9203
9204 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9205 struct __kernel_timespec __user **ts,
9206 const sigset_t __user **sig)
9207 {
9208 struct io_uring_getevents_arg arg;
9209
9210 /*
9211 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9212 * is just a pointer to the sigset_t.
9213 */
9214 if (!(flags & IORING_ENTER_EXT_ARG)) {
9215 *sig = (const sigset_t __user *) argp;
9216 *ts = NULL;
9217 return 0;
9218 }
9219
9220 /*
9221 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9222 * timespec and sigset_t pointers if good.
9223 */
9224 if (*argsz != sizeof(arg))
9225 return -EINVAL;
9226 if (copy_from_user(&arg, argp, sizeof(arg)))
9227 return -EFAULT;
9228 *sig = u64_to_user_ptr(arg.sigmask);
9229 *argsz = arg.sigmask_sz;
9230 *ts = u64_to_user_ptr(arg.ts);
9231 return 0;
9232 }
9233
9234 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9235 u32, min_complete, u32, flags, const void __user *, argp,
9236 size_t, argsz)
9237 {
9238 struct io_ring_ctx *ctx;
9239 long ret = -EBADF;
9240 int submitted = 0;
9241 struct fd f;
9242
9243 io_run_task_work();
9244
9245 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9246 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9247 return -EINVAL;
9248
9249 f = fdget(fd);
9250 if (!f.file)
9251 return -EBADF;
9252
9253 ret = -EOPNOTSUPP;
9254 if (f.file->f_op != &io_uring_fops)
9255 goto out_fput;
9256
9257 ret = -ENXIO;
9258 ctx = f.file->private_data;
9259 if (!percpu_ref_tryget(&ctx->refs))
9260 goto out_fput;
9261
9262 ret = -EBADFD;
9263 if (ctx->flags & IORING_SETUP_R_DISABLED)
9264 goto out;
9265
9266 /*
9267 * For SQ polling, the thread will do all submissions and completions.
9268 * Just return the requested submit count, and wake the thread if
9269 * we were asked to.
9270 */
9271 ret = 0;
9272 if (ctx->flags & IORING_SETUP_SQPOLL) {
9273 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9274
9275 ret = -EOWNERDEAD;
9276 if (unlikely(ctx->sqo_dead))
9277 goto out;
9278 if (flags & IORING_ENTER_SQ_WAKEUP)
9279 wake_up(&ctx->sq_data->wait);
9280 if (flags & IORING_ENTER_SQ_WAIT) {
9281 ret = io_sqpoll_wait_sq(ctx);
9282 if (ret)
9283 goto out;
9284 }
9285 submitted = to_submit;
9286 } else if (to_submit) {
9287 ret = io_uring_add_task_file(ctx, f.file);
9288 if (unlikely(ret))
9289 goto out;
9290 mutex_lock(&ctx->uring_lock);
9291 submitted = io_submit_sqes(ctx, to_submit);
9292 mutex_unlock(&ctx->uring_lock);
9293
9294 if (submitted != to_submit)
9295 goto out;
9296 }
9297 if (flags & IORING_ENTER_GETEVENTS) {
9298 const sigset_t __user *sig;
9299 struct __kernel_timespec __user *ts;
9300
9301 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9302 if (unlikely(ret))
9303 goto out;
9304
9305 min_complete = min(min_complete, ctx->cq_entries);
9306
9307 /*
9308 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9309 * space applications don't need to do io completion events
9310 * polling again, they can rely on io_sq_thread to do polling
9311 * work, which can reduce cpu usage and uring_lock contention.
9312 */
9313 if (ctx->flags & IORING_SETUP_IOPOLL &&
9314 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9315 ret = io_iopoll_check(ctx, min_complete);
9316 } else {
9317 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9318 }
9319 }
9320
9321 out:
9322 percpu_ref_put(&ctx->refs);
9323 out_fput:
9324 fdput(f);
9325 return submitted ? submitted : ret;
9326 }
9327
9328 #ifdef CONFIG_PROC_FS
9329 static int io_uring_show_cred(int id, void *p, void *data)
9330 {
9331 struct io_identity *iod = p;
9332 const struct cred *cred = iod->creds;
9333 struct seq_file *m = data;
9334 struct user_namespace *uns = seq_user_ns(m);
9335 struct group_info *gi;
9336 kernel_cap_t cap;
9337 unsigned __capi;
9338 int g;
9339
9340 seq_printf(m, "%5d\n", id);
9341 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9342 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9343 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9344 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9345 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9346 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9347 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9348 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9349 seq_puts(m, "\n\tGroups:\t");
9350 gi = cred->group_info;
9351 for (g = 0; g < gi->ngroups; g++) {
9352 seq_put_decimal_ull(m, g ? " " : "",
9353 from_kgid_munged(uns, gi->gid[g]));
9354 }
9355 seq_puts(m, "\n\tCapEff:\t");
9356 cap = cred->cap_effective;
9357 CAP_FOR_EACH_U32(__capi)
9358 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9359 seq_putc(m, '\n');
9360 return 0;
9361 }
9362
9363 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9364 {
9365 struct io_sq_data *sq = NULL;
9366 bool has_lock;
9367 int i;
9368
9369 /*
9370 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9371 * since fdinfo case grabs it in the opposite direction of normal use
9372 * cases. If we fail to get the lock, we just don't iterate any
9373 * structures that could be going away outside the io_uring mutex.
9374 */
9375 has_lock = mutex_trylock(&ctx->uring_lock);
9376
9377 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9378 sq = ctx->sq_data;
9379
9380 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9381 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9382 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9383 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9384 struct fixed_file_table *table;
9385 struct file *f;
9386
9387 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9388 f = table->files[i & IORING_FILE_TABLE_MASK];
9389 if (f)
9390 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9391 else
9392 seq_printf(m, "%5u: <none>\n", i);
9393 }
9394 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9395 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9396 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9397
9398 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9399 (unsigned int) buf->len);
9400 }
9401 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9402 seq_printf(m, "Personalities:\n");
9403 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9404 }
9405 seq_printf(m, "PollList:\n");
9406 spin_lock_irq(&ctx->completion_lock);
9407 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9408 struct hlist_head *list = &ctx->cancel_hash[i];
9409 struct io_kiocb *req;
9410
9411 hlist_for_each_entry(req, list, hash_node)
9412 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9413 req->task->task_works != NULL);
9414 }
9415 spin_unlock_irq(&ctx->completion_lock);
9416 if (has_lock)
9417 mutex_unlock(&ctx->uring_lock);
9418 }
9419
9420 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9421 {
9422 struct io_ring_ctx *ctx = f->private_data;
9423
9424 if (percpu_ref_tryget(&ctx->refs)) {
9425 __io_uring_show_fdinfo(ctx, m);
9426 percpu_ref_put(&ctx->refs);
9427 }
9428 }
9429 #endif
9430
9431 static const struct file_operations io_uring_fops = {
9432 .release = io_uring_release,
9433 .flush = io_uring_flush,
9434 .mmap = io_uring_mmap,
9435 #ifndef CONFIG_MMU
9436 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9437 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9438 #endif
9439 .poll = io_uring_poll,
9440 .fasync = io_uring_fasync,
9441 #ifdef CONFIG_PROC_FS
9442 .show_fdinfo = io_uring_show_fdinfo,
9443 #endif
9444 };
9445
9446 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9447 struct io_uring_params *p)
9448 {
9449 struct io_rings *rings;
9450 size_t size, sq_array_offset;
9451
9452 /* make sure these are sane, as we already accounted them */
9453 ctx->sq_entries = p->sq_entries;
9454 ctx->cq_entries = p->cq_entries;
9455
9456 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9457 if (size == SIZE_MAX)
9458 return -EOVERFLOW;
9459
9460 rings = io_mem_alloc(size);
9461 if (!rings)
9462 return -ENOMEM;
9463
9464 ctx->rings = rings;
9465 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9466 rings->sq_ring_mask = p->sq_entries - 1;
9467 rings->cq_ring_mask = p->cq_entries - 1;
9468 rings->sq_ring_entries = p->sq_entries;
9469 rings->cq_ring_entries = p->cq_entries;
9470 ctx->sq_mask = rings->sq_ring_mask;
9471 ctx->cq_mask = rings->cq_ring_mask;
9472
9473 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9474 if (size == SIZE_MAX) {
9475 io_mem_free(ctx->rings);
9476 ctx->rings = NULL;
9477 return -EOVERFLOW;
9478 }
9479
9480 ctx->sq_sqes = io_mem_alloc(size);
9481 if (!ctx->sq_sqes) {
9482 io_mem_free(ctx->rings);
9483 ctx->rings = NULL;
9484 return -ENOMEM;
9485 }
9486
9487 return 0;
9488 }
9489
9490 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9491 {
9492 int ret, fd;
9493
9494 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9495 if (fd < 0)
9496 return fd;
9497
9498 ret = io_uring_add_task_file(ctx, file);
9499 if (ret) {
9500 put_unused_fd(fd);
9501 return ret;
9502 }
9503 fd_install(fd, file);
9504 return fd;
9505 }
9506
9507 /*
9508 * Allocate an anonymous fd, this is what constitutes the application
9509 * visible backing of an io_uring instance. The application mmaps this
9510 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9511 * we have to tie this fd to a socket for file garbage collection purposes.
9512 */
9513 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9514 {
9515 struct file *file;
9516 #if defined(CONFIG_UNIX)
9517 int ret;
9518
9519 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9520 &ctx->ring_sock);
9521 if (ret)
9522 return ERR_PTR(ret);
9523 #endif
9524
9525 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9526 O_RDWR | O_CLOEXEC);
9527 #if defined(CONFIG_UNIX)
9528 if (IS_ERR(file)) {
9529 sock_release(ctx->ring_sock);
9530 ctx->ring_sock = NULL;
9531 } else {
9532 ctx->ring_sock->file = file;
9533 }
9534 #endif
9535 return file;
9536 }
9537
9538 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9539 struct io_uring_params __user *params)
9540 {
9541 struct user_struct *user = NULL;
9542 struct io_ring_ctx *ctx;
9543 struct file *file;
9544 bool limit_mem;
9545 int ret;
9546
9547 if (!entries)
9548 return -EINVAL;
9549 if (entries > IORING_MAX_ENTRIES) {
9550 if (!(p->flags & IORING_SETUP_CLAMP))
9551 return -EINVAL;
9552 entries = IORING_MAX_ENTRIES;
9553 }
9554
9555 /*
9556 * Use twice as many entries for the CQ ring. It's possible for the
9557 * application to drive a higher depth than the size of the SQ ring,
9558 * since the sqes are only used at submission time. This allows for
9559 * some flexibility in overcommitting a bit. If the application has
9560 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9561 * of CQ ring entries manually.
9562 */
9563 p->sq_entries = roundup_pow_of_two(entries);
9564 if (p->flags & IORING_SETUP_CQSIZE) {
9565 /*
9566 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9567 * to a power-of-two, if it isn't already. We do NOT impose
9568 * any cq vs sq ring sizing.
9569 */
9570 if (!p->cq_entries)
9571 return -EINVAL;
9572 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9573 if (!(p->flags & IORING_SETUP_CLAMP))
9574 return -EINVAL;
9575 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9576 }
9577 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9578 if (p->cq_entries < p->sq_entries)
9579 return -EINVAL;
9580 } else {
9581 p->cq_entries = 2 * p->sq_entries;
9582 }
9583
9584 user = get_uid(current_user());
9585 limit_mem = !capable(CAP_IPC_LOCK);
9586
9587 if (limit_mem) {
9588 ret = __io_account_mem(user,
9589 ring_pages(p->sq_entries, p->cq_entries));
9590 if (ret) {
9591 free_uid(user);
9592 return ret;
9593 }
9594 }
9595
9596 ctx = io_ring_ctx_alloc(p);
9597 if (!ctx) {
9598 if (limit_mem)
9599 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9600 p->cq_entries));
9601 free_uid(user);
9602 return -ENOMEM;
9603 }
9604 ctx->compat = in_compat_syscall();
9605 ctx->user = user;
9606 ctx->creds = get_current_cred();
9607 #ifdef CONFIG_AUDIT
9608 ctx->loginuid = current->loginuid;
9609 ctx->sessionid = current->sessionid;
9610 #endif
9611 ctx->sqo_task = get_task_struct(current);
9612
9613 /*
9614 * This is just grabbed for accounting purposes. When a process exits,
9615 * the mm is exited and dropped before the files, hence we need to hang
9616 * on to this mm purely for the purposes of being able to unaccount
9617 * memory (locked/pinned vm). It's not used for anything else.
9618 */
9619 mmgrab(current->mm);
9620 ctx->mm_account = current->mm;
9621
9622 #ifdef CONFIG_BLK_CGROUP
9623 /*
9624 * The sq thread will belong to the original cgroup it was inited in.
9625 * If the cgroup goes offline (e.g. disabling the io controller), then
9626 * issued bios will be associated with the closest cgroup later in the
9627 * block layer.
9628 */
9629 rcu_read_lock();
9630 ctx->sqo_blkcg_css = blkcg_css();
9631 ret = css_tryget_online(ctx->sqo_blkcg_css);
9632 rcu_read_unlock();
9633 if (!ret) {
9634 /* don't init against a dying cgroup, have the user try again */
9635 ctx->sqo_blkcg_css = NULL;
9636 ret = -ENODEV;
9637 goto err;
9638 }
9639 #endif
9640
9641 /*
9642 * Account memory _before_ installing the file descriptor. Once
9643 * the descriptor is installed, it can get closed at any time. Also
9644 * do this before hitting the general error path, as ring freeing
9645 * will un-account as well.
9646 */
9647 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9648 ACCT_LOCKED);
9649 ctx->limit_mem = limit_mem;
9650
9651 ret = io_allocate_scq_urings(ctx, p);
9652 if (ret)
9653 goto err;
9654
9655 ret = io_sq_offload_create(ctx, p);
9656 if (ret)
9657 goto err;
9658
9659 if (!(p->flags & IORING_SETUP_R_DISABLED))
9660 io_sq_offload_start(ctx);
9661
9662 memset(&p->sq_off, 0, sizeof(p->sq_off));
9663 p->sq_off.head = offsetof(struct io_rings, sq.head);
9664 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9665 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9666 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9667 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9668 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9669 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9670
9671 memset(&p->cq_off, 0, sizeof(p->cq_off));
9672 p->cq_off.head = offsetof(struct io_rings, cq.head);
9673 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9674 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9675 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9676 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9677 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9678 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9679
9680 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9681 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9682 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9683 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9684 IORING_FEAT_EXT_ARG;
9685
9686 if (copy_to_user(params, p, sizeof(*p))) {
9687 ret = -EFAULT;
9688 goto err;
9689 }
9690
9691 file = io_uring_get_file(ctx);
9692 if (IS_ERR(file)) {
9693 ret = PTR_ERR(file);
9694 goto err;
9695 }
9696
9697 /*
9698 * Install ring fd as the very last thing, so we don't risk someone
9699 * having closed it before we finish setup
9700 */
9701 ret = io_uring_install_fd(ctx, file);
9702 if (ret < 0) {
9703 /* fput will clean it up */
9704 fput(file);
9705 return ret;
9706 }
9707
9708 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9709 return ret;
9710 err:
9711 io_disable_sqo_submit(ctx);
9712 io_ring_ctx_wait_and_kill(ctx);
9713 return ret;
9714 }
9715
9716 /*
9717 * Sets up an aio uring context, and returns the fd. Applications asks for a
9718 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9719 * params structure passed in.
9720 */
9721 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9722 {
9723 struct io_uring_params p;
9724 int i;
9725
9726 if (copy_from_user(&p, params, sizeof(p)))
9727 return -EFAULT;
9728 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9729 if (p.resv[i])
9730 return -EINVAL;
9731 }
9732
9733 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9734 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9735 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9736 IORING_SETUP_R_DISABLED))
9737 return -EINVAL;
9738
9739 return io_uring_create(entries, &p, params);
9740 }
9741
9742 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9743 struct io_uring_params __user *, params)
9744 {
9745 return io_uring_setup(entries, params);
9746 }
9747
9748 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9749 {
9750 struct io_uring_probe *p;
9751 size_t size;
9752 int i, ret;
9753
9754 size = struct_size(p, ops, nr_args);
9755 if (size == SIZE_MAX)
9756 return -EOVERFLOW;
9757 p = kzalloc(size, GFP_KERNEL);
9758 if (!p)
9759 return -ENOMEM;
9760
9761 ret = -EFAULT;
9762 if (copy_from_user(p, arg, size))
9763 goto out;
9764 ret = -EINVAL;
9765 if (memchr_inv(p, 0, size))
9766 goto out;
9767
9768 p->last_op = IORING_OP_LAST - 1;
9769 if (nr_args > IORING_OP_LAST)
9770 nr_args = IORING_OP_LAST;
9771
9772 for (i = 0; i < nr_args; i++) {
9773 p->ops[i].op = i;
9774 if (!io_op_defs[i].not_supported)
9775 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9776 }
9777 p->ops_len = i;
9778
9779 ret = 0;
9780 if (copy_to_user(arg, p, size))
9781 ret = -EFAULT;
9782 out:
9783 kfree(p);
9784 return ret;
9785 }
9786
9787 static int io_register_personality(struct io_ring_ctx *ctx)
9788 {
9789 struct io_identity *id;
9790 int ret;
9791
9792 id = kmalloc(sizeof(*id), GFP_KERNEL);
9793 if (unlikely(!id))
9794 return -ENOMEM;
9795
9796 io_init_identity(id);
9797 id->creds = get_current_cred();
9798
9799 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9800 if (ret < 0) {
9801 put_cred(id->creds);
9802 kfree(id);
9803 }
9804 return ret;
9805 }
9806
9807 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9808 {
9809 struct io_identity *iod;
9810
9811 iod = idr_remove(&ctx->personality_idr, id);
9812 if (iod) {
9813 put_cred(iod->creds);
9814 if (refcount_dec_and_test(&iod->count))
9815 kfree(iod);
9816 return 0;
9817 }
9818
9819 return -EINVAL;
9820 }
9821
9822 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9823 unsigned int nr_args)
9824 {
9825 struct io_uring_restriction *res;
9826 size_t size;
9827 int i, ret;
9828
9829 /* Restrictions allowed only if rings started disabled */
9830 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9831 return -EBADFD;
9832
9833 /* We allow only a single restrictions registration */
9834 if (ctx->restrictions.registered)
9835 return -EBUSY;
9836
9837 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9838 return -EINVAL;
9839
9840 size = array_size(nr_args, sizeof(*res));
9841 if (size == SIZE_MAX)
9842 return -EOVERFLOW;
9843
9844 res = memdup_user(arg, size);
9845 if (IS_ERR(res))
9846 return PTR_ERR(res);
9847
9848 ret = 0;
9849
9850 for (i = 0; i < nr_args; i++) {
9851 switch (res[i].opcode) {
9852 case IORING_RESTRICTION_REGISTER_OP:
9853 if (res[i].register_op >= IORING_REGISTER_LAST) {
9854 ret = -EINVAL;
9855 goto out;
9856 }
9857
9858 __set_bit(res[i].register_op,
9859 ctx->restrictions.register_op);
9860 break;
9861 case IORING_RESTRICTION_SQE_OP:
9862 if (res[i].sqe_op >= IORING_OP_LAST) {
9863 ret = -EINVAL;
9864 goto out;
9865 }
9866
9867 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9868 break;
9869 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9870 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9871 break;
9872 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9873 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9874 break;
9875 default:
9876 ret = -EINVAL;
9877 goto out;
9878 }
9879 }
9880
9881 out:
9882 /* Reset all restrictions if an error happened */
9883 if (ret != 0)
9884 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9885 else
9886 ctx->restrictions.registered = true;
9887
9888 kfree(res);
9889 return ret;
9890 }
9891
9892 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9893 {
9894 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9895 return -EBADFD;
9896
9897 if (ctx->restrictions.registered)
9898 ctx->restricted = 1;
9899
9900 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9901
9902 io_sq_offload_start(ctx);
9903
9904 return 0;
9905 }
9906
9907 static bool io_register_op_must_quiesce(int op)
9908 {
9909 switch (op) {
9910 case IORING_UNREGISTER_FILES:
9911 case IORING_REGISTER_FILES_UPDATE:
9912 case IORING_REGISTER_PROBE:
9913 case IORING_REGISTER_PERSONALITY:
9914 case IORING_UNREGISTER_PERSONALITY:
9915 return false;
9916 default:
9917 return true;
9918 }
9919 }
9920
9921 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9922 void __user *arg, unsigned nr_args)
9923 __releases(ctx->uring_lock)
9924 __acquires(ctx->uring_lock)
9925 {
9926 int ret;
9927
9928 /*
9929 * We're inside the ring mutex, if the ref is already dying, then
9930 * someone else killed the ctx or is already going through
9931 * io_uring_register().
9932 */
9933 if (percpu_ref_is_dying(&ctx->refs))
9934 return -ENXIO;
9935
9936 if (io_register_op_must_quiesce(opcode)) {
9937 percpu_ref_kill(&ctx->refs);
9938
9939 /*
9940 * Drop uring mutex before waiting for references to exit. If
9941 * another thread is currently inside io_uring_enter() it might
9942 * need to grab the uring_lock to make progress. If we hold it
9943 * here across the drain wait, then we can deadlock. It's safe
9944 * to drop the mutex here, since no new references will come in
9945 * after we've killed the percpu ref.
9946 */
9947 mutex_unlock(&ctx->uring_lock);
9948 do {
9949 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9950 if (!ret)
9951 break;
9952 ret = io_run_task_work_sig();
9953 if (ret < 0)
9954 break;
9955 } while (1);
9956
9957 mutex_lock(&ctx->uring_lock);
9958
9959 if (ret) {
9960 percpu_ref_resurrect(&ctx->refs);
9961 goto out_quiesce;
9962 }
9963 }
9964
9965 if (ctx->restricted) {
9966 if (opcode >= IORING_REGISTER_LAST) {
9967 ret = -EINVAL;
9968 goto out;
9969 }
9970
9971 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9972 ret = -EACCES;
9973 goto out;
9974 }
9975 }
9976
9977 switch (opcode) {
9978 case IORING_REGISTER_BUFFERS:
9979 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9980 break;
9981 case IORING_UNREGISTER_BUFFERS:
9982 ret = -EINVAL;
9983 if (arg || nr_args)
9984 break;
9985 ret = io_sqe_buffer_unregister(ctx);
9986 break;
9987 case IORING_REGISTER_FILES:
9988 ret = io_sqe_files_register(ctx, arg, nr_args);
9989 break;
9990 case IORING_UNREGISTER_FILES:
9991 ret = -EINVAL;
9992 if (arg || nr_args)
9993 break;
9994 ret = io_sqe_files_unregister(ctx);
9995 break;
9996 case IORING_REGISTER_FILES_UPDATE:
9997 ret = io_sqe_files_update(ctx, arg, nr_args);
9998 break;
9999 case IORING_REGISTER_EVENTFD:
10000 case IORING_REGISTER_EVENTFD_ASYNC:
10001 ret = -EINVAL;
10002 if (nr_args != 1)
10003 break;
10004 ret = io_eventfd_register(ctx, arg);
10005 if (ret)
10006 break;
10007 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10008 ctx->eventfd_async = 1;
10009 else
10010 ctx->eventfd_async = 0;
10011 break;
10012 case IORING_UNREGISTER_EVENTFD:
10013 ret = -EINVAL;
10014 if (arg || nr_args)
10015 break;
10016 ret = io_eventfd_unregister(ctx);
10017 break;
10018 case IORING_REGISTER_PROBE:
10019 ret = -EINVAL;
10020 if (!arg || nr_args > 256)
10021 break;
10022 ret = io_probe(ctx, arg, nr_args);
10023 break;
10024 case IORING_REGISTER_PERSONALITY:
10025 ret = -EINVAL;
10026 if (arg || nr_args)
10027 break;
10028 ret = io_register_personality(ctx);
10029 break;
10030 case IORING_UNREGISTER_PERSONALITY:
10031 ret = -EINVAL;
10032 if (arg)
10033 break;
10034 ret = io_unregister_personality(ctx, nr_args);
10035 break;
10036 case IORING_REGISTER_ENABLE_RINGS:
10037 ret = -EINVAL;
10038 if (arg || nr_args)
10039 break;
10040 ret = io_register_enable_rings(ctx);
10041 break;
10042 case IORING_REGISTER_RESTRICTIONS:
10043 ret = io_register_restrictions(ctx, arg, nr_args);
10044 break;
10045 default:
10046 ret = -EINVAL;
10047 break;
10048 }
10049
10050 out:
10051 if (io_register_op_must_quiesce(opcode)) {
10052 /* bring the ctx back to life */
10053 percpu_ref_reinit(&ctx->refs);
10054 out_quiesce:
10055 reinit_completion(&ctx->ref_comp);
10056 }
10057 return ret;
10058 }
10059
10060 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10061 void __user *, arg, unsigned int, nr_args)
10062 {
10063 struct io_ring_ctx *ctx;
10064 long ret = -EBADF;
10065 struct fd f;
10066
10067 f = fdget(fd);
10068 if (!f.file)
10069 return -EBADF;
10070
10071 ret = -EOPNOTSUPP;
10072 if (f.file->f_op != &io_uring_fops)
10073 goto out_fput;
10074
10075 ctx = f.file->private_data;
10076
10077 mutex_lock(&ctx->uring_lock);
10078 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10079 mutex_unlock(&ctx->uring_lock);
10080 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10081 ctx->cq_ev_fd != NULL, ret);
10082 out_fput:
10083 fdput(f);
10084 return ret;
10085 }
10086
10087 static int __init io_uring_init(void)
10088 {
10089 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10090 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10091 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10092 } while (0)
10093
10094 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10095 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10096 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10097 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10098 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10099 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10100 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10101 BUILD_BUG_SQE_ELEM(8, __u64, off);
10102 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10103 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10104 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10105 BUILD_BUG_SQE_ELEM(24, __u32, len);
10106 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10107 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10108 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10109 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10110 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10111 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10112 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10113 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10114 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10115 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10116 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10117 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10118 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10119 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10120 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10121 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10122 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10123 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10124 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10125
10126 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10127 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10128 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10129 return 0;
10130 };
10131 __initcall(io_uring_init);