]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
io_uring: Delete useless variable ‘id’ in io_prep_async_work
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 struct io_uring {
108 u32 head ____cacheline_aligned_in_smp;
109 u32 tail ____cacheline_aligned_in_smp;
110 };
111
112 /*
113 * This data is shared with the application through the mmap at offsets
114 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
115 *
116 * The offsets to the member fields are published through struct
117 * io_sqring_offsets when calling io_uring_setup.
118 */
119 struct io_rings {
120 /*
121 * Head and tail offsets into the ring; the offsets need to be
122 * masked to get valid indices.
123 *
124 * The kernel controls head of the sq ring and the tail of the cq ring,
125 * and the application controls tail of the sq ring and the head of the
126 * cq ring.
127 */
128 struct io_uring sq, cq;
129 /*
130 * Bitmasks to apply to head and tail offsets (constant, equals
131 * ring_entries - 1)
132 */
133 u32 sq_ring_mask, cq_ring_mask;
134 /* Ring sizes (constant, power of 2) */
135 u32 sq_ring_entries, cq_ring_entries;
136 /*
137 * Number of invalid entries dropped by the kernel due to
138 * invalid index stored in array
139 *
140 * Written by the kernel, shouldn't be modified by the
141 * application (i.e. get number of "new events" by comparing to
142 * cached value).
143 *
144 * After a new SQ head value was read by the application this
145 * counter includes all submissions that were dropped reaching
146 * the new SQ head (and possibly more).
147 */
148 u32 sq_dropped;
149 /*
150 * Runtime SQ flags
151 *
152 * Written by the kernel, shouldn't be modified by the
153 * application.
154 *
155 * The application needs a full memory barrier before checking
156 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
157 */
158 u32 sq_flags;
159 /*
160 * Runtime CQ flags
161 *
162 * Written by the application, shouldn't be modified by the
163 * kernel.
164 */
165 u32 cq_flags;
166 /*
167 * Number of completion events lost because the queue was full;
168 * this should be avoided by the application by making sure
169 * there are not more requests pending than there is space in
170 * the completion queue.
171 *
172 * Written by the kernel, shouldn't be modified by the
173 * application (i.e. get number of "new events" by comparing to
174 * cached value).
175 *
176 * As completion events come in out of order this counter is not
177 * ordered with any other data.
178 */
179 u32 cq_overflow;
180 /*
181 * Ring buffer of completion events.
182 *
183 * The kernel writes completion events fresh every time they are
184 * produced, so the application is allowed to modify pending
185 * entries.
186 */
187 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
188 };
189
190 struct io_mapped_ubuf {
191 u64 ubuf;
192 size_t len;
193 struct bio_vec *bvec;
194 unsigned int nr_bvecs;
195 unsigned long acct_pages;
196 };
197
198 struct fixed_file_table {
199 struct file **files;
200 };
201
202 struct fixed_file_ref_node {
203 struct percpu_ref refs;
204 struct list_head node;
205 struct list_head file_list;
206 struct fixed_file_data *file_data;
207 struct llist_node llist;
208 bool done;
209 };
210
211 struct fixed_file_data {
212 struct fixed_file_table *table;
213 struct io_ring_ctx *ctx;
214
215 struct fixed_file_ref_node *node;
216 struct percpu_ref refs;
217 struct completion done;
218 struct list_head ref_list;
219 spinlock_t lock;
220 };
221
222 struct io_buffer {
223 struct list_head list;
224 __u64 addr;
225 __s32 len;
226 __u16 bid;
227 };
228
229 struct io_restriction {
230 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
231 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
232 u8 sqe_flags_allowed;
233 u8 sqe_flags_required;
234 bool registered;
235 };
236
237 struct io_sq_data {
238 refcount_t refs;
239 struct mutex lock;
240
241 /* ctx's that are using this sqd */
242 struct list_head ctx_list;
243 struct list_head ctx_new_list;
244 struct mutex ctx_lock;
245
246 struct task_struct *thread;
247 struct wait_queue_head wait;
248
249 unsigned sq_thread_idle;
250 };
251
252 struct io_ring_ctx {
253 struct {
254 struct percpu_ref refs;
255 } ____cacheline_aligned_in_smp;
256
257 struct {
258 unsigned int flags;
259 unsigned int compat: 1;
260 unsigned int limit_mem: 1;
261 unsigned int cq_overflow_flushed: 1;
262 unsigned int drain_next: 1;
263 unsigned int eventfd_async: 1;
264 unsigned int restricted: 1;
265
266 /*
267 * Ring buffer of indices into array of io_uring_sqe, which is
268 * mmapped by the application using the IORING_OFF_SQES offset.
269 *
270 * This indirection could e.g. be used to assign fixed
271 * io_uring_sqe entries to operations and only submit them to
272 * the queue when needed.
273 *
274 * The kernel modifies neither the indices array nor the entries
275 * array.
276 */
277 u32 *sq_array;
278 unsigned cached_sq_head;
279 unsigned sq_entries;
280 unsigned sq_mask;
281 unsigned sq_thread_idle;
282 unsigned cached_sq_dropped;
283 unsigned cached_cq_overflow;
284 unsigned long sq_check_overflow;
285
286 struct list_head defer_list;
287 struct list_head timeout_list;
288 struct list_head cq_overflow_list;
289
290 struct io_uring_sqe *sq_sqes;
291 } ____cacheline_aligned_in_smp;
292
293 struct io_rings *rings;
294
295 /* IO offload */
296 struct io_wq *io_wq;
297
298 /*
299 * For SQPOLL usage - we hold a reference to the parent task, so we
300 * have access to the ->files
301 */
302 struct task_struct *sqo_task;
303
304 /* Only used for accounting purposes */
305 struct mm_struct *mm_account;
306
307 #ifdef CONFIG_BLK_CGROUP
308 struct cgroup_subsys_state *sqo_blkcg_css;
309 #endif
310
311 struct io_sq_data *sq_data; /* if using sq thread polling */
312
313 struct wait_queue_head sqo_sq_wait;
314 struct list_head sqd_list;
315
316 /*
317 * If used, fixed file set. Writers must ensure that ->refs is dead,
318 * readers must ensure that ->refs is alive as long as the file* is
319 * used. Only updated through io_uring_register(2).
320 */
321 struct fixed_file_data *file_data;
322 unsigned nr_user_files;
323
324 /* if used, fixed mapped user buffers */
325 unsigned nr_user_bufs;
326 struct io_mapped_ubuf *user_bufs;
327
328 struct user_struct *user;
329
330 const struct cred *creds;
331
332 #ifdef CONFIG_AUDIT
333 kuid_t loginuid;
334 unsigned int sessionid;
335 #endif
336
337 struct completion ref_comp;
338 struct completion sq_thread_comp;
339
340 /* if all else fails... */
341 struct io_kiocb *fallback_req;
342
343 #if defined(CONFIG_UNIX)
344 struct socket *ring_sock;
345 #endif
346
347 struct idr io_buffer_idr;
348
349 struct idr personality_idr;
350
351 struct {
352 unsigned cached_cq_tail;
353 unsigned cq_entries;
354 unsigned cq_mask;
355 atomic_t cq_timeouts;
356 unsigned long cq_check_overflow;
357 struct wait_queue_head cq_wait;
358 struct fasync_struct *cq_fasync;
359 struct eventfd_ctx *cq_ev_fd;
360 } ____cacheline_aligned_in_smp;
361
362 struct {
363 struct mutex uring_lock;
364 wait_queue_head_t wait;
365 } ____cacheline_aligned_in_smp;
366
367 struct {
368 spinlock_t completion_lock;
369
370 /*
371 * ->iopoll_list is protected by the ctx->uring_lock for
372 * io_uring instances that don't use IORING_SETUP_SQPOLL.
373 * For SQPOLL, only the single threaded io_sq_thread() will
374 * manipulate the list, hence no extra locking is needed there.
375 */
376 struct list_head iopoll_list;
377 struct hlist_head *cancel_hash;
378 unsigned cancel_hash_bits;
379 bool poll_multi_file;
380
381 spinlock_t inflight_lock;
382 struct list_head inflight_list;
383 } ____cacheline_aligned_in_smp;
384
385 struct delayed_work file_put_work;
386 struct llist_head file_put_llist;
387
388 struct work_struct exit_work;
389 struct io_restriction restrictions;
390 };
391
392 /*
393 * First field must be the file pointer in all the
394 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
395 */
396 struct io_poll_iocb {
397 struct file *file;
398 struct wait_queue_head *head;
399 __poll_t events;
400 bool done;
401 bool canceled;
402 struct wait_queue_entry wait;
403 };
404
405 struct io_poll_remove {
406 struct file *file;
407 u64 addr;
408 };
409
410 struct io_close {
411 struct file *file;
412 struct file *put_file;
413 int fd;
414 };
415
416 struct io_timeout_data {
417 struct io_kiocb *req;
418 struct hrtimer timer;
419 struct timespec64 ts;
420 enum hrtimer_mode mode;
421 };
422
423 struct io_accept {
424 struct file *file;
425 struct sockaddr __user *addr;
426 int __user *addr_len;
427 int flags;
428 unsigned long nofile;
429 };
430
431 struct io_sync {
432 struct file *file;
433 loff_t len;
434 loff_t off;
435 int flags;
436 int mode;
437 };
438
439 struct io_cancel {
440 struct file *file;
441 u64 addr;
442 };
443
444 struct io_timeout {
445 struct file *file;
446 u32 off;
447 u32 target_seq;
448 struct list_head list;
449 /* head of the link, used by linked timeouts only */
450 struct io_kiocb *head;
451 };
452
453 struct io_timeout_rem {
454 struct file *file;
455 u64 addr;
456
457 /* timeout update */
458 struct timespec64 ts;
459 u32 flags;
460 };
461
462 struct io_rw {
463 /* NOTE: kiocb has the file as the first member, so don't do it here */
464 struct kiocb kiocb;
465 u64 addr;
466 u64 len;
467 };
468
469 struct io_connect {
470 struct file *file;
471 struct sockaddr __user *addr;
472 int addr_len;
473 };
474
475 struct io_sr_msg {
476 struct file *file;
477 union {
478 struct user_msghdr __user *umsg;
479 void __user *buf;
480 };
481 int msg_flags;
482 int bgid;
483 size_t len;
484 struct io_buffer *kbuf;
485 };
486
487 struct io_open {
488 struct file *file;
489 int dfd;
490 bool ignore_nonblock;
491 struct filename *filename;
492 struct open_how how;
493 unsigned long nofile;
494 };
495
496 struct io_files_update {
497 struct file *file;
498 u64 arg;
499 u32 nr_args;
500 u32 offset;
501 };
502
503 struct io_fadvise {
504 struct file *file;
505 u64 offset;
506 u32 len;
507 u32 advice;
508 };
509
510 struct io_madvise {
511 struct file *file;
512 u64 addr;
513 u32 len;
514 u32 advice;
515 };
516
517 struct io_epoll {
518 struct file *file;
519 int epfd;
520 int op;
521 int fd;
522 struct epoll_event event;
523 };
524
525 struct io_splice {
526 struct file *file_out;
527 struct file *file_in;
528 loff_t off_out;
529 loff_t off_in;
530 u64 len;
531 unsigned int flags;
532 };
533
534 struct io_provide_buf {
535 struct file *file;
536 __u64 addr;
537 __s32 len;
538 __u32 bgid;
539 __u16 nbufs;
540 __u16 bid;
541 };
542
543 struct io_statx {
544 struct file *file;
545 int dfd;
546 unsigned int mask;
547 unsigned int flags;
548 const char __user *filename;
549 struct statx __user *buffer;
550 };
551
552 struct io_shutdown {
553 struct file *file;
554 int how;
555 };
556
557 struct io_rename {
558 struct file *file;
559 int old_dfd;
560 int new_dfd;
561 struct filename *oldpath;
562 struct filename *newpath;
563 int flags;
564 };
565
566 struct io_unlink {
567 struct file *file;
568 int dfd;
569 int flags;
570 struct filename *filename;
571 };
572
573 struct io_completion {
574 struct file *file;
575 struct list_head list;
576 int cflags;
577 };
578
579 struct io_async_connect {
580 struct sockaddr_storage address;
581 };
582
583 struct io_async_msghdr {
584 struct iovec fast_iov[UIO_FASTIOV];
585 struct iovec *iov;
586 struct sockaddr __user *uaddr;
587 struct msghdr msg;
588 struct sockaddr_storage addr;
589 };
590
591 struct io_async_rw {
592 struct iovec fast_iov[UIO_FASTIOV];
593 const struct iovec *free_iovec;
594 struct iov_iter iter;
595 size_t bytes_done;
596 struct wait_page_queue wpq;
597 };
598
599 enum {
600 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
601 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
602 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
603 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
604 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
605 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
606
607 REQ_F_FAIL_LINK_BIT,
608 REQ_F_INFLIGHT_BIT,
609 REQ_F_CUR_POS_BIT,
610 REQ_F_NOWAIT_BIT,
611 REQ_F_LINK_TIMEOUT_BIT,
612 REQ_F_ISREG_BIT,
613 REQ_F_NEED_CLEANUP_BIT,
614 REQ_F_POLLED_BIT,
615 REQ_F_BUFFER_SELECTED_BIT,
616 REQ_F_NO_FILE_TABLE_BIT,
617 REQ_F_WORK_INITIALIZED_BIT,
618 REQ_F_LTIMEOUT_ACTIVE_BIT,
619
620 /* not a real bit, just to check we're not overflowing the space */
621 __REQ_F_LAST_BIT,
622 };
623
624 enum {
625 /* ctx owns file */
626 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
627 /* drain existing IO first */
628 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
629 /* linked sqes */
630 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
631 /* doesn't sever on completion < 0 */
632 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
633 /* IOSQE_ASYNC */
634 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
635 /* IOSQE_BUFFER_SELECT */
636 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
637
638 /* fail rest of links */
639 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
640 /* on inflight list */
641 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
642 /* read/write uses file position */
643 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
644 /* must not punt to workers */
645 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
646 /* has or had linked timeout */
647 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
648 /* regular file */
649 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
650 /* needs cleanup */
651 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
652 /* already went through poll handler */
653 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
654 /* buffer already selected */
655 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
656 /* doesn't need file table for this request */
657 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
658 /* io_wq_work is initialized */
659 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
660 /* linked timeout is active, i.e. prepared by link's head */
661 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
662 };
663
664 struct async_poll {
665 struct io_poll_iocb poll;
666 struct io_poll_iocb *double_poll;
667 };
668
669 /*
670 * NOTE! Each of the iocb union members has the file pointer
671 * as the first entry in their struct definition. So you can
672 * access the file pointer through any of the sub-structs,
673 * or directly as just 'ki_filp' in this struct.
674 */
675 struct io_kiocb {
676 union {
677 struct file *file;
678 struct io_rw rw;
679 struct io_poll_iocb poll;
680 struct io_poll_remove poll_remove;
681 struct io_accept accept;
682 struct io_sync sync;
683 struct io_cancel cancel;
684 struct io_timeout timeout;
685 struct io_timeout_rem timeout_rem;
686 struct io_connect connect;
687 struct io_sr_msg sr_msg;
688 struct io_open open;
689 struct io_close close;
690 struct io_files_update files_update;
691 struct io_fadvise fadvise;
692 struct io_madvise madvise;
693 struct io_epoll epoll;
694 struct io_splice splice;
695 struct io_provide_buf pbuf;
696 struct io_statx statx;
697 struct io_shutdown shutdown;
698 struct io_rename rename;
699 struct io_unlink unlink;
700 /* use only after cleaning per-op data, see io_clean_op() */
701 struct io_completion compl;
702 };
703
704 /* opcode allocated if it needs to store data for async defer */
705 void *async_data;
706 u8 opcode;
707 /* polled IO has completed */
708 u8 iopoll_completed;
709
710 u16 buf_index;
711 u32 result;
712
713 struct io_ring_ctx *ctx;
714 unsigned int flags;
715 refcount_t refs;
716 struct task_struct *task;
717 u64 user_data;
718
719 struct io_kiocb *link;
720 struct percpu_ref *fixed_file_refs;
721
722 /*
723 * 1. used with ctx->iopoll_list with reads/writes
724 * 2. to track reqs with ->files (see io_op_def::file_table)
725 */
726 struct list_head inflight_entry;
727 struct callback_head task_work;
728 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
729 struct hlist_node hash_node;
730 struct async_poll *apoll;
731 struct io_wq_work work;
732 };
733
734 struct io_defer_entry {
735 struct list_head list;
736 struct io_kiocb *req;
737 u32 seq;
738 };
739
740 #define IO_IOPOLL_BATCH 8
741
742 struct io_comp_state {
743 unsigned int nr;
744 struct list_head list;
745 struct io_ring_ctx *ctx;
746 };
747
748 struct io_submit_state {
749 struct blk_plug plug;
750
751 /*
752 * io_kiocb alloc cache
753 */
754 void *reqs[IO_IOPOLL_BATCH];
755 unsigned int free_reqs;
756
757 bool plug_started;
758
759 /*
760 * Batch completion logic
761 */
762 struct io_comp_state comp;
763
764 /*
765 * File reference cache
766 */
767 struct file *file;
768 unsigned int fd;
769 unsigned int file_refs;
770 unsigned int ios_left;
771 };
772
773 struct io_op_def {
774 /* needs req->file assigned */
775 unsigned needs_file : 1;
776 /* don't fail if file grab fails */
777 unsigned needs_file_no_error : 1;
778 /* hash wq insertion if file is a regular file */
779 unsigned hash_reg_file : 1;
780 /* unbound wq insertion if file is a non-regular file */
781 unsigned unbound_nonreg_file : 1;
782 /* opcode is not supported by this kernel */
783 unsigned not_supported : 1;
784 /* set if opcode supports polled "wait" */
785 unsigned pollin : 1;
786 unsigned pollout : 1;
787 /* op supports buffer selection */
788 unsigned buffer_select : 1;
789 /* must always have async data allocated */
790 unsigned needs_async_data : 1;
791 /* should block plug */
792 unsigned plug : 1;
793 /* size of async data needed, if any */
794 unsigned short async_size;
795 unsigned work_flags;
796 };
797
798 static const struct io_op_def io_op_defs[] = {
799 [IORING_OP_NOP] = {},
800 [IORING_OP_READV] = {
801 .needs_file = 1,
802 .unbound_nonreg_file = 1,
803 .pollin = 1,
804 .buffer_select = 1,
805 .needs_async_data = 1,
806 .plug = 1,
807 .async_size = sizeof(struct io_async_rw),
808 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
809 },
810 [IORING_OP_WRITEV] = {
811 .needs_file = 1,
812 .hash_reg_file = 1,
813 .unbound_nonreg_file = 1,
814 .pollout = 1,
815 .needs_async_data = 1,
816 .plug = 1,
817 .async_size = sizeof(struct io_async_rw),
818 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
819 IO_WQ_WORK_FSIZE,
820 },
821 [IORING_OP_FSYNC] = {
822 .needs_file = 1,
823 .work_flags = IO_WQ_WORK_BLKCG,
824 },
825 [IORING_OP_READ_FIXED] = {
826 .needs_file = 1,
827 .unbound_nonreg_file = 1,
828 .pollin = 1,
829 .plug = 1,
830 .async_size = sizeof(struct io_async_rw),
831 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
832 },
833 [IORING_OP_WRITE_FIXED] = {
834 .needs_file = 1,
835 .hash_reg_file = 1,
836 .unbound_nonreg_file = 1,
837 .pollout = 1,
838 .plug = 1,
839 .async_size = sizeof(struct io_async_rw),
840 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
841 IO_WQ_WORK_MM,
842 },
843 [IORING_OP_POLL_ADD] = {
844 .needs_file = 1,
845 .unbound_nonreg_file = 1,
846 },
847 [IORING_OP_POLL_REMOVE] = {},
848 [IORING_OP_SYNC_FILE_RANGE] = {
849 .needs_file = 1,
850 .work_flags = IO_WQ_WORK_BLKCG,
851 },
852 [IORING_OP_SENDMSG] = {
853 .needs_file = 1,
854 .unbound_nonreg_file = 1,
855 .pollout = 1,
856 .needs_async_data = 1,
857 .async_size = sizeof(struct io_async_msghdr),
858 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
859 },
860 [IORING_OP_RECVMSG] = {
861 .needs_file = 1,
862 .unbound_nonreg_file = 1,
863 .pollin = 1,
864 .buffer_select = 1,
865 .needs_async_data = 1,
866 .async_size = sizeof(struct io_async_msghdr),
867 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
868 },
869 [IORING_OP_TIMEOUT] = {
870 .needs_async_data = 1,
871 .async_size = sizeof(struct io_timeout_data),
872 .work_flags = IO_WQ_WORK_MM,
873 },
874 [IORING_OP_TIMEOUT_REMOVE] = {
875 /* used by timeout updates' prep() */
876 .work_flags = IO_WQ_WORK_MM,
877 },
878 [IORING_OP_ACCEPT] = {
879 .needs_file = 1,
880 .unbound_nonreg_file = 1,
881 .pollin = 1,
882 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
883 },
884 [IORING_OP_ASYNC_CANCEL] = {},
885 [IORING_OP_LINK_TIMEOUT] = {
886 .needs_async_data = 1,
887 .async_size = sizeof(struct io_timeout_data),
888 .work_flags = IO_WQ_WORK_MM,
889 },
890 [IORING_OP_CONNECT] = {
891 .needs_file = 1,
892 .unbound_nonreg_file = 1,
893 .pollout = 1,
894 .needs_async_data = 1,
895 .async_size = sizeof(struct io_async_connect),
896 .work_flags = IO_WQ_WORK_MM,
897 },
898 [IORING_OP_FALLOCATE] = {
899 .needs_file = 1,
900 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
901 },
902 [IORING_OP_OPENAT] = {
903 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
904 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
905 },
906 [IORING_OP_CLOSE] = {
907 .needs_file = 1,
908 .needs_file_no_error = 1,
909 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
910 },
911 [IORING_OP_FILES_UPDATE] = {
912 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
913 },
914 [IORING_OP_STATX] = {
915 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
916 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
917 },
918 [IORING_OP_READ] = {
919 .needs_file = 1,
920 .unbound_nonreg_file = 1,
921 .pollin = 1,
922 .buffer_select = 1,
923 .plug = 1,
924 .async_size = sizeof(struct io_async_rw),
925 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
926 },
927 [IORING_OP_WRITE] = {
928 .needs_file = 1,
929 .unbound_nonreg_file = 1,
930 .pollout = 1,
931 .plug = 1,
932 .async_size = sizeof(struct io_async_rw),
933 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
934 IO_WQ_WORK_FSIZE,
935 },
936 [IORING_OP_FADVISE] = {
937 .needs_file = 1,
938 .work_flags = IO_WQ_WORK_BLKCG,
939 },
940 [IORING_OP_MADVISE] = {
941 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
942 },
943 [IORING_OP_SEND] = {
944 .needs_file = 1,
945 .unbound_nonreg_file = 1,
946 .pollout = 1,
947 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
948 },
949 [IORING_OP_RECV] = {
950 .needs_file = 1,
951 .unbound_nonreg_file = 1,
952 .pollin = 1,
953 .buffer_select = 1,
954 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
955 },
956 [IORING_OP_OPENAT2] = {
957 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
958 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
959 },
960 [IORING_OP_EPOLL_CTL] = {
961 .unbound_nonreg_file = 1,
962 .work_flags = IO_WQ_WORK_FILES,
963 },
964 [IORING_OP_SPLICE] = {
965 .needs_file = 1,
966 .hash_reg_file = 1,
967 .unbound_nonreg_file = 1,
968 .work_flags = IO_WQ_WORK_BLKCG,
969 },
970 [IORING_OP_PROVIDE_BUFFERS] = {},
971 [IORING_OP_REMOVE_BUFFERS] = {},
972 [IORING_OP_TEE] = {
973 .needs_file = 1,
974 .hash_reg_file = 1,
975 .unbound_nonreg_file = 1,
976 },
977 [IORING_OP_SHUTDOWN] = {
978 .needs_file = 1,
979 },
980 [IORING_OP_RENAMEAT] = {
981 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
982 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
983 },
984 [IORING_OP_UNLINKAT] = {
985 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
986 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
987 },
988 };
989
990 enum io_mem_account {
991 ACCT_LOCKED,
992 ACCT_PINNED,
993 };
994
995 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
996 struct task_struct *task);
997
998 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node);
999 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
1000 struct io_ring_ctx *ctx);
1001
1002 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
1003 struct io_comp_state *cs);
1004 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1005 static void io_put_req(struct io_kiocb *req);
1006 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1007 static void io_double_put_req(struct io_kiocb *req);
1008 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1009 static void __io_queue_linked_timeout(struct io_kiocb *req);
1010 static void io_queue_linked_timeout(struct io_kiocb *req);
1011 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1012 struct io_uring_files_update *ip,
1013 unsigned nr_args);
1014 static void __io_clean_op(struct io_kiocb *req);
1015 static struct file *io_file_get(struct io_submit_state *state,
1016 struct io_kiocb *req, int fd, bool fixed);
1017 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs);
1018 static void io_file_put_work(struct work_struct *work);
1019
1020 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
1021 struct iovec **iovec, struct iov_iter *iter,
1022 bool needs_lock);
1023 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1024 const struct iovec *fast_iov,
1025 struct iov_iter *iter, bool force);
1026
1027 static struct kmem_cache *req_cachep;
1028
1029 static const struct file_operations io_uring_fops;
1030
1031 struct sock *io_uring_get_socket(struct file *file)
1032 {
1033 #if defined(CONFIG_UNIX)
1034 if (file->f_op == &io_uring_fops) {
1035 struct io_ring_ctx *ctx = file->private_data;
1036
1037 return ctx->ring_sock->sk;
1038 }
1039 #endif
1040 return NULL;
1041 }
1042 EXPORT_SYMBOL(io_uring_get_socket);
1043
1044 #define io_for_each_link(pos, head) \
1045 for (pos = (head); pos; pos = pos->link)
1046
1047 static inline void io_clean_op(struct io_kiocb *req)
1048 {
1049 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED |
1050 REQ_F_INFLIGHT))
1051 __io_clean_op(req);
1052 }
1053
1054 static inline void io_set_resource_node(struct io_kiocb *req)
1055 {
1056 struct io_ring_ctx *ctx = req->ctx;
1057
1058 if (!req->fixed_file_refs) {
1059 req->fixed_file_refs = &ctx->file_data->node->refs;
1060 percpu_ref_get(req->fixed_file_refs);
1061 }
1062 }
1063
1064 static bool io_match_task(struct io_kiocb *head,
1065 struct task_struct *task,
1066 struct files_struct *files)
1067 {
1068 struct io_kiocb *req;
1069
1070 if (task && head->task != task)
1071 return false;
1072 if (!files)
1073 return true;
1074
1075 io_for_each_link(req, head) {
1076 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
1077 (req->work.flags & IO_WQ_WORK_FILES) &&
1078 req->work.identity->files == files)
1079 return true;
1080 }
1081 return false;
1082 }
1083
1084 static void io_sq_thread_drop_mm_files(void)
1085 {
1086 struct files_struct *files = current->files;
1087 struct mm_struct *mm = current->mm;
1088
1089 if (mm) {
1090 kthread_unuse_mm(mm);
1091 mmput(mm);
1092 current->mm = NULL;
1093 }
1094 if (files) {
1095 struct nsproxy *nsproxy = current->nsproxy;
1096
1097 task_lock(current);
1098 current->files = NULL;
1099 current->nsproxy = NULL;
1100 task_unlock(current);
1101 put_files_struct(files);
1102 put_nsproxy(nsproxy);
1103 }
1104 }
1105
1106 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1107 {
1108 if (!current->files) {
1109 struct files_struct *files;
1110 struct nsproxy *nsproxy;
1111
1112 task_lock(ctx->sqo_task);
1113 files = ctx->sqo_task->files;
1114 if (!files) {
1115 task_unlock(ctx->sqo_task);
1116 return -EOWNERDEAD;
1117 }
1118 atomic_inc(&files->count);
1119 get_nsproxy(ctx->sqo_task->nsproxy);
1120 nsproxy = ctx->sqo_task->nsproxy;
1121 task_unlock(ctx->sqo_task);
1122
1123 task_lock(current);
1124 current->files = files;
1125 current->nsproxy = nsproxy;
1126 task_unlock(current);
1127 }
1128 return 0;
1129 }
1130
1131 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1132 {
1133 struct mm_struct *mm;
1134
1135 if (current->mm)
1136 return 0;
1137
1138 /* Should never happen */
1139 if (unlikely(!(ctx->flags & IORING_SETUP_SQPOLL)))
1140 return -EFAULT;
1141
1142 task_lock(ctx->sqo_task);
1143 mm = ctx->sqo_task->mm;
1144 if (unlikely(!mm || !mmget_not_zero(mm)))
1145 mm = NULL;
1146 task_unlock(ctx->sqo_task);
1147
1148 if (mm) {
1149 kthread_use_mm(mm);
1150 return 0;
1151 }
1152
1153 return -EFAULT;
1154 }
1155
1156 static int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1157 struct io_kiocb *req)
1158 {
1159 const struct io_op_def *def = &io_op_defs[req->opcode];
1160 int ret;
1161
1162 if (def->work_flags & IO_WQ_WORK_MM) {
1163 ret = __io_sq_thread_acquire_mm(ctx);
1164 if (unlikely(ret))
1165 return ret;
1166 }
1167
1168 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1169 ret = __io_sq_thread_acquire_files(ctx);
1170 if (unlikely(ret))
1171 return ret;
1172 }
1173
1174 return 0;
1175 }
1176
1177 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1178 struct cgroup_subsys_state **cur_css)
1179
1180 {
1181 #ifdef CONFIG_BLK_CGROUP
1182 /* puts the old one when swapping */
1183 if (*cur_css != ctx->sqo_blkcg_css) {
1184 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1185 *cur_css = ctx->sqo_blkcg_css;
1186 }
1187 #endif
1188 }
1189
1190 static void io_sq_thread_unassociate_blkcg(void)
1191 {
1192 #ifdef CONFIG_BLK_CGROUP
1193 kthread_associate_blkcg(NULL);
1194 #endif
1195 }
1196
1197 static inline void req_set_fail_links(struct io_kiocb *req)
1198 {
1199 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1200 req->flags |= REQ_F_FAIL_LINK;
1201 }
1202
1203 /*
1204 * None of these are dereferenced, they are simply used to check if any of
1205 * them have changed. If we're under current and check they are still the
1206 * same, we're fine to grab references to them for actual out-of-line use.
1207 */
1208 static void io_init_identity(struct io_identity *id)
1209 {
1210 id->files = current->files;
1211 id->mm = current->mm;
1212 #ifdef CONFIG_BLK_CGROUP
1213 rcu_read_lock();
1214 id->blkcg_css = blkcg_css();
1215 rcu_read_unlock();
1216 #endif
1217 id->creds = current_cred();
1218 id->nsproxy = current->nsproxy;
1219 id->fs = current->fs;
1220 id->fsize = rlimit(RLIMIT_FSIZE);
1221 #ifdef CONFIG_AUDIT
1222 id->loginuid = current->loginuid;
1223 id->sessionid = current->sessionid;
1224 #endif
1225 refcount_set(&id->count, 1);
1226 }
1227
1228 static inline void __io_req_init_async(struct io_kiocb *req)
1229 {
1230 memset(&req->work, 0, sizeof(req->work));
1231 req->flags |= REQ_F_WORK_INITIALIZED;
1232 }
1233
1234 /*
1235 * Note: must call io_req_init_async() for the first time you
1236 * touch any members of io_wq_work.
1237 */
1238 static inline void io_req_init_async(struct io_kiocb *req)
1239 {
1240 struct io_uring_task *tctx = current->io_uring;
1241
1242 if (req->flags & REQ_F_WORK_INITIALIZED)
1243 return;
1244
1245 __io_req_init_async(req);
1246
1247 /* Grab a ref if this isn't our static identity */
1248 req->work.identity = tctx->identity;
1249 if (tctx->identity != &tctx->__identity)
1250 refcount_inc(&req->work.identity->count);
1251 }
1252
1253 static inline bool io_async_submit(struct io_ring_ctx *ctx)
1254 {
1255 return ctx->flags & IORING_SETUP_SQPOLL;
1256 }
1257
1258 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1259 {
1260 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1261
1262 complete(&ctx->ref_comp);
1263 }
1264
1265 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1266 {
1267 return !req->timeout.off;
1268 }
1269
1270 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1271 {
1272 struct io_ring_ctx *ctx;
1273 int hash_bits;
1274
1275 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1276 if (!ctx)
1277 return NULL;
1278
1279 ctx->fallback_req = kmem_cache_alloc(req_cachep, GFP_KERNEL);
1280 if (!ctx->fallback_req)
1281 goto err;
1282
1283 /*
1284 * Use 5 bits less than the max cq entries, that should give us around
1285 * 32 entries per hash list if totally full and uniformly spread.
1286 */
1287 hash_bits = ilog2(p->cq_entries);
1288 hash_bits -= 5;
1289 if (hash_bits <= 0)
1290 hash_bits = 1;
1291 ctx->cancel_hash_bits = hash_bits;
1292 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1293 GFP_KERNEL);
1294 if (!ctx->cancel_hash)
1295 goto err;
1296 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1297
1298 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1299 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1300 goto err;
1301
1302 ctx->flags = p->flags;
1303 init_waitqueue_head(&ctx->sqo_sq_wait);
1304 INIT_LIST_HEAD(&ctx->sqd_list);
1305 init_waitqueue_head(&ctx->cq_wait);
1306 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1307 init_completion(&ctx->ref_comp);
1308 init_completion(&ctx->sq_thread_comp);
1309 idr_init(&ctx->io_buffer_idr);
1310 idr_init(&ctx->personality_idr);
1311 mutex_init(&ctx->uring_lock);
1312 init_waitqueue_head(&ctx->wait);
1313 spin_lock_init(&ctx->completion_lock);
1314 INIT_LIST_HEAD(&ctx->iopoll_list);
1315 INIT_LIST_HEAD(&ctx->defer_list);
1316 INIT_LIST_HEAD(&ctx->timeout_list);
1317 spin_lock_init(&ctx->inflight_lock);
1318 INIT_LIST_HEAD(&ctx->inflight_list);
1319 INIT_DELAYED_WORK(&ctx->file_put_work, io_file_put_work);
1320 init_llist_head(&ctx->file_put_llist);
1321 return ctx;
1322 err:
1323 if (ctx->fallback_req)
1324 kmem_cache_free(req_cachep, ctx->fallback_req);
1325 kfree(ctx->cancel_hash);
1326 kfree(ctx);
1327 return NULL;
1328 }
1329
1330 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1331 {
1332 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1333 struct io_ring_ctx *ctx = req->ctx;
1334
1335 return seq != ctx->cached_cq_tail
1336 + READ_ONCE(ctx->cached_cq_overflow);
1337 }
1338
1339 return false;
1340 }
1341
1342 static void __io_commit_cqring(struct io_ring_ctx *ctx)
1343 {
1344 struct io_rings *rings = ctx->rings;
1345
1346 /* order cqe stores with ring update */
1347 smp_store_release(&rings->cq.tail, ctx->cached_cq_tail);
1348
1349 if (wq_has_sleeper(&ctx->cq_wait)) {
1350 wake_up_interruptible(&ctx->cq_wait);
1351 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1352 }
1353 }
1354
1355 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1356 {
1357 if (req->work.identity == &tctx->__identity)
1358 return;
1359 if (refcount_dec_and_test(&req->work.identity->count))
1360 kfree(req->work.identity);
1361 }
1362
1363 static void io_req_clean_work(struct io_kiocb *req)
1364 {
1365 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1366 return;
1367
1368 req->flags &= ~REQ_F_WORK_INITIALIZED;
1369
1370 if (req->work.flags & IO_WQ_WORK_MM) {
1371 mmdrop(req->work.identity->mm);
1372 req->work.flags &= ~IO_WQ_WORK_MM;
1373 }
1374 #ifdef CONFIG_BLK_CGROUP
1375 if (req->work.flags & IO_WQ_WORK_BLKCG) {
1376 css_put(req->work.identity->blkcg_css);
1377 req->work.flags &= ~IO_WQ_WORK_BLKCG;
1378 }
1379 #endif
1380 if (req->work.flags & IO_WQ_WORK_CREDS) {
1381 put_cred(req->work.identity->creds);
1382 req->work.flags &= ~IO_WQ_WORK_CREDS;
1383 }
1384 if (req->work.flags & IO_WQ_WORK_FS) {
1385 struct fs_struct *fs = req->work.identity->fs;
1386
1387 spin_lock(&req->work.identity->fs->lock);
1388 if (--fs->users)
1389 fs = NULL;
1390 spin_unlock(&req->work.identity->fs->lock);
1391 if (fs)
1392 free_fs_struct(fs);
1393 req->work.flags &= ~IO_WQ_WORK_FS;
1394 }
1395
1396 io_put_identity(req->task->io_uring, req);
1397 }
1398
1399 /*
1400 * Create a private copy of io_identity, since some fields don't match
1401 * the current context.
1402 */
1403 static bool io_identity_cow(struct io_kiocb *req)
1404 {
1405 struct io_uring_task *tctx = current->io_uring;
1406 const struct cred *creds = NULL;
1407 struct io_identity *id;
1408
1409 if (req->work.flags & IO_WQ_WORK_CREDS)
1410 creds = req->work.identity->creds;
1411
1412 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1413 if (unlikely(!id)) {
1414 req->work.flags |= IO_WQ_WORK_CANCEL;
1415 return false;
1416 }
1417
1418 /*
1419 * We can safely just re-init the creds we copied Either the field
1420 * matches the current one, or we haven't grabbed it yet. The only
1421 * exception is ->creds, through registered personalities, so handle
1422 * that one separately.
1423 */
1424 io_init_identity(id);
1425 if (creds)
1426 id->creds = creds;
1427
1428 /* add one for this request */
1429 refcount_inc(&id->count);
1430
1431 /* drop tctx and req identity references, if needed */
1432 if (tctx->identity != &tctx->__identity &&
1433 refcount_dec_and_test(&tctx->identity->count))
1434 kfree(tctx->identity);
1435 if (req->work.identity != &tctx->__identity &&
1436 refcount_dec_and_test(&req->work.identity->count))
1437 kfree(req->work.identity);
1438
1439 req->work.identity = id;
1440 tctx->identity = id;
1441 return true;
1442 }
1443
1444 static bool io_grab_identity(struct io_kiocb *req)
1445 {
1446 const struct io_op_def *def = &io_op_defs[req->opcode];
1447 struct io_identity *id = req->work.identity;
1448 struct io_ring_ctx *ctx = req->ctx;
1449
1450 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1451 if (id->fsize != rlimit(RLIMIT_FSIZE))
1452 return false;
1453 req->work.flags |= IO_WQ_WORK_FSIZE;
1454 }
1455 #ifdef CONFIG_BLK_CGROUP
1456 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1457 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1458 rcu_read_lock();
1459 if (id->blkcg_css != blkcg_css()) {
1460 rcu_read_unlock();
1461 return false;
1462 }
1463 /*
1464 * This should be rare, either the cgroup is dying or the task
1465 * is moving cgroups. Just punt to root for the handful of ios.
1466 */
1467 if (css_tryget_online(id->blkcg_css))
1468 req->work.flags |= IO_WQ_WORK_BLKCG;
1469 rcu_read_unlock();
1470 }
1471 #endif
1472 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1473 if (id->creds != current_cred())
1474 return false;
1475 get_cred(id->creds);
1476 req->work.flags |= IO_WQ_WORK_CREDS;
1477 }
1478 #ifdef CONFIG_AUDIT
1479 if (!uid_eq(current->loginuid, id->loginuid) ||
1480 current->sessionid != id->sessionid)
1481 return false;
1482 #endif
1483 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1484 (def->work_flags & IO_WQ_WORK_FS)) {
1485 if (current->fs != id->fs)
1486 return false;
1487 spin_lock(&id->fs->lock);
1488 if (!id->fs->in_exec) {
1489 id->fs->users++;
1490 req->work.flags |= IO_WQ_WORK_FS;
1491 } else {
1492 req->work.flags |= IO_WQ_WORK_CANCEL;
1493 }
1494 spin_unlock(&current->fs->lock);
1495 }
1496 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1497 (def->work_flags & IO_WQ_WORK_FILES) &&
1498 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1499 if (id->files != current->files ||
1500 id->nsproxy != current->nsproxy)
1501 return false;
1502 atomic_inc(&id->files->count);
1503 get_nsproxy(id->nsproxy);
1504 req->flags |= REQ_F_INFLIGHT;
1505
1506 spin_lock_irq(&ctx->inflight_lock);
1507 list_add(&req->inflight_entry, &ctx->inflight_list);
1508 spin_unlock_irq(&ctx->inflight_lock);
1509 req->work.flags |= IO_WQ_WORK_FILES;
1510 }
1511 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1512 (def->work_flags & IO_WQ_WORK_MM)) {
1513 if (id->mm != current->mm)
1514 return false;
1515 mmgrab(id->mm);
1516 req->work.flags |= IO_WQ_WORK_MM;
1517 }
1518
1519 return true;
1520 }
1521
1522 static void io_prep_async_work(struct io_kiocb *req)
1523 {
1524 const struct io_op_def *def = &io_op_defs[req->opcode];
1525 struct io_ring_ctx *ctx = req->ctx;
1526
1527 io_req_init_async(req);
1528
1529 if (req->flags & REQ_F_FORCE_ASYNC)
1530 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1531
1532 if (req->flags & REQ_F_ISREG) {
1533 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1534 io_wq_hash_work(&req->work, file_inode(req->file));
1535 } else {
1536 if (def->unbound_nonreg_file)
1537 req->work.flags |= IO_WQ_WORK_UNBOUND;
1538 }
1539
1540 /* if we fail grabbing identity, we must COW, regrab, and retry */
1541 if (io_grab_identity(req))
1542 return;
1543
1544 if (!io_identity_cow(req))
1545 return;
1546
1547 /* can't fail at this point */
1548 if (!io_grab_identity(req))
1549 WARN_ON(1);
1550 }
1551
1552 static void io_prep_async_link(struct io_kiocb *req)
1553 {
1554 struct io_kiocb *cur;
1555
1556 io_for_each_link(cur, req)
1557 io_prep_async_work(cur);
1558 }
1559
1560 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1561 {
1562 struct io_ring_ctx *ctx = req->ctx;
1563 struct io_kiocb *link = io_prep_linked_timeout(req);
1564
1565 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1566 &req->work, req->flags);
1567 io_wq_enqueue(ctx->io_wq, &req->work);
1568 return link;
1569 }
1570
1571 static void io_queue_async_work(struct io_kiocb *req)
1572 {
1573 struct io_kiocb *link;
1574
1575 /* init ->work of the whole link before punting */
1576 io_prep_async_link(req);
1577 link = __io_queue_async_work(req);
1578
1579 if (link)
1580 io_queue_linked_timeout(link);
1581 }
1582
1583 static void io_kill_timeout(struct io_kiocb *req)
1584 {
1585 struct io_timeout_data *io = req->async_data;
1586 int ret;
1587
1588 ret = hrtimer_try_to_cancel(&io->timer);
1589 if (ret != -1) {
1590 atomic_set(&req->ctx->cq_timeouts,
1591 atomic_read(&req->ctx->cq_timeouts) + 1);
1592 list_del_init(&req->timeout.list);
1593 io_cqring_fill_event(req, 0);
1594 io_put_req_deferred(req, 1);
1595 }
1596 }
1597
1598 /*
1599 * Returns true if we found and killed one or more timeouts
1600 */
1601 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1602 struct files_struct *files)
1603 {
1604 struct io_kiocb *req, *tmp;
1605 int canceled = 0;
1606
1607 spin_lock_irq(&ctx->completion_lock);
1608 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1609 if (io_match_task(req, tsk, files)) {
1610 io_kill_timeout(req);
1611 canceled++;
1612 }
1613 }
1614 spin_unlock_irq(&ctx->completion_lock);
1615 return canceled != 0;
1616 }
1617
1618 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1619 {
1620 do {
1621 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1622 struct io_defer_entry, list);
1623 struct io_kiocb *link;
1624
1625 if (req_need_defer(de->req, de->seq))
1626 break;
1627 list_del_init(&de->list);
1628 /* punt-init is done before queueing for defer */
1629 link = __io_queue_async_work(de->req);
1630 if (link) {
1631 __io_queue_linked_timeout(link);
1632 /* drop submission reference */
1633 io_put_req_deferred(link, 1);
1634 }
1635 kfree(de);
1636 } while (!list_empty(&ctx->defer_list));
1637 }
1638
1639 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1640 {
1641 while (!list_empty(&ctx->timeout_list)) {
1642 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1643 struct io_kiocb, timeout.list);
1644
1645 if (io_is_timeout_noseq(req))
1646 break;
1647 if (req->timeout.target_seq != ctx->cached_cq_tail
1648 - atomic_read(&ctx->cq_timeouts))
1649 break;
1650
1651 list_del_init(&req->timeout.list);
1652 io_kill_timeout(req);
1653 }
1654 }
1655
1656 static void io_commit_cqring(struct io_ring_ctx *ctx)
1657 {
1658 io_flush_timeouts(ctx);
1659 __io_commit_cqring(ctx);
1660
1661 if (unlikely(!list_empty(&ctx->defer_list)))
1662 __io_queue_deferred(ctx);
1663 }
1664
1665 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1666 {
1667 struct io_rings *r = ctx->rings;
1668
1669 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1670 }
1671
1672 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1673 {
1674 struct io_rings *rings = ctx->rings;
1675 unsigned tail;
1676
1677 tail = ctx->cached_cq_tail;
1678 /*
1679 * writes to the cq entry need to come after reading head; the
1680 * control dependency is enough as we're using WRITE_ONCE to
1681 * fill the cq entry
1682 */
1683 if (tail - READ_ONCE(rings->cq.head) == rings->cq_ring_entries)
1684 return NULL;
1685
1686 ctx->cached_cq_tail++;
1687 return &rings->cqes[tail & ctx->cq_mask];
1688 }
1689
1690 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1691 {
1692 if (!ctx->cq_ev_fd)
1693 return false;
1694 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1695 return false;
1696 if (!ctx->eventfd_async)
1697 return true;
1698 return io_wq_current_is_worker();
1699 }
1700
1701 static inline unsigned __io_cqring_events(struct io_ring_ctx *ctx)
1702 {
1703 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1704 }
1705
1706 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1707 {
1708 if (waitqueue_active(&ctx->wait))
1709 wake_up(&ctx->wait);
1710 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1711 wake_up(&ctx->sq_data->wait);
1712 if (io_should_trigger_evfd(ctx))
1713 eventfd_signal(ctx->cq_ev_fd, 1);
1714 }
1715
1716 /* Returns true if there are no backlogged entries after the flush */
1717 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1718 struct task_struct *tsk,
1719 struct files_struct *files)
1720 {
1721 struct io_rings *rings = ctx->rings;
1722 struct io_kiocb *req, *tmp;
1723 struct io_uring_cqe *cqe;
1724 unsigned long flags;
1725 bool all_flushed;
1726 LIST_HEAD(list);
1727
1728 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1729 return false;
1730
1731 spin_lock_irqsave(&ctx->completion_lock, flags);
1732 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1733 if (!io_match_task(req, tsk, files))
1734 continue;
1735
1736 cqe = io_get_cqring(ctx);
1737 if (!cqe && !force)
1738 break;
1739
1740 list_move(&req->compl.list, &list);
1741 if (cqe) {
1742 WRITE_ONCE(cqe->user_data, req->user_data);
1743 WRITE_ONCE(cqe->res, req->result);
1744 WRITE_ONCE(cqe->flags, req->compl.cflags);
1745 } else {
1746 ctx->cached_cq_overflow++;
1747 WRITE_ONCE(ctx->rings->cq_overflow,
1748 ctx->cached_cq_overflow);
1749 }
1750 }
1751
1752 all_flushed = list_empty(&ctx->cq_overflow_list);
1753 if (all_flushed) {
1754 clear_bit(0, &ctx->sq_check_overflow);
1755 clear_bit(0, &ctx->cq_check_overflow);
1756 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1757 }
1758
1759 io_commit_cqring(ctx);
1760 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1761 io_cqring_ev_posted(ctx);
1762
1763 while (!list_empty(&list)) {
1764 req = list_first_entry(&list, struct io_kiocb, compl.list);
1765 list_del(&req->compl.list);
1766 io_put_req(req);
1767 }
1768
1769 return all_flushed;
1770 }
1771
1772 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1773 struct task_struct *tsk,
1774 struct files_struct *files)
1775 {
1776 if (test_bit(0, &ctx->cq_check_overflow)) {
1777 /* iopoll syncs against uring_lock, not completion_lock */
1778 if (ctx->flags & IORING_SETUP_IOPOLL)
1779 mutex_lock(&ctx->uring_lock);
1780 __io_cqring_overflow_flush(ctx, force, tsk, files);
1781 if (ctx->flags & IORING_SETUP_IOPOLL)
1782 mutex_unlock(&ctx->uring_lock);
1783 }
1784 }
1785
1786 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1787 {
1788 struct io_ring_ctx *ctx = req->ctx;
1789 struct io_uring_cqe *cqe;
1790
1791 trace_io_uring_complete(ctx, req->user_data, res);
1792
1793 /*
1794 * If we can't get a cq entry, userspace overflowed the
1795 * submission (by quite a lot). Increment the overflow count in
1796 * the ring.
1797 */
1798 cqe = io_get_cqring(ctx);
1799 if (likely(cqe)) {
1800 WRITE_ONCE(cqe->user_data, req->user_data);
1801 WRITE_ONCE(cqe->res, res);
1802 WRITE_ONCE(cqe->flags, cflags);
1803 } else if (ctx->cq_overflow_flushed ||
1804 atomic_read(&req->task->io_uring->in_idle)) {
1805 /*
1806 * If we're in ring overflow flush mode, or in task cancel mode,
1807 * then we cannot store the request for later flushing, we need
1808 * to drop it on the floor.
1809 */
1810 ctx->cached_cq_overflow++;
1811 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1812 } else {
1813 if (list_empty(&ctx->cq_overflow_list)) {
1814 set_bit(0, &ctx->sq_check_overflow);
1815 set_bit(0, &ctx->cq_check_overflow);
1816 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1817 }
1818 io_clean_op(req);
1819 req->result = res;
1820 req->compl.cflags = cflags;
1821 refcount_inc(&req->refs);
1822 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1823 }
1824 }
1825
1826 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1827 {
1828 __io_cqring_fill_event(req, res, 0);
1829 }
1830
1831 static void io_cqring_add_event(struct io_kiocb *req, long res, long cflags)
1832 {
1833 struct io_ring_ctx *ctx = req->ctx;
1834 unsigned long flags;
1835
1836 spin_lock_irqsave(&ctx->completion_lock, flags);
1837 __io_cqring_fill_event(req, res, cflags);
1838 io_commit_cqring(ctx);
1839 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1840
1841 io_cqring_ev_posted(ctx);
1842 }
1843
1844 static void io_submit_flush_completions(struct io_comp_state *cs)
1845 {
1846 struct io_ring_ctx *ctx = cs->ctx;
1847
1848 spin_lock_irq(&ctx->completion_lock);
1849 while (!list_empty(&cs->list)) {
1850 struct io_kiocb *req;
1851
1852 req = list_first_entry(&cs->list, struct io_kiocb, compl.list);
1853 list_del(&req->compl.list);
1854 __io_cqring_fill_event(req, req->result, req->compl.cflags);
1855
1856 /*
1857 * io_free_req() doesn't care about completion_lock unless one
1858 * of these flags is set. REQ_F_WORK_INITIALIZED is in the list
1859 * because of a potential deadlock with req->work.fs->lock
1860 */
1861 if (req->flags & (REQ_F_FAIL_LINK|REQ_F_LINK_TIMEOUT
1862 |REQ_F_WORK_INITIALIZED)) {
1863 spin_unlock_irq(&ctx->completion_lock);
1864 io_put_req(req);
1865 spin_lock_irq(&ctx->completion_lock);
1866 } else {
1867 io_put_req(req);
1868 }
1869 }
1870 io_commit_cqring(ctx);
1871 spin_unlock_irq(&ctx->completion_lock);
1872
1873 io_cqring_ev_posted(ctx);
1874 cs->nr = 0;
1875 }
1876
1877 static void __io_req_complete(struct io_kiocb *req, long res, unsigned cflags,
1878 struct io_comp_state *cs)
1879 {
1880 if (!cs) {
1881 io_cqring_add_event(req, res, cflags);
1882 io_put_req(req);
1883 } else {
1884 io_clean_op(req);
1885 req->result = res;
1886 req->compl.cflags = cflags;
1887 list_add_tail(&req->compl.list, &cs->list);
1888 if (++cs->nr >= 32)
1889 io_submit_flush_completions(cs);
1890 }
1891 }
1892
1893 static void io_req_complete(struct io_kiocb *req, long res)
1894 {
1895 __io_req_complete(req, res, 0, NULL);
1896 }
1897
1898 static inline bool io_is_fallback_req(struct io_kiocb *req)
1899 {
1900 return req == (struct io_kiocb *)
1901 ((unsigned long) req->ctx->fallback_req & ~1UL);
1902 }
1903
1904 static struct io_kiocb *io_get_fallback_req(struct io_ring_ctx *ctx)
1905 {
1906 struct io_kiocb *req;
1907
1908 req = ctx->fallback_req;
1909 if (!test_and_set_bit_lock(0, (unsigned long *) &ctx->fallback_req))
1910 return req;
1911
1912 return NULL;
1913 }
1914
1915 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx,
1916 struct io_submit_state *state)
1917 {
1918 if (!state->free_reqs) {
1919 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1920 size_t sz;
1921 int ret;
1922
1923 sz = min_t(size_t, state->ios_left, ARRAY_SIZE(state->reqs));
1924 ret = kmem_cache_alloc_bulk(req_cachep, gfp, sz, state->reqs);
1925
1926 /*
1927 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1928 * retry single alloc to be on the safe side.
1929 */
1930 if (unlikely(ret <= 0)) {
1931 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1932 if (!state->reqs[0])
1933 goto fallback;
1934 ret = 1;
1935 }
1936 state->free_reqs = ret;
1937 }
1938
1939 state->free_reqs--;
1940 return state->reqs[state->free_reqs];
1941 fallback:
1942 return io_get_fallback_req(ctx);
1943 }
1944
1945 static inline void io_put_file(struct io_kiocb *req, struct file *file,
1946 bool fixed)
1947 {
1948 if (!fixed)
1949 fput(file);
1950 }
1951
1952 static void io_dismantle_req(struct io_kiocb *req)
1953 {
1954 io_clean_op(req);
1955
1956 if (req->async_data)
1957 kfree(req->async_data);
1958 if (req->file)
1959 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
1960 if (req->fixed_file_refs)
1961 percpu_ref_put(req->fixed_file_refs);
1962 io_req_clean_work(req);
1963 }
1964
1965 static void __io_free_req(struct io_kiocb *req)
1966 {
1967 struct io_uring_task *tctx = req->task->io_uring;
1968 struct io_ring_ctx *ctx = req->ctx;
1969
1970 io_dismantle_req(req);
1971
1972 percpu_counter_dec(&tctx->inflight);
1973 if (atomic_read(&tctx->in_idle))
1974 wake_up(&tctx->wait);
1975 put_task_struct(req->task);
1976
1977 if (likely(!io_is_fallback_req(req)))
1978 kmem_cache_free(req_cachep, req);
1979 else
1980 clear_bit_unlock(0, (unsigned long *) &ctx->fallback_req);
1981 percpu_ref_put(&ctx->refs);
1982 }
1983
1984 static inline void io_remove_next_linked(struct io_kiocb *req)
1985 {
1986 struct io_kiocb *nxt = req->link;
1987
1988 req->link = nxt->link;
1989 nxt->link = NULL;
1990 }
1991
1992 static void io_kill_linked_timeout(struct io_kiocb *req)
1993 {
1994 struct io_ring_ctx *ctx = req->ctx;
1995 struct io_kiocb *link;
1996 bool cancelled = false;
1997 unsigned long flags;
1998
1999 spin_lock_irqsave(&ctx->completion_lock, flags);
2000 link = req->link;
2001
2002 /*
2003 * Can happen if a linked timeout fired and link had been like
2004 * req -> link t-out -> link t-out [-> ...]
2005 */
2006 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2007 struct io_timeout_data *io = link->async_data;
2008 int ret;
2009
2010 io_remove_next_linked(req);
2011 link->timeout.head = NULL;
2012 ret = hrtimer_try_to_cancel(&io->timer);
2013 if (ret != -1) {
2014 io_cqring_fill_event(link, -ECANCELED);
2015 io_commit_cqring(ctx);
2016 cancelled = true;
2017 }
2018 }
2019 req->flags &= ~REQ_F_LINK_TIMEOUT;
2020 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2021
2022 if (cancelled) {
2023 io_cqring_ev_posted(ctx);
2024 io_put_req(link);
2025 }
2026 }
2027
2028
2029 static void io_fail_links(struct io_kiocb *req)
2030 {
2031 struct io_kiocb *link, *nxt;
2032 struct io_ring_ctx *ctx = req->ctx;
2033 unsigned long flags;
2034
2035 spin_lock_irqsave(&ctx->completion_lock, flags);
2036 link = req->link;
2037 req->link = NULL;
2038
2039 while (link) {
2040 nxt = link->link;
2041 link->link = NULL;
2042
2043 trace_io_uring_fail_link(req, link);
2044 io_cqring_fill_event(link, -ECANCELED);
2045
2046 /*
2047 * It's ok to free under spinlock as they're not linked anymore,
2048 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2049 * work.fs->lock.
2050 */
2051 if (link->flags & REQ_F_WORK_INITIALIZED)
2052 io_put_req_deferred(link, 2);
2053 else
2054 io_double_put_req(link);
2055 link = nxt;
2056 }
2057 io_commit_cqring(ctx);
2058 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2059
2060 io_cqring_ev_posted(ctx);
2061 }
2062
2063 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2064 {
2065 if (req->flags & REQ_F_LINK_TIMEOUT)
2066 io_kill_linked_timeout(req);
2067
2068 /*
2069 * If LINK is set, we have dependent requests in this chain. If we
2070 * didn't fail this request, queue the first one up, moving any other
2071 * dependencies to the next request. In case of failure, fail the rest
2072 * of the chain.
2073 */
2074 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2075 struct io_kiocb *nxt = req->link;
2076
2077 req->link = NULL;
2078 return nxt;
2079 }
2080 io_fail_links(req);
2081 return NULL;
2082 }
2083
2084 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2085 {
2086 if (likely(!(req->link) && !(req->flags & REQ_F_LINK_TIMEOUT)))
2087 return NULL;
2088 return __io_req_find_next(req);
2089 }
2090
2091 static int io_req_task_work_add(struct io_kiocb *req)
2092 {
2093 struct task_struct *tsk = req->task;
2094 struct io_ring_ctx *ctx = req->ctx;
2095 enum task_work_notify_mode notify;
2096 int ret;
2097
2098 if (tsk->flags & PF_EXITING)
2099 return -ESRCH;
2100
2101 /*
2102 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2103 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2104 * processing task_work. There's no reliable way to tell if TWA_RESUME
2105 * will do the job.
2106 */
2107 notify = TWA_NONE;
2108 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2109 notify = TWA_SIGNAL;
2110
2111 ret = task_work_add(tsk, &req->task_work, notify);
2112 if (!ret)
2113 wake_up_process(tsk);
2114
2115 return ret;
2116 }
2117
2118 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2119 {
2120 struct io_ring_ctx *ctx = req->ctx;
2121
2122 spin_lock_irq(&ctx->completion_lock);
2123 io_cqring_fill_event(req, error);
2124 io_commit_cqring(ctx);
2125 spin_unlock_irq(&ctx->completion_lock);
2126
2127 io_cqring_ev_posted(ctx);
2128 req_set_fail_links(req);
2129 io_double_put_req(req);
2130 }
2131
2132 static void io_req_task_cancel(struct callback_head *cb)
2133 {
2134 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2135 struct io_ring_ctx *ctx = req->ctx;
2136
2137 __io_req_task_cancel(req, -ECANCELED);
2138 percpu_ref_put(&ctx->refs);
2139 }
2140
2141 static void __io_req_task_submit(struct io_kiocb *req)
2142 {
2143 struct io_ring_ctx *ctx = req->ctx;
2144 bool fail;
2145
2146 fail = __io_sq_thread_acquire_mm(ctx) ||
2147 __io_sq_thread_acquire_files(ctx);
2148 mutex_lock(&ctx->uring_lock);
2149 if (!fail)
2150 __io_queue_sqe(req, NULL);
2151 else
2152 __io_req_task_cancel(req, -EFAULT);
2153 mutex_unlock(&ctx->uring_lock);
2154 }
2155
2156 static void io_req_task_submit(struct callback_head *cb)
2157 {
2158 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2159 struct io_ring_ctx *ctx = req->ctx;
2160
2161 __io_req_task_submit(req);
2162 percpu_ref_put(&ctx->refs);
2163 }
2164
2165 static void io_req_task_queue(struct io_kiocb *req)
2166 {
2167 int ret;
2168
2169 init_task_work(&req->task_work, io_req_task_submit);
2170 percpu_ref_get(&req->ctx->refs);
2171
2172 ret = io_req_task_work_add(req);
2173 if (unlikely(ret)) {
2174 struct task_struct *tsk;
2175
2176 init_task_work(&req->task_work, io_req_task_cancel);
2177 tsk = io_wq_get_task(req->ctx->io_wq);
2178 task_work_add(tsk, &req->task_work, TWA_NONE);
2179 wake_up_process(tsk);
2180 }
2181 }
2182
2183 static inline void io_queue_next(struct io_kiocb *req)
2184 {
2185 struct io_kiocb *nxt = io_req_find_next(req);
2186
2187 if (nxt)
2188 io_req_task_queue(nxt);
2189 }
2190
2191 static void io_free_req(struct io_kiocb *req)
2192 {
2193 io_queue_next(req);
2194 __io_free_req(req);
2195 }
2196
2197 struct req_batch {
2198 void *reqs[IO_IOPOLL_BATCH];
2199 int to_free;
2200
2201 struct task_struct *task;
2202 int task_refs;
2203 };
2204
2205 static inline void io_init_req_batch(struct req_batch *rb)
2206 {
2207 rb->to_free = 0;
2208 rb->task_refs = 0;
2209 rb->task = NULL;
2210 }
2211
2212 static void __io_req_free_batch_flush(struct io_ring_ctx *ctx,
2213 struct req_batch *rb)
2214 {
2215 kmem_cache_free_bulk(req_cachep, rb->to_free, rb->reqs);
2216 percpu_ref_put_many(&ctx->refs, rb->to_free);
2217 rb->to_free = 0;
2218 }
2219
2220 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2221 struct req_batch *rb)
2222 {
2223 if (rb->to_free)
2224 __io_req_free_batch_flush(ctx, rb);
2225 if (rb->task) {
2226 struct io_uring_task *tctx = rb->task->io_uring;
2227
2228 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2229 put_task_struct_many(rb->task, rb->task_refs);
2230 rb->task = NULL;
2231 }
2232 }
2233
2234 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req)
2235 {
2236 if (unlikely(io_is_fallback_req(req))) {
2237 io_free_req(req);
2238 return;
2239 }
2240 io_queue_next(req);
2241
2242 if (req->task != rb->task) {
2243 if (rb->task) {
2244 struct io_uring_task *tctx = rb->task->io_uring;
2245
2246 percpu_counter_sub(&tctx->inflight, rb->task_refs);
2247 put_task_struct_many(rb->task, rb->task_refs);
2248 }
2249 rb->task = req->task;
2250 rb->task_refs = 0;
2251 }
2252 rb->task_refs++;
2253
2254 io_dismantle_req(req);
2255 rb->reqs[rb->to_free++] = req;
2256 if (unlikely(rb->to_free == ARRAY_SIZE(rb->reqs)))
2257 __io_req_free_batch_flush(req->ctx, rb);
2258 }
2259
2260 /*
2261 * Drop reference to request, return next in chain (if there is one) if this
2262 * was the last reference to this request.
2263 */
2264 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2265 {
2266 struct io_kiocb *nxt = NULL;
2267
2268 if (refcount_dec_and_test(&req->refs)) {
2269 nxt = io_req_find_next(req);
2270 __io_free_req(req);
2271 }
2272 return nxt;
2273 }
2274
2275 static void io_put_req(struct io_kiocb *req)
2276 {
2277 if (refcount_dec_and_test(&req->refs))
2278 io_free_req(req);
2279 }
2280
2281 static void io_put_req_deferred_cb(struct callback_head *cb)
2282 {
2283 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2284
2285 io_free_req(req);
2286 }
2287
2288 static void io_free_req_deferred(struct io_kiocb *req)
2289 {
2290 int ret;
2291
2292 init_task_work(&req->task_work, io_put_req_deferred_cb);
2293 ret = io_req_task_work_add(req);
2294 if (unlikely(ret)) {
2295 struct task_struct *tsk;
2296
2297 tsk = io_wq_get_task(req->ctx->io_wq);
2298 task_work_add(tsk, &req->task_work, TWA_NONE);
2299 wake_up_process(tsk);
2300 }
2301 }
2302
2303 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2304 {
2305 if (refcount_sub_and_test(refs, &req->refs))
2306 io_free_req_deferred(req);
2307 }
2308
2309 static struct io_wq_work *io_steal_work(struct io_kiocb *req)
2310 {
2311 struct io_kiocb *nxt;
2312
2313 /*
2314 * A ref is owned by io-wq in which context we're. So, if that's the
2315 * last one, it's safe to steal next work. False negatives are Ok,
2316 * it just will be re-punted async in io_put_work()
2317 */
2318 if (refcount_read(&req->refs) != 1)
2319 return NULL;
2320
2321 nxt = io_req_find_next(req);
2322 return nxt ? &nxt->work : NULL;
2323 }
2324
2325 static void io_double_put_req(struct io_kiocb *req)
2326 {
2327 /* drop both submit and complete references */
2328 if (refcount_sub_and_test(2, &req->refs))
2329 io_free_req(req);
2330 }
2331
2332 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2333 {
2334 /* See comment at the top of this file */
2335 smp_rmb();
2336 return __io_cqring_events(ctx);
2337 }
2338
2339 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2340 {
2341 struct io_rings *rings = ctx->rings;
2342
2343 /* make sure SQ entry isn't read before tail */
2344 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2345 }
2346
2347 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2348 {
2349 unsigned int cflags;
2350
2351 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2352 cflags |= IORING_CQE_F_BUFFER;
2353 req->flags &= ~REQ_F_BUFFER_SELECTED;
2354 kfree(kbuf);
2355 return cflags;
2356 }
2357
2358 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2359 {
2360 struct io_buffer *kbuf;
2361
2362 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2363 return io_put_kbuf(req, kbuf);
2364 }
2365
2366 static inline bool io_run_task_work(void)
2367 {
2368 /*
2369 * Not safe to run on exiting task, and the task_work handling will
2370 * not add work to such a task.
2371 */
2372 if (unlikely(current->flags & PF_EXITING))
2373 return false;
2374 if (current->task_works) {
2375 __set_current_state(TASK_RUNNING);
2376 task_work_run();
2377 return true;
2378 }
2379
2380 return false;
2381 }
2382
2383 static void io_iopoll_queue(struct list_head *again)
2384 {
2385 struct io_kiocb *req;
2386
2387 do {
2388 req = list_first_entry(again, struct io_kiocb, inflight_entry);
2389 list_del(&req->inflight_entry);
2390 __io_complete_rw(req, -EAGAIN, 0, NULL);
2391 } while (!list_empty(again));
2392 }
2393
2394 /*
2395 * Find and free completed poll iocbs
2396 */
2397 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2398 struct list_head *done)
2399 {
2400 struct req_batch rb;
2401 struct io_kiocb *req;
2402 LIST_HEAD(again);
2403
2404 /* order with ->result store in io_complete_rw_iopoll() */
2405 smp_rmb();
2406
2407 io_init_req_batch(&rb);
2408 while (!list_empty(done)) {
2409 int cflags = 0;
2410
2411 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2412 if (READ_ONCE(req->result) == -EAGAIN) {
2413 req->result = 0;
2414 req->iopoll_completed = 0;
2415 list_move_tail(&req->inflight_entry, &again);
2416 continue;
2417 }
2418 list_del(&req->inflight_entry);
2419
2420 if (req->flags & REQ_F_BUFFER_SELECTED)
2421 cflags = io_put_rw_kbuf(req);
2422
2423 __io_cqring_fill_event(req, req->result, cflags);
2424 (*nr_events)++;
2425
2426 if (refcount_dec_and_test(&req->refs))
2427 io_req_free_batch(&rb, req);
2428 }
2429
2430 io_commit_cqring(ctx);
2431 if (ctx->flags & IORING_SETUP_SQPOLL)
2432 io_cqring_ev_posted(ctx);
2433 io_req_free_batch_finish(ctx, &rb);
2434
2435 if (!list_empty(&again))
2436 io_iopoll_queue(&again);
2437 }
2438
2439 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2440 long min)
2441 {
2442 struct io_kiocb *req, *tmp;
2443 LIST_HEAD(done);
2444 bool spin;
2445 int ret;
2446
2447 /*
2448 * Only spin for completions if we don't have multiple devices hanging
2449 * off our complete list, and we're under the requested amount.
2450 */
2451 spin = !ctx->poll_multi_file && *nr_events < min;
2452
2453 ret = 0;
2454 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2455 struct kiocb *kiocb = &req->rw.kiocb;
2456
2457 /*
2458 * Move completed and retryable entries to our local lists.
2459 * If we find a request that requires polling, break out
2460 * and complete those lists first, if we have entries there.
2461 */
2462 if (READ_ONCE(req->iopoll_completed)) {
2463 list_move_tail(&req->inflight_entry, &done);
2464 continue;
2465 }
2466 if (!list_empty(&done))
2467 break;
2468
2469 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2470 if (ret < 0)
2471 break;
2472
2473 /* iopoll may have completed current req */
2474 if (READ_ONCE(req->iopoll_completed))
2475 list_move_tail(&req->inflight_entry, &done);
2476
2477 if (ret && spin)
2478 spin = false;
2479 ret = 0;
2480 }
2481
2482 if (!list_empty(&done))
2483 io_iopoll_complete(ctx, nr_events, &done);
2484
2485 return ret;
2486 }
2487
2488 /*
2489 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2490 * non-spinning poll check - we'll still enter the driver poll loop, but only
2491 * as a non-spinning completion check.
2492 */
2493 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2494 long min)
2495 {
2496 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2497 int ret;
2498
2499 ret = io_do_iopoll(ctx, nr_events, min);
2500 if (ret < 0)
2501 return ret;
2502 if (*nr_events >= min)
2503 return 0;
2504 }
2505
2506 return 1;
2507 }
2508
2509 /*
2510 * We can't just wait for polled events to come to us, we have to actively
2511 * find and complete them.
2512 */
2513 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2514 {
2515 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2516 return;
2517
2518 mutex_lock(&ctx->uring_lock);
2519 while (!list_empty(&ctx->iopoll_list)) {
2520 unsigned int nr_events = 0;
2521
2522 io_do_iopoll(ctx, &nr_events, 0);
2523
2524 /* let it sleep and repeat later if can't complete a request */
2525 if (nr_events == 0)
2526 break;
2527 /*
2528 * Ensure we allow local-to-the-cpu processing to take place,
2529 * in this case we need to ensure that we reap all events.
2530 * Also let task_work, etc. to progress by releasing the mutex
2531 */
2532 if (need_resched()) {
2533 mutex_unlock(&ctx->uring_lock);
2534 cond_resched();
2535 mutex_lock(&ctx->uring_lock);
2536 }
2537 }
2538 mutex_unlock(&ctx->uring_lock);
2539 }
2540
2541 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2542 {
2543 unsigned int nr_events = 0;
2544 int iters = 0, ret = 0;
2545
2546 /*
2547 * We disallow the app entering submit/complete with polling, but we
2548 * still need to lock the ring to prevent racing with polled issue
2549 * that got punted to a workqueue.
2550 */
2551 mutex_lock(&ctx->uring_lock);
2552 do {
2553 /*
2554 * Don't enter poll loop if we already have events pending.
2555 * If we do, we can potentially be spinning for commands that
2556 * already triggered a CQE (eg in error).
2557 */
2558 if (test_bit(0, &ctx->cq_check_overflow))
2559 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2560 if (io_cqring_events(ctx))
2561 break;
2562
2563 /*
2564 * If a submit got punted to a workqueue, we can have the
2565 * application entering polling for a command before it gets
2566 * issued. That app will hold the uring_lock for the duration
2567 * of the poll right here, so we need to take a breather every
2568 * now and then to ensure that the issue has a chance to add
2569 * the poll to the issued list. Otherwise we can spin here
2570 * forever, while the workqueue is stuck trying to acquire the
2571 * very same mutex.
2572 */
2573 if (!(++iters & 7)) {
2574 mutex_unlock(&ctx->uring_lock);
2575 io_run_task_work();
2576 mutex_lock(&ctx->uring_lock);
2577 }
2578
2579 ret = io_iopoll_getevents(ctx, &nr_events, min);
2580 if (ret <= 0)
2581 break;
2582 ret = 0;
2583 } while (min && !nr_events && !need_resched());
2584
2585 mutex_unlock(&ctx->uring_lock);
2586 return ret;
2587 }
2588
2589 static void kiocb_end_write(struct io_kiocb *req)
2590 {
2591 /*
2592 * Tell lockdep we inherited freeze protection from submission
2593 * thread.
2594 */
2595 if (req->flags & REQ_F_ISREG) {
2596 struct inode *inode = file_inode(req->file);
2597
2598 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2599 }
2600 file_end_write(req->file);
2601 }
2602
2603 static void io_complete_rw_common(struct kiocb *kiocb, long res,
2604 struct io_comp_state *cs)
2605 {
2606 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2607 int cflags = 0;
2608
2609 if (kiocb->ki_flags & IOCB_WRITE)
2610 kiocb_end_write(req);
2611
2612 if (res != req->result)
2613 req_set_fail_links(req);
2614 if (req->flags & REQ_F_BUFFER_SELECTED)
2615 cflags = io_put_rw_kbuf(req);
2616 __io_req_complete(req, res, cflags, cs);
2617 }
2618
2619 #ifdef CONFIG_BLOCK
2620 static bool io_resubmit_prep(struct io_kiocb *req, int error)
2621 {
2622 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2623 ssize_t ret = -ECANCELED;
2624 struct iov_iter iter;
2625 int rw;
2626
2627 if (error) {
2628 ret = error;
2629 goto end_req;
2630 }
2631
2632 switch (req->opcode) {
2633 case IORING_OP_READV:
2634 case IORING_OP_READ_FIXED:
2635 case IORING_OP_READ:
2636 rw = READ;
2637 break;
2638 case IORING_OP_WRITEV:
2639 case IORING_OP_WRITE_FIXED:
2640 case IORING_OP_WRITE:
2641 rw = WRITE;
2642 break;
2643 default:
2644 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2645 req->opcode);
2646 goto end_req;
2647 }
2648
2649 if (!req->async_data) {
2650 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2651 if (ret < 0)
2652 goto end_req;
2653 ret = io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2654 if (!ret)
2655 return true;
2656 kfree(iovec);
2657 } else {
2658 return true;
2659 }
2660 end_req:
2661 req_set_fail_links(req);
2662 return false;
2663 }
2664 #endif
2665
2666 static bool io_rw_reissue(struct io_kiocb *req, long res)
2667 {
2668 #ifdef CONFIG_BLOCK
2669 umode_t mode = file_inode(req->file)->i_mode;
2670 int ret;
2671
2672 if (!S_ISBLK(mode) && !S_ISREG(mode))
2673 return false;
2674 if ((res != -EAGAIN && res != -EOPNOTSUPP) || io_wq_current_is_worker())
2675 return false;
2676
2677 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2678
2679 if (io_resubmit_prep(req, ret)) {
2680 refcount_inc(&req->refs);
2681 io_queue_async_work(req);
2682 return true;
2683 }
2684
2685 #endif
2686 return false;
2687 }
2688
2689 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2690 struct io_comp_state *cs)
2691 {
2692 if (!io_rw_reissue(req, res))
2693 io_complete_rw_common(&req->rw.kiocb, res, cs);
2694 }
2695
2696 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2697 {
2698 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2699
2700 __io_complete_rw(req, res, res2, NULL);
2701 }
2702
2703 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2704 {
2705 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2706
2707 if (kiocb->ki_flags & IOCB_WRITE)
2708 kiocb_end_write(req);
2709
2710 if (res != -EAGAIN && res != req->result)
2711 req_set_fail_links(req);
2712
2713 WRITE_ONCE(req->result, res);
2714 /* order with io_poll_complete() checking ->result */
2715 smp_wmb();
2716 WRITE_ONCE(req->iopoll_completed, 1);
2717 }
2718
2719 /*
2720 * After the iocb has been issued, it's safe to be found on the poll list.
2721 * Adding the kiocb to the list AFTER submission ensures that we don't
2722 * find it from a io_iopoll_getevents() thread before the issuer is done
2723 * accessing the kiocb cookie.
2724 */
2725 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2726 {
2727 struct io_ring_ctx *ctx = req->ctx;
2728
2729 /*
2730 * Track whether we have multiple files in our lists. This will impact
2731 * how we do polling eventually, not spinning if we're on potentially
2732 * different devices.
2733 */
2734 if (list_empty(&ctx->iopoll_list)) {
2735 ctx->poll_multi_file = false;
2736 } else if (!ctx->poll_multi_file) {
2737 struct io_kiocb *list_req;
2738
2739 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2740 inflight_entry);
2741 if (list_req->file != req->file)
2742 ctx->poll_multi_file = true;
2743 }
2744
2745 /*
2746 * For fast devices, IO may have already completed. If it has, add
2747 * it to the front so we find it first.
2748 */
2749 if (READ_ONCE(req->iopoll_completed))
2750 list_add(&req->inflight_entry, &ctx->iopoll_list);
2751 else
2752 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2753
2754 /*
2755 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2756 * task context or in io worker task context. If current task context is
2757 * sq thread, we don't need to check whether should wake up sq thread.
2758 */
2759 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2760 wq_has_sleeper(&ctx->sq_data->wait))
2761 wake_up(&ctx->sq_data->wait);
2762 }
2763
2764 static inline void __io_state_file_put(struct io_submit_state *state)
2765 {
2766 fput_many(state->file, state->file_refs);
2767 state->file_refs = 0;
2768 }
2769
2770 static inline void io_state_file_put(struct io_submit_state *state)
2771 {
2772 if (state->file_refs)
2773 __io_state_file_put(state);
2774 }
2775
2776 /*
2777 * Get as many references to a file as we have IOs left in this submission,
2778 * assuming most submissions are for one file, or at least that each file
2779 * has more than one submission.
2780 */
2781 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2782 {
2783 if (!state)
2784 return fget(fd);
2785
2786 if (state->file_refs) {
2787 if (state->fd == fd) {
2788 state->file_refs--;
2789 return state->file;
2790 }
2791 __io_state_file_put(state);
2792 }
2793 state->file = fget_many(fd, state->ios_left);
2794 if (unlikely(!state->file))
2795 return NULL;
2796
2797 state->fd = fd;
2798 state->file_refs = state->ios_left - 1;
2799 return state->file;
2800 }
2801
2802 static bool io_bdev_nowait(struct block_device *bdev)
2803 {
2804 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2805 }
2806
2807 /*
2808 * If we tracked the file through the SCM inflight mechanism, we could support
2809 * any file. For now, just ensure that anything potentially problematic is done
2810 * inline.
2811 */
2812 static bool io_file_supports_async(struct file *file, int rw)
2813 {
2814 umode_t mode = file_inode(file)->i_mode;
2815
2816 if (S_ISBLK(mode)) {
2817 if (IS_ENABLED(CONFIG_BLOCK) &&
2818 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2819 return true;
2820 return false;
2821 }
2822 if (S_ISCHR(mode) || S_ISSOCK(mode))
2823 return true;
2824 if (S_ISREG(mode)) {
2825 if (IS_ENABLED(CONFIG_BLOCK) &&
2826 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2827 file->f_op != &io_uring_fops)
2828 return true;
2829 return false;
2830 }
2831
2832 /* any ->read/write should understand O_NONBLOCK */
2833 if (file->f_flags & O_NONBLOCK)
2834 return true;
2835
2836 if (!(file->f_mode & FMODE_NOWAIT))
2837 return false;
2838
2839 if (rw == READ)
2840 return file->f_op->read_iter != NULL;
2841
2842 return file->f_op->write_iter != NULL;
2843 }
2844
2845 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
2846 {
2847 struct io_ring_ctx *ctx = req->ctx;
2848 struct kiocb *kiocb = &req->rw.kiocb;
2849 unsigned ioprio;
2850 int ret;
2851
2852 if (S_ISREG(file_inode(req->file)->i_mode))
2853 req->flags |= REQ_F_ISREG;
2854
2855 kiocb->ki_pos = READ_ONCE(sqe->off);
2856 if (kiocb->ki_pos == -1 && !(req->file->f_mode & FMODE_STREAM)) {
2857 req->flags |= REQ_F_CUR_POS;
2858 kiocb->ki_pos = req->file->f_pos;
2859 }
2860 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2861 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2862 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2863 if (unlikely(ret))
2864 return ret;
2865
2866 ioprio = READ_ONCE(sqe->ioprio);
2867 if (ioprio) {
2868 ret = ioprio_check_cap(ioprio);
2869 if (ret)
2870 return ret;
2871
2872 kiocb->ki_ioprio = ioprio;
2873 } else
2874 kiocb->ki_ioprio = get_current_ioprio();
2875
2876 /* don't allow async punt if RWF_NOWAIT was requested */
2877 if (kiocb->ki_flags & IOCB_NOWAIT)
2878 req->flags |= REQ_F_NOWAIT;
2879
2880 if (ctx->flags & IORING_SETUP_IOPOLL) {
2881 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2882 !kiocb->ki_filp->f_op->iopoll)
2883 return -EOPNOTSUPP;
2884
2885 kiocb->ki_flags |= IOCB_HIPRI;
2886 kiocb->ki_complete = io_complete_rw_iopoll;
2887 req->iopoll_completed = 0;
2888 } else {
2889 if (kiocb->ki_flags & IOCB_HIPRI)
2890 return -EINVAL;
2891 kiocb->ki_complete = io_complete_rw;
2892 }
2893
2894 req->rw.addr = READ_ONCE(sqe->addr);
2895 req->rw.len = READ_ONCE(sqe->len);
2896 req->buf_index = READ_ONCE(sqe->buf_index);
2897 return 0;
2898 }
2899
2900 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2901 {
2902 switch (ret) {
2903 case -EIOCBQUEUED:
2904 break;
2905 case -ERESTARTSYS:
2906 case -ERESTARTNOINTR:
2907 case -ERESTARTNOHAND:
2908 case -ERESTART_RESTARTBLOCK:
2909 /*
2910 * We can't just restart the syscall, since previously
2911 * submitted sqes may already be in progress. Just fail this
2912 * IO with EINTR.
2913 */
2914 ret = -EINTR;
2915 fallthrough;
2916 default:
2917 kiocb->ki_complete(kiocb, ret, 0);
2918 }
2919 }
2920
2921 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2922 struct io_comp_state *cs)
2923 {
2924 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2925 struct io_async_rw *io = req->async_data;
2926
2927 /* add previously done IO, if any */
2928 if (io && io->bytes_done > 0) {
2929 if (ret < 0)
2930 ret = io->bytes_done;
2931 else
2932 ret += io->bytes_done;
2933 }
2934
2935 if (req->flags & REQ_F_CUR_POS)
2936 req->file->f_pos = kiocb->ki_pos;
2937 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
2938 __io_complete_rw(req, ret, 0, cs);
2939 else
2940 io_rw_done(kiocb, ret);
2941 }
2942
2943 static ssize_t io_import_fixed(struct io_kiocb *req, int rw,
2944 struct iov_iter *iter)
2945 {
2946 struct io_ring_ctx *ctx = req->ctx;
2947 size_t len = req->rw.len;
2948 struct io_mapped_ubuf *imu;
2949 u16 index, buf_index = req->buf_index;
2950 size_t offset;
2951 u64 buf_addr;
2952
2953 if (unlikely(buf_index >= ctx->nr_user_bufs))
2954 return -EFAULT;
2955 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
2956 imu = &ctx->user_bufs[index];
2957 buf_addr = req->rw.addr;
2958
2959 /* overflow */
2960 if (buf_addr + len < buf_addr)
2961 return -EFAULT;
2962 /* not inside the mapped region */
2963 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
2964 return -EFAULT;
2965
2966 /*
2967 * May not be a start of buffer, set size appropriately
2968 * and advance us to the beginning.
2969 */
2970 offset = buf_addr - imu->ubuf;
2971 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2972
2973 if (offset) {
2974 /*
2975 * Don't use iov_iter_advance() here, as it's really slow for
2976 * using the latter parts of a big fixed buffer - it iterates
2977 * over each segment manually. We can cheat a bit here, because
2978 * we know that:
2979 *
2980 * 1) it's a BVEC iter, we set it up
2981 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2982 * first and last bvec
2983 *
2984 * So just find our index, and adjust the iterator afterwards.
2985 * If the offset is within the first bvec (or the whole first
2986 * bvec, just use iov_iter_advance(). This makes it easier
2987 * since we can just skip the first segment, which may not
2988 * be PAGE_SIZE aligned.
2989 */
2990 const struct bio_vec *bvec = imu->bvec;
2991
2992 if (offset <= bvec->bv_len) {
2993 iov_iter_advance(iter, offset);
2994 } else {
2995 unsigned long seg_skip;
2996
2997 /* skip first vec */
2998 offset -= bvec->bv_len;
2999 seg_skip = 1 + (offset >> PAGE_SHIFT);
3000
3001 iter->bvec = bvec + seg_skip;
3002 iter->nr_segs -= seg_skip;
3003 iter->count -= bvec->bv_len + offset;
3004 iter->iov_offset = offset & ~PAGE_MASK;
3005 }
3006 }
3007
3008 return len;
3009 }
3010
3011 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3012 {
3013 if (needs_lock)
3014 mutex_unlock(&ctx->uring_lock);
3015 }
3016
3017 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3018 {
3019 /*
3020 * "Normal" inline submissions always hold the uring_lock, since we
3021 * grab it from the system call. Same is true for the SQPOLL offload.
3022 * The only exception is when we've detached the request and issue it
3023 * from an async worker thread, grab the lock for that case.
3024 */
3025 if (needs_lock)
3026 mutex_lock(&ctx->uring_lock);
3027 }
3028
3029 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3030 int bgid, struct io_buffer *kbuf,
3031 bool needs_lock)
3032 {
3033 struct io_buffer *head;
3034
3035 if (req->flags & REQ_F_BUFFER_SELECTED)
3036 return kbuf;
3037
3038 io_ring_submit_lock(req->ctx, needs_lock);
3039
3040 lockdep_assert_held(&req->ctx->uring_lock);
3041
3042 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3043 if (head) {
3044 if (!list_empty(&head->list)) {
3045 kbuf = list_last_entry(&head->list, struct io_buffer,
3046 list);
3047 list_del(&kbuf->list);
3048 } else {
3049 kbuf = head;
3050 idr_remove(&req->ctx->io_buffer_idr, bgid);
3051 }
3052 if (*len > kbuf->len)
3053 *len = kbuf->len;
3054 } else {
3055 kbuf = ERR_PTR(-ENOBUFS);
3056 }
3057
3058 io_ring_submit_unlock(req->ctx, needs_lock);
3059
3060 return kbuf;
3061 }
3062
3063 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3064 bool needs_lock)
3065 {
3066 struct io_buffer *kbuf;
3067 u16 bgid;
3068
3069 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3070 bgid = req->buf_index;
3071 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3072 if (IS_ERR(kbuf))
3073 return kbuf;
3074 req->rw.addr = (u64) (unsigned long) kbuf;
3075 req->flags |= REQ_F_BUFFER_SELECTED;
3076 return u64_to_user_ptr(kbuf->addr);
3077 }
3078
3079 #ifdef CONFIG_COMPAT
3080 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3081 bool needs_lock)
3082 {
3083 struct compat_iovec __user *uiov;
3084 compat_ssize_t clen;
3085 void __user *buf;
3086 ssize_t len;
3087
3088 uiov = u64_to_user_ptr(req->rw.addr);
3089 if (!access_ok(uiov, sizeof(*uiov)))
3090 return -EFAULT;
3091 if (__get_user(clen, &uiov->iov_len))
3092 return -EFAULT;
3093 if (clen < 0)
3094 return -EINVAL;
3095
3096 len = clen;
3097 buf = io_rw_buffer_select(req, &len, needs_lock);
3098 if (IS_ERR(buf))
3099 return PTR_ERR(buf);
3100 iov[0].iov_base = buf;
3101 iov[0].iov_len = (compat_size_t) len;
3102 return 0;
3103 }
3104 #endif
3105
3106 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3107 bool needs_lock)
3108 {
3109 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3110 void __user *buf;
3111 ssize_t len;
3112
3113 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3114 return -EFAULT;
3115
3116 len = iov[0].iov_len;
3117 if (len < 0)
3118 return -EINVAL;
3119 buf = io_rw_buffer_select(req, &len, needs_lock);
3120 if (IS_ERR(buf))
3121 return PTR_ERR(buf);
3122 iov[0].iov_base = buf;
3123 iov[0].iov_len = len;
3124 return 0;
3125 }
3126
3127 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3128 bool needs_lock)
3129 {
3130 if (req->flags & REQ_F_BUFFER_SELECTED) {
3131 struct io_buffer *kbuf;
3132
3133 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3134 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3135 iov[0].iov_len = kbuf->len;
3136 return 0;
3137 }
3138 if (req->rw.len != 1)
3139 return -EINVAL;
3140
3141 #ifdef CONFIG_COMPAT
3142 if (req->ctx->compat)
3143 return io_compat_import(req, iov, needs_lock);
3144 #endif
3145
3146 return __io_iov_buffer_select(req, iov, needs_lock);
3147 }
3148
3149 static ssize_t io_import_iovec(int rw, struct io_kiocb *req,
3150 struct iovec **iovec, struct iov_iter *iter,
3151 bool needs_lock)
3152 {
3153 void __user *buf = u64_to_user_ptr(req->rw.addr);
3154 size_t sqe_len = req->rw.len;
3155 ssize_t ret;
3156 u8 opcode;
3157
3158 opcode = req->opcode;
3159 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3160 *iovec = NULL;
3161 return io_import_fixed(req, rw, iter);
3162 }
3163
3164 /* buffer index only valid with fixed read/write, or buffer select */
3165 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3166 return -EINVAL;
3167
3168 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3169 if (req->flags & REQ_F_BUFFER_SELECT) {
3170 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3171 if (IS_ERR(buf))
3172 return PTR_ERR(buf);
3173 req->rw.len = sqe_len;
3174 }
3175
3176 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3177 *iovec = NULL;
3178 return ret;
3179 }
3180
3181 if (req->flags & REQ_F_BUFFER_SELECT) {
3182 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3183 if (!ret) {
3184 ret = (*iovec)->iov_len;
3185 iov_iter_init(iter, rw, *iovec, 1, ret);
3186 }
3187 *iovec = NULL;
3188 return ret;
3189 }
3190
3191 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3192 req->ctx->compat);
3193 }
3194
3195 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3196 {
3197 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3198 }
3199
3200 /*
3201 * For files that don't have ->read_iter() and ->write_iter(), handle them
3202 * by looping over ->read() or ->write() manually.
3203 */
3204 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3205 {
3206 struct kiocb *kiocb = &req->rw.kiocb;
3207 struct file *file = req->file;
3208 ssize_t ret = 0;
3209
3210 /*
3211 * Don't support polled IO through this interface, and we can't
3212 * support non-blocking either. For the latter, this just causes
3213 * the kiocb to be handled from an async context.
3214 */
3215 if (kiocb->ki_flags & IOCB_HIPRI)
3216 return -EOPNOTSUPP;
3217 if (kiocb->ki_flags & IOCB_NOWAIT)
3218 return -EAGAIN;
3219
3220 while (iov_iter_count(iter)) {
3221 struct iovec iovec;
3222 ssize_t nr;
3223
3224 if (!iov_iter_is_bvec(iter)) {
3225 iovec = iov_iter_iovec(iter);
3226 } else {
3227 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3228 iovec.iov_len = req->rw.len;
3229 }
3230
3231 if (rw == READ) {
3232 nr = file->f_op->read(file, iovec.iov_base,
3233 iovec.iov_len, io_kiocb_ppos(kiocb));
3234 } else {
3235 nr = file->f_op->write(file, iovec.iov_base,
3236 iovec.iov_len, io_kiocb_ppos(kiocb));
3237 }
3238
3239 if (nr < 0) {
3240 if (!ret)
3241 ret = nr;
3242 break;
3243 }
3244 ret += nr;
3245 if (nr != iovec.iov_len)
3246 break;
3247 req->rw.len -= nr;
3248 req->rw.addr += nr;
3249 iov_iter_advance(iter, nr);
3250 }
3251
3252 return ret;
3253 }
3254
3255 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3256 const struct iovec *fast_iov, struct iov_iter *iter)
3257 {
3258 struct io_async_rw *rw = req->async_data;
3259
3260 memcpy(&rw->iter, iter, sizeof(*iter));
3261 rw->free_iovec = iovec;
3262 rw->bytes_done = 0;
3263 /* can only be fixed buffers, no need to do anything */
3264 if (iov_iter_is_bvec(iter))
3265 return;
3266 if (!iovec) {
3267 unsigned iov_off = 0;
3268
3269 rw->iter.iov = rw->fast_iov;
3270 if (iter->iov != fast_iov) {
3271 iov_off = iter->iov - fast_iov;
3272 rw->iter.iov += iov_off;
3273 }
3274 if (rw->fast_iov != fast_iov)
3275 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3276 sizeof(struct iovec) * iter->nr_segs);
3277 } else {
3278 req->flags |= REQ_F_NEED_CLEANUP;
3279 }
3280 }
3281
3282 static inline int __io_alloc_async_data(struct io_kiocb *req)
3283 {
3284 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3285 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3286 return req->async_data == NULL;
3287 }
3288
3289 static int io_alloc_async_data(struct io_kiocb *req)
3290 {
3291 if (!io_op_defs[req->opcode].needs_async_data)
3292 return 0;
3293
3294 return __io_alloc_async_data(req);
3295 }
3296
3297 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3298 const struct iovec *fast_iov,
3299 struct iov_iter *iter, bool force)
3300 {
3301 if (!force && !io_op_defs[req->opcode].needs_async_data)
3302 return 0;
3303 if (!req->async_data) {
3304 if (__io_alloc_async_data(req))
3305 return -ENOMEM;
3306
3307 io_req_map_rw(req, iovec, fast_iov, iter);
3308 }
3309 return 0;
3310 }
3311
3312 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3313 {
3314 struct io_async_rw *iorw = req->async_data;
3315 struct iovec *iov = iorw->fast_iov;
3316 ssize_t ret;
3317
3318 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3319 if (unlikely(ret < 0))
3320 return ret;
3321
3322 iorw->bytes_done = 0;
3323 iorw->free_iovec = iov;
3324 if (iov)
3325 req->flags |= REQ_F_NEED_CLEANUP;
3326 return 0;
3327 }
3328
3329 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3330 {
3331 ssize_t ret;
3332
3333 ret = io_prep_rw(req, sqe);
3334 if (ret)
3335 return ret;
3336
3337 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3338 return -EBADF;
3339
3340 /* either don't need iovec imported or already have it */
3341 if (!req->async_data)
3342 return 0;
3343 return io_rw_prep_async(req, READ);
3344 }
3345
3346 /*
3347 * This is our waitqueue callback handler, registered through lock_page_async()
3348 * when we initially tried to do the IO with the iocb armed our waitqueue.
3349 * This gets called when the page is unlocked, and we generally expect that to
3350 * happen when the page IO is completed and the page is now uptodate. This will
3351 * queue a task_work based retry of the operation, attempting to copy the data
3352 * again. If the latter fails because the page was NOT uptodate, then we will
3353 * do a thread based blocking retry of the operation. That's the unexpected
3354 * slow path.
3355 */
3356 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3357 int sync, void *arg)
3358 {
3359 struct wait_page_queue *wpq;
3360 struct io_kiocb *req = wait->private;
3361 struct wait_page_key *key = arg;
3362 int ret;
3363
3364 wpq = container_of(wait, struct wait_page_queue, wait);
3365
3366 if (!wake_page_match(wpq, key))
3367 return 0;
3368
3369 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3370 list_del_init(&wait->entry);
3371
3372 init_task_work(&req->task_work, io_req_task_submit);
3373 percpu_ref_get(&req->ctx->refs);
3374
3375 /* submit ref gets dropped, acquire a new one */
3376 refcount_inc(&req->refs);
3377 ret = io_req_task_work_add(req);
3378 if (unlikely(ret)) {
3379 struct task_struct *tsk;
3380
3381 /* queue just for cancelation */
3382 init_task_work(&req->task_work, io_req_task_cancel);
3383 tsk = io_wq_get_task(req->ctx->io_wq);
3384 task_work_add(tsk, &req->task_work, TWA_NONE);
3385 wake_up_process(tsk);
3386 }
3387 return 1;
3388 }
3389
3390 /*
3391 * This controls whether a given IO request should be armed for async page
3392 * based retry. If we return false here, the request is handed to the async
3393 * worker threads for retry. If we're doing buffered reads on a regular file,
3394 * we prepare a private wait_page_queue entry and retry the operation. This
3395 * will either succeed because the page is now uptodate and unlocked, or it
3396 * will register a callback when the page is unlocked at IO completion. Through
3397 * that callback, io_uring uses task_work to setup a retry of the operation.
3398 * That retry will attempt the buffered read again. The retry will generally
3399 * succeed, or in rare cases where it fails, we then fall back to using the
3400 * async worker threads for a blocking retry.
3401 */
3402 static bool io_rw_should_retry(struct io_kiocb *req)
3403 {
3404 struct io_async_rw *rw = req->async_data;
3405 struct wait_page_queue *wait = &rw->wpq;
3406 struct kiocb *kiocb = &req->rw.kiocb;
3407
3408 /* never retry for NOWAIT, we just complete with -EAGAIN */
3409 if (req->flags & REQ_F_NOWAIT)
3410 return false;
3411
3412 /* Only for buffered IO */
3413 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3414 return false;
3415
3416 /*
3417 * just use poll if we can, and don't attempt if the fs doesn't
3418 * support callback based unlocks
3419 */
3420 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3421 return false;
3422
3423 wait->wait.func = io_async_buf_func;
3424 wait->wait.private = req;
3425 wait->wait.flags = 0;
3426 INIT_LIST_HEAD(&wait->wait.entry);
3427 kiocb->ki_flags |= IOCB_WAITQ;
3428 kiocb->ki_flags &= ~IOCB_NOWAIT;
3429 kiocb->ki_waitq = wait;
3430 return true;
3431 }
3432
3433 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3434 {
3435 if (req->file->f_op->read_iter)
3436 return call_read_iter(req->file, &req->rw.kiocb, iter);
3437 else if (req->file->f_op->read)
3438 return loop_rw_iter(READ, req, iter);
3439 else
3440 return -EINVAL;
3441 }
3442
3443 static int io_read(struct io_kiocb *req, bool force_nonblock,
3444 struct io_comp_state *cs)
3445 {
3446 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3447 struct kiocb *kiocb = &req->rw.kiocb;
3448 struct iov_iter __iter, *iter = &__iter;
3449 struct io_async_rw *rw = req->async_data;
3450 ssize_t io_size, ret, ret2;
3451 bool no_async;
3452
3453 if (rw) {
3454 iter = &rw->iter;
3455 iovec = NULL;
3456 } else {
3457 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3458 if (ret < 0)
3459 return ret;
3460 }
3461 io_size = iov_iter_count(iter);
3462 req->result = io_size;
3463 ret = 0;
3464
3465 /* Ensure we clear previously set non-block flag */
3466 if (!force_nonblock)
3467 kiocb->ki_flags &= ~IOCB_NOWAIT;
3468 else
3469 kiocb->ki_flags |= IOCB_NOWAIT;
3470
3471
3472 /* If the file doesn't support async, just async punt */
3473 no_async = force_nonblock && !io_file_supports_async(req->file, READ);
3474 if (no_async)
3475 goto copy_iov;
3476
3477 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3478 if (unlikely(ret))
3479 goto out_free;
3480
3481 ret = io_iter_do_read(req, iter);
3482
3483 if (!ret) {
3484 goto done;
3485 } else if (ret == -EIOCBQUEUED) {
3486 ret = 0;
3487 goto out_free;
3488 } else if (ret == -EAGAIN) {
3489 /* IOPOLL retry should happen for io-wq threads */
3490 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3491 goto done;
3492 /* no retry on NONBLOCK marked file */
3493 if (req->file->f_flags & O_NONBLOCK)
3494 goto done;
3495 /* some cases will consume bytes even on error returns */
3496 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3497 ret = 0;
3498 goto copy_iov;
3499 } else if (ret < 0) {
3500 /* make sure -ERESTARTSYS -> -EINTR is done */
3501 goto done;
3502 }
3503
3504 /* read it all, or we did blocking attempt. no retry. */
3505 if (!iov_iter_count(iter) || !force_nonblock ||
3506 (req->file->f_flags & O_NONBLOCK))
3507 goto done;
3508
3509 io_size -= ret;
3510 copy_iov:
3511 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3512 if (ret2) {
3513 ret = ret2;
3514 goto out_free;
3515 }
3516 if (no_async)
3517 return -EAGAIN;
3518 rw = req->async_data;
3519 /* it's copied and will be cleaned with ->io */
3520 iovec = NULL;
3521 /* now use our persistent iterator, if we aren't already */
3522 iter = &rw->iter;
3523 retry:
3524 rw->bytes_done += ret;
3525 /* if we can retry, do so with the callbacks armed */
3526 if (!io_rw_should_retry(req)) {
3527 kiocb->ki_flags &= ~IOCB_WAITQ;
3528 return -EAGAIN;
3529 }
3530
3531 /*
3532 * Now retry read with the IOCB_WAITQ parts set in the iocb. If we
3533 * get -EIOCBQUEUED, then we'll get a notification when the desired
3534 * page gets unlocked. We can also get a partial read here, and if we
3535 * do, then just retry at the new offset.
3536 */
3537 ret = io_iter_do_read(req, iter);
3538 if (ret == -EIOCBQUEUED) {
3539 ret = 0;
3540 goto out_free;
3541 } else if (ret > 0 && ret < io_size) {
3542 /* we got some bytes, but not all. retry. */
3543 goto retry;
3544 }
3545 done:
3546 kiocb_done(kiocb, ret, cs);
3547 ret = 0;
3548 out_free:
3549 /* it's reportedly faster than delegating the null check to kfree() */
3550 if (iovec)
3551 kfree(iovec);
3552 return ret;
3553 }
3554
3555 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3556 {
3557 ssize_t ret;
3558
3559 ret = io_prep_rw(req, sqe);
3560 if (ret)
3561 return ret;
3562
3563 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3564 return -EBADF;
3565
3566 /* either don't need iovec imported or already have it */
3567 if (!req->async_data)
3568 return 0;
3569 return io_rw_prep_async(req, WRITE);
3570 }
3571
3572 static int io_write(struct io_kiocb *req, bool force_nonblock,
3573 struct io_comp_state *cs)
3574 {
3575 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3576 struct kiocb *kiocb = &req->rw.kiocb;
3577 struct iov_iter __iter, *iter = &__iter;
3578 struct io_async_rw *rw = req->async_data;
3579 ssize_t ret, ret2, io_size;
3580
3581 if (rw) {
3582 iter = &rw->iter;
3583 iovec = NULL;
3584 } else {
3585 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3586 if (ret < 0)
3587 return ret;
3588 }
3589 io_size = iov_iter_count(iter);
3590 req->result = io_size;
3591
3592 /* Ensure we clear previously set non-block flag */
3593 if (!force_nonblock)
3594 kiocb->ki_flags &= ~IOCB_NOWAIT;
3595 else
3596 kiocb->ki_flags |= IOCB_NOWAIT;
3597
3598 /* If the file doesn't support async, just async punt */
3599 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3600 goto copy_iov;
3601
3602 /* file path doesn't support NOWAIT for non-direct_IO */
3603 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3604 (req->flags & REQ_F_ISREG))
3605 goto copy_iov;
3606
3607 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3608 if (unlikely(ret))
3609 goto out_free;
3610
3611 /*
3612 * Open-code file_start_write here to grab freeze protection,
3613 * which will be released by another thread in
3614 * io_complete_rw(). Fool lockdep by telling it the lock got
3615 * released so that it doesn't complain about the held lock when
3616 * we return to userspace.
3617 */
3618 if (req->flags & REQ_F_ISREG) {
3619 sb_start_write(file_inode(req->file)->i_sb);
3620 __sb_writers_release(file_inode(req->file)->i_sb,
3621 SB_FREEZE_WRITE);
3622 }
3623 kiocb->ki_flags |= IOCB_WRITE;
3624
3625 if (req->file->f_op->write_iter)
3626 ret2 = call_write_iter(req->file, kiocb, iter);
3627 else if (req->file->f_op->write)
3628 ret2 = loop_rw_iter(WRITE, req, iter);
3629 else
3630 ret2 = -EINVAL;
3631
3632 /*
3633 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3634 * retry them without IOCB_NOWAIT.
3635 */
3636 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3637 ret2 = -EAGAIN;
3638 /* no retry on NONBLOCK marked file */
3639 if (ret2 == -EAGAIN && (req->file->f_flags & O_NONBLOCK))
3640 goto done;
3641 if (!force_nonblock || ret2 != -EAGAIN) {
3642 /* IOPOLL retry should happen for io-wq threads */
3643 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3644 goto copy_iov;
3645 done:
3646 kiocb_done(kiocb, ret2, cs);
3647 } else {
3648 copy_iov:
3649 /* some cases will consume bytes even on error returns */
3650 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3651 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3652 if (!ret)
3653 return -EAGAIN;
3654 }
3655 out_free:
3656 /* it's reportedly faster than delegating the null check to kfree() */
3657 if (iovec)
3658 kfree(iovec);
3659 return ret;
3660 }
3661
3662 static int io_renameat_prep(struct io_kiocb *req,
3663 const struct io_uring_sqe *sqe)
3664 {
3665 struct io_rename *ren = &req->rename;
3666 const char __user *oldf, *newf;
3667
3668 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3669 return -EBADF;
3670
3671 ren->old_dfd = READ_ONCE(sqe->fd);
3672 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3673 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3674 ren->new_dfd = READ_ONCE(sqe->len);
3675 ren->flags = READ_ONCE(sqe->rename_flags);
3676
3677 ren->oldpath = getname(oldf);
3678 if (IS_ERR(ren->oldpath))
3679 return PTR_ERR(ren->oldpath);
3680
3681 ren->newpath = getname(newf);
3682 if (IS_ERR(ren->newpath)) {
3683 putname(ren->oldpath);
3684 return PTR_ERR(ren->newpath);
3685 }
3686
3687 req->flags |= REQ_F_NEED_CLEANUP;
3688 return 0;
3689 }
3690
3691 static int io_renameat(struct io_kiocb *req, bool force_nonblock)
3692 {
3693 struct io_rename *ren = &req->rename;
3694 int ret;
3695
3696 if (force_nonblock)
3697 return -EAGAIN;
3698
3699 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3700 ren->newpath, ren->flags);
3701
3702 req->flags &= ~REQ_F_NEED_CLEANUP;
3703 if (ret < 0)
3704 req_set_fail_links(req);
3705 io_req_complete(req, ret);
3706 return 0;
3707 }
3708
3709 static int io_unlinkat_prep(struct io_kiocb *req,
3710 const struct io_uring_sqe *sqe)
3711 {
3712 struct io_unlink *un = &req->unlink;
3713 const char __user *fname;
3714
3715 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3716 return -EBADF;
3717
3718 un->dfd = READ_ONCE(sqe->fd);
3719
3720 un->flags = READ_ONCE(sqe->unlink_flags);
3721 if (un->flags & ~AT_REMOVEDIR)
3722 return -EINVAL;
3723
3724 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3725 un->filename = getname(fname);
3726 if (IS_ERR(un->filename))
3727 return PTR_ERR(un->filename);
3728
3729 req->flags |= REQ_F_NEED_CLEANUP;
3730 return 0;
3731 }
3732
3733 static int io_unlinkat(struct io_kiocb *req, bool force_nonblock)
3734 {
3735 struct io_unlink *un = &req->unlink;
3736 int ret;
3737
3738 if (force_nonblock)
3739 return -EAGAIN;
3740
3741 if (un->flags & AT_REMOVEDIR)
3742 ret = do_rmdir(un->dfd, un->filename);
3743 else
3744 ret = do_unlinkat(un->dfd, un->filename);
3745
3746 req->flags &= ~REQ_F_NEED_CLEANUP;
3747 if (ret < 0)
3748 req_set_fail_links(req);
3749 io_req_complete(req, ret);
3750 return 0;
3751 }
3752
3753 static int io_shutdown_prep(struct io_kiocb *req,
3754 const struct io_uring_sqe *sqe)
3755 {
3756 #if defined(CONFIG_NET)
3757 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3758 return -EINVAL;
3759 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3760 sqe->buf_index)
3761 return -EINVAL;
3762
3763 req->shutdown.how = READ_ONCE(sqe->len);
3764 return 0;
3765 #else
3766 return -EOPNOTSUPP;
3767 #endif
3768 }
3769
3770 static int io_shutdown(struct io_kiocb *req, bool force_nonblock)
3771 {
3772 #if defined(CONFIG_NET)
3773 struct socket *sock;
3774 int ret;
3775
3776 if (force_nonblock)
3777 return -EAGAIN;
3778
3779 sock = sock_from_file(req->file);
3780 if (unlikely(!sock))
3781 return -ENOTSOCK;
3782
3783 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3784 if (ret < 0)
3785 req_set_fail_links(req);
3786 io_req_complete(req, ret);
3787 return 0;
3788 #else
3789 return -EOPNOTSUPP;
3790 #endif
3791 }
3792
3793 static int __io_splice_prep(struct io_kiocb *req,
3794 const struct io_uring_sqe *sqe)
3795 {
3796 struct io_splice* sp = &req->splice;
3797 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3798
3799 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3800 return -EINVAL;
3801
3802 sp->file_in = NULL;
3803 sp->len = READ_ONCE(sqe->len);
3804 sp->flags = READ_ONCE(sqe->splice_flags);
3805
3806 if (unlikely(sp->flags & ~valid_flags))
3807 return -EINVAL;
3808
3809 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3810 (sp->flags & SPLICE_F_FD_IN_FIXED));
3811 if (!sp->file_in)
3812 return -EBADF;
3813 req->flags |= REQ_F_NEED_CLEANUP;
3814
3815 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3816 /*
3817 * Splice operation will be punted aync, and here need to
3818 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3819 */
3820 io_req_init_async(req);
3821 req->work.flags |= IO_WQ_WORK_UNBOUND;
3822 }
3823
3824 return 0;
3825 }
3826
3827 static int io_tee_prep(struct io_kiocb *req,
3828 const struct io_uring_sqe *sqe)
3829 {
3830 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3831 return -EINVAL;
3832 return __io_splice_prep(req, sqe);
3833 }
3834
3835 static int io_tee(struct io_kiocb *req, bool force_nonblock)
3836 {
3837 struct io_splice *sp = &req->splice;
3838 struct file *in = sp->file_in;
3839 struct file *out = sp->file_out;
3840 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3841 long ret = 0;
3842
3843 if (force_nonblock)
3844 return -EAGAIN;
3845 if (sp->len)
3846 ret = do_tee(in, out, sp->len, flags);
3847
3848 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3849 req->flags &= ~REQ_F_NEED_CLEANUP;
3850
3851 if (ret != sp->len)
3852 req_set_fail_links(req);
3853 io_req_complete(req, ret);
3854 return 0;
3855 }
3856
3857 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3858 {
3859 struct io_splice* sp = &req->splice;
3860
3861 sp->off_in = READ_ONCE(sqe->splice_off_in);
3862 sp->off_out = READ_ONCE(sqe->off);
3863 return __io_splice_prep(req, sqe);
3864 }
3865
3866 static int io_splice(struct io_kiocb *req, bool force_nonblock)
3867 {
3868 struct io_splice *sp = &req->splice;
3869 struct file *in = sp->file_in;
3870 struct file *out = sp->file_out;
3871 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3872 loff_t *poff_in, *poff_out;
3873 long ret = 0;
3874
3875 if (force_nonblock)
3876 return -EAGAIN;
3877
3878 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
3879 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
3880
3881 if (sp->len)
3882 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
3883
3884 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3885 req->flags &= ~REQ_F_NEED_CLEANUP;
3886
3887 if (ret != sp->len)
3888 req_set_fail_links(req);
3889 io_req_complete(req, ret);
3890 return 0;
3891 }
3892
3893 /*
3894 * IORING_OP_NOP just posts a completion event, nothing else.
3895 */
3896 static int io_nop(struct io_kiocb *req, struct io_comp_state *cs)
3897 {
3898 struct io_ring_ctx *ctx = req->ctx;
3899
3900 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3901 return -EINVAL;
3902
3903 __io_req_complete(req, 0, 0, cs);
3904 return 0;
3905 }
3906
3907 static int io_prep_fsync(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3908 {
3909 struct io_ring_ctx *ctx = req->ctx;
3910
3911 if (!req->file)
3912 return -EBADF;
3913
3914 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
3915 return -EINVAL;
3916 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
3917 return -EINVAL;
3918
3919 req->sync.flags = READ_ONCE(sqe->fsync_flags);
3920 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
3921 return -EINVAL;
3922
3923 req->sync.off = READ_ONCE(sqe->off);
3924 req->sync.len = READ_ONCE(sqe->len);
3925 return 0;
3926 }
3927
3928 static int io_fsync(struct io_kiocb *req, bool force_nonblock)
3929 {
3930 loff_t end = req->sync.off + req->sync.len;
3931 int ret;
3932
3933 /* fsync always requires a blocking context */
3934 if (force_nonblock)
3935 return -EAGAIN;
3936
3937 ret = vfs_fsync_range(req->file, req->sync.off,
3938 end > 0 ? end : LLONG_MAX,
3939 req->sync.flags & IORING_FSYNC_DATASYNC);
3940 if (ret < 0)
3941 req_set_fail_links(req);
3942 io_req_complete(req, ret);
3943 return 0;
3944 }
3945
3946 static int io_fallocate_prep(struct io_kiocb *req,
3947 const struct io_uring_sqe *sqe)
3948 {
3949 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
3950 return -EINVAL;
3951 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3952 return -EINVAL;
3953
3954 req->sync.off = READ_ONCE(sqe->off);
3955 req->sync.len = READ_ONCE(sqe->addr);
3956 req->sync.mode = READ_ONCE(sqe->len);
3957 return 0;
3958 }
3959
3960 static int io_fallocate(struct io_kiocb *req, bool force_nonblock)
3961 {
3962 int ret;
3963
3964 /* fallocate always requiring blocking context */
3965 if (force_nonblock)
3966 return -EAGAIN;
3967 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
3968 req->sync.len);
3969 if (ret < 0)
3970 req_set_fail_links(req);
3971 io_req_complete(req, ret);
3972 return 0;
3973 }
3974
3975 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3976 {
3977 const char __user *fname;
3978 int ret;
3979
3980 if (unlikely(sqe->ioprio || sqe->buf_index))
3981 return -EINVAL;
3982 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3983 return -EBADF;
3984
3985 /* open.how should be already initialised */
3986 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
3987 req->open.how.flags |= O_LARGEFILE;
3988
3989 req->open.dfd = READ_ONCE(sqe->fd);
3990 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3991 req->open.filename = getname(fname);
3992 if (IS_ERR(req->open.filename)) {
3993 ret = PTR_ERR(req->open.filename);
3994 req->open.filename = NULL;
3995 return ret;
3996 }
3997 req->open.nofile = rlimit(RLIMIT_NOFILE);
3998 req->open.ignore_nonblock = false;
3999 req->flags |= REQ_F_NEED_CLEANUP;
4000 return 0;
4001 }
4002
4003 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4004 {
4005 u64 flags, mode;
4006
4007 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4008 return -EINVAL;
4009 mode = READ_ONCE(sqe->len);
4010 flags = READ_ONCE(sqe->open_flags);
4011 req->open.how = build_open_how(flags, mode);
4012 return __io_openat_prep(req, sqe);
4013 }
4014
4015 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4016 {
4017 struct open_how __user *how;
4018 size_t len;
4019 int ret;
4020
4021 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4022 return -EINVAL;
4023 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4024 len = READ_ONCE(sqe->len);
4025 if (len < OPEN_HOW_SIZE_VER0)
4026 return -EINVAL;
4027
4028 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4029 len);
4030 if (ret)
4031 return ret;
4032
4033 return __io_openat_prep(req, sqe);
4034 }
4035
4036 static int io_openat2(struct io_kiocb *req, bool force_nonblock)
4037 {
4038 struct open_flags op;
4039 struct file *file;
4040 int ret;
4041
4042 if (force_nonblock && !req->open.ignore_nonblock)
4043 return -EAGAIN;
4044
4045 ret = build_open_flags(&req->open.how, &op);
4046 if (ret)
4047 goto err;
4048
4049 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4050 if (ret < 0)
4051 goto err;
4052
4053 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4054 if (IS_ERR(file)) {
4055 put_unused_fd(ret);
4056 ret = PTR_ERR(file);
4057 /*
4058 * A work-around to ensure that /proc/self works that way
4059 * that it should - if we get -EOPNOTSUPP back, then assume
4060 * that proc_self_get_link() failed us because we're in async
4061 * context. We should be safe to retry this from the task
4062 * itself with force_nonblock == false set, as it should not
4063 * block on lookup. Would be nice to know this upfront and
4064 * avoid the async dance, but doesn't seem feasible.
4065 */
4066 if (ret == -EOPNOTSUPP && io_wq_current_is_worker()) {
4067 req->open.ignore_nonblock = true;
4068 refcount_inc(&req->refs);
4069 io_req_task_queue(req);
4070 return 0;
4071 }
4072 } else {
4073 fsnotify_open(file);
4074 fd_install(ret, file);
4075 }
4076 err:
4077 putname(req->open.filename);
4078 req->flags &= ~REQ_F_NEED_CLEANUP;
4079 if (ret < 0)
4080 req_set_fail_links(req);
4081 io_req_complete(req, ret);
4082 return 0;
4083 }
4084
4085 static int io_openat(struct io_kiocb *req, bool force_nonblock)
4086 {
4087 return io_openat2(req, force_nonblock);
4088 }
4089
4090 static int io_remove_buffers_prep(struct io_kiocb *req,
4091 const struct io_uring_sqe *sqe)
4092 {
4093 struct io_provide_buf *p = &req->pbuf;
4094 u64 tmp;
4095
4096 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4097 return -EINVAL;
4098
4099 tmp = READ_ONCE(sqe->fd);
4100 if (!tmp || tmp > USHRT_MAX)
4101 return -EINVAL;
4102
4103 memset(p, 0, sizeof(*p));
4104 p->nbufs = tmp;
4105 p->bgid = READ_ONCE(sqe->buf_group);
4106 return 0;
4107 }
4108
4109 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4110 int bgid, unsigned nbufs)
4111 {
4112 unsigned i = 0;
4113
4114 /* shouldn't happen */
4115 if (!nbufs)
4116 return 0;
4117
4118 /* the head kbuf is the list itself */
4119 while (!list_empty(&buf->list)) {
4120 struct io_buffer *nxt;
4121
4122 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4123 list_del(&nxt->list);
4124 kfree(nxt);
4125 if (++i == nbufs)
4126 return i;
4127 }
4128 i++;
4129 kfree(buf);
4130 idr_remove(&ctx->io_buffer_idr, bgid);
4131
4132 return i;
4133 }
4134
4135 static int io_remove_buffers(struct io_kiocb *req, bool force_nonblock,
4136 struct io_comp_state *cs)
4137 {
4138 struct io_provide_buf *p = &req->pbuf;
4139 struct io_ring_ctx *ctx = req->ctx;
4140 struct io_buffer *head;
4141 int ret = 0;
4142
4143 io_ring_submit_lock(ctx, !force_nonblock);
4144
4145 lockdep_assert_held(&ctx->uring_lock);
4146
4147 ret = -ENOENT;
4148 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4149 if (head)
4150 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4151 if (ret < 0)
4152 req_set_fail_links(req);
4153
4154 /* need to hold the lock to complete IOPOLL requests */
4155 if (ctx->flags & IORING_SETUP_IOPOLL) {
4156 __io_req_complete(req, ret, 0, cs);
4157 io_ring_submit_unlock(ctx, !force_nonblock);
4158 } else {
4159 io_ring_submit_unlock(ctx, !force_nonblock);
4160 __io_req_complete(req, ret, 0, cs);
4161 }
4162 return 0;
4163 }
4164
4165 static int io_provide_buffers_prep(struct io_kiocb *req,
4166 const struct io_uring_sqe *sqe)
4167 {
4168 struct io_provide_buf *p = &req->pbuf;
4169 u64 tmp;
4170
4171 if (sqe->ioprio || sqe->rw_flags)
4172 return -EINVAL;
4173
4174 tmp = READ_ONCE(sqe->fd);
4175 if (!tmp || tmp > USHRT_MAX)
4176 return -E2BIG;
4177 p->nbufs = tmp;
4178 p->addr = READ_ONCE(sqe->addr);
4179 p->len = READ_ONCE(sqe->len);
4180
4181 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4182 return -EFAULT;
4183
4184 p->bgid = READ_ONCE(sqe->buf_group);
4185 tmp = READ_ONCE(sqe->off);
4186 if (tmp > USHRT_MAX)
4187 return -E2BIG;
4188 p->bid = tmp;
4189 return 0;
4190 }
4191
4192 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4193 {
4194 struct io_buffer *buf;
4195 u64 addr = pbuf->addr;
4196 int i, bid = pbuf->bid;
4197
4198 for (i = 0; i < pbuf->nbufs; i++) {
4199 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4200 if (!buf)
4201 break;
4202
4203 buf->addr = addr;
4204 buf->len = pbuf->len;
4205 buf->bid = bid;
4206 addr += pbuf->len;
4207 bid++;
4208 if (!*head) {
4209 INIT_LIST_HEAD(&buf->list);
4210 *head = buf;
4211 } else {
4212 list_add_tail(&buf->list, &(*head)->list);
4213 }
4214 }
4215
4216 return i ? i : -ENOMEM;
4217 }
4218
4219 static int io_provide_buffers(struct io_kiocb *req, bool force_nonblock,
4220 struct io_comp_state *cs)
4221 {
4222 struct io_provide_buf *p = &req->pbuf;
4223 struct io_ring_ctx *ctx = req->ctx;
4224 struct io_buffer *head, *list;
4225 int ret = 0;
4226
4227 io_ring_submit_lock(ctx, !force_nonblock);
4228
4229 lockdep_assert_held(&ctx->uring_lock);
4230
4231 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4232
4233 ret = io_add_buffers(p, &head);
4234 if (ret < 0)
4235 goto out;
4236
4237 if (!list) {
4238 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4239 GFP_KERNEL);
4240 if (ret < 0) {
4241 __io_remove_buffers(ctx, head, p->bgid, -1U);
4242 goto out;
4243 }
4244 }
4245 out:
4246 if (ret < 0)
4247 req_set_fail_links(req);
4248
4249 /* need to hold the lock to complete IOPOLL requests */
4250 if (ctx->flags & IORING_SETUP_IOPOLL) {
4251 __io_req_complete(req, ret, 0, cs);
4252 io_ring_submit_unlock(ctx, !force_nonblock);
4253 } else {
4254 io_ring_submit_unlock(ctx, !force_nonblock);
4255 __io_req_complete(req, ret, 0, cs);
4256 }
4257 return 0;
4258 }
4259
4260 static int io_epoll_ctl_prep(struct io_kiocb *req,
4261 const struct io_uring_sqe *sqe)
4262 {
4263 #if defined(CONFIG_EPOLL)
4264 if (sqe->ioprio || sqe->buf_index)
4265 return -EINVAL;
4266 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4267 return -EINVAL;
4268
4269 req->epoll.epfd = READ_ONCE(sqe->fd);
4270 req->epoll.op = READ_ONCE(sqe->len);
4271 req->epoll.fd = READ_ONCE(sqe->off);
4272
4273 if (ep_op_has_event(req->epoll.op)) {
4274 struct epoll_event __user *ev;
4275
4276 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4277 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4278 return -EFAULT;
4279 }
4280
4281 return 0;
4282 #else
4283 return -EOPNOTSUPP;
4284 #endif
4285 }
4286
4287 static int io_epoll_ctl(struct io_kiocb *req, bool force_nonblock,
4288 struct io_comp_state *cs)
4289 {
4290 #if defined(CONFIG_EPOLL)
4291 struct io_epoll *ie = &req->epoll;
4292 int ret;
4293
4294 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4295 if (force_nonblock && ret == -EAGAIN)
4296 return -EAGAIN;
4297
4298 if (ret < 0)
4299 req_set_fail_links(req);
4300 __io_req_complete(req, ret, 0, cs);
4301 return 0;
4302 #else
4303 return -EOPNOTSUPP;
4304 #endif
4305 }
4306
4307 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4308 {
4309 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4310 if (sqe->ioprio || sqe->buf_index || sqe->off)
4311 return -EINVAL;
4312 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4313 return -EINVAL;
4314
4315 req->madvise.addr = READ_ONCE(sqe->addr);
4316 req->madvise.len = READ_ONCE(sqe->len);
4317 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4318 return 0;
4319 #else
4320 return -EOPNOTSUPP;
4321 #endif
4322 }
4323
4324 static int io_madvise(struct io_kiocb *req, bool force_nonblock)
4325 {
4326 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4327 struct io_madvise *ma = &req->madvise;
4328 int ret;
4329
4330 if (force_nonblock)
4331 return -EAGAIN;
4332
4333 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4334 if (ret < 0)
4335 req_set_fail_links(req);
4336 io_req_complete(req, ret);
4337 return 0;
4338 #else
4339 return -EOPNOTSUPP;
4340 #endif
4341 }
4342
4343 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4344 {
4345 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4346 return -EINVAL;
4347 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4348 return -EINVAL;
4349
4350 req->fadvise.offset = READ_ONCE(sqe->off);
4351 req->fadvise.len = READ_ONCE(sqe->len);
4352 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4353 return 0;
4354 }
4355
4356 static int io_fadvise(struct io_kiocb *req, bool force_nonblock)
4357 {
4358 struct io_fadvise *fa = &req->fadvise;
4359 int ret;
4360
4361 if (force_nonblock) {
4362 switch (fa->advice) {
4363 case POSIX_FADV_NORMAL:
4364 case POSIX_FADV_RANDOM:
4365 case POSIX_FADV_SEQUENTIAL:
4366 break;
4367 default:
4368 return -EAGAIN;
4369 }
4370 }
4371
4372 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4373 if (ret < 0)
4374 req_set_fail_links(req);
4375 io_req_complete(req, ret);
4376 return 0;
4377 }
4378
4379 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4380 {
4381 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4382 return -EINVAL;
4383 if (sqe->ioprio || sqe->buf_index)
4384 return -EINVAL;
4385 if (req->flags & REQ_F_FIXED_FILE)
4386 return -EBADF;
4387
4388 req->statx.dfd = READ_ONCE(sqe->fd);
4389 req->statx.mask = READ_ONCE(sqe->len);
4390 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4391 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4392 req->statx.flags = READ_ONCE(sqe->statx_flags);
4393
4394 return 0;
4395 }
4396
4397 static int io_statx(struct io_kiocb *req, bool force_nonblock)
4398 {
4399 struct io_statx *ctx = &req->statx;
4400 int ret;
4401
4402 if (force_nonblock) {
4403 /* only need file table for an actual valid fd */
4404 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4405 req->flags |= REQ_F_NO_FILE_TABLE;
4406 return -EAGAIN;
4407 }
4408
4409 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4410 ctx->buffer);
4411
4412 if (ret < 0)
4413 req_set_fail_links(req);
4414 io_req_complete(req, ret);
4415 return 0;
4416 }
4417
4418 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4419 {
4420 /*
4421 * If we queue this for async, it must not be cancellable. That would
4422 * leave the 'file' in an undeterminate state, and here need to modify
4423 * io_wq_work.flags, so initialize io_wq_work firstly.
4424 */
4425 io_req_init_async(req);
4426 req->work.flags |= IO_WQ_WORK_NO_CANCEL;
4427
4428 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4429 return -EINVAL;
4430 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4431 sqe->rw_flags || sqe->buf_index)
4432 return -EINVAL;
4433 if (req->flags & REQ_F_FIXED_FILE)
4434 return -EBADF;
4435
4436 req->close.fd = READ_ONCE(sqe->fd);
4437 if ((req->file && req->file->f_op == &io_uring_fops))
4438 return -EBADF;
4439
4440 req->close.put_file = NULL;
4441 return 0;
4442 }
4443
4444 static int io_close(struct io_kiocb *req, bool force_nonblock,
4445 struct io_comp_state *cs)
4446 {
4447 struct io_close *close = &req->close;
4448 int ret;
4449
4450 /* might be already done during nonblock submission */
4451 if (!close->put_file) {
4452 ret = close_fd_get_file(close->fd, &close->put_file);
4453 if (ret < 0)
4454 return (ret == -ENOENT) ? -EBADF : ret;
4455 }
4456
4457 /* if the file has a flush method, be safe and punt to async */
4458 if (close->put_file->f_op->flush && force_nonblock) {
4459 /* was never set, but play safe */
4460 req->flags &= ~REQ_F_NOWAIT;
4461 /* avoid grabbing files - we don't need the files */
4462 req->flags |= REQ_F_NO_FILE_TABLE;
4463 return -EAGAIN;
4464 }
4465
4466 /* No ->flush() or already async, safely close from here */
4467 ret = filp_close(close->put_file, req->work.identity->files);
4468 if (ret < 0)
4469 req_set_fail_links(req);
4470 fput(close->put_file);
4471 close->put_file = NULL;
4472 __io_req_complete(req, ret, 0, cs);
4473 return 0;
4474 }
4475
4476 static int io_prep_sfr(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4477 {
4478 struct io_ring_ctx *ctx = req->ctx;
4479
4480 if (!req->file)
4481 return -EBADF;
4482
4483 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4484 return -EINVAL;
4485 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4486 return -EINVAL;
4487
4488 req->sync.off = READ_ONCE(sqe->off);
4489 req->sync.len = READ_ONCE(sqe->len);
4490 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4491 return 0;
4492 }
4493
4494 static int io_sync_file_range(struct io_kiocb *req, bool force_nonblock)
4495 {
4496 int ret;
4497
4498 /* sync_file_range always requires a blocking context */
4499 if (force_nonblock)
4500 return -EAGAIN;
4501
4502 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4503 req->sync.flags);
4504 if (ret < 0)
4505 req_set_fail_links(req);
4506 io_req_complete(req, ret);
4507 return 0;
4508 }
4509
4510 #if defined(CONFIG_NET)
4511 static int io_setup_async_msg(struct io_kiocb *req,
4512 struct io_async_msghdr *kmsg)
4513 {
4514 struct io_async_msghdr *async_msg = req->async_data;
4515
4516 if (async_msg)
4517 return -EAGAIN;
4518 if (io_alloc_async_data(req)) {
4519 if (kmsg->iov != kmsg->fast_iov)
4520 kfree(kmsg->iov);
4521 return -ENOMEM;
4522 }
4523 async_msg = req->async_data;
4524 req->flags |= REQ_F_NEED_CLEANUP;
4525 memcpy(async_msg, kmsg, sizeof(*kmsg));
4526 return -EAGAIN;
4527 }
4528
4529 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4530 struct io_async_msghdr *iomsg)
4531 {
4532 iomsg->iov = iomsg->fast_iov;
4533 iomsg->msg.msg_name = &iomsg->addr;
4534 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4535 req->sr_msg.msg_flags, &iomsg->iov);
4536 }
4537
4538 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4539 {
4540 struct io_async_msghdr *async_msg = req->async_data;
4541 struct io_sr_msg *sr = &req->sr_msg;
4542 int ret;
4543
4544 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4545 return -EINVAL;
4546
4547 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4548 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4549 sr->len = READ_ONCE(sqe->len);
4550
4551 #ifdef CONFIG_COMPAT
4552 if (req->ctx->compat)
4553 sr->msg_flags |= MSG_CMSG_COMPAT;
4554 #endif
4555
4556 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4557 return 0;
4558 ret = io_sendmsg_copy_hdr(req, async_msg);
4559 if (!ret)
4560 req->flags |= REQ_F_NEED_CLEANUP;
4561 return ret;
4562 }
4563
4564 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
4565 struct io_comp_state *cs)
4566 {
4567 struct io_async_msghdr iomsg, *kmsg;
4568 struct socket *sock;
4569 unsigned flags;
4570 int ret;
4571
4572 sock = sock_from_file(req->file);
4573 if (unlikely(!sock))
4574 return -ENOTSOCK;
4575
4576 if (req->async_data) {
4577 kmsg = req->async_data;
4578 kmsg->msg.msg_name = &kmsg->addr;
4579 /* if iov is set, it's allocated already */
4580 if (!kmsg->iov)
4581 kmsg->iov = kmsg->fast_iov;
4582 kmsg->msg.msg_iter.iov = kmsg->iov;
4583 } else {
4584 ret = io_sendmsg_copy_hdr(req, &iomsg);
4585 if (ret)
4586 return ret;
4587 kmsg = &iomsg;
4588 }
4589
4590 flags = req->sr_msg.msg_flags;
4591 if (flags & MSG_DONTWAIT)
4592 req->flags |= REQ_F_NOWAIT;
4593 else if (force_nonblock)
4594 flags |= MSG_DONTWAIT;
4595
4596 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4597 if (force_nonblock && ret == -EAGAIN)
4598 return io_setup_async_msg(req, kmsg);
4599 if (ret == -ERESTARTSYS)
4600 ret = -EINTR;
4601
4602 if (kmsg->iov != kmsg->fast_iov)
4603 kfree(kmsg->iov);
4604 req->flags &= ~REQ_F_NEED_CLEANUP;
4605 if (ret < 0)
4606 req_set_fail_links(req);
4607 __io_req_complete(req, ret, 0, cs);
4608 return 0;
4609 }
4610
4611 static int io_send(struct io_kiocb *req, bool force_nonblock,
4612 struct io_comp_state *cs)
4613 {
4614 struct io_sr_msg *sr = &req->sr_msg;
4615 struct msghdr msg;
4616 struct iovec iov;
4617 struct socket *sock;
4618 unsigned flags;
4619 int ret;
4620
4621 sock = sock_from_file(req->file);
4622 if (unlikely(!sock))
4623 return -ENOTSOCK;
4624
4625 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4626 if (unlikely(ret))
4627 return ret;
4628
4629 msg.msg_name = NULL;
4630 msg.msg_control = NULL;
4631 msg.msg_controllen = 0;
4632 msg.msg_namelen = 0;
4633
4634 flags = req->sr_msg.msg_flags;
4635 if (flags & MSG_DONTWAIT)
4636 req->flags |= REQ_F_NOWAIT;
4637 else if (force_nonblock)
4638 flags |= MSG_DONTWAIT;
4639
4640 msg.msg_flags = flags;
4641 ret = sock_sendmsg(sock, &msg);
4642 if (force_nonblock && ret == -EAGAIN)
4643 return -EAGAIN;
4644 if (ret == -ERESTARTSYS)
4645 ret = -EINTR;
4646
4647 if (ret < 0)
4648 req_set_fail_links(req);
4649 __io_req_complete(req, ret, 0, cs);
4650 return 0;
4651 }
4652
4653 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4654 struct io_async_msghdr *iomsg)
4655 {
4656 struct io_sr_msg *sr = &req->sr_msg;
4657 struct iovec __user *uiov;
4658 size_t iov_len;
4659 int ret;
4660
4661 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4662 &iomsg->uaddr, &uiov, &iov_len);
4663 if (ret)
4664 return ret;
4665
4666 if (req->flags & REQ_F_BUFFER_SELECT) {
4667 if (iov_len > 1)
4668 return -EINVAL;
4669 if (copy_from_user(iomsg->iov, uiov, sizeof(*uiov)))
4670 return -EFAULT;
4671 sr->len = iomsg->iov[0].iov_len;
4672 iov_iter_init(&iomsg->msg.msg_iter, READ, iomsg->iov, 1,
4673 sr->len);
4674 iomsg->iov = NULL;
4675 } else {
4676 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4677 &iomsg->iov, &iomsg->msg.msg_iter,
4678 false);
4679 if (ret > 0)
4680 ret = 0;
4681 }
4682
4683 return ret;
4684 }
4685
4686 #ifdef CONFIG_COMPAT
4687 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4688 struct io_async_msghdr *iomsg)
4689 {
4690 struct compat_msghdr __user *msg_compat;
4691 struct io_sr_msg *sr = &req->sr_msg;
4692 struct compat_iovec __user *uiov;
4693 compat_uptr_t ptr;
4694 compat_size_t len;
4695 int ret;
4696
4697 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4698 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4699 &ptr, &len);
4700 if (ret)
4701 return ret;
4702
4703 uiov = compat_ptr(ptr);
4704 if (req->flags & REQ_F_BUFFER_SELECT) {
4705 compat_ssize_t clen;
4706
4707 if (len > 1)
4708 return -EINVAL;
4709 if (!access_ok(uiov, sizeof(*uiov)))
4710 return -EFAULT;
4711 if (__get_user(clen, &uiov->iov_len))
4712 return -EFAULT;
4713 if (clen < 0)
4714 return -EINVAL;
4715 sr->len = clen;
4716 iomsg->iov[0].iov_len = clen;
4717 iomsg->iov = NULL;
4718 } else {
4719 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4720 UIO_FASTIOV, &iomsg->iov,
4721 &iomsg->msg.msg_iter, true);
4722 if (ret < 0)
4723 return ret;
4724 }
4725
4726 return 0;
4727 }
4728 #endif
4729
4730 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4731 struct io_async_msghdr *iomsg)
4732 {
4733 iomsg->msg.msg_name = &iomsg->addr;
4734 iomsg->iov = iomsg->fast_iov;
4735
4736 #ifdef CONFIG_COMPAT
4737 if (req->ctx->compat)
4738 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4739 #endif
4740
4741 return __io_recvmsg_copy_hdr(req, iomsg);
4742 }
4743
4744 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4745 bool needs_lock)
4746 {
4747 struct io_sr_msg *sr = &req->sr_msg;
4748 struct io_buffer *kbuf;
4749
4750 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4751 if (IS_ERR(kbuf))
4752 return kbuf;
4753
4754 sr->kbuf = kbuf;
4755 req->flags |= REQ_F_BUFFER_SELECTED;
4756 return kbuf;
4757 }
4758
4759 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4760 {
4761 return io_put_kbuf(req, req->sr_msg.kbuf);
4762 }
4763
4764 static int io_recvmsg_prep(struct io_kiocb *req,
4765 const struct io_uring_sqe *sqe)
4766 {
4767 struct io_async_msghdr *async_msg = req->async_data;
4768 struct io_sr_msg *sr = &req->sr_msg;
4769 int ret;
4770
4771 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4772 return -EINVAL;
4773
4774 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4775 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4776 sr->len = READ_ONCE(sqe->len);
4777 sr->bgid = READ_ONCE(sqe->buf_group);
4778
4779 #ifdef CONFIG_COMPAT
4780 if (req->ctx->compat)
4781 sr->msg_flags |= MSG_CMSG_COMPAT;
4782 #endif
4783
4784 if (!async_msg || !io_op_defs[req->opcode].needs_async_data)
4785 return 0;
4786 ret = io_recvmsg_copy_hdr(req, async_msg);
4787 if (!ret)
4788 req->flags |= REQ_F_NEED_CLEANUP;
4789 return ret;
4790 }
4791
4792 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
4793 struct io_comp_state *cs)
4794 {
4795 struct io_async_msghdr iomsg, *kmsg;
4796 struct socket *sock;
4797 struct io_buffer *kbuf;
4798 unsigned flags;
4799 int ret, cflags = 0;
4800
4801 sock = sock_from_file(req->file);
4802 if (unlikely(!sock))
4803 return -ENOTSOCK;
4804
4805 if (req->async_data) {
4806 kmsg = req->async_data;
4807 kmsg->msg.msg_name = &kmsg->addr;
4808 /* if iov is set, it's allocated already */
4809 if (!kmsg->iov)
4810 kmsg->iov = kmsg->fast_iov;
4811 kmsg->msg.msg_iter.iov = kmsg->iov;
4812 } else {
4813 ret = io_recvmsg_copy_hdr(req, &iomsg);
4814 if (ret)
4815 return ret;
4816 kmsg = &iomsg;
4817 }
4818
4819 if (req->flags & REQ_F_BUFFER_SELECT) {
4820 kbuf = io_recv_buffer_select(req, !force_nonblock);
4821 if (IS_ERR(kbuf))
4822 return PTR_ERR(kbuf);
4823 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4824 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->iov,
4825 1, req->sr_msg.len);
4826 }
4827
4828 flags = req->sr_msg.msg_flags;
4829 if (flags & MSG_DONTWAIT)
4830 req->flags |= REQ_F_NOWAIT;
4831 else if (force_nonblock)
4832 flags |= MSG_DONTWAIT;
4833
4834 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4835 kmsg->uaddr, flags);
4836 if (force_nonblock && ret == -EAGAIN)
4837 return io_setup_async_msg(req, kmsg);
4838 if (ret == -ERESTARTSYS)
4839 ret = -EINTR;
4840
4841 if (req->flags & REQ_F_BUFFER_SELECTED)
4842 cflags = io_put_recv_kbuf(req);
4843 if (kmsg->iov != kmsg->fast_iov)
4844 kfree(kmsg->iov);
4845 req->flags &= ~REQ_F_NEED_CLEANUP;
4846 if (ret < 0)
4847 req_set_fail_links(req);
4848 __io_req_complete(req, ret, cflags, cs);
4849 return 0;
4850 }
4851
4852 static int io_recv(struct io_kiocb *req, bool force_nonblock,
4853 struct io_comp_state *cs)
4854 {
4855 struct io_buffer *kbuf;
4856 struct io_sr_msg *sr = &req->sr_msg;
4857 struct msghdr msg;
4858 void __user *buf = sr->buf;
4859 struct socket *sock;
4860 struct iovec iov;
4861 unsigned flags;
4862 int ret, cflags = 0;
4863
4864 sock = sock_from_file(req->file);
4865 if (unlikely(!sock))
4866 return -ENOTSOCK;
4867
4868 if (req->flags & REQ_F_BUFFER_SELECT) {
4869 kbuf = io_recv_buffer_select(req, !force_nonblock);
4870 if (IS_ERR(kbuf))
4871 return PTR_ERR(kbuf);
4872 buf = u64_to_user_ptr(kbuf->addr);
4873 }
4874
4875 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
4876 if (unlikely(ret))
4877 goto out_free;
4878
4879 msg.msg_name = NULL;
4880 msg.msg_control = NULL;
4881 msg.msg_controllen = 0;
4882 msg.msg_namelen = 0;
4883 msg.msg_iocb = NULL;
4884 msg.msg_flags = 0;
4885
4886 flags = req->sr_msg.msg_flags;
4887 if (flags & MSG_DONTWAIT)
4888 req->flags |= REQ_F_NOWAIT;
4889 else if (force_nonblock)
4890 flags |= MSG_DONTWAIT;
4891
4892 ret = sock_recvmsg(sock, &msg, flags);
4893 if (force_nonblock && ret == -EAGAIN)
4894 return -EAGAIN;
4895 if (ret == -ERESTARTSYS)
4896 ret = -EINTR;
4897 out_free:
4898 if (req->flags & REQ_F_BUFFER_SELECTED)
4899 cflags = io_put_recv_kbuf(req);
4900 if (ret < 0)
4901 req_set_fail_links(req);
4902 __io_req_complete(req, ret, cflags, cs);
4903 return 0;
4904 }
4905
4906 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4907 {
4908 struct io_accept *accept = &req->accept;
4909
4910 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4911 return -EINVAL;
4912 if (sqe->ioprio || sqe->len || sqe->buf_index)
4913 return -EINVAL;
4914
4915 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4916 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4917 accept->flags = READ_ONCE(sqe->accept_flags);
4918 accept->nofile = rlimit(RLIMIT_NOFILE);
4919 return 0;
4920 }
4921
4922 static int io_accept(struct io_kiocb *req, bool force_nonblock,
4923 struct io_comp_state *cs)
4924 {
4925 struct io_accept *accept = &req->accept;
4926 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
4927 int ret;
4928
4929 if (req->file->f_flags & O_NONBLOCK)
4930 req->flags |= REQ_F_NOWAIT;
4931
4932 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
4933 accept->addr_len, accept->flags,
4934 accept->nofile);
4935 if (ret == -EAGAIN && force_nonblock)
4936 return -EAGAIN;
4937 if (ret < 0) {
4938 if (ret == -ERESTARTSYS)
4939 ret = -EINTR;
4940 req_set_fail_links(req);
4941 }
4942 __io_req_complete(req, ret, 0, cs);
4943 return 0;
4944 }
4945
4946 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4947 {
4948 struct io_connect *conn = &req->connect;
4949 struct io_async_connect *io = req->async_data;
4950
4951 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4952 return -EINVAL;
4953 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
4954 return -EINVAL;
4955
4956 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
4957 conn->addr_len = READ_ONCE(sqe->addr2);
4958
4959 if (!io)
4960 return 0;
4961
4962 return move_addr_to_kernel(conn->addr, conn->addr_len,
4963 &io->address);
4964 }
4965
4966 static int io_connect(struct io_kiocb *req, bool force_nonblock,
4967 struct io_comp_state *cs)
4968 {
4969 struct io_async_connect __io, *io;
4970 unsigned file_flags;
4971 int ret;
4972
4973 if (req->async_data) {
4974 io = req->async_data;
4975 } else {
4976 ret = move_addr_to_kernel(req->connect.addr,
4977 req->connect.addr_len,
4978 &__io.address);
4979 if (ret)
4980 goto out;
4981 io = &__io;
4982 }
4983
4984 file_flags = force_nonblock ? O_NONBLOCK : 0;
4985
4986 ret = __sys_connect_file(req->file, &io->address,
4987 req->connect.addr_len, file_flags);
4988 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
4989 if (req->async_data)
4990 return -EAGAIN;
4991 if (io_alloc_async_data(req)) {
4992 ret = -ENOMEM;
4993 goto out;
4994 }
4995 io = req->async_data;
4996 memcpy(req->async_data, &__io, sizeof(__io));
4997 return -EAGAIN;
4998 }
4999 if (ret == -ERESTARTSYS)
5000 ret = -EINTR;
5001 out:
5002 if (ret < 0)
5003 req_set_fail_links(req);
5004 __io_req_complete(req, ret, 0, cs);
5005 return 0;
5006 }
5007 #else /* !CONFIG_NET */
5008 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5009 {
5010 return -EOPNOTSUPP;
5011 }
5012
5013 static int io_sendmsg(struct io_kiocb *req, bool force_nonblock,
5014 struct io_comp_state *cs)
5015 {
5016 return -EOPNOTSUPP;
5017 }
5018
5019 static int io_send(struct io_kiocb *req, bool force_nonblock,
5020 struct io_comp_state *cs)
5021 {
5022 return -EOPNOTSUPP;
5023 }
5024
5025 static int io_recvmsg_prep(struct io_kiocb *req,
5026 const struct io_uring_sqe *sqe)
5027 {
5028 return -EOPNOTSUPP;
5029 }
5030
5031 static int io_recvmsg(struct io_kiocb *req, bool force_nonblock,
5032 struct io_comp_state *cs)
5033 {
5034 return -EOPNOTSUPP;
5035 }
5036
5037 static int io_recv(struct io_kiocb *req, bool force_nonblock,
5038 struct io_comp_state *cs)
5039 {
5040 return -EOPNOTSUPP;
5041 }
5042
5043 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5044 {
5045 return -EOPNOTSUPP;
5046 }
5047
5048 static int io_accept(struct io_kiocb *req, bool force_nonblock,
5049 struct io_comp_state *cs)
5050 {
5051 return -EOPNOTSUPP;
5052 }
5053
5054 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5055 {
5056 return -EOPNOTSUPP;
5057 }
5058
5059 static int io_connect(struct io_kiocb *req, bool force_nonblock,
5060 struct io_comp_state *cs)
5061 {
5062 return -EOPNOTSUPP;
5063 }
5064 #endif /* CONFIG_NET */
5065
5066 struct io_poll_table {
5067 struct poll_table_struct pt;
5068 struct io_kiocb *req;
5069 int error;
5070 };
5071
5072 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5073 __poll_t mask, task_work_func_t func)
5074 {
5075 int ret;
5076
5077 /* for instances that support it check for an event match first: */
5078 if (mask && !(mask & poll->events))
5079 return 0;
5080
5081 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5082
5083 list_del_init(&poll->wait.entry);
5084
5085 req->result = mask;
5086 init_task_work(&req->task_work, func);
5087 percpu_ref_get(&req->ctx->refs);
5088
5089 /*
5090 * If this fails, then the task is exiting. When a task exits, the
5091 * work gets canceled, so just cancel this request as well instead
5092 * of executing it. We can't safely execute it anyway, as we may not
5093 * have the needed state needed for it anyway.
5094 */
5095 ret = io_req_task_work_add(req);
5096 if (unlikely(ret)) {
5097 struct task_struct *tsk;
5098
5099 WRITE_ONCE(poll->canceled, true);
5100 tsk = io_wq_get_task(req->ctx->io_wq);
5101 task_work_add(tsk, &req->task_work, TWA_NONE);
5102 wake_up_process(tsk);
5103 }
5104 return 1;
5105 }
5106
5107 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5108 __acquires(&req->ctx->completion_lock)
5109 {
5110 struct io_ring_ctx *ctx = req->ctx;
5111
5112 if (!req->result && !READ_ONCE(poll->canceled)) {
5113 struct poll_table_struct pt = { ._key = poll->events };
5114
5115 req->result = vfs_poll(req->file, &pt) & poll->events;
5116 }
5117
5118 spin_lock_irq(&ctx->completion_lock);
5119 if (!req->result && !READ_ONCE(poll->canceled)) {
5120 add_wait_queue(poll->head, &poll->wait);
5121 return true;
5122 }
5123
5124 return false;
5125 }
5126
5127 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5128 {
5129 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5130 if (req->opcode == IORING_OP_POLL_ADD)
5131 return req->async_data;
5132 return req->apoll->double_poll;
5133 }
5134
5135 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5136 {
5137 if (req->opcode == IORING_OP_POLL_ADD)
5138 return &req->poll;
5139 return &req->apoll->poll;
5140 }
5141
5142 static void io_poll_remove_double(struct io_kiocb *req)
5143 {
5144 struct io_poll_iocb *poll = io_poll_get_double(req);
5145
5146 lockdep_assert_held(&req->ctx->completion_lock);
5147
5148 if (poll && poll->head) {
5149 struct wait_queue_head *head = poll->head;
5150
5151 spin_lock(&head->lock);
5152 list_del_init(&poll->wait.entry);
5153 if (poll->wait.private)
5154 refcount_dec(&req->refs);
5155 poll->head = NULL;
5156 spin_unlock(&head->lock);
5157 }
5158 }
5159
5160 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5161 {
5162 struct io_ring_ctx *ctx = req->ctx;
5163
5164 io_poll_remove_double(req);
5165 req->poll.done = true;
5166 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5167 io_commit_cqring(ctx);
5168 }
5169
5170 static void io_poll_task_func(struct callback_head *cb)
5171 {
5172 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5173 struct io_ring_ctx *ctx = req->ctx;
5174 struct io_kiocb *nxt;
5175
5176 if (io_poll_rewait(req, &req->poll)) {
5177 spin_unlock_irq(&ctx->completion_lock);
5178 } else {
5179 hash_del(&req->hash_node);
5180 io_poll_complete(req, req->result, 0);
5181 spin_unlock_irq(&ctx->completion_lock);
5182
5183 nxt = io_put_req_find_next(req);
5184 io_cqring_ev_posted(ctx);
5185 if (nxt)
5186 __io_req_task_submit(nxt);
5187 }
5188
5189 percpu_ref_put(&ctx->refs);
5190 }
5191
5192 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5193 int sync, void *key)
5194 {
5195 struct io_kiocb *req = wait->private;
5196 struct io_poll_iocb *poll = io_poll_get_single(req);
5197 __poll_t mask = key_to_poll(key);
5198
5199 /* for instances that support it check for an event match first: */
5200 if (mask && !(mask & poll->events))
5201 return 0;
5202
5203 list_del_init(&wait->entry);
5204
5205 if (poll && poll->head) {
5206 bool done;
5207
5208 spin_lock(&poll->head->lock);
5209 done = list_empty(&poll->wait.entry);
5210 if (!done)
5211 list_del_init(&poll->wait.entry);
5212 /* make sure double remove sees this as being gone */
5213 wait->private = NULL;
5214 spin_unlock(&poll->head->lock);
5215 if (!done) {
5216 /* use wait func handler, so it matches the rq type */
5217 poll->wait.func(&poll->wait, mode, sync, key);
5218 }
5219 }
5220 refcount_dec(&req->refs);
5221 return 1;
5222 }
5223
5224 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5225 wait_queue_func_t wake_func)
5226 {
5227 poll->head = NULL;
5228 poll->done = false;
5229 poll->canceled = false;
5230 poll->events = events;
5231 INIT_LIST_HEAD(&poll->wait.entry);
5232 init_waitqueue_func_entry(&poll->wait, wake_func);
5233 }
5234
5235 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5236 struct wait_queue_head *head,
5237 struct io_poll_iocb **poll_ptr)
5238 {
5239 struct io_kiocb *req = pt->req;
5240
5241 /*
5242 * If poll->head is already set, it's because the file being polled
5243 * uses multiple waitqueues for poll handling (eg one for read, one
5244 * for write). Setup a separate io_poll_iocb if this happens.
5245 */
5246 if (unlikely(poll->head)) {
5247 struct io_poll_iocb *poll_one = poll;
5248
5249 /* already have a 2nd entry, fail a third attempt */
5250 if (*poll_ptr) {
5251 pt->error = -EINVAL;
5252 return;
5253 }
5254 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5255 if (!poll) {
5256 pt->error = -ENOMEM;
5257 return;
5258 }
5259 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5260 refcount_inc(&req->refs);
5261 poll->wait.private = req;
5262 *poll_ptr = poll;
5263 }
5264
5265 pt->error = 0;
5266 poll->head = head;
5267
5268 if (poll->events & EPOLLEXCLUSIVE)
5269 add_wait_queue_exclusive(head, &poll->wait);
5270 else
5271 add_wait_queue(head, &poll->wait);
5272 }
5273
5274 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5275 struct poll_table_struct *p)
5276 {
5277 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5278 struct async_poll *apoll = pt->req->apoll;
5279
5280 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5281 }
5282
5283 static void io_async_task_func(struct callback_head *cb)
5284 {
5285 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5286 struct async_poll *apoll = req->apoll;
5287 struct io_ring_ctx *ctx = req->ctx;
5288
5289 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5290
5291 if (io_poll_rewait(req, &apoll->poll)) {
5292 spin_unlock_irq(&ctx->completion_lock);
5293 percpu_ref_put(&ctx->refs);
5294 return;
5295 }
5296
5297 /* If req is still hashed, it cannot have been canceled. Don't check. */
5298 if (hash_hashed(&req->hash_node))
5299 hash_del(&req->hash_node);
5300
5301 io_poll_remove_double(req);
5302 spin_unlock_irq(&ctx->completion_lock);
5303
5304 if (!READ_ONCE(apoll->poll.canceled))
5305 __io_req_task_submit(req);
5306 else
5307 __io_req_task_cancel(req, -ECANCELED);
5308
5309 percpu_ref_put(&ctx->refs);
5310 kfree(apoll->double_poll);
5311 kfree(apoll);
5312 }
5313
5314 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5315 void *key)
5316 {
5317 struct io_kiocb *req = wait->private;
5318 struct io_poll_iocb *poll = &req->apoll->poll;
5319
5320 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5321 key_to_poll(key));
5322
5323 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5324 }
5325
5326 static void io_poll_req_insert(struct io_kiocb *req)
5327 {
5328 struct io_ring_ctx *ctx = req->ctx;
5329 struct hlist_head *list;
5330
5331 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5332 hlist_add_head(&req->hash_node, list);
5333 }
5334
5335 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5336 struct io_poll_iocb *poll,
5337 struct io_poll_table *ipt, __poll_t mask,
5338 wait_queue_func_t wake_func)
5339 __acquires(&ctx->completion_lock)
5340 {
5341 struct io_ring_ctx *ctx = req->ctx;
5342 bool cancel = false;
5343
5344 INIT_HLIST_NODE(&req->hash_node);
5345 io_init_poll_iocb(poll, mask, wake_func);
5346 poll->file = req->file;
5347 poll->wait.private = req;
5348
5349 ipt->pt._key = mask;
5350 ipt->req = req;
5351 ipt->error = -EINVAL;
5352
5353 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5354
5355 spin_lock_irq(&ctx->completion_lock);
5356 if (likely(poll->head)) {
5357 spin_lock(&poll->head->lock);
5358 if (unlikely(list_empty(&poll->wait.entry))) {
5359 if (ipt->error)
5360 cancel = true;
5361 ipt->error = 0;
5362 mask = 0;
5363 }
5364 if (mask || ipt->error)
5365 list_del_init(&poll->wait.entry);
5366 else if (cancel)
5367 WRITE_ONCE(poll->canceled, true);
5368 else if (!poll->done) /* actually waiting for an event */
5369 io_poll_req_insert(req);
5370 spin_unlock(&poll->head->lock);
5371 }
5372
5373 return mask;
5374 }
5375
5376 static bool io_arm_poll_handler(struct io_kiocb *req)
5377 {
5378 const struct io_op_def *def = &io_op_defs[req->opcode];
5379 struct io_ring_ctx *ctx = req->ctx;
5380 struct async_poll *apoll;
5381 struct io_poll_table ipt;
5382 __poll_t mask, ret;
5383 int rw;
5384
5385 if (!req->file || !file_can_poll(req->file))
5386 return false;
5387 if (req->flags & REQ_F_POLLED)
5388 return false;
5389 if (def->pollin)
5390 rw = READ;
5391 else if (def->pollout)
5392 rw = WRITE;
5393 else
5394 return false;
5395 /* if we can't nonblock try, then no point in arming a poll handler */
5396 if (!io_file_supports_async(req->file, rw))
5397 return false;
5398
5399 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5400 if (unlikely(!apoll))
5401 return false;
5402 apoll->double_poll = NULL;
5403
5404 req->flags |= REQ_F_POLLED;
5405 req->apoll = apoll;
5406
5407 mask = 0;
5408 if (def->pollin)
5409 mask |= POLLIN | POLLRDNORM;
5410 if (def->pollout)
5411 mask |= POLLOUT | POLLWRNORM;
5412
5413 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5414 if ((req->opcode == IORING_OP_RECVMSG) &&
5415 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5416 mask &= ~POLLIN;
5417
5418 mask |= POLLERR | POLLPRI;
5419
5420 ipt.pt._qproc = io_async_queue_proc;
5421
5422 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5423 io_async_wake);
5424 if (ret || ipt.error) {
5425 io_poll_remove_double(req);
5426 spin_unlock_irq(&ctx->completion_lock);
5427 kfree(apoll->double_poll);
5428 kfree(apoll);
5429 return false;
5430 }
5431 spin_unlock_irq(&ctx->completion_lock);
5432 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5433 apoll->poll.events);
5434 return true;
5435 }
5436
5437 static bool __io_poll_remove_one(struct io_kiocb *req,
5438 struct io_poll_iocb *poll)
5439 {
5440 bool do_complete = false;
5441
5442 spin_lock(&poll->head->lock);
5443 WRITE_ONCE(poll->canceled, true);
5444 if (!list_empty(&poll->wait.entry)) {
5445 list_del_init(&poll->wait.entry);
5446 do_complete = true;
5447 }
5448 spin_unlock(&poll->head->lock);
5449 hash_del(&req->hash_node);
5450 return do_complete;
5451 }
5452
5453 static bool io_poll_remove_one(struct io_kiocb *req)
5454 {
5455 bool do_complete;
5456
5457 io_poll_remove_double(req);
5458
5459 if (req->opcode == IORING_OP_POLL_ADD) {
5460 do_complete = __io_poll_remove_one(req, &req->poll);
5461 } else {
5462 struct async_poll *apoll = req->apoll;
5463
5464 /* non-poll requests have submit ref still */
5465 do_complete = __io_poll_remove_one(req, &apoll->poll);
5466 if (do_complete) {
5467 io_put_req(req);
5468 kfree(apoll->double_poll);
5469 kfree(apoll);
5470 }
5471 }
5472
5473 if (do_complete) {
5474 io_cqring_fill_event(req, -ECANCELED);
5475 io_commit_cqring(req->ctx);
5476 req_set_fail_links(req);
5477 io_put_req_deferred(req, 1);
5478 }
5479
5480 return do_complete;
5481 }
5482
5483 /*
5484 * Returns true if we found and killed one or more poll requests
5485 */
5486 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5487 struct files_struct *files)
5488 {
5489 struct hlist_node *tmp;
5490 struct io_kiocb *req;
5491 int posted = 0, i;
5492
5493 spin_lock_irq(&ctx->completion_lock);
5494 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5495 struct hlist_head *list;
5496
5497 list = &ctx->cancel_hash[i];
5498 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5499 if (io_match_task(req, tsk, files))
5500 posted += io_poll_remove_one(req);
5501 }
5502 }
5503 spin_unlock_irq(&ctx->completion_lock);
5504
5505 if (posted)
5506 io_cqring_ev_posted(ctx);
5507
5508 return posted != 0;
5509 }
5510
5511 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5512 {
5513 struct hlist_head *list;
5514 struct io_kiocb *req;
5515
5516 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5517 hlist_for_each_entry(req, list, hash_node) {
5518 if (sqe_addr != req->user_data)
5519 continue;
5520 if (io_poll_remove_one(req))
5521 return 0;
5522 return -EALREADY;
5523 }
5524
5525 return -ENOENT;
5526 }
5527
5528 static int io_poll_remove_prep(struct io_kiocb *req,
5529 const struct io_uring_sqe *sqe)
5530 {
5531 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5532 return -EINVAL;
5533 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5534 sqe->poll_events)
5535 return -EINVAL;
5536
5537 req->poll_remove.addr = READ_ONCE(sqe->addr);
5538 return 0;
5539 }
5540
5541 /*
5542 * Find a running poll command that matches one specified in sqe->addr,
5543 * and remove it if found.
5544 */
5545 static int io_poll_remove(struct io_kiocb *req)
5546 {
5547 struct io_ring_ctx *ctx = req->ctx;
5548 int ret;
5549
5550 spin_lock_irq(&ctx->completion_lock);
5551 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5552 spin_unlock_irq(&ctx->completion_lock);
5553
5554 if (ret < 0)
5555 req_set_fail_links(req);
5556 io_req_complete(req, ret);
5557 return 0;
5558 }
5559
5560 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5561 void *key)
5562 {
5563 struct io_kiocb *req = wait->private;
5564 struct io_poll_iocb *poll = &req->poll;
5565
5566 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5567 }
5568
5569 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5570 struct poll_table_struct *p)
5571 {
5572 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5573
5574 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5575 }
5576
5577 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5578 {
5579 struct io_poll_iocb *poll = &req->poll;
5580 u32 events;
5581
5582 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5583 return -EINVAL;
5584 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5585 return -EINVAL;
5586
5587 events = READ_ONCE(sqe->poll32_events);
5588 #ifdef __BIG_ENDIAN
5589 events = swahw32(events);
5590 #endif
5591 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5592 (events & EPOLLEXCLUSIVE);
5593 return 0;
5594 }
5595
5596 static int io_poll_add(struct io_kiocb *req)
5597 {
5598 struct io_poll_iocb *poll = &req->poll;
5599 struct io_ring_ctx *ctx = req->ctx;
5600 struct io_poll_table ipt;
5601 __poll_t mask;
5602
5603 ipt.pt._qproc = io_poll_queue_proc;
5604
5605 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5606 io_poll_wake);
5607
5608 if (mask) { /* no async, we'd stolen it */
5609 ipt.error = 0;
5610 io_poll_complete(req, mask, 0);
5611 }
5612 spin_unlock_irq(&ctx->completion_lock);
5613
5614 if (mask) {
5615 io_cqring_ev_posted(ctx);
5616 io_put_req(req);
5617 }
5618 return ipt.error;
5619 }
5620
5621 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5622 {
5623 struct io_timeout_data *data = container_of(timer,
5624 struct io_timeout_data, timer);
5625 struct io_kiocb *req = data->req;
5626 struct io_ring_ctx *ctx = req->ctx;
5627 unsigned long flags;
5628
5629 spin_lock_irqsave(&ctx->completion_lock, flags);
5630 list_del_init(&req->timeout.list);
5631 atomic_set(&req->ctx->cq_timeouts,
5632 atomic_read(&req->ctx->cq_timeouts) + 1);
5633
5634 io_cqring_fill_event(req, -ETIME);
5635 io_commit_cqring(ctx);
5636 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5637
5638 io_cqring_ev_posted(ctx);
5639 req_set_fail_links(req);
5640 io_put_req(req);
5641 return HRTIMER_NORESTART;
5642 }
5643
5644 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5645 __u64 user_data)
5646 {
5647 struct io_timeout_data *io;
5648 struct io_kiocb *req;
5649 int ret = -ENOENT;
5650
5651 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5652 if (user_data == req->user_data) {
5653 ret = 0;
5654 break;
5655 }
5656 }
5657
5658 if (ret == -ENOENT)
5659 return ERR_PTR(ret);
5660
5661 io = req->async_data;
5662 ret = hrtimer_try_to_cancel(&io->timer);
5663 if (ret == -1)
5664 return ERR_PTR(-EALREADY);
5665 list_del_init(&req->timeout.list);
5666 return req;
5667 }
5668
5669 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5670 {
5671 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5672
5673 if (IS_ERR(req))
5674 return PTR_ERR(req);
5675
5676 req_set_fail_links(req);
5677 io_cqring_fill_event(req, -ECANCELED);
5678 io_put_req_deferred(req, 1);
5679 return 0;
5680 }
5681
5682 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5683 struct timespec64 *ts, enum hrtimer_mode mode)
5684 {
5685 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5686 struct io_timeout_data *data;
5687
5688 if (IS_ERR(req))
5689 return PTR_ERR(req);
5690
5691 req->timeout.off = 0; /* noseq */
5692 data = req->async_data;
5693 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5694 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5695 data->timer.function = io_timeout_fn;
5696 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5697 return 0;
5698 }
5699
5700 static int io_timeout_remove_prep(struct io_kiocb *req,
5701 const struct io_uring_sqe *sqe)
5702 {
5703 struct io_timeout_rem *tr = &req->timeout_rem;
5704
5705 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5706 return -EINVAL;
5707 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5708 return -EINVAL;
5709 if (sqe->ioprio || sqe->buf_index || sqe->len)
5710 return -EINVAL;
5711
5712 tr->addr = READ_ONCE(sqe->addr);
5713 tr->flags = READ_ONCE(sqe->timeout_flags);
5714 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5715 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5716 return -EINVAL;
5717 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5718 return -EFAULT;
5719 } else if (tr->flags) {
5720 /* timeout removal doesn't support flags */
5721 return -EINVAL;
5722 }
5723
5724 return 0;
5725 }
5726
5727 /*
5728 * Remove or update an existing timeout command
5729 */
5730 static int io_timeout_remove(struct io_kiocb *req)
5731 {
5732 struct io_timeout_rem *tr = &req->timeout_rem;
5733 struct io_ring_ctx *ctx = req->ctx;
5734 int ret;
5735
5736 spin_lock_irq(&ctx->completion_lock);
5737 if (req->timeout_rem.flags & IORING_TIMEOUT_UPDATE) {
5738 enum hrtimer_mode mode = (tr->flags & IORING_TIMEOUT_ABS)
5739 ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
5740
5741 ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
5742 } else {
5743 ret = io_timeout_cancel(ctx, tr->addr);
5744 }
5745
5746 io_cqring_fill_event(req, ret);
5747 io_commit_cqring(ctx);
5748 spin_unlock_irq(&ctx->completion_lock);
5749 io_cqring_ev_posted(ctx);
5750 if (ret < 0)
5751 req_set_fail_links(req);
5752 io_put_req(req);
5753 return 0;
5754 }
5755
5756 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5757 bool is_timeout_link)
5758 {
5759 struct io_timeout_data *data;
5760 unsigned flags;
5761 u32 off = READ_ONCE(sqe->off);
5762
5763 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5764 return -EINVAL;
5765 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5766 return -EINVAL;
5767 if (off && is_timeout_link)
5768 return -EINVAL;
5769 flags = READ_ONCE(sqe->timeout_flags);
5770 if (flags & ~IORING_TIMEOUT_ABS)
5771 return -EINVAL;
5772
5773 req->timeout.off = off;
5774
5775 if (!req->async_data && io_alloc_async_data(req))
5776 return -ENOMEM;
5777
5778 data = req->async_data;
5779 data->req = req;
5780
5781 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5782 return -EFAULT;
5783
5784 if (flags & IORING_TIMEOUT_ABS)
5785 data->mode = HRTIMER_MODE_ABS;
5786 else
5787 data->mode = HRTIMER_MODE_REL;
5788
5789 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5790 return 0;
5791 }
5792
5793 static int io_timeout(struct io_kiocb *req)
5794 {
5795 struct io_ring_ctx *ctx = req->ctx;
5796 struct io_timeout_data *data = req->async_data;
5797 struct list_head *entry;
5798 u32 tail, off = req->timeout.off;
5799
5800 spin_lock_irq(&ctx->completion_lock);
5801
5802 /*
5803 * sqe->off holds how many events that need to occur for this
5804 * timeout event to be satisfied. If it isn't set, then this is
5805 * a pure timeout request, sequence isn't used.
5806 */
5807 if (io_is_timeout_noseq(req)) {
5808 entry = ctx->timeout_list.prev;
5809 goto add;
5810 }
5811
5812 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5813 req->timeout.target_seq = tail + off;
5814
5815 /*
5816 * Insertion sort, ensuring the first entry in the list is always
5817 * the one we need first.
5818 */
5819 list_for_each_prev(entry, &ctx->timeout_list) {
5820 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5821 timeout.list);
5822
5823 if (io_is_timeout_noseq(nxt))
5824 continue;
5825 /* nxt.seq is behind @tail, otherwise would've been completed */
5826 if (off >= nxt->timeout.target_seq - tail)
5827 break;
5828 }
5829 add:
5830 list_add(&req->timeout.list, entry);
5831 data->timer.function = io_timeout_fn;
5832 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5833 spin_unlock_irq(&ctx->completion_lock);
5834 return 0;
5835 }
5836
5837 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5838 {
5839 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5840
5841 return req->user_data == (unsigned long) data;
5842 }
5843
5844 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5845 {
5846 enum io_wq_cancel cancel_ret;
5847 int ret = 0;
5848
5849 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5850 switch (cancel_ret) {
5851 case IO_WQ_CANCEL_OK:
5852 ret = 0;
5853 break;
5854 case IO_WQ_CANCEL_RUNNING:
5855 ret = -EALREADY;
5856 break;
5857 case IO_WQ_CANCEL_NOTFOUND:
5858 ret = -ENOENT;
5859 break;
5860 }
5861
5862 return ret;
5863 }
5864
5865 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5866 struct io_kiocb *req, __u64 sqe_addr,
5867 int success_ret)
5868 {
5869 unsigned long flags;
5870 int ret;
5871
5872 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5873 if (ret != -ENOENT) {
5874 spin_lock_irqsave(&ctx->completion_lock, flags);
5875 goto done;
5876 }
5877
5878 spin_lock_irqsave(&ctx->completion_lock, flags);
5879 ret = io_timeout_cancel(ctx, sqe_addr);
5880 if (ret != -ENOENT)
5881 goto done;
5882 ret = io_poll_cancel(ctx, sqe_addr);
5883 done:
5884 if (!ret)
5885 ret = success_ret;
5886 io_cqring_fill_event(req, ret);
5887 io_commit_cqring(ctx);
5888 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5889 io_cqring_ev_posted(ctx);
5890
5891 if (ret < 0)
5892 req_set_fail_links(req);
5893 io_put_req(req);
5894 }
5895
5896 static int io_async_cancel_prep(struct io_kiocb *req,
5897 const struct io_uring_sqe *sqe)
5898 {
5899 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5900 return -EINVAL;
5901 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5902 return -EINVAL;
5903 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
5904 return -EINVAL;
5905
5906 req->cancel.addr = READ_ONCE(sqe->addr);
5907 return 0;
5908 }
5909
5910 static int io_async_cancel(struct io_kiocb *req)
5911 {
5912 struct io_ring_ctx *ctx = req->ctx;
5913
5914 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
5915 return 0;
5916 }
5917
5918 static int io_files_update_prep(struct io_kiocb *req,
5919 const struct io_uring_sqe *sqe)
5920 {
5921 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
5922 return -EINVAL;
5923 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5924 return -EINVAL;
5925 if (sqe->ioprio || sqe->rw_flags)
5926 return -EINVAL;
5927
5928 req->files_update.offset = READ_ONCE(sqe->off);
5929 req->files_update.nr_args = READ_ONCE(sqe->len);
5930 if (!req->files_update.nr_args)
5931 return -EINVAL;
5932 req->files_update.arg = READ_ONCE(sqe->addr);
5933 return 0;
5934 }
5935
5936 static int io_files_update(struct io_kiocb *req, bool force_nonblock,
5937 struct io_comp_state *cs)
5938 {
5939 struct io_ring_ctx *ctx = req->ctx;
5940 struct io_uring_files_update up;
5941 int ret;
5942
5943 if (force_nonblock)
5944 return -EAGAIN;
5945
5946 up.offset = req->files_update.offset;
5947 up.fds = req->files_update.arg;
5948
5949 mutex_lock(&ctx->uring_lock);
5950 ret = __io_sqe_files_update(ctx, &up, req->files_update.nr_args);
5951 mutex_unlock(&ctx->uring_lock);
5952
5953 if (ret < 0)
5954 req_set_fail_links(req);
5955 __io_req_complete(req, ret, 0, cs);
5956 return 0;
5957 }
5958
5959 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5960 {
5961 switch (req->opcode) {
5962 case IORING_OP_NOP:
5963 return 0;
5964 case IORING_OP_READV:
5965 case IORING_OP_READ_FIXED:
5966 case IORING_OP_READ:
5967 return io_read_prep(req, sqe);
5968 case IORING_OP_WRITEV:
5969 case IORING_OP_WRITE_FIXED:
5970 case IORING_OP_WRITE:
5971 return io_write_prep(req, sqe);
5972 case IORING_OP_POLL_ADD:
5973 return io_poll_add_prep(req, sqe);
5974 case IORING_OP_POLL_REMOVE:
5975 return io_poll_remove_prep(req, sqe);
5976 case IORING_OP_FSYNC:
5977 return io_prep_fsync(req, sqe);
5978 case IORING_OP_SYNC_FILE_RANGE:
5979 return io_prep_sfr(req, sqe);
5980 case IORING_OP_SENDMSG:
5981 case IORING_OP_SEND:
5982 return io_sendmsg_prep(req, sqe);
5983 case IORING_OP_RECVMSG:
5984 case IORING_OP_RECV:
5985 return io_recvmsg_prep(req, sqe);
5986 case IORING_OP_CONNECT:
5987 return io_connect_prep(req, sqe);
5988 case IORING_OP_TIMEOUT:
5989 return io_timeout_prep(req, sqe, false);
5990 case IORING_OP_TIMEOUT_REMOVE:
5991 return io_timeout_remove_prep(req, sqe);
5992 case IORING_OP_ASYNC_CANCEL:
5993 return io_async_cancel_prep(req, sqe);
5994 case IORING_OP_LINK_TIMEOUT:
5995 return io_timeout_prep(req, sqe, true);
5996 case IORING_OP_ACCEPT:
5997 return io_accept_prep(req, sqe);
5998 case IORING_OP_FALLOCATE:
5999 return io_fallocate_prep(req, sqe);
6000 case IORING_OP_OPENAT:
6001 return io_openat_prep(req, sqe);
6002 case IORING_OP_CLOSE:
6003 return io_close_prep(req, sqe);
6004 case IORING_OP_FILES_UPDATE:
6005 return io_files_update_prep(req, sqe);
6006 case IORING_OP_STATX:
6007 return io_statx_prep(req, sqe);
6008 case IORING_OP_FADVISE:
6009 return io_fadvise_prep(req, sqe);
6010 case IORING_OP_MADVISE:
6011 return io_madvise_prep(req, sqe);
6012 case IORING_OP_OPENAT2:
6013 return io_openat2_prep(req, sqe);
6014 case IORING_OP_EPOLL_CTL:
6015 return io_epoll_ctl_prep(req, sqe);
6016 case IORING_OP_SPLICE:
6017 return io_splice_prep(req, sqe);
6018 case IORING_OP_PROVIDE_BUFFERS:
6019 return io_provide_buffers_prep(req, sqe);
6020 case IORING_OP_REMOVE_BUFFERS:
6021 return io_remove_buffers_prep(req, sqe);
6022 case IORING_OP_TEE:
6023 return io_tee_prep(req, sqe);
6024 case IORING_OP_SHUTDOWN:
6025 return io_shutdown_prep(req, sqe);
6026 case IORING_OP_RENAMEAT:
6027 return io_renameat_prep(req, sqe);
6028 case IORING_OP_UNLINKAT:
6029 return io_unlinkat_prep(req, sqe);
6030 }
6031
6032 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6033 req->opcode);
6034 return-EINVAL;
6035 }
6036
6037 static int io_req_defer_prep(struct io_kiocb *req,
6038 const struct io_uring_sqe *sqe)
6039 {
6040 if (!sqe)
6041 return 0;
6042 if (io_alloc_async_data(req))
6043 return -EAGAIN;
6044 return io_req_prep(req, sqe);
6045 }
6046
6047 static u32 io_get_sequence(struct io_kiocb *req)
6048 {
6049 struct io_kiocb *pos;
6050 struct io_ring_ctx *ctx = req->ctx;
6051 u32 total_submitted, nr_reqs = 0;
6052
6053 io_for_each_link(pos, req)
6054 nr_reqs++;
6055
6056 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6057 return total_submitted - nr_reqs;
6058 }
6059
6060 static int io_req_defer(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6061 {
6062 struct io_ring_ctx *ctx = req->ctx;
6063 struct io_defer_entry *de;
6064 int ret;
6065 u32 seq;
6066
6067 /* Still need defer if there is pending req in defer list. */
6068 if (likely(list_empty_careful(&ctx->defer_list) &&
6069 !(req->flags & REQ_F_IO_DRAIN)))
6070 return 0;
6071
6072 seq = io_get_sequence(req);
6073 /* Still a chance to pass the sequence check */
6074 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6075 return 0;
6076
6077 if (!req->async_data) {
6078 ret = io_req_defer_prep(req, sqe);
6079 if (ret)
6080 return ret;
6081 }
6082 io_prep_async_link(req);
6083 de = kmalloc(sizeof(*de), GFP_KERNEL);
6084 if (!de)
6085 return -ENOMEM;
6086
6087 spin_lock_irq(&ctx->completion_lock);
6088 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6089 spin_unlock_irq(&ctx->completion_lock);
6090 kfree(de);
6091 io_queue_async_work(req);
6092 return -EIOCBQUEUED;
6093 }
6094
6095 trace_io_uring_defer(ctx, req, req->user_data);
6096 de->req = req;
6097 de->seq = seq;
6098 list_add_tail(&de->list, &ctx->defer_list);
6099 spin_unlock_irq(&ctx->completion_lock);
6100 return -EIOCBQUEUED;
6101 }
6102
6103 static void io_req_drop_files(struct io_kiocb *req)
6104 {
6105 struct io_ring_ctx *ctx = req->ctx;
6106 struct io_uring_task *tctx = req->task->io_uring;
6107 unsigned long flags;
6108
6109 put_files_struct(req->work.identity->files);
6110 put_nsproxy(req->work.identity->nsproxy);
6111 spin_lock_irqsave(&ctx->inflight_lock, flags);
6112 list_del(&req->inflight_entry);
6113 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
6114 req->flags &= ~REQ_F_INFLIGHT;
6115 req->work.flags &= ~IO_WQ_WORK_FILES;
6116 if (atomic_read(&tctx->in_idle))
6117 wake_up(&tctx->wait);
6118 }
6119
6120 static void __io_clean_op(struct io_kiocb *req)
6121 {
6122 if (req->flags & REQ_F_BUFFER_SELECTED) {
6123 switch (req->opcode) {
6124 case IORING_OP_READV:
6125 case IORING_OP_READ_FIXED:
6126 case IORING_OP_READ:
6127 kfree((void *)(unsigned long)req->rw.addr);
6128 break;
6129 case IORING_OP_RECVMSG:
6130 case IORING_OP_RECV:
6131 kfree(req->sr_msg.kbuf);
6132 break;
6133 }
6134 req->flags &= ~REQ_F_BUFFER_SELECTED;
6135 }
6136
6137 if (req->flags & REQ_F_NEED_CLEANUP) {
6138 switch (req->opcode) {
6139 case IORING_OP_READV:
6140 case IORING_OP_READ_FIXED:
6141 case IORING_OP_READ:
6142 case IORING_OP_WRITEV:
6143 case IORING_OP_WRITE_FIXED:
6144 case IORING_OP_WRITE: {
6145 struct io_async_rw *io = req->async_data;
6146 if (io->free_iovec)
6147 kfree(io->free_iovec);
6148 break;
6149 }
6150 case IORING_OP_RECVMSG:
6151 case IORING_OP_SENDMSG: {
6152 struct io_async_msghdr *io = req->async_data;
6153 if (io->iov != io->fast_iov)
6154 kfree(io->iov);
6155 break;
6156 }
6157 case IORING_OP_SPLICE:
6158 case IORING_OP_TEE:
6159 io_put_file(req, req->splice.file_in,
6160 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6161 break;
6162 case IORING_OP_OPENAT:
6163 case IORING_OP_OPENAT2:
6164 if (req->open.filename)
6165 putname(req->open.filename);
6166 break;
6167 case IORING_OP_RENAMEAT:
6168 putname(req->rename.oldpath);
6169 putname(req->rename.newpath);
6170 break;
6171 case IORING_OP_UNLINKAT:
6172 putname(req->unlink.filename);
6173 break;
6174 }
6175 req->flags &= ~REQ_F_NEED_CLEANUP;
6176 }
6177
6178 if (req->flags & REQ_F_INFLIGHT)
6179 io_req_drop_files(req);
6180 }
6181
6182 static int io_issue_sqe(struct io_kiocb *req, bool force_nonblock,
6183 struct io_comp_state *cs)
6184 {
6185 struct io_ring_ctx *ctx = req->ctx;
6186 int ret;
6187
6188 switch (req->opcode) {
6189 case IORING_OP_NOP:
6190 ret = io_nop(req, cs);
6191 break;
6192 case IORING_OP_READV:
6193 case IORING_OP_READ_FIXED:
6194 case IORING_OP_READ:
6195 ret = io_read(req, force_nonblock, cs);
6196 break;
6197 case IORING_OP_WRITEV:
6198 case IORING_OP_WRITE_FIXED:
6199 case IORING_OP_WRITE:
6200 ret = io_write(req, force_nonblock, cs);
6201 break;
6202 case IORING_OP_FSYNC:
6203 ret = io_fsync(req, force_nonblock);
6204 break;
6205 case IORING_OP_POLL_ADD:
6206 ret = io_poll_add(req);
6207 break;
6208 case IORING_OP_POLL_REMOVE:
6209 ret = io_poll_remove(req);
6210 break;
6211 case IORING_OP_SYNC_FILE_RANGE:
6212 ret = io_sync_file_range(req, force_nonblock);
6213 break;
6214 case IORING_OP_SENDMSG:
6215 ret = io_sendmsg(req, force_nonblock, cs);
6216 break;
6217 case IORING_OP_SEND:
6218 ret = io_send(req, force_nonblock, cs);
6219 break;
6220 case IORING_OP_RECVMSG:
6221 ret = io_recvmsg(req, force_nonblock, cs);
6222 break;
6223 case IORING_OP_RECV:
6224 ret = io_recv(req, force_nonblock, cs);
6225 break;
6226 case IORING_OP_TIMEOUT:
6227 ret = io_timeout(req);
6228 break;
6229 case IORING_OP_TIMEOUT_REMOVE:
6230 ret = io_timeout_remove(req);
6231 break;
6232 case IORING_OP_ACCEPT:
6233 ret = io_accept(req, force_nonblock, cs);
6234 break;
6235 case IORING_OP_CONNECT:
6236 ret = io_connect(req, force_nonblock, cs);
6237 break;
6238 case IORING_OP_ASYNC_CANCEL:
6239 ret = io_async_cancel(req);
6240 break;
6241 case IORING_OP_FALLOCATE:
6242 ret = io_fallocate(req, force_nonblock);
6243 break;
6244 case IORING_OP_OPENAT:
6245 ret = io_openat(req, force_nonblock);
6246 break;
6247 case IORING_OP_CLOSE:
6248 ret = io_close(req, force_nonblock, cs);
6249 break;
6250 case IORING_OP_FILES_UPDATE:
6251 ret = io_files_update(req, force_nonblock, cs);
6252 break;
6253 case IORING_OP_STATX:
6254 ret = io_statx(req, force_nonblock);
6255 break;
6256 case IORING_OP_FADVISE:
6257 ret = io_fadvise(req, force_nonblock);
6258 break;
6259 case IORING_OP_MADVISE:
6260 ret = io_madvise(req, force_nonblock);
6261 break;
6262 case IORING_OP_OPENAT2:
6263 ret = io_openat2(req, force_nonblock);
6264 break;
6265 case IORING_OP_EPOLL_CTL:
6266 ret = io_epoll_ctl(req, force_nonblock, cs);
6267 break;
6268 case IORING_OP_SPLICE:
6269 ret = io_splice(req, force_nonblock);
6270 break;
6271 case IORING_OP_PROVIDE_BUFFERS:
6272 ret = io_provide_buffers(req, force_nonblock, cs);
6273 break;
6274 case IORING_OP_REMOVE_BUFFERS:
6275 ret = io_remove_buffers(req, force_nonblock, cs);
6276 break;
6277 case IORING_OP_TEE:
6278 ret = io_tee(req, force_nonblock);
6279 break;
6280 case IORING_OP_SHUTDOWN:
6281 ret = io_shutdown(req, force_nonblock);
6282 break;
6283 case IORING_OP_RENAMEAT:
6284 ret = io_renameat(req, force_nonblock);
6285 break;
6286 case IORING_OP_UNLINKAT:
6287 ret = io_unlinkat(req, force_nonblock);
6288 break;
6289 default:
6290 ret = -EINVAL;
6291 break;
6292 }
6293
6294 if (ret)
6295 return ret;
6296
6297 /* If the op doesn't have a file, we're not polling for it */
6298 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6299 const bool in_async = io_wq_current_is_worker();
6300
6301 /* workqueue context doesn't hold uring_lock, grab it now */
6302 if (in_async)
6303 mutex_lock(&ctx->uring_lock);
6304
6305 io_iopoll_req_issued(req, in_async);
6306
6307 if (in_async)
6308 mutex_unlock(&ctx->uring_lock);
6309 }
6310
6311 return 0;
6312 }
6313
6314 static struct io_wq_work *io_wq_submit_work(struct io_wq_work *work)
6315 {
6316 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6317 struct io_kiocb *timeout;
6318 int ret = 0;
6319
6320 timeout = io_prep_linked_timeout(req);
6321 if (timeout)
6322 io_queue_linked_timeout(timeout);
6323
6324 /* if NO_CANCEL is set, we must still run the work */
6325 if ((work->flags & (IO_WQ_WORK_CANCEL|IO_WQ_WORK_NO_CANCEL)) ==
6326 IO_WQ_WORK_CANCEL) {
6327 ret = -ECANCELED;
6328 }
6329
6330 if (!ret) {
6331 do {
6332 ret = io_issue_sqe(req, false, NULL);
6333 /*
6334 * We can get EAGAIN for polled IO even though we're
6335 * forcing a sync submission from here, since we can't
6336 * wait for request slots on the block side.
6337 */
6338 if (ret != -EAGAIN)
6339 break;
6340 cond_resched();
6341 } while (1);
6342 }
6343
6344 if (ret) {
6345 struct io_ring_ctx *lock_ctx = NULL;
6346
6347 if (req->ctx->flags & IORING_SETUP_IOPOLL)
6348 lock_ctx = req->ctx;
6349
6350 /*
6351 * io_iopoll_complete() does not hold completion_lock to
6352 * complete polled io, so here for polled io, we can not call
6353 * io_req_complete() directly, otherwise there maybe concurrent
6354 * access to cqring, defer_list, etc, which is not safe. Given
6355 * that io_iopoll_complete() is always called under uring_lock,
6356 * so here for polled io, we also get uring_lock to complete
6357 * it.
6358 */
6359 if (lock_ctx)
6360 mutex_lock(&lock_ctx->uring_lock);
6361
6362 req_set_fail_links(req);
6363 io_req_complete(req, ret);
6364
6365 if (lock_ctx)
6366 mutex_unlock(&lock_ctx->uring_lock);
6367 }
6368
6369 return io_steal_work(req);
6370 }
6371
6372 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6373 int index)
6374 {
6375 struct fixed_file_table *table;
6376
6377 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6378 return table->files[index & IORING_FILE_TABLE_MASK];
6379 }
6380
6381 static struct file *io_file_get(struct io_submit_state *state,
6382 struct io_kiocb *req, int fd, bool fixed)
6383 {
6384 struct io_ring_ctx *ctx = req->ctx;
6385 struct file *file;
6386
6387 if (fixed) {
6388 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6389 return NULL;
6390 fd = array_index_nospec(fd, ctx->nr_user_files);
6391 file = io_file_from_index(ctx, fd);
6392 io_set_resource_node(req);
6393 } else {
6394 trace_io_uring_file_get(ctx, fd);
6395 file = __io_file_get(state, fd);
6396 }
6397
6398 return file;
6399 }
6400
6401 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6402 {
6403 struct io_timeout_data *data = container_of(timer,
6404 struct io_timeout_data, timer);
6405 struct io_kiocb *prev, *req = data->req;
6406 struct io_ring_ctx *ctx = req->ctx;
6407 unsigned long flags;
6408
6409 spin_lock_irqsave(&ctx->completion_lock, flags);
6410 prev = req->timeout.head;
6411 req->timeout.head = NULL;
6412
6413 /*
6414 * We don't expect the list to be empty, that will only happen if we
6415 * race with the completion of the linked work.
6416 */
6417 if (prev && refcount_inc_not_zero(&prev->refs))
6418 io_remove_next_linked(prev);
6419 else
6420 prev = NULL;
6421 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6422
6423 if (prev) {
6424 req_set_fail_links(prev);
6425 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6426 io_put_req(prev);
6427 } else {
6428 io_req_complete(req, -ETIME);
6429 }
6430 return HRTIMER_NORESTART;
6431 }
6432
6433 static void __io_queue_linked_timeout(struct io_kiocb *req)
6434 {
6435 /*
6436 * If the back reference is NULL, then our linked request finished
6437 * before we got a chance to setup the timer
6438 */
6439 if (req->timeout.head) {
6440 struct io_timeout_data *data = req->async_data;
6441
6442 data->timer.function = io_link_timeout_fn;
6443 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6444 data->mode);
6445 }
6446 }
6447
6448 static void io_queue_linked_timeout(struct io_kiocb *req)
6449 {
6450 struct io_ring_ctx *ctx = req->ctx;
6451
6452 spin_lock_irq(&ctx->completion_lock);
6453 __io_queue_linked_timeout(req);
6454 spin_unlock_irq(&ctx->completion_lock);
6455
6456 /* drop submission reference */
6457 io_put_req(req);
6458 }
6459
6460 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6461 {
6462 struct io_kiocb *nxt = req->link;
6463
6464 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6465 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6466 return NULL;
6467
6468 nxt->timeout.head = req;
6469 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6470 req->flags |= REQ_F_LINK_TIMEOUT;
6471 return nxt;
6472 }
6473
6474 static void __io_queue_sqe(struct io_kiocb *req, struct io_comp_state *cs)
6475 {
6476 struct io_kiocb *linked_timeout;
6477 const struct cred *old_creds = NULL;
6478 int ret;
6479
6480 again:
6481 linked_timeout = io_prep_linked_timeout(req);
6482
6483 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6484 (req->work.flags & IO_WQ_WORK_CREDS) &&
6485 req->work.identity->creds != current_cred()) {
6486 if (old_creds)
6487 revert_creds(old_creds);
6488 if (old_creds == req->work.identity->creds)
6489 old_creds = NULL; /* restored original creds */
6490 else
6491 old_creds = override_creds(req->work.identity->creds);
6492 }
6493
6494 ret = io_issue_sqe(req, true, cs);
6495
6496 /*
6497 * We async punt it if the file wasn't marked NOWAIT, or if the file
6498 * doesn't support non-blocking read/write attempts
6499 */
6500 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6501 if (!io_arm_poll_handler(req)) {
6502 /*
6503 * Queued up for async execution, worker will release
6504 * submit reference when the iocb is actually submitted.
6505 */
6506 io_queue_async_work(req);
6507 }
6508
6509 if (linked_timeout)
6510 io_queue_linked_timeout(linked_timeout);
6511 } else if (likely(!ret)) {
6512 /* drop submission reference */
6513 req = io_put_req_find_next(req);
6514 if (linked_timeout)
6515 io_queue_linked_timeout(linked_timeout);
6516
6517 if (req) {
6518 if (!(req->flags & REQ_F_FORCE_ASYNC))
6519 goto again;
6520 io_queue_async_work(req);
6521 }
6522 } else {
6523 /* un-prep timeout, so it'll be killed as any other linked */
6524 req->flags &= ~REQ_F_LINK_TIMEOUT;
6525 req_set_fail_links(req);
6526 io_put_req(req);
6527 io_req_complete(req, ret);
6528 }
6529
6530 if (old_creds)
6531 revert_creds(old_creds);
6532 }
6533
6534 static void io_queue_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6535 struct io_comp_state *cs)
6536 {
6537 int ret;
6538
6539 ret = io_req_defer(req, sqe);
6540 if (ret) {
6541 if (ret != -EIOCBQUEUED) {
6542 fail_req:
6543 req_set_fail_links(req);
6544 io_put_req(req);
6545 io_req_complete(req, ret);
6546 }
6547 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6548 if (!req->async_data) {
6549 ret = io_req_defer_prep(req, sqe);
6550 if (unlikely(ret))
6551 goto fail_req;
6552 }
6553 io_queue_async_work(req);
6554 } else {
6555 if (sqe) {
6556 ret = io_req_prep(req, sqe);
6557 if (unlikely(ret))
6558 goto fail_req;
6559 }
6560 __io_queue_sqe(req, cs);
6561 }
6562 }
6563
6564 static inline void io_queue_link_head(struct io_kiocb *req,
6565 struct io_comp_state *cs)
6566 {
6567 if (unlikely(req->flags & REQ_F_FAIL_LINK)) {
6568 io_put_req(req);
6569 io_req_complete(req, -ECANCELED);
6570 } else
6571 io_queue_sqe(req, NULL, cs);
6572 }
6573
6574 struct io_submit_link {
6575 struct io_kiocb *head;
6576 struct io_kiocb *last;
6577 };
6578
6579 static int io_submit_sqe(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6580 struct io_submit_link *link, struct io_comp_state *cs)
6581 {
6582 struct io_ring_ctx *ctx = req->ctx;
6583 int ret;
6584
6585 /*
6586 * If we already have a head request, queue this one for async
6587 * submittal once the head completes. If we don't have a head but
6588 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6589 * submitted sync once the chain is complete. If none of those
6590 * conditions are true (normal request), then just queue it.
6591 */
6592 if (link->head) {
6593 struct io_kiocb *head = link->head;
6594
6595 /*
6596 * Taking sequential execution of a link, draining both sides
6597 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6598 * requests in the link. So, it drains the head and the
6599 * next after the link request. The last one is done via
6600 * drain_next flag to persist the effect across calls.
6601 */
6602 if (req->flags & REQ_F_IO_DRAIN) {
6603 head->flags |= REQ_F_IO_DRAIN;
6604 ctx->drain_next = 1;
6605 }
6606 ret = io_req_defer_prep(req, sqe);
6607 if (unlikely(ret)) {
6608 /* fail even hard links since we don't submit */
6609 head->flags |= REQ_F_FAIL_LINK;
6610 return ret;
6611 }
6612 trace_io_uring_link(ctx, req, head);
6613 link->last->link = req;
6614 link->last = req;
6615
6616 /* last request of a link, enqueue the link */
6617 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6618 io_queue_link_head(head, cs);
6619 link->head = NULL;
6620 }
6621 } else {
6622 if (unlikely(ctx->drain_next)) {
6623 req->flags |= REQ_F_IO_DRAIN;
6624 ctx->drain_next = 0;
6625 }
6626 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6627 ret = io_req_defer_prep(req, sqe);
6628 if (unlikely(ret))
6629 req->flags |= REQ_F_FAIL_LINK;
6630 link->head = req;
6631 link->last = req;
6632 } else {
6633 io_queue_sqe(req, sqe, cs);
6634 }
6635 }
6636
6637 return 0;
6638 }
6639
6640 /*
6641 * Batched submission is done, ensure local IO is flushed out.
6642 */
6643 static void io_submit_state_end(struct io_submit_state *state)
6644 {
6645 if (!list_empty(&state->comp.list))
6646 io_submit_flush_completions(&state->comp);
6647 if (state->plug_started)
6648 blk_finish_plug(&state->plug);
6649 io_state_file_put(state);
6650 if (state->free_reqs)
6651 kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
6652 }
6653
6654 /*
6655 * Start submission side cache.
6656 */
6657 static void io_submit_state_start(struct io_submit_state *state,
6658 struct io_ring_ctx *ctx, unsigned int max_ios)
6659 {
6660 state->plug_started = false;
6661 state->comp.nr = 0;
6662 INIT_LIST_HEAD(&state->comp.list);
6663 state->comp.ctx = ctx;
6664 state->free_reqs = 0;
6665 state->file_refs = 0;
6666 state->ios_left = max_ios;
6667 }
6668
6669 static void io_commit_sqring(struct io_ring_ctx *ctx)
6670 {
6671 struct io_rings *rings = ctx->rings;
6672
6673 /*
6674 * Ensure any loads from the SQEs are done at this point,
6675 * since once we write the new head, the application could
6676 * write new data to them.
6677 */
6678 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6679 }
6680
6681 /*
6682 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6683 * that is mapped by userspace. This means that care needs to be taken to
6684 * ensure that reads are stable, as we cannot rely on userspace always
6685 * being a good citizen. If members of the sqe are validated and then later
6686 * used, it's important that those reads are done through READ_ONCE() to
6687 * prevent a re-load down the line.
6688 */
6689 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6690 {
6691 u32 *sq_array = ctx->sq_array;
6692 unsigned head;
6693
6694 /*
6695 * The cached sq head (or cq tail) serves two purposes:
6696 *
6697 * 1) allows us to batch the cost of updating the user visible
6698 * head updates.
6699 * 2) allows the kernel side to track the head on its own, even
6700 * though the application is the one updating it.
6701 */
6702 head = READ_ONCE(sq_array[ctx->cached_sq_head & ctx->sq_mask]);
6703 if (likely(head < ctx->sq_entries))
6704 return &ctx->sq_sqes[head];
6705
6706 /* drop invalid entries */
6707 ctx->cached_sq_dropped++;
6708 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6709 return NULL;
6710 }
6711
6712 static inline void io_consume_sqe(struct io_ring_ctx *ctx)
6713 {
6714 ctx->cached_sq_head++;
6715 }
6716
6717 /*
6718 * Check SQE restrictions (opcode and flags).
6719 *
6720 * Returns 'true' if SQE is allowed, 'false' otherwise.
6721 */
6722 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6723 struct io_kiocb *req,
6724 unsigned int sqe_flags)
6725 {
6726 if (!ctx->restricted)
6727 return true;
6728
6729 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6730 return false;
6731
6732 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6733 ctx->restrictions.sqe_flags_required)
6734 return false;
6735
6736 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6737 ctx->restrictions.sqe_flags_required))
6738 return false;
6739
6740 return true;
6741 }
6742
6743 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
6744 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
6745 IOSQE_BUFFER_SELECT)
6746
6747 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6748 const struct io_uring_sqe *sqe,
6749 struct io_submit_state *state)
6750 {
6751 unsigned int sqe_flags;
6752 int id, ret;
6753
6754 req->opcode = READ_ONCE(sqe->opcode);
6755 req->user_data = READ_ONCE(sqe->user_data);
6756 req->async_data = NULL;
6757 req->file = NULL;
6758 req->ctx = ctx;
6759 req->flags = 0;
6760 req->link = NULL;
6761 req->fixed_file_refs = NULL;
6762 /* one is dropped after submission, the other at completion */
6763 refcount_set(&req->refs, 2);
6764 req->task = current;
6765 req->result = 0;
6766
6767 if (unlikely(req->opcode >= IORING_OP_LAST))
6768 return -EINVAL;
6769
6770 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6771 return -EFAULT;
6772
6773 sqe_flags = READ_ONCE(sqe->flags);
6774 /* enforce forwards compatibility on users */
6775 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
6776 return -EINVAL;
6777
6778 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6779 return -EACCES;
6780
6781 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6782 !io_op_defs[req->opcode].buffer_select)
6783 return -EOPNOTSUPP;
6784
6785 id = READ_ONCE(sqe->personality);
6786 if (id) {
6787 struct io_identity *iod;
6788
6789 iod = idr_find(&ctx->personality_idr, id);
6790 if (unlikely(!iod))
6791 return -EINVAL;
6792 refcount_inc(&iod->count);
6793
6794 __io_req_init_async(req);
6795 get_cred(iod->creds);
6796 req->work.identity = iod;
6797 req->work.flags |= IO_WQ_WORK_CREDS;
6798 }
6799
6800 /* same numerical values with corresponding REQ_F_*, safe to copy */
6801 req->flags |= sqe_flags;
6802
6803 /*
6804 * Plug now if we have more than 1 IO left after this, and the target
6805 * is potentially a read/write to block based storage.
6806 */
6807 if (!state->plug_started && state->ios_left > 1 &&
6808 io_op_defs[req->opcode].plug) {
6809 blk_start_plug(&state->plug);
6810 state->plug_started = true;
6811 }
6812
6813 ret = 0;
6814 if (io_op_defs[req->opcode].needs_file) {
6815 bool fixed = req->flags & REQ_F_FIXED_FILE;
6816
6817 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6818 if (unlikely(!req->file &&
6819 !io_op_defs[req->opcode].needs_file_no_error))
6820 ret = -EBADF;
6821 }
6822
6823 state->ios_left--;
6824 return ret;
6825 }
6826
6827 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6828 {
6829 struct io_submit_state state;
6830 struct io_submit_link link;
6831 int i, submitted = 0;
6832
6833 /* if we have a backlog and couldn't flush it all, return BUSY */
6834 if (test_bit(0, &ctx->sq_check_overflow)) {
6835 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6836 return -EBUSY;
6837 }
6838
6839 /* make sure SQ entry isn't read before tail */
6840 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6841
6842 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6843 return -EAGAIN;
6844
6845 percpu_counter_add(&current->io_uring->inflight, nr);
6846 refcount_add(nr, &current->usage);
6847
6848 io_submit_state_start(&state, ctx, nr);
6849 link.head = NULL;
6850
6851 for (i = 0; i < nr; i++) {
6852 const struct io_uring_sqe *sqe;
6853 struct io_kiocb *req;
6854 int err;
6855
6856 sqe = io_get_sqe(ctx);
6857 if (unlikely(!sqe)) {
6858 io_consume_sqe(ctx);
6859 break;
6860 }
6861 req = io_alloc_req(ctx, &state);
6862 if (unlikely(!req)) {
6863 if (!submitted)
6864 submitted = -EAGAIN;
6865 break;
6866 }
6867 io_consume_sqe(ctx);
6868 /* will complete beyond this point, count as submitted */
6869 submitted++;
6870
6871 err = io_init_req(ctx, req, sqe, &state);
6872 if (unlikely(err)) {
6873 fail_req:
6874 io_put_req(req);
6875 io_req_complete(req, err);
6876 break;
6877 }
6878
6879 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6880 true, io_async_submit(ctx));
6881 err = io_submit_sqe(req, sqe, &link, &state.comp);
6882 if (err)
6883 goto fail_req;
6884 }
6885
6886 if (unlikely(submitted != nr)) {
6887 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6888 struct io_uring_task *tctx = current->io_uring;
6889 int unused = nr - ref_used;
6890
6891 percpu_ref_put_many(&ctx->refs, unused);
6892 percpu_counter_sub(&tctx->inflight, unused);
6893 put_task_struct_many(current, unused);
6894 }
6895 if (link.head)
6896 io_queue_link_head(link.head, &state.comp);
6897 io_submit_state_end(&state);
6898
6899 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6900 io_commit_sqring(ctx);
6901
6902 return submitted;
6903 }
6904
6905 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6906 {
6907 /* Tell userspace we may need a wakeup call */
6908 spin_lock_irq(&ctx->completion_lock);
6909 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6910 spin_unlock_irq(&ctx->completion_lock);
6911 }
6912
6913 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6914 {
6915 spin_lock_irq(&ctx->completion_lock);
6916 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6917 spin_unlock_irq(&ctx->completion_lock);
6918 }
6919
6920 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6921 {
6922 unsigned int to_submit;
6923 int ret = 0;
6924
6925 to_submit = io_sqring_entries(ctx);
6926 /* if we're handling multiple rings, cap submit size for fairness */
6927 if (cap_entries && to_submit > 8)
6928 to_submit = 8;
6929
6930 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6931 unsigned nr_events = 0;
6932
6933 mutex_lock(&ctx->uring_lock);
6934 if (!list_empty(&ctx->iopoll_list))
6935 io_do_iopoll(ctx, &nr_events, 0);
6936
6937 if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)))
6938 ret = io_submit_sqes(ctx, to_submit);
6939 mutex_unlock(&ctx->uring_lock);
6940 }
6941
6942 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6943 wake_up(&ctx->sqo_sq_wait);
6944
6945 return ret;
6946 }
6947
6948 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6949 {
6950 struct io_ring_ctx *ctx;
6951 unsigned sq_thread_idle = 0;
6952
6953 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6954 if (sq_thread_idle < ctx->sq_thread_idle)
6955 sq_thread_idle = ctx->sq_thread_idle;
6956 }
6957
6958 sqd->sq_thread_idle = sq_thread_idle;
6959 }
6960
6961 static void io_sqd_init_new(struct io_sq_data *sqd)
6962 {
6963 struct io_ring_ctx *ctx;
6964
6965 while (!list_empty(&sqd->ctx_new_list)) {
6966 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
6967 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
6968 complete(&ctx->sq_thread_comp);
6969 }
6970
6971 io_sqd_update_thread_idle(sqd);
6972 }
6973
6974 static int io_sq_thread(void *data)
6975 {
6976 struct cgroup_subsys_state *cur_css = NULL;
6977 struct files_struct *old_files = current->files;
6978 struct nsproxy *old_nsproxy = current->nsproxy;
6979 const struct cred *old_cred = NULL;
6980 struct io_sq_data *sqd = data;
6981 struct io_ring_ctx *ctx;
6982 unsigned long timeout = 0;
6983 DEFINE_WAIT(wait);
6984
6985 task_lock(current);
6986 current->files = NULL;
6987 current->nsproxy = NULL;
6988 task_unlock(current);
6989
6990 while (!kthread_should_stop()) {
6991 int ret;
6992 bool cap_entries, sqt_spin, needs_sched;
6993
6994 /*
6995 * Any changes to the sqd lists are synchronized through the
6996 * kthread parking. This synchronizes the thread vs users,
6997 * the users are synchronized on the sqd->ctx_lock.
6998 */
6999 if (kthread_should_park()) {
7000 kthread_parkme();
7001 /*
7002 * When sq thread is unparked, in case the previous park operation
7003 * comes from io_put_sq_data(), which means that sq thread is going
7004 * to be stopped, so here needs to have a check.
7005 */
7006 if (kthread_should_stop())
7007 break;
7008 }
7009
7010 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7011 io_sqd_init_new(sqd);
7012 timeout = jiffies + sqd->sq_thread_idle;
7013 }
7014
7015 sqt_spin = false;
7016 cap_entries = !list_is_singular(&sqd->ctx_list);
7017 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7018 if (current->cred != ctx->creds) {
7019 if (old_cred)
7020 revert_creds(old_cred);
7021 old_cred = override_creds(ctx->creds);
7022 }
7023 io_sq_thread_associate_blkcg(ctx, &cur_css);
7024 #ifdef CONFIG_AUDIT
7025 current->loginuid = ctx->loginuid;
7026 current->sessionid = ctx->sessionid;
7027 #endif
7028
7029 ret = __io_sq_thread(ctx, cap_entries);
7030 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7031 sqt_spin = true;
7032
7033 io_sq_thread_drop_mm_files();
7034 }
7035
7036 if (sqt_spin || !time_after(jiffies, timeout)) {
7037 io_run_task_work();
7038 cond_resched();
7039 if (sqt_spin)
7040 timeout = jiffies + sqd->sq_thread_idle;
7041 continue;
7042 }
7043
7044 if (kthread_should_park())
7045 continue;
7046
7047 needs_sched = true;
7048 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7049 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7050 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7051 !list_empty_careful(&ctx->iopoll_list)) {
7052 needs_sched = false;
7053 break;
7054 }
7055 if (io_sqring_entries(ctx)) {
7056 needs_sched = false;
7057 break;
7058 }
7059 }
7060
7061 if (needs_sched) {
7062 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7063 io_ring_set_wakeup_flag(ctx);
7064
7065 schedule();
7066 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7067 io_ring_clear_wakeup_flag(ctx);
7068 }
7069
7070 finish_wait(&sqd->wait, &wait);
7071 timeout = jiffies + sqd->sq_thread_idle;
7072 }
7073
7074 io_run_task_work();
7075
7076 if (cur_css)
7077 io_sq_thread_unassociate_blkcg();
7078 if (old_cred)
7079 revert_creds(old_cred);
7080
7081 task_lock(current);
7082 current->files = old_files;
7083 current->nsproxy = old_nsproxy;
7084 task_unlock(current);
7085
7086 kthread_parkme();
7087
7088 return 0;
7089 }
7090
7091 struct io_wait_queue {
7092 struct wait_queue_entry wq;
7093 struct io_ring_ctx *ctx;
7094 unsigned to_wait;
7095 unsigned nr_timeouts;
7096 };
7097
7098 static inline bool io_should_wake(struct io_wait_queue *iowq)
7099 {
7100 struct io_ring_ctx *ctx = iowq->ctx;
7101
7102 /*
7103 * Wake up if we have enough events, or if a timeout occurred since we
7104 * started waiting. For timeouts, we always want to return to userspace,
7105 * regardless of event count.
7106 */
7107 return io_cqring_events(ctx) >= iowq->to_wait ||
7108 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7109 }
7110
7111 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7112 int wake_flags, void *key)
7113 {
7114 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7115 wq);
7116
7117 /*
7118 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7119 * the task, and the next invocation will do it.
7120 */
7121 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7122 return autoremove_wake_function(curr, mode, wake_flags, key);
7123 return -1;
7124 }
7125
7126 static int io_run_task_work_sig(void)
7127 {
7128 if (io_run_task_work())
7129 return 1;
7130 if (!signal_pending(current))
7131 return 0;
7132 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7133 return -ERESTARTSYS;
7134 return -EINTR;
7135 }
7136
7137 /*
7138 * Wait until events become available, if we don't already have some. The
7139 * application must reap them itself, as they reside on the shared cq ring.
7140 */
7141 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7142 const sigset_t __user *sig, size_t sigsz,
7143 struct __kernel_timespec __user *uts)
7144 {
7145 struct io_wait_queue iowq = {
7146 .wq = {
7147 .private = current,
7148 .func = io_wake_function,
7149 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7150 },
7151 .ctx = ctx,
7152 .to_wait = min_events,
7153 };
7154 struct io_rings *rings = ctx->rings;
7155 struct timespec64 ts;
7156 signed long timeout = 0;
7157 int ret = 0;
7158
7159 do {
7160 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7161 if (io_cqring_events(ctx) >= min_events)
7162 return 0;
7163 if (!io_run_task_work())
7164 break;
7165 } while (1);
7166
7167 if (sig) {
7168 #ifdef CONFIG_COMPAT
7169 if (in_compat_syscall())
7170 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7171 sigsz);
7172 else
7173 #endif
7174 ret = set_user_sigmask(sig, sigsz);
7175
7176 if (ret)
7177 return ret;
7178 }
7179
7180 if (uts) {
7181 if (get_timespec64(&ts, uts))
7182 return -EFAULT;
7183 timeout = timespec64_to_jiffies(&ts);
7184 }
7185
7186 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7187 trace_io_uring_cqring_wait(ctx, min_events);
7188 do {
7189 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7190 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7191 TASK_INTERRUPTIBLE);
7192 /* make sure we run task_work before checking for signals */
7193 ret = io_run_task_work_sig();
7194 if (ret > 0)
7195 continue;
7196 else if (ret < 0)
7197 break;
7198 if (io_should_wake(&iowq))
7199 break;
7200 if (test_bit(0, &ctx->cq_check_overflow))
7201 continue;
7202 if (uts) {
7203 timeout = schedule_timeout(timeout);
7204 if (timeout == 0) {
7205 ret = -ETIME;
7206 break;
7207 }
7208 } else {
7209 schedule();
7210 }
7211 } while (1);
7212 finish_wait(&ctx->wait, &iowq.wq);
7213
7214 restore_saved_sigmask_unless(ret == -EINTR);
7215
7216 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7217 }
7218
7219 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7220 {
7221 #if defined(CONFIG_UNIX)
7222 if (ctx->ring_sock) {
7223 struct sock *sock = ctx->ring_sock->sk;
7224 struct sk_buff *skb;
7225
7226 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7227 kfree_skb(skb);
7228 }
7229 #else
7230 int i;
7231
7232 for (i = 0; i < ctx->nr_user_files; i++) {
7233 struct file *file;
7234
7235 file = io_file_from_index(ctx, i);
7236 if (file)
7237 fput(file);
7238 }
7239 #endif
7240 }
7241
7242 static void io_file_ref_kill(struct percpu_ref *ref)
7243 {
7244 struct fixed_file_data *data;
7245
7246 data = container_of(ref, struct fixed_file_data, refs);
7247 complete(&data->done);
7248 }
7249
7250 static void io_sqe_files_set_node(struct fixed_file_data *file_data,
7251 struct fixed_file_ref_node *ref_node)
7252 {
7253 spin_lock_bh(&file_data->lock);
7254 file_data->node = ref_node;
7255 list_add_tail(&ref_node->node, &file_data->ref_list);
7256 spin_unlock_bh(&file_data->lock);
7257 percpu_ref_get(&file_data->refs);
7258 }
7259
7260 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7261 {
7262 struct fixed_file_data *data = ctx->file_data;
7263 struct fixed_file_ref_node *backup_node, *ref_node = NULL;
7264 unsigned nr_tables, i;
7265 int ret;
7266
7267 if (!data)
7268 return -ENXIO;
7269 backup_node = alloc_fixed_file_ref_node(ctx);
7270 if (!backup_node)
7271 return -ENOMEM;
7272
7273 spin_lock_bh(&data->lock);
7274 ref_node = data->node;
7275 spin_unlock_bh(&data->lock);
7276 if (ref_node)
7277 percpu_ref_kill(&ref_node->refs);
7278
7279 percpu_ref_kill(&data->refs);
7280
7281 /* wait for all refs nodes to complete */
7282 flush_delayed_work(&ctx->file_put_work);
7283 do {
7284 ret = wait_for_completion_interruptible(&data->done);
7285 if (!ret)
7286 break;
7287 ret = io_run_task_work_sig();
7288 if (ret < 0) {
7289 percpu_ref_resurrect(&data->refs);
7290 reinit_completion(&data->done);
7291 io_sqe_files_set_node(data, backup_node);
7292 return ret;
7293 }
7294 } while (1);
7295
7296 __io_sqe_files_unregister(ctx);
7297 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7298 for (i = 0; i < nr_tables; i++)
7299 kfree(data->table[i].files);
7300 kfree(data->table);
7301 percpu_ref_exit(&data->refs);
7302 kfree(data);
7303 ctx->file_data = NULL;
7304 ctx->nr_user_files = 0;
7305 destroy_fixed_file_ref_node(backup_node);
7306 return 0;
7307 }
7308
7309 static void io_put_sq_data(struct io_sq_data *sqd)
7310 {
7311 if (refcount_dec_and_test(&sqd->refs)) {
7312 /*
7313 * The park is a bit of a work-around, without it we get
7314 * warning spews on shutdown with SQPOLL set and affinity
7315 * set to a single CPU.
7316 */
7317 if (sqd->thread) {
7318 kthread_park(sqd->thread);
7319 kthread_stop(sqd->thread);
7320 }
7321
7322 kfree(sqd);
7323 }
7324 }
7325
7326 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7327 {
7328 struct io_ring_ctx *ctx_attach;
7329 struct io_sq_data *sqd;
7330 struct fd f;
7331
7332 f = fdget(p->wq_fd);
7333 if (!f.file)
7334 return ERR_PTR(-ENXIO);
7335 if (f.file->f_op != &io_uring_fops) {
7336 fdput(f);
7337 return ERR_PTR(-EINVAL);
7338 }
7339
7340 ctx_attach = f.file->private_data;
7341 sqd = ctx_attach->sq_data;
7342 if (!sqd) {
7343 fdput(f);
7344 return ERR_PTR(-EINVAL);
7345 }
7346
7347 refcount_inc(&sqd->refs);
7348 fdput(f);
7349 return sqd;
7350 }
7351
7352 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7353 {
7354 struct io_sq_data *sqd;
7355
7356 if (p->flags & IORING_SETUP_ATTACH_WQ)
7357 return io_attach_sq_data(p);
7358
7359 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7360 if (!sqd)
7361 return ERR_PTR(-ENOMEM);
7362
7363 refcount_set(&sqd->refs, 1);
7364 INIT_LIST_HEAD(&sqd->ctx_list);
7365 INIT_LIST_HEAD(&sqd->ctx_new_list);
7366 mutex_init(&sqd->ctx_lock);
7367 mutex_init(&sqd->lock);
7368 init_waitqueue_head(&sqd->wait);
7369 return sqd;
7370 }
7371
7372 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7373 __releases(&sqd->lock)
7374 {
7375 if (!sqd->thread)
7376 return;
7377 kthread_unpark(sqd->thread);
7378 mutex_unlock(&sqd->lock);
7379 }
7380
7381 static void io_sq_thread_park(struct io_sq_data *sqd)
7382 __acquires(&sqd->lock)
7383 {
7384 if (!sqd->thread)
7385 return;
7386 mutex_lock(&sqd->lock);
7387 kthread_park(sqd->thread);
7388 }
7389
7390 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7391 {
7392 struct io_sq_data *sqd = ctx->sq_data;
7393
7394 if (sqd) {
7395 if (sqd->thread) {
7396 /*
7397 * We may arrive here from the error branch in
7398 * io_sq_offload_create() where the kthread is created
7399 * without being waked up, thus wake it up now to make
7400 * sure the wait will complete.
7401 */
7402 wake_up_process(sqd->thread);
7403 wait_for_completion(&ctx->sq_thread_comp);
7404
7405 io_sq_thread_park(sqd);
7406 }
7407
7408 mutex_lock(&sqd->ctx_lock);
7409 list_del(&ctx->sqd_list);
7410 io_sqd_update_thread_idle(sqd);
7411 mutex_unlock(&sqd->ctx_lock);
7412
7413 if (sqd->thread)
7414 io_sq_thread_unpark(sqd);
7415
7416 io_put_sq_data(sqd);
7417 ctx->sq_data = NULL;
7418 }
7419 }
7420
7421 static void io_finish_async(struct io_ring_ctx *ctx)
7422 {
7423 io_sq_thread_stop(ctx);
7424
7425 if (ctx->io_wq) {
7426 io_wq_destroy(ctx->io_wq);
7427 ctx->io_wq = NULL;
7428 }
7429 }
7430
7431 #if defined(CONFIG_UNIX)
7432 /*
7433 * Ensure the UNIX gc is aware of our file set, so we are certain that
7434 * the io_uring can be safely unregistered on process exit, even if we have
7435 * loops in the file referencing.
7436 */
7437 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7438 {
7439 struct sock *sk = ctx->ring_sock->sk;
7440 struct scm_fp_list *fpl;
7441 struct sk_buff *skb;
7442 int i, nr_files;
7443
7444 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7445 if (!fpl)
7446 return -ENOMEM;
7447
7448 skb = alloc_skb(0, GFP_KERNEL);
7449 if (!skb) {
7450 kfree(fpl);
7451 return -ENOMEM;
7452 }
7453
7454 skb->sk = sk;
7455
7456 nr_files = 0;
7457 fpl->user = get_uid(ctx->user);
7458 for (i = 0; i < nr; i++) {
7459 struct file *file = io_file_from_index(ctx, i + offset);
7460
7461 if (!file)
7462 continue;
7463 fpl->fp[nr_files] = get_file(file);
7464 unix_inflight(fpl->user, fpl->fp[nr_files]);
7465 nr_files++;
7466 }
7467
7468 if (nr_files) {
7469 fpl->max = SCM_MAX_FD;
7470 fpl->count = nr_files;
7471 UNIXCB(skb).fp = fpl;
7472 skb->destructor = unix_destruct_scm;
7473 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7474 skb_queue_head(&sk->sk_receive_queue, skb);
7475
7476 for (i = 0; i < nr_files; i++)
7477 fput(fpl->fp[i]);
7478 } else {
7479 kfree_skb(skb);
7480 kfree(fpl);
7481 }
7482
7483 return 0;
7484 }
7485
7486 /*
7487 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7488 * causes regular reference counting to break down. We rely on the UNIX
7489 * garbage collection to take care of this problem for us.
7490 */
7491 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7492 {
7493 unsigned left, total;
7494 int ret = 0;
7495
7496 total = 0;
7497 left = ctx->nr_user_files;
7498 while (left) {
7499 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7500
7501 ret = __io_sqe_files_scm(ctx, this_files, total);
7502 if (ret)
7503 break;
7504 left -= this_files;
7505 total += this_files;
7506 }
7507
7508 if (!ret)
7509 return 0;
7510
7511 while (total < ctx->nr_user_files) {
7512 struct file *file = io_file_from_index(ctx, total);
7513
7514 if (file)
7515 fput(file);
7516 total++;
7517 }
7518
7519 return ret;
7520 }
7521 #else
7522 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7523 {
7524 return 0;
7525 }
7526 #endif
7527
7528 static int io_sqe_alloc_file_tables(struct fixed_file_data *file_data,
7529 unsigned nr_tables, unsigned nr_files)
7530 {
7531 int i;
7532
7533 for (i = 0; i < nr_tables; i++) {
7534 struct fixed_file_table *table = &file_data->table[i];
7535 unsigned this_files;
7536
7537 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7538 table->files = kcalloc(this_files, sizeof(struct file *),
7539 GFP_KERNEL);
7540 if (!table->files)
7541 break;
7542 nr_files -= this_files;
7543 }
7544
7545 if (i == nr_tables)
7546 return 0;
7547
7548 for (i = 0; i < nr_tables; i++) {
7549 struct fixed_file_table *table = &file_data->table[i];
7550 kfree(table->files);
7551 }
7552 return 1;
7553 }
7554
7555 static void io_ring_file_put(struct io_ring_ctx *ctx, struct file *file)
7556 {
7557 #if defined(CONFIG_UNIX)
7558 struct sock *sock = ctx->ring_sock->sk;
7559 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7560 struct sk_buff *skb;
7561 int i;
7562
7563 __skb_queue_head_init(&list);
7564
7565 /*
7566 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7567 * remove this entry and rearrange the file array.
7568 */
7569 skb = skb_dequeue(head);
7570 while (skb) {
7571 struct scm_fp_list *fp;
7572
7573 fp = UNIXCB(skb).fp;
7574 for (i = 0; i < fp->count; i++) {
7575 int left;
7576
7577 if (fp->fp[i] != file)
7578 continue;
7579
7580 unix_notinflight(fp->user, fp->fp[i]);
7581 left = fp->count - 1 - i;
7582 if (left) {
7583 memmove(&fp->fp[i], &fp->fp[i + 1],
7584 left * sizeof(struct file *));
7585 }
7586 fp->count--;
7587 if (!fp->count) {
7588 kfree_skb(skb);
7589 skb = NULL;
7590 } else {
7591 __skb_queue_tail(&list, skb);
7592 }
7593 fput(file);
7594 file = NULL;
7595 break;
7596 }
7597
7598 if (!file)
7599 break;
7600
7601 __skb_queue_tail(&list, skb);
7602
7603 skb = skb_dequeue(head);
7604 }
7605
7606 if (skb_peek(&list)) {
7607 spin_lock_irq(&head->lock);
7608 while ((skb = __skb_dequeue(&list)) != NULL)
7609 __skb_queue_tail(head, skb);
7610 spin_unlock_irq(&head->lock);
7611 }
7612 #else
7613 fput(file);
7614 #endif
7615 }
7616
7617 struct io_file_put {
7618 struct list_head list;
7619 struct file *file;
7620 };
7621
7622 static void __io_file_put_work(struct fixed_file_ref_node *ref_node)
7623 {
7624 struct fixed_file_data *file_data = ref_node->file_data;
7625 struct io_ring_ctx *ctx = file_data->ctx;
7626 struct io_file_put *pfile, *tmp;
7627
7628 list_for_each_entry_safe(pfile, tmp, &ref_node->file_list, list) {
7629 list_del(&pfile->list);
7630 io_ring_file_put(ctx, pfile->file);
7631 kfree(pfile);
7632 }
7633
7634 percpu_ref_exit(&ref_node->refs);
7635 kfree(ref_node);
7636 percpu_ref_put(&file_data->refs);
7637 }
7638
7639 static void io_file_put_work(struct work_struct *work)
7640 {
7641 struct io_ring_ctx *ctx;
7642 struct llist_node *node;
7643
7644 ctx = container_of(work, struct io_ring_ctx, file_put_work.work);
7645 node = llist_del_all(&ctx->file_put_llist);
7646
7647 while (node) {
7648 struct fixed_file_ref_node *ref_node;
7649 struct llist_node *next = node->next;
7650
7651 ref_node = llist_entry(node, struct fixed_file_ref_node, llist);
7652 __io_file_put_work(ref_node);
7653 node = next;
7654 }
7655 }
7656
7657 static void io_file_data_ref_zero(struct percpu_ref *ref)
7658 {
7659 struct fixed_file_ref_node *ref_node;
7660 struct fixed_file_data *data;
7661 struct io_ring_ctx *ctx;
7662 bool first_add = false;
7663 int delay = HZ;
7664
7665 ref_node = container_of(ref, struct fixed_file_ref_node, refs);
7666 data = ref_node->file_data;
7667 ctx = data->ctx;
7668
7669 spin_lock_bh(&data->lock);
7670 ref_node->done = true;
7671
7672 while (!list_empty(&data->ref_list)) {
7673 ref_node = list_first_entry(&data->ref_list,
7674 struct fixed_file_ref_node, node);
7675 /* recycle ref nodes in order */
7676 if (!ref_node->done)
7677 break;
7678 list_del(&ref_node->node);
7679 first_add |= llist_add(&ref_node->llist, &ctx->file_put_llist);
7680 }
7681 spin_unlock_bh(&data->lock);
7682
7683 if (percpu_ref_is_dying(&data->refs))
7684 delay = 0;
7685
7686 if (!delay)
7687 mod_delayed_work(system_wq, &ctx->file_put_work, 0);
7688 else if (first_add)
7689 queue_delayed_work(system_wq, &ctx->file_put_work, delay);
7690 }
7691
7692 static struct fixed_file_ref_node *alloc_fixed_file_ref_node(
7693 struct io_ring_ctx *ctx)
7694 {
7695 struct fixed_file_ref_node *ref_node;
7696
7697 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7698 if (!ref_node)
7699 return ERR_PTR(-ENOMEM);
7700
7701 if (percpu_ref_init(&ref_node->refs, io_file_data_ref_zero,
7702 0, GFP_KERNEL)) {
7703 kfree(ref_node);
7704 return ERR_PTR(-ENOMEM);
7705 }
7706 INIT_LIST_HEAD(&ref_node->node);
7707 INIT_LIST_HEAD(&ref_node->file_list);
7708 ref_node->file_data = ctx->file_data;
7709 ref_node->done = false;
7710 return ref_node;
7711 }
7712
7713 static void destroy_fixed_file_ref_node(struct fixed_file_ref_node *ref_node)
7714 {
7715 percpu_ref_exit(&ref_node->refs);
7716 kfree(ref_node);
7717 }
7718
7719 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7720 unsigned nr_args)
7721 {
7722 __s32 __user *fds = (__s32 __user *) arg;
7723 unsigned nr_tables, i;
7724 struct file *file;
7725 int fd, ret = -ENOMEM;
7726 struct fixed_file_ref_node *ref_node;
7727 struct fixed_file_data *file_data;
7728
7729 if (ctx->file_data)
7730 return -EBUSY;
7731 if (!nr_args)
7732 return -EINVAL;
7733 if (nr_args > IORING_MAX_FIXED_FILES)
7734 return -EMFILE;
7735
7736 file_data = kzalloc(sizeof(*ctx->file_data), GFP_KERNEL);
7737 if (!file_data)
7738 return -ENOMEM;
7739 file_data->ctx = ctx;
7740 init_completion(&file_data->done);
7741 INIT_LIST_HEAD(&file_data->ref_list);
7742 spin_lock_init(&file_data->lock);
7743
7744 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7745 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7746 GFP_KERNEL);
7747 if (!file_data->table)
7748 goto out_free;
7749
7750 if (percpu_ref_init(&file_data->refs, io_file_ref_kill,
7751 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
7752 goto out_free;
7753
7754 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7755 goto out_ref;
7756 ctx->file_data = file_data;
7757
7758 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7759 struct fixed_file_table *table;
7760 unsigned index;
7761
7762 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7763 ret = -EFAULT;
7764 goto out_fput;
7765 }
7766 /* allow sparse sets */
7767 if (fd == -1)
7768 continue;
7769
7770 file = fget(fd);
7771 ret = -EBADF;
7772 if (!file)
7773 goto out_fput;
7774
7775 /*
7776 * Don't allow io_uring instances to be registered. If UNIX
7777 * isn't enabled, then this causes a reference cycle and this
7778 * instance can never get freed. If UNIX is enabled we'll
7779 * handle it just fine, but there's still no point in allowing
7780 * a ring fd as it doesn't support regular read/write anyway.
7781 */
7782 if (file->f_op == &io_uring_fops) {
7783 fput(file);
7784 goto out_fput;
7785 }
7786 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7787 index = i & IORING_FILE_TABLE_MASK;
7788 table->files[index] = file;
7789 }
7790
7791 ret = io_sqe_files_scm(ctx);
7792 if (ret) {
7793 io_sqe_files_unregister(ctx);
7794 return ret;
7795 }
7796
7797 ref_node = alloc_fixed_file_ref_node(ctx);
7798 if (IS_ERR(ref_node)) {
7799 io_sqe_files_unregister(ctx);
7800 return PTR_ERR(ref_node);
7801 }
7802
7803 io_sqe_files_set_node(file_data, ref_node);
7804 return ret;
7805 out_fput:
7806 for (i = 0; i < ctx->nr_user_files; i++) {
7807 file = io_file_from_index(ctx, i);
7808 if (file)
7809 fput(file);
7810 }
7811 for (i = 0; i < nr_tables; i++)
7812 kfree(file_data->table[i].files);
7813 ctx->nr_user_files = 0;
7814 out_ref:
7815 percpu_ref_exit(&file_data->refs);
7816 out_free:
7817 kfree(file_data->table);
7818 kfree(file_data);
7819 ctx->file_data = NULL;
7820 return ret;
7821 }
7822
7823 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7824 int index)
7825 {
7826 #if defined(CONFIG_UNIX)
7827 struct sock *sock = ctx->ring_sock->sk;
7828 struct sk_buff_head *head = &sock->sk_receive_queue;
7829 struct sk_buff *skb;
7830
7831 /*
7832 * See if we can merge this file into an existing skb SCM_RIGHTS
7833 * file set. If there's no room, fall back to allocating a new skb
7834 * and filling it in.
7835 */
7836 spin_lock_irq(&head->lock);
7837 skb = skb_peek(head);
7838 if (skb) {
7839 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7840
7841 if (fpl->count < SCM_MAX_FD) {
7842 __skb_unlink(skb, head);
7843 spin_unlock_irq(&head->lock);
7844 fpl->fp[fpl->count] = get_file(file);
7845 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7846 fpl->count++;
7847 spin_lock_irq(&head->lock);
7848 __skb_queue_head(head, skb);
7849 } else {
7850 skb = NULL;
7851 }
7852 }
7853 spin_unlock_irq(&head->lock);
7854
7855 if (skb) {
7856 fput(file);
7857 return 0;
7858 }
7859
7860 return __io_sqe_files_scm(ctx, 1, index);
7861 #else
7862 return 0;
7863 #endif
7864 }
7865
7866 static int io_queue_file_removal(struct fixed_file_data *data,
7867 struct file *file)
7868 {
7869 struct io_file_put *pfile;
7870 struct fixed_file_ref_node *ref_node = data->node;
7871
7872 pfile = kzalloc(sizeof(*pfile), GFP_KERNEL);
7873 if (!pfile)
7874 return -ENOMEM;
7875
7876 pfile->file = file;
7877 list_add(&pfile->list, &ref_node->file_list);
7878
7879 return 0;
7880 }
7881
7882 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7883 struct io_uring_files_update *up,
7884 unsigned nr_args)
7885 {
7886 struct fixed_file_data *data = ctx->file_data;
7887 struct fixed_file_ref_node *ref_node;
7888 struct file *file;
7889 __s32 __user *fds;
7890 int fd, i, err;
7891 __u32 done;
7892 bool needs_switch = false;
7893
7894 if (check_add_overflow(up->offset, nr_args, &done))
7895 return -EOVERFLOW;
7896 if (done > ctx->nr_user_files)
7897 return -EINVAL;
7898
7899 ref_node = alloc_fixed_file_ref_node(ctx);
7900 if (IS_ERR(ref_node))
7901 return PTR_ERR(ref_node);
7902
7903 done = 0;
7904 fds = u64_to_user_ptr(up->fds);
7905 while (nr_args) {
7906 struct fixed_file_table *table;
7907 unsigned index;
7908
7909 err = 0;
7910 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
7911 err = -EFAULT;
7912 break;
7913 }
7914 i = array_index_nospec(up->offset, ctx->nr_user_files);
7915 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7916 index = i & IORING_FILE_TABLE_MASK;
7917 if (table->files[index]) {
7918 file = table->files[index];
7919 err = io_queue_file_removal(data, file);
7920 if (err)
7921 break;
7922 table->files[index] = NULL;
7923 needs_switch = true;
7924 }
7925 if (fd != -1) {
7926 file = fget(fd);
7927 if (!file) {
7928 err = -EBADF;
7929 break;
7930 }
7931 /*
7932 * Don't allow io_uring instances to be registered. If
7933 * UNIX isn't enabled, then this causes a reference
7934 * cycle and this instance can never get freed. If UNIX
7935 * is enabled we'll handle it just fine, but there's
7936 * still no point in allowing a ring fd as it doesn't
7937 * support regular read/write anyway.
7938 */
7939 if (file->f_op == &io_uring_fops) {
7940 fput(file);
7941 err = -EBADF;
7942 break;
7943 }
7944 table->files[index] = file;
7945 err = io_sqe_file_register(ctx, file, i);
7946 if (err) {
7947 table->files[index] = NULL;
7948 fput(file);
7949 break;
7950 }
7951 }
7952 nr_args--;
7953 done++;
7954 up->offset++;
7955 }
7956
7957 if (needs_switch) {
7958 percpu_ref_kill(&data->node->refs);
7959 io_sqe_files_set_node(data, ref_node);
7960 } else
7961 destroy_fixed_file_ref_node(ref_node);
7962
7963 return done ? done : err;
7964 }
7965
7966 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
7967 unsigned nr_args)
7968 {
7969 struct io_uring_files_update up;
7970
7971 if (!ctx->file_data)
7972 return -ENXIO;
7973 if (!nr_args)
7974 return -EINVAL;
7975 if (copy_from_user(&up, arg, sizeof(up)))
7976 return -EFAULT;
7977 if (up.resv)
7978 return -EINVAL;
7979
7980 return __io_sqe_files_update(ctx, &up, nr_args);
7981 }
7982
7983 static void io_free_work(struct io_wq_work *work)
7984 {
7985 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
7986
7987 /* Consider that io_steal_work() relies on this ref */
7988 io_put_req(req);
7989 }
7990
7991 static int io_init_wq_offload(struct io_ring_ctx *ctx,
7992 struct io_uring_params *p)
7993 {
7994 struct io_wq_data data;
7995 struct fd f;
7996 struct io_ring_ctx *ctx_attach;
7997 unsigned int concurrency;
7998 int ret = 0;
7999
8000 data.user = ctx->user;
8001 data.free_work = io_free_work;
8002 data.do_work = io_wq_submit_work;
8003
8004 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8005 /* Do QD, or 4 * CPUS, whatever is smallest */
8006 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8007
8008 ctx->io_wq = io_wq_create(concurrency, &data);
8009 if (IS_ERR(ctx->io_wq)) {
8010 ret = PTR_ERR(ctx->io_wq);
8011 ctx->io_wq = NULL;
8012 }
8013 return ret;
8014 }
8015
8016 f = fdget(p->wq_fd);
8017 if (!f.file)
8018 return -EBADF;
8019
8020 if (f.file->f_op != &io_uring_fops) {
8021 ret = -EINVAL;
8022 goto out_fput;
8023 }
8024
8025 ctx_attach = f.file->private_data;
8026 /* @io_wq is protected by holding the fd */
8027 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8028 ret = -EINVAL;
8029 goto out_fput;
8030 }
8031
8032 ctx->io_wq = ctx_attach->io_wq;
8033 out_fput:
8034 fdput(f);
8035 return ret;
8036 }
8037
8038 static int io_uring_alloc_task_context(struct task_struct *task)
8039 {
8040 struct io_uring_task *tctx;
8041 int ret;
8042
8043 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8044 if (unlikely(!tctx))
8045 return -ENOMEM;
8046
8047 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8048 if (unlikely(ret)) {
8049 kfree(tctx);
8050 return ret;
8051 }
8052
8053 xa_init(&tctx->xa);
8054 init_waitqueue_head(&tctx->wait);
8055 tctx->last = NULL;
8056 atomic_set(&tctx->in_idle, 0);
8057 tctx->sqpoll = false;
8058 io_init_identity(&tctx->__identity);
8059 tctx->identity = &tctx->__identity;
8060 task->io_uring = tctx;
8061 return 0;
8062 }
8063
8064 void __io_uring_free(struct task_struct *tsk)
8065 {
8066 struct io_uring_task *tctx = tsk->io_uring;
8067
8068 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8069 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8070 if (tctx->identity != &tctx->__identity)
8071 kfree(tctx->identity);
8072 percpu_counter_destroy(&tctx->inflight);
8073 kfree(tctx);
8074 tsk->io_uring = NULL;
8075 }
8076
8077 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8078 struct io_uring_params *p)
8079 {
8080 int ret;
8081
8082 if (ctx->flags & IORING_SETUP_SQPOLL) {
8083 struct io_sq_data *sqd;
8084
8085 ret = -EPERM;
8086 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8087 goto err;
8088
8089 sqd = io_get_sq_data(p);
8090 if (IS_ERR(sqd)) {
8091 ret = PTR_ERR(sqd);
8092 goto err;
8093 }
8094
8095 ctx->sq_data = sqd;
8096 io_sq_thread_park(sqd);
8097 mutex_lock(&sqd->ctx_lock);
8098 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8099 mutex_unlock(&sqd->ctx_lock);
8100 io_sq_thread_unpark(sqd);
8101
8102 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8103 if (!ctx->sq_thread_idle)
8104 ctx->sq_thread_idle = HZ;
8105
8106 if (sqd->thread)
8107 goto done;
8108
8109 if (p->flags & IORING_SETUP_SQ_AFF) {
8110 int cpu = p->sq_thread_cpu;
8111
8112 ret = -EINVAL;
8113 if (cpu >= nr_cpu_ids)
8114 goto err;
8115 if (!cpu_online(cpu))
8116 goto err;
8117
8118 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8119 cpu, "io_uring-sq");
8120 } else {
8121 sqd->thread = kthread_create(io_sq_thread, sqd,
8122 "io_uring-sq");
8123 }
8124 if (IS_ERR(sqd->thread)) {
8125 ret = PTR_ERR(sqd->thread);
8126 sqd->thread = NULL;
8127 goto err;
8128 }
8129 ret = io_uring_alloc_task_context(sqd->thread);
8130 if (ret)
8131 goto err;
8132 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8133 /* Can't have SQ_AFF without SQPOLL */
8134 ret = -EINVAL;
8135 goto err;
8136 }
8137
8138 done:
8139 ret = io_init_wq_offload(ctx, p);
8140 if (ret)
8141 goto err;
8142
8143 return 0;
8144 err:
8145 io_finish_async(ctx);
8146 return ret;
8147 }
8148
8149 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8150 {
8151 struct io_sq_data *sqd = ctx->sq_data;
8152
8153 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8154 wake_up_process(sqd->thread);
8155 }
8156
8157 static inline void __io_unaccount_mem(struct user_struct *user,
8158 unsigned long nr_pages)
8159 {
8160 atomic_long_sub(nr_pages, &user->locked_vm);
8161 }
8162
8163 static inline int __io_account_mem(struct user_struct *user,
8164 unsigned long nr_pages)
8165 {
8166 unsigned long page_limit, cur_pages, new_pages;
8167
8168 /* Don't allow more pages than we can safely lock */
8169 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8170
8171 do {
8172 cur_pages = atomic_long_read(&user->locked_vm);
8173 new_pages = cur_pages + nr_pages;
8174 if (new_pages > page_limit)
8175 return -ENOMEM;
8176 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8177 new_pages) != cur_pages);
8178
8179 return 0;
8180 }
8181
8182 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8183 enum io_mem_account acct)
8184 {
8185 if (ctx->limit_mem)
8186 __io_unaccount_mem(ctx->user, nr_pages);
8187
8188 if (ctx->mm_account) {
8189 if (acct == ACCT_LOCKED) {
8190 mmap_write_lock(ctx->mm_account);
8191 ctx->mm_account->locked_vm -= nr_pages;
8192 mmap_write_unlock(ctx->mm_account);
8193 }else if (acct == ACCT_PINNED) {
8194 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8195 }
8196 }
8197 }
8198
8199 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages,
8200 enum io_mem_account acct)
8201 {
8202 int ret;
8203
8204 if (ctx->limit_mem) {
8205 ret = __io_account_mem(ctx->user, nr_pages);
8206 if (ret)
8207 return ret;
8208 }
8209
8210 if (ctx->mm_account) {
8211 if (acct == ACCT_LOCKED) {
8212 mmap_write_lock(ctx->mm_account);
8213 ctx->mm_account->locked_vm += nr_pages;
8214 mmap_write_unlock(ctx->mm_account);
8215 } else if (acct == ACCT_PINNED) {
8216 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8217 }
8218 }
8219
8220 return 0;
8221 }
8222
8223 static void io_mem_free(void *ptr)
8224 {
8225 struct page *page;
8226
8227 if (!ptr)
8228 return;
8229
8230 page = virt_to_head_page(ptr);
8231 if (put_page_testzero(page))
8232 free_compound_page(page);
8233 }
8234
8235 static void *io_mem_alloc(size_t size)
8236 {
8237 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8238 __GFP_NORETRY;
8239
8240 return (void *) __get_free_pages(gfp_flags, get_order(size));
8241 }
8242
8243 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8244 size_t *sq_offset)
8245 {
8246 struct io_rings *rings;
8247 size_t off, sq_array_size;
8248
8249 off = struct_size(rings, cqes, cq_entries);
8250 if (off == SIZE_MAX)
8251 return SIZE_MAX;
8252
8253 #ifdef CONFIG_SMP
8254 off = ALIGN(off, SMP_CACHE_BYTES);
8255 if (off == 0)
8256 return SIZE_MAX;
8257 #endif
8258
8259 if (sq_offset)
8260 *sq_offset = off;
8261
8262 sq_array_size = array_size(sizeof(u32), sq_entries);
8263 if (sq_array_size == SIZE_MAX)
8264 return SIZE_MAX;
8265
8266 if (check_add_overflow(off, sq_array_size, &off))
8267 return SIZE_MAX;
8268
8269 return off;
8270 }
8271
8272 static unsigned long ring_pages(unsigned sq_entries, unsigned cq_entries)
8273 {
8274 size_t pages;
8275
8276 pages = (size_t)1 << get_order(
8277 rings_size(sq_entries, cq_entries, NULL));
8278 pages += (size_t)1 << get_order(
8279 array_size(sizeof(struct io_uring_sqe), sq_entries));
8280
8281 return pages;
8282 }
8283
8284 static int io_sqe_buffer_unregister(struct io_ring_ctx *ctx)
8285 {
8286 int i, j;
8287
8288 if (!ctx->user_bufs)
8289 return -ENXIO;
8290
8291 for (i = 0; i < ctx->nr_user_bufs; i++) {
8292 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8293
8294 for (j = 0; j < imu->nr_bvecs; j++)
8295 unpin_user_page(imu->bvec[j].bv_page);
8296
8297 if (imu->acct_pages)
8298 io_unaccount_mem(ctx, imu->acct_pages, ACCT_PINNED);
8299 kvfree(imu->bvec);
8300 imu->nr_bvecs = 0;
8301 }
8302
8303 kfree(ctx->user_bufs);
8304 ctx->user_bufs = NULL;
8305 ctx->nr_user_bufs = 0;
8306 return 0;
8307 }
8308
8309 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8310 void __user *arg, unsigned index)
8311 {
8312 struct iovec __user *src;
8313
8314 #ifdef CONFIG_COMPAT
8315 if (ctx->compat) {
8316 struct compat_iovec __user *ciovs;
8317 struct compat_iovec ciov;
8318
8319 ciovs = (struct compat_iovec __user *) arg;
8320 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8321 return -EFAULT;
8322
8323 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8324 dst->iov_len = ciov.iov_len;
8325 return 0;
8326 }
8327 #endif
8328 src = (struct iovec __user *) arg;
8329 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8330 return -EFAULT;
8331 return 0;
8332 }
8333
8334 /*
8335 * Not super efficient, but this is just a registration time. And we do cache
8336 * the last compound head, so generally we'll only do a full search if we don't
8337 * match that one.
8338 *
8339 * We check if the given compound head page has already been accounted, to
8340 * avoid double accounting it. This allows us to account the full size of the
8341 * page, not just the constituent pages of a huge page.
8342 */
8343 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8344 int nr_pages, struct page *hpage)
8345 {
8346 int i, j;
8347
8348 /* check current page array */
8349 for (i = 0; i < nr_pages; i++) {
8350 if (!PageCompound(pages[i]))
8351 continue;
8352 if (compound_head(pages[i]) == hpage)
8353 return true;
8354 }
8355
8356 /* check previously registered pages */
8357 for (i = 0; i < ctx->nr_user_bufs; i++) {
8358 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8359
8360 for (j = 0; j < imu->nr_bvecs; j++) {
8361 if (!PageCompound(imu->bvec[j].bv_page))
8362 continue;
8363 if (compound_head(imu->bvec[j].bv_page) == hpage)
8364 return true;
8365 }
8366 }
8367
8368 return false;
8369 }
8370
8371 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8372 int nr_pages, struct io_mapped_ubuf *imu,
8373 struct page **last_hpage)
8374 {
8375 int i, ret;
8376
8377 for (i = 0; i < nr_pages; i++) {
8378 if (!PageCompound(pages[i])) {
8379 imu->acct_pages++;
8380 } else {
8381 struct page *hpage;
8382
8383 hpage = compound_head(pages[i]);
8384 if (hpage == *last_hpage)
8385 continue;
8386 *last_hpage = hpage;
8387 if (headpage_already_acct(ctx, pages, i, hpage))
8388 continue;
8389 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8390 }
8391 }
8392
8393 if (!imu->acct_pages)
8394 return 0;
8395
8396 ret = io_account_mem(ctx, imu->acct_pages, ACCT_PINNED);
8397 if (ret)
8398 imu->acct_pages = 0;
8399 return ret;
8400 }
8401
8402 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, void __user *arg,
8403 unsigned nr_args)
8404 {
8405 struct vm_area_struct **vmas = NULL;
8406 struct page **pages = NULL;
8407 struct page *last_hpage = NULL;
8408 int i, j, got_pages = 0;
8409 int ret = -EINVAL;
8410
8411 if (ctx->user_bufs)
8412 return -EBUSY;
8413 if (!nr_args || nr_args > UIO_MAXIOV)
8414 return -EINVAL;
8415
8416 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8417 GFP_KERNEL);
8418 if (!ctx->user_bufs)
8419 return -ENOMEM;
8420
8421 for (i = 0; i < nr_args; i++) {
8422 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8423 unsigned long off, start, end, ubuf;
8424 int pret, nr_pages;
8425 struct iovec iov;
8426 size_t size;
8427
8428 ret = io_copy_iov(ctx, &iov, arg, i);
8429 if (ret)
8430 goto err;
8431
8432 /*
8433 * Don't impose further limits on the size and buffer
8434 * constraints here, we'll -EINVAL later when IO is
8435 * submitted if they are wrong.
8436 */
8437 ret = -EFAULT;
8438 if (!iov.iov_base || !iov.iov_len)
8439 goto err;
8440
8441 /* arbitrary limit, but we need something */
8442 if (iov.iov_len > SZ_1G)
8443 goto err;
8444
8445 ubuf = (unsigned long) iov.iov_base;
8446 end = (ubuf + iov.iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8447 start = ubuf >> PAGE_SHIFT;
8448 nr_pages = end - start;
8449
8450 ret = 0;
8451 if (!pages || nr_pages > got_pages) {
8452 kvfree(vmas);
8453 kvfree(pages);
8454 pages = kvmalloc_array(nr_pages, sizeof(struct page *),
8455 GFP_KERNEL);
8456 vmas = kvmalloc_array(nr_pages,
8457 sizeof(struct vm_area_struct *),
8458 GFP_KERNEL);
8459 if (!pages || !vmas) {
8460 ret = -ENOMEM;
8461 goto err;
8462 }
8463 got_pages = nr_pages;
8464 }
8465
8466 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8467 GFP_KERNEL);
8468 ret = -ENOMEM;
8469 if (!imu->bvec)
8470 goto err;
8471
8472 ret = 0;
8473 mmap_read_lock(current->mm);
8474 pret = pin_user_pages(ubuf, nr_pages,
8475 FOLL_WRITE | FOLL_LONGTERM,
8476 pages, vmas);
8477 if (pret == nr_pages) {
8478 /* don't support file backed memory */
8479 for (j = 0; j < nr_pages; j++) {
8480 struct vm_area_struct *vma = vmas[j];
8481
8482 if (vma->vm_file &&
8483 !is_file_hugepages(vma->vm_file)) {
8484 ret = -EOPNOTSUPP;
8485 break;
8486 }
8487 }
8488 } else {
8489 ret = pret < 0 ? pret : -EFAULT;
8490 }
8491 mmap_read_unlock(current->mm);
8492 if (ret) {
8493 /*
8494 * if we did partial map, or found file backed vmas,
8495 * release any pages we did get
8496 */
8497 if (pret > 0)
8498 unpin_user_pages(pages, pret);
8499 kvfree(imu->bvec);
8500 goto err;
8501 }
8502
8503 ret = io_buffer_account_pin(ctx, pages, pret, imu, &last_hpage);
8504 if (ret) {
8505 unpin_user_pages(pages, pret);
8506 kvfree(imu->bvec);
8507 goto err;
8508 }
8509
8510 off = ubuf & ~PAGE_MASK;
8511 size = iov.iov_len;
8512 for (j = 0; j < nr_pages; j++) {
8513 size_t vec_len;
8514
8515 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8516 imu->bvec[j].bv_page = pages[j];
8517 imu->bvec[j].bv_len = vec_len;
8518 imu->bvec[j].bv_offset = off;
8519 off = 0;
8520 size -= vec_len;
8521 }
8522 /* store original address for later verification */
8523 imu->ubuf = ubuf;
8524 imu->len = iov.iov_len;
8525 imu->nr_bvecs = nr_pages;
8526
8527 ctx->nr_user_bufs++;
8528 }
8529 kvfree(pages);
8530 kvfree(vmas);
8531 return 0;
8532 err:
8533 kvfree(pages);
8534 kvfree(vmas);
8535 io_sqe_buffer_unregister(ctx);
8536 return ret;
8537 }
8538
8539 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8540 {
8541 __s32 __user *fds = arg;
8542 int fd;
8543
8544 if (ctx->cq_ev_fd)
8545 return -EBUSY;
8546
8547 if (copy_from_user(&fd, fds, sizeof(*fds)))
8548 return -EFAULT;
8549
8550 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8551 if (IS_ERR(ctx->cq_ev_fd)) {
8552 int ret = PTR_ERR(ctx->cq_ev_fd);
8553 ctx->cq_ev_fd = NULL;
8554 return ret;
8555 }
8556
8557 return 0;
8558 }
8559
8560 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8561 {
8562 if (ctx->cq_ev_fd) {
8563 eventfd_ctx_put(ctx->cq_ev_fd);
8564 ctx->cq_ev_fd = NULL;
8565 return 0;
8566 }
8567
8568 return -ENXIO;
8569 }
8570
8571 static int __io_destroy_buffers(int id, void *p, void *data)
8572 {
8573 struct io_ring_ctx *ctx = data;
8574 struct io_buffer *buf = p;
8575
8576 __io_remove_buffers(ctx, buf, id, -1U);
8577 return 0;
8578 }
8579
8580 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8581 {
8582 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8583 idr_destroy(&ctx->io_buffer_idr);
8584 }
8585
8586 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8587 {
8588 io_finish_async(ctx);
8589 io_sqe_buffer_unregister(ctx);
8590
8591 if (ctx->sqo_task) {
8592 put_task_struct(ctx->sqo_task);
8593 ctx->sqo_task = NULL;
8594 mmdrop(ctx->mm_account);
8595 ctx->mm_account = NULL;
8596 }
8597
8598 #ifdef CONFIG_BLK_CGROUP
8599 if (ctx->sqo_blkcg_css)
8600 css_put(ctx->sqo_blkcg_css);
8601 #endif
8602
8603 io_sqe_files_unregister(ctx);
8604 io_eventfd_unregister(ctx);
8605 io_destroy_buffers(ctx);
8606 idr_destroy(&ctx->personality_idr);
8607
8608 #if defined(CONFIG_UNIX)
8609 if (ctx->ring_sock) {
8610 ctx->ring_sock->file = NULL; /* so that iput() is called */
8611 sock_release(ctx->ring_sock);
8612 }
8613 #endif
8614
8615 io_mem_free(ctx->rings);
8616 io_mem_free(ctx->sq_sqes);
8617
8618 percpu_ref_exit(&ctx->refs);
8619 free_uid(ctx->user);
8620 put_cred(ctx->creds);
8621 kfree(ctx->cancel_hash);
8622 kmem_cache_free(req_cachep, ctx->fallback_req);
8623 kfree(ctx);
8624 }
8625
8626 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8627 {
8628 struct io_ring_ctx *ctx = file->private_data;
8629 __poll_t mask = 0;
8630
8631 poll_wait(file, &ctx->cq_wait, wait);
8632 /*
8633 * synchronizes with barrier from wq_has_sleeper call in
8634 * io_commit_cqring
8635 */
8636 smp_rmb();
8637 if (!io_sqring_full(ctx))
8638 mask |= EPOLLOUT | EPOLLWRNORM;
8639 io_cqring_overflow_flush(ctx, false, NULL, NULL);
8640 if (io_cqring_events(ctx))
8641 mask |= EPOLLIN | EPOLLRDNORM;
8642
8643 return mask;
8644 }
8645
8646 static int io_uring_fasync(int fd, struct file *file, int on)
8647 {
8648 struct io_ring_ctx *ctx = file->private_data;
8649
8650 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8651 }
8652
8653 static int io_remove_personalities(int id, void *p, void *data)
8654 {
8655 struct io_ring_ctx *ctx = data;
8656 struct io_identity *iod;
8657
8658 iod = idr_remove(&ctx->personality_idr, id);
8659 if (iod) {
8660 put_cred(iod->creds);
8661 if (refcount_dec_and_test(&iod->count))
8662 kfree(iod);
8663 }
8664 return 0;
8665 }
8666
8667 static void io_ring_exit_work(struct work_struct *work)
8668 {
8669 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8670 exit_work);
8671
8672 /*
8673 * If we're doing polled IO and end up having requests being
8674 * submitted async (out-of-line), then completions can come in while
8675 * we're waiting for refs to drop. We need to reap these manually,
8676 * as nobody else will be looking for them.
8677 */
8678 do {
8679 __io_uring_cancel_task_requests(ctx, NULL);
8680 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8681 io_ring_ctx_free(ctx);
8682 }
8683
8684 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8685 {
8686 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8687
8688 return req->ctx == data;
8689 }
8690
8691 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8692 {
8693 mutex_lock(&ctx->uring_lock);
8694 percpu_ref_kill(&ctx->refs);
8695 /* if force is set, the ring is going away. always drop after that */
8696 ctx->cq_overflow_flushed = 1;
8697 if (ctx->rings)
8698 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8699 mutex_unlock(&ctx->uring_lock);
8700
8701 io_kill_timeouts(ctx, NULL, NULL);
8702 io_poll_remove_all(ctx, NULL, NULL);
8703
8704 if (ctx->io_wq)
8705 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8706
8707 /* if we failed setting up the ctx, we might not have any rings */
8708 io_iopoll_try_reap_events(ctx);
8709 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8710
8711 /*
8712 * Do this upfront, so we won't have a grace period where the ring
8713 * is closed but resources aren't reaped yet. This can cause
8714 * spurious failure in setting up a new ring.
8715 */
8716 io_unaccount_mem(ctx, ring_pages(ctx->sq_entries, ctx->cq_entries),
8717 ACCT_LOCKED);
8718
8719 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8720 /*
8721 * Use system_unbound_wq to avoid spawning tons of event kworkers
8722 * if we're exiting a ton of rings at the same time. It just adds
8723 * noise and overhead, there's no discernable change in runtime
8724 * over using system_wq.
8725 */
8726 queue_work(system_unbound_wq, &ctx->exit_work);
8727 }
8728
8729 static int io_uring_release(struct inode *inode, struct file *file)
8730 {
8731 struct io_ring_ctx *ctx = file->private_data;
8732
8733 file->private_data = NULL;
8734 io_ring_ctx_wait_and_kill(ctx);
8735 return 0;
8736 }
8737
8738 struct io_task_cancel {
8739 struct task_struct *task;
8740 struct files_struct *files;
8741 };
8742
8743 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8744 {
8745 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8746 struct io_task_cancel *cancel = data;
8747 bool ret;
8748
8749 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8750 unsigned long flags;
8751 struct io_ring_ctx *ctx = req->ctx;
8752
8753 /* protect against races with linked timeouts */
8754 spin_lock_irqsave(&ctx->completion_lock, flags);
8755 ret = io_match_task(req, cancel->task, cancel->files);
8756 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8757 } else {
8758 ret = io_match_task(req, cancel->task, cancel->files);
8759 }
8760 return ret;
8761 }
8762
8763 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8764 struct task_struct *task,
8765 struct files_struct *files)
8766 {
8767 struct io_defer_entry *de = NULL;
8768 LIST_HEAD(list);
8769
8770 spin_lock_irq(&ctx->completion_lock);
8771 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8772 if (io_match_task(de->req, task, files)) {
8773 list_cut_position(&list, &ctx->defer_list, &de->list);
8774 break;
8775 }
8776 }
8777 spin_unlock_irq(&ctx->completion_lock);
8778
8779 while (!list_empty(&list)) {
8780 de = list_first_entry(&list, struct io_defer_entry, list);
8781 list_del_init(&de->list);
8782 req_set_fail_links(de->req);
8783 io_put_req(de->req);
8784 io_req_complete(de->req, -ECANCELED);
8785 kfree(de);
8786 }
8787 }
8788
8789 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
8790 struct task_struct *task,
8791 struct files_struct *files)
8792 {
8793 while (!list_empty_careful(&ctx->inflight_list)) {
8794 struct io_task_cancel cancel = { .task = task, .files = files };
8795 struct io_kiocb *req;
8796 DEFINE_WAIT(wait);
8797 bool found = false;
8798
8799 spin_lock_irq(&ctx->inflight_lock);
8800 list_for_each_entry(req, &ctx->inflight_list, inflight_entry) {
8801 if (req->task != task ||
8802 req->work.identity->files != files)
8803 continue;
8804 found = true;
8805 break;
8806 }
8807 if (found)
8808 prepare_to_wait(&task->io_uring->wait, &wait,
8809 TASK_UNINTERRUPTIBLE);
8810 spin_unlock_irq(&ctx->inflight_lock);
8811
8812 /* We need to keep going until we don't find a matching req */
8813 if (!found)
8814 break;
8815
8816 io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb, &cancel, true);
8817 io_poll_remove_all(ctx, task, files);
8818 io_kill_timeouts(ctx, task, files);
8819 /* cancellations _may_ trigger task work */
8820 io_run_task_work();
8821 schedule();
8822 finish_wait(&task->io_uring->wait, &wait);
8823 }
8824 }
8825
8826 static void __io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8827 struct task_struct *task)
8828 {
8829 while (1) {
8830 struct io_task_cancel cancel = { .task = task, .files = NULL, };
8831 enum io_wq_cancel cret;
8832 bool ret = false;
8833
8834 if (ctx->io_wq) {
8835 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8836 &cancel, true);
8837 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8838 }
8839
8840 /* SQPOLL thread does its own polling */
8841 if (!(ctx->flags & IORING_SETUP_SQPOLL)) {
8842 while (!list_empty_careful(&ctx->iopoll_list)) {
8843 io_iopoll_try_reap_events(ctx);
8844 ret = true;
8845 }
8846 }
8847
8848 ret |= io_poll_remove_all(ctx, task, NULL);
8849 ret |= io_kill_timeouts(ctx, task, NULL);
8850 ret |= io_run_task_work();
8851 if (!ret)
8852 break;
8853 cond_resched();
8854 }
8855 }
8856
8857 /*
8858 * We need to iteratively cancel requests, in case a request has dependent
8859 * hard links. These persist even for failure of cancelations, hence keep
8860 * looping until none are found.
8861 */
8862 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
8863 struct files_struct *files)
8864 {
8865 struct task_struct *task = current;
8866
8867 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8868 task = ctx->sq_data->thread;
8869 atomic_inc(&task->io_uring->in_idle);
8870 io_sq_thread_park(ctx->sq_data);
8871 }
8872
8873 io_cancel_defer_files(ctx, task, files);
8874 io_cqring_overflow_flush(ctx, true, task, files);
8875
8876 if (!files)
8877 __io_uring_cancel_task_requests(ctx, task);
8878 else
8879 io_uring_cancel_files(ctx, task, files);
8880
8881 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
8882 atomic_dec(&task->io_uring->in_idle);
8883 /*
8884 * If the files that are going away are the ones in the thread
8885 * identity, clear them out.
8886 */
8887 if (task->io_uring->identity->files == files)
8888 task->io_uring->identity->files = NULL;
8889 io_sq_thread_unpark(ctx->sq_data);
8890 }
8891 }
8892
8893 /*
8894 * Note that this task has used io_uring. We use it for cancelation purposes.
8895 */
8896 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
8897 {
8898 struct io_uring_task *tctx = current->io_uring;
8899 int ret;
8900
8901 if (unlikely(!tctx)) {
8902 ret = io_uring_alloc_task_context(current);
8903 if (unlikely(ret))
8904 return ret;
8905 tctx = current->io_uring;
8906 }
8907 if (tctx->last != file) {
8908 void *old = xa_load(&tctx->xa, (unsigned long)file);
8909
8910 if (!old) {
8911 get_file(file);
8912 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
8913 file, GFP_KERNEL));
8914 if (ret) {
8915 fput(file);
8916 return ret;
8917 }
8918 }
8919 tctx->last = file;
8920 }
8921
8922 /*
8923 * This is race safe in that the task itself is doing this, hence it
8924 * cannot be going through the exit/cancel paths at the same time.
8925 * This cannot be modified while exit/cancel is running.
8926 */
8927 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
8928 tctx->sqpoll = true;
8929
8930 return 0;
8931 }
8932
8933 /*
8934 * Remove this io_uring_file -> task mapping.
8935 */
8936 static void io_uring_del_task_file(struct file *file)
8937 {
8938 struct io_uring_task *tctx = current->io_uring;
8939
8940 if (tctx->last == file)
8941 tctx->last = NULL;
8942 file = xa_erase(&tctx->xa, (unsigned long)file);
8943 if (file)
8944 fput(file);
8945 }
8946
8947 /*
8948 * Drop task note for this file if we're the only ones that hold it after
8949 * pending fput()
8950 */
8951 static void io_uring_attempt_task_drop(struct file *file)
8952 {
8953 if (!current->io_uring)
8954 return;
8955 /*
8956 * fput() is pending, will be 2 if the only other ref is our potential
8957 * task file note. If the task is exiting, drop regardless of count.
8958 */
8959 if (fatal_signal_pending(current) || (current->flags & PF_EXITING) ||
8960 atomic_long_read(&file->f_count) == 2)
8961 io_uring_del_task_file(file);
8962 }
8963
8964 static void io_uring_remove_task_files(struct io_uring_task *tctx)
8965 {
8966 struct file *file;
8967 unsigned long index;
8968
8969 xa_for_each(&tctx->xa, index, file)
8970 io_uring_del_task_file(file);
8971 }
8972
8973 void __io_uring_files_cancel(struct files_struct *files)
8974 {
8975 struct io_uring_task *tctx = current->io_uring;
8976 struct file *file;
8977 unsigned long index;
8978
8979 /* make sure overflow events are dropped */
8980 atomic_inc(&tctx->in_idle);
8981 xa_for_each(&tctx->xa, index, file)
8982 io_uring_cancel_task_requests(file->private_data, files);
8983 atomic_dec(&tctx->in_idle);
8984
8985 if (files)
8986 io_uring_remove_task_files(tctx);
8987 }
8988
8989 static s64 tctx_inflight(struct io_uring_task *tctx)
8990 {
8991 unsigned long index;
8992 struct file *file;
8993 s64 inflight;
8994
8995 inflight = percpu_counter_sum(&tctx->inflight);
8996 if (!tctx->sqpoll)
8997 return inflight;
8998
8999 /*
9000 * If we have SQPOLL rings, then we need to iterate and find them, and
9001 * add the pending count for those.
9002 */
9003 xa_for_each(&tctx->xa, index, file) {
9004 struct io_ring_ctx *ctx = file->private_data;
9005
9006 if (ctx->flags & IORING_SETUP_SQPOLL) {
9007 struct io_uring_task *__tctx = ctx->sqo_task->io_uring;
9008
9009 inflight += percpu_counter_sum(&__tctx->inflight);
9010 }
9011 }
9012
9013 return inflight;
9014 }
9015
9016 /*
9017 * Find any io_uring fd that this task has registered or done IO on, and cancel
9018 * requests.
9019 */
9020 void __io_uring_task_cancel(void)
9021 {
9022 struct io_uring_task *tctx = current->io_uring;
9023 DEFINE_WAIT(wait);
9024 s64 inflight;
9025
9026 /* make sure overflow events are dropped */
9027 atomic_inc(&tctx->in_idle);
9028
9029 do {
9030 /* read completions before cancelations */
9031 inflight = tctx_inflight(tctx);
9032 if (!inflight)
9033 break;
9034 __io_uring_files_cancel(NULL);
9035
9036 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9037
9038 /*
9039 * If we've seen completions, retry. This avoids a race where
9040 * a completion comes in before we did prepare_to_wait().
9041 */
9042 if (inflight != tctx_inflight(tctx))
9043 continue;
9044 schedule();
9045 finish_wait(&tctx->wait, &wait);
9046 } while (1);
9047
9048 atomic_dec(&tctx->in_idle);
9049
9050 io_uring_remove_task_files(tctx);
9051 }
9052
9053 static int io_uring_flush(struct file *file, void *data)
9054 {
9055 io_uring_attempt_task_drop(file);
9056 return 0;
9057 }
9058
9059 static void *io_uring_validate_mmap_request(struct file *file,
9060 loff_t pgoff, size_t sz)
9061 {
9062 struct io_ring_ctx *ctx = file->private_data;
9063 loff_t offset = pgoff << PAGE_SHIFT;
9064 struct page *page;
9065 void *ptr;
9066
9067 switch (offset) {
9068 case IORING_OFF_SQ_RING:
9069 case IORING_OFF_CQ_RING:
9070 ptr = ctx->rings;
9071 break;
9072 case IORING_OFF_SQES:
9073 ptr = ctx->sq_sqes;
9074 break;
9075 default:
9076 return ERR_PTR(-EINVAL);
9077 }
9078
9079 page = virt_to_head_page(ptr);
9080 if (sz > page_size(page))
9081 return ERR_PTR(-EINVAL);
9082
9083 return ptr;
9084 }
9085
9086 #ifdef CONFIG_MMU
9087
9088 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9089 {
9090 size_t sz = vma->vm_end - vma->vm_start;
9091 unsigned long pfn;
9092 void *ptr;
9093
9094 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9095 if (IS_ERR(ptr))
9096 return PTR_ERR(ptr);
9097
9098 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9099 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9100 }
9101
9102 #else /* !CONFIG_MMU */
9103
9104 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9105 {
9106 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9107 }
9108
9109 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9110 {
9111 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9112 }
9113
9114 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9115 unsigned long addr, unsigned long len,
9116 unsigned long pgoff, unsigned long flags)
9117 {
9118 void *ptr;
9119
9120 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9121 if (IS_ERR(ptr))
9122 return PTR_ERR(ptr);
9123
9124 return (unsigned long) ptr;
9125 }
9126
9127 #endif /* !CONFIG_MMU */
9128
9129 static void io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9130 {
9131 DEFINE_WAIT(wait);
9132
9133 do {
9134 if (!io_sqring_full(ctx))
9135 break;
9136
9137 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9138
9139 if (!io_sqring_full(ctx))
9140 break;
9141
9142 schedule();
9143 } while (!signal_pending(current));
9144
9145 finish_wait(&ctx->sqo_sq_wait, &wait);
9146 }
9147
9148 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9149 struct __kernel_timespec __user **ts,
9150 const sigset_t __user **sig)
9151 {
9152 struct io_uring_getevents_arg arg;
9153
9154 /*
9155 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9156 * is just a pointer to the sigset_t.
9157 */
9158 if (!(flags & IORING_ENTER_EXT_ARG)) {
9159 *sig = (const sigset_t __user *) argp;
9160 *ts = NULL;
9161 return 0;
9162 }
9163
9164 /*
9165 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9166 * timespec and sigset_t pointers if good.
9167 */
9168 if (*argsz != sizeof(arg))
9169 return -EINVAL;
9170 if (copy_from_user(&arg, argp, sizeof(arg)))
9171 return -EFAULT;
9172 *sig = u64_to_user_ptr(arg.sigmask);
9173 *argsz = arg.sigmask_sz;
9174 *ts = u64_to_user_ptr(arg.ts);
9175 return 0;
9176 }
9177
9178 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9179 u32, min_complete, u32, flags, const void __user *, argp,
9180 size_t, argsz)
9181 {
9182 struct io_ring_ctx *ctx;
9183 long ret = -EBADF;
9184 int submitted = 0;
9185 struct fd f;
9186
9187 io_run_task_work();
9188
9189 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9190 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9191 return -EINVAL;
9192
9193 f = fdget(fd);
9194 if (!f.file)
9195 return -EBADF;
9196
9197 ret = -EOPNOTSUPP;
9198 if (f.file->f_op != &io_uring_fops)
9199 goto out_fput;
9200
9201 ret = -ENXIO;
9202 ctx = f.file->private_data;
9203 if (!percpu_ref_tryget(&ctx->refs))
9204 goto out_fput;
9205
9206 ret = -EBADFD;
9207 if (ctx->flags & IORING_SETUP_R_DISABLED)
9208 goto out;
9209
9210 /*
9211 * For SQ polling, the thread will do all submissions and completions.
9212 * Just return the requested submit count, and wake the thread if
9213 * we were asked to.
9214 */
9215 ret = 0;
9216 if (ctx->flags & IORING_SETUP_SQPOLL) {
9217 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9218
9219 if (flags & IORING_ENTER_SQ_WAKEUP)
9220 wake_up(&ctx->sq_data->wait);
9221 if (flags & IORING_ENTER_SQ_WAIT)
9222 io_sqpoll_wait_sq(ctx);
9223 submitted = to_submit;
9224 } else if (to_submit) {
9225 ret = io_uring_add_task_file(ctx, f.file);
9226 if (unlikely(ret))
9227 goto out;
9228 mutex_lock(&ctx->uring_lock);
9229 submitted = io_submit_sqes(ctx, to_submit);
9230 mutex_unlock(&ctx->uring_lock);
9231
9232 if (submitted != to_submit)
9233 goto out;
9234 }
9235 if (flags & IORING_ENTER_GETEVENTS) {
9236 const sigset_t __user *sig;
9237 struct __kernel_timespec __user *ts;
9238
9239 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9240 if (unlikely(ret))
9241 goto out;
9242
9243 min_complete = min(min_complete, ctx->cq_entries);
9244
9245 /*
9246 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9247 * space applications don't need to do io completion events
9248 * polling again, they can rely on io_sq_thread to do polling
9249 * work, which can reduce cpu usage and uring_lock contention.
9250 */
9251 if (ctx->flags & IORING_SETUP_IOPOLL &&
9252 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9253 ret = io_iopoll_check(ctx, min_complete);
9254 } else {
9255 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9256 }
9257 }
9258
9259 out:
9260 percpu_ref_put(&ctx->refs);
9261 out_fput:
9262 fdput(f);
9263 return submitted ? submitted : ret;
9264 }
9265
9266 #ifdef CONFIG_PROC_FS
9267 static int io_uring_show_cred(int id, void *p, void *data)
9268 {
9269 struct io_identity *iod = p;
9270 const struct cred *cred = iod->creds;
9271 struct seq_file *m = data;
9272 struct user_namespace *uns = seq_user_ns(m);
9273 struct group_info *gi;
9274 kernel_cap_t cap;
9275 unsigned __capi;
9276 int g;
9277
9278 seq_printf(m, "%5d\n", id);
9279 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9280 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9281 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9282 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9283 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9284 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9285 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9286 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9287 seq_puts(m, "\n\tGroups:\t");
9288 gi = cred->group_info;
9289 for (g = 0; g < gi->ngroups; g++) {
9290 seq_put_decimal_ull(m, g ? " " : "",
9291 from_kgid_munged(uns, gi->gid[g]));
9292 }
9293 seq_puts(m, "\n\tCapEff:\t");
9294 cap = cred->cap_effective;
9295 CAP_FOR_EACH_U32(__capi)
9296 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9297 seq_putc(m, '\n');
9298 return 0;
9299 }
9300
9301 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9302 {
9303 struct io_sq_data *sq = NULL;
9304 bool has_lock;
9305 int i;
9306
9307 /*
9308 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9309 * since fdinfo case grabs it in the opposite direction of normal use
9310 * cases. If we fail to get the lock, we just don't iterate any
9311 * structures that could be going away outside the io_uring mutex.
9312 */
9313 has_lock = mutex_trylock(&ctx->uring_lock);
9314
9315 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9316 sq = ctx->sq_data;
9317
9318 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9319 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9320 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9321 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9322 struct fixed_file_table *table;
9323 struct file *f;
9324
9325 table = &ctx->file_data->table[i >> IORING_FILE_TABLE_SHIFT];
9326 f = table->files[i & IORING_FILE_TABLE_MASK];
9327 if (f)
9328 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9329 else
9330 seq_printf(m, "%5u: <none>\n", i);
9331 }
9332 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9333 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9334 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9335
9336 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9337 (unsigned int) buf->len);
9338 }
9339 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9340 seq_printf(m, "Personalities:\n");
9341 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9342 }
9343 seq_printf(m, "PollList:\n");
9344 spin_lock_irq(&ctx->completion_lock);
9345 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9346 struct hlist_head *list = &ctx->cancel_hash[i];
9347 struct io_kiocb *req;
9348
9349 hlist_for_each_entry(req, list, hash_node)
9350 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9351 req->task->task_works != NULL);
9352 }
9353 spin_unlock_irq(&ctx->completion_lock);
9354 if (has_lock)
9355 mutex_unlock(&ctx->uring_lock);
9356 }
9357
9358 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9359 {
9360 struct io_ring_ctx *ctx = f->private_data;
9361
9362 if (percpu_ref_tryget(&ctx->refs)) {
9363 __io_uring_show_fdinfo(ctx, m);
9364 percpu_ref_put(&ctx->refs);
9365 }
9366 }
9367 #endif
9368
9369 static const struct file_operations io_uring_fops = {
9370 .release = io_uring_release,
9371 .flush = io_uring_flush,
9372 .mmap = io_uring_mmap,
9373 #ifndef CONFIG_MMU
9374 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9375 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9376 #endif
9377 .poll = io_uring_poll,
9378 .fasync = io_uring_fasync,
9379 #ifdef CONFIG_PROC_FS
9380 .show_fdinfo = io_uring_show_fdinfo,
9381 #endif
9382 };
9383
9384 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9385 struct io_uring_params *p)
9386 {
9387 struct io_rings *rings;
9388 size_t size, sq_array_offset;
9389
9390 /* make sure these are sane, as we already accounted them */
9391 ctx->sq_entries = p->sq_entries;
9392 ctx->cq_entries = p->cq_entries;
9393
9394 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9395 if (size == SIZE_MAX)
9396 return -EOVERFLOW;
9397
9398 rings = io_mem_alloc(size);
9399 if (!rings)
9400 return -ENOMEM;
9401
9402 ctx->rings = rings;
9403 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9404 rings->sq_ring_mask = p->sq_entries - 1;
9405 rings->cq_ring_mask = p->cq_entries - 1;
9406 rings->sq_ring_entries = p->sq_entries;
9407 rings->cq_ring_entries = p->cq_entries;
9408 ctx->sq_mask = rings->sq_ring_mask;
9409 ctx->cq_mask = rings->cq_ring_mask;
9410
9411 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9412 if (size == SIZE_MAX) {
9413 io_mem_free(ctx->rings);
9414 ctx->rings = NULL;
9415 return -EOVERFLOW;
9416 }
9417
9418 ctx->sq_sqes = io_mem_alloc(size);
9419 if (!ctx->sq_sqes) {
9420 io_mem_free(ctx->rings);
9421 ctx->rings = NULL;
9422 return -ENOMEM;
9423 }
9424
9425 return 0;
9426 }
9427
9428 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9429 {
9430 int ret, fd;
9431
9432 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9433 if (fd < 0)
9434 return fd;
9435
9436 ret = io_uring_add_task_file(ctx, file);
9437 if (ret) {
9438 put_unused_fd(fd);
9439 return ret;
9440 }
9441 fd_install(fd, file);
9442 return fd;
9443 }
9444
9445 /*
9446 * Allocate an anonymous fd, this is what constitutes the application
9447 * visible backing of an io_uring instance. The application mmaps this
9448 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9449 * we have to tie this fd to a socket for file garbage collection purposes.
9450 */
9451 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9452 {
9453 struct file *file;
9454 #if defined(CONFIG_UNIX)
9455 int ret;
9456
9457 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9458 &ctx->ring_sock);
9459 if (ret)
9460 return ERR_PTR(ret);
9461 #endif
9462
9463 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9464 O_RDWR | O_CLOEXEC);
9465 #if defined(CONFIG_UNIX)
9466 if (IS_ERR(file)) {
9467 sock_release(ctx->ring_sock);
9468 ctx->ring_sock = NULL;
9469 } else {
9470 ctx->ring_sock->file = file;
9471 }
9472 #endif
9473 return file;
9474 }
9475
9476 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9477 struct io_uring_params __user *params)
9478 {
9479 struct user_struct *user = NULL;
9480 struct io_ring_ctx *ctx;
9481 struct file *file;
9482 bool limit_mem;
9483 int ret;
9484
9485 if (!entries)
9486 return -EINVAL;
9487 if (entries > IORING_MAX_ENTRIES) {
9488 if (!(p->flags & IORING_SETUP_CLAMP))
9489 return -EINVAL;
9490 entries = IORING_MAX_ENTRIES;
9491 }
9492
9493 /*
9494 * Use twice as many entries for the CQ ring. It's possible for the
9495 * application to drive a higher depth than the size of the SQ ring,
9496 * since the sqes are only used at submission time. This allows for
9497 * some flexibility in overcommitting a bit. If the application has
9498 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9499 * of CQ ring entries manually.
9500 */
9501 p->sq_entries = roundup_pow_of_two(entries);
9502 if (p->flags & IORING_SETUP_CQSIZE) {
9503 /*
9504 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9505 * to a power-of-two, if it isn't already. We do NOT impose
9506 * any cq vs sq ring sizing.
9507 */
9508 if (!p->cq_entries)
9509 return -EINVAL;
9510 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9511 if (!(p->flags & IORING_SETUP_CLAMP))
9512 return -EINVAL;
9513 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9514 }
9515 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9516 if (p->cq_entries < p->sq_entries)
9517 return -EINVAL;
9518 } else {
9519 p->cq_entries = 2 * p->sq_entries;
9520 }
9521
9522 user = get_uid(current_user());
9523 limit_mem = !capable(CAP_IPC_LOCK);
9524
9525 if (limit_mem) {
9526 ret = __io_account_mem(user,
9527 ring_pages(p->sq_entries, p->cq_entries));
9528 if (ret) {
9529 free_uid(user);
9530 return ret;
9531 }
9532 }
9533
9534 ctx = io_ring_ctx_alloc(p);
9535 if (!ctx) {
9536 if (limit_mem)
9537 __io_unaccount_mem(user, ring_pages(p->sq_entries,
9538 p->cq_entries));
9539 free_uid(user);
9540 return -ENOMEM;
9541 }
9542 ctx->compat = in_compat_syscall();
9543 ctx->user = user;
9544 ctx->creds = get_current_cred();
9545 #ifdef CONFIG_AUDIT
9546 ctx->loginuid = current->loginuid;
9547 ctx->sessionid = current->sessionid;
9548 #endif
9549 ctx->sqo_task = get_task_struct(current);
9550
9551 /*
9552 * This is just grabbed for accounting purposes. When a process exits,
9553 * the mm is exited and dropped before the files, hence we need to hang
9554 * on to this mm purely for the purposes of being able to unaccount
9555 * memory (locked/pinned vm). It's not used for anything else.
9556 */
9557 mmgrab(current->mm);
9558 ctx->mm_account = current->mm;
9559
9560 #ifdef CONFIG_BLK_CGROUP
9561 /*
9562 * The sq thread will belong to the original cgroup it was inited in.
9563 * If the cgroup goes offline (e.g. disabling the io controller), then
9564 * issued bios will be associated with the closest cgroup later in the
9565 * block layer.
9566 */
9567 rcu_read_lock();
9568 ctx->sqo_blkcg_css = blkcg_css();
9569 ret = css_tryget_online(ctx->sqo_blkcg_css);
9570 rcu_read_unlock();
9571 if (!ret) {
9572 /* don't init against a dying cgroup, have the user try again */
9573 ctx->sqo_blkcg_css = NULL;
9574 ret = -ENODEV;
9575 goto err;
9576 }
9577 #endif
9578
9579 /*
9580 * Account memory _before_ installing the file descriptor. Once
9581 * the descriptor is installed, it can get closed at any time. Also
9582 * do this before hitting the general error path, as ring freeing
9583 * will un-account as well.
9584 */
9585 io_account_mem(ctx, ring_pages(p->sq_entries, p->cq_entries),
9586 ACCT_LOCKED);
9587 ctx->limit_mem = limit_mem;
9588
9589 ret = io_allocate_scq_urings(ctx, p);
9590 if (ret)
9591 goto err;
9592
9593 ret = io_sq_offload_create(ctx, p);
9594 if (ret)
9595 goto err;
9596
9597 if (!(p->flags & IORING_SETUP_R_DISABLED))
9598 io_sq_offload_start(ctx);
9599
9600 memset(&p->sq_off, 0, sizeof(p->sq_off));
9601 p->sq_off.head = offsetof(struct io_rings, sq.head);
9602 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9603 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9604 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9605 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9606 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9607 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9608
9609 memset(&p->cq_off, 0, sizeof(p->cq_off));
9610 p->cq_off.head = offsetof(struct io_rings, cq.head);
9611 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9612 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9613 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9614 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9615 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9616 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9617
9618 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9619 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9620 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9621 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9622 IORING_FEAT_EXT_ARG;
9623
9624 if (copy_to_user(params, p, sizeof(*p))) {
9625 ret = -EFAULT;
9626 goto err;
9627 }
9628
9629 file = io_uring_get_file(ctx);
9630 if (IS_ERR(file)) {
9631 ret = PTR_ERR(file);
9632 goto err;
9633 }
9634
9635 /*
9636 * Install ring fd as the very last thing, so we don't risk someone
9637 * having closed it before we finish setup
9638 */
9639 ret = io_uring_install_fd(ctx, file);
9640 if (ret < 0) {
9641 /* fput will clean it up */
9642 fput(file);
9643 return ret;
9644 }
9645
9646 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9647 return ret;
9648 err:
9649 io_ring_ctx_wait_and_kill(ctx);
9650 return ret;
9651 }
9652
9653 /*
9654 * Sets up an aio uring context, and returns the fd. Applications asks for a
9655 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9656 * params structure passed in.
9657 */
9658 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9659 {
9660 struct io_uring_params p;
9661 int i;
9662
9663 if (copy_from_user(&p, params, sizeof(p)))
9664 return -EFAULT;
9665 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9666 if (p.resv[i])
9667 return -EINVAL;
9668 }
9669
9670 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9671 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9672 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9673 IORING_SETUP_R_DISABLED))
9674 return -EINVAL;
9675
9676 return io_uring_create(entries, &p, params);
9677 }
9678
9679 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9680 struct io_uring_params __user *, params)
9681 {
9682 return io_uring_setup(entries, params);
9683 }
9684
9685 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9686 {
9687 struct io_uring_probe *p;
9688 size_t size;
9689 int i, ret;
9690
9691 size = struct_size(p, ops, nr_args);
9692 if (size == SIZE_MAX)
9693 return -EOVERFLOW;
9694 p = kzalloc(size, GFP_KERNEL);
9695 if (!p)
9696 return -ENOMEM;
9697
9698 ret = -EFAULT;
9699 if (copy_from_user(p, arg, size))
9700 goto out;
9701 ret = -EINVAL;
9702 if (memchr_inv(p, 0, size))
9703 goto out;
9704
9705 p->last_op = IORING_OP_LAST - 1;
9706 if (nr_args > IORING_OP_LAST)
9707 nr_args = IORING_OP_LAST;
9708
9709 for (i = 0; i < nr_args; i++) {
9710 p->ops[i].op = i;
9711 if (!io_op_defs[i].not_supported)
9712 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9713 }
9714 p->ops_len = i;
9715
9716 ret = 0;
9717 if (copy_to_user(arg, p, size))
9718 ret = -EFAULT;
9719 out:
9720 kfree(p);
9721 return ret;
9722 }
9723
9724 static int io_register_personality(struct io_ring_ctx *ctx)
9725 {
9726 struct io_identity *id;
9727 int ret;
9728
9729 id = kmalloc(sizeof(*id), GFP_KERNEL);
9730 if (unlikely(!id))
9731 return -ENOMEM;
9732
9733 io_init_identity(id);
9734 id->creds = get_current_cred();
9735
9736 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9737 if (ret < 0) {
9738 put_cred(id->creds);
9739 kfree(id);
9740 }
9741 return ret;
9742 }
9743
9744 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9745 {
9746 struct io_identity *iod;
9747
9748 iod = idr_remove(&ctx->personality_idr, id);
9749 if (iod) {
9750 put_cred(iod->creds);
9751 if (refcount_dec_and_test(&iod->count))
9752 kfree(iod);
9753 return 0;
9754 }
9755
9756 return -EINVAL;
9757 }
9758
9759 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9760 unsigned int nr_args)
9761 {
9762 struct io_uring_restriction *res;
9763 size_t size;
9764 int i, ret;
9765
9766 /* Restrictions allowed only if rings started disabled */
9767 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9768 return -EBADFD;
9769
9770 /* We allow only a single restrictions registration */
9771 if (ctx->restrictions.registered)
9772 return -EBUSY;
9773
9774 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9775 return -EINVAL;
9776
9777 size = array_size(nr_args, sizeof(*res));
9778 if (size == SIZE_MAX)
9779 return -EOVERFLOW;
9780
9781 res = memdup_user(arg, size);
9782 if (IS_ERR(res))
9783 return PTR_ERR(res);
9784
9785 ret = 0;
9786
9787 for (i = 0; i < nr_args; i++) {
9788 switch (res[i].opcode) {
9789 case IORING_RESTRICTION_REGISTER_OP:
9790 if (res[i].register_op >= IORING_REGISTER_LAST) {
9791 ret = -EINVAL;
9792 goto out;
9793 }
9794
9795 __set_bit(res[i].register_op,
9796 ctx->restrictions.register_op);
9797 break;
9798 case IORING_RESTRICTION_SQE_OP:
9799 if (res[i].sqe_op >= IORING_OP_LAST) {
9800 ret = -EINVAL;
9801 goto out;
9802 }
9803
9804 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9805 break;
9806 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9807 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9808 break;
9809 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
9810 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
9811 break;
9812 default:
9813 ret = -EINVAL;
9814 goto out;
9815 }
9816 }
9817
9818 out:
9819 /* Reset all restrictions if an error happened */
9820 if (ret != 0)
9821 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
9822 else
9823 ctx->restrictions.registered = true;
9824
9825 kfree(res);
9826 return ret;
9827 }
9828
9829 static int io_register_enable_rings(struct io_ring_ctx *ctx)
9830 {
9831 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9832 return -EBADFD;
9833
9834 if (ctx->restrictions.registered)
9835 ctx->restricted = 1;
9836
9837 ctx->flags &= ~IORING_SETUP_R_DISABLED;
9838
9839 io_sq_offload_start(ctx);
9840
9841 return 0;
9842 }
9843
9844 static bool io_register_op_must_quiesce(int op)
9845 {
9846 switch (op) {
9847 case IORING_UNREGISTER_FILES:
9848 case IORING_REGISTER_FILES_UPDATE:
9849 case IORING_REGISTER_PROBE:
9850 case IORING_REGISTER_PERSONALITY:
9851 case IORING_UNREGISTER_PERSONALITY:
9852 return false;
9853 default:
9854 return true;
9855 }
9856 }
9857
9858 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
9859 void __user *arg, unsigned nr_args)
9860 __releases(ctx->uring_lock)
9861 __acquires(ctx->uring_lock)
9862 {
9863 int ret;
9864
9865 /*
9866 * We're inside the ring mutex, if the ref is already dying, then
9867 * someone else killed the ctx or is already going through
9868 * io_uring_register().
9869 */
9870 if (percpu_ref_is_dying(&ctx->refs))
9871 return -ENXIO;
9872
9873 if (io_register_op_must_quiesce(opcode)) {
9874 percpu_ref_kill(&ctx->refs);
9875
9876 /*
9877 * Drop uring mutex before waiting for references to exit. If
9878 * another thread is currently inside io_uring_enter() it might
9879 * need to grab the uring_lock to make progress. If we hold it
9880 * here across the drain wait, then we can deadlock. It's safe
9881 * to drop the mutex here, since no new references will come in
9882 * after we've killed the percpu ref.
9883 */
9884 mutex_unlock(&ctx->uring_lock);
9885 do {
9886 ret = wait_for_completion_interruptible(&ctx->ref_comp);
9887 if (!ret)
9888 break;
9889 ret = io_run_task_work_sig();
9890 if (ret < 0)
9891 break;
9892 } while (1);
9893
9894 mutex_lock(&ctx->uring_lock);
9895
9896 if (ret) {
9897 percpu_ref_resurrect(&ctx->refs);
9898 goto out_quiesce;
9899 }
9900 }
9901
9902 if (ctx->restricted) {
9903 if (opcode >= IORING_REGISTER_LAST) {
9904 ret = -EINVAL;
9905 goto out;
9906 }
9907
9908 if (!test_bit(opcode, ctx->restrictions.register_op)) {
9909 ret = -EACCES;
9910 goto out;
9911 }
9912 }
9913
9914 switch (opcode) {
9915 case IORING_REGISTER_BUFFERS:
9916 ret = io_sqe_buffer_register(ctx, arg, nr_args);
9917 break;
9918 case IORING_UNREGISTER_BUFFERS:
9919 ret = -EINVAL;
9920 if (arg || nr_args)
9921 break;
9922 ret = io_sqe_buffer_unregister(ctx);
9923 break;
9924 case IORING_REGISTER_FILES:
9925 ret = io_sqe_files_register(ctx, arg, nr_args);
9926 break;
9927 case IORING_UNREGISTER_FILES:
9928 ret = -EINVAL;
9929 if (arg || nr_args)
9930 break;
9931 ret = io_sqe_files_unregister(ctx);
9932 break;
9933 case IORING_REGISTER_FILES_UPDATE:
9934 ret = io_sqe_files_update(ctx, arg, nr_args);
9935 break;
9936 case IORING_REGISTER_EVENTFD:
9937 case IORING_REGISTER_EVENTFD_ASYNC:
9938 ret = -EINVAL;
9939 if (nr_args != 1)
9940 break;
9941 ret = io_eventfd_register(ctx, arg);
9942 if (ret)
9943 break;
9944 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
9945 ctx->eventfd_async = 1;
9946 else
9947 ctx->eventfd_async = 0;
9948 break;
9949 case IORING_UNREGISTER_EVENTFD:
9950 ret = -EINVAL;
9951 if (arg || nr_args)
9952 break;
9953 ret = io_eventfd_unregister(ctx);
9954 break;
9955 case IORING_REGISTER_PROBE:
9956 ret = -EINVAL;
9957 if (!arg || nr_args > 256)
9958 break;
9959 ret = io_probe(ctx, arg, nr_args);
9960 break;
9961 case IORING_REGISTER_PERSONALITY:
9962 ret = -EINVAL;
9963 if (arg || nr_args)
9964 break;
9965 ret = io_register_personality(ctx);
9966 break;
9967 case IORING_UNREGISTER_PERSONALITY:
9968 ret = -EINVAL;
9969 if (arg)
9970 break;
9971 ret = io_unregister_personality(ctx, nr_args);
9972 break;
9973 case IORING_REGISTER_ENABLE_RINGS:
9974 ret = -EINVAL;
9975 if (arg || nr_args)
9976 break;
9977 ret = io_register_enable_rings(ctx);
9978 break;
9979 case IORING_REGISTER_RESTRICTIONS:
9980 ret = io_register_restrictions(ctx, arg, nr_args);
9981 break;
9982 default:
9983 ret = -EINVAL;
9984 break;
9985 }
9986
9987 out:
9988 if (io_register_op_must_quiesce(opcode)) {
9989 /* bring the ctx back to life */
9990 percpu_ref_reinit(&ctx->refs);
9991 out_quiesce:
9992 reinit_completion(&ctx->ref_comp);
9993 }
9994 return ret;
9995 }
9996
9997 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
9998 void __user *, arg, unsigned int, nr_args)
9999 {
10000 struct io_ring_ctx *ctx;
10001 long ret = -EBADF;
10002 struct fd f;
10003
10004 f = fdget(fd);
10005 if (!f.file)
10006 return -EBADF;
10007
10008 ret = -EOPNOTSUPP;
10009 if (f.file->f_op != &io_uring_fops)
10010 goto out_fput;
10011
10012 ctx = f.file->private_data;
10013
10014 mutex_lock(&ctx->uring_lock);
10015 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10016 mutex_unlock(&ctx->uring_lock);
10017 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10018 ctx->cq_ev_fd != NULL, ret);
10019 out_fput:
10020 fdput(f);
10021 return ret;
10022 }
10023
10024 static int __init io_uring_init(void)
10025 {
10026 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10027 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10028 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10029 } while (0)
10030
10031 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10032 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10033 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10034 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10035 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10036 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10037 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10038 BUILD_BUG_SQE_ELEM(8, __u64, off);
10039 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10040 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10041 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10042 BUILD_BUG_SQE_ELEM(24, __u32, len);
10043 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10044 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10045 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10046 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10047 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10048 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10049 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10050 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10051 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10052 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10053 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10054 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10055 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10056 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10057 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10058 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10059 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10060 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10061 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10062
10063 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10064 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10065 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC);
10066 return 0;
10067 };
10068 __initcall(io_uring_init);