]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - fs/io_uring.c
Merge branch 'for-5.12/io_uring' into io_uring-worker.v3
[mirror_ubuntu-jammy-kernel.git] / fs / io_uring.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqring (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/kthread.h>
61 #include <linux/blkdev.h>
62 #include <linux/bvec.h>
63 #include <linux/net.h>
64 #include <net/sock.h>
65 #include <net/af_unix.h>
66 #include <net/scm.h>
67 #include <linux/anon_inodes.h>
68 #include <linux/sched/mm.h>
69 #include <linux/uaccess.h>
70 #include <linux/nospec.h>
71 #include <linux/sizes.h>
72 #include <linux/hugetlb.h>
73 #include <linux/highmem.h>
74 #include <linux/namei.h>
75 #include <linux/fsnotify.h>
76 #include <linux/fadvise.h>
77 #include <linux/eventpoll.h>
78 #include <linux/fs_struct.h>
79 #include <linux/splice.h>
80 #include <linux/task_work.h>
81 #include <linux/pagemap.h>
82 #include <linux/io_uring.h>
83 #include <linux/blk-cgroup.h>
84 #include <linux/audit.h>
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/io_uring.h>
88
89 #include <uapi/linux/io_uring.h>
90
91 #include "internal.h"
92 #include "io-wq.h"
93
94 #define IORING_MAX_ENTRIES 32768
95 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
96
97 /*
98 * Shift of 9 is 512 entries, or exactly one page on 64-bit archs
99 */
100 #define IORING_FILE_TABLE_SHIFT 9
101 #define IORING_MAX_FILES_TABLE (1U << IORING_FILE_TABLE_SHIFT)
102 #define IORING_FILE_TABLE_MASK (IORING_MAX_FILES_TABLE - 1)
103 #define IORING_MAX_FIXED_FILES (64 * IORING_MAX_FILES_TABLE)
104 #define IORING_MAX_RESTRICTIONS (IORING_RESTRICTION_LAST + \
105 IORING_REGISTER_LAST + IORING_OP_LAST)
106
107 #define SQE_VALID_FLAGS (IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK| \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
109 IOSQE_BUFFER_SELECT)
110
111 struct io_uring {
112 u32 head ____cacheline_aligned_in_smp;
113 u32 tail ____cacheline_aligned_in_smp;
114 };
115
116 /*
117 * This data is shared with the application through the mmap at offsets
118 * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
119 *
120 * The offsets to the member fields are published through struct
121 * io_sqring_offsets when calling io_uring_setup.
122 */
123 struct io_rings {
124 /*
125 * Head and tail offsets into the ring; the offsets need to be
126 * masked to get valid indices.
127 *
128 * The kernel controls head of the sq ring and the tail of the cq ring,
129 * and the application controls tail of the sq ring and the head of the
130 * cq ring.
131 */
132 struct io_uring sq, cq;
133 /*
134 * Bitmasks to apply to head and tail offsets (constant, equals
135 * ring_entries - 1)
136 */
137 u32 sq_ring_mask, cq_ring_mask;
138 /* Ring sizes (constant, power of 2) */
139 u32 sq_ring_entries, cq_ring_entries;
140 /*
141 * Number of invalid entries dropped by the kernel due to
142 * invalid index stored in array
143 *
144 * Written by the kernel, shouldn't be modified by the
145 * application (i.e. get number of "new events" by comparing to
146 * cached value).
147 *
148 * After a new SQ head value was read by the application this
149 * counter includes all submissions that were dropped reaching
150 * the new SQ head (and possibly more).
151 */
152 u32 sq_dropped;
153 /*
154 * Runtime SQ flags
155 *
156 * Written by the kernel, shouldn't be modified by the
157 * application.
158 *
159 * The application needs a full memory barrier before checking
160 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
161 */
162 u32 sq_flags;
163 /*
164 * Runtime CQ flags
165 *
166 * Written by the application, shouldn't be modified by the
167 * kernel.
168 */
169 u32 cq_flags;
170 /*
171 * Number of completion events lost because the queue was full;
172 * this should be avoided by the application by making sure
173 * there are not more requests pending than there is space in
174 * the completion queue.
175 *
176 * Written by the kernel, shouldn't be modified by the
177 * application (i.e. get number of "new events" by comparing to
178 * cached value).
179 *
180 * As completion events come in out of order this counter is not
181 * ordered with any other data.
182 */
183 u32 cq_overflow;
184 /*
185 * Ring buffer of completion events.
186 *
187 * The kernel writes completion events fresh every time they are
188 * produced, so the application is allowed to modify pending
189 * entries.
190 */
191 struct io_uring_cqe cqes[] ____cacheline_aligned_in_smp;
192 };
193
194 enum io_uring_cmd_flags {
195 IO_URING_F_NONBLOCK = 1,
196 IO_URING_F_COMPLETE_DEFER = 2,
197 };
198
199 struct io_mapped_ubuf {
200 u64 ubuf;
201 size_t len;
202 struct bio_vec *bvec;
203 unsigned int nr_bvecs;
204 unsigned long acct_pages;
205 };
206
207 struct io_ring_ctx;
208
209 struct io_rsrc_put {
210 struct list_head list;
211 union {
212 void *rsrc;
213 struct file *file;
214 };
215 };
216
217 struct fixed_rsrc_table {
218 struct file **files;
219 };
220
221 struct fixed_rsrc_ref_node {
222 struct percpu_ref refs;
223 struct list_head node;
224 struct list_head rsrc_list;
225 struct fixed_rsrc_data *rsrc_data;
226 void (*rsrc_put)(struct io_ring_ctx *ctx,
227 struct io_rsrc_put *prsrc);
228 struct llist_node llist;
229 bool done;
230 };
231
232 struct fixed_rsrc_data {
233 struct fixed_rsrc_table *table;
234 struct io_ring_ctx *ctx;
235
236 struct fixed_rsrc_ref_node *node;
237 struct percpu_ref refs;
238 struct completion done;
239 bool quiesce;
240 };
241
242 struct io_buffer {
243 struct list_head list;
244 __u64 addr;
245 __s32 len;
246 __u16 bid;
247 };
248
249 struct io_restriction {
250 DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
251 DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
252 u8 sqe_flags_allowed;
253 u8 sqe_flags_required;
254 bool registered;
255 };
256
257 struct io_sq_data {
258 refcount_t refs;
259 struct mutex lock;
260
261 /* ctx's that are using this sqd */
262 struct list_head ctx_list;
263 struct list_head ctx_new_list;
264 struct mutex ctx_lock;
265
266 struct task_struct *thread;
267 struct wait_queue_head wait;
268
269 unsigned sq_thread_idle;
270 };
271
272 #define IO_IOPOLL_BATCH 8
273 #define IO_COMPL_BATCH 32
274 #define IO_REQ_CACHE_SIZE 32
275 #define IO_REQ_ALLOC_BATCH 8
276
277 struct io_comp_state {
278 struct io_kiocb *reqs[IO_COMPL_BATCH];
279 unsigned int nr;
280 unsigned int locked_free_nr;
281 /* inline/task_work completion list, under ->uring_lock */
282 struct list_head free_list;
283 /* IRQ completion list, under ->completion_lock */
284 struct list_head locked_free_list;
285 };
286
287 struct io_submit_link {
288 struct io_kiocb *head;
289 struct io_kiocb *last;
290 };
291
292 struct io_submit_state {
293 struct blk_plug plug;
294 struct io_submit_link link;
295
296 /*
297 * io_kiocb alloc cache
298 */
299 void *reqs[IO_REQ_CACHE_SIZE];
300 unsigned int free_reqs;
301
302 bool plug_started;
303
304 /*
305 * Batch completion logic
306 */
307 struct io_comp_state comp;
308
309 /*
310 * File reference cache
311 */
312 struct file *file;
313 unsigned int fd;
314 unsigned int file_refs;
315 unsigned int ios_left;
316 };
317
318 struct io_ring_ctx {
319 struct {
320 struct percpu_ref refs;
321 } ____cacheline_aligned_in_smp;
322
323 struct {
324 unsigned int flags;
325 unsigned int compat: 1;
326 unsigned int limit_mem: 1;
327 unsigned int cq_overflow_flushed: 1;
328 unsigned int drain_next: 1;
329 unsigned int eventfd_async: 1;
330 unsigned int restricted: 1;
331 unsigned int sqo_dead: 1;
332
333 /*
334 * Ring buffer of indices into array of io_uring_sqe, which is
335 * mmapped by the application using the IORING_OFF_SQES offset.
336 *
337 * This indirection could e.g. be used to assign fixed
338 * io_uring_sqe entries to operations and only submit them to
339 * the queue when needed.
340 *
341 * The kernel modifies neither the indices array nor the entries
342 * array.
343 */
344 u32 *sq_array;
345 unsigned cached_sq_head;
346 unsigned sq_entries;
347 unsigned sq_mask;
348 unsigned sq_thread_idle;
349 unsigned cached_sq_dropped;
350 unsigned cached_cq_overflow;
351 unsigned long sq_check_overflow;
352
353 struct list_head defer_list;
354 struct list_head timeout_list;
355 struct list_head cq_overflow_list;
356
357 struct io_uring_sqe *sq_sqes;
358 } ____cacheline_aligned_in_smp;
359
360 struct {
361 struct mutex uring_lock;
362 wait_queue_head_t wait;
363 } ____cacheline_aligned_in_smp;
364
365 struct io_submit_state submit_state;
366
367 struct io_rings *rings;
368
369 /* IO offload */
370 struct io_wq *io_wq;
371
372 /*
373 * For SQPOLL usage - we hold a reference to the parent task, so we
374 * have access to the ->files
375 */
376 struct task_struct *sqo_task;
377
378 /* Only used for accounting purposes */
379 struct mm_struct *mm_account;
380
381 #ifdef CONFIG_BLK_CGROUP
382 struct cgroup_subsys_state *sqo_blkcg_css;
383 #endif
384
385 struct io_sq_data *sq_data; /* if using sq thread polling */
386
387 struct wait_queue_head sqo_sq_wait;
388 struct list_head sqd_list;
389
390 /*
391 * If used, fixed file set. Writers must ensure that ->refs is dead,
392 * readers must ensure that ->refs is alive as long as the file* is
393 * used. Only updated through io_uring_register(2).
394 */
395 struct fixed_rsrc_data *file_data;
396 unsigned nr_user_files;
397
398 /* if used, fixed mapped user buffers */
399 unsigned nr_user_bufs;
400 struct io_mapped_ubuf *user_bufs;
401
402 struct user_struct *user;
403
404 const struct cred *creds;
405
406 #ifdef CONFIG_AUDIT
407 kuid_t loginuid;
408 unsigned int sessionid;
409 #endif
410
411 struct completion ref_comp;
412 struct completion sq_thread_comp;
413
414 #if defined(CONFIG_UNIX)
415 struct socket *ring_sock;
416 #endif
417
418 struct idr io_buffer_idr;
419
420 struct idr personality_idr;
421
422 struct {
423 unsigned cached_cq_tail;
424 unsigned cq_entries;
425 unsigned cq_mask;
426 atomic_t cq_timeouts;
427 unsigned cq_last_tm_flush;
428 unsigned long cq_check_overflow;
429 struct wait_queue_head cq_wait;
430 struct fasync_struct *cq_fasync;
431 struct eventfd_ctx *cq_ev_fd;
432 } ____cacheline_aligned_in_smp;
433
434 struct {
435 spinlock_t completion_lock;
436
437 /*
438 * ->iopoll_list is protected by the ctx->uring_lock for
439 * io_uring instances that don't use IORING_SETUP_SQPOLL.
440 * For SQPOLL, only the single threaded io_sq_thread() will
441 * manipulate the list, hence no extra locking is needed there.
442 */
443 struct list_head iopoll_list;
444 struct hlist_head *cancel_hash;
445 unsigned cancel_hash_bits;
446 bool poll_multi_file;
447
448 spinlock_t inflight_lock;
449 struct list_head inflight_list;
450 } ____cacheline_aligned_in_smp;
451
452 struct delayed_work rsrc_put_work;
453 struct llist_head rsrc_put_llist;
454 struct list_head rsrc_ref_list;
455 spinlock_t rsrc_ref_lock;
456
457 struct io_restriction restrictions;
458
459 /* Keep this last, we don't need it for the fast path */
460 struct work_struct exit_work;
461 };
462
463 /*
464 * First field must be the file pointer in all the
465 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
466 */
467 struct io_poll_iocb {
468 struct file *file;
469 struct wait_queue_head *head;
470 __poll_t events;
471 bool done;
472 bool canceled;
473 struct wait_queue_entry wait;
474 };
475
476 struct io_poll_remove {
477 struct file *file;
478 u64 addr;
479 };
480
481 struct io_close {
482 struct file *file;
483 int fd;
484 };
485
486 struct io_timeout_data {
487 struct io_kiocb *req;
488 struct hrtimer timer;
489 struct timespec64 ts;
490 enum hrtimer_mode mode;
491 };
492
493 struct io_accept {
494 struct file *file;
495 struct sockaddr __user *addr;
496 int __user *addr_len;
497 int flags;
498 unsigned long nofile;
499 };
500
501 struct io_sync {
502 struct file *file;
503 loff_t len;
504 loff_t off;
505 int flags;
506 int mode;
507 };
508
509 struct io_cancel {
510 struct file *file;
511 u64 addr;
512 };
513
514 struct io_timeout {
515 struct file *file;
516 u32 off;
517 u32 target_seq;
518 struct list_head list;
519 /* head of the link, used by linked timeouts only */
520 struct io_kiocb *head;
521 };
522
523 struct io_timeout_rem {
524 struct file *file;
525 u64 addr;
526
527 /* timeout update */
528 struct timespec64 ts;
529 u32 flags;
530 };
531
532 struct io_rw {
533 /* NOTE: kiocb has the file as the first member, so don't do it here */
534 struct kiocb kiocb;
535 u64 addr;
536 u64 len;
537 };
538
539 struct io_connect {
540 struct file *file;
541 struct sockaddr __user *addr;
542 int addr_len;
543 };
544
545 struct io_sr_msg {
546 struct file *file;
547 union {
548 struct user_msghdr __user *umsg;
549 void __user *buf;
550 };
551 int msg_flags;
552 int bgid;
553 size_t len;
554 struct io_buffer *kbuf;
555 };
556
557 struct io_open {
558 struct file *file;
559 int dfd;
560 struct filename *filename;
561 struct open_how how;
562 unsigned long nofile;
563 };
564
565 struct io_rsrc_update {
566 struct file *file;
567 u64 arg;
568 u32 nr_args;
569 u32 offset;
570 };
571
572 struct io_fadvise {
573 struct file *file;
574 u64 offset;
575 u32 len;
576 u32 advice;
577 };
578
579 struct io_madvise {
580 struct file *file;
581 u64 addr;
582 u32 len;
583 u32 advice;
584 };
585
586 struct io_epoll {
587 struct file *file;
588 int epfd;
589 int op;
590 int fd;
591 struct epoll_event event;
592 };
593
594 struct io_splice {
595 struct file *file_out;
596 struct file *file_in;
597 loff_t off_out;
598 loff_t off_in;
599 u64 len;
600 unsigned int flags;
601 };
602
603 struct io_provide_buf {
604 struct file *file;
605 __u64 addr;
606 __s32 len;
607 __u32 bgid;
608 __u16 nbufs;
609 __u16 bid;
610 };
611
612 struct io_statx {
613 struct file *file;
614 int dfd;
615 unsigned int mask;
616 unsigned int flags;
617 const char __user *filename;
618 struct statx __user *buffer;
619 };
620
621 struct io_shutdown {
622 struct file *file;
623 int how;
624 };
625
626 struct io_rename {
627 struct file *file;
628 int old_dfd;
629 int new_dfd;
630 struct filename *oldpath;
631 struct filename *newpath;
632 int flags;
633 };
634
635 struct io_unlink {
636 struct file *file;
637 int dfd;
638 int flags;
639 struct filename *filename;
640 };
641
642 struct io_completion {
643 struct file *file;
644 struct list_head list;
645 int cflags;
646 };
647
648 struct io_async_connect {
649 struct sockaddr_storage address;
650 };
651
652 struct io_async_msghdr {
653 struct iovec fast_iov[UIO_FASTIOV];
654 /* points to an allocated iov, if NULL we use fast_iov instead */
655 struct iovec *free_iov;
656 struct sockaddr __user *uaddr;
657 struct msghdr msg;
658 struct sockaddr_storage addr;
659 };
660
661 struct io_async_rw {
662 struct iovec fast_iov[UIO_FASTIOV];
663 const struct iovec *free_iovec;
664 struct iov_iter iter;
665 size_t bytes_done;
666 struct wait_page_queue wpq;
667 };
668
669 enum {
670 REQ_F_FIXED_FILE_BIT = IOSQE_FIXED_FILE_BIT,
671 REQ_F_IO_DRAIN_BIT = IOSQE_IO_DRAIN_BIT,
672 REQ_F_LINK_BIT = IOSQE_IO_LINK_BIT,
673 REQ_F_HARDLINK_BIT = IOSQE_IO_HARDLINK_BIT,
674 REQ_F_FORCE_ASYNC_BIT = IOSQE_ASYNC_BIT,
675 REQ_F_BUFFER_SELECT_BIT = IOSQE_BUFFER_SELECT_BIT,
676
677 REQ_F_FAIL_LINK_BIT,
678 REQ_F_INFLIGHT_BIT,
679 REQ_F_CUR_POS_BIT,
680 REQ_F_NOWAIT_BIT,
681 REQ_F_LINK_TIMEOUT_BIT,
682 REQ_F_ISREG_BIT,
683 REQ_F_NEED_CLEANUP_BIT,
684 REQ_F_POLLED_BIT,
685 REQ_F_BUFFER_SELECTED_BIT,
686 REQ_F_NO_FILE_TABLE_BIT,
687 REQ_F_WORK_INITIALIZED_BIT,
688 REQ_F_LTIMEOUT_ACTIVE_BIT,
689 REQ_F_COMPLETE_INLINE_BIT,
690
691 /* not a real bit, just to check we're not overflowing the space */
692 __REQ_F_LAST_BIT,
693 };
694
695 enum {
696 /* ctx owns file */
697 REQ_F_FIXED_FILE = BIT(REQ_F_FIXED_FILE_BIT),
698 /* drain existing IO first */
699 REQ_F_IO_DRAIN = BIT(REQ_F_IO_DRAIN_BIT),
700 /* linked sqes */
701 REQ_F_LINK = BIT(REQ_F_LINK_BIT),
702 /* doesn't sever on completion < 0 */
703 REQ_F_HARDLINK = BIT(REQ_F_HARDLINK_BIT),
704 /* IOSQE_ASYNC */
705 REQ_F_FORCE_ASYNC = BIT(REQ_F_FORCE_ASYNC_BIT),
706 /* IOSQE_BUFFER_SELECT */
707 REQ_F_BUFFER_SELECT = BIT(REQ_F_BUFFER_SELECT_BIT),
708
709 /* fail rest of links */
710 REQ_F_FAIL_LINK = BIT(REQ_F_FAIL_LINK_BIT),
711 /* on inflight list */
712 REQ_F_INFLIGHT = BIT(REQ_F_INFLIGHT_BIT),
713 /* read/write uses file position */
714 REQ_F_CUR_POS = BIT(REQ_F_CUR_POS_BIT),
715 /* must not punt to workers */
716 REQ_F_NOWAIT = BIT(REQ_F_NOWAIT_BIT),
717 /* has or had linked timeout */
718 REQ_F_LINK_TIMEOUT = BIT(REQ_F_LINK_TIMEOUT_BIT),
719 /* regular file */
720 REQ_F_ISREG = BIT(REQ_F_ISREG_BIT),
721 /* needs cleanup */
722 REQ_F_NEED_CLEANUP = BIT(REQ_F_NEED_CLEANUP_BIT),
723 /* already went through poll handler */
724 REQ_F_POLLED = BIT(REQ_F_POLLED_BIT),
725 /* buffer already selected */
726 REQ_F_BUFFER_SELECTED = BIT(REQ_F_BUFFER_SELECTED_BIT),
727 /* doesn't need file table for this request */
728 REQ_F_NO_FILE_TABLE = BIT(REQ_F_NO_FILE_TABLE_BIT),
729 /* io_wq_work is initialized */
730 REQ_F_WORK_INITIALIZED = BIT(REQ_F_WORK_INITIALIZED_BIT),
731 /* linked timeout is active, i.e. prepared by link's head */
732 REQ_F_LTIMEOUT_ACTIVE = BIT(REQ_F_LTIMEOUT_ACTIVE_BIT),
733 /* completion is deferred through io_comp_state */
734 REQ_F_COMPLETE_INLINE = BIT(REQ_F_COMPLETE_INLINE_BIT),
735 };
736
737 struct async_poll {
738 struct io_poll_iocb poll;
739 struct io_poll_iocb *double_poll;
740 };
741
742 struct io_task_work {
743 struct io_wq_work_node node;
744 task_work_func_t func;
745 };
746
747 /*
748 * NOTE! Each of the iocb union members has the file pointer
749 * as the first entry in their struct definition. So you can
750 * access the file pointer through any of the sub-structs,
751 * or directly as just 'ki_filp' in this struct.
752 */
753 struct io_kiocb {
754 union {
755 struct file *file;
756 struct io_rw rw;
757 struct io_poll_iocb poll;
758 struct io_poll_remove poll_remove;
759 struct io_accept accept;
760 struct io_sync sync;
761 struct io_cancel cancel;
762 struct io_timeout timeout;
763 struct io_timeout_rem timeout_rem;
764 struct io_connect connect;
765 struct io_sr_msg sr_msg;
766 struct io_open open;
767 struct io_close close;
768 struct io_rsrc_update rsrc_update;
769 struct io_fadvise fadvise;
770 struct io_madvise madvise;
771 struct io_epoll epoll;
772 struct io_splice splice;
773 struct io_provide_buf pbuf;
774 struct io_statx statx;
775 struct io_shutdown shutdown;
776 struct io_rename rename;
777 struct io_unlink unlink;
778 /* use only after cleaning per-op data, see io_clean_op() */
779 struct io_completion compl;
780 };
781
782 /* opcode allocated if it needs to store data for async defer */
783 void *async_data;
784 u8 opcode;
785 /* polled IO has completed */
786 u8 iopoll_completed;
787
788 u16 buf_index;
789 u32 result;
790
791 struct io_ring_ctx *ctx;
792 unsigned int flags;
793 refcount_t refs;
794 struct task_struct *task;
795 u64 user_data;
796
797 struct io_kiocb *link;
798 struct percpu_ref *fixed_rsrc_refs;
799
800 /*
801 * 1. used with ctx->iopoll_list with reads/writes
802 * 2. to track reqs with ->files (see io_op_def::file_table)
803 */
804 struct list_head inflight_entry;
805 union {
806 struct io_task_work io_task_work;
807 struct callback_head task_work;
808 };
809 /* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
810 struct hlist_node hash_node;
811 struct async_poll *apoll;
812 struct io_wq_work work;
813 };
814
815 struct io_defer_entry {
816 struct list_head list;
817 struct io_kiocb *req;
818 u32 seq;
819 };
820
821 struct io_op_def {
822 /* needs req->file assigned */
823 unsigned needs_file : 1;
824 /* hash wq insertion if file is a regular file */
825 unsigned hash_reg_file : 1;
826 /* unbound wq insertion if file is a non-regular file */
827 unsigned unbound_nonreg_file : 1;
828 /* opcode is not supported by this kernel */
829 unsigned not_supported : 1;
830 /* set if opcode supports polled "wait" */
831 unsigned pollin : 1;
832 unsigned pollout : 1;
833 /* op supports buffer selection */
834 unsigned buffer_select : 1;
835 /* must always have async data allocated */
836 unsigned needs_async_data : 1;
837 /* should block plug */
838 unsigned plug : 1;
839 /* size of async data needed, if any */
840 unsigned short async_size;
841 unsigned work_flags;
842 };
843
844 static const struct io_op_def io_op_defs[] = {
845 [IORING_OP_NOP] = {},
846 [IORING_OP_READV] = {
847 .needs_file = 1,
848 .unbound_nonreg_file = 1,
849 .pollin = 1,
850 .buffer_select = 1,
851 .needs_async_data = 1,
852 .plug = 1,
853 .async_size = sizeof(struct io_async_rw),
854 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
855 },
856 [IORING_OP_WRITEV] = {
857 .needs_file = 1,
858 .hash_reg_file = 1,
859 .unbound_nonreg_file = 1,
860 .pollout = 1,
861 .needs_async_data = 1,
862 .plug = 1,
863 .async_size = sizeof(struct io_async_rw),
864 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
865 IO_WQ_WORK_FSIZE,
866 },
867 [IORING_OP_FSYNC] = {
868 .needs_file = 1,
869 .work_flags = IO_WQ_WORK_BLKCG,
870 },
871 [IORING_OP_READ_FIXED] = {
872 .needs_file = 1,
873 .unbound_nonreg_file = 1,
874 .pollin = 1,
875 .plug = 1,
876 .async_size = sizeof(struct io_async_rw),
877 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
878 },
879 [IORING_OP_WRITE_FIXED] = {
880 .needs_file = 1,
881 .hash_reg_file = 1,
882 .unbound_nonreg_file = 1,
883 .pollout = 1,
884 .plug = 1,
885 .async_size = sizeof(struct io_async_rw),
886 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE |
887 IO_WQ_WORK_MM,
888 },
889 [IORING_OP_POLL_ADD] = {
890 .needs_file = 1,
891 .unbound_nonreg_file = 1,
892 },
893 [IORING_OP_POLL_REMOVE] = {},
894 [IORING_OP_SYNC_FILE_RANGE] = {
895 .needs_file = 1,
896 .work_flags = IO_WQ_WORK_BLKCG,
897 },
898 [IORING_OP_SENDMSG] = {
899 .needs_file = 1,
900 .unbound_nonreg_file = 1,
901 .pollout = 1,
902 .needs_async_data = 1,
903 .async_size = sizeof(struct io_async_msghdr),
904 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
905 IO_WQ_WORK_FS,
906 },
907 [IORING_OP_RECVMSG] = {
908 .needs_file = 1,
909 .unbound_nonreg_file = 1,
910 .pollin = 1,
911 .buffer_select = 1,
912 .needs_async_data = 1,
913 .async_size = sizeof(struct io_async_msghdr),
914 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
915 IO_WQ_WORK_FS,
916 },
917 [IORING_OP_TIMEOUT] = {
918 .needs_async_data = 1,
919 .async_size = sizeof(struct io_timeout_data),
920 .work_flags = IO_WQ_WORK_MM,
921 },
922 [IORING_OP_TIMEOUT_REMOVE] = {
923 /* used by timeout updates' prep() */
924 .work_flags = IO_WQ_WORK_MM,
925 },
926 [IORING_OP_ACCEPT] = {
927 .needs_file = 1,
928 .unbound_nonreg_file = 1,
929 .pollin = 1,
930 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES,
931 },
932 [IORING_OP_ASYNC_CANCEL] = {},
933 [IORING_OP_LINK_TIMEOUT] = {
934 .needs_async_data = 1,
935 .async_size = sizeof(struct io_timeout_data),
936 .work_flags = IO_WQ_WORK_MM,
937 },
938 [IORING_OP_CONNECT] = {
939 .needs_file = 1,
940 .unbound_nonreg_file = 1,
941 .pollout = 1,
942 .needs_async_data = 1,
943 .async_size = sizeof(struct io_async_connect),
944 .work_flags = IO_WQ_WORK_MM,
945 },
946 [IORING_OP_FALLOCATE] = {
947 .needs_file = 1,
948 .work_flags = IO_WQ_WORK_BLKCG | IO_WQ_WORK_FSIZE,
949 },
950 [IORING_OP_OPENAT] = {
951 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG |
952 IO_WQ_WORK_FS | IO_WQ_WORK_MM,
953 },
954 [IORING_OP_CLOSE] = {
955 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_BLKCG,
956 },
957 [IORING_OP_FILES_UPDATE] = {
958 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM,
959 },
960 [IORING_OP_STATX] = {
961 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_MM |
962 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
963 },
964 [IORING_OP_READ] = {
965 .needs_file = 1,
966 .unbound_nonreg_file = 1,
967 .pollin = 1,
968 .buffer_select = 1,
969 .plug = 1,
970 .async_size = sizeof(struct io_async_rw),
971 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
972 },
973 [IORING_OP_WRITE] = {
974 .needs_file = 1,
975 .unbound_nonreg_file = 1,
976 .pollout = 1,
977 .plug = 1,
978 .async_size = sizeof(struct io_async_rw),
979 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG |
980 IO_WQ_WORK_FSIZE,
981 },
982 [IORING_OP_FADVISE] = {
983 .needs_file = 1,
984 .work_flags = IO_WQ_WORK_BLKCG,
985 },
986 [IORING_OP_MADVISE] = {
987 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
988 },
989 [IORING_OP_SEND] = {
990 .needs_file = 1,
991 .unbound_nonreg_file = 1,
992 .pollout = 1,
993 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
994 },
995 [IORING_OP_RECV] = {
996 .needs_file = 1,
997 .unbound_nonreg_file = 1,
998 .pollin = 1,
999 .buffer_select = 1,
1000 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG,
1001 },
1002 [IORING_OP_OPENAT2] = {
1003 .work_flags = IO_WQ_WORK_FILES | IO_WQ_WORK_FS |
1004 IO_WQ_WORK_BLKCG | IO_WQ_WORK_MM,
1005 },
1006 [IORING_OP_EPOLL_CTL] = {
1007 .unbound_nonreg_file = 1,
1008 .work_flags = IO_WQ_WORK_FILES,
1009 },
1010 [IORING_OP_SPLICE] = {
1011 .needs_file = 1,
1012 .hash_reg_file = 1,
1013 .unbound_nonreg_file = 1,
1014 .work_flags = IO_WQ_WORK_BLKCG,
1015 },
1016 [IORING_OP_PROVIDE_BUFFERS] = {},
1017 [IORING_OP_REMOVE_BUFFERS] = {},
1018 [IORING_OP_TEE] = {
1019 .needs_file = 1,
1020 .hash_reg_file = 1,
1021 .unbound_nonreg_file = 1,
1022 },
1023 [IORING_OP_SHUTDOWN] = {
1024 .needs_file = 1,
1025 },
1026 [IORING_OP_RENAMEAT] = {
1027 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1028 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1029 },
1030 [IORING_OP_UNLINKAT] = {
1031 .work_flags = IO_WQ_WORK_MM | IO_WQ_WORK_FILES |
1032 IO_WQ_WORK_FS | IO_WQ_WORK_BLKCG,
1033 },
1034 };
1035
1036 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1037 struct task_struct *task,
1038 struct files_struct *files);
1039 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node);
1040 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
1041 struct io_ring_ctx *ctx);
1042 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
1043
1044 static bool io_rw_reissue(struct io_kiocb *req);
1045 static void io_cqring_fill_event(struct io_kiocb *req, long res);
1046 static void io_put_req(struct io_kiocb *req);
1047 static void io_put_req_deferred(struct io_kiocb *req, int nr);
1048 static void io_double_put_req(struct io_kiocb *req);
1049 static void io_dismantle_req(struct io_kiocb *req);
1050 static void io_put_task(struct task_struct *task, int nr);
1051 static void io_queue_next(struct io_kiocb *req);
1052 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req);
1053 static void __io_queue_linked_timeout(struct io_kiocb *req);
1054 static void io_queue_linked_timeout(struct io_kiocb *req);
1055 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
1056 struct io_uring_rsrc_update *ip,
1057 unsigned nr_args);
1058 static void __io_clean_op(struct io_kiocb *req);
1059 static struct file *io_file_get(struct io_submit_state *state,
1060 struct io_kiocb *req, int fd, bool fixed);
1061 static void __io_queue_sqe(struct io_kiocb *req);
1062 static void io_rsrc_put_work(struct work_struct *work);
1063
1064 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
1065 struct iov_iter *iter, bool needs_lock);
1066 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
1067 const struct iovec *fast_iov,
1068 struct iov_iter *iter, bool force);
1069 static void io_req_task_queue(struct io_kiocb *req);
1070 static void io_submit_flush_completions(struct io_comp_state *cs,
1071 struct io_ring_ctx *ctx);
1072
1073 static struct kmem_cache *req_cachep;
1074
1075 static const struct file_operations io_uring_fops;
1076
1077 struct sock *io_uring_get_socket(struct file *file)
1078 {
1079 #if defined(CONFIG_UNIX)
1080 if (file->f_op == &io_uring_fops) {
1081 struct io_ring_ctx *ctx = file->private_data;
1082
1083 return ctx->ring_sock->sk;
1084 }
1085 #endif
1086 return NULL;
1087 }
1088 EXPORT_SYMBOL(io_uring_get_socket);
1089
1090 #define io_for_each_link(pos, head) \
1091 for (pos = (head); pos; pos = pos->link)
1092
1093 static inline void io_clean_op(struct io_kiocb *req)
1094 {
1095 if (req->flags & (REQ_F_NEED_CLEANUP | REQ_F_BUFFER_SELECTED))
1096 __io_clean_op(req);
1097 }
1098
1099 static inline void io_set_resource_node(struct io_kiocb *req)
1100 {
1101 struct io_ring_ctx *ctx = req->ctx;
1102
1103 if (!req->fixed_rsrc_refs) {
1104 req->fixed_rsrc_refs = &ctx->file_data->node->refs;
1105 percpu_ref_get(req->fixed_rsrc_refs);
1106 }
1107 }
1108
1109 static bool io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1110 {
1111 if (!percpu_ref_tryget(ref)) {
1112 /* already at zero, wait for ->release() */
1113 if (!try_wait_for_completion(compl))
1114 synchronize_rcu();
1115 return false;
1116 }
1117
1118 percpu_ref_resurrect(ref);
1119 reinit_completion(compl);
1120 percpu_ref_put(ref);
1121 return true;
1122 }
1123
1124 static bool io_match_task(struct io_kiocb *head,
1125 struct task_struct *task,
1126 struct files_struct *files)
1127 {
1128 struct io_kiocb *req;
1129
1130 if (task && head->task != task) {
1131 /* in terms of cancelation, always match if req task is dead */
1132 if (head->task->flags & PF_EXITING)
1133 return true;
1134 return false;
1135 }
1136 if (!files)
1137 return true;
1138
1139 io_for_each_link(req, head) {
1140 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1141 continue;
1142 if (req->file && req->file->f_op == &io_uring_fops)
1143 return true;
1144 if ((req->work.flags & IO_WQ_WORK_FILES) &&
1145 req->work.identity->files == files)
1146 return true;
1147 }
1148 return false;
1149 }
1150
1151 static void io_sq_thread_drop_mm_files(void)
1152 {
1153 struct files_struct *files = current->files;
1154 struct mm_struct *mm = current->mm;
1155
1156 if (mm) {
1157 kthread_unuse_mm(mm);
1158 mmput(mm);
1159 current->mm = NULL;
1160 }
1161 if (files) {
1162 struct nsproxy *nsproxy = current->nsproxy;
1163
1164 task_lock(current);
1165 current->files = NULL;
1166 current->nsproxy = NULL;
1167 task_unlock(current);
1168 put_files_struct(files);
1169 put_nsproxy(nsproxy);
1170 }
1171 }
1172
1173 static int __io_sq_thread_acquire_files(struct io_ring_ctx *ctx)
1174 {
1175 if (!current->files) {
1176 struct files_struct *files;
1177 struct nsproxy *nsproxy;
1178
1179 task_lock(ctx->sqo_task);
1180 files = ctx->sqo_task->files;
1181 if (!files) {
1182 task_unlock(ctx->sqo_task);
1183 return -EOWNERDEAD;
1184 }
1185 atomic_inc(&files->count);
1186 get_nsproxy(ctx->sqo_task->nsproxy);
1187 nsproxy = ctx->sqo_task->nsproxy;
1188 task_unlock(ctx->sqo_task);
1189
1190 task_lock(current);
1191 current->files = files;
1192 current->nsproxy = nsproxy;
1193 task_unlock(current);
1194 }
1195 return 0;
1196 }
1197
1198 static int __io_sq_thread_acquire_mm(struct io_ring_ctx *ctx)
1199 {
1200 struct mm_struct *mm;
1201
1202 if (current->mm)
1203 return 0;
1204
1205 task_lock(ctx->sqo_task);
1206 mm = ctx->sqo_task->mm;
1207 if (unlikely(!mm || !mmget_not_zero(mm)))
1208 mm = NULL;
1209 task_unlock(ctx->sqo_task);
1210
1211 if (mm) {
1212 kthread_use_mm(mm);
1213 return 0;
1214 }
1215
1216 return -EFAULT;
1217 }
1218
1219 static int __io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1220 struct io_kiocb *req)
1221 {
1222 const struct io_op_def *def = &io_op_defs[req->opcode];
1223 int ret;
1224
1225 if (def->work_flags & IO_WQ_WORK_MM) {
1226 ret = __io_sq_thread_acquire_mm(ctx);
1227 if (unlikely(ret))
1228 return ret;
1229 }
1230
1231 if (def->needs_file || (def->work_flags & IO_WQ_WORK_FILES)) {
1232 ret = __io_sq_thread_acquire_files(ctx);
1233 if (unlikely(ret))
1234 return ret;
1235 }
1236
1237 return 0;
1238 }
1239
1240 static inline int io_sq_thread_acquire_mm_files(struct io_ring_ctx *ctx,
1241 struct io_kiocb *req)
1242 {
1243 if (!(ctx->flags & IORING_SETUP_SQPOLL))
1244 return 0;
1245 return __io_sq_thread_acquire_mm_files(ctx, req);
1246 }
1247
1248 static void io_sq_thread_associate_blkcg(struct io_ring_ctx *ctx,
1249 struct cgroup_subsys_state **cur_css)
1250
1251 {
1252 #ifdef CONFIG_BLK_CGROUP
1253 /* puts the old one when swapping */
1254 if (*cur_css != ctx->sqo_blkcg_css) {
1255 kthread_associate_blkcg(ctx->sqo_blkcg_css);
1256 *cur_css = ctx->sqo_blkcg_css;
1257 }
1258 #endif
1259 }
1260
1261 static void io_sq_thread_unassociate_blkcg(void)
1262 {
1263 #ifdef CONFIG_BLK_CGROUP
1264 kthread_associate_blkcg(NULL);
1265 #endif
1266 }
1267
1268 static inline void req_set_fail_links(struct io_kiocb *req)
1269 {
1270 if ((req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) == REQ_F_LINK)
1271 req->flags |= REQ_F_FAIL_LINK;
1272 }
1273
1274 /*
1275 * None of these are dereferenced, they are simply used to check if any of
1276 * them have changed. If we're under current and check they are still the
1277 * same, we're fine to grab references to them for actual out-of-line use.
1278 */
1279 static void io_init_identity(struct io_identity *id)
1280 {
1281 id->files = current->files;
1282 id->mm = current->mm;
1283 #ifdef CONFIG_BLK_CGROUP
1284 rcu_read_lock();
1285 id->blkcg_css = blkcg_css();
1286 rcu_read_unlock();
1287 #endif
1288 id->creds = current_cred();
1289 id->nsproxy = current->nsproxy;
1290 id->fs = current->fs;
1291 id->fsize = rlimit(RLIMIT_FSIZE);
1292 #ifdef CONFIG_AUDIT
1293 id->loginuid = current->loginuid;
1294 id->sessionid = current->sessionid;
1295 #endif
1296 refcount_set(&id->count, 1);
1297 }
1298
1299 static inline void __io_req_init_async(struct io_kiocb *req)
1300 {
1301 memset(&req->work, 0, sizeof(req->work));
1302 req->flags |= REQ_F_WORK_INITIALIZED;
1303 }
1304
1305 /*
1306 * Note: must call io_req_init_async() for the first time you
1307 * touch any members of io_wq_work.
1308 */
1309 static inline void io_req_init_async(struct io_kiocb *req)
1310 {
1311 struct io_uring_task *tctx = current->io_uring;
1312
1313 if (req->flags & REQ_F_WORK_INITIALIZED)
1314 return;
1315
1316 __io_req_init_async(req);
1317
1318 /* Grab a ref if this isn't our static identity */
1319 req->work.identity = tctx->identity;
1320 if (tctx->identity != &tctx->__identity)
1321 refcount_inc(&req->work.identity->count);
1322 }
1323
1324 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1325 {
1326 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1327
1328 complete(&ctx->ref_comp);
1329 }
1330
1331 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1332 {
1333 return !req->timeout.off;
1334 }
1335
1336 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1337 {
1338 struct io_ring_ctx *ctx;
1339 int hash_bits;
1340
1341 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1342 if (!ctx)
1343 return NULL;
1344
1345 /*
1346 * Use 5 bits less than the max cq entries, that should give us around
1347 * 32 entries per hash list if totally full and uniformly spread.
1348 */
1349 hash_bits = ilog2(p->cq_entries);
1350 hash_bits -= 5;
1351 if (hash_bits <= 0)
1352 hash_bits = 1;
1353 ctx->cancel_hash_bits = hash_bits;
1354 ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1355 GFP_KERNEL);
1356 if (!ctx->cancel_hash)
1357 goto err;
1358 __hash_init(ctx->cancel_hash, 1U << hash_bits);
1359
1360 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1361 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1362 goto err;
1363
1364 ctx->flags = p->flags;
1365 init_waitqueue_head(&ctx->sqo_sq_wait);
1366 INIT_LIST_HEAD(&ctx->sqd_list);
1367 init_waitqueue_head(&ctx->cq_wait);
1368 INIT_LIST_HEAD(&ctx->cq_overflow_list);
1369 init_completion(&ctx->ref_comp);
1370 init_completion(&ctx->sq_thread_comp);
1371 idr_init(&ctx->io_buffer_idr);
1372 idr_init(&ctx->personality_idr);
1373 mutex_init(&ctx->uring_lock);
1374 init_waitqueue_head(&ctx->wait);
1375 spin_lock_init(&ctx->completion_lock);
1376 INIT_LIST_HEAD(&ctx->iopoll_list);
1377 INIT_LIST_HEAD(&ctx->defer_list);
1378 INIT_LIST_HEAD(&ctx->timeout_list);
1379 spin_lock_init(&ctx->inflight_lock);
1380 INIT_LIST_HEAD(&ctx->inflight_list);
1381 spin_lock_init(&ctx->rsrc_ref_lock);
1382 INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1383 INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1384 init_llist_head(&ctx->rsrc_put_llist);
1385 INIT_LIST_HEAD(&ctx->submit_state.comp.free_list);
1386 INIT_LIST_HEAD(&ctx->submit_state.comp.locked_free_list);
1387 return ctx;
1388 err:
1389 kfree(ctx->cancel_hash);
1390 kfree(ctx);
1391 return NULL;
1392 }
1393
1394 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1395 {
1396 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1397 struct io_ring_ctx *ctx = req->ctx;
1398
1399 return seq != ctx->cached_cq_tail
1400 + READ_ONCE(ctx->cached_cq_overflow);
1401 }
1402
1403 return false;
1404 }
1405
1406 static void io_put_identity(struct io_uring_task *tctx, struct io_kiocb *req)
1407 {
1408 if (req->work.identity == &tctx->__identity)
1409 return;
1410 if (refcount_dec_and_test(&req->work.identity->count))
1411 kfree(req->work.identity);
1412 }
1413
1414 static void io_req_clean_work(struct io_kiocb *req)
1415 {
1416 if (!(req->flags & REQ_F_WORK_INITIALIZED))
1417 return;
1418
1419 if (req->work.flags & IO_WQ_WORK_MM)
1420 mmdrop(req->work.identity->mm);
1421 #ifdef CONFIG_BLK_CGROUP
1422 if (req->work.flags & IO_WQ_WORK_BLKCG)
1423 css_put(req->work.identity->blkcg_css);
1424 #endif
1425 if (req->work.flags & IO_WQ_WORK_CREDS)
1426 put_cred(req->work.identity->creds);
1427 if (req->work.flags & IO_WQ_WORK_FS) {
1428 struct fs_struct *fs = req->work.identity->fs;
1429
1430 spin_lock(&req->work.identity->fs->lock);
1431 if (--fs->users)
1432 fs = NULL;
1433 spin_unlock(&req->work.identity->fs->lock);
1434 if (fs)
1435 free_fs_struct(fs);
1436 }
1437 if (req->work.flags & IO_WQ_WORK_FILES) {
1438 put_files_struct(req->work.identity->files);
1439 put_nsproxy(req->work.identity->nsproxy);
1440 }
1441 if (req->flags & REQ_F_INFLIGHT) {
1442 struct io_ring_ctx *ctx = req->ctx;
1443 struct io_uring_task *tctx = req->task->io_uring;
1444 unsigned long flags;
1445
1446 spin_lock_irqsave(&ctx->inflight_lock, flags);
1447 list_del(&req->inflight_entry);
1448 spin_unlock_irqrestore(&ctx->inflight_lock, flags);
1449 req->flags &= ~REQ_F_INFLIGHT;
1450 if (atomic_read(&tctx->in_idle))
1451 wake_up(&tctx->wait);
1452 }
1453
1454 req->flags &= ~REQ_F_WORK_INITIALIZED;
1455 req->work.flags &= ~(IO_WQ_WORK_MM | IO_WQ_WORK_BLKCG | IO_WQ_WORK_FS |
1456 IO_WQ_WORK_CREDS | IO_WQ_WORK_FILES);
1457 io_put_identity(req->task->io_uring, req);
1458 }
1459
1460 /*
1461 * Create a private copy of io_identity, since some fields don't match
1462 * the current context.
1463 */
1464 static bool io_identity_cow(struct io_kiocb *req)
1465 {
1466 struct io_uring_task *tctx = current->io_uring;
1467 const struct cred *creds = NULL;
1468 struct io_identity *id;
1469
1470 if (req->work.flags & IO_WQ_WORK_CREDS)
1471 creds = req->work.identity->creds;
1472
1473 id = kmemdup(req->work.identity, sizeof(*id), GFP_KERNEL);
1474 if (unlikely(!id)) {
1475 req->work.flags |= IO_WQ_WORK_CANCEL;
1476 return false;
1477 }
1478
1479 /*
1480 * We can safely just re-init the creds we copied Either the field
1481 * matches the current one, or we haven't grabbed it yet. The only
1482 * exception is ->creds, through registered personalities, so handle
1483 * that one separately.
1484 */
1485 io_init_identity(id);
1486 if (creds)
1487 id->creds = creds;
1488
1489 /* add one for this request */
1490 refcount_inc(&id->count);
1491
1492 /* drop tctx and req identity references, if needed */
1493 if (tctx->identity != &tctx->__identity &&
1494 refcount_dec_and_test(&tctx->identity->count))
1495 kfree(tctx->identity);
1496 if (req->work.identity != &tctx->__identity &&
1497 refcount_dec_and_test(&req->work.identity->count))
1498 kfree(req->work.identity);
1499
1500 req->work.identity = id;
1501 tctx->identity = id;
1502 return true;
1503 }
1504
1505 static void io_req_track_inflight(struct io_kiocb *req)
1506 {
1507 struct io_ring_ctx *ctx = req->ctx;
1508
1509 if (!(req->flags & REQ_F_INFLIGHT)) {
1510 io_req_init_async(req);
1511 req->flags |= REQ_F_INFLIGHT;
1512
1513 spin_lock_irq(&ctx->inflight_lock);
1514 list_add(&req->inflight_entry, &ctx->inflight_list);
1515 spin_unlock_irq(&ctx->inflight_lock);
1516 }
1517 }
1518
1519 static bool io_grab_identity(struct io_kiocb *req)
1520 {
1521 const struct io_op_def *def = &io_op_defs[req->opcode];
1522 struct io_identity *id = req->work.identity;
1523
1524 if (def->work_flags & IO_WQ_WORK_FSIZE) {
1525 if (id->fsize != rlimit(RLIMIT_FSIZE))
1526 return false;
1527 req->work.flags |= IO_WQ_WORK_FSIZE;
1528 }
1529 #ifdef CONFIG_BLK_CGROUP
1530 if (!(req->work.flags & IO_WQ_WORK_BLKCG) &&
1531 (def->work_flags & IO_WQ_WORK_BLKCG)) {
1532 rcu_read_lock();
1533 if (id->blkcg_css != blkcg_css()) {
1534 rcu_read_unlock();
1535 return false;
1536 }
1537 /*
1538 * This should be rare, either the cgroup is dying or the task
1539 * is moving cgroups. Just punt to root for the handful of ios.
1540 */
1541 if (css_tryget_online(id->blkcg_css))
1542 req->work.flags |= IO_WQ_WORK_BLKCG;
1543 rcu_read_unlock();
1544 }
1545 #endif
1546 if (!(req->work.flags & IO_WQ_WORK_CREDS)) {
1547 if (id->creds != current_cred())
1548 return false;
1549 get_cred(id->creds);
1550 req->work.flags |= IO_WQ_WORK_CREDS;
1551 }
1552 #ifdef CONFIG_AUDIT
1553 if (!uid_eq(current->loginuid, id->loginuid) ||
1554 current->sessionid != id->sessionid)
1555 return false;
1556 #endif
1557 if (!(req->work.flags & IO_WQ_WORK_FS) &&
1558 (def->work_flags & IO_WQ_WORK_FS)) {
1559 if (current->fs != id->fs)
1560 return false;
1561 spin_lock(&id->fs->lock);
1562 if (!id->fs->in_exec) {
1563 id->fs->users++;
1564 req->work.flags |= IO_WQ_WORK_FS;
1565 } else {
1566 req->work.flags |= IO_WQ_WORK_CANCEL;
1567 }
1568 spin_unlock(&current->fs->lock);
1569 }
1570 if (!(req->work.flags & IO_WQ_WORK_FILES) &&
1571 (def->work_flags & IO_WQ_WORK_FILES) &&
1572 !(req->flags & REQ_F_NO_FILE_TABLE)) {
1573 if (id->files != current->files ||
1574 id->nsproxy != current->nsproxy)
1575 return false;
1576 atomic_inc(&id->files->count);
1577 get_nsproxy(id->nsproxy);
1578 req->work.flags |= IO_WQ_WORK_FILES;
1579 io_req_track_inflight(req);
1580 }
1581 if (!(req->work.flags & IO_WQ_WORK_MM) &&
1582 (def->work_flags & IO_WQ_WORK_MM)) {
1583 if (id->mm != current->mm)
1584 return false;
1585 mmgrab(id->mm);
1586 req->work.flags |= IO_WQ_WORK_MM;
1587 }
1588
1589 return true;
1590 }
1591
1592 static void io_prep_async_work(struct io_kiocb *req)
1593 {
1594 const struct io_op_def *def = &io_op_defs[req->opcode];
1595 struct io_ring_ctx *ctx = req->ctx;
1596
1597 io_req_init_async(req);
1598
1599 if (req->flags & REQ_F_FORCE_ASYNC)
1600 req->work.flags |= IO_WQ_WORK_CONCURRENT;
1601
1602 if (req->flags & REQ_F_ISREG) {
1603 if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1604 io_wq_hash_work(&req->work, file_inode(req->file));
1605 } else {
1606 if (def->unbound_nonreg_file)
1607 req->work.flags |= IO_WQ_WORK_UNBOUND;
1608 }
1609
1610 /* if we fail grabbing identity, we must COW, regrab, and retry */
1611 if (io_grab_identity(req))
1612 return;
1613
1614 if (!io_identity_cow(req))
1615 return;
1616
1617 /* can't fail at this point */
1618 if (!io_grab_identity(req))
1619 WARN_ON(1);
1620 }
1621
1622 static void io_prep_async_link(struct io_kiocb *req)
1623 {
1624 struct io_kiocb *cur;
1625
1626 io_for_each_link(cur, req)
1627 io_prep_async_work(cur);
1628 }
1629
1630 static struct io_kiocb *__io_queue_async_work(struct io_kiocb *req)
1631 {
1632 struct io_ring_ctx *ctx = req->ctx;
1633 struct io_kiocb *link = io_prep_linked_timeout(req);
1634
1635 trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1636 &req->work, req->flags);
1637 io_wq_enqueue(ctx->io_wq, &req->work);
1638 return link;
1639 }
1640
1641 static void io_queue_async_work(struct io_kiocb *req)
1642 {
1643 struct io_kiocb *link;
1644
1645 /* init ->work of the whole link before punting */
1646 io_prep_async_link(req);
1647 link = __io_queue_async_work(req);
1648
1649 if (link)
1650 io_queue_linked_timeout(link);
1651 }
1652
1653 static void io_kill_timeout(struct io_kiocb *req)
1654 {
1655 struct io_timeout_data *io = req->async_data;
1656 int ret;
1657
1658 ret = hrtimer_try_to_cancel(&io->timer);
1659 if (ret != -1) {
1660 atomic_set(&req->ctx->cq_timeouts,
1661 atomic_read(&req->ctx->cq_timeouts) + 1);
1662 list_del_init(&req->timeout.list);
1663 io_cqring_fill_event(req, 0);
1664 io_put_req_deferred(req, 1);
1665 }
1666 }
1667
1668 /*
1669 * Returns true if we found and killed one or more timeouts
1670 */
1671 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
1672 struct files_struct *files)
1673 {
1674 struct io_kiocb *req, *tmp;
1675 int canceled = 0;
1676
1677 spin_lock_irq(&ctx->completion_lock);
1678 list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
1679 if (io_match_task(req, tsk, files)) {
1680 io_kill_timeout(req);
1681 canceled++;
1682 }
1683 }
1684 spin_unlock_irq(&ctx->completion_lock);
1685 return canceled != 0;
1686 }
1687
1688 static void __io_queue_deferred(struct io_ring_ctx *ctx)
1689 {
1690 do {
1691 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1692 struct io_defer_entry, list);
1693
1694 if (req_need_defer(de->req, de->seq))
1695 break;
1696 list_del_init(&de->list);
1697 io_req_task_queue(de->req);
1698 kfree(de);
1699 } while (!list_empty(&ctx->defer_list));
1700 }
1701
1702 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1703 {
1704 u32 seq;
1705
1706 if (list_empty(&ctx->timeout_list))
1707 return;
1708
1709 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1710
1711 do {
1712 u32 events_needed, events_got;
1713 struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1714 struct io_kiocb, timeout.list);
1715
1716 if (io_is_timeout_noseq(req))
1717 break;
1718
1719 /*
1720 * Since seq can easily wrap around over time, subtract
1721 * the last seq at which timeouts were flushed before comparing.
1722 * Assuming not more than 2^31-1 events have happened since,
1723 * these subtractions won't have wrapped, so we can check if
1724 * target is in [last_seq, current_seq] by comparing the two.
1725 */
1726 events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1727 events_got = seq - ctx->cq_last_tm_flush;
1728 if (events_got < events_needed)
1729 break;
1730
1731 list_del_init(&req->timeout.list);
1732 io_kill_timeout(req);
1733 } while (!list_empty(&ctx->timeout_list));
1734
1735 ctx->cq_last_tm_flush = seq;
1736 }
1737
1738 static void io_commit_cqring(struct io_ring_ctx *ctx)
1739 {
1740 io_flush_timeouts(ctx);
1741
1742 /* order cqe stores with ring update */
1743 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1744
1745 if (unlikely(!list_empty(&ctx->defer_list)))
1746 __io_queue_deferred(ctx);
1747 }
1748
1749 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1750 {
1751 struct io_rings *r = ctx->rings;
1752
1753 return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == r->sq_ring_entries;
1754 }
1755
1756 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1757 {
1758 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1759 }
1760
1761 static struct io_uring_cqe *io_get_cqring(struct io_ring_ctx *ctx)
1762 {
1763 struct io_rings *rings = ctx->rings;
1764 unsigned tail;
1765
1766 /*
1767 * writes to the cq entry need to come after reading head; the
1768 * control dependency is enough as we're using WRITE_ONCE to
1769 * fill the cq entry
1770 */
1771 if (__io_cqring_events(ctx) == rings->cq_ring_entries)
1772 return NULL;
1773
1774 tail = ctx->cached_cq_tail++;
1775 return &rings->cqes[tail & ctx->cq_mask];
1776 }
1777
1778 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1779 {
1780 if (!ctx->cq_ev_fd)
1781 return false;
1782 if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1783 return false;
1784 if (!ctx->eventfd_async)
1785 return true;
1786 return io_wq_current_is_worker();
1787 }
1788
1789 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1790 {
1791 /* see waitqueue_active() comment */
1792 smp_mb();
1793
1794 if (waitqueue_active(&ctx->wait))
1795 wake_up(&ctx->wait);
1796 if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1797 wake_up(&ctx->sq_data->wait);
1798 if (io_should_trigger_evfd(ctx))
1799 eventfd_signal(ctx->cq_ev_fd, 1);
1800 if (waitqueue_active(&ctx->cq_wait)) {
1801 wake_up_interruptible(&ctx->cq_wait);
1802 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1803 }
1804 }
1805
1806 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1807 {
1808 /* see waitqueue_active() comment */
1809 smp_mb();
1810
1811 if (ctx->flags & IORING_SETUP_SQPOLL) {
1812 if (waitqueue_active(&ctx->wait))
1813 wake_up(&ctx->wait);
1814 }
1815 if (io_should_trigger_evfd(ctx))
1816 eventfd_signal(ctx->cq_ev_fd, 1);
1817 if (waitqueue_active(&ctx->cq_wait)) {
1818 wake_up_interruptible(&ctx->cq_wait);
1819 kill_fasync(&ctx->cq_fasync, SIGIO, POLL_IN);
1820 }
1821 }
1822
1823 /* Returns true if there are no backlogged entries after the flush */
1824 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1825 struct task_struct *tsk,
1826 struct files_struct *files)
1827 {
1828 struct io_rings *rings = ctx->rings;
1829 struct io_kiocb *req, *tmp;
1830 struct io_uring_cqe *cqe;
1831 unsigned long flags;
1832 bool all_flushed, posted;
1833 LIST_HEAD(list);
1834
1835 if (!force && __io_cqring_events(ctx) == rings->cq_ring_entries)
1836 return false;
1837
1838 posted = false;
1839 spin_lock_irqsave(&ctx->completion_lock, flags);
1840 list_for_each_entry_safe(req, tmp, &ctx->cq_overflow_list, compl.list) {
1841 if (!io_match_task(req, tsk, files))
1842 continue;
1843
1844 cqe = io_get_cqring(ctx);
1845 if (!cqe && !force)
1846 break;
1847
1848 list_move(&req->compl.list, &list);
1849 if (cqe) {
1850 WRITE_ONCE(cqe->user_data, req->user_data);
1851 WRITE_ONCE(cqe->res, req->result);
1852 WRITE_ONCE(cqe->flags, req->compl.cflags);
1853 } else {
1854 ctx->cached_cq_overflow++;
1855 WRITE_ONCE(ctx->rings->cq_overflow,
1856 ctx->cached_cq_overflow);
1857 }
1858 posted = true;
1859 }
1860
1861 all_flushed = list_empty(&ctx->cq_overflow_list);
1862 if (all_flushed) {
1863 clear_bit(0, &ctx->sq_check_overflow);
1864 clear_bit(0, &ctx->cq_check_overflow);
1865 ctx->rings->sq_flags &= ~IORING_SQ_CQ_OVERFLOW;
1866 }
1867
1868 if (posted)
1869 io_commit_cqring(ctx);
1870 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1871 if (posted)
1872 io_cqring_ev_posted(ctx);
1873
1874 while (!list_empty(&list)) {
1875 req = list_first_entry(&list, struct io_kiocb, compl.list);
1876 list_del(&req->compl.list);
1877 io_put_req(req);
1878 }
1879
1880 return all_flushed;
1881 }
1882
1883 static void io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force,
1884 struct task_struct *tsk,
1885 struct files_struct *files)
1886 {
1887 if (test_bit(0, &ctx->cq_check_overflow)) {
1888 /* iopoll syncs against uring_lock, not completion_lock */
1889 if (ctx->flags & IORING_SETUP_IOPOLL)
1890 mutex_lock(&ctx->uring_lock);
1891 __io_cqring_overflow_flush(ctx, force, tsk, files);
1892 if (ctx->flags & IORING_SETUP_IOPOLL)
1893 mutex_unlock(&ctx->uring_lock);
1894 }
1895 }
1896
1897 static void __io_cqring_fill_event(struct io_kiocb *req, long res, long cflags)
1898 {
1899 struct io_ring_ctx *ctx = req->ctx;
1900 struct io_uring_cqe *cqe;
1901
1902 trace_io_uring_complete(ctx, req->user_data, res);
1903
1904 /*
1905 * If we can't get a cq entry, userspace overflowed the
1906 * submission (by quite a lot). Increment the overflow count in
1907 * the ring.
1908 */
1909 cqe = io_get_cqring(ctx);
1910 if (likely(cqe)) {
1911 WRITE_ONCE(cqe->user_data, req->user_data);
1912 WRITE_ONCE(cqe->res, res);
1913 WRITE_ONCE(cqe->flags, cflags);
1914 } else if (ctx->cq_overflow_flushed ||
1915 atomic_read(&req->task->io_uring->in_idle)) {
1916 /*
1917 * If we're in ring overflow flush mode, or in task cancel mode,
1918 * then we cannot store the request for later flushing, we need
1919 * to drop it on the floor.
1920 */
1921 ctx->cached_cq_overflow++;
1922 WRITE_ONCE(ctx->rings->cq_overflow, ctx->cached_cq_overflow);
1923 } else {
1924 if (list_empty(&ctx->cq_overflow_list)) {
1925 set_bit(0, &ctx->sq_check_overflow);
1926 set_bit(0, &ctx->cq_check_overflow);
1927 ctx->rings->sq_flags |= IORING_SQ_CQ_OVERFLOW;
1928 }
1929 io_clean_op(req);
1930 req->result = res;
1931 req->compl.cflags = cflags;
1932 refcount_inc(&req->refs);
1933 list_add_tail(&req->compl.list, &ctx->cq_overflow_list);
1934 }
1935 }
1936
1937 static void io_cqring_fill_event(struct io_kiocb *req, long res)
1938 {
1939 __io_cqring_fill_event(req, res, 0);
1940 }
1941
1942 static inline void io_req_complete_post(struct io_kiocb *req, long res,
1943 unsigned int cflags)
1944 {
1945 struct io_ring_ctx *ctx = req->ctx;
1946 unsigned long flags;
1947
1948 spin_lock_irqsave(&ctx->completion_lock, flags);
1949 __io_cqring_fill_event(req, res, cflags);
1950 io_commit_cqring(ctx);
1951 /*
1952 * If we're the last reference to this request, add to our locked
1953 * free_list cache.
1954 */
1955 if (refcount_dec_and_test(&req->refs)) {
1956 struct io_comp_state *cs = &ctx->submit_state.comp;
1957
1958 io_dismantle_req(req);
1959 io_put_task(req->task, 1);
1960 list_add(&req->compl.list, &cs->locked_free_list);
1961 cs->locked_free_nr++;
1962 } else
1963 req = NULL;
1964 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1965
1966 io_cqring_ev_posted(ctx);
1967 if (req) {
1968 io_queue_next(req);
1969 percpu_ref_put(&ctx->refs);
1970 }
1971 }
1972
1973 static void io_req_complete_state(struct io_kiocb *req, long res,
1974 unsigned int cflags)
1975 {
1976 io_clean_op(req);
1977 req->result = res;
1978 req->compl.cflags = cflags;
1979 req->flags |= REQ_F_COMPLETE_INLINE;
1980 }
1981
1982 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1983 long res, unsigned cflags)
1984 {
1985 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1986 io_req_complete_state(req, res, cflags);
1987 else
1988 io_req_complete_post(req, res, cflags);
1989 }
1990
1991 static inline void io_req_complete(struct io_kiocb *req, long res)
1992 {
1993 __io_req_complete(req, 0, res, 0);
1994 }
1995
1996 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1997 {
1998 struct io_submit_state *state = &ctx->submit_state;
1999 struct io_comp_state *cs = &state->comp;
2000 struct io_kiocb *req = NULL;
2001
2002 /*
2003 * If we have more than a batch's worth of requests in our IRQ side
2004 * locked cache, grab the lock and move them over to our submission
2005 * side cache.
2006 */
2007 if (READ_ONCE(cs->locked_free_nr) > IO_COMPL_BATCH) {
2008 spin_lock_irq(&ctx->completion_lock);
2009 list_splice_init(&cs->locked_free_list, &cs->free_list);
2010 cs->locked_free_nr = 0;
2011 spin_unlock_irq(&ctx->completion_lock);
2012 }
2013
2014 while (!list_empty(&cs->free_list)) {
2015 req = list_first_entry(&cs->free_list, struct io_kiocb,
2016 compl.list);
2017 list_del(&req->compl.list);
2018 state->reqs[state->free_reqs++] = req;
2019 if (state->free_reqs == ARRAY_SIZE(state->reqs))
2020 break;
2021 }
2022
2023 return req != NULL;
2024 }
2025
2026 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
2027 {
2028 struct io_submit_state *state = &ctx->submit_state;
2029
2030 BUILD_BUG_ON(IO_REQ_ALLOC_BATCH > ARRAY_SIZE(state->reqs));
2031
2032 if (!state->free_reqs) {
2033 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
2034 int ret;
2035
2036 if (io_flush_cached_reqs(ctx))
2037 goto got_req;
2038
2039 ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
2040 state->reqs);
2041
2042 /*
2043 * Bulk alloc is all-or-nothing. If we fail to get a batch,
2044 * retry single alloc to be on the safe side.
2045 */
2046 if (unlikely(ret <= 0)) {
2047 state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
2048 if (!state->reqs[0])
2049 return NULL;
2050 ret = 1;
2051 }
2052 state->free_reqs = ret;
2053 }
2054 got_req:
2055 state->free_reqs--;
2056 return state->reqs[state->free_reqs];
2057 }
2058
2059 static inline void io_put_file(struct io_kiocb *req, struct file *file,
2060 bool fixed)
2061 {
2062 if (!fixed)
2063 fput(file);
2064 }
2065
2066 static void io_dismantle_req(struct io_kiocb *req)
2067 {
2068 io_clean_op(req);
2069
2070 if (req->async_data)
2071 kfree(req->async_data);
2072 if (req->file)
2073 io_put_file(req, req->file, (req->flags & REQ_F_FIXED_FILE));
2074 if (req->fixed_rsrc_refs)
2075 percpu_ref_put(req->fixed_rsrc_refs);
2076 io_req_clean_work(req);
2077 }
2078
2079 static inline void io_put_task(struct task_struct *task, int nr)
2080 {
2081 struct io_uring_task *tctx = task->io_uring;
2082
2083 percpu_counter_sub(&tctx->inflight, nr);
2084 if (unlikely(atomic_read(&tctx->in_idle)))
2085 wake_up(&tctx->wait);
2086 put_task_struct_many(task, nr);
2087 }
2088
2089 static void __io_free_req(struct io_kiocb *req)
2090 {
2091 struct io_ring_ctx *ctx = req->ctx;
2092
2093 io_dismantle_req(req);
2094 io_put_task(req->task, 1);
2095
2096 kmem_cache_free(req_cachep, req);
2097 percpu_ref_put(&ctx->refs);
2098 }
2099
2100 static inline void io_remove_next_linked(struct io_kiocb *req)
2101 {
2102 struct io_kiocb *nxt = req->link;
2103
2104 req->link = nxt->link;
2105 nxt->link = NULL;
2106 }
2107
2108 static void io_kill_linked_timeout(struct io_kiocb *req)
2109 {
2110 struct io_ring_ctx *ctx = req->ctx;
2111 struct io_kiocb *link;
2112 bool cancelled = false;
2113 unsigned long flags;
2114
2115 spin_lock_irqsave(&ctx->completion_lock, flags);
2116 link = req->link;
2117
2118 /*
2119 * Can happen if a linked timeout fired and link had been like
2120 * req -> link t-out -> link t-out [-> ...]
2121 */
2122 if (link && (link->flags & REQ_F_LTIMEOUT_ACTIVE)) {
2123 struct io_timeout_data *io = link->async_data;
2124 int ret;
2125
2126 io_remove_next_linked(req);
2127 link->timeout.head = NULL;
2128 ret = hrtimer_try_to_cancel(&io->timer);
2129 if (ret != -1) {
2130 io_cqring_fill_event(link, -ECANCELED);
2131 io_commit_cqring(ctx);
2132 cancelled = true;
2133 }
2134 }
2135 req->flags &= ~REQ_F_LINK_TIMEOUT;
2136 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2137
2138 if (cancelled) {
2139 io_cqring_ev_posted(ctx);
2140 io_put_req(link);
2141 }
2142 }
2143
2144
2145 static void io_fail_links(struct io_kiocb *req)
2146 {
2147 struct io_kiocb *link, *nxt;
2148 struct io_ring_ctx *ctx = req->ctx;
2149 unsigned long flags;
2150
2151 spin_lock_irqsave(&ctx->completion_lock, flags);
2152 link = req->link;
2153 req->link = NULL;
2154
2155 while (link) {
2156 nxt = link->link;
2157 link->link = NULL;
2158
2159 trace_io_uring_fail_link(req, link);
2160 io_cqring_fill_event(link, -ECANCELED);
2161
2162 /*
2163 * It's ok to free under spinlock as they're not linked anymore,
2164 * but avoid REQ_F_WORK_INITIALIZED because it may deadlock on
2165 * work.fs->lock.
2166 */
2167 if (link->flags & REQ_F_WORK_INITIALIZED)
2168 io_put_req_deferred(link, 2);
2169 else
2170 io_double_put_req(link);
2171 link = nxt;
2172 }
2173 io_commit_cqring(ctx);
2174 spin_unlock_irqrestore(&ctx->completion_lock, flags);
2175
2176 io_cqring_ev_posted(ctx);
2177 }
2178
2179 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2180 {
2181 if (req->flags & REQ_F_LINK_TIMEOUT)
2182 io_kill_linked_timeout(req);
2183
2184 /*
2185 * If LINK is set, we have dependent requests in this chain. If we
2186 * didn't fail this request, queue the first one up, moving any other
2187 * dependencies to the next request. In case of failure, fail the rest
2188 * of the chain.
2189 */
2190 if (likely(!(req->flags & REQ_F_FAIL_LINK))) {
2191 struct io_kiocb *nxt = req->link;
2192
2193 req->link = NULL;
2194 return nxt;
2195 }
2196 io_fail_links(req);
2197 return NULL;
2198 }
2199
2200 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2201 {
2202 if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2203 return NULL;
2204 return __io_req_find_next(req);
2205 }
2206
2207 static bool __tctx_task_work(struct io_uring_task *tctx)
2208 {
2209 struct io_ring_ctx *ctx = NULL;
2210 struct io_wq_work_list list;
2211 struct io_wq_work_node *node;
2212
2213 if (wq_list_empty(&tctx->task_list))
2214 return false;
2215
2216 spin_lock_irq(&tctx->task_lock);
2217 list = tctx->task_list;
2218 INIT_WQ_LIST(&tctx->task_list);
2219 spin_unlock_irq(&tctx->task_lock);
2220
2221 node = list.first;
2222 while (node) {
2223 struct io_wq_work_node *next = node->next;
2224 struct io_ring_ctx *this_ctx;
2225 struct io_kiocb *req;
2226
2227 req = container_of(node, struct io_kiocb, io_task_work.node);
2228 this_ctx = req->ctx;
2229 req->task_work.func(&req->task_work);
2230 node = next;
2231
2232 if (!ctx) {
2233 ctx = this_ctx;
2234 } else if (ctx != this_ctx) {
2235 mutex_lock(&ctx->uring_lock);
2236 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2237 mutex_unlock(&ctx->uring_lock);
2238 ctx = this_ctx;
2239 }
2240 }
2241
2242 if (ctx && ctx->submit_state.comp.nr) {
2243 mutex_lock(&ctx->uring_lock);
2244 io_submit_flush_completions(&ctx->submit_state.comp, ctx);
2245 mutex_unlock(&ctx->uring_lock);
2246 }
2247
2248 return list.first != NULL;
2249 }
2250
2251 static void tctx_task_work(struct callback_head *cb)
2252 {
2253 struct io_uring_task *tctx = container_of(cb, struct io_uring_task, task_work);
2254
2255 while (__tctx_task_work(tctx))
2256 cond_resched();
2257
2258 clear_bit(0, &tctx->task_state);
2259 }
2260
2261 static int io_task_work_add(struct task_struct *tsk, struct io_kiocb *req,
2262 enum task_work_notify_mode notify)
2263 {
2264 struct io_uring_task *tctx = tsk->io_uring;
2265 struct io_wq_work_node *node, *prev;
2266 unsigned long flags;
2267 int ret;
2268
2269 WARN_ON_ONCE(!tctx);
2270
2271 spin_lock_irqsave(&tctx->task_lock, flags);
2272 wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2273 spin_unlock_irqrestore(&tctx->task_lock, flags);
2274
2275 /* task_work already pending, we're done */
2276 if (test_bit(0, &tctx->task_state) ||
2277 test_and_set_bit(0, &tctx->task_state))
2278 return 0;
2279
2280 if (!task_work_add(tsk, &tctx->task_work, notify))
2281 return 0;
2282
2283 /*
2284 * Slow path - we failed, find and delete work. if the work is not
2285 * in the list, it got run and we're fine.
2286 */
2287 ret = 0;
2288 spin_lock_irqsave(&tctx->task_lock, flags);
2289 wq_list_for_each(node, prev, &tctx->task_list) {
2290 if (&req->io_task_work.node == node) {
2291 wq_list_del(&tctx->task_list, node, prev);
2292 ret = 1;
2293 break;
2294 }
2295 }
2296 spin_unlock_irqrestore(&tctx->task_lock, flags);
2297 clear_bit(0, &tctx->task_state);
2298 return ret;
2299 }
2300
2301 static int io_req_task_work_add(struct io_kiocb *req)
2302 {
2303 struct task_struct *tsk = req->task;
2304 struct io_ring_ctx *ctx = req->ctx;
2305 enum task_work_notify_mode notify;
2306 int ret;
2307
2308 if (tsk->flags & PF_EXITING)
2309 return -ESRCH;
2310
2311 /*
2312 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2313 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2314 * processing task_work. There's no reliable way to tell if TWA_RESUME
2315 * will do the job.
2316 */
2317 notify = TWA_NONE;
2318 if (!(ctx->flags & IORING_SETUP_SQPOLL))
2319 notify = TWA_SIGNAL;
2320
2321 ret = io_task_work_add(tsk, req, notify);
2322 if (!ret)
2323 wake_up_process(tsk);
2324
2325 return ret;
2326 }
2327
2328 static void io_req_task_work_add_fallback(struct io_kiocb *req,
2329 task_work_func_t cb)
2330 {
2331 struct task_struct *tsk = io_wq_get_task(req->ctx->io_wq);
2332
2333 init_task_work(&req->task_work, cb);
2334 task_work_add(tsk, &req->task_work, TWA_NONE);
2335 wake_up_process(tsk);
2336 }
2337
2338 static void __io_req_task_cancel(struct io_kiocb *req, int error)
2339 {
2340 struct io_ring_ctx *ctx = req->ctx;
2341
2342 spin_lock_irq(&ctx->completion_lock);
2343 io_cqring_fill_event(req, error);
2344 io_commit_cqring(ctx);
2345 spin_unlock_irq(&ctx->completion_lock);
2346
2347 io_cqring_ev_posted(ctx);
2348 req_set_fail_links(req);
2349 io_double_put_req(req);
2350 }
2351
2352 static void io_req_task_cancel(struct callback_head *cb)
2353 {
2354 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2355 struct io_ring_ctx *ctx = req->ctx;
2356
2357 mutex_lock(&ctx->uring_lock);
2358 __io_req_task_cancel(req, req->result);
2359 mutex_unlock(&ctx->uring_lock);
2360 percpu_ref_put(&ctx->refs);
2361 }
2362
2363 static void __io_req_task_submit(struct io_kiocb *req)
2364 {
2365 struct io_ring_ctx *ctx = req->ctx;
2366
2367 /* ctx stays valid until unlock, even if we drop all ours ctx->refs */
2368 mutex_lock(&ctx->uring_lock);
2369 if (!ctx->sqo_dead && !(current->flags & PF_EXITING) &&
2370 !io_sq_thread_acquire_mm_files(ctx, req))
2371 __io_queue_sqe(req);
2372 else
2373 __io_req_task_cancel(req, -EFAULT);
2374 mutex_unlock(&ctx->uring_lock);
2375
2376 if (ctx->flags & IORING_SETUP_SQPOLL)
2377 io_sq_thread_drop_mm_files();
2378 }
2379
2380 static void io_req_task_submit(struct callback_head *cb)
2381 {
2382 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2383
2384 __io_req_task_submit(req);
2385 }
2386
2387 static void io_req_task_queue(struct io_kiocb *req)
2388 {
2389 int ret;
2390
2391 req->task_work.func = io_req_task_submit;
2392 ret = io_req_task_work_add(req);
2393 if (unlikely(ret)) {
2394 req->result = -ECANCELED;
2395 percpu_ref_get(&req->ctx->refs);
2396 io_req_task_work_add_fallback(req, io_req_task_cancel);
2397 }
2398 }
2399
2400 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2401 {
2402 percpu_ref_get(&req->ctx->refs);
2403 req->result = ret;
2404 req->task_work.func = io_req_task_cancel;
2405
2406 if (unlikely(io_req_task_work_add(req)))
2407 io_req_task_work_add_fallback(req, io_req_task_cancel);
2408 }
2409
2410 static inline void io_queue_next(struct io_kiocb *req)
2411 {
2412 struct io_kiocb *nxt = io_req_find_next(req);
2413
2414 if (nxt)
2415 io_req_task_queue(nxt);
2416 }
2417
2418 static void io_free_req(struct io_kiocb *req)
2419 {
2420 io_queue_next(req);
2421 __io_free_req(req);
2422 }
2423
2424 struct req_batch {
2425 struct task_struct *task;
2426 int task_refs;
2427 int ctx_refs;
2428 };
2429
2430 static inline void io_init_req_batch(struct req_batch *rb)
2431 {
2432 rb->task_refs = 0;
2433 rb->ctx_refs = 0;
2434 rb->task = NULL;
2435 }
2436
2437 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2438 struct req_batch *rb)
2439 {
2440 if (rb->task)
2441 io_put_task(rb->task, rb->task_refs);
2442 if (rb->ctx_refs)
2443 percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2444 }
2445
2446 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2447 struct io_submit_state *state)
2448 {
2449 io_queue_next(req);
2450
2451 if (req->task != rb->task) {
2452 if (rb->task)
2453 io_put_task(rb->task, rb->task_refs);
2454 rb->task = req->task;
2455 rb->task_refs = 0;
2456 }
2457 rb->task_refs++;
2458 rb->ctx_refs++;
2459
2460 io_dismantle_req(req);
2461 if (state->free_reqs != ARRAY_SIZE(state->reqs))
2462 state->reqs[state->free_reqs++] = req;
2463 else
2464 list_add(&req->compl.list, &state->comp.free_list);
2465 }
2466
2467 static void io_submit_flush_completions(struct io_comp_state *cs,
2468 struct io_ring_ctx *ctx)
2469 {
2470 int i, nr = cs->nr;
2471 struct io_kiocb *req;
2472 struct req_batch rb;
2473
2474 io_init_req_batch(&rb);
2475 spin_lock_irq(&ctx->completion_lock);
2476 for (i = 0; i < nr; i++) {
2477 req = cs->reqs[i];
2478 __io_cqring_fill_event(req, req->result, req->compl.cflags);
2479 }
2480 io_commit_cqring(ctx);
2481 spin_unlock_irq(&ctx->completion_lock);
2482
2483 io_cqring_ev_posted(ctx);
2484 for (i = 0; i < nr; i++) {
2485 req = cs->reqs[i];
2486
2487 /* submission and completion refs */
2488 if (refcount_sub_and_test(2, &req->refs))
2489 io_req_free_batch(&rb, req, &ctx->submit_state);
2490 }
2491
2492 io_req_free_batch_finish(ctx, &rb);
2493 cs->nr = 0;
2494 }
2495
2496 /*
2497 * Drop reference to request, return next in chain (if there is one) if this
2498 * was the last reference to this request.
2499 */
2500 static struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2501 {
2502 struct io_kiocb *nxt = NULL;
2503
2504 if (refcount_dec_and_test(&req->refs)) {
2505 nxt = io_req_find_next(req);
2506 __io_free_req(req);
2507 }
2508 return nxt;
2509 }
2510
2511 static void io_put_req(struct io_kiocb *req)
2512 {
2513 if (refcount_dec_and_test(&req->refs))
2514 io_free_req(req);
2515 }
2516
2517 static void io_put_req_deferred_cb(struct callback_head *cb)
2518 {
2519 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
2520
2521 io_free_req(req);
2522 }
2523
2524 static void io_free_req_deferred(struct io_kiocb *req)
2525 {
2526 int ret;
2527
2528 req->task_work.func = io_put_req_deferred_cb;
2529 ret = io_req_task_work_add(req);
2530 if (unlikely(ret))
2531 io_req_task_work_add_fallback(req, io_put_req_deferred_cb);
2532 }
2533
2534 static inline void io_put_req_deferred(struct io_kiocb *req, int refs)
2535 {
2536 if (refcount_sub_and_test(refs, &req->refs))
2537 io_free_req_deferred(req);
2538 }
2539
2540 static void io_double_put_req(struct io_kiocb *req)
2541 {
2542 /* drop both submit and complete references */
2543 if (refcount_sub_and_test(2, &req->refs))
2544 io_free_req(req);
2545 }
2546
2547 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2548 {
2549 /* See comment at the top of this file */
2550 smp_rmb();
2551 return __io_cqring_events(ctx);
2552 }
2553
2554 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2555 {
2556 struct io_rings *rings = ctx->rings;
2557
2558 /* make sure SQ entry isn't read before tail */
2559 return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2560 }
2561
2562 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2563 {
2564 unsigned int cflags;
2565
2566 cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2567 cflags |= IORING_CQE_F_BUFFER;
2568 req->flags &= ~REQ_F_BUFFER_SELECTED;
2569 kfree(kbuf);
2570 return cflags;
2571 }
2572
2573 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2574 {
2575 struct io_buffer *kbuf;
2576
2577 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2578 return io_put_kbuf(req, kbuf);
2579 }
2580
2581 static inline bool io_run_task_work(void)
2582 {
2583 /*
2584 * Not safe to run on exiting task, and the task_work handling will
2585 * not add work to such a task.
2586 */
2587 if (unlikely(current->flags & PF_EXITING))
2588 return false;
2589 if (current->task_works) {
2590 __set_current_state(TASK_RUNNING);
2591 task_work_run();
2592 return true;
2593 }
2594
2595 return false;
2596 }
2597
2598 /*
2599 * Find and free completed poll iocbs
2600 */
2601 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2602 struct list_head *done)
2603 {
2604 struct req_batch rb;
2605 struct io_kiocb *req;
2606
2607 /* order with ->result store in io_complete_rw_iopoll() */
2608 smp_rmb();
2609
2610 io_init_req_batch(&rb);
2611 while (!list_empty(done)) {
2612 int cflags = 0;
2613
2614 req = list_first_entry(done, struct io_kiocb, inflight_entry);
2615 list_del(&req->inflight_entry);
2616
2617 if (READ_ONCE(req->result) == -EAGAIN) {
2618 req->iopoll_completed = 0;
2619 if (io_rw_reissue(req))
2620 continue;
2621 }
2622
2623 if (req->flags & REQ_F_BUFFER_SELECTED)
2624 cflags = io_put_rw_kbuf(req);
2625
2626 __io_cqring_fill_event(req, req->result, cflags);
2627 (*nr_events)++;
2628
2629 if (refcount_dec_and_test(&req->refs))
2630 io_req_free_batch(&rb, req, &ctx->submit_state);
2631 }
2632
2633 io_commit_cqring(ctx);
2634 io_cqring_ev_posted_iopoll(ctx);
2635 io_req_free_batch_finish(ctx, &rb);
2636 }
2637
2638 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2639 long min)
2640 {
2641 struct io_kiocb *req, *tmp;
2642 LIST_HEAD(done);
2643 bool spin;
2644 int ret;
2645
2646 /*
2647 * Only spin for completions if we don't have multiple devices hanging
2648 * off our complete list, and we're under the requested amount.
2649 */
2650 spin = !ctx->poll_multi_file && *nr_events < min;
2651
2652 ret = 0;
2653 list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2654 struct kiocb *kiocb = &req->rw.kiocb;
2655
2656 /*
2657 * Move completed and retryable entries to our local lists.
2658 * If we find a request that requires polling, break out
2659 * and complete those lists first, if we have entries there.
2660 */
2661 if (READ_ONCE(req->iopoll_completed)) {
2662 list_move_tail(&req->inflight_entry, &done);
2663 continue;
2664 }
2665 if (!list_empty(&done))
2666 break;
2667
2668 ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2669 if (ret < 0)
2670 break;
2671
2672 /* iopoll may have completed current req */
2673 if (READ_ONCE(req->iopoll_completed))
2674 list_move_tail(&req->inflight_entry, &done);
2675
2676 if (ret && spin)
2677 spin = false;
2678 ret = 0;
2679 }
2680
2681 if (!list_empty(&done))
2682 io_iopoll_complete(ctx, nr_events, &done);
2683
2684 return ret;
2685 }
2686
2687 /*
2688 * Poll for a minimum of 'min' events. Note that if min == 0 we consider that a
2689 * non-spinning poll check - we'll still enter the driver poll loop, but only
2690 * as a non-spinning completion check.
2691 */
2692 static int io_iopoll_getevents(struct io_ring_ctx *ctx, unsigned int *nr_events,
2693 long min)
2694 {
2695 while (!list_empty(&ctx->iopoll_list) && !need_resched()) {
2696 int ret;
2697
2698 ret = io_do_iopoll(ctx, nr_events, min);
2699 if (ret < 0)
2700 return ret;
2701 if (*nr_events >= min)
2702 return 0;
2703 }
2704
2705 return 1;
2706 }
2707
2708 /*
2709 * We can't just wait for polled events to come to us, we have to actively
2710 * find and complete them.
2711 */
2712 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2713 {
2714 if (!(ctx->flags & IORING_SETUP_IOPOLL))
2715 return;
2716
2717 mutex_lock(&ctx->uring_lock);
2718 while (!list_empty(&ctx->iopoll_list)) {
2719 unsigned int nr_events = 0;
2720
2721 io_do_iopoll(ctx, &nr_events, 0);
2722
2723 /* let it sleep and repeat later if can't complete a request */
2724 if (nr_events == 0)
2725 break;
2726 /*
2727 * Ensure we allow local-to-the-cpu processing to take place,
2728 * in this case we need to ensure that we reap all events.
2729 * Also let task_work, etc. to progress by releasing the mutex
2730 */
2731 if (need_resched()) {
2732 mutex_unlock(&ctx->uring_lock);
2733 cond_resched();
2734 mutex_lock(&ctx->uring_lock);
2735 }
2736 }
2737 mutex_unlock(&ctx->uring_lock);
2738 }
2739
2740 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2741 {
2742 unsigned int nr_events = 0;
2743 int iters = 0, ret = 0;
2744
2745 /*
2746 * We disallow the app entering submit/complete with polling, but we
2747 * still need to lock the ring to prevent racing with polled issue
2748 * that got punted to a workqueue.
2749 */
2750 mutex_lock(&ctx->uring_lock);
2751 do {
2752 /*
2753 * Don't enter poll loop if we already have events pending.
2754 * If we do, we can potentially be spinning for commands that
2755 * already triggered a CQE (eg in error).
2756 */
2757 if (test_bit(0, &ctx->cq_check_overflow))
2758 __io_cqring_overflow_flush(ctx, false, NULL, NULL);
2759 if (io_cqring_events(ctx))
2760 break;
2761
2762 /*
2763 * If a submit got punted to a workqueue, we can have the
2764 * application entering polling for a command before it gets
2765 * issued. That app will hold the uring_lock for the duration
2766 * of the poll right here, so we need to take a breather every
2767 * now and then to ensure that the issue has a chance to add
2768 * the poll to the issued list. Otherwise we can spin here
2769 * forever, while the workqueue is stuck trying to acquire the
2770 * very same mutex.
2771 */
2772 if (!(++iters & 7)) {
2773 mutex_unlock(&ctx->uring_lock);
2774 io_run_task_work();
2775 mutex_lock(&ctx->uring_lock);
2776 }
2777
2778 ret = io_iopoll_getevents(ctx, &nr_events, min);
2779 if (ret <= 0)
2780 break;
2781 ret = 0;
2782 } while (min && !nr_events && !need_resched());
2783
2784 mutex_unlock(&ctx->uring_lock);
2785 return ret;
2786 }
2787
2788 static void kiocb_end_write(struct io_kiocb *req)
2789 {
2790 /*
2791 * Tell lockdep we inherited freeze protection from submission
2792 * thread.
2793 */
2794 if (req->flags & REQ_F_ISREG) {
2795 struct inode *inode = file_inode(req->file);
2796
2797 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
2798 }
2799 file_end_write(req->file);
2800 }
2801
2802 #ifdef CONFIG_BLOCK
2803 static bool io_resubmit_prep(struct io_kiocb *req)
2804 {
2805 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
2806 int rw, ret;
2807 struct iov_iter iter;
2808
2809 /* already prepared */
2810 if (req->async_data)
2811 return true;
2812
2813 switch (req->opcode) {
2814 case IORING_OP_READV:
2815 case IORING_OP_READ_FIXED:
2816 case IORING_OP_READ:
2817 rw = READ;
2818 break;
2819 case IORING_OP_WRITEV:
2820 case IORING_OP_WRITE_FIXED:
2821 case IORING_OP_WRITE:
2822 rw = WRITE;
2823 break;
2824 default:
2825 printk_once(KERN_WARNING "io_uring: bad opcode in resubmit %d\n",
2826 req->opcode);
2827 return false;
2828 }
2829
2830 ret = io_import_iovec(rw, req, &iovec, &iter, false);
2831 if (ret < 0)
2832 return false;
2833 return !io_setup_async_rw(req, iovec, inline_vecs, &iter, false);
2834 }
2835 #endif
2836
2837 static bool io_rw_reissue(struct io_kiocb *req)
2838 {
2839 #ifdef CONFIG_BLOCK
2840 umode_t mode = file_inode(req->file)->i_mode;
2841 int ret;
2842
2843 if (!S_ISBLK(mode) && !S_ISREG(mode))
2844 return false;
2845 if ((req->flags & REQ_F_NOWAIT) || io_wq_current_is_worker())
2846 return false;
2847
2848 lockdep_assert_held(&req->ctx->uring_lock);
2849
2850 ret = io_sq_thread_acquire_mm_files(req->ctx, req);
2851
2852 if (!ret && io_resubmit_prep(req)) {
2853 refcount_inc(&req->refs);
2854 io_queue_async_work(req);
2855 return true;
2856 }
2857 req_set_fail_links(req);
2858 #endif
2859 return false;
2860 }
2861
2862 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2863 unsigned int issue_flags)
2864 {
2865 int cflags = 0;
2866
2867 if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_reissue(req))
2868 return;
2869 if (res != req->result)
2870 req_set_fail_links(req);
2871
2872 if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2873 kiocb_end_write(req);
2874 if (req->flags & REQ_F_BUFFER_SELECTED)
2875 cflags = io_put_rw_kbuf(req);
2876 __io_req_complete(req, issue_flags, res, cflags);
2877 }
2878
2879 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2880 {
2881 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2882
2883 __io_complete_rw(req, res, res2, 0);
2884 }
2885
2886 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2887 {
2888 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2889
2890 if (kiocb->ki_flags & IOCB_WRITE)
2891 kiocb_end_write(req);
2892
2893 if (res != -EAGAIN && res != req->result)
2894 req_set_fail_links(req);
2895
2896 WRITE_ONCE(req->result, res);
2897 /* order with io_poll_complete() checking ->result */
2898 smp_wmb();
2899 WRITE_ONCE(req->iopoll_completed, 1);
2900 }
2901
2902 /*
2903 * After the iocb has been issued, it's safe to be found on the poll list.
2904 * Adding the kiocb to the list AFTER submission ensures that we don't
2905 * find it from a io_iopoll_getevents() thread before the issuer is done
2906 * accessing the kiocb cookie.
2907 */
2908 static void io_iopoll_req_issued(struct io_kiocb *req, bool in_async)
2909 {
2910 struct io_ring_ctx *ctx = req->ctx;
2911
2912 /*
2913 * Track whether we have multiple files in our lists. This will impact
2914 * how we do polling eventually, not spinning if we're on potentially
2915 * different devices.
2916 */
2917 if (list_empty(&ctx->iopoll_list)) {
2918 ctx->poll_multi_file = false;
2919 } else if (!ctx->poll_multi_file) {
2920 struct io_kiocb *list_req;
2921
2922 list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2923 inflight_entry);
2924 if (list_req->file != req->file)
2925 ctx->poll_multi_file = true;
2926 }
2927
2928 /*
2929 * For fast devices, IO may have already completed. If it has, add
2930 * it to the front so we find it first.
2931 */
2932 if (READ_ONCE(req->iopoll_completed))
2933 list_add(&req->inflight_entry, &ctx->iopoll_list);
2934 else
2935 list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2936
2937 /*
2938 * If IORING_SETUP_SQPOLL is enabled, sqes are either handled in sq thread
2939 * task context or in io worker task context. If current task context is
2940 * sq thread, we don't need to check whether should wake up sq thread.
2941 */
2942 if (in_async && (ctx->flags & IORING_SETUP_SQPOLL) &&
2943 wq_has_sleeper(&ctx->sq_data->wait))
2944 wake_up(&ctx->sq_data->wait);
2945 }
2946
2947 static inline void io_state_file_put(struct io_submit_state *state)
2948 {
2949 if (state->file_refs) {
2950 fput_many(state->file, state->file_refs);
2951 state->file_refs = 0;
2952 }
2953 }
2954
2955 /*
2956 * Get as many references to a file as we have IOs left in this submission,
2957 * assuming most submissions are for one file, or at least that each file
2958 * has more than one submission.
2959 */
2960 static struct file *__io_file_get(struct io_submit_state *state, int fd)
2961 {
2962 if (!state)
2963 return fget(fd);
2964
2965 if (state->file_refs) {
2966 if (state->fd == fd) {
2967 state->file_refs--;
2968 return state->file;
2969 }
2970 io_state_file_put(state);
2971 }
2972 state->file = fget_many(fd, state->ios_left);
2973 if (unlikely(!state->file))
2974 return NULL;
2975
2976 state->fd = fd;
2977 state->file_refs = state->ios_left - 1;
2978 return state->file;
2979 }
2980
2981 static bool io_bdev_nowait(struct block_device *bdev)
2982 {
2983 return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2984 }
2985
2986 /*
2987 * If we tracked the file through the SCM inflight mechanism, we could support
2988 * any file. For now, just ensure that anything potentially problematic is done
2989 * inline.
2990 */
2991 static bool io_file_supports_async(struct file *file, int rw)
2992 {
2993 umode_t mode = file_inode(file)->i_mode;
2994
2995 if (S_ISBLK(mode)) {
2996 if (IS_ENABLED(CONFIG_BLOCK) &&
2997 io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2998 return true;
2999 return false;
3000 }
3001 if (S_ISCHR(mode) || S_ISSOCK(mode))
3002 return true;
3003 if (S_ISREG(mode)) {
3004 if (IS_ENABLED(CONFIG_BLOCK) &&
3005 io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
3006 file->f_op != &io_uring_fops)
3007 return true;
3008 return false;
3009 }
3010
3011 /* any ->read/write should understand O_NONBLOCK */
3012 if (file->f_flags & O_NONBLOCK)
3013 return true;
3014
3015 if (!(file->f_mode & FMODE_NOWAIT))
3016 return false;
3017
3018 if (rw == READ)
3019 return file->f_op->read_iter != NULL;
3020
3021 return file->f_op->write_iter != NULL;
3022 }
3023
3024 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3025 {
3026 struct io_ring_ctx *ctx = req->ctx;
3027 struct kiocb *kiocb = &req->rw.kiocb;
3028 struct file *file = req->file;
3029 unsigned ioprio;
3030 int ret;
3031
3032 if (S_ISREG(file_inode(file)->i_mode))
3033 req->flags |= REQ_F_ISREG;
3034
3035 kiocb->ki_pos = READ_ONCE(sqe->off);
3036 if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
3037 req->flags |= REQ_F_CUR_POS;
3038 kiocb->ki_pos = file->f_pos;
3039 }
3040 kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
3041 kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
3042 ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
3043 if (unlikely(ret))
3044 return ret;
3045
3046 /* don't allow async punt for O_NONBLOCK or RWF_NOWAIT */
3047 if ((kiocb->ki_flags & IOCB_NOWAIT) || (file->f_flags & O_NONBLOCK))
3048 req->flags |= REQ_F_NOWAIT;
3049
3050 ioprio = READ_ONCE(sqe->ioprio);
3051 if (ioprio) {
3052 ret = ioprio_check_cap(ioprio);
3053 if (ret)
3054 return ret;
3055
3056 kiocb->ki_ioprio = ioprio;
3057 } else
3058 kiocb->ki_ioprio = get_current_ioprio();
3059
3060 if (ctx->flags & IORING_SETUP_IOPOLL) {
3061 if (!(kiocb->ki_flags & IOCB_DIRECT) ||
3062 !kiocb->ki_filp->f_op->iopoll)
3063 return -EOPNOTSUPP;
3064
3065 kiocb->ki_flags |= IOCB_HIPRI;
3066 kiocb->ki_complete = io_complete_rw_iopoll;
3067 req->iopoll_completed = 0;
3068 } else {
3069 if (kiocb->ki_flags & IOCB_HIPRI)
3070 return -EINVAL;
3071 kiocb->ki_complete = io_complete_rw;
3072 }
3073
3074 req->rw.addr = READ_ONCE(sqe->addr);
3075 req->rw.len = READ_ONCE(sqe->len);
3076 req->buf_index = READ_ONCE(sqe->buf_index);
3077 return 0;
3078 }
3079
3080 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
3081 {
3082 switch (ret) {
3083 case -EIOCBQUEUED:
3084 break;
3085 case -ERESTARTSYS:
3086 case -ERESTARTNOINTR:
3087 case -ERESTARTNOHAND:
3088 case -ERESTART_RESTARTBLOCK:
3089 /*
3090 * We can't just restart the syscall, since previously
3091 * submitted sqes may already be in progress. Just fail this
3092 * IO with EINTR.
3093 */
3094 ret = -EINTR;
3095 fallthrough;
3096 default:
3097 kiocb->ki_complete(kiocb, ret, 0);
3098 }
3099 }
3100
3101 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
3102 unsigned int issue_flags)
3103 {
3104 struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
3105 struct io_async_rw *io = req->async_data;
3106
3107 /* add previously done IO, if any */
3108 if (io && io->bytes_done > 0) {
3109 if (ret < 0)
3110 ret = io->bytes_done;
3111 else
3112 ret += io->bytes_done;
3113 }
3114
3115 if (req->flags & REQ_F_CUR_POS)
3116 req->file->f_pos = kiocb->ki_pos;
3117 if (ret >= 0 && kiocb->ki_complete == io_complete_rw)
3118 __io_complete_rw(req, ret, 0, issue_flags);
3119 else
3120 io_rw_done(kiocb, ret);
3121 }
3122
3123 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3124 {
3125 struct io_ring_ctx *ctx = req->ctx;
3126 size_t len = req->rw.len;
3127 struct io_mapped_ubuf *imu;
3128 u16 index, buf_index = req->buf_index;
3129 size_t offset;
3130 u64 buf_addr;
3131
3132 if (unlikely(buf_index >= ctx->nr_user_bufs))
3133 return -EFAULT;
3134 index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3135 imu = &ctx->user_bufs[index];
3136 buf_addr = req->rw.addr;
3137
3138 /* overflow */
3139 if (buf_addr + len < buf_addr)
3140 return -EFAULT;
3141 /* not inside the mapped region */
3142 if (buf_addr < imu->ubuf || buf_addr + len > imu->ubuf + imu->len)
3143 return -EFAULT;
3144
3145 /*
3146 * May not be a start of buffer, set size appropriately
3147 * and advance us to the beginning.
3148 */
3149 offset = buf_addr - imu->ubuf;
3150 iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
3151
3152 if (offset) {
3153 /*
3154 * Don't use iov_iter_advance() here, as it's really slow for
3155 * using the latter parts of a big fixed buffer - it iterates
3156 * over each segment manually. We can cheat a bit here, because
3157 * we know that:
3158 *
3159 * 1) it's a BVEC iter, we set it up
3160 * 2) all bvecs are PAGE_SIZE in size, except potentially the
3161 * first and last bvec
3162 *
3163 * So just find our index, and adjust the iterator afterwards.
3164 * If the offset is within the first bvec (or the whole first
3165 * bvec, just use iov_iter_advance(). This makes it easier
3166 * since we can just skip the first segment, which may not
3167 * be PAGE_SIZE aligned.
3168 */
3169 const struct bio_vec *bvec = imu->bvec;
3170
3171 if (offset <= bvec->bv_len) {
3172 iov_iter_advance(iter, offset);
3173 } else {
3174 unsigned long seg_skip;
3175
3176 /* skip first vec */
3177 offset -= bvec->bv_len;
3178 seg_skip = 1 + (offset >> PAGE_SHIFT);
3179
3180 iter->bvec = bvec + seg_skip;
3181 iter->nr_segs -= seg_skip;
3182 iter->count -= bvec->bv_len + offset;
3183 iter->iov_offset = offset & ~PAGE_MASK;
3184 }
3185 }
3186
3187 return 0;
3188 }
3189
3190 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3191 {
3192 if (needs_lock)
3193 mutex_unlock(&ctx->uring_lock);
3194 }
3195
3196 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3197 {
3198 /*
3199 * "Normal" inline submissions always hold the uring_lock, since we
3200 * grab it from the system call. Same is true for the SQPOLL offload.
3201 * The only exception is when we've detached the request and issue it
3202 * from an async worker thread, grab the lock for that case.
3203 */
3204 if (needs_lock)
3205 mutex_lock(&ctx->uring_lock);
3206 }
3207
3208 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3209 int bgid, struct io_buffer *kbuf,
3210 bool needs_lock)
3211 {
3212 struct io_buffer *head;
3213
3214 if (req->flags & REQ_F_BUFFER_SELECTED)
3215 return kbuf;
3216
3217 io_ring_submit_lock(req->ctx, needs_lock);
3218
3219 lockdep_assert_held(&req->ctx->uring_lock);
3220
3221 head = idr_find(&req->ctx->io_buffer_idr, bgid);
3222 if (head) {
3223 if (!list_empty(&head->list)) {
3224 kbuf = list_last_entry(&head->list, struct io_buffer,
3225 list);
3226 list_del(&kbuf->list);
3227 } else {
3228 kbuf = head;
3229 idr_remove(&req->ctx->io_buffer_idr, bgid);
3230 }
3231 if (*len > kbuf->len)
3232 *len = kbuf->len;
3233 } else {
3234 kbuf = ERR_PTR(-ENOBUFS);
3235 }
3236
3237 io_ring_submit_unlock(req->ctx, needs_lock);
3238
3239 return kbuf;
3240 }
3241
3242 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3243 bool needs_lock)
3244 {
3245 struct io_buffer *kbuf;
3246 u16 bgid;
3247
3248 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3249 bgid = req->buf_index;
3250 kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3251 if (IS_ERR(kbuf))
3252 return kbuf;
3253 req->rw.addr = (u64) (unsigned long) kbuf;
3254 req->flags |= REQ_F_BUFFER_SELECTED;
3255 return u64_to_user_ptr(kbuf->addr);
3256 }
3257
3258 #ifdef CONFIG_COMPAT
3259 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3260 bool needs_lock)
3261 {
3262 struct compat_iovec __user *uiov;
3263 compat_ssize_t clen;
3264 void __user *buf;
3265 ssize_t len;
3266
3267 uiov = u64_to_user_ptr(req->rw.addr);
3268 if (!access_ok(uiov, sizeof(*uiov)))
3269 return -EFAULT;
3270 if (__get_user(clen, &uiov->iov_len))
3271 return -EFAULT;
3272 if (clen < 0)
3273 return -EINVAL;
3274
3275 len = clen;
3276 buf = io_rw_buffer_select(req, &len, needs_lock);
3277 if (IS_ERR(buf))
3278 return PTR_ERR(buf);
3279 iov[0].iov_base = buf;
3280 iov[0].iov_len = (compat_size_t) len;
3281 return 0;
3282 }
3283 #endif
3284
3285 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3286 bool needs_lock)
3287 {
3288 struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3289 void __user *buf;
3290 ssize_t len;
3291
3292 if (copy_from_user(iov, uiov, sizeof(*uiov)))
3293 return -EFAULT;
3294
3295 len = iov[0].iov_len;
3296 if (len < 0)
3297 return -EINVAL;
3298 buf = io_rw_buffer_select(req, &len, needs_lock);
3299 if (IS_ERR(buf))
3300 return PTR_ERR(buf);
3301 iov[0].iov_base = buf;
3302 iov[0].iov_len = len;
3303 return 0;
3304 }
3305
3306 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3307 bool needs_lock)
3308 {
3309 if (req->flags & REQ_F_BUFFER_SELECTED) {
3310 struct io_buffer *kbuf;
3311
3312 kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3313 iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3314 iov[0].iov_len = kbuf->len;
3315 return 0;
3316 }
3317 if (req->rw.len != 1)
3318 return -EINVAL;
3319
3320 #ifdef CONFIG_COMPAT
3321 if (req->ctx->compat)
3322 return io_compat_import(req, iov, needs_lock);
3323 #endif
3324
3325 return __io_iov_buffer_select(req, iov, needs_lock);
3326 }
3327
3328 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3329 struct iov_iter *iter, bool needs_lock)
3330 {
3331 void __user *buf = u64_to_user_ptr(req->rw.addr);
3332 size_t sqe_len = req->rw.len;
3333 u8 opcode = req->opcode;
3334 ssize_t ret;
3335
3336 if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3337 *iovec = NULL;
3338 return io_import_fixed(req, rw, iter);
3339 }
3340
3341 /* buffer index only valid with fixed read/write, or buffer select */
3342 if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3343 return -EINVAL;
3344
3345 if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3346 if (req->flags & REQ_F_BUFFER_SELECT) {
3347 buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3348 if (IS_ERR(buf))
3349 return PTR_ERR(buf);
3350 req->rw.len = sqe_len;
3351 }
3352
3353 ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3354 *iovec = NULL;
3355 return ret;
3356 }
3357
3358 if (req->flags & REQ_F_BUFFER_SELECT) {
3359 ret = io_iov_buffer_select(req, *iovec, needs_lock);
3360 if (!ret)
3361 iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3362 *iovec = NULL;
3363 return ret;
3364 }
3365
3366 return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3367 req->ctx->compat);
3368 }
3369
3370 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3371 {
3372 return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3373 }
3374
3375 /*
3376 * For files that don't have ->read_iter() and ->write_iter(), handle them
3377 * by looping over ->read() or ->write() manually.
3378 */
3379 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3380 {
3381 struct kiocb *kiocb = &req->rw.kiocb;
3382 struct file *file = req->file;
3383 ssize_t ret = 0;
3384
3385 /*
3386 * Don't support polled IO through this interface, and we can't
3387 * support non-blocking either. For the latter, this just causes
3388 * the kiocb to be handled from an async context.
3389 */
3390 if (kiocb->ki_flags & IOCB_HIPRI)
3391 return -EOPNOTSUPP;
3392 if (kiocb->ki_flags & IOCB_NOWAIT)
3393 return -EAGAIN;
3394
3395 while (iov_iter_count(iter)) {
3396 struct iovec iovec;
3397 ssize_t nr;
3398
3399 if (!iov_iter_is_bvec(iter)) {
3400 iovec = iov_iter_iovec(iter);
3401 } else {
3402 iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3403 iovec.iov_len = req->rw.len;
3404 }
3405
3406 if (rw == READ) {
3407 nr = file->f_op->read(file, iovec.iov_base,
3408 iovec.iov_len, io_kiocb_ppos(kiocb));
3409 } else {
3410 nr = file->f_op->write(file, iovec.iov_base,
3411 iovec.iov_len, io_kiocb_ppos(kiocb));
3412 }
3413
3414 if (nr < 0) {
3415 if (!ret)
3416 ret = nr;
3417 break;
3418 }
3419 ret += nr;
3420 if (nr != iovec.iov_len)
3421 break;
3422 req->rw.len -= nr;
3423 req->rw.addr += nr;
3424 iov_iter_advance(iter, nr);
3425 }
3426
3427 return ret;
3428 }
3429
3430 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3431 const struct iovec *fast_iov, struct iov_iter *iter)
3432 {
3433 struct io_async_rw *rw = req->async_data;
3434
3435 memcpy(&rw->iter, iter, sizeof(*iter));
3436 rw->free_iovec = iovec;
3437 rw->bytes_done = 0;
3438 /* can only be fixed buffers, no need to do anything */
3439 if (iov_iter_is_bvec(iter))
3440 return;
3441 if (!iovec) {
3442 unsigned iov_off = 0;
3443
3444 rw->iter.iov = rw->fast_iov;
3445 if (iter->iov != fast_iov) {
3446 iov_off = iter->iov - fast_iov;
3447 rw->iter.iov += iov_off;
3448 }
3449 if (rw->fast_iov != fast_iov)
3450 memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3451 sizeof(struct iovec) * iter->nr_segs);
3452 } else {
3453 req->flags |= REQ_F_NEED_CLEANUP;
3454 }
3455 }
3456
3457 static inline int __io_alloc_async_data(struct io_kiocb *req)
3458 {
3459 WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3460 req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3461 return req->async_data == NULL;
3462 }
3463
3464 static int io_alloc_async_data(struct io_kiocb *req)
3465 {
3466 if (!io_op_defs[req->opcode].needs_async_data)
3467 return 0;
3468
3469 return __io_alloc_async_data(req);
3470 }
3471
3472 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3473 const struct iovec *fast_iov,
3474 struct iov_iter *iter, bool force)
3475 {
3476 if (!force && !io_op_defs[req->opcode].needs_async_data)
3477 return 0;
3478 if (!req->async_data) {
3479 if (__io_alloc_async_data(req)) {
3480 kfree(iovec);
3481 return -ENOMEM;
3482 }
3483
3484 io_req_map_rw(req, iovec, fast_iov, iter);
3485 }
3486 return 0;
3487 }
3488
3489 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3490 {
3491 struct io_async_rw *iorw = req->async_data;
3492 struct iovec *iov = iorw->fast_iov;
3493 int ret;
3494
3495 ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3496 if (unlikely(ret < 0))
3497 return ret;
3498
3499 iorw->bytes_done = 0;
3500 iorw->free_iovec = iov;
3501 if (iov)
3502 req->flags |= REQ_F_NEED_CLEANUP;
3503 return 0;
3504 }
3505
3506 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3507 {
3508 if (unlikely(!(req->file->f_mode & FMODE_READ)))
3509 return -EBADF;
3510 return io_prep_rw(req, sqe);
3511 }
3512
3513 /*
3514 * This is our waitqueue callback handler, registered through lock_page_async()
3515 * when we initially tried to do the IO with the iocb armed our waitqueue.
3516 * This gets called when the page is unlocked, and we generally expect that to
3517 * happen when the page IO is completed and the page is now uptodate. This will
3518 * queue a task_work based retry of the operation, attempting to copy the data
3519 * again. If the latter fails because the page was NOT uptodate, then we will
3520 * do a thread based blocking retry of the operation. That's the unexpected
3521 * slow path.
3522 */
3523 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3524 int sync, void *arg)
3525 {
3526 struct wait_page_queue *wpq;
3527 struct io_kiocb *req = wait->private;
3528 struct wait_page_key *key = arg;
3529
3530 wpq = container_of(wait, struct wait_page_queue, wait);
3531
3532 if (!wake_page_match(wpq, key))
3533 return 0;
3534
3535 req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3536 list_del_init(&wait->entry);
3537
3538 /* submit ref gets dropped, acquire a new one */
3539 refcount_inc(&req->refs);
3540 io_req_task_queue(req);
3541 return 1;
3542 }
3543
3544 /*
3545 * This controls whether a given IO request should be armed for async page
3546 * based retry. If we return false here, the request is handed to the async
3547 * worker threads for retry. If we're doing buffered reads on a regular file,
3548 * we prepare a private wait_page_queue entry and retry the operation. This
3549 * will either succeed because the page is now uptodate and unlocked, or it
3550 * will register a callback when the page is unlocked at IO completion. Through
3551 * that callback, io_uring uses task_work to setup a retry of the operation.
3552 * That retry will attempt the buffered read again. The retry will generally
3553 * succeed, or in rare cases where it fails, we then fall back to using the
3554 * async worker threads for a blocking retry.
3555 */
3556 static bool io_rw_should_retry(struct io_kiocb *req)
3557 {
3558 struct io_async_rw *rw = req->async_data;
3559 struct wait_page_queue *wait = &rw->wpq;
3560 struct kiocb *kiocb = &req->rw.kiocb;
3561
3562 /* never retry for NOWAIT, we just complete with -EAGAIN */
3563 if (req->flags & REQ_F_NOWAIT)
3564 return false;
3565
3566 /* Only for buffered IO */
3567 if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3568 return false;
3569
3570 /*
3571 * just use poll if we can, and don't attempt if the fs doesn't
3572 * support callback based unlocks
3573 */
3574 if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3575 return false;
3576
3577 wait->wait.func = io_async_buf_func;
3578 wait->wait.private = req;
3579 wait->wait.flags = 0;
3580 INIT_LIST_HEAD(&wait->wait.entry);
3581 kiocb->ki_flags |= IOCB_WAITQ;
3582 kiocb->ki_flags &= ~IOCB_NOWAIT;
3583 kiocb->ki_waitq = wait;
3584 return true;
3585 }
3586
3587 static int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3588 {
3589 if (req->file->f_op->read_iter)
3590 return call_read_iter(req->file, &req->rw.kiocb, iter);
3591 else if (req->file->f_op->read)
3592 return loop_rw_iter(READ, req, iter);
3593 else
3594 return -EINVAL;
3595 }
3596
3597 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3598 {
3599 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3600 struct kiocb *kiocb = &req->rw.kiocb;
3601 struct iov_iter __iter, *iter = &__iter;
3602 struct io_async_rw *rw = req->async_data;
3603 ssize_t io_size, ret, ret2;
3604 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3605
3606 if (rw) {
3607 iter = &rw->iter;
3608 iovec = NULL;
3609 } else {
3610 ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3611 if (ret < 0)
3612 return ret;
3613 }
3614 io_size = iov_iter_count(iter);
3615 req->result = io_size;
3616
3617 /* Ensure we clear previously set non-block flag */
3618 if (!force_nonblock)
3619 kiocb->ki_flags &= ~IOCB_NOWAIT;
3620 else
3621 kiocb->ki_flags |= IOCB_NOWAIT;
3622
3623 /* If the file doesn't support async, just async punt */
3624 if (force_nonblock && !io_file_supports_async(req->file, READ)) {
3625 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3626 return ret ?: -EAGAIN;
3627 }
3628
3629 ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), io_size);
3630 if (unlikely(ret)) {
3631 kfree(iovec);
3632 return ret;
3633 }
3634
3635 ret = io_iter_do_read(req, iter);
3636
3637 if (ret == -EIOCBQUEUED) {
3638 goto out_free;
3639 } else if (ret == -EAGAIN) {
3640 /* IOPOLL retry should happen for io-wq threads */
3641 if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3642 goto done;
3643 /* no retry on NONBLOCK nor RWF_NOWAIT */
3644 if (req->flags & REQ_F_NOWAIT)
3645 goto done;
3646 /* some cases will consume bytes even on error returns */
3647 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3648 ret = 0;
3649 } else if (ret <= 0 || ret == io_size || !force_nonblock ||
3650 (req->flags & REQ_F_NOWAIT) || !(req->flags & REQ_F_ISREG)) {
3651 /* read all, failed, already did sync or don't want to retry */
3652 goto done;
3653 }
3654
3655 ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3656 if (ret2)
3657 return ret2;
3658
3659 iovec = NULL;
3660 rw = req->async_data;
3661 /* now use our persistent iterator, if we aren't already */
3662 iter = &rw->iter;
3663
3664 do {
3665 io_size -= ret;
3666 rw->bytes_done += ret;
3667 /* if we can retry, do so with the callbacks armed */
3668 if (!io_rw_should_retry(req)) {
3669 kiocb->ki_flags &= ~IOCB_WAITQ;
3670 return -EAGAIN;
3671 }
3672
3673 /*
3674 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3675 * we get -EIOCBQUEUED, then we'll get a notification when the
3676 * desired page gets unlocked. We can also get a partial read
3677 * here, and if we do, then just retry at the new offset.
3678 */
3679 ret = io_iter_do_read(req, iter);
3680 if (ret == -EIOCBQUEUED)
3681 return 0;
3682 /* we got some bytes, but not all. retry. */
3683 } while (ret > 0 && ret < io_size);
3684 done:
3685 kiocb_done(kiocb, ret, issue_flags);
3686 out_free:
3687 /* it's faster to check here then delegate to kfree */
3688 if (iovec)
3689 kfree(iovec);
3690 return 0;
3691 }
3692
3693 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3694 {
3695 if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3696 return -EBADF;
3697 return io_prep_rw(req, sqe);
3698 }
3699
3700 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3701 {
3702 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3703 struct kiocb *kiocb = &req->rw.kiocb;
3704 struct iov_iter __iter, *iter = &__iter;
3705 struct io_async_rw *rw = req->async_data;
3706 ssize_t ret, ret2, io_size;
3707 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3708
3709 if (rw) {
3710 iter = &rw->iter;
3711 iovec = NULL;
3712 } else {
3713 ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3714 if (ret < 0)
3715 return ret;
3716 }
3717 io_size = iov_iter_count(iter);
3718 req->result = io_size;
3719
3720 /* Ensure we clear previously set non-block flag */
3721 if (!force_nonblock)
3722 kiocb->ki_flags &= ~IOCB_NOWAIT;
3723 else
3724 kiocb->ki_flags |= IOCB_NOWAIT;
3725
3726 /* If the file doesn't support async, just async punt */
3727 if (force_nonblock && !io_file_supports_async(req->file, WRITE))
3728 goto copy_iov;
3729
3730 /* file path doesn't support NOWAIT for non-direct_IO */
3731 if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3732 (req->flags & REQ_F_ISREG))
3733 goto copy_iov;
3734
3735 ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), io_size);
3736 if (unlikely(ret))
3737 goto out_free;
3738
3739 /*
3740 * Open-code file_start_write here to grab freeze protection,
3741 * which will be released by another thread in
3742 * io_complete_rw(). Fool lockdep by telling it the lock got
3743 * released so that it doesn't complain about the held lock when
3744 * we return to userspace.
3745 */
3746 if (req->flags & REQ_F_ISREG) {
3747 sb_start_write(file_inode(req->file)->i_sb);
3748 __sb_writers_release(file_inode(req->file)->i_sb,
3749 SB_FREEZE_WRITE);
3750 }
3751 kiocb->ki_flags |= IOCB_WRITE;
3752
3753 if (req->file->f_op->write_iter)
3754 ret2 = call_write_iter(req->file, kiocb, iter);
3755 else if (req->file->f_op->write)
3756 ret2 = loop_rw_iter(WRITE, req, iter);
3757 else
3758 ret2 = -EINVAL;
3759
3760 /*
3761 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3762 * retry them without IOCB_NOWAIT.
3763 */
3764 if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3765 ret2 = -EAGAIN;
3766 /* no retry on NONBLOCK nor RWF_NOWAIT */
3767 if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3768 goto done;
3769 if (!force_nonblock || ret2 != -EAGAIN) {
3770 /* IOPOLL retry should happen for io-wq threads */
3771 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3772 goto copy_iov;
3773 done:
3774 kiocb_done(kiocb, ret2, issue_flags);
3775 } else {
3776 copy_iov:
3777 /* some cases will consume bytes even on error returns */
3778 iov_iter_revert(iter, io_size - iov_iter_count(iter));
3779 ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3780 return ret ?: -EAGAIN;
3781 }
3782 out_free:
3783 /* it's reportedly faster than delegating the null check to kfree() */
3784 if (iovec)
3785 kfree(iovec);
3786 return ret;
3787 }
3788
3789 static int io_renameat_prep(struct io_kiocb *req,
3790 const struct io_uring_sqe *sqe)
3791 {
3792 struct io_rename *ren = &req->rename;
3793 const char __user *oldf, *newf;
3794
3795 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3796 return -EBADF;
3797
3798 ren->old_dfd = READ_ONCE(sqe->fd);
3799 oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3800 newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3801 ren->new_dfd = READ_ONCE(sqe->len);
3802 ren->flags = READ_ONCE(sqe->rename_flags);
3803
3804 ren->oldpath = getname(oldf);
3805 if (IS_ERR(ren->oldpath))
3806 return PTR_ERR(ren->oldpath);
3807
3808 ren->newpath = getname(newf);
3809 if (IS_ERR(ren->newpath)) {
3810 putname(ren->oldpath);
3811 return PTR_ERR(ren->newpath);
3812 }
3813
3814 req->flags |= REQ_F_NEED_CLEANUP;
3815 return 0;
3816 }
3817
3818 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3819 {
3820 struct io_rename *ren = &req->rename;
3821 int ret;
3822
3823 if (issue_flags & IO_URING_F_NONBLOCK)
3824 return -EAGAIN;
3825
3826 ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3827 ren->newpath, ren->flags);
3828
3829 req->flags &= ~REQ_F_NEED_CLEANUP;
3830 if (ret < 0)
3831 req_set_fail_links(req);
3832 io_req_complete(req, ret);
3833 return 0;
3834 }
3835
3836 static int io_unlinkat_prep(struct io_kiocb *req,
3837 const struct io_uring_sqe *sqe)
3838 {
3839 struct io_unlink *un = &req->unlink;
3840 const char __user *fname;
3841
3842 if (unlikely(req->flags & REQ_F_FIXED_FILE))
3843 return -EBADF;
3844
3845 un->dfd = READ_ONCE(sqe->fd);
3846
3847 un->flags = READ_ONCE(sqe->unlink_flags);
3848 if (un->flags & ~AT_REMOVEDIR)
3849 return -EINVAL;
3850
3851 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3852 un->filename = getname(fname);
3853 if (IS_ERR(un->filename))
3854 return PTR_ERR(un->filename);
3855
3856 req->flags |= REQ_F_NEED_CLEANUP;
3857 return 0;
3858 }
3859
3860 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3861 {
3862 struct io_unlink *un = &req->unlink;
3863 int ret;
3864
3865 if (issue_flags & IO_URING_F_NONBLOCK)
3866 return -EAGAIN;
3867
3868 if (un->flags & AT_REMOVEDIR)
3869 ret = do_rmdir(un->dfd, un->filename);
3870 else
3871 ret = do_unlinkat(un->dfd, un->filename);
3872
3873 req->flags &= ~REQ_F_NEED_CLEANUP;
3874 if (ret < 0)
3875 req_set_fail_links(req);
3876 io_req_complete(req, ret);
3877 return 0;
3878 }
3879
3880 static int io_shutdown_prep(struct io_kiocb *req,
3881 const struct io_uring_sqe *sqe)
3882 {
3883 #if defined(CONFIG_NET)
3884 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3885 return -EINVAL;
3886 if (sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3887 sqe->buf_index)
3888 return -EINVAL;
3889
3890 req->shutdown.how = READ_ONCE(sqe->len);
3891 return 0;
3892 #else
3893 return -EOPNOTSUPP;
3894 #endif
3895 }
3896
3897 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3898 {
3899 #if defined(CONFIG_NET)
3900 struct socket *sock;
3901 int ret;
3902
3903 if (issue_flags & IO_URING_F_NONBLOCK)
3904 return -EAGAIN;
3905
3906 sock = sock_from_file(req->file);
3907 if (unlikely(!sock))
3908 return -ENOTSOCK;
3909
3910 ret = __sys_shutdown_sock(sock, req->shutdown.how);
3911 if (ret < 0)
3912 req_set_fail_links(req);
3913 io_req_complete(req, ret);
3914 return 0;
3915 #else
3916 return -EOPNOTSUPP;
3917 #endif
3918 }
3919
3920 static int __io_splice_prep(struct io_kiocb *req,
3921 const struct io_uring_sqe *sqe)
3922 {
3923 struct io_splice* sp = &req->splice;
3924 unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3925
3926 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3927 return -EINVAL;
3928
3929 sp->file_in = NULL;
3930 sp->len = READ_ONCE(sqe->len);
3931 sp->flags = READ_ONCE(sqe->splice_flags);
3932
3933 if (unlikely(sp->flags & ~valid_flags))
3934 return -EINVAL;
3935
3936 sp->file_in = io_file_get(NULL, req, READ_ONCE(sqe->splice_fd_in),
3937 (sp->flags & SPLICE_F_FD_IN_FIXED));
3938 if (!sp->file_in)
3939 return -EBADF;
3940 req->flags |= REQ_F_NEED_CLEANUP;
3941
3942 if (!S_ISREG(file_inode(sp->file_in)->i_mode)) {
3943 /*
3944 * Splice operation will be punted aync, and here need to
3945 * modify io_wq_work.flags, so initialize io_wq_work firstly.
3946 */
3947 io_req_init_async(req);
3948 req->work.flags |= IO_WQ_WORK_UNBOUND;
3949 }
3950
3951 return 0;
3952 }
3953
3954 static int io_tee_prep(struct io_kiocb *req,
3955 const struct io_uring_sqe *sqe)
3956 {
3957 if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3958 return -EINVAL;
3959 return __io_splice_prep(req, sqe);
3960 }
3961
3962 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3963 {
3964 struct io_splice *sp = &req->splice;
3965 struct file *in = sp->file_in;
3966 struct file *out = sp->file_out;
3967 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3968 long ret = 0;
3969
3970 if (issue_flags & IO_URING_F_NONBLOCK)
3971 return -EAGAIN;
3972 if (sp->len)
3973 ret = do_tee(in, out, sp->len, flags);
3974
3975 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
3976 req->flags &= ~REQ_F_NEED_CLEANUP;
3977
3978 if (ret != sp->len)
3979 req_set_fail_links(req);
3980 io_req_complete(req, ret);
3981 return 0;
3982 }
3983
3984 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3985 {
3986 struct io_splice* sp = &req->splice;
3987
3988 sp->off_in = READ_ONCE(sqe->splice_off_in);
3989 sp->off_out = READ_ONCE(sqe->off);
3990 return __io_splice_prep(req, sqe);
3991 }
3992
3993 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
3994 {
3995 struct io_splice *sp = &req->splice;
3996 struct file *in = sp->file_in;
3997 struct file *out = sp->file_out;
3998 unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3999 loff_t *poff_in, *poff_out;
4000 long ret = 0;
4001
4002 if (issue_flags & IO_URING_F_NONBLOCK)
4003 return -EAGAIN;
4004
4005 poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4006 poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4007
4008 if (sp->len)
4009 ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4010
4011 io_put_file(req, in, (sp->flags & SPLICE_F_FD_IN_FIXED));
4012 req->flags &= ~REQ_F_NEED_CLEANUP;
4013
4014 if (ret != sp->len)
4015 req_set_fail_links(req);
4016 io_req_complete(req, ret);
4017 return 0;
4018 }
4019
4020 /*
4021 * IORING_OP_NOP just posts a completion event, nothing else.
4022 */
4023 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4024 {
4025 struct io_ring_ctx *ctx = req->ctx;
4026
4027 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4028 return -EINVAL;
4029
4030 __io_req_complete(req, issue_flags, 0, 0);
4031 return 0;
4032 }
4033
4034 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4035 {
4036 struct io_ring_ctx *ctx = req->ctx;
4037
4038 if (!req->file)
4039 return -EBADF;
4040
4041 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4042 return -EINVAL;
4043 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4044 return -EINVAL;
4045
4046 req->sync.flags = READ_ONCE(sqe->fsync_flags);
4047 if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4048 return -EINVAL;
4049
4050 req->sync.off = READ_ONCE(sqe->off);
4051 req->sync.len = READ_ONCE(sqe->len);
4052 return 0;
4053 }
4054
4055 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4056 {
4057 loff_t end = req->sync.off + req->sync.len;
4058 int ret;
4059
4060 /* fsync always requires a blocking context */
4061 if (issue_flags & IO_URING_F_NONBLOCK)
4062 return -EAGAIN;
4063
4064 ret = vfs_fsync_range(req->file, req->sync.off,
4065 end > 0 ? end : LLONG_MAX,
4066 req->sync.flags & IORING_FSYNC_DATASYNC);
4067 if (ret < 0)
4068 req_set_fail_links(req);
4069 io_req_complete(req, ret);
4070 return 0;
4071 }
4072
4073 static int io_fallocate_prep(struct io_kiocb *req,
4074 const struct io_uring_sqe *sqe)
4075 {
4076 if (sqe->ioprio || sqe->buf_index || sqe->rw_flags)
4077 return -EINVAL;
4078 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4079 return -EINVAL;
4080
4081 req->sync.off = READ_ONCE(sqe->off);
4082 req->sync.len = READ_ONCE(sqe->addr);
4083 req->sync.mode = READ_ONCE(sqe->len);
4084 return 0;
4085 }
4086
4087 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4088 {
4089 int ret;
4090
4091 /* fallocate always requiring blocking context */
4092 if (issue_flags & IO_URING_F_NONBLOCK)
4093 return -EAGAIN;
4094 ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4095 req->sync.len);
4096 if (ret < 0)
4097 req_set_fail_links(req);
4098 io_req_complete(req, ret);
4099 return 0;
4100 }
4101
4102 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4103 {
4104 const char __user *fname;
4105 int ret;
4106
4107 if (unlikely(sqe->ioprio || sqe->buf_index))
4108 return -EINVAL;
4109 if (unlikely(req->flags & REQ_F_FIXED_FILE))
4110 return -EBADF;
4111
4112 /* open.how should be already initialised */
4113 if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4114 req->open.how.flags |= O_LARGEFILE;
4115
4116 req->open.dfd = READ_ONCE(sqe->fd);
4117 fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4118 req->open.filename = getname(fname);
4119 if (IS_ERR(req->open.filename)) {
4120 ret = PTR_ERR(req->open.filename);
4121 req->open.filename = NULL;
4122 return ret;
4123 }
4124 req->open.nofile = rlimit(RLIMIT_NOFILE);
4125 req->flags |= REQ_F_NEED_CLEANUP;
4126 return 0;
4127 }
4128
4129 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4130 {
4131 u64 flags, mode;
4132
4133 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4134 return -EINVAL;
4135 mode = READ_ONCE(sqe->len);
4136 flags = READ_ONCE(sqe->open_flags);
4137 req->open.how = build_open_how(flags, mode);
4138 return __io_openat_prep(req, sqe);
4139 }
4140
4141 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4142 {
4143 struct open_how __user *how;
4144 size_t len;
4145 int ret;
4146
4147 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4148 return -EINVAL;
4149 how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4150 len = READ_ONCE(sqe->len);
4151 if (len < OPEN_HOW_SIZE_VER0)
4152 return -EINVAL;
4153
4154 ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4155 len);
4156 if (ret)
4157 return ret;
4158
4159 return __io_openat_prep(req, sqe);
4160 }
4161
4162 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4163 {
4164 struct open_flags op;
4165 struct file *file;
4166 bool nonblock_set;
4167 bool resolve_nonblock;
4168 int ret;
4169
4170 ret = build_open_flags(&req->open.how, &op);
4171 if (ret)
4172 goto err;
4173 nonblock_set = op.open_flag & O_NONBLOCK;
4174 resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4175 if (issue_flags & IO_URING_F_NONBLOCK) {
4176 /*
4177 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4178 * it'll always -EAGAIN
4179 */
4180 if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4181 return -EAGAIN;
4182 op.lookup_flags |= LOOKUP_CACHED;
4183 op.open_flag |= O_NONBLOCK;
4184 }
4185
4186 ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4187 if (ret < 0)
4188 goto err;
4189
4190 file = do_filp_open(req->open.dfd, req->open.filename, &op);
4191 /* only retry if RESOLVE_CACHED wasn't already set by application */
4192 if ((!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)) &&
4193 file == ERR_PTR(-EAGAIN)) {
4194 /*
4195 * We could hang on to this 'fd', but seems like marginal
4196 * gain for something that is now known to be a slower path.
4197 * So just put it, and we'll get a new one when we retry.
4198 */
4199 put_unused_fd(ret);
4200 return -EAGAIN;
4201 }
4202
4203 if (IS_ERR(file)) {
4204 put_unused_fd(ret);
4205 ret = PTR_ERR(file);
4206 } else {
4207 if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4208 file->f_flags &= ~O_NONBLOCK;
4209 fsnotify_open(file);
4210 fd_install(ret, file);
4211 }
4212 err:
4213 putname(req->open.filename);
4214 req->flags &= ~REQ_F_NEED_CLEANUP;
4215 if (ret < 0)
4216 req_set_fail_links(req);
4217 io_req_complete(req, ret);
4218 return 0;
4219 }
4220
4221 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4222 {
4223 return io_openat2(req, issue_flags & IO_URING_F_NONBLOCK);
4224 }
4225
4226 static int io_remove_buffers_prep(struct io_kiocb *req,
4227 const struct io_uring_sqe *sqe)
4228 {
4229 struct io_provide_buf *p = &req->pbuf;
4230 u64 tmp;
4231
4232 if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off)
4233 return -EINVAL;
4234
4235 tmp = READ_ONCE(sqe->fd);
4236 if (!tmp || tmp > USHRT_MAX)
4237 return -EINVAL;
4238
4239 memset(p, 0, sizeof(*p));
4240 p->nbufs = tmp;
4241 p->bgid = READ_ONCE(sqe->buf_group);
4242 return 0;
4243 }
4244
4245 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4246 int bgid, unsigned nbufs)
4247 {
4248 unsigned i = 0;
4249
4250 /* shouldn't happen */
4251 if (!nbufs)
4252 return 0;
4253
4254 /* the head kbuf is the list itself */
4255 while (!list_empty(&buf->list)) {
4256 struct io_buffer *nxt;
4257
4258 nxt = list_first_entry(&buf->list, struct io_buffer, list);
4259 list_del(&nxt->list);
4260 kfree(nxt);
4261 if (++i == nbufs)
4262 return i;
4263 }
4264 i++;
4265 kfree(buf);
4266 idr_remove(&ctx->io_buffer_idr, bgid);
4267
4268 return i;
4269 }
4270
4271 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4272 {
4273 struct io_provide_buf *p = &req->pbuf;
4274 struct io_ring_ctx *ctx = req->ctx;
4275 struct io_buffer *head;
4276 int ret = 0;
4277 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4278
4279 io_ring_submit_lock(ctx, !force_nonblock);
4280
4281 lockdep_assert_held(&ctx->uring_lock);
4282
4283 ret = -ENOENT;
4284 head = idr_find(&ctx->io_buffer_idr, p->bgid);
4285 if (head)
4286 ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4287 if (ret < 0)
4288 req_set_fail_links(req);
4289
4290 /* need to hold the lock to complete IOPOLL requests */
4291 if (ctx->flags & IORING_SETUP_IOPOLL) {
4292 __io_req_complete(req, issue_flags, ret, 0);
4293 io_ring_submit_unlock(ctx, !force_nonblock);
4294 } else {
4295 io_ring_submit_unlock(ctx, !force_nonblock);
4296 __io_req_complete(req, issue_flags, ret, 0);
4297 }
4298 return 0;
4299 }
4300
4301 static int io_provide_buffers_prep(struct io_kiocb *req,
4302 const struct io_uring_sqe *sqe)
4303 {
4304 struct io_provide_buf *p = &req->pbuf;
4305 u64 tmp;
4306
4307 if (sqe->ioprio || sqe->rw_flags)
4308 return -EINVAL;
4309
4310 tmp = READ_ONCE(sqe->fd);
4311 if (!tmp || tmp > USHRT_MAX)
4312 return -E2BIG;
4313 p->nbufs = tmp;
4314 p->addr = READ_ONCE(sqe->addr);
4315 p->len = READ_ONCE(sqe->len);
4316
4317 if (!access_ok(u64_to_user_ptr(p->addr), (p->len * p->nbufs)))
4318 return -EFAULT;
4319
4320 p->bgid = READ_ONCE(sqe->buf_group);
4321 tmp = READ_ONCE(sqe->off);
4322 if (tmp > USHRT_MAX)
4323 return -E2BIG;
4324 p->bid = tmp;
4325 return 0;
4326 }
4327
4328 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4329 {
4330 struct io_buffer *buf;
4331 u64 addr = pbuf->addr;
4332 int i, bid = pbuf->bid;
4333
4334 for (i = 0; i < pbuf->nbufs; i++) {
4335 buf = kmalloc(sizeof(*buf), GFP_KERNEL);
4336 if (!buf)
4337 break;
4338
4339 buf->addr = addr;
4340 buf->len = pbuf->len;
4341 buf->bid = bid;
4342 addr += pbuf->len;
4343 bid++;
4344 if (!*head) {
4345 INIT_LIST_HEAD(&buf->list);
4346 *head = buf;
4347 } else {
4348 list_add_tail(&buf->list, &(*head)->list);
4349 }
4350 }
4351
4352 return i ? i : -ENOMEM;
4353 }
4354
4355 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4356 {
4357 struct io_provide_buf *p = &req->pbuf;
4358 struct io_ring_ctx *ctx = req->ctx;
4359 struct io_buffer *head, *list;
4360 int ret = 0;
4361 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4362
4363 io_ring_submit_lock(ctx, !force_nonblock);
4364
4365 lockdep_assert_held(&ctx->uring_lock);
4366
4367 list = head = idr_find(&ctx->io_buffer_idr, p->bgid);
4368
4369 ret = io_add_buffers(p, &head);
4370 if (ret < 0)
4371 goto out;
4372
4373 if (!list) {
4374 ret = idr_alloc(&ctx->io_buffer_idr, head, p->bgid, p->bgid + 1,
4375 GFP_KERNEL);
4376 if (ret < 0) {
4377 __io_remove_buffers(ctx, head, p->bgid, -1U);
4378 goto out;
4379 }
4380 }
4381 out:
4382 if (ret < 0)
4383 req_set_fail_links(req);
4384
4385 /* need to hold the lock to complete IOPOLL requests */
4386 if (ctx->flags & IORING_SETUP_IOPOLL) {
4387 __io_req_complete(req, issue_flags, ret, 0);
4388 io_ring_submit_unlock(ctx, !force_nonblock);
4389 } else {
4390 io_ring_submit_unlock(ctx, !force_nonblock);
4391 __io_req_complete(req, issue_flags, ret, 0);
4392 }
4393 return 0;
4394 }
4395
4396 static int io_epoll_ctl_prep(struct io_kiocb *req,
4397 const struct io_uring_sqe *sqe)
4398 {
4399 #if defined(CONFIG_EPOLL)
4400 if (sqe->ioprio || sqe->buf_index)
4401 return -EINVAL;
4402 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4403 return -EINVAL;
4404
4405 req->epoll.epfd = READ_ONCE(sqe->fd);
4406 req->epoll.op = READ_ONCE(sqe->len);
4407 req->epoll.fd = READ_ONCE(sqe->off);
4408
4409 if (ep_op_has_event(req->epoll.op)) {
4410 struct epoll_event __user *ev;
4411
4412 ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4413 if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4414 return -EFAULT;
4415 }
4416
4417 return 0;
4418 #else
4419 return -EOPNOTSUPP;
4420 #endif
4421 }
4422
4423 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4424 {
4425 #if defined(CONFIG_EPOLL)
4426 struct io_epoll *ie = &req->epoll;
4427 int ret;
4428 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4429
4430 ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4431 if (force_nonblock && ret == -EAGAIN)
4432 return -EAGAIN;
4433
4434 if (ret < 0)
4435 req_set_fail_links(req);
4436 __io_req_complete(req, issue_flags, ret, 0);
4437 return 0;
4438 #else
4439 return -EOPNOTSUPP;
4440 #endif
4441 }
4442
4443 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4444 {
4445 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4446 if (sqe->ioprio || sqe->buf_index || sqe->off)
4447 return -EINVAL;
4448 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4449 return -EINVAL;
4450
4451 req->madvise.addr = READ_ONCE(sqe->addr);
4452 req->madvise.len = READ_ONCE(sqe->len);
4453 req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4454 return 0;
4455 #else
4456 return -EOPNOTSUPP;
4457 #endif
4458 }
4459
4460 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4461 {
4462 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4463 struct io_madvise *ma = &req->madvise;
4464 int ret;
4465
4466 if (issue_flags & IO_URING_F_NONBLOCK)
4467 return -EAGAIN;
4468
4469 ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4470 if (ret < 0)
4471 req_set_fail_links(req);
4472 io_req_complete(req, ret);
4473 return 0;
4474 #else
4475 return -EOPNOTSUPP;
4476 #endif
4477 }
4478
4479 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4480 {
4481 if (sqe->ioprio || sqe->buf_index || sqe->addr)
4482 return -EINVAL;
4483 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4484 return -EINVAL;
4485
4486 req->fadvise.offset = READ_ONCE(sqe->off);
4487 req->fadvise.len = READ_ONCE(sqe->len);
4488 req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4489 return 0;
4490 }
4491
4492 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4493 {
4494 struct io_fadvise *fa = &req->fadvise;
4495 int ret;
4496
4497 if (issue_flags & IO_URING_F_NONBLOCK) {
4498 switch (fa->advice) {
4499 case POSIX_FADV_NORMAL:
4500 case POSIX_FADV_RANDOM:
4501 case POSIX_FADV_SEQUENTIAL:
4502 break;
4503 default:
4504 return -EAGAIN;
4505 }
4506 }
4507
4508 ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4509 if (ret < 0)
4510 req_set_fail_links(req);
4511 io_req_complete(req, ret);
4512 return 0;
4513 }
4514
4515 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4516 {
4517 if (unlikely(req->ctx->flags & (IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL)))
4518 return -EINVAL;
4519 if (sqe->ioprio || sqe->buf_index)
4520 return -EINVAL;
4521 if (req->flags & REQ_F_FIXED_FILE)
4522 return -EBADF;
4523
4524 req->statx.dfd = READ_ONCE(sqe->fd);
4525 req->statx.mask = READ_ONCE(sqe->len);
4526 req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4527 req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4528 req->statx.flags = READ_ONCE(sqe->statx_flags);
4529
4530 return 0;
4531 }
4532
4533 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4534 {
4535 struct io_statx *ctx = &req->statx;
4536 int ret;
4537
4538 if (issue_flags & IO_URING_F_NONBLOCK) {
4539 /* only need file table for an actual valid fd */
4540 if (ctx->dfd == -1 || ctx->dfd == AT_FDCWD)
4541 req->flags |= REQ_F_NO_FILE_TABLE;
4542 return -EAGAIN;
4543 }
4544
4545 ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4546 ctx->buffer);
4547
4548 if (ret < 0)
4549 req_set_fail_links(req);
4550 io_req_complete(req, ret);
4551 return 0;
4552 }
4553
4554 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4555 {
4556 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4557 return -EINVAL;
4558 if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4559 sqe->rw_flags || sqe->buf_index)
4560 return -EINVAL;
4561 if (req->flags & REQ_F_FIXED_FILE)
4562 return -EBADF;
4563
4564 req->close.fd = READ_ONCE(sqe->fd);
4565 return 0;
4566 }
4567
4568 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4569 {
4570 struct files_struct *files = current->files;
4571 struct io_close *close = &req->close;
4572 struct fdtable *fdt;
4573 struct file *file;
4574 int ret;
4575
4576 file = NULL;
4577 ret = -EBADF;
4578 spin_lock(&files->file_lock);
4579 fdt = files_fdtable(files);
4580 if (close->fd >= fdt->max_fds) {
4581 spin_unlock(&files->file_lock);
4582 goto err;
4583 }
4584 file = fdt->fd[close->fd];
4585 if (!file) {
4586 spin_unlock(&files->file_lock);
4587 goto err;
4588 }
4589
4590 if (file->f_op == &io_uring_fops) {
4591 spin_unlock(&files->file_lock);
4592 file = NULL;
4593 goto err;
4594 }
4595
4596 /* if the file has a flush method, be safe and punt to async */
4597 if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4598 spin_unlock(&files->file_lock);
4599 return -EAGAIN;
4600 }
4601
4602 ret = __close_fd_get_file(close->fd, &file);
4603 spin_unlock(&files->file_lock);
4604 if (ret < 0) {
4605 if (ret == -ENOENT)
4606 ret = -EBADF;
4607 goto err;
4608 }
4609
4610 /* No ->flush() or already async, safely close from here */
4611 ret = filp_close(file, current->files);
4612 err:
4613 if (ret < 0)
4614 req_set_fail_links(req);
4615 if (file)
4616 fput(file);
4617 __io_req_complete(req, issue_flags, ret, 0);
4618 return 0;
4619 }
4620
4621 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4622 {
4623 struct io_ring_ctx *ctx = req->ctx;
4624
4625 if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4626 return -EINVAL;
4627 if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index))
4628 return -EINVAL;
4629
4630 req->sync.off = READ_ONCE(sqe->off);
4631 req->sync.len = READ_ONCE(sqe->len);
4632 req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4633 return 0;
4634 }
4635
4636 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4637 {
4638 int ret;
4639
4640 /* sync_file_range always requires a blocking context */
4641 if (issue_flags & IO_URING_F_NONBLOCK)
4642 return -EAGAIN;
4643
4644 ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4645 req->sync.flags);
4646 if (ret < 0)
4647 req_set_fail_links(req);
4648 io_req_complete(req, ret);
4649 return 0;
4650 }
4651
4652 #if defined(CONFIG_NET)
4653 static int io_setup_async_msg(struct io_kiocb *req,
4654 struct io_async_msghdr *kmsg)
4655 {
4656 struct io_async_msghdr *async_msg = req->async_data;
4657
4658 if (async_msg)
4659 return -EAGAIN;
4660 if (io_alloc_async_data(req)) {
4661 kfree(kmsg->free_iov);
4662 return -ENOMEM;
4663 }
4664 async_msg = req->async_data;
4665 req->flags |= REQ_F_NEED_CLEANUP;
4666 memcpy(async_msg, kmsg, sizeof(*kmsg));
4667 async_msg->msg.msg_name = &async_msg->addr;
4668 /* if were using fast_iov, set it to the new one */
4669 if (!async_msg->free_iov)
4670 async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4671
4672 return -EAGAIN;
4673 }
4674
4675 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4676 struct io_async_msghdr *iomsg)
4677 {
4678 iomsg->msg.msg_name = &iomsg->addr;
4679 iomsg->free_iov = iomsg->fast_iov;
4680 return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4681 req->sr_msg.msg_flags, &iomsg->free_iov);
4682 }
4683
4684 static int io_sendmsg_prep_async(struct io_kiocb *req)
4685 {
4686 int ret;
4687
4688 if (!io_op_defs[req->opcode].needs_async_data)
4689 return 0;
4690 ret = io_sendmsg_copy_hdr(req, req->async_data);
4691 if (!ret)
4692 req->flags |= REQ_F_NEED_CLEANUP;
4693 return ret;
4694 }
4695
4696 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4697 {
4698 struct io_sr_msg *sr = &req->sr_msg;
4699
4700 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4701 return -EINVAL;
4702
4703 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4704 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4705 sr->len = READ_ONCE(sqe->len);
4706
4707 #ifdef CONFIG_COMPAT
4708 if (req->ctx->compat)
4709 sr->msg_flags |= MSG_CMSG_COMPAT;
4710 #endif
4711 return 0;
4712 }
4713
4714 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4715 {
4716 struct io_async_msghdr iomsg, *kmsg;
4717 struct socket *sock;
4718 unsigned flags;
4719 int ret;
4720
4721 sock = sock_from_file(req->file);
4722 if (unlikely(!sock))
4723 return -ENOTSOCK;
4724
4725 kmsg = req->async_data;
4726 if (!kmsg) {
4727 ret = io_sendmsg_copy_hdr(req, &iomsg);
4728 if (ret)
4729 return ret;
4730 kmsg = &iomsg;
4731 }
4732
4733 flags = req->sr_msg.msg_flags;
4734 if (flags & MSG_DONTWAIT)
4735 req->flags |= REQ_F_NOWAIT;
4736 else if (issue_flags & IO_URING_F_NONBLOCK)
4737 flags |= MSG_DONTWAIT;
4738
4739 ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4740 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4741 return io_setup_async_msg(req, kmsg);
4742 if (ret == -ERESTARTSYS)
4743 ret = -EINTR;
4744
4745 /* fast path, check for non-NULL to avoid function call */
4746 if (kmsg->free_iov)
4747 kfree(kmsg->free_iov);
4748 req->flags &= ~REQ_F_NEED_CLEANUP;
4749 if (ret < 0)
4750 req_set_fail_links(req);
4751 __io_req_complete(req, issue_flags, ret, 0);
4752 return 0;
4753 }
4754
4755 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4756 {
4757 struct io_sr_msg *sr = &req->sr_msg;
4758 struct msghdr msg;
4759 struct iovec iov;
4760 struct socket *sock;
4761 unsigned flags;
4762 int ret;
4763
4764 sock = sock_from_file(req->file);
4765 if (unlikely(!sock))
4766 return -ENOTSOCK;
4767
4768 ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4769 if (unlikely(ret))
4770 return ret;
4771
4772 msg.msg_name = NULL;
4773 msg.msg_control = NULL;
4774 msg.msg_controllen = 0;
4775 msg.msg_namelen = 0;
4776
4777 flags = req->sr_msg.msg_flags;
4778 if (flags & MSG_DONTWAIT)
4779 req->flags |= REQ_F_NOWAIT;
4780 else if (issue_flags & IO_URING_F_NONBLOCK)
4781 flags |= MSG_DONTWAIT;
4782
4783 msg.msg_flags = flags;
4784 ret = sock_sendmsg(sock, &msg);
4785 if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4786 return -EAGAIN;
4787 if (ret == -ERESTARTSYS)
4788 ret = -EINTR;
4789
4790 if (ret < 0)
4791 req_set_fail_links(req);
4792 __io_req_complete(req, issue_flags, ret, 0);
4793 return 0;
4794 }
4795
4796 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4797 struct io_async_msghdr *iomsg)
4798 {
4799 struct io_sr_msg *sr = &req->sr_msg;
4800 struct iovec __user *uiov;
4801 size_t iov_len;
4802 int ret;
4803
4804 ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4805 &iomsg->uaddr, &uiov, &iov_len);
4806 if (ret)
4807 return ret;
4808
4809 if (req->flags & REQ_F_BUFFER_SELECT) {
4810 if (iov_len > 1)
4811 return -EINVAL;
4812 if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4813 return -EFAULT;
4814 sr->len = iomsg->fast_iov[0].iov_len;
4815 iomsg->free_iov = NULL;
4816 } else {
4817 iomsg->free_iov = iomsg->fast_iov;
4818 ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4819 &iomsg->free_iov, &iomsg->msg.msg_iter,
4820 false);
4821 if (ret > 0)
4822 ret = 0;
4823 }
4824
4825 return ret;
4826 }
4827
4828 #ifdef CONFIG_COMPAT
4829 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4830 struct io_async_msghdr *iomsg)
4831 {
4832 struct compat_msghdr __user *msg_compat;
4833 struct io_sr_msg *sr = &req->sr_msg;
4834 struct compat_iovec __user *uiov;
4835 compat_uptr_t ptr;
4836 compat_size_t len;
4837 int ret;
4838
4839 msg_compat = (struct compat_msghdr __user *) sr->umsg;
4840 ret = __get_compat_msghdr(&iomsg->msg, msg_compat, &iomsg->uaddr,
4841 &ptr, &len);
4842 if (ret)
4843 return ret;
4844
4845 uiov = compat_ptr(ptr);
4846 if (req->flags & REQ_F_BUFFER_SELECT) {
4847 compat_ssize_t clen;
4848
4849 if (len > 1)
4850 return -EINVAL;
4851 if (!access_ok(uiov, sizeof(*uiov)))
4852 return -EFAULT;
4853 if (__get_user(clen, &uiov->iov_len))
4854 return -EFAULT;
4855 if (clen < 0)
4856 return -EINVAL;
4857 sr->len = clen;
4858 iomsg->free_iov = NULL;
4859 } else {
4860 iomsg->free_iov = iomsg->fast_iov;
4861 ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4862 UIO_FASTIOV, &iomsg->free_iov,
4863 &iomsg->msg.msg_iter, true);
4864 if (ret < 0)
4865 return ret;
4866 }
4867
4868 return 0;
4869 }
4870 #endif
4871
4872 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4873 struct io_async_msghdr *iomsg)
4874 {
4875 iomsg->msg.msg_name = &iomsg->addr;
4876
4877 #ifdef CONFIG_COMPAT
4878 if (req->ctx->compat)
4879 return __io_compat_recvmsg_copy_hdr(req, iomsg);
4880 #endif
4881
4882 return __io_recvmsg_copy_hdr(req, iomsg);
4883 }
4884
4885 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4886 bool needs_lock)
4887 {
4888 struct io_sr_msg *sr = &req->sr_msg;
4889 struct io_buffer *kbuf;
4890
4891 kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4892 if (IS_ERR(kbuf))
4893 return kbuf;
4894
4895 sr->kbuf = kbuf;
4896 req->flags |= REQ_F_BUFFER_SELECTED;
4897 return kbuf;
4898 }
4899
4900 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4901 {
4902 return io_put_kbuf(req, req->sr_msg.kbuf);
4903 }
4904
4905 static int io_recvmsg_prep_async(struct io_kiocb *req)
4906 {
4907 int ret;
4908
4909 if (!io_op_defs[req->opcode].needs_async_data)
4910 return 0;
4911 ret = io_recvmsg_copy_hdr(req, req->async_data);
4912 if (!ret)
4913 req->flags |= REQ_F_NEED_CLEANUP;
4914 return ret;
4915 }
4916
4917 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4918 {
4919 struct io_sr_msg *sr = &req->sr_msg;
4920
4921 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4922 return -EINVAL;
4923
4924 sr->msg_flags = READ_ONCE(sqe->msg_flags);
4925 sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4926 sr->len = READ_ONCE(sqe->len);
4927 sr->bgid = READ_ONCE(sqe->buf_group);
4928
4929 #ifdef CONFIG_COMPAT
4930 if (req->ctx->compat)
4931 sr->msg_flags |= MSG_CMSG_COMPAT;
4932 #endif
4933 return 0;
4934 }
4935
4936 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4937 {
4938 struct io_async_msghdr iomsg, *kmsg;
4939 struct socket *sock;
4940 struct io_buffer *kbuf;
4941 unsigned flags;
4942 int ret, cflags = 0;
4943 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4944
4945 sock = sock_from_file(req->file);
4946 if (unlikely(!sock))
4947 return -ENOTSOCK;
4948
4949 kmsg = req->async_data;
4950 if (!kmsg) {
4951 ret = io_recvmsg_copy_hdr(req, &iomsg);
4952 if (ret)
4953 return ret;
4954 kmsg = &iomsg;
4955 }
4956
4957 if (req->flags & REQ_F_BUFFER_SELECT) {
4958 kbuf = io_recv_buffer_select(req, !force_nonblock);
4959 if (IS_ERR(kbuf))
4960 return PTR_ERR(kbuf);
4961 kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4962 kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4963 iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4964 1, req->sr_msg.len);
4965 }
4966
4967 flags = req->sr_msg.msg_flags;
4968 if (flags & MSG_DONTWAIT)
4969 req->flags |= REQ_F_NOWAIT;
4970 else if (force_nonblock)
4971 flags |= MSG_DONTWAIT;
4972
4973 ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
4974 kmsg->uaddr, flags);
4975 if (force_nonblock && ret == -EAGAIN)
4976 return io_setup_async_msg(req, kmsg);
4977 if (ret == -ERESTARTSYS)
4978 ret = -EINTR;
4979
4980 if (req->flags & REQ_F_BUFFER_SELECTED)
4981 cflags = io_put_recv_kbuf(req);
4982 /* fast path, check for non-NULL to avoid function call */
4983 if (kmsg->free_iov)
4984 kfree(kmsg->free_iov);
4985 req->flags &= ~REQ_F_NEED_CLEANUP;
4986 if (ret < 0)
4987 req_set_fail_links(req);
4988 __io_req_complete(req, issue_flags, ret, cflags);
4989 return 0;
4990 }
4991
4992 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
4993 {
4994 struct io_buffer *kbuf;
4995 struct io_sr_msg *sr = &req->sr_msg;
4996 struct msghdr msg;
4997 void __user *buf = sr->buf;
4998 struct socket *sock;
4999 struct iovec iov;
5000 unsigned flags;
5001 int ret, cflags = 0;
5002 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5003
5004 sock = sock_from_file(req->file);
5005 if (unlikely(!sock))
5006 return -ENOTSOCK;
5007
5008 if (req->flags & REQ_F_BUFFER_SELECT) {
5009 kbuf = io_recv_buffer_select(req, !force_nonblock);
5010 if (IS_ERR(kbuf))
5011 return PTR_ERR(kbuf);
5012 buf = u64_to_user_ptr(kbuf->addr);
5013 }
5014
5015 ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5016 if (unlikely(ret))
5017 goto out_free;
5018
5019 msg.msg_name = NULL;
5020 msg.msg_control = NULL;
5021 msg.msg_controllen = 0;
5022 msg.msg_namelen = 0;
5023 msg.msg_iocb = NULL;
5024 msg.msg_flags = 0;
5025
5026 flags = req->sr_msg.msg_flags;
5027 if (flags & MSG_DONTWAIT)
5028 req->flags |= REQ_F_NOWAIT;
5029 else if (force_nonblock)
5030 flags |= MSG_DONTWAIT;
5031
5032 ret = sock_recvmsg(sock, &msg, flags);
5033 if (force_nonblock && ret == -EAGAIN)
5034 return -EAGAIN;
5035 if (ret == -ERESTARTSYS)
5036 ret = -EINTR;
5037 out_free:
5038 if (req->flags & REQ_F_BUFFER_SELECTED)
5039 cflags = io_put_recv_kbuf(req);
5040 if (ret < 0)
5041 req_set_fail_links(req);
5042 __io_req_complete(req, issue_flags, ret, cflags);
5043 return 0;
5044 }
5045
5046 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5047 {
5048 struct io_accept *accept = &req->accept;
5049
5050 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5051 return -EINVAL;
5052 if (sqe->ioprio || sqe->len || sqe->buf_index)
5053 return -EINVAL;
5054
5055 accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5056 accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5057 accept->flags = READ_ONCE(sqe->accept_flags);
5058 accept->nofile = rlimit(RLIMIT_NOFILE);
5059 return 0;
5060 }
5061
5062 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5063 {
5064 struct io_accept *accept = &req->accept;
5065 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5066 unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5067 int ret;
5068
5069 if (req->file->f_flags & O_NONBLOCK)
5070 req->flags |= REQ_F_NOWAIT;
5071
5072 ret = __sys_accept4_file(req->file, file_flags, accept->addr,
5073 accept->addr_len, accept->flags,
5074 accept->nofile);
5075 if (ret == -EAGAIN && force_nonblock)
5076 return -EAGAIN;
5077 if (ret < 0) {
5078 if (ret == -ERESTARTSYS)
5079 ret = -EINTR;
5080 req_set_fail_links(req);
5081 }
5082 __io_req_complete(req, issue_flags, ret, 0);
5083 return 0;
5084 }
5085
5086 static int io_connect_prep_async(struct io_kiocb *req)
5087 {
5088 struct io_async_connect *io = req->async_data;
5089 struct io_connect *conn = &req->connect;
5090
5091 return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5092 }
5093
5094 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5095 {
5096 struct io_connect *conn = &req->connect;
5097
5098 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5099 return -EINVAL;
5100 if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags)
5101 return -EINVAL;
5102
5103 conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5104 conn->addr_len = READ_ONCE(sqe->addr2);
5105 return 0;
5106 }
5107
5108 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5109 {
5110 struct io_async_connect __io, *io;
5111 unsigned file_flags;
5112 int ret;
5113 bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5114
5115 if (req->async_data) {
5116 io = req->async_data;
5117 } else {
5118 ret = move_addr_to_kernel(req->connect.addr,
5119 req->connect.addr_len,
5120 &__io.address);
5121 if (ret)
5122 goto out;
5123 io = &__io;
5124 }
5125
5126 file_flags = force_nonblock ? O_NONBLOCK : 0;
5127
5128 ret = __sys_connect_file(req->file, &io->address,
5129 req->connect.addr_len, file_flags);
5130 if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5131 if (req->async_data)
5132 return -EAGAIN;
5133 if (io_alloc_async_data(req)) {
5134 ret = -ENOMEM;
5135 goto out;
5136 }
5137 io = req->async_data;
5138 memcpy(req->async_data, &__io, sizeof(__io));
5139 return -EAGAIN;
5140 }
5141 if (ret == -ERESTARTSYS)
5142 ret = -EINTR;
5143 out:
5144 if (ret < 0)
5145 req_set_fail_links(req);
5146 __io_req_complete(req, issue_flags, ret, 0);
5147 return 0;
5148 }
5149 #else /* !CONFIG_NET */
5150 #define IO_NETOP_FN(op) \
5151 static int io_##op(struct io_kiocb *req, unsigned int issue_flags) \
5152 { \
5153 return -EOPNOTSUPP; \
5154 }
5155
5156 #define IO_NETOP_PREP(op) \
5157 IO_NETOP_FN(op) \
5158 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5159 { \
5160 return -EOPNOTSUPP; \
5161 } \
5162
5163 #define IO_NETOP_PREP_ASYNC(op) \
5164 IO_NETOP_PREP(op) \
5165 static int io_##op##_prep_async(struct io_kiocb *req) \
5166 { \
5167 return -EOPNOTSUPP; \
5168 }
5169
5170 IO_NETOP_PREP_ASYNC(sendmsg);
5171 IO_NETOP_PREP_ASYNC(recvmsg);
5172 IO_NETOP_PREP_ASYNC(connect);
5173 IO_NETOP_PREP(accept);
5174 IO_NETOP_FN(send);
5175 IO_NETOP_FN(recv);
5176 #endif /* CONFIG_NET */
5177
5178 struct io_poll_table {
5179 struct poll_table_struct pt;
5180 struct io_kiocb *req;
5181 int error;
5182 };
5183
5184 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5185 __poll_t mask, task_work_func_t func)
5186 {
5187 int ret;
5188
5189 /* for instances that support it check for an event match first: */
5190 if (mask && !(mask & poll->events))
5191 return 0;
5192
5193 trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5194
5195 list_del_init(&poll->wait.entry);
5196
5197 req->result = mask;
5198 req->task_work.func = func;
5199 percpu_ref_get(&req->ctx->refs);
5200
5201 /*
5202 * If this fails, then the task is exiting. When a task exits, the
5203 * work gets canceled, so just cancel this request as well instead
5204 * of executing it. We can't safely execute it anyway, as we may not
5205 * have the needed state needed for it anyway.
5206 */
5207 ret = io_req_task_work_add(req);
5208 if (unlikely(ret)) {
5209 WRITE_ONCE(poll->canceled, true);
5210 io_req_task_work_add_fallback(req, func);
5211 }
5212 return 1;
5213 }
5214
5215 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5216 __acquires(&req->ctx->completion_lock)
5217 {
5218 struct io_ring_ctx *ctx = req->ctx;
5219
5220 if (!req->result && !READ_ONCE(poll->canceled)) {
5221 struct poll_table_struct pt = { ._key = poll->events };
5222
5223 req->result = vfs_poll(req->file, &pt) & poll->events;
5224 }
5225
5226 spin_lock_irq(&ctx->completion_lock);
5227 if (!req->result && !READ_ONCE(poll->canceled)) {
5228 add_wait_queue(poll->head, &poll->wait);
5229 return true;
5230 }
5231
5232 return false;
5233 }
5234
5235 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5236 {
5237 /* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5238 if (req->opcode == IORING_OP_POLL_ADD)
5239 return req->async_data;
5240 return req->apoll->double_poll;
5241 }
5242
5243 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5244 {
5245 if (req->opcode == IORING_OP_POLL_ADD)
5246 return &req->poll;
5247 return &req->apoll->poll;
5248 }
5249
5250 static void io_poll_remove_double(struct io_kiocb *req)
5251 {
5252 struct io_poll_iocb *poll = io_poll_get_double(req);
5253
5254 lockdep_assert_held(&req->ctx->completion_lock);
5255
5256 if (poll && poll->head) {
5257 struct wait_queue_head *head = poll->head;
5258
5259 spin_lock(&head->lock);
5260 list_del_init(&poll->wait.entry);
5261 if (poll->wait.private)
5262 refcount_dec(&req->refs);
5263 poll->head = NULL;
5264 spin_unlock(&head->lock);
5265 }
5266 }
5267
5268 static void io_poll_complete(struct io_kiocb *req, __poll_t mask, int error)
5269 {
5270 struct io_ring_ctx *ctx = req->ctx;
5271
5272 io_poll_remove_double(req);
5273 req->poll.done = true;
5274 io_cqring_fill_event(req, error ? error : mangle_poll(mask));
5275 io_commit_cqring(ctx);
5276 }
5277
5278 static void io_poll_task_func(struct callback_head *cb)
5279 {
5280 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5281 struct io_ring_ctx *ctx = req->ctx;
5282 struct io_kiocb *nxt;
5283
5284 if (io_poll_rewait(req, &req->poll)) {
5285 spin_unlock_irq(&ctx->completion_lock);
5286 } else {
5287 hash_del(&req->hash_node);
5288 io_poll_complete(req, req->result, 0);
5289 spin_unlock_irq(&ctx->completion_lock);
5290
5291 nxt = io_put_req_find_next(req);
5292 io_cqring_ev_posted(ctx);
5293 if (nxt)
5294 __io_req_task_submit(nxt);
5295 }
5296
5297 percpu_ref_put(&ctx->refs);
5298 }
5299
5300 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5301 int sync, void *key)
5302 {
5303 struct io_kiocb *req = wait->private;
5304 struct io_poll_iocb *poll = io_poll_get_single(req);
5305 __poll_t mask = key_to_poll(key);
5306
5307 /* for instances that support it check for an event match first: */
5308 if (mask && !(mask & poll->events))
5309 return 0;
5310
5311 list_del_init(&wait->entry);
5312
5313 if (poll && poll->head) {
5314 bool done;
5315
5316 spin_lock(&poll->head->lock);
5317 done = list_empty(&poll->wait.entry);
5318 if (!done)
5319 list_del_init(&poll->wait.entry);
5320 /* make sure double remove sees this as being gone */
5321 wait->private = NULL;
5322 spin_unlock(&poll->head->lock);
5323 if (!done) {
5324 /* use wait func handler, so it matches the rq type */
5325 poll->wait.func(&poll->wait, mode, sync, key);
5326 }
5327 }
5328 refcount_dec(&req->refs);
5329 return 1;
5330 }
5331
5332 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5333 wait_queue_func_t wake_func)
5334 {
5335 poll->head = NULL;
5336 poll->done = false;
5337 poll->canceled = false;
5338 poll->events = events;
5339 INIT_LIST_HEAD(&poll->wait.entry);
5340 init_waitqueue_func_entry(&poll->wait, wake_func);
5341 }
5342
5343 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5344 struct wait_queue_head *head,
5345 struct io_poll_iocb **poll_ptr)
5346 {
5347 struct io_kiocb *req = pt->req;
5348
5349 /*
5350 * If poll->head is already set, it's because the file being polled
5351 * uses multiple waitqueues for poll handling (eg one for read, one
5352 * for write). Setup a separate io_poll_iocb if this happens.
5353 */
5354 if (unlikely(poll->head)) {
5355 struct io_poll_iocb *poll_one = poll;
5356
5357 /* already have a 2nd entry, fail a third attempt */
5358 if (*poll_ptr) {
5359 pt->error = -EINVAL;
5360 return;
5361 }
5362 poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5363 if (!poll) {
5364 pt->error = -ENOMEM;
5365 return;
5366 }
5367 io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5368 refcount_inc(&req->refs);
5369 poll->wait.private = req;
5370 *poll_ptr = poll;
5371 }
5372
5373 pt->error = 0;
5374 poll->head = head;
5375
5376 if (poll->events & EPOLLEXCLUSIVE)
5377 add_wait_queue_exclusive(head, &poll->wait);
5378 else
5379 add_wait_queue(head, &poll->wait);
5380 }
5381
5382 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5383 struct poll_table_struct *p)
5384 {
5385 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5386 struct async_poll *apoll = pt->req->apoll;
5387
5388 __io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5389 }
5390
5391 static void io_async_task_func(struct callback_head *cb)
5392 {
5393 struct io_kiocb *req = container_of(cb, struct io_kiocb, task_work);
5394 struct async_poll *apoll = req->apoll;
5395 struct io_ring_ctx *ctx = req->ctx;
5396
5397 trace_io_uring_task_run(req->ctx, req->opcode, req->user_data);
5398
5399 if (io_poll_rewait(req, &apoll->poll)) {
5400 spin_unlock_irq(&ctx->completion_lock);
5401 percpu_ref_put(&ctx->refs);
5402 return;
5403 }
5404
5405 /* If req is still hashed, it cannot have been canceled. Don't check. */
5406 if (hash_hashed(&req->hash_node))
5407 hash_del(&req->hash_node);
5408
5409 io_poll_remove_double(req);
5410 spin_unlock_irq(&ctx->completion_lock);
5411
5412 if (!READ_ONCE(apoll->poll.canceled))
5413 __io_req_task_submit(req);
5414 else
5415 __io_req_task_cancel(req, -ECANCELED);
5416
5417 percpu_ref_put(&ctx->refs);
5418 kfree(apoll->double_poll);
5419 kfree(apoll);
5420 }
5421
5422 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5423 void *key)
5424 {
5425 struct io_kiocb *req = wait->private;
5426 struct io_poll_iocb *poll = &req->apoll->poll;
5427
5428 trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5429 key_to_poll(key));
5430
5431 return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5432 }
5433
5434 static void io_poll_req_insert(struct io_kiocb *req)
5435 {
5436 struct io_ring_ctx *ctx = req->ctx;
5437 struct hlist_head *list;
5438
5439 list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5440 hlist_add_head(&req->hash_node, list);
5441 }
5442
5443 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5444 struct io_poll_iocb *poll,
5445 struct io_poll_table *ipt, __poll_t mask,
5446 wait_queue_func_t wake_func)
5447 __acquires(&ctx->completion_lock)
5448 {
5449 struct io_ring_ctx *ctx = req->ctx;
5450 bool cancel = false;
5451
5452 INIT_HLIST_NODE(&req->hash_node);
5453 io_init_poll_iocb(poll, mask, wake_func);
5454 poll->file = req->file;
5455 poll->wait.private = req;
5456
5457 ipt->pt._key = mask;
5458 ipt->req = req;
5459 ipt->error = -EINVAL;
5460
5461 mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5462
5463 spin_lock_irq(&ctx->completion_lock);
5464 if (likely(poll->head)) {
5465 spin_lock(&poll->head->lock);
5466 if (unlikely(list_empty(&poll->wait.entry))) {
5467 if (ipt->error)
5468 cancel = true;
5469 ipt->error = 0;
5470 mask = 0;
5471 }
5472 if (mask || ipt->error)
5473 list_del_init(&poll->wait.entry);
5474 else if (cancel)
5475 WRITE_ONCE(poll->canceled, true);
5476 else if (!poll->done) /* actually waiting for an event */
5477 io_poll_req_insert(req);
5478 spin_unlock(&poll->head->lock);
5479 }
5480
5481 return mask;
5482 }
5483
5484 static bool io_arm_poll_handler(struct io_kiocb *req)
5485 {
5486 const struct io_op_def *def = &io_op_defs[req->opcode];
5487 struct io_ring_ctx *ctx = req->ctx;
5488 struct async_poll *apoll;
5489 struct io_poll_table ipt;
5490 __poll_t mask, ret;
5491 int rw;
5492
5493 if (!req->file || !file_can_poll(req->file))
5494 return false;
5495 if (req->flags & REQ_F_POLLED)
5496 return false;
5497 if (def->pollin)
5498 rw = READ;
5499 else if (def->pollout)
5500 rw = WRITE;
5501 else
5502 return false;
5503 /* if we can't nonblock try, then no point in arming a poll handler */
5504 if (!io_file_supports_async(req->file, rw))
5505 return false;
5506
5507 apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5508 if (unlikely(!apoll))
5509 return false;
5510 apoll->double_poll = NULL;
5511
5512 req->flags |= REQ_F_POLLED;
5513 req->apoll = apoll;
5514
5515 mask = 0;
5516 if (def->pollin)
5517 mask |= POLLIN | POLLRDNORM;
5518 if (def->pollout)
5519 mask |= POLLOUT | POLLWRNORM;
5520
5521 /* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5522 if ((req->opcode == IORING_OP_RECVMSG) &&
5523 (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5524 mask &= ~POLLIN;
5525
5526 mask |= POLLERR | POLLPRI;
5527
5528 ipt.pt._qproc = io_async_queue_proc;
5529
5530 ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5531 io_async_wake);
5532 if (ret || ipt.error) {
5533 io_poll_remove_double(req);
5534 spin_unlock_irq(&ctx->completion_lock);
5535 kfree(apoll->double_poll);
5536 kfree(apoll);
5537 return false;
5538 }
5539 spin_unlock_irq(&ctx->completion_lock);
5540 trace_io_uring_poll_arm(ctx, req->opcode, req->user_data, mask,
5541 apoll->poll.events);
5542 return true;
5543 }
5544
5545 static bool __io_poll_remove_one(struct io_kiocb *req,
5546 struct io_poll_iocb *poll)
5547 {
5548 bool do_complete = false;
5549
5550 spin_lock(&poll->head->lock);
5551 WRITE_ONCE(poll->canceled, true);
5552 if (!list_empty(&poll->wait.entry)) {
5553 list_del_init(&poll->wait.entry);
5554 do_complete = true;
5555 }
5556 spin_unlock(&poll->head->lock);
5557 hash_del(&req->hash_node);
5558 return do_complete;
5559 }
5560
5561 static bool io_poll_remove_one(struct io_kiocb *req)
5562 {
5563 bool do_complete;
5564
5565 io_poll_remove_double(req);
5566
5567 if (req->opcode == IORING_OP_POLL_ADD) {
5568 do_complete = __io_poll_remove_one(req, &req->poll);
5569 } else {
5570 struct async_poll *apoll = req->apoll;
5571
5572 /* non-poll requests have submit ref still */
5573 do_complete = __io_poll_remove_one(req, &apoll->poll);
5574 if (do_complete) {
5575 io_put_req(req);
5576 kfree(apoll->double_poll);
5577 kfree(apoll);
5578 }
5579 }
5580
5581 if (do_complete) {
5582 io_cqring_fill_event(req, -ECANCELED);
5583 io_commit_cqring(req->ctx);
5584 req_set_fail_links(req);
5585 io_put_req_deferred(req, 1);
5586 }
5587
5588 return do_complete;
5589 }
5590
5591 /*
5592 * Returns true if we found and killed one or more poll requests
5593 */
5594 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5595 struct files_struct *files)
5596 {
5597 struct hlist_node *tmp;
5598 struct io_kiocb *req;
5599 int posted = 0, i;
5600
5601 spin_lock_irq(&ctx->completion_lock);
5602 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5603 struct hlist_head *list;
5604
5605 list = &ctx->cancel_hash[i];
5606 hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5607 if (io_match_task(req, tsk, files))
5608 posted += io_poll_remove_one(req);
5609 }
5610 }
5611 spin_unlock_irq(&ctx->completion_lock);
5612
5613 if (posted)
5614 io_cqring_ev_posted(ctx);
5615
5616 return posted != 0;
5617 }
5618
5619 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr)
5620 {
5621 struct hlist_head *list;
5622 struct io_kiocb *req;
5623
5624 list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5625 hlist_for_each_entry(req, list, hash_node) {
5626 if (sqe_addr != req->user_data)
5627 continue;
5628 if (io_poll_remove_one(req))
5629 return 0;
5630 return -EALREADY;
5631 }
5632
5633 return -ENOENT;
5634 }
5635
5636 static int io_poll_remove_prep(struct io_kiocb *req,
5637 const struct io_uring_sqe *sqe)
5638 {
5639 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5640 return -EINVAL;
5641 if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
5642 sqe->poll_events)
5643 return -EINVAL;
5644
5645 req->poll_remove.addr = READ_ONCE(sqe->addr);
5646 return 0;
5647 }
5648
5649 /*
5650 * Find a running poll command that matches one specified in sqe->addr,
5651 * and remove it if found.
5652 */
5653 static int io_poll_remove(struct io_kiocb *req, unsigned int issue_flags)
5654 {
5655 struct io_ring_ctx *ctx = req->ctx;
5656 int ret;
5657
5658 spin_lock_irq(&ctx->completion_lock);
5659 ret = io_poll_cancel(ctx, req->poll_remove.addr);
5660 spin_unlock_irq(&ctx->completion_lock);
5661
5662 if (ret < 0)
5663 req_set_fail_links(req);
5664 io_req_complete(req, ret);
5665 return 0;
5666 }
5667
5668 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5669 void *key)
5670 {
5671 struct io_kiocb *req = wait->private;
5672 struct io_poll_iocb *poll = &req->poll;
5673
5674 return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5675 }
5676
5677 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5678 struct poll_table_struct *p)
5679 {
5680 struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5681
5682 __io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5683 }
5684
5685 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5686 {
5687 struct io_poll_iocb *poll = &req->poll;
5688 u32 events;
5689
5690 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5691 return -EINVAL;
5692 if (sqe->addr || sqe->ioprio || sqe->off || sqe->len || sqe->buf_index)
5693 return -EINVAL;
5694
5695 events = READ_ONCE(sqe->poll32_events);
5696 #ifdef __BIG_ENDIAN
5697 events = swahw32(events);
5698 #endif
5699 poll->events = demangle_poll(events) | EPOLLERR | EPOLLHUP |
5700 (events & EPOLLEXCLUSIVE);
5701 return 0;
5702 }
5703
5704 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5705 {
5706 struct io_poll_iocb *poll = &req->poll;
5707 struct io_ring_ctx *ctx = req->ctx;
5708 struct io_poll_table ipt;
5709 __poll_t mask;
5710
5711 ipt.pt._qproc = io_poll_queue_proc;
5712
5713 mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5714 io_poll_wake);
5715
5716 if (mask) { /* no async, we'd stolen it */
5717 ipt.error = 0;
5718 io_poll_complete(req, mask, 0);
5719 }
5720 spin_unlock_irq(&ctx->completion_lock);
5721
5722 if (mask) {
5723 io_cqring_ev_posted(ctx);
5724 io_put_req(req);
5725 }
5726 return ipt.error;
5727 }
5728
5729 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5730 {
5731 struct io_timeout_data *data = container_of(timer,
5732 struct io_timeout_data, timer);
5733 struct io_kiocb *req = data->req;
5734 struct io_ring_ctx *ctx = req->ctx;
5735 unsigned long flags;
5736
5737 spin_lock_irqsave(&ctx->completion_lock, flags);
5738 list_del_init(&req->timeout.list);
5739 atomic_set(&req->ctx->cq_timeouts,
5740 atomic_read(&req->ctx->cq_timeouts) + 1);
5741
5742 io_cqring_fill_event(req, -ETIME);
5743 io_commit_cqring(ctx);
5744 spin_unlock_irqrestore(&ctx->completion_lock, flags);
5745
5746 io_cqring_ev_posted(ctx);
5747 req_set_fail_links(req);
5748 io_put_req(req);
5749 return HRTIMER_NORESTART;
5750 }
5751
5752 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5753 __u64 user_data)
5754 {
5755 struct io_timeout_data *io;
5756 struct io_kiocb *req;
5757 int ret = -ENOENT;
5758
5759 list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5760 if (user_data == req->user_data) {
5761 ret = 0;
5762 break;
5763 }
5764 }
5765
5766 if (ret == -ENOENT)
5767 return ERR_PTR(ret);
5768
5769 io = req->async_data;
5770 ret = hrtimer_try_to_cancel(&io->timer);
5771 if (ret == -1)
5772 return ERR_PTR(-EALREADY);
5773 list_del_init(&req->timeout.list);
5774 return req;
5775 }
5776
5777 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5778 {
5779 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5780
5781 if (IS_ERR(req))
5782 return PTR_ERR(req);
5783
5784 req_set_fail_links(req);
5785 io_cqring_fill_event(req, -ECANCELED);
5786 io_put_req_deferred(req, 1);
5787 return 0;
5788 }
5789
5790 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
5791 struct timespec64 *ts, enum hrtimer_mode mode)
5792 {
5793 struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5794 struct io_timeout_data *data;
5795
5796 if (IS_ERR(req))
5797 return PTR_ERR(req);
5798
5799 req->timeout.off = 0; /* noseq */
5800 data = req->async_data;
5801 list_add_tail(&req->timeout.list, &ctx->timeout_list);
5802 hrtimer_init(&data->timer, CLOCK_MONOTONIC, mode);
5803 data->timer.function = io_timeout_fn;
5804 hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
5805 return 0;
5806 }
5807
5808 static int io_timeout_remove_prep(struct io_kiocb *req,
5809 const struct io_uring_sqe *sqe)
5810 {
5811 struct io_timeout_rem *tr = &req->timeout_rem;
5812
5813 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5814 return -EINVAL;
5815 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
5816 return -EINVAL;
5817 if (sqe->ioprio || sqe->buf_index || sqe->len)
5818 return -EINVAL;
5819
5820 tr->addr = READ_ONCE(sqe->addr);
5821 tr->flags = READ_ONCE(sqe->timeout_flags);
5822 if (tr->flags & IORING_TIMEOUT_UPDATE) {
5823 if (tr->flags & ~(IORING_TIMEOUT_UPDATE|IORING_TIMEOUT_ABS))
5824 return -EINVAL;
5825 if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
5826 return -EFAULT;
5827 } else if (tr->flags) {
5828 /* timeout removal doesn't support flags */
5829 return -EINVAL;
5830 }
5831
5832 return 0;
5833 }
5834
5835 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
5836 {
5837 return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
5838 : HRTIMER_MODE_REL;
5839 }
5840
5841 /*
5842 * Remove or update an existing timeout command
5843 */
5844 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
5845 {
5846 struct io_timeout_rem *tr = &req->timeout_rem;
5847 struct io_ring_ctx *ctx = req->ctx;
5848 int ret;
5849
5850 spin_lock_irq(&ctx->completion_lock);
5851 if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE))
5852 ret = io_timeout_cancel(ctx, tr->addr);
5853 else
5854 ret = io_timeout_update(ctx, tr->addr, &tr->ts,
5855 io_translate_timeout_mode(tr->flags));
5856
5857 io_cqring_fill_event(req, ret);
5858 io_commit_cqring(ctx);
5859 spin_unlock_irq(&ctx->completion_lock);
5860 io_cqring_ev_posted(ctx);
5861 if (ret < 0)
5862 req_set_fail_links(req);
5863 io_put_req(req);
5864 return 0;
5865 }
5866
5867 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
5868 bool is_timeout_link)
5869 {
5870 struct io_timeout_data *data;
5871 unsigned flags;
5872 u32 off = READ_ONCE(sqe->off);
5873
5874 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5875 return -EINVAL;
5876 if (sqe->ioprio || sqe->buf_index || sqe->len != 1)
5877 return -EINVAL;
5878 if (off && is_timeout_link)
5879 return -EINVAL;
5880 flags = READ_ONCE(sqe->timeout_flags);
5881 if (flags & ~IORING_TIMEOUT_ABS)
5882 return -EINVAL;
5883
5884 req->timeout.off = off;
5885
5886 if (!req->async_data && io_alloc_async_data(req))
5887 return -ENOMEM;
5888
5889 data = req->async_data;
5890 data->req = req;
5891
5892 if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
5893 return -EFAULT;
5894
5895 data->mode = io_translate_timeout_mode(flags);
5896 hrtimer_init(&data->timer, CLOCK_MONOTONIC, data->mode);
5897 return 0;
5898 }
5899
5900 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
5901 {
5902 struct io_ring_ctx *ctx = req->ctx;
5903 struct io_timeout_data *data = req->async_data;
5904 struct list_head *entry;
5905 u32 tail, off = req->timeout.off;
5906
5907 spin_lock_irq(&ctx->completion_lock);
5908
5909 /*
5910 * sqe->off holds how many events that need to occur for this
5911 * timeout event to be satisfied. If it isn't set, then this is
5912 * a pure timeout request, sequence isn't used.
5913 */
5914 if (io_is_timeout_noseq(req)) {
5915 entry = ctx->timeout_list.prev;
5916 goto add;
5917 }
5918
5919 tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
5920 req->timeout.target_seq = tail + off;
5921
5922 /* Update the last seq here in case io_flush_timeouts() hasn't.
5923 * This is safe because ->completion_lock is held, and submissions
5924 * and completions are never mixed in the same ->completion_lock section.
5925 */
5926 ctx->cq_last_tm_flush = tail;
5927
5928 /*
5929 * Insertion sort, ensuring the first entry in the list is always
5930 * the one we need first.
5931 */
5932 list_for_each_prev(entry, &ctx->timeout_list) {
5933 struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
5934 timeout.list);
5935
5936 if (io_is_timeout_noseq(nxt))
5937 continue;
5938 /* nxt.seq is behind @tail, otherwise would've been completed */
5939 if (off >= nxt->timeout.target_seq - tail)
5940 break;
5941 }
5942 add:
5943 list_add(&req->timeout.list, entry);
5944 data->timer.function = io_timeout_fn;
5945 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
5946 spin_unlock_irq(&ctx->completion_lock);
5947 return 0;
5948 }
5949
5950 static bool io_cancel_cb(struct io_wq_work *work, void *data)
5951 {
5952 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
5953
5954 return req->user_data == (unsigned long) data;
5955 }
5956
5957 static int io_async_cancel_one(struct io_ring_ctx *ctx, void *sqe_addr)
5958 {
5959 enum io_wq_cancel cancel_ret;
5960 int ret = 0;
5961
5962 cancel_ret = io_wq_cancel_cb(ctx->io_wq, io_cancel_cb, sqe_addr, false);
5963 switch (cancel_ret) {
5964 case IO_WQ_CANCEL_OK:
5965 ret = 0;
5966 break;
5967 case IO_WQ_CANCEL_RUNNING:
5968 ret = -EALREADY;
5969 break;
5970 case IO_WQ_CANCEL_NOTFOUND:
5971 ret = -ENOENT;
5972 break;
5973 }
5974
5975 return ret;
5976 }
5977
5978 static void io_async_find_and_cancel(struct io_ring_ctx *ctx,
5979 struct io_kiocb *req, __u64 sqe_addr,
5980 int success_ret)
5981 {
5982 unsigned long flags;
5983 int ret;
5984
5985 ret = io_async_cancel_one(ctx, (void *) (unsigned long) sqe_addr);
5986 if (ret != -ENOENT) {
5987 spin_lock_irqsave(&ctx->completion_lock, flags);
5988 goto done;
5989 }
5990
5991 spin_lock_irqsave(&ctx->completion_lock, flags);
5992 ret = io_timeout_cancel(ctx, sqe_addr);
5993 if (ret != -ENOENT)
5994 goto done;
5995 ret = io_poll_cancel(ctx, sqe_addr);
5996 done:
5997 if (!ret)
5998 ret = success_ret;
5999 io_cqring_fill_event(req, ret);
6000 io_commit_cqring(ctx);
6001 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6002 io_cqring_ev_posted(ctx);
6003
6004 if (ret < 0)
6005 req_set_fail_links(req);
6006 io_put_req(req);
6007 }
6008
6009 static int io_async_cancel_prep(struct io_kiocb *req,
6010 const struct io_uring_sqe *sqe)
6011 {
6012 if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6013 return -EINVAL;
6014 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6015 return -EINVAL;
6016 if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags)
6017 return -EINVAL;
6018
6019 req->cancel.addr = READ_ONCE(sqe->addr);
6020 return 0;
6021 }
6022
6023 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6024 {
6025 struct io_ring_ctx *ctx = req->ctx;
6026
6027 io_async_find_and_cancel(ctx, req, req->cancel.addr, 0);
6028 return 0;
6029 }
6030
6031 static int io_rsrc_update_prep(struct io_kiocb *req,
6032 const struct io_uring_sqe *sqe)
6033 {
6034 if (unlikely(req->ctx->flags & IORING_SETUP_SQPOLL))
6035 return -EINVAL;
6036 if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6037 return -EINVAL;
6038 if (sqe->ioprio || sqe->rw_flags)
6039 return -EINVAL;
6040
6041 req->rsrc_update.offset = READ_ONCE(sqe->off);
6042 req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6043 if (!req->rsrc_update.nr_args)
6044 return -EINVAL;
6045 req->rsrc_update.arg = READ_ONCE(sqe->addr);
6046 return 0;
6047 }
6048
6049 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6050 {
6051 struct io_ring_ctx *ctx = req->ctx;
6052 struct io_uring_rsrc_update up;
6053 int ret;
6054
6055 if (issue_flags & IO_URING_F_NONBLOCK)
6056 return -EAGAIN;
6057
6058 up.offset = req->rsrc_update.offset;
6059 up.data = req->rsrc_update.arg;
6060
6061 mutex_lock(&ctx->uring_lock);
6062 ret = __io_sqe_files_update(ctx, &up, req->rsrc_update.nr_args);
6063 mutex_unlock(&ctx->uring_lock);
6064
6065 if (ret < 0)
6066 req_set_fail_links(req);
6067 __io_req_complete(req, issue_flags, ret, 0);
6068 return 0;
6069 }
6070
6071 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6072 {
6073 switch (req->opcode) {
6074 case IORING_OP_NOP:
6075 return 0;
6076 case IORING_OP_READV:
6077 case IORING_OP_READ_FIXED:
6078 case IORING_OP_READ:
6079 return io_read_prep(req, sqe);
6080 case IORING_OP_WRITEV:
6081 case IORING_OP_WRITE_FIXED:
6082 case IORING_OP_WRITE:
6083 return io_write_prep(req, sqe);
6084 case IORING_OP_POLL_ADD:
6085 return io_poll_add_prep(req, sqe);
6086 case IORING_OP_POLL_REMOVE:
6087 return io_poll_remove_prep(req, sqe);
6088 case IORING_OP_FSYNC:
6089 return io_fsync_prep(req, sqe);
6090 case IORING_OP_SYNC_FILE_RANGE:
6091 return io_sfr_prep(req, sqe);
6092 case IORING_OP_SENDMSG:
6093 case IORING_OP_SEND:
6094 return io_sendmsg_prep(req, sqe);
6095 case IORING_OP_RECVMSG:
6096 case IORING_OP_RECV:
6097 return io_recvmsg_prep(req, sqe);
6098 case IORING_OP_CONNECT:
6099 return io_connect_prep(req, sqe);
6100 case IORING_OP_TIMEOUT:
6101 return io_timeout_prep(req, sqe, false);
6102 case IORING_OP_TIMEOUT_REMOVE:
6103 return io_timeout_remove_prep(req, sqe);
6104 case IORING_OP_ASYNC_CANCEL:
6105 return io_async_cancel_prep(req, sqe);
6106 case IORING_OP_LINK_TIMEOUT:
6107 return io_timeout_prep(req, sqe, true);
6108 case IORING_OP_ACCEPT:
6109 return io_accept_prep(req, sqe);
6110 case IORING_OP_FALLOCATE:
6111 return io_fallocate_prep(req, sqe);
6112 case IORING_OP_OPENAT:
6113 return io_openat_prep(req, sqe);
6114 case IORING_OP_CLOSE:
6115 return io_close_prep(req, sqe);
6116 case IORING_OP_FILES_UPDATE:
6117 return io_rsrc_update_prep(req, sqe);
6118 case IORING_OP_STATX:
6119 return io_statx_prep(req, sqe);
6120 case IORING_OP_FADVISE:
6121 return io_fadvise_prep(req, sqe);
6122 case IORING_OP_MADVISE:
6123 return io_madvise_prep(req, sqe);
6124 case IORING_OP_OPENAT2:
6125 return io_openat2_prep(req, sqe);
6126 case IORING_OP_EPOLL_CTL:
6127 return io_epoll_ctl_prep(req, sqe);
6128 case IORING_OP_SPLICE:
6129 return io_splice_prep(req, sqe);
6130 case IORING_OP_PROVIDE_BUFFERS:
6131 return io_provide_buffers_prep(req, sqe);
6132 case IORING_OP_REMOVE_BUFFERS:
6133 return io_remove_buffers_prep(req, sqe);
6134 case IORING_OP_TEE:
6135 return io_tee_prep(req, sqe);
6136 case IORING_OP_SHUTDOWN:
6137 return io_shutdown_prep(req, sqe);
6138 case IORING_OP_RENAMEAT:
6139 return io_renameat_prep(req, sqe);
6140 case IORING_OP_UNLINKAT:
6141 return io_unlinkat_prep(req, sqe);
6142 }
6143
6144 printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6145 req->opcode);
6146 return-EINVAL;
6147 }
6148
6149 static int io_req_prep_async(struct io_kiocb *req)
6150 {
6151 switch (req->opcode) {
6152 case IORING_OP_READV:
6153 case IORING_OP_READ_FIXED:
6154 case IORING_OP_READ:
6155 return io_rw_prep_async(req, READ);
6156 case IORING_OP_WRITEV:
6157 case IORING_OP_WRITE_FIXED:
6158 case IORING_OP_WRITE:
6159 return io_rw_prep_async(req, WRITE);
6160 case IORING_OP_SENDMSG:
6161 case IORING_OP_SEND:
6162 return io_sendmsg_prep_async(req);
6163 case IORING_OP_RECVMSG:
6164 case IORING_OP_RECV:
6165 return io_recvmsg_prep_async(req);
6166 case IORING_OP_CONNECT:
6167 return io_connect_prep_async(req);
6168 }
6169 return 0;
6170 }
6171
6172 static int io_req_defer_prep(struct io_kiocb *req)
6173 {
6174 if (!io_op_defs[req->opcode].needs_async_data)
6175 return 0;
6176 /* some opcodes init it during the inital prep */
6177 if (req->async_data)
6178 return 0;
6179 if (__io_alloc_async_data(req))
6180 return -EAGAIN;
6181 return io_req_prep_async(req);
6182 }
6183
6184 static u32 io_get_sequence(struct io_kiocb *req)
6185 {
6186 struct io_kiocb *pos;
6187 struct io_ring_ctx *ctx = req->ctx;
6188 u32 total_submitted, nr_reqs = 0;
6189
6190 io_for_each_link(pos, req)
6191 nr_reqs++;
6192
6193 total_submitted = ctx->cached_sq_head - ctx->cached_sq_dropped;
6194 return total_submitted - nr_reqs;
6195 }
6196
6197 static int io_req_defer(struct io_kiocb *req)
6198 {
6199 struct io_ring_ctx *ctx = req->ctx;
6200 struct io_defer_entry *de;
6201 int ret;
6202 u32 seq;
6203
6204 /* Still need defer if there is pending req in defer list. */
6205 if (likely(list_empty_careful(&ctx->defer_list) &&
6206 !(req->flags & REQ_F_IO_DRAIN)))
6207 return 0;
6208
6209 seq = io_get_sequence(req);
6210 /* Still a chance to pass the sequence check */
6211 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6212 return 0;
6213
6214 ret = io_req_defer_prep(req);
6215 if (ret)
6216 return ret;
6217 io_prep_async_link(req);
6218 de = kmalloc(sizeof(*de), GFP_KERNEL);
6219 if (!de)
6220 return -ENOMEM;
6221
6222 spin_lock_irq(&ctx->completion_lock);
6223 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6224 spin_unlock_irq(&ctx->completion_lock);
6225 kfree(de);
6226 io_queue_async_work(req);
6227 return -EIOCBQUEUED;
6228 }
6229
6230 trace_io_uring_defer(ctx, req, req->user_data);
6231 de->req = req;
6232 de->seq = seq;
6233 list_add_tail(&de->list, &ctx->defer_list);
6234 spin_unlock_irq(&ctx->completion_lock);
6235 return -EIOCBQUEUED;
6236 }
6237
6238 static void __io_clean_op(struct io_kiocb *req)
6239 {
6240 if (req->flags & REQ_F_BUFFER_SELECTED) {
6241 switch (req->opcode) {
6242 case IORING_OP_READV:
6243 case IORING_OP_READ_FIXED:
6244 case IORING_OP_READ:
6245 kfree((void *)(unsigned long)req->rw.addr);
6246 break;
6247 case IORING_OP_RECVMSG:
6248 case IORING_OP_RECV:
6249 kfree(req->sr_msg.kbuf);
6250 break;
6251 }
6252 req->flags &= ~REQ_F_BUFFER_SELECTED;
6253 }
6254
6255 if (req->flags & REQ_F_NEED_CLEANUP) {
6256 switch (req->opcode) {
6257 case IORING_OP_READV:
6258 case IORING_OP_READ_FIXED:
6259 case IORING_OP_READ:
6260 case IORING_OP_WRITEV:
6261 case IORING_OP_WRITE_FIXED:
6262 case IORING_OP_WRITE: {
6263 struct io_async_rw *io = req->async_data;
6264 if (io->free_iovec)
6265 kfree(io->free_iovec);
6266 break;
6267 }
6268 case IORING_OP_RECVMSG:
6269 case IORING_OP_SENDMSG: {
6270 struct io_async_msghdr *io = req->async_data;
6271
6272 kfree(io->free_iov);
6273 break;
6274 }
6275 case IORING_OP_SPLICE:
6276 case IORING_OP_TEE:
6277 io_put_file(req, req->splice.file_in,
6278 (req->splice.flags & SPLICE_F_FD_IN_FIXED));
6279 break;
6280 case IORING_OP_OPENAT:
6281 case IORING_OP_OPENAT2:
6282 if (req->open.filename)
6283 putname(req->open.filename);
6284 break;
6285 case IORING_OP_RENAMEAT:
6286 putname(req->rename.oldpath);
6287 putname(req->rename.newpath);
6288 break;
6289 case IORING_OP_UNLINKAT:
6290 putname(req->unlink.filename);
6291 break;
6292 }
6293 req->flags &= ~REQ_F_NEED_CLEANUP;
6294 }
6295 }
6296
6297 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6298 {
6299 struct io_ring_ctx *ctx = req->ctx;
6300 int ret;
6301
6302 switch (req->opcode) {
6303 case IORING_OP_NOP:
6304 ret = io_nop(req, issue_flags);
6305 break;
6306 case IORING_OP_READV:
6307 case IORING_OP_READ_FIXED:
6308 case IORING_OP_READ:
6309 ret = io_read(req, issue_flags);
6310 break;
6311 case IORING_OP_WRITEV:
6312 case IORING_OP_WRITE_FIXED:
6313 case IORING_OP_WRITE:
6314 ret = io_write(req, issue_flags);
6315 break;
6316 case IORING_OP_FSYNC:
6317 ret = io_fsync(req, issue_flags);
6318 break;
6319 case IORING_OP_POLL_ADD:
6320 ret = io_poll_add(req, issue_flags);
6321 break;
6322 case IORING_OP_POLL_REMOVE:
6323 ret = io_poll_remove(req, issue_flags);
6324 break;
6325 case IORING_OP_SYNC_FILE_RANGE:
6326 ret = io_sync_file_range(req, issue_flags);
6327 break;
6328 case IORING_OP_SENDMSG:
6329 ret = io_sendmsg(req, issue_flags);
6330 break;
6331 case IORING_OP_SEND:
6332 ret = io_send(req, issue_flags);
6333 break;
6334 case IORING_OP_RECVMSG:
6335 ret = io_recvmsg(req, issue_flags);
6336 break;
6337 case IORING_OP_RECV:
6338 ret = io_recv(req, issue_flags);
6339 break;
6340 case IORING_OP_TIMEOUT:
6341 ret = io_timeout(req, issue_flags);
6342 break;
6343 case IORING_OP_TIMEOUT_REMOVE:
6344 ret = io_timeout_remove(req, issue_flags);
6345 break;
6346 case IORING_OP_ACCEPT:
6347 ret = io_accept(req, issue_flags);
6348 break;
6349 case IORING_OP_CONNECT:
6350 ret = io_connect(req, issue_flags);
6351 break;
6352 case IORING_OP_ASYNC_CANCEL:
6353 ret = io_async_cancel(req, issue_flags);
6354 break;
6355 case IORING_OP_FALLOCATE:
6356 ret = io_fallocate(req, issue_flags);
6357 break;
6358 case IORING_OP_OPENAT:
6359 ret = io_openat(req, issue_flags);
6360 break;
6361 case IORING_OP_CLOSE:
6362 ret = io_close(req, issue_flags);
6363 break;
6364 case IORING_OP_FILES_UPDATE:
6365 ret = io_files_update(req, issue_flags);
6366 break;
6367 case IORING_OP_STATX:
6368 ret = io_statx(req, issue_flags);
6369 break;
6370 case IORING_OP_FADVISE:
6371 ret = io_fadvise(req, issue_flags);
6372 break;
6373 case IORING_OP_MADVISE:
6374 ret = io_madvise(req, issue_flags);
6375 break;
6376 case IORING_OP_OPENAT2:
6377 ret = io_openat2(req, issue_flags);
6378 break;
6379 case IORING_OP_EPOLL_CTL:
6380 ret = io_epoll_ctl(req, issue_flags);
6381 break;
6382 case IORING_OP_SPLICE:
6383 ret = io_splice(req, issue_flags);
6384 break;
6385 case IORING_OP_PROVIDE_BUFFERS:
6386 ret = io_provide_buffers(req, issue_flags);
6387 break;
6388 case IORING_OP_REMOVE_BUFFERS:
6389 ret = io_remove_buffers(req, issue_flags);
6390 break;
6391 case IORING_OP_TEE:
6392 ret = io_tee(req, issue_flags);
6393 break;
6394 case IORING_OP_SHUTDOWN:
6395 ret = io_shutdown(req, issue_flags);
6396 break;
6397 case IORING_OP_RENAMEAT:
6398 ret = io_renameat(req, issue_flags);
6399 break;
6400 case IORING_OP_UNLINKAT:
6401 ret = io_unlinkat(req, issue_flags);
6402 break;
6403 default:
6404 ret = -EINVAL;
6405 break;
6406 }
6407
6408 if (ret)
6409 return ret;
6410
6411 /* If the op doesn't have a file, we're not polling for it */
6412 if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file) {
6413 const bool in_async = io_wq_current_is_worker();
6414
6415 /* workqueue context doesn't hold uring_lock, grab it now */
6416 if (in_async)
6417 mutex_lock(&ctx->uring_lock);
6418
6419 io_iopoll_req_issued(req, in_async);
6420
6421 if (in_async)
6422 mutex_unlock(&ctx->uring_lock);
6423 }
6424
6425 return 0;
6426 }
6427
6428 static void io_wq_submit_work(struct io_wq_work *work)
6429 {
6430 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6431 struct io_kiocb *timeout;
6432 int ret = 0;
6433
6434 timeout = io_prep_linked_timeout(req);
6435 if (timeout)
6436 io_queue_linked_timeout(timeout);
6437
6438 if (work->flags & IO_WQ_WORK_CANCEL)
6439 ret = -ECANCELED;
6440
6441 if (!ret) {
6442 do {
6443 ret = io_issue_sqe(req, 0);
6444 /*
6445 * We can get EAGAIN for polled IO even though we're
6446 * forcing a sync submission from here, since we can't
6447 * wait for request slots on the block side.
6448 */
6449 if (ret != -EAGAIN)
6450 break;
6451 cond_resched();
6452 } while (1);
6453 }
6454
6455 /* avoid locking problems by failing it from a clean context */
6456 if (ret) {
6457 /* io-wq is going to take one down */
6458 refcount_inc(&req->refs);
6459 io_req_task_queue_fail(req, ret);
6460 }
6461 }
6462
6463 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6464 int index)
6465 {
6466 struct fixed_rsrc_table *table;
6467
6468 table = &ctx->file_data->table[index >> IORING_FILE_TABLE_SHIFT];
6469 return table->files[index & IORING_FILE_TABLE_MASK];
6470 }
6471
6472 static struct file *io_file_get(struct io_submit_state *state,
6473 struct io_kiocb *req, int fd, bool fixed)
6474 {
6475 struct io_ring_ctx *ctx = req->ctx;
6476 struct file *file;
6477
6478 if (fixed) {
6479 if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6480 return NULL;
6481 fd = array_index_nospec(fd, ctx->nr_user_files);
6482 file = io_file_from_index(ctx, fd);
6483 io_set_resource_node(req);
6484 } else {
6485 trace_io_uring_file_get(ctx, fd);
6486 file = __io_file_get(state, fd);
6487 }
6488
6489 if (file && unlikely(file->f_op == &io_uring_fops))
6490 io_req_track_inflight(req);
6491 return file;
6492 }
6493
6494 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6495 {
6496 struct io_timeout_data *data = container_of(timer,
6497 struct io_timeout_data, timer);
6498 struct io_kiocb *prev, *req = data->req;
6499 struct io_ring_ctx *ctx = req->ctx;
6500 unsigned long flags;
6501
6502 spin_lock_irqsave(&ctx->completion_lock, flags);
6503 prev = req->timeout.head;
6504 req->timeout.head = NULL;
6505
6506 /*
6507 * We don't expect the list to be empty, that will only happen if we
6508 * race with the completion of the linked work.
6509 */
6510 if (prev && refcount_inc_not_zero(&prev->refs))
6511 io_remove_next_linked(prev);
6512 else
6513 prev = NULL;
6514 spin_unlock_irqrestore(&ctx->completion_lock, flags);
6515
6516 if (prev) {
6517 req_set_fail_links(prev);
6518 io_async_find_and_cancel(ctx, req, prev->user_data, -ETIME);
6519 io_put_req_deferred(prev, 1);
6520 } else {
6521 io_req_complete_post(req, -ETIME, 0);
6522 io_put_req_deferred(req, 1);
6523 }
6524 return HRTIMER_NORESTART;
6525 }
6526
6527 static void __io_queue_linked_timeout(struct io_kiocb *req)
6528 {
6529 /*
6530 * If the back reference is NULL, then our linked request finished
6531 * before we got a chance to setup the timer
6532 */
6533 if (req->timeout.head) {
6534 struct io_timeout_data *data = req->async_data;
6535
6536 data->timer.function = io_link_timeout_fn;
6537 hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6538 data->mode);
6539 }
6540 }
6541
6542 static void io_queue_linked_timeout(struct io_kiocb *req)
6543 {
6544 struct io_ring_ctx *ctx = req->ctx;
6545
6546 spin_lock_irq(&ctx->completion_lock);
6547 __io_queue_linked_timeout(req);
6548 spin_unlock_irq(&ctx->completion_lock);
6549
6550 /* drop submission reference */
6551 io_put_req(req);
6552 }
6553
6554 static struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
6555 {
6556 struct io_kiocb *nxt = req->link;
6557
6558 if (!nxt || (req->flags & REQ_F_LINK_TIMEOUT) ||
6559 nxt->opcode != IORING_OP_LINK_TIMEOUT)
6560 return NULL;
6561
6562 nxt->timeout.head = req;
6563 nxt->flags |= REQ_F_LTIMEOUT_ACTIVE;
6564 req->flags |= REQ_F_LINK_TIMEOUT;
6565 return nxt;
6566 }
6567
6568 static void __io_queue_sqe(struct io_kiocb *req)
6569 {
6570 struct io_kiocb *linked_timeout = io_prep_linked_timeout(req);
6571 const struct cred *old_creds = NULL;
6572 int ret;
6573
6574 if ((req->flags & REQ_F_WORK_INITIALIZED) &&
6575 (req->work.flags & IO_WQ_WORK_CREDS) &&
6576 req->work.identity->creds != current_cred())
6577 old_creds = override_creds(req->work.identity->creds);
6578
6579 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6580
6581 if (old_creds)
6582 revert_creds(old_creds);
6583
6584 /*
6585 * We async punt it if the file wasn't marked NOWAIT, or if the file
6586 * doesn't support non-blocking read/write attempts
6587 */
6588 if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6589 if (!io_arm_poll_handler(req)) {
6590 /*
6591 * Queued up for async execution, worker will release
6592 * submit reference when the iocb is actually submitted.
6593 */
6594 io_queue_async_work(req);
6595 }
6596 } else if (likely(!ret)) {
6597 /* drop submission reference */
6598 if (req->flags & REQ_F_COMPLETE_INLINE) {
6599 struct io_ring_ctx *ctx = req->ctx;
6600 struct io_comp_state *cs = &ctx->submit_state.comp;
6601
6602 cs->reqs[cs->nr++] = req;
6603 if (cs->nr == ARRAY_SIZE(cs->reqs))
6604 io_submit_flush_completions(cs, ctx);
6605 } else {
6606 io_put_req(req);
6607 }
6608 } else {
6609 req_set_fail_links(req);
6610 io_put_req(req);
6611 io_req_complete(req, ret);
6612 }
6613 if (linked_timeout)
6614 io_queue_linked_timeout(linked_timeout);
6615 }
6616
6617 static void io_queue_sqe(struct io_kiocb *req)
6618 {
6619 int ret;
6620
6621 ret = io_req_defer(req);
6622 if (ret) {
6623 if (ret != -EIOCBQUEUED) {
6624 fail_req:
6625 req_set_fail_links(req);
6626 io_put_req(req);
6627 io_req_complete(req, ret);
6628 }
6629 } else if (req->flags & REQ_F_FORCE_ASYNC) {
6630 ret = io_req_defer_prep(req);
6631 if (unlikely(ret))
6632 goto fail_req;
6633 io_queue_async_work(req);
6634 } else {
6635 __io_queue_sqe(req);
6636 }
6637 }
6638
6639 /*
6640 * Check SQE restrictions (opcode and flags).
6641 *
6642 * Returns 'true' if SQE is allowed, 'false' otherwise.
6643 */
6644 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
6645 struct io_kiocb *req,
6646 unsigned int sqe_flags)
6647 {
6648 if (!ctx->restricted)
6649 return true;
6650
6651 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
6652 return false;
6653
6654 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
6655 ctx->restrictions.sqe_flags_required)
6656 return false;
6657
6658 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
6659 ctx->restrictions.sqe_flags_required))
6660 return false;
6661
6662 return true;
6663 }
6664
6665 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
6666 const struct io_uring_sqe *sqe)
6667 {
6668 struct io_submit_state *state;
6669 unsigned int sqe_flags;
6670 int id, ret = 0;
6671
6672 req->opcode = READ_ONCE(sqe->opcode);
6673 /* same numerical values with corresponding REQ_F_*, safe to copy */
6674 req->flags = sqe_flags = READ_ONCE(sqe->flags);
6675 req->user_data = READ_ONCE(sqe->user_data);
6676 req->async_data = NULL;
6677 req->file = NULL;
6678 req->ctx = ctx;
6679 req->link = NULL;
6680 req->fixed_rsrc_refs = NULL;
6681 /* one is dropped after submission, the other at completion */
6682 refcount_set(&req->refs, 2);
6683 req->task = current;
6684 req->result = 0;
6685
6686 /* enforce forwards compatibility on users */
6687 if (unlikely(sqe_flags & ~SQE_VALID_FLAGS)) {
6688 req->flags = 0;
6689 return -EINVAL;
6690 }
6691
6692 if (unlikely(req->opcode >= IORING_OP_LAST))
6693 return -EINVAL;
6694
6695 if (unlikely(io_sq_thread_acquire_mm_files(ctx, req)))
6696 return -EFAULT;
6697
6698 if (unlikely(!io_check_restriction(ctx, req, sqe_flags)))
6699 return -EACCES;
6700
6701 if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
6702 !io_op_defs[req->opcode].buffer_select)
6703 return -EOPNOTSUPP;
6704
6705 id = READ_ONCE(sqe->personality);
6706 if (id) {
6707 struct io_identity *iod;
6708
6709 iod = idr_find(&ctx->personality_idr, id);
6710 if (unlikely(!iod))
6711 return -EINVAL;
6712 refcount_inc(&iod->count);
6713
6714 __io_req_init_async(req);
6715 get_cred(iod->creds);
6716 req->work.identity = iod;
6717 req->work.flags |= IO_WQ_WORK_CREDS;
6718 }
6719
6720 state = &ctx->submit_state;
6721
6722 /*
6723 * Plug now if we have more than 1 IO left after this, and the target
6724 * is potentially a read/write to block based storage.
6725 */
6726 if (!state->plug_started && state->ios_left > 1 &&
6727 io_op_defs[req->opcode].plug) {
6728 blk_start_plug(&state->plug);
6729 state->plug_started = true;
6730 }
6731
6732 if (io_op_defs[req->opcode].needs_file) {
6733 bool fixed = req->flags & REQ_F_FIXED_FILE;
6734
6735 req->file = io_file_get(state, req, READ_ONCE(sqe->fd), fixed);
6736 if (unlikely(!req->file))
6737 ret = -EBADF;
6738 }
6739
6740 state->ios_left--;
6741 return ret;
6742 }
6743
6744 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
6745 const struct io_uring_sqe *sqe)
6746 {
6747 struct io_submit_link *link = &ctx->submit_state.link;
6748 int ret;
6749
6750 ret = io_init_req(ctx, req, sqe);
6751 if (unlikely(ret)) {
6752 fail_req:
6753 io_put_req(req);
6754 io_req_complete(req, ret);
6755 if (link->head) {
6756 /* fail even hard links since we don't submit */
6757 link->head->flags |= REQ_F_FAIL_LINK;
6758 io_put_req(link->head);
6759 io_req_complete(link->head, -ECANCELED);
6760 link->head = NULL;
6761 }
6762 return ret;
6763 }
6764 ret = io_req_prep(req, sqe);
6765 if (unlikely(ret))
6766 goto fail_req;
6767
6768 /* don't need @sqe from now on */
6769 trace_io_uring_submit_sqe(ctx, req->opcode, req->user_data,
6770 true, ctx->flags & IORING_SETUP_SQPOLL);
6771
6772 /*
6773 * If we already have a head request, queue this one for async
6774 * submittal once the head completes. If we don't have a head but
6775 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
6776 * submitted sync once the chain is complete. If none of those
6777 * conditions are true (normal request), then just queue it.
6778 */
6779 if (link->head) {
6780 struct io_kiocb *head = link->head;
6781
6782 /*
6783 * Taking sequential execution of a link, draining both sides
6784 * of the link also fullfils IOSQE_IO_DRAIN semantics for all
6785 * requests in the link. So, it drains the head and the
6786 * next after the link request. The last one is done via
6787 * drain_next flag to persist the effect across calls.
6788 */
6789 if (req->flags & REQ_F_IO_DRAIN) {
6790 head->flags |= REQ_F_IO_DRAIN;
6791 ctx->drain_next = 1;
6792 }
6793 ret = io_req_defer_prep(req);
6794 if (unlikely(ret))
6795 goto fail_req;
6796 trace_io_uring_link(ctx, req, head);
6797 link->last->link = req;
6798 link->last = req;
6799
6800 /* last request of a link, enqueue the link */
6801 if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
6802 io_queue_sqe(head);
6803 link->head = NULL;
6804 }
6805 } else {
6806 if (unlikely(ctx->drain_next)) {
6807 req->flags |= REQ_F_IO_DRAIN;
6808 ctx->drain_next = 0;
6809 }
6810 if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
6811 link->head = req;
6812 link->last = req;
6813 } else {
6814 io_queue_sqe(req);
6815 }
6816 }
6817
6818 return 0;
6819 }
6820
6821 /*
6822 * Batched submission is done, ensure local IO is flushed out.
6823 */
6824 static void io_submit_state_end(struct io_submit_state *state,
6825 struct io_ring_ctx *ctx)
6826 {
6827 if (state->link.head)
6828 io_queue_sqe(state->link.head);
6829 if (state->comp.nr)
6830 io_submit_flush_completions(&state->comp, ctx);
6831 if (state->plug_started)
6832 blk_finish_plug(&state->plug);
6833 io_state_file_put(state);
6834 }
6835
6836 /*
6837 * Start submission side cache.
6838 */
6839 static void io_submit_state_start(struct io_submit_state *state,
6840 unsigned int max_ios)
6841 {
6842 state->plug_started = false;
6843 state->ios_left = max_ios;
6844 /* set only head, no need to init link_last in advance */
6845 state->link.head = NULL;
6846 }
6847
6848 static void io_commit_sqring(struct io_ring_ctx *ctx)
6849 {
6850 struct io_rings *rings = ctx->rings;
6851
6852 /*
6853 * Ensure any loads from the SQEs are done at this point,
6854 * since once we write the new head, the application could
6855 * write new data to them.
6856 */
6857 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
6858 }
6859
6860 /*
6861 * Fetch an sqe, if one is available. Note that sqe_ptr will point to memory
6862 * that is mapped by userspace. This means that care needs to be taken to
6863 * ensure that reads are stable, as we cannot rely on userspace always
6864 * being a good citizen. If members of the sqe are validated and then later
6865 * used, it's important that those reads are done through READ_ONCE() to
6866 * prevent a re-load down the line.
6867 */
6868 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
6869 {
6870 u32 *sq_array = ctx->sq_array;
6871 unsigned head;
6872
6873 /*
6874 * The cached sq head (or cq tail) serves two purposes:
6875 *
6876 * 1) allows us to batch the cost of updating the user visible
6877 * head updates.
6878 * 2) allows the kernel side to track the head on its own, even
6879 * though the application is the one updating it.
6880 */
6881 head = READ_ONCE(sq_array[ctx->cached_sq_head++ & ctx->sq_mask]);
6882 if (likely(head < ctx->sq_entries))
6883 return &ctx->sq_sqes[head];
6884
6885 /* drop invalid entries */
6886 ctx->cached_sq_dropped++;
6887 WRITE_ONCE(ctx->rings->sq_dropped, ctx->cached_sq_dropped);
6888 return NULL;
6889 }
6890
6891 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
6892 {
6893 int submitted = 0;
6894
6895 /* if we have a backlog and couldn't flush it all, return BUSY */
6896 if (test_bit(0, &ctx->sq_check_overflow)) {
6897 if (!__io_cqring_overflow_flush(ctx, false, NULL, NULL))
6898 return -EBUSY;
6899 }
6900
6901 /* make sure SQ entry isn't read before tail */
6902 nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
6903
6904 if (!percpu_ref_tryget_many(&ctx->refs, nr))
6905 return -EAGAIN;
6906
6907 percpu_counter_add(&current->io_uring->inflight, nr);
6908 refcount_add(nr, &current->usage);
6909 io_submit_state_start(&ctx->submit_state, nr);
6910
6911 while (submitted < nr) {
6912 const struct io_uring_sqe *sqe;
6913 struct io_kiocb *req;
6914
6915 req = io_alloc_req(ctx);
6916 if (unlikely(!req)) {
6917 if (!submitted)
6918 submitted = -EAGAIN;
6919 break;
6920 }
6921 sqe = io_get_sqe(ctx);
6922 if (unlikely(!sqe)) {
6923 kmem_cache_free(req_cachep, req);
6924 break;
6925 }
6926 /* will complete beyond this point, count as submitted */
6927 submitted++;
6928 if (io_submit_sqe(ctx, req, sqe))
6929 break;
6930 }
6931
6932 if (unlikely(submitted != nr)) {
6933 int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
6934 struct io_uring_task *tctx = current->io_uring;
6935 int unused = nr - ref_used;
6936
6937 percpu_ref_put_many(&ctx->refs, unused);
6938 percpu_counter_sub(&tctx->inflight, unused);
6939 put_task_struct_many(current, unused);
6940 }
6941
6942 io_submit_state_end(&ctx->submit_state, ctx);
6943 /* Commit SQ ring head once we've consumed and submitted all SQEs */
6944 io_commit_sqring(ctx);
6945
6946 return submitted;
6947 }
6948
6949 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
6950 {
6951 /* Tell userspace we may need a wakeup call */
6952 spin_lock_irq(&ctx->completion_lock);
6953 ctx->rings->sq_flags |= IORING_SQ_NEED_WAKEUP;
6954 spin_unlock_irq(&ctx->completion_lock);
6955 }
6956
6957 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
6958 {
6959 spin_lock_irq(&ctx->completion_lock);
6960 ctx->rings->sq_flags &= ~IORING_SQ_NEED_WAKEUP;
6961 spin_unlock_irq(&ctx->completion_lock);
6962 }
6963
6964 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
6965 {
6966 unsigned int to_submit;
6967 int ret = 0;
6968
6969 to_submit = io_sqring_entries(ctx);
6970 /* if we're handling multiple rings, cap submit size for fairness */
6971 if (cap_entries && to_submit > 8)
6972 to_submit = 8;
6973
6974 if (!list_empty(&ctx->iopoll_list) || to_submit) {
6975 unsigned nr_events = 0;
6976
6977 mutex_lock(&ctx->uring_lock);
6978 if (!list_empty(&ctx->iopoll_list))
6979 io_do_iopoll(ctx, &nr_events, 0);
6980
6981 if (to_submit && !ctx->sqo_dead &&
6982 likely(!percpu_ref_is_dying(&ctx->refs)))
6983 ret = io_submit_sqes(ctx, to_submit);
6984 mutex_unlock(&ctx->uring_lock);
6985 }
6986
6987 if (!io_sqring_full(ctx) && wq_has_sleeper(&ctx->sqo_sq_wait))
6988 wake_up(&ctx->sqo_sq_wait);
6989
6990 return ret;
6991 }
6992
6993 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
6994 {
6995 struct io_ring_ctx *ctx;
6996 unsigned sq_thread_idle = 0;
6997
6998 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
6999 if (sq_thread_idle < ctx->sq_thread_idle)
7000 sq_thread_idle = ctx->sq_thread_idle;
7001 }
7002
7003 sqd->sq_thread_idle = sq_thread_idle;
7004 }
7005
7006 static void io_sqd_init_new(struct io_sq_data *sqd)
7007 {
7008 struct io_ring_ctx *ctx;
7009
7010 while (!list_empty(&sqd->ctx_new_list)) {
7011 ctx = list_first_entry(&sqd->ctx_new_list, struct io_ring_ctx, sqd_list);
7012 list_move_tail(&ctx->sqd_list, &sqd->ctx_list);
7013 complete(&ctx->sq_thread_comp);
7014 }
7015
7016 io_sqd_update_thread_idle(sqd);
7017 }
7018
7019 static int io_sq_thread(void *data)
7020 {
7021 struct cgroup_subsys_state *cur_css = NULL;
7022 struct files_struct *old_files = current->files;
7023 struct nsproxy *old_nsproxy = current->nsproxy;
7024 const struct cred *old_cred = NULL;
7025 struct io_sq_data *sqd = data;
7026 struct io_ring_ctx *ctx;
7027 unsigned long timeout = 0;
7028 DEFINE_WAIT(wait);
7029
7030 task_lock(current);
7031 current->files = NULL;
7032 current->nsproxy = NULL;
7033 task_unlock(current);
7034
7035 while (!kthread_should_stop()) {
7036 int ret;
7037 bool cap_entries, sqt_spin, needs_sched;
7038
7039 /*
7040 * Any changes to the sqd lists are synchronized through the
7041 * kthread parking. This synchronizes the thread vs users,
7042 * the users are synchronized on the sqd->ctx_lock.
7043 */
7044 if (kthread_should_park()) {
7045 kthread_parkme();
7046 /*
7047 * When sq thread is unparked, in case the previous park operation
7048 * comes from io_put_sq_data(), which means that sq thread is going
7049 * to be stopped, so here needs to have a check.
7050 */
7051 if (kthread_should_stop())
7052 break;
7053 }
7054
7055 if (unlikely(!list_empty(&sqd->ctx_new_list))) {
7056 io_sqd_init_new(sqd);
7057 timeout = jiffies + sqd->sq_thread_idle;
7058 }
7059
7060 sqt_spin = false;
7061 cap_entries = !list_is_singular(&sqd->ctx_list);
7062 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7063 if (current->cred != ctx->creds) {
7064 if (old_cred)
7065 revert_creds(old_cred);
7066 old_cred = override_creds(ctx->creds);
7067 }
7068 io_sq_thread_associate_blkcg(ctx, &cur_css);
7069 #ifdef CONFIG_AUDIT
7070 current->loginuid = ctx->loginuid;
7071 current->sessionid = ctx->sessionid;
7072 #endif
7073
7074 ret = __io_sq_thread(ctx, cap_entries);
7075 if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7076 sqt_spin = true;
7077
7078 io_sq_thread_drop_mm_files();
7079 }
7080
7081 if (sqt_spin || !time_after(jiffies, timeout)) {
7082 io_run_task_work();
7083 io_sq_thread_drop_mm_files();
7084 cond_resched();
7085 if (sqt_spin)
7086 timeout = jiffies + sqd->sq_thread_idle;
7087 continue;
7088 }
7089
7090 needs_sched = true;
7091 prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7092 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7093 if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7094 !list_empty_careful(&ctx->iopoll_list)) {
7095 needs_sched = false;
7096 break;
7097 }
7098 if (io_sqring_entries(ctx)) {
7099 needs_sched = false;
7100 break;
7101 }
7102 }
7103
7104 if (needs_sched && !kthread_should_park()) {
7105 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7106 io_ring_set_wakeup_flag(ctx);
7107
7108 schedule();
7109 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7110 io_ring_clear_wakeup_flag(ctx);
7111 }
7112
7113 finish_wait(&sqd->wait, &wait);
7114 timeout = jiffies + sqd->sq_thread_idle;
7115 }
7116
7117 io_run_task_work();
7118 io_sq_thread_drop_mm_files();
7119
7120 if (cur_css)
7121 io_sq_thread_unassociate_blkcg();
7122 if (old_cred)
7123 revert_creds(old_cred);
7124
7125 task_lock(current);
7126 current->files = old_files;
7127 current->nsproxy = old_nsproxy;
7128 task_unlock(current);
7129
7130 kthread_parkme();
7131
7132 return 0;
7133 }
7134
7135 struct io_wait_queue {
7136 struct wait_queue_entry wq;
7137 struct io_ring_ctx *ctx;
7138 unsigned to_wait;
7139 unsigned nr_timeouts;
7140 };
7141
7142 static inline bool io_should_wake(struct io_wait_queue *iowq)
7143 {
7144 struct io_ring_ctx *ctx = iowq->ctx;
7145
7146 /*
7147 * Wake up if we have enough events, or if a timeout occurred since we
7148 * started waiting. For timeouts, we always want to return to userspace,
7149 * regardless of event count.
7150 */
7151 return io_cqring_events(ctx) >= iowq->to_wait ||
7152 atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7153 }
7154
7155 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7156 int wake_flags, void *key)
7157 {
7158 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7159 wq);
7160
7161 /*
7162 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7163 * the task, and the next invocation will do it.
7164 */
7165 if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->cq_check_overflow))
7166 return autoremove_wake_function(curr, mode, wake_flags, key);
7167 return -1;
7168 }
7169
7170 static int io_run_task_work_sig(void)
7171 {
7172 if (io_run_task_work())
7173 return 1;
7174 if (!signal_pending(current))
7175 return 0;
7176 if (test_tsk_thread_flag(current, TIF_NOTIFY_SIGNAL))
7177 return -ERESTARTSYS;
7178 return -EINTR;
7179 }
7180
7181 /* when returns >0, the caller should retry */
7182 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7183 struct io_wait_queue *iowq,
7184 signed long *timeout)
7185 {
7186 int ret;
7187
7188 /* make sure we run task_work before checking for signals */
7189 ret = io_run_task_work_sig();
7190 if (ret || io_should_wake(iowq))
7191 return ret;
7192 /* let the caller flush overflows, retry */
7193 if (test_bit(0, &ctx->cq_check_overflow))
7194 return 1;
7195
7196 *timeout = schedule_timeout(*timeout);
7197 return !*timeout ? -ETIME : 1;
7198 }
7199
7200 /*
7201 * Wait until events become available, if we don't already have some. The
7202 * application must reap them itself, as they reside on the shared cq ring.
7203 */
7204 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7205 const sigset_t __user *sig, size_t sigsz,
7206 struct __kernel_timespec __user *uts)
7207 {
7208 struct io_wait_queue iowq = {
7209 .wq = {
7210 .private = current,
7211 .func = io_wake_function,
7212 .entry = LIST_HEAD_INIT(iowq.wq.entry),
7213 },
7214 .ctx = ctx,
7215 .to_wait = min_events,
7216 };
7217 struct io_rings *rings = ctx->rings;
7218 signed long timeout = MAX_SCHEDULE_TIMEOUT;
7219 int ret;
7220
7221 do {
7222 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7223 if (io_cqring_events(ctx) >= min_events)
7224 return 0;
7225 if (!io_run_task_work())
7226 break;
7227 } while (1);
7228
7229 if (sig) {
7230 #ifdef CONFIG_COMPAT
7231 if (in_compat_syscall())
7232 ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7233 sigsz);
7234 else
7235 #endif
7236 ret = set_user_sigmask(sig, sigsz);
7237
7238 if (ret)
7239 return ret;
7240 }
7241
7242 if (uts) {
7243 struct timespec64 ts;
7244
7245 if (get_timespec64(&ts, uts))
7246 return -EFAULT;
7247 timeout = timespec64_to_jiffies(&ts);
7248 }
7249
7250 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7251 trace_io_uring_cqring_wait(ctx, min_events);
7252 do {
7253 io_cqring_overflow_flush(ctx, false, NULL, NULL);
7254 prepare_to_wait_exclusive(&ctx->wait, &iowq.wq,
7255 TASK_INTERRUPTIBLE);
7256 ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7257 finish_wait(&ctx->wait, &iowq.wq);
7258 } while (ret > 0);
7259
7260 restore_saved_sigmask_unless(ret == -EINTR);
7261
7262 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7263 }
7264
7265 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7266 {
7267 #if defined(CONFIG_UNIX)
7268 if (ctx->ring_sock) {
7269 struct sock *sock = ctx->ring_sock->sk;
7270 struct sk_buff *skb;
7271
7272 while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7273 kfree_skb(skb);
7274 }
7275 #else
7276 int i;
7277
7278 for (i = 0; i < ctx->nr_user_files; i++) {
7279 struct file *file;
7280
7281 file = io_file_from_index(ctx, i);
7282 if (file)
7283 fput(file);
7284 }
7285 #endif
7286 }
7287
7288 static void io_rsrc_data_ref_zero(struct percpu_ref *ref)
7289 {
7290 struct fixed_rsrc_data *data;
7291
7292 data = container_of(ref, struct fixed_rsrc_data, refs);
7293 complete(&data->done);
7294 }
7295
7296 static inline void io_rsrc_ref_lock(struct io_ring_ctx *ctx)
7297 {
7298 spin_lock_bh(&ctx->rsrc_ref_lock);
7299 }
7300
7301 static inline void io_rsrc_ref_unlock(struct io_ring_ctx *ctx)
7302 {
7303 spin_unlock_bh(&ctx->rsrc_ref_lock);
7304 }
7305
7306 static void io_sqe_rsrc_set_node(struct io_ring_ctx *ctx,
7307 struct fixed_rsrc_data *rsrc_data,
7308 struct fixed_rsrc_ref_node *ref_node)
7309 {
7310 io_rsrc_ref_lock(ctx);
7311 rsrc_data->node = ref_node;
7312 list_add_tail(&ref_node->node, &ctx->rsrc_ref_list);
7313 io_rsrc_ref_unlock(ctx);
7314 percpu_ref_get(&rsrc_data->refs);
7315 }
7316
7317 static void io_sqe_rsrc_kill_node(struct io_ring_ctx *ctx, struct fixed_rsrc_data *data)
7318 {
7319 struct fixed_rsrc_ref_node *ref_node = NULL;
7320
7321 io_rsrc_ref_lock(ctx);
7322 ref_node = data->node;
7323 data->node = NULL;
7324 io_rsrc_ref_unlock(ctx);
7325 if (ref_node)
7326 percpu_ref_kill(&ref_node->refs);
7327 }
7328
7329 static int io_rsrc_ref_quiesce(struct fixed_rsrc_data *data,
7330 struct io_ring_ctx *ctx,
7331 void (*rsrc_put)(struct io_ring_ctx *ctx,
7332 struct io_rsrc_put *prsrc))
7333 {
7334 struct fixed_rsrc_ref_node *backup_node;
7335 int ret;
7336
7337 if (data->quiesce)
7338 return -ENXIO;
7339
7340 data->quiesce = true;
7341 do {
7342 ret = -ENOMEM;
7343 backup_node = alloc_fixed_rsrc_ref_node(ctx);
7344 if (!backup_node)
7345 break;
7346 backup_node->rsrc_data = data;
7347 backup_node->rsrc_put = rsrc_put;
7348
7349 io_sqe_rsrc_kill_node(ctx, data);
7350 percpu_ref_kill(&data->refs);
7351 flush_delayed_work(&ctx->rsrc_put_work);
7352
7353 ret = wait_for_completion_interruptible(&data->done);
7354 if (!ret || !io_refs_resurrect(&data->refs, &data->done))
7355 break;
7356
7357 io_sqe_rsrc_set_node(ctx, data, backup_node);
7358 backup_node = NULL;
7359 mutex_unlock(&ctx->uring_lock);
7360 ret = io_run_task_work_sig();
7361 mutex_lock(&ctx->uring_lock);
7362 } while (ret >= 0);
7363 data->quiesce = false;
7364
7365 if (backup_node)
7366 destroy_fixed_rsrc_ref_node(backup_node);
7367 return ret;
7368 }
7369
7370 static struct fixed_rsrc_data *alloc_fixed_rsrc_data(struct io_ring_ctx *ctx)
7371 {
7372 struct fixed_rsrc_data *data;
7373
7374 data = kzalloc(sizeof(*data), GFP_KERNEL);
7375 if (!data)
7376 return NULL;
7377
7378 if (percpu_ref_init(&data->refs, io_rsrc_data_ref_zero,
7379 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL)) {
7380 kfree(data);
7381 return NULL;
7382 }
7383 data->ctx = ctx;
7384 init_completion(&data->done);
7385 return data;
7386 }
7387
7388 static void free_fixed_rsrc_data(struct fixed_rsrc_data *data)
7389 {
7390 percpu_ref_exit(&data->refs);
7391 kfree(data->table);
7392 kfree(data);
7393 }
7394
7395 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7396 {
7397 struct fixed_rsrc_data *data = ctx->file_data;
7398 unsigned nr_tables, i;
7399 int ret;
7400
7401 /*
7402 * percpu_ref_is_dying() is to stop parallel files unregister
7403 * Since we possibly drop uring lock later in this function to
7404 * run task work.
7405 */
7406 if (!data || percpu_ref_is_dying(&data->refs))
7407 return -ENXIO;
7408 ret = io_rsrc_ref_quiesce(data, ctx, io_ring_file_put);
7409 if (ret)
7410 return ret;
7411
7412 __io_sqe_files_unregister(ctx);
7413 nr_tables = DIV_ROUND_UP(ctx->nr_user_files, IORING_MAX_FILES_TABLE);
7414 for (i = 0; i < nr_tables; i++)
7415 kfree(data->table[i].files);
7416 free_fixed_rsrc_data(data);
7417 ctx->file_data = NULL;
7418 ctx->nr_user_files = 0;
7419 return 0;
7420 }
7421
7422 static void io_put_sq_data(struct io_sq_data *sqd)
7423 {
7424 if (refcount_dec_and_test(&sqd->refs)) {
7425 /*
7426 * The park is a bit of a work-around, without it we get
7427 * warning spews on shutdown with SQPOLL set and affinity
7428 * set to a single CPU.
7429 */
7430 if (sqd->thread) {
7431 kthread_park(sqd->thread);
7432 kthread_stop(sqd->thread);
7433 }
7434
7435 kfree(sqd);
7436 }
7437 }
7438
7439 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7440 {
7441 struct io_ring_ctx *ctx_attach;
7442 struct io_sq_data *sqd;
7443 struct fd f;
7444
7445 f = fdget(p->wq_fd);
7446 if (!f.file)
7447 return ERR_PTR(-ENXIO);
7448 if (f.file->f_op != &io_uring_fops) {
7449 fdput(f);
7450 return ERR_PTR(-EINVAL);
7451 }
7452
7453 ctx_attach = f.file->private_data;
7454 sqd = ctx_attach->sq_data;
7455 if (!sqd) {
7456 fdput(f);
7457 return ERR_PTR(-EINVAL);
7458 }
7459
7460 refcount_inc(&sqd->refs);
7461 fdput(f);
7462 return sqd;
7463 }
7464
7465 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p)
7466 {
7467 struct io_sq_data *sqd;
7468
7469 if (p->flags & IORING_SETUP_ATTACH_WQ)
7470 return io_attach_sq_data(p);
7471
7472 sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7473 if (!sqd)
7474 return ERR_PTR(-ENOMEM);
7475
7476 refcount_set(&sqd->refs, 1);
7477 INIT_LIST_HEAD(&sqd->ctx_list);
7478 INIT_LIST_HEAD(&sqd->ctx_new_list);
7479 mutex_init(&sqd->ctx_lock);
7480 mutex_init(&sqd->lock);
7481 init_waitqueue_head(&sqd->wait);
7482 return sqd;
7483 }
7484
7485 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7486 __releases(&sqd->lock)
7487 {
7488 if (!sqd->thread)
7489 return;
7490 kthread_unpark(sqd->thread);
7491 mutex_unlock(&sqd->lock);
7492 }
7493
7494 static void io_sq_thread_park(struct io_sq_data *sqd)
7495 __acquires(&sqd->lock)
7496 {
7497 if (!sqd->thread)
7498 return;
7499 mutex_lock(&sqd->lock);
7500 kthread_park(sqd->thread);
7501 }
7502
7503 static void io_sq_thread_stop(struct io_ring_ctx *ctx)
7504 {
7505 struct io_sq_data *sqd = ctx->sq_data;
7506
7507 if (sqd) {
7508 if (sqd->thread) {
7509 /*
7510 * We may arrive here from the error branch in
7511 * io_sq_offload_create() where the kthread is created
7512 * without being waked up, thus wake it up now to make
7513 * sure the wait will complete.
7514 */
7515 wake_up_process(sqd->thread);
7516 wait_for_completion(&ctx->sq_thread_comp);
7517
7518 io_sq_thread_park(sqd);
7519 }
7520
7521 mutex_lock(&sqd->ctx_lock);
7522 list_del(&ctx->sqd_list);
7523 io_sqd_update_thread_idle(sqd);
7524 mutex_unlock(&sqd->ctx_lock);
7525
7526 if (sqd->thread)
7527 io_sq_thread_unpark(sqd);
7528
7529 io_put_sq_data(sqd);
7530 ctx->sq_data = NULL;
7531 }
7532 }
7533
7534 static void io_finish_async(struct io_ring_ctx *ctx)
7535 {
7536 io_sq_thread_stop(ctx);
7537
7538 if (ctx->io_wq) {
7539 io_wq_destroy(ctx->io_wq);
7540 ctx->io_wq = NULL;
7541 }
7542 }
7543
7544 #if defined(CONFIG_UNIX)
7545 /*
7546 * Ensure the UNIX gc is aware of our file set, so we are certain that
7547 * the io_uring can be safely unregistered on process exit, even if we have
7548 * loops in the file referencing.
7549 */
7550 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
7551 {
7552 struct sock *sk = ctx->ring_sock->sk;
7553 struct scm_fp_list *fpl;
7554 struct sk_buff *skb;
7555 int i, nr_files;
7556
7557 fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
7558 if (!fpl)
7559 return -ENOMEM;
7560
7561 skb = alloc_skb(0, GFP_KERNEL);
7562 if (!skb) {
7563 kfree(fpl);
7564 return -ENOMEM;
7565 }
7566
7567 skb->sk = sk;
7568
7569 nr_files = 0;
7570 fpl->user = get_uid(ctx->user);
7571 for (i = 0; i < nr; i++) {
7572 struct file *file = io_file_from_index(ctx, i + offset);
7573
7574 if (!file)
7575 continue;
7576 fpl->fp[nr_files] = get_file(file);
7577 unix_inflight(fpl->user, fpl->fp[nr_files]);
7578 nr_files++;
7579 }
7580
7581 if (nr_files) {
7582 fpl->max = SCM_MAX_FD;
7583 fpl->count = nr_files;
7584 UNIXCB(skb).fp = fpl;
7585 skb->destructor = unix_destruct_scm;
7586 refcount_add(skb->truesize, &sk->sk_wmem_alloc);
7587 skb_queue_head(&sk->sk_receive_queue, skb);
7588
7589 for (i = 0; i < nr_files; i++)
7590 fput(fpl->fp[i]);
7591 } else {
7592 kfree_skb(skb);
7593 kfree(fpl);
7594 }
7595
7596 return 0;
7597 }
7598
7599 /*
7600 * If UNIX sockets are enabled, fd passing can cause a reference cycle which
7601 * causes regular reference counting to break down. We rely on the UNIX
7602 * garbage collection to take care of this problem for us.
7603 */
7604 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7605 {
7606 unsigned left, total;
7607 int ret = 0;
7608
7609 total = 0;
7610 left = ctx->nr_user_files;
7611 while (left) {
7612 unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
7613
7614 ret = __io_sqe_files_scm(ctx, this_files, total);
7615 if (ret)
7616 break;
7617 left -= this_files;
7618 total += this_files;
7619 }
7620
7621 if (!ret)
7622 return 0;
7623
7624 while (total < ctx->nr_user_files) {
7625 struct file *file = io_file_from_index(ctx, total);
7626
7627 if (file)
7628 fput(file);
7629 total++;
7630 }
7631
7632 return ret;
7633 }
7634 #else
7635 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
7636 {
7637 return 0;
7638 }
7639 #endif
7640
7641 static int io_sqe_alloc_file_tables(struct fixed_rsrc_data *file_data,
7642 unsigned nr_tables, unsigned nr_files)
7643 {
7644 int i;
7645
7646 for (i = 0; i < nr_tables; i++) {
7647 struct fixed_rsrc_table *table = &file_data->table[i];
7648 unsigned this_files;
7649
7650 this_files = min(nr_files, IORING_MAX_FILES_TABLE);
7651 table->files = kcalloc(this_files, sizeof(struct file *),
7652 GFP_KERNEL);
7653 if (!table->files)
7654 break;
7655 nr_files -= this_files;
7656 }
7657
7658 if (i == nr_tables)
7659 return 0;
7660
7661 for (i = 0; i < nr_tables; i++) {
7662 struct fixed_rsrc_table *table = &file_data->table[i];
7663 kfree(table->files);
7664 }
7665 return 1;
7666 }
7667
7668 static void io_ring_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
7669 {
7670 struct file *file = prsrc->file;
7671 #if defined(CONFIG_UNIX)
7672 struct sock *sock = ctx->ring_sock->sk;
7673 struct sk_buff_head list, *head = &sock->sk_receive_queue;
7674 struct sk_buff *skb;
7675 int i;
7676
7677 __skb_queue_head_init(&list);
7678
7679 /*
7680 * Find the skb that holds this file in its SCM_RIGHTS. When found,
7681 * remove this entry and rearrange the file array.
7682 */
7683 skb = skb_dequeue(head);
7684 while (skb) {
7685 struct scm_fp_list *fp;
7686
7687 fp = UNIXCB(skb).fp;
7688 for (i = 0; i < fp->count; i++) {
7689 int left;
7690
7691 if (fp->fp[i] != file)
7692 continue;
7693
7694 unix_notinflight(fp->user, fp->fp[i]);
7695 left = fp->count - 1 - i;
7696 if (left) {
7697 memmove(&fp->fp[i], &fp->fp[i + 1],
7698 left * sizeof(struct file *));
7699 }
7700 fp->count--;
7701 if (!fp->count) {
7702 kfree_skb(skb);
7703 skb = NULL;
7704 } else {
7705 __skb_queue_tail(&list, skb);
7706 }
7707 fput(file);
7708 file = NULL;
7709 break;
7710 }
7711
7712 if (!file)
7713 break;
7714
7715 __skb_queue_tail(&list, skb);
7716
7717 skb = skb_dequeue(head);
7718 }
7719
7720 if (skb_peek(&list)) {
7721 spin_lock_irq(&head->lock);
7722 while ((skb = __skb_dequeue(&list)) != NULL)
7723 __skb_queue_tail(head, skb);
7724 spin_unlock_irq(&head->lock);
7725 }
7726 #else
7727 fput(file);
7728 #endif
7729 }
7730
7731 static void __io_rsrc_put_work(struct fixed_rsrc_ref_node *ref_node)
7732 {
7733 struct fixed_rsrc_data *rsrc_data = ref_node->rsrc_data;
7734 struct io_ring_ctx *ctx = rsrc_data->ctx;
7735 struct io_rsrc_put *prsrc, *tmp;
7736
7737 list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
7738 list_del(&prsrc->list);
7739 ref_node->rsrc_put(ctx, prsrc);
7740 kfree(prsrc);
7741 }
7742
7743 percpu_ref_exit(&ref_node->refs);
7744 kfree(ref_node);
7745 percpu_ref_put(&rsrc_data->refs);
7746 }
7747
7748 static void io_rsrc_put_work(struct work_struct *work)
7749 {
7750 struct io_ring_ctx *ctx;
7751 struct llist_node *node;
7752
7753 ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
7754 node = llist_del_all(&ctx->rsrc_put_llist);
7755
7756 while (node) {
7757 struct fixed_rsrc_ref_node *ref_node;
7758 struct llist_node *next = node->next;
7759
7760 ref_node = llist_entry(node, struct fixed_rsrc_ref_node, llist);
7761 __io_rsrc_put_work(ref_node);
7762 node = next;
7763 }
7764 }
7765
7766 static struct file **io_fixed_file_slot(struct fixed_rsrc_data *file_data,
7767 unsigned i)
7768 {
7769 struct fixed_rsrc_table *table;
7770
7771 table = &file_data->table[i >> IORING_FILE_TABLE_SHIFT];
7772 return &table->files[i & IORING_FILE_TABLE_MASK];
7773 }
7774
7775 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7776 {
7777 struct fixed_rsrc_ref_node *ref_node;
7778 struct fixed_rsrc_data *data;
7779 struct io_ring_ctx *ctx;
7780 bool first_add = false;
7781 int delay = HZ;
7782
7783 ref_node = container_of(ref, struct fixed_rsrc_ref_node, refs);
7784 data = ref_node->rsrc_data;
7785 ctx = data->ctx;
7786
7787 io_rsrc_ref_lock(ctx);
7788 ref_node->done = true;
7789
7790 while (!list_empty(&ctx->rsrc_ref_list)) {
7791 ref_node = list_first_entry(&ctx->rsrc_ref_list,
7792 struct fixed_rsrc_ref_node, node);
7793 /* recycle ref nodes in order */
7794 if (!ref_node->done)
7795 break;
7796 list_del(&ref_node->node);
7797 first_add |= llist_add(&ref_node->llist, &ctx->rsrc_put_llist);
7798 }
7799 io_rsrc_ref_unlock(ctx);
7800
7801 if (percpu_ref_is_dying(&data->refs))
7802 delay = 0;
7803
7804 if (!delay)
7805 mod_delayed_work(system_wq, &ctx->rsrc_put_work, 0);
7806 else if (first_add)
7807 queue_delayed_work(system_wq, &ctx->rsrc_put_work, delay);
7808 }
7809
7810 static struct fixed_rsrc_ref_node *alloc_fixed_rsrc_ref_node(
7811 struct io_ring_ctx *ctx)
7812 {
7813 struct fixed_rsrc_ref_node *ref_node;
7814
7815 ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7816 if (!ref_node)
7817 return NULL;
7818
7819 if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7820 0, GFP_KERNEL)) {
7821 kfree(ref_node);
7822 return NULL;
7823 }
7824 INIT_LIST_HEAD(&ref_node->node);
7825 INIT_LIST_HEAD(&ref_node->rsrc_list);
7826 ref_node->done = false;
7827 return ref_node;
7828 }
7829
7830 static void init_fixed_file_ref_node(struct io_ring_ctx *ctx,
7831 struct fixed_rsrc_ref_node *ref_node)
7832 {
7833 ref_node->rsrc_data = ctx->file_data;
7834 ref_node->rsrc_put = io_ring_file_put;
7835 }
7836
7837 static void destroy_fixed_rsrc_ref_node(struct fixed_rsrc_ref_node *ref_node)
7838 {
7839 percpu_ref_exit(&ref_node->refs);
7840 kfree(ref_node);
7841 }
7842
7843
7844 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
7845 unsigned nr_args)
7846 {
7847 __s32 __user *fds = (__s32 __user *) arg;
7848 unsigned nr_tables, i;
7849 struct file *file;
7850 int fd, ret = -ENOMEM;
7851 struct fixed_rsrc_ref_node *ref_node;
7852 struct fixed_rsrc_data *file_data;
7853
7854 if (ctx->file_data)
7855 return -EBUSY;
7856 if (!nr_args)
7857 return -EINVAL;
7858 if (nr_args > IORING_MAX_FIXED_FILES)
7859 return -EMFILE;
7860
7861 file_data = alloc_fixed_rsrc_data(ctx);
7862 if (!file_data)
7863 return -ENOMEM;
7864 ctx->file_data = file_data;
7865
7866 nr_tables = DIV_ROUND_UP(nr_args, IORING_MAX_FILES_TABLE);
7867 file_data->table = kcalloc(nr_tables, sizeof(*file_data->table),
7868 GFP_KERNEL);
7869 if (!file_data->table)
7870 goto out_free;
7871
7872 if (io_sqe_alloc_file_tables(file_data, nr_tables, nr_args))
7873 goto out_free;
7874
7875 for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
7876 if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
7877 ret = -EFAULT;
7878 goto out_fput;
7879 }
7880 /* allow sparse sets */
7881 if (fd == -1)
7882 continue;
7883
7884 file = fget(fd);
7885 ret = -EBADF;
7886 if (!file)
7887 goto out_fput;
7888
7889 /*
7890 * Don't allow io_uring instances to be registered. If UNIX
7891 * isn't enabled, then this causes a reference cycle and this
7892 * instance can never get freed. If UNIX is enabled we'll
7893 * handle it just fine, but there's still no point in allowing
7894 * a ring fd as it doesn't support regular read/write anyway.
7895 */
7896 if (file->f_op == &io_uring_fops) {
7897 fput(file);
7898 goto out_fput;
7899 }
7900 *io_fixed_file_slot(file_data, i) = file;
7901 }
7902
7903 ret = io_sqe_files_scm(ctx);
7904 if (ret) {
7905 io_sqe_files_unregister(ctx);
7906 return ret;
7907 }
7908
7909 ref_node = alloc_fixed_rsrc_ref_node(ctx);
7910 if (!ref_node) {
7911 io_sqe_files_unregister(ctx);
7912 return -ENOMEM;
7913 }
7914 init_fixed_file_ref_node(ctx, ref_node);
7915
7916 io_sqe_rsrc_set_node(ctx, file_data, ref_node);
7917 return ret;
7918 out_fput:
7919 for (i = 0; i < ctx->nr_user_files; i++) {
7920 file = io_file_from_index(ctx, i);
7921 if (file)
7922 fput(file);
7923 }
7924 for (i = 0; i < nr_tables; i++)
7925 kfree(file_data->table[i].files);
7926 ctx->nr_user_files = 0;
7927 out_free:
7928 free_fixed_rsrc_data(ctx->file_data);
7929 ctx->file_data = NULL;
7930 return ret;
7931 }
7932
7933 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
7934 int index)
7935 {
7936 #if defined(CONFIG_UNIX)
7937 struct sock *sock = ctx->ring_sock->sk;
7938 struct sk_buff_head *head = &sock->sk_receive_queue;
7939 struct sk_buff *skb;
7940
7941 /*
7942 * See if we can merge this file into an existing skb SCM_RIGHTS
7943 * file set. If there's no room, fall back to allocating a new skb
7944 * and filling it in.
7945 */
7946 spin_lock_irq(&head->lock);
7947 skb = skb_peek(head);
7948 if (skb) {
7949 struct scm_fp_list *fpl = UNIXCB(skb).fp;
7950
7951 if (fpl->count < SCM_MAX_FD) {
7952 __skb_unlink(skb, head);
7953 spin_unlock_irq(&head->lock);
7954 fpl->fp[fpl->count] = get_file(file);
7955 unix_inflight(fpl->user, fpl->fp[fpl->count]);
7956 fpl->count++;
7957 spin_lock_irq(&head->lock);
7958 __skb_queue_head(head, skb);
7959 } else {
7960 skb = NULL;
7961 }
7962 }
7963 spin_unlock_irq(&head->lock);
7964
7965 if (skb) {
7966 fput(file);
7967 return 0;
7968 }
7969
7970 return __io_sqe_files_scm(ctx, 1, index);
7971 #else
7972 return 0;
7973 #endif
7974 }
7975
7976 static int io_queue_rsrc_removal(struct fixed_rsrc_data *data, void *rsrc)
7977 {
7978 struct io_rsrc_put *prsrc;
7979 struct fixed_rsrc_ref_node *ref_node = data->node;
7980
7981 prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
7982 if (!prsrc)
7983 return -ENOMEM;
7984
7985 prsrc->rsrc = rsrc;
7986 list_add(&prsrc->list, &ref_node->rsrc_list);
7987
7988 return 0;
7989 }
7990
7991 static inline int io_queue_file_removal(struct fixed_rsrc_data *data,
7992 struct file *file)
7993 {
7994 return io_queue_rsrc_removal(data, (void *)file);
7995 }
7996
7997 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
7998 struct io_uring_rsrc_update *up,
7999 unsigned nr_args)
8000 {
8001 struct fixed_rsrc_data *data = ctx->file_data;
8002 struct fixed_rsrc_ref_node *ref_node;
8003 struct file *file, **file_slot;
8004 __s32 __user *fds;
8005 int fd, i, err;
8006 __u32 done;
8007 bool needs_switch = false;
8008
8009 if (check_add_overflow(up->offset, nr_args, &done))
8010 return -EOVERFLOW;
8011 if (done > ctx->nr_user_files)
8012 return -EINVAL;
8013
8014 ref_node = alloc_fixed_rsrc_ref_node(ctx);
8015 if (!ref_node)
8016 return -ENOMEM;
8017 init_fixed_file_ref_node(ctx, ref_node);
8018
8019 fds = u64_to_user_ptr(up->data);
8020 for (done = 0; done < nr_args; done++) {
8021 err = 0;
8022 if (copy_from_user(&fd, &fds[done], sizeof(fd))) {
8023 err = -EFAULT;
8024 break;
8025 }
8026 if (fd == IORING_REGISTER_FILES_SKIP)
8027 continue;
8028
8029 i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8030 file_slot = io_fixed_file_slot(ctx->file_data, i);
8031
8032 if (*file_slot) {
8033 err = io_queue_file_removal(data, *file_slot);
8034 if (err)
8035 break;
8036 *file_slot = NULL;
8037 needs_switch = true;
8038 }
8039 if (fd != -1) {
8040 file = fget(fd);
8041 if (!file) {
8042 err = -EBADF;
8043 break;
8044 }
8045 /*
8046 * Don't allow io_uring instances to be registered. If
8047 * UNIX isn't enabled, then this causes a reference
8048 * cycle and this instance can never get freed. If UNIX
8049 * is enabled we'll handle it just fine, but there's
8050 * still no point in allowing a ring fd as it doesn't
8051 * support regular read/write anyway.
8052 */
8053 if (file->f_op == &io_uring_fops) {
8054 fput(file);
8055 err = -EBADF;
8056 break;
8057 }
8058 *file_slot = file;
8059 err = io_sqe_file_register(ctx, file, i);
8060 if (err) {
8061 *file_slot = NULL;
8062 fput(file);
8063 break;
8064 }
8065 }
8066 }
8067
8068 if (needs_switch) {
8069 percpu_ref_kill(&data->node->refs);
8070 io_sqe_rsrc_set_node(ctx, data, ref_node);
8071 } else
8072 destroy_fixed_rsrc_ref_node(ref_node);
8073
8074 return done ? done : err;
8075 }
8076
8077 static int io_sqe_files_update(struct io_ring_ctx *ctx, void __user *arg,
8078 unsigned nr_args)
8079 {
8080 struct io_uring_rsrc_update up;
8081
8082 if (!ctx->file_data)
8083 return -ENXIO;
8084 if (!nr_args)
8085 return -EINVAL;
8086 if (copy_from_user(&up, arg, sizeof(up)))
8087 return -EFAULT;
8088 if (up.resv)
8089 return -EINVAL;
8090
8091 return __io_sqe_files_update(ctx, &up, nr_args);
8092 }
8093
8094 static struct io_wq_work *io_free_work(struct io_wq_work *work)
8095 {
8096 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8097
8098 req = io_put_req_find_next(req);
8099 return req ? &req->work : NULL;
8100 }
8101
8102 static int io_init_wq_offload(struct io_ring_ctx *ctx,
8103 struct io_uring_params *p)
8104 {
8105 struct io_wq_data data;
8106 struct fd f;
8107 struct io_ring_ctx *ctx_attach;
8108 unsigned int concurrency;
8109 int ret = 0;
8110
8111 data.user = ctx->user;
8112 data.free_work = io_free_work;
8113 data.do_work = io_wq_submit_work;
8114
8115 if (!(p->flags & IORING_SETUP_ATTACH_WQ)) {
8116 /* Do QD, or 4 * CPUS, whatever is smallest */
8117 concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8118
8119 ctx->io_wq = io_wq_create(concurrency, &data);
8120 if (IS_ERR(ctx->io_wq)) {
8121 ret = PTR_ERR(ctx->io_wq);
8122 ctx->io_wq = NULL;
8123 }
8124 return ret;
8125 }
8126
8127 f = fdget(p->wq_fd);
8128 if (!f.file)
8129 return -EBADF;
8130
8131 if (f.file->f_op != &io_uring_fops) {
8132 ret = -EINVAL;
8133 goto out_fput;
8134 }
8135
8136 ctx_attach = f.file->private_data;
8137 /* @io_wq is protected by holding the fd */
8138 if (!io_wq_get(ctx_attach->io_wq, &data)) {
8139 ret = -EINVAL;
8140 goto out_fput;
8141 }
8142
8143 ctx->io_wq = ctx_attach->io_wq;
8144 out_fput:
8145 fdput(f);
8146 return ret;
8147 }
8148
8149 static int io_uring_alloc_task_context(struct task_struct *task)
8150 {
8151 struct io_uring_task *tctx;
8152 int ret;
8153
8154 tctx = kmalloc(sizeof(*tctx), GFP_KERNEL);
8155 if (unlikely(!tctx))
8156 return -ENOMEM;
8157
8158 ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8159 if (unlikely(ret)) {
8160 kfree(tctx);
8161 return ret;
8162 }
8163
8164 xa_init(&tctx->xa);
8165 init_waitqueue_head(&tctx->wait);
8166 tctx->last = NULL;
8167 atomic_set(&tctx->in_idle, 0);
8168 tctx->sqpoll = false;
8169 io_init_identity(&tctx->__identity);
8170 tctx->identity = &tctx->__identity;
8171 task->io_uring = tctx;
8172 spin_lock_init(&tctx->task_lock);
8173 INIT_WQ_LIST(&tctx->task_list);
8174 tctx->task_state = 0;
8175 init_task_work(&tctx->task_work, tctx_task_work);
8176 return 0;
8177 }
8178
8179 void __io_uring_free(struct task_struct *tsk)
8180 {
8181 struct io_uring_task *tctx = tsk->io_uring;
8182
8183 WARN_ON_ONCE(!xa_empty(&tctx->xa));
8184 WARN_ON_ONCE(refcount_read(&tctx->identity->count) != 1);
8185 if (tctx->identity != &tctx->__identity)
8186 kfree(tctx->identity);
8187 percpu_counter_destroy(&tctx->inflight);
8188 kfree(tctx);
8189 tsk->io_uring = NULL;
8190 }
8191
8192 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8193 struct io_uring_params *p)
8194 {
8195 int ret;
8196
8197 if (ctx->flags & IORING_SETUP_SQPOLL) {
8198 struct io_sq_data *sqd;
8199
8200 ret = -EPERM;
8201 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_NICE))
8202 goto err;
8203
8204 sqd = io_get_sq_data(p);
8205 if (IS_ERR(sqd)) {
8206 ret = PTR_ERR(sqd);
8207 goto err;
8208 }
8209
8210 ctx->sq_data = sqd;
8211 io_sq_thread_park(sqd);
8212 mutex_lock(&sqd->ctx_lock);
8213 list_add(&ctx->sqd_list, &sqd->ctx_new_list);
8214 mutex_unlock(&sqd->ctx_lock);
8215 io_sq_thread_unpark(sqd);
8216
8217 ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8218 if (!ctx->sq_thread_idle)
8219 ctx->sq_thread_idle = HZ;
8220
8221 if (sqd->thread)
8222 goto done;
8223
8224 if (p->flags & IORING_SETUP_SQ_AFF) {
8225 int cpu = p->sq_thread_cpu;
8226
8227 ret = -EINVAL;
8228 if (cpu >= nr_cpu_ids)
8229 goto err;
8230 if (!cpu_online(cpu))
8231 goto err;
8232
8233 sqd->thread = kthread_create_on_cpu(io_sq_thread, sqd,
8234 cpu, "io_uring-sq");
8235 } else {
8236 sqd->thread = kthread_create(io_sq_thread, sqd,
8237 "io_uring-sq");
8238 }
8239 if (IS_ERR(sqd->thread)) {
8240 ret = PTR_ERR(sqd->thread);
8241 sqd->thread = NULL;
8242 goto err;
8243 }
8244 ret = io_uring_alloc_task_context(sqd->thread);
8245 if (ret)
8246 goto err;
8247 } else if (p->flags & IORING_SETUP_SQ_AFF) {
8248 /* Can't have SQ_AFF without SQPOLL */
8249 ret = -EINVAL;
8250 goto err;
8251 }
8252
8253 done:
8254 ret = io_init_wq_offload(ctx, p);
8255 if (ret)
8256 goto err;
8257
8258 return 0;
8259 err:
8260 io_finish_async(ctx);
8261 return ret;
8262 }
8263
8264 static void io_sq_offload_start(struct io_ring_ctx *ctx)
8265 {
8266 struct io_sq_data *sqd = ctx->sq_data;
8267
8268 if ((ctx->flags & IORING_SETUP_SQPOLL) && sqd->thread)
8269 wake_up_process(sqd->thread);
8270 }
8271
8272 static inline void __io_unaccount_mem(struct user_struct *user,
8273 unsigned long nr_pages)
8274 {
8275 atomic_long_sub(nr_pages, &user->locked_vm);
8276 }
8277
8278 static inline int __io_account_mem(struct user_struct *user,
8279 unsigned long nr_pages)
8280 {
8281 unsigned long page_limit, cur_pages, new_pages;
8282
8283 /* Don't allow more pages than we can safely lock */
8284 page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8285
8286 do {
8287 cur_pages = atomic_long_read(&user->locked_vm);
8288 new_pages = cur_pages + nr_pages;
8289 if (new_pages > page_limit)
8290 return -ENOMEM;
8291 } while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8292 new_pages) != cur_pages);
8293
8294 return 0;
8295 }
8296
8297 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8298 {
8299 if (ctx->limit_mem)
8300 __io_unaccount_mem(ctx->user, nr_pages);
8301
8302 if (ctx->mm_account)
8303 atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8304 }
8305
8306 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8307 {
8308 int ret;
8309
8310 if (ctx->limit_mem) {
8311 ret = __io_account_mem(ctx->user, nr_pages);
8312 if (ret)
8313 return ret;
8314 }
8315
8316 if (ctx->mm_account)
8317 atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8318
8319 return 0;
8320 }
8321
8322 static void io_mem_free(void *ptr)
8323 {
8324 struct page *page;
8325
8326 if (!ptr)
8327 return;
8328
8329 page = virt_to_head_page(ptr);
8330 if (put_page_testzero(page))
8331 free_compound_page(page);
8332 }
8333
8334 static void *io_mem_alloc(size_t size)
8335 {
8336 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8337 __GFP_NORETRY | __GFP_ACCOUNT;
8338
8339 return (void *) __get_free_pages(gfp_flags, get_order(size));
8340 }
8341
8342 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8343 size_t *sq_offset)
8344 {
8345 struct io_rings *rings;
8346 size_t off, sq_array_size;
8347
8348 off = struct_size(rings, cqes, cq_entries);
8349 if (off == SIZE_MAX)
8350 return SIZE_MAX;
8351
8352 #ifdef CONFIG_SMP
8353 off = ALIGN(off, SMP_CACHE_BYTES);
8354 if (off == 0)
8355 return SIZE_MAX;
8356 #endif
8357
8358 if (sq_offset)
8359 *sq_offset = off;
8360
8361 sq_array_size = array_size(sizeof(u32), sq_entries);
8362 if (sq_array_size == SIZE_MAX)
8363 return SIZE_MAX;
8364
8365 if (check_add_overflow(off, sq_array_size, &off))
8366 return SIZE_MAX;
8367
8368 return off;
8369 }
8370
8371 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8372 {
8373 int i, j;
8374
8375 if (!ctx->user_bufs)
8376 return -ENXIO;
8377
8378 for (i = 0; i < ctx->nr_user_bufs; i++) {
8379 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8380
8381 for (j = 0; j < imu->nr_bvecs; j++)
8382 unpin_user_page(imu->bvec[j].bv_page);
8383
8384 if (imu->acct_pages)
8385 io_unaccount_mem(ctx, imu->acct_pages);
8386 kvfree(imu->bvec);
8387 imu->nr_bvecs = 0;
8388 }
8389
8390 kfree(ctx->user_bufs);
8391 ctx->user_bufs = NULL;
8392 ctx->nr_user_bufs = 0;
8393 return 0;
8394 }
8395
8396 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8397 void __user *arg, unsigned index)
8398 {
8399 struct iovec __user *src;
8400
8401 #ifdef CONFIG_COMPAT
8402 if (ctx->compat) {
8403 struct compat_iovec __user *ciovs;
8404 struct compat_iovec ciov;
8405
8406 ciovs = (struct compat_iovec __user *) arg;
8407 if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8408 return -EFAULT;
8409
8410 dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8411 dst->iov_len = ciov.iov_len;
8412 return 0;
8413 }
8414 #endif
8415 src = (struct iovec __user *) arg;
8416 if (copy_from_user(dst, &src[index], sizeof(*dst)))
8417 return -EFAULT;
8418 return 0;
8419 }
8420
8421 /*
8422 * Not super efficient, but this is just a registration time. And we do cache
8423 * the last compound head, so generally we'll only do a full search if we don't
8424 * match that one.
8425 *
8426 * We check if the given compound head page has already been accounted, to
8427 * avoid double accounting it. This allows us to account the full size of the
8428 * page, not just the constituent pages of a huge page.
8429 */
8430 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8431 int nr_pages, struct page *hpage)
8432 {
8433 int i, j;
8434
8435 /* check current page array */
8436 for (i = 0; i < nr_pages; i++) {
8437 if (!PageCompound(pages[i]))
8438 continue;
8439 if (compound_head(pages[i]) == hpage)
8440 return true;
8441 }
8442
8443 /* check previously registered pages */
8444 for (i = 0; i < ctx->nr_user_bufs; i++) {
8445 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8446
8447 for (j = 0; j < imu->nr_bvecs; j++) {
8448 if (!PageCompound(imu->bvec[j].bv_page))
8449 continue;
8450 if (compound_head(imu->bvec[j].bv_page) == hpage)
8451 return true;
8452 }
8453 }
8454
8455 return false;
8456 }
8457
8458 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8459 int nr_pages, struct io_mapped_ubuf *imu,
8460 struct page **last_hpage)
8461 {
8462 int i, ret;
8463
8464 for (i = 0; i < nr_pages; i++) {
8465 if (!PageCompound(pages[i])) {
8466 imu->acct_pages++;
8467 } else {
8468 struct page *hpage;
8469
8470 hpage = compound_head(pages[i]);
8471 if (hpage == *last_hpage)
8472 continue;
8473 *last_hpage = hpage;
8474 if (headpage_already_acct(ctx, pages, i, hpage))
8475 continue;
8476 imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8477 }
8478 }
8479
8480 if (!imu->acct_pages)
8481 return 0;
8482
8483 ret = io_account_mem(ctx, imu->acct_pages);
8484 if (ret)
8485 imu->acct_pages = 0;
8486 return ret;
8487 }
8488
8489 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8490 struct io_mapped_ubuf *imu,
8491 struct page **last_hpage)
8492 {
8493 struct vm_area_struct **vmas = NULL;
8494 struct page **pages = NULL;
8495 unsigned long off, start, end, ubuf;
8496 size_t size;
8497 int ret, pret, nr_pages, i;
8498
8499 ubuf = (unsigned long) iov->iov_base;
8500 end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8501 start = ubuf >> PAGE_SHIFT;
8502 nr_pages = end - start;
8503
8504 ret = -ENOMEM;
8505
8506 pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8507 if (!pages)
8508 goto done;
8509
8510 vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8511 GFP_KERNEL);
8512 if (!vmas)
8513 goto done;
8514
8515 imu->bvec = kvmalloc_array(nr_pages, sizeof(struct bio_vec),
8516 GFP_KERNEL);
8517 if (!imu->bvec)
8518 goto done;
8519
8520 ret = 0;
8521 mmap_read_lock(current->mm);
8522 pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8523 pages, vmas);
8524 if (pret == nr_pages) {
8525 /* don't support file backed memory */
8526 for (i = 0; i < nr_pages; i++) {
8527 struct vm_area_struct *vma = vmas[i];
8528
8529 if (vma->vm_file &&
8530 !is_file_hugepages(vma->vm_file)) {
8531 ret = -EOPNOTSUPP;
8532 break;
8533 }
8534 }
8535 } else {
8536 ret = pret < 0 ? pret : -EFAULT;
8537 }
8538 mmap_read_unlock(current->mm);
8539 if (ret) {
8540 /*
8541 * if we did partial map, or found file backed vmas,
8542 * release any pages we did get
8543 */
8544 if (pret > 0)
8545 unpin_user_pages(pages, pret);
8546 kvfree(imu->bvec);
8547 goto done;
8548 }
8549
8550 ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
8551 if (ret) {
8552 unpin_user_pages(pages, pret);
8553 kvfree(imu->bvec);
8554 goto done;
8555 }
8556
8557 off = ubuf & ~PAGE_MASK;
8558 size = iov->iov_len;
8559 for (i = 0; i < nr_pages; i++) {
8560 size_t vec_len;
8561
8562 vec_len = min_t(size_t, size, PAGE_SIZE - off);
8563 imu->bvec[i].bv_page = pages[i];
8564 imu->bvec[i].bv_len = vec_len;
8565 imu->bvec[i].bv_offset = off;
8566 off = 0;
8567 size -= vec_len;
8568 }
8569 /* store original address for later verification */
8570 imu->ubuf = ubuf;
8571 imu->len = iov->iov_len;
8572 imu->nr_bvecs = nr_pages;
8573 ret = 0;
8574 done:
8575 kvfree(pages);
8576 kvfree(vmas);
8577 return ret;
8578 }
8579
8580 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
8581 {
8582 if (ctx->user_bufs)
8583 return -EBUSY;
8584 if (!nr_args || nr_args > UIO_MAXIOV)
8585 return -EINVAL;
8586
8587 ctx->user_bufs = kcalloc(nr_args, sizeof(struct io_mapped_ubuf),
8588 GFP_KERNEL);
8589 if (!ctx->user_bufs)
8590 return -ENOMEM;
8591
8592 return 0;
8593 }
8594
8595 static int io_buffer_validate(struct iovec *iov)
8596 {
8597 /*
8598 * Don't impose further limits on the size and buffer
8599 * constraints here, we'll -EINVAL later when IO is
8600 * submitted if they are wrong.
8601 */
8602 if (!iov->iov_base || !iov->iov_len)
8603 return -EFAULT;
8604
8605 /* arbitrary limit, but we need something */
8606 if (iov->iov_len > SZ_1G)
8607 return -EFAULT;
8608
8609 return 0;
8610 }
8611
8612 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
8613 unsigned int nr_args)
8614 {
8615 int i, ret;
8616 struct iovec iov;
8617 struct page *last_hpage = NULL;
8618
8619 ret = io_buffers_map_alloc(ctx, nr_args);
8620 if (ret)
8621 return ret;
8622
8623 for (i = 0; i < nr_args; i++) {
8624 struct io_mapped_ubuf *imu = &ctx->user_bufs[i];
8625
8626 ret = io_copy_iov(ctx, &iov, arg, i);
8627 if (ret)
8628 break;
8629
8630 ret = io_buffer_validate(&iov);
8631 if (ret)
8632 break;
8633
8634 ret = io_sqe_buffer_register(ctx, &iov, imu, &last_hpage);
8635 if (ret)
8636 break;
8637
8638 ctx->nr_user_bufs++;
8639 }
8640
8641 if (ret)
8642 io_sqe_buffers_unregister(ctx);
8643
8644 return ret;
8645 }
8646
8647 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
8648 {
8649 __s32 __user *fds = arg;
8650 int fd;
8651
8652 if (ctx->cq_ev_fd)
8653 return -EBUSY;
8654
8655 if (copy_from_user(&fd, fds, sizeof(*fds)))
8656 return -EFAULT;
8657
8658 ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
8659 if (IS_ERR(ctx->cq_ev_fd)) {
8660 int ret = PTR_ERR(ctx->cq_ev_fd);
8661 ctx->cq_ev_fd = NULL;
8662 return ret;
8663 }
8664
8665 return 0;
8666 }
8667
8668 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
8669 {
8670 if (ctx->cq_ev_fd) {
8671 eventfd_ctx_put(ctx->cq_ev_fd);
8672 ctx->cq_ev_fd = NULL;
8673 return 0;
8674 }
8675
8676 return -ENXIO;
8677 }
8678
8679 static int __io_destroy_buffers(int id, void *p, void *data)
8680 {
8681 struct io_ring_ctx *ctx = data;
8682 struct io_buffer *buf = p;
8683
8684 __io_remove_buffers(ctx, buf, id, -1U);
8685 return 0;
8686 }
8687
8688 static void io_destroy_buffers(struct io_ring_ctx *ctx)
8689 {
8690 idr_for_each(&ctx->io_buffer_idr, __io_destroy_buffers, ctx);
8691 idr_destroy(&ctx->io_buffer_idr);
8692 }
8693
8694 static void io_req_cache_free(struct list_head *list, struct task_struct *tsk)
8695 {
8696 struct io_kiocb *req, *nxt;
8697
8698 list_for_each_entry_safe(req, nxt, list, compl.list) {
8699 if (tsk && req->task != tsk)
8700 continue;
8701 list_del(&req->compl.list);
8702 kmem_cache_free(req_cachep, req);
8703 }
8704 }
8705
8706 static void io_req_caches_free(struct io_ring_ctx *ctx, struct task_struct *tsk)
8707 {
8708 struct io_submit_state *submit_state = &ctx->submit_state;
8709
8710 mutex_lock(&ctx->uring_lock);
8711
8712 if (submit_state->free_reqs)
8713 kmem_cache_free_bulk(req_cachep, submit_state->free_reqs,
8714 submit_state->reqs);
8715
8716 io_req_cache_free(&submit_state->comp.free_list, NULL);
8717
8718 spin_lock_irq(&ctx->completion_lock);
8719 io_req_cache_free(&submit_state->comp.locked_free_list, NULL);
8720 spin_unlock_irq(&ctx->completion_lock);
8721
8722 mutex_unlock(&ctx->uring_lock);
8723 }
8724
8725 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
8726 {
8727 /*
8728 * Some may use context even when all refs and requests have been put,
8729 * and they are free to do so while still holding uring_lock, see
8730 * __io_req_task_submit(). Wait for them to finish.
8731 */
8732 mutex_lock(&ctx->uring_lock);
8733 mutex_unlock(&ctx->uring_lock);
8734
8735 io_finish_async(ctx);
8736 io_sqe_buffers_unregister(ctx);
8737
8738 if (ctx->sqo_task) {
8739 put_task_struct(ctx->sqo_task);
8740 ctx->sqo_task = NULL;
8741 mmdrop(ctx->mm_account);
8742 ctx->mm_account = NULL;
8743 }
8744
8745 #ifdef CONFIG_BLK_CGROUP
8746 if (ctx->sqo_blkcg_css)
8747 css_put(ctx->sqo_blkcg_css);
8748 #endif
8749
8750 mutex_lock(&ctx->uring_lock);
8751 io_sqe_files_unregister(ctx);
8752 mutex_unlock(&ctx->uring_lock);
8753 io_eventfd_unregister(ctx);
8754 io_destroy_buffers(ctx);
8755 idr_destroy(&ctx->personality_idr);
8756
8757 #if defined(CONFIG_UNIX)
8758 if (ctx->ring_sock) {
8759 ctx->ring_sock->file = NULL; /* so that iput() is called */
8760 sock_release(ctx->ring_sock);
8761 }
8762 #endif
8763
8764 io_mem_free(ctx->rings);
8765 io_mem_free(ctx->sq_sqes);
8766
8767 percpu_ref_exit(&ctx->refs);
8768 free_uid(ctx->user);
8769 put_cred(ctx->creds);
8770 io_req_caches_free(ctx, NULL);
8771 kfree(ctx->cancel_hash);
8772 kfree(ctx);
8773 }
8774
8775 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
8776 {
8777 struct io_ring_ctx *ctx = file->private_data;
8778 __poll_t mask = 0;
8779
8780 poll_wait(file, &ctx->cq_wait, wait);
8781 /*
8782 * synchronizes with barrier from wq_has_sleeper call in
8783 * io_commit_cqring
8784 */
8785 smp_rmb();
8786 if (!io_sqring_full(ctx))
8787 mask |= EPOLLOUT | EPOLLWRNORM;
8788
8789 /*
8790 * Don't flush cqring overflow list here, just do a simple check.
8791 * Otherwise there could possible be ABBA deadlock:
8792 * CPU0 CPU1
8793 * ---- ----
8794 * lock(&ctx->uring_lock);
8795 * lock(&ep->mtx);
8796 * lock(&ctx->uring_lock);
8797 * lock(&ep->mtx);
8798 *
8799 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
8800 * pushs them to do the flush.
8801 */
8802 if (io_cqring_events(ctx) || test_bit(0, &ctx->cq_check_overflow))
8803 mask |= EPOLLIN | EPOLLRDNORM;
8804
8805 return mask;
8806 }
8807
8808 static int io_uring_fasync(int fd, struct file *file, int on)
8809 {
8810 struct io_ring_ctx *ctx = file->private_data;
8811
8812 return fasync_helper(fd, file, on, &ctx->cq_fasync);
8813 }
8814
8815 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
8816 {
8817 struct io_identity *iod;
8818
8819 iod = idr_remove(&ctx->personality_idr, id);
8820 if (iod) {
8821 put_cred(iod->creds);
8822 if (refcount_dec_and_test(&iod->count))
8823 kfree(iod);
8824 return 0;
8825 }
8826
8827 return -EINVAL;
8828 }
8829
8830 static int io_remove_personalities(int id, void *p, void *data)
8831 {
8832 struct io_ring_ctx *ctx = data;
8833
8834 io_unregister_personality(ctx, id);
8835 return 0;
8836 }
8837
8838 static void io_ring_exit_work(struct work_struct *work)
8839 {
8840 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
8841 exit_work);
8842
8843 /*
8844 * If we're doing polled IO and end up having requests being
8845 * submitted async (out-of-line), then completions can come in while
8846 * we're waiting for refs to drop. We need to reap these manually,
8847 * as nobody else will be looking for them.
8848 */
8849 do {
8850 io_uring_try_cancel_requests(ctx, NULL, NULL);
8851 } while (!wait_for_completion_timeout(&ctx->ref_comp, HZ/20));
8852 io_ring_ctx_free(ctx);
8853 }
8854
8855 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
8856 {
8857 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8858
8859 return req->ctx == data;
8860 }
8861
8862 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
8863 {
8864 mutex_lock(&ctx->uring_lock);
8865 percpu_ref_kill(&ctx->refs);
8866
8867 if (WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) && !ctx->sqo_dead))
8868 ctx->sqo_dead = 1;
8869
8870 /* if force is set, the ring is going away. always drop after that */
8871 ctx->cq_overflow_flushed = 1;
8872 if (ctx->rings)
8873 __io_cqring_overflow_flush(ctx, true, NULL, NULL);
8874 idr_for_each(&ctx->personality_idr, io_remove_personalities, ctx);
8875 mutex_unlock(&ctx->uring_lock);
8876
8877 io_kill_timeouts(ctx, NULL, NULL);
8878 io_poll_remove_all(ctx, NULL, NULL);
8879
8880 if (ctx->io_wq)
8881 io_wq_cancel_cb(ctx->io_wq, io_cancel_ctx_cb, ctx, true);
8882
8883 /* if we failed setting up the ctx, we might not have any rings */
8884 io_iopoll_try_reap_events(ctx);
8885
8886 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
8887 /*
8888 * Use system_unbound_wq to avoid spawning tons of event kworkers
8889 * if we're exiting a ton of rings at the same time. It just adds
8890 * noise and overhead, there's no discernable change in runtime
8891 * over using system_wq.
8892 */
8893 queue_work(system_unbound_wq, &ctx->exit_work);
8894 }
8895
8896 static int io_uring_release(struct inode *inode, struct file *file)
8897 {
8898 struct io_ring_ctx *ctx = file->private_data;
8899
8900 file->private_data = NULL;
8901 io_ring_ctx_wait_and_kill(ctx);
8902 return 0;
8903 }
8904
8905 struct io_task_cancel {
8906 struct task_struct *task;
8907 struct files_struct *files;
8908 };
8909
8910 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
8911 {
8912 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
8913 struct io_task_cancel *cancel = data;
8914 bool ret;
8915
8916 if (cancel->files && (req->flags & REQ_F_LINK_TIMEOUT)) {
8917 unsigned long flags;
8918 struct io_ring_ctx *ctx = req->ctx;
8919
8920 /* protect against races with linked timeouts */
8921 spin_lock_irqsave(&ctx->completion_lock, flags);
8922 ret = io_match_task(req, cancel->task, cancel->files);
8923 spin_unlock_irqrestore(&ctx->completion_lock, flags);
8924 } else {
8925 ret = io_match_task(req, cancel->task, cancel->files);
8926 }
8927 return ret;
8928 }
8929
8930 static void io_cancel_defer_files(struct io_ring_ctx *ctx,
8931 struct task_struct *task,
8932 struct files_struct *files)
8933 {
8934 struct io_defer_entry *de = NULL;
8935 LIST_HEAD(list);
8936
8937 spin_lock_irq(&ctx->completion_lock);
8938 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
8939 if (io_match_task(de->req, task, files)) {
8940 list_cut_position(&list, &ctx->defer_list, &de->list);
8941 break;
8942 }
8943 }
8944 spin_unlock_irq(&ctx->completion_lock);
8945
8946 while (!list_empty(&list)) {
8947 de = list_first_entry(&list, struct io_defer_entry, list);
8948 list_del_init(&de->list);
8949 req_set_fail_links(de->req);
8950 io_put_req(de->req);
8951 io_req_complete(de->req, -ECANCELED);
8952 kfree(de);
8953 }
8954 }
8955
8956 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
8957 struct task_struct *task,
8958 struct files_struct *files)
8959 {
8960 struct io_task_cancel cancel = { .task = task, .files = files, };
8961
8962 while (1) {
8963 enum io_wq_cancel cret;
8964 bool ret = false;
8965
8966 if (ctx->io_wq) {
8967 cret = io_wq_cancel_cb(ctx->io_wq, io_cancel_task_cb,
8968 &cancel, true);
8969 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
8970 }
8971
8972 /* SQPOLL thread does its own polling */
8973 if (!(ctx->flags & IORING_SETUP_SQPOLL) && !files) {
8974 while (!list_empty_careful(&ctx->iopoll_list)) {
8975 io_iopoll_try_reap_events(ctx);
8976 ret = true;
8977 }
8978 }
8979
8980 ret |= io_poll_remove_all(ctx, task, files);
8981 ret |= io_kill_timeouts(ctx, task, files);
8982 ret |= io_run_task_work();
8983 io_cqring_overflow_flush(ctx, true, task, files);
8984 if (!ret)
8985 break;
8986 cond_resched();
8987 }
8988 }
8989
8990 static int io_uring_count_inflight(struct io_ring_ctx *ctx,
8991 struct task_struct *task,
8992 struct files_struct *files)
8993 {
8994 struct io_kiocb *req;
8995 int cnt = 0;
8996
8997 spin_lock_irq(&ctx->inflight_lock);
8998 list_for_each_entry(req, &ctx->inflight_list, inflight_entry)
8999 cnt += io_match_task(req, task, files);
9000 spin_unlock_irq(&ctx->inflight_lock);
9001 return cnt;
9002 }
9003
9004 static void io_uring_cancel_files(struct io_ring_ctx *ctx,
9005 struct task_struct *task,
9006 struct files_struct *files)
9007 {
9008 while (!list_empty_careful(&ctx->inflight_list)) {
9009 DEFINE_WAIT(wait);
9010 int inflight;
9011
9012 inflight = io_uring_count_inflight(ctx, task, files);
9013 if (!inflight)
9014 break;
9015
9016 io_uring_try_cancel_requests(ctx, task, files);
9017
9018 if (ctx->sq_data)
9019 io_sq_thread_unpark(ctx->sq_data);
9020 prepare_to_wait(&task->io_uring->wait, &wait,
9021 TASK_UNINTERRUPTIBLE);
9022 if (inflight == io_uring_count_inflight(ctx, task, files))
9023 schedule();
9024 finish_wait(&task->io_uring->wait, &wait);
9025 if (ctx->sq_data)
9026 io_sq_thread_park(ctx->sq_data);
9027 }
9028 }
9029
9030 static void io_disable_sqo_submit(struct io_ring_ctx *ctx)
9031 {
9032 mutex_lock(&ctx->uring_lock);
9033 ctx->sqo_dead = 1;
9034 mutex_unlock(&ctx->uring_lock);
9035
9036 /* make sure callers enter the ring to get error */
9037 if (ctx->rings)
9038 io_ring_set_wakeup_flag(ctx);
9039 }
9040
9041 /*
9042 * We need to iteratively cancel requests, in case a request has dependent
9043 * hard links. These persist even for failure of cancelations, hence keep
9044 * looping until none are found.
9045 */
9046 static void io_uring_cancel_task_requests(struct io_ring_ctx *ctx,
9047 struct files_struct *files)
9048 {
9049 struct task_struct *task = current;
9050
9051 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9052 io_disable_sqo_submit(ctx);
9053 task = ctx->sq_data->thread;
9054 atomic_inc(&task->io_uring->in_idle);
9055 io_sq_thread_park(ctx->sq_data);
9056 }
9057
9058 io_cancel_defer_files(ctx, task, files);
9059
9060 io_uring_cancel_files(ctx, task, files);
9061 if (!files)
9062 io_uring_try_cancel_requests(ctx, task, NULL);
9063
9064 if ((ctx->flags & IORING_SETUP_SQPOLL) && ctx->sq_data) {
9065 atomic_dec(&task->io_uring->in_idle);
9066 io_sq_thread_unpark(ctx->sq_data);
9067 }
9068 }
9069
9070 /*
9071 * Note that this task has used io_uring. We use it for cancelation purposes.
9072 */
9073 static int io_uring_add_task_file(struct io_ring_ctx *ctx, struct file *file)
9074 {
9075 struct io_uring_task *tctx = current->io_uring;
9076 int ret;
9077
9078 if (unlikely(!tctx)) {
9079 ret = io_uring_alloc_task_context(current);
9080 if (unlikely(ret))
9081 return ret;
9082 tctx = current->io_uring;
9083 }
9084 if (tctx->last != file) {
9085 void *old = xa_load(&tctx->xa, (unsigned long)file);
9086
9087 if (!old) {
9088 get_file(file);
9089 ret = xa_err(xa_store(&tctx->xa, (unsigned long)file,
9090 file, GFP_KERNEL));
9091 if (ret) {
9092 fput(file);
9093 return ret;
9094 }
9095
9096 /* one and only SQPOLL file note, held by sqo_task */
9097 WARN_ON_ONCE((ctx->flags & IORING_SETUP_SQPOLL) &&
9098 current != ctx->sqo_task);
9099 }
9100 tctx->last = file;
9101 }
9102
9103 /*
9104 * This is race safe in that the task itself is doing this, hence it
9105 * cannot be going through the exit/cancel paths at the same time.
9106 * This cannot be modified while exit/cancel is running.
9107 */
9108 if (!tctx->sqpoll && (ctx->flags & IORING_SETUP_SQPOLL))
9109 tctx->sqpoll = true;
9110
9111 return 0;
9112 }
9113
9114 /*
9115 * Remove this io_uring_file -> task mapping.
9116 */
9117 static void io_uring_del_task_file(struct file *file)
9118 {
9119 struct io_uring_task *tctx = current->io_uring;
9120
9121 if (tctx->last == file)
9122 tctx->last = NULL;
9123 file = xa_erase(&tctx->xa, (unsigned long)file);
9124 if (file)
9125 fput(file);
9126 }
9127
9128 static void io_uring_remove_task_files(struct io_uring_task *tctx)
9129 {
9130 struct file *file;
9131 unsigned long index;
9132
9133 xa_for_each(&tctx->xa, index, file)
9134 io_uring_del_task_file(file);
9135 }
9136
9137 void __io_uring_files_cancel(struct files_struct *files)
9138 {
9139 struct io_uring_task *tctx = current->io_uring;
9140 struct file *file;
9141 unsigned long index;
9142
9143 /* make sure overflow events are dropped */
9144 atomic_inc(&tctx->in_idle);
9145 xa_for_each(&tctx->xa, index, file)
9146 io_uring_cancel_task_requests(file->private_data, files);
9147 atomic_dec(&tctx->in_idle);
9148
9149 if (files)
9150 io_uring_remove_task_files(tctx);
9151 }
9152
9153 static s64 tctx_inflight(struct io_uring_task *tctx)
9154 {
9155 return percpu_counter_sum(&tctx->inflight);
9156 }
9157
9158 static void io_uring_cancel_sqpoll(struct io_ring_ctx *ctx)
9159 {
9160 struct io_uring_task *tctx;
9161 s64 inflight;
9162 DEFINE_WAIT(wait);
9163
9164 if (!ctx->sq_data)
9165 return;
9166 tctx = ctx->sq_data->thread->io_uring;
9167 io_disable_sqo_submit(ctx);
9168
9169 atomic_inc(&tctx->in_idle);
9170 do {
9171 /* read completions before cancelations */
9172 inflight = tctx_inflight(tctx);
9173 if (!inflight)
9174 break;
9175 io_uring_cancel_task_requests(ctx, NULL);
9176
9177 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9178 /*
9179 * If we've seen completions, retry without waiting. This
9180 * avoids a race where a completion comes in before we did
9181 * prepare_to_wait().
9182 */
9183 if (inflight == tctx_inflight(tctx))
9184 schedule();
9185 finish_wait(&tctx->wait, &wait);
9186 } while (1);
9187 atomic_dec(&tctx->in_idle);
9188 }
9189
9190 /*
9191 * Find any io_uring fd that this task has registered or done IO on, and cancel
9192 * requests.
9193 */
9194 void __io_uring_task_cancel(void)
9195 {
9196 struct io_uring_task *tctx = current->io_uring;
9197 DEFINE_WAIT(wait);
9198 s64 inflight;
9199
9200 /* make sure overflow events are dropped */
9201 atomic_inc(&tctx->in_idle);
9202
9203 /* trigger io_disable_sqo_submit() */
9204 if (tctx->sqpoll) {
9205 struct file *file;
9206 unsigned long index;
9207
9208 xa_for_each(&tctx->xa, index, file)
9209 io_uring_cancel_sqpoll(file->private_data);
9210 }
9211
9212 do {
9213 /* read completions before cancelations */
9214 inflight = tctx_inflight(tctx);
9215 if (!inflight)
9216 break;
9217 __io_uring_files_cancel(NULL);
9218
9219 prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9220
9221 /*
9222 * If we've seen completions, retry without waiting. This
9223 * avoids a race where a completion comes in before we did
9224 * prepare_to_wait().
9225 */
9226 if (inflight == tctx_inflight(tctx))
9227 schedule();
9228 finish_wait(&tctx->wait, &wait);
9229 } while (1);
9230
9231 atomic_dec(&tctx->in_idle);
9232
9233 io_uring_remove_task_files(tctx);
9234 }
9235
9236 static int io_uring_flush(struct file *file, void *data)
9237 {
9238 struct io_uring_task *tctx = current->io_uring;
9239 struct io_ring_ctx *ctx = file->private_data;
9240
9241 if (fatal_signal_pending(current) || (current->flags & PF_EXITING)) {
9242 io_uring_cancel_task_requests(ctx, NULL);
9243 io_req_caches_free(ctx, current);
9244 }
9245
9246 if (!tctx)
9247 return 0;
9248
9249 /* we should have cancelled and erased it before PF_EXITING */
9250 WARN_ON_ONCE((current->flags & PF_EXITING) &&
9251 xa_load(&tctx->xa, (unsigned long)file));
9252
9253 /*
9254 * fput() is pending, will be 2 if the only other ref is our potential
9255 * task file note. If the task is exiting, drop regardless of count.
9256 */
9257 if (atomic_long_read(&file->f_count) != 2)
9258 return 0;
9259
9260 if (ctx->flags & IORING_SETUP_SQPOLL) {
9261 /* there is only one file note, which is owned by sqo_task */
9262 WARN_ON_ONCE(ctx->sqo_task != current &&
9263 xa_load(&tctx->xa, (unsigned long)file));
9264 /* sqo_dead check is for when this happens after cancellation */
9265 WARN_ON_ONCE(ctx->sqo_task == current && !ctx->sqo_dead &&
9266 !xa_load(&tctx->xa, (unsigned long)file));
9267
9268 io_disable_sqo_submit(ctx);
9269 }
9270
9271 if (!(ctx->flags & IORING_SETUP_SQPOLL) || ctx->sqo_task == current)
9272 io_uring_del_task_file(file);
9273 return 0;
9274 }
9275
9276 static void *io_uring_validate_mmap_request(struct file *file,
9277 loff_t pgoff, size_t sz)
9278 {
9279 struct io_ring_ctx *ctx = file->private_data;
9280 loff_t offset = pgoff << PAGE_SHIFT;
9281 struct page *page;
9282 void *ptr;
9283
9284 switch (offset) {
9285 case IORING_OFF_SQ_RING:
9286 case IORING_OFF_CQ_RING:
9287 ptr = ctx->rings;
9288 break;
9289 case IORING_OFF_SQES:
9290 ptr = ctx->sq_sqes;
9291 break;
9292 default:
9293 return ERR_PTR(-EINVAL);
9294 }
9295
9296 page = virt_to_head_page(ptr);
9297 if (sz > page_size(page))
9298 return ERR_PTR(-EINVAL);
9299
9300 return ptr;
9301 }
9302
9303 #ifdef CONFIG_MMU
9304
9305 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9306 {
9307 size_t sz = vma->vm_end - vma->vm_start;
9308 unsigned long pfn;
9309 void *ptr;
9310
9311 ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9312 if (IS_ERR(ptr))
9313 return PTR_ERR(ptr);
9314
9315 pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9316 return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9317 }
9318
9319 #else /* !CONFIG_MMU */
9320
9321 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9322 {
9323 return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9324 }
9325
9326 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9327 {
9328 return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9329 }
9330
9331 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9332 unsigned long addr, unsigned long len,
9333 unsigned long pgoff, unsigned long flags)
9334 {
9335 void *ptr;
9336
9337 ptr = io_uring_validate_mmap_request(file, pgoff, len);
9338 if (IS_ERR(ptr))
9339 return PTR_ERR(ptr);
9340
9341 return (unsigned long) ptr;
9342 }
9343
9344 #endif /* !CONFIG_MMU */
9345
9346 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9347 {
9348 int ret = 0;
9349 DEFINE_WAIT(wait);
9350
9351 do {
9352 if (!io_sqring_full(ctx))
9353 break;
9354
9355 prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9356
9357 if (unlikely(ctx->sqo_dead)) {
9358 ret = -EOWNERDEAD;
9359 goto out;
9360 }
9361
9362 if (!io_sqring_full(ctx))
9363 break;
9364
9365 schedule();
9366 } while (!signal_pending(current));
9367
9368 finish_wait(&ctx->sqo_sq_wait, &wait);
9369 out:
9370 return ret;
9371 }
9372
9373 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9374 struct __kernel_timespec __user **ts,
9375 const sigset_t __user **sig)
9376 {
9377 struct io_uring_getevents_arg arg;
9378
9379 /*
9380 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9381 * is just a pointer to the sigset_t.
9382 */
9383 if (!(flags & IORING_ENTER_EXT_ARG)) {
9384 *sig = (const sigset_t __user *) argp;
9385 *ts = NULL;
9386 return 0;
9387 }
9388
9389 /*
9390 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9391 * timespec and sigset_t pointers if good.
9392 */
9393 if (*argsz != sizeof(arg))
9394 return -EINVAL;
9395 if (copy_from_user(&arg, argp, sizeof(arg)))
9396 return -EFAULT;
9397 *sig = u64_to_user_ptr(arg.sigmask);
9398 *argsz = arg.sigmask_sz;
9399 *ts = u64_to_user_ptr(arg.ts);
9400 return 0;
9401 }
9402
9403 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9404 u32, min_complete, u32, flags, const void __user *, argp,
9405 size_t, argsz)
9406 {
9407 struct io_ring_ctx *ctx;
9408 long ret = -EBADF;
9409 int submitted = 0;
9410 struct fd f;
9411
9412 io_run_task_work();
9413
9414 if (flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9415 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG))
9416 return -EINVAL;
9417
9418 f = fdget(fd);
9419 if (!f.file)
9420 return -EBADF;
9421
9422 ret = -EOPNOTSUPP;
9423 if (f.file->f_op != &io_uring_fops)
9424 goto out_fput;
9425
9426 ret = -ENXIO;
9427 ctx = f.file->private_data;
9428 if (!percpu_ref_tryget(&ctx->refs))
9429 goto out_fput;
9430
9431 ret = -EBADFD;
9432 if (ctx->flags & IORING_SETUP_R_DISABLED)
9433 goto out;
9434
9435 /*
9436 * For SQ polling, the thread will do all submissions and completions.
9437 * Just return the requested submit count, and wake the thread if
9438 * we were asked to.
9439 */
9440 ret = 0;
9441 if (ctx->flags & IORING_SETUP_SQPOLL) {
9442 io_cqring_overflow_flush(ctx, false, NULL, NULL);
9443
9444 ret = -EOWNERDEAD;
9445 if (unlikely(ctx->sqo_dead))
9446 goto out;
9447 if (flags & IORING_ENTER_SQ_WAKEUP)
9448 wake_up(&ctx->sq_data->wait);
9449 if (flags & IORING_ENTER_SQ_WAIT) {
9450 ret = io_sqpoll_wait_sq(ctx);
9451 if (ret)
9452 goto out;
9453 }
9454 submitted = to_submit;
9455 } else if (to_submit) {
9456 ret = io_uring_add_task_file(ctx, f.file);
9457 if (unlikely(ret))
9458 goto out;
9459 mutex_lock(&ctx->uring_lock);
9460 submitted = io_submit_sqes(ctx, to_submit);
9461 mutex_unlock(&ctx->uring_lock);
9462
9463 if (submitted != to_submit)
9464 goto out;
9465 }
9466 if (flags & IORING_ENTER_GETEVENTS) {
9467 const sigset_t __user *sig;
9468 struct __kernel_timespec __user *ts;
9469
9470 ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
9471 if (unlikely(ret))
9472 goto out;
9473
9474 min_complete = min(min_complete, ctx->cq_entries);
9475
9476 /*
9477 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
9478 * space applications don't need to do io completion events
9479 * polling again, they can rely on io_sq_thread to do polling
9480 * work, which can reduce cpu usage and uring_lock contention.
9481 */
9482 if (ctx->flags & IORING_SETUP_IOPOLL &&
9483 !(ctx->flags & IORING_SETUP_SQPOLL)) {
9484 ret = io_iopoll_check(ctx, min_complete);
9485 } else {
9486 ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
9487 }
9488 }
9489
9490 out:
9491 percpu_ref_put(&ctx->refs);
9492 out_fput:
9493 fdput(f);
9494 return submitted ? submitted : ret;
9495 }
9496
9497 #ifdef CONFIG_PROC_FS
9498 static int io_uring_show_cred(int id, void *p, void *data)
9499 {
9500 struct io_identity *iod = p;
9501 const struct cred *cred = iod->creds;
9502 struct seq_file *m = data;
9503 struct user_namespace *uns = seq_user_ns(m);
9504 struct group_info *gi;
9505 kernel_cap_t cap;
9506 unsigned __capi;
9507 int g;
9508
9509 seq_printf(m, "%5d\n", id);
9510 seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
9511 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
9512 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
9513 seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
9514 seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
9515 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
9516 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
9517 seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
9518 seq_puts(m, "\n\tGroups:\t");
9519 gi = cred->group_info;
9520 for (g = 0; g < gi->ngroups; g++) {
9521 seq_put_decimal_ull(m, g ? " " : "",
9522 from_kgid_munged(uns, gi->gid[g]));
9523 }
9524 seq_puts(m, "\n\tCapEff:\t");
9525 cap = cred->cap_effective;
9526 CAP_FOR_EACH_U32(__capi)
9527 seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
9528 seq_putc(m, '\n');
9529 return 0;
9530 }
9531
9532 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
9533 {
9534 struct io_sq_data *sq = NULL;
9535 bool has_lock;
9536 int i;
9537
9538 /*
9539 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
9540 * since fdinfo case grabs it in the opposite direction of normal use
9541 * cases. If we fail to get the lock, we just don't iterate any
9542 * structures that could be going away outside the io_uring mutex.
9543 */
9544 has_lock = mutex_trylock(&ctx->uring_lock);
9545
9546 if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL))
9547 sq = ctx->sq_data;
9548
9549 seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
9550 seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
9551 seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
9552 for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
9553 struct file *f = *io_fixed_file_slot(ctx->file_data, i);
9554
9555 if (f)
9556 seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
9557 else
9558 seq_printf(m, "%5u: <none>\n", i);
9559 }
9560 seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
9561 for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
9562 struct io_mapped_ubuf *buf = &ctx->user_bufs[i];
9563
9564 seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf,
9565 (unsigned int) buf->len);
9566 }
9567 if (has_lock && !idr_is_empty(&ctx->personality_idr)) {
9568 seq_printf(m, "Personalities:\n");
9569 idr_for_each(&ctx->personality_idr, io_uring_show_cred, m);
9570 }
9571 seq_printf(m, "PollList:\n");
9572 spin_lock_irq(&ctx->completion_lock);
9573 for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
9574 struct hlist_head *list = &ctx->cancel_hash[i];
9575 struct io_kiocb *req;
9576
9577 hlist_for_each_entry(req, list, hash_node)
9578 seq_printf(m, " op=%d, task_works=%d\n", req->opcode,
9579 req->task->task_works != NULL);
9580 }
9581 spin_unlock_irq(&ctx->completion_lock);
9582 if (has_lock)
9583 mutex_unlock(&ctx->uring_lock);
9584 }
9585
9586 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
9587 {
9588 struct io_ring_ctx *ctx = f->private_data;
9589
9590 if (percpu_ref_tryget(&ctx->refs)) {
9591 __io_uring_show_fdinfo(ctx, m);
9592 percpu_ref_put(&ctx->refs);
9593 }
9594 }
9595 #endif
9596
9597 static const struct file_operations io_uring_fops = {
9598 .release = io_uring_release,
9599 .flush = io_uring_flush,
9600 .mmap = io_uring_mmap,
9601 #ifndef CONFIG_MMU
9602 .get_unmapped_area = io_uring_nommu_get_unmapped_area,
9603 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
9604 #endif
9605 .poll = io_uring_poll,
9606 .fasync = io_uring_fasync,
9607 #ifdef CONFIG_PROC_FS
9608 .show_fdinfo = io_uring_show_fdinfo,
9609 #endif
9610 };
9611
9612 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
9613 struct io_uring_params *p)
9614 {
9615 struct io_rings *rings;
9616 size_t size, sq_array_offset;
9617
9618 /* make sure these are sane, as we already accounted them */
9619 ctx->sq_entries = p->sq_entries;
9620 ctx->cq_entries = p->cq_entries;
9621
9622 size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
9623 if (size == SIZE_MAX)
9624 return -EOVERFLOW;
9625
9626 rings = io_mem_alloc(size);
9627 if (!rings)
9628 return -ENOMEM;
9629
9630 ctx->rings = rings;
9631 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
9632 rings->sq_ring_mask = p->sq_entries - 1;
9633 rings->cq_ring_mask = p->cq_entries - 1;
9634 rings->sq_ring_entries = p->sq_entries;
9635 rings->cq_ring_entries = p->cq_entries;
9636 ctx->sq_mask = rings->sq_ring_mask;
9637 ctx->cq_mask = rings->cq_ring_mask;
9638
9639 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
9640 if (size == SIZE_MAX) {
9641 io_mem_free(ctx->rings);
9642 ctx->rings = NULL;
9643 return -EOVERFLOW;
9644 }
9645
9646 ctx->sq_sqes = io_mem_alloc(size);
9647 if (!ctx->sq_sqes) {
9648 io_mem_free(ctx->rings);
9649 ctx->rings = NULL;
9650 return -ENOMEM;
9651 }
9652
9653 return 0;
9654 }
9655
9656 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
9657 {
9658 int ret, fd;
9659
9660 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
9661 if (fd < 0)
9662 return fd;
9663
9664 ret = io_uring_add_task_file(ctx, file);
9665 if (ret) {
9666 put_unused_fd(fd);
9667 return ret;
9668 }
9669 fd_install(fd, file);
9670 return fd;
9671 }
9672
9673 /*
9674 * Allocate an anonymous fd, this is what constitutes the application
9675 * visible backing of an io_uring instance. The application mmaps this
9676 * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
9677 * we have to tie this fd to a socket for file garbage collection purposes.
9678 */
9679 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
9680 {
9681 struct file *file;
9682 #if defined(CONFIG_UNIX)
9683 int ret;
9684
9685 ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
9686 &ctx->ring_sock);
9687 if (ret)
9688 return ERR_PTR(ret);
9689 #endif
9690
9691 file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
9692 O_RDWR | O_CLOEXEC);
9693 #if defined(CONFIG_UNIX)
9694 if (IS_ERR(file)) {
9695 sock_release(ctx->ring_sock);
9696 ctx->ring_sock = NULL;
9697 } else {
9698 ctx->ring_sock->file = file;
9699 }
9700 #endif
9701 return file;
9702 }
9703
9704 static int io_uring_create(unsigned entries, struct io_uring_params *p,
9705 struct io_uring_params __user *params)
9706 {
9707 struct user_struct *user = NULL;
9708 struct io_ring_ctx *ctx;
9709 struct file *file;
9710 int ret;
9711
9712 if (!entries)
9713 return -EINVAL;
9714 if (entries > IORING_MAX_ENTRIES) {
9715 if (!(p->flags & IORING_SETUP_CLAMP))
9716 return -EINVAL;
9717 entries = IORING_MAX_ENTRIES;
9718 }
9719
9720 /*
9721 * Use twice as many entries for the CQ ring. It's possible for the
9722 * application to drive a higher depth than the size of the SQ ring,
9723 * since the sqes are only used at submission time. This allows for
9724 * some flexibility in overcommitting a bit. If the application has
9725 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
9726 * of CQ ring entries manually.
9727 */
9728 p->sq_entries = roundup_pow_of_two(entries);
9729 if (p->flags & IORING_SETUP_CQSIZE) {
9730 /*
9731 * If IORING_SETUP_CQSIZE is set, we do the same roundup
9732 * to a power-of-two, if it isn't already. We do NOT impose
9733 * any cq vs sq ring sizing.
9734 */
9735 if (!p->cq_entries)
9736 return -EINVAL;
9737 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
9738 if (!(p->flags & IORING_SETUP_CLAMP))
9739 return -EINVAL;
9740 p->cq_entries = IORING_MAX_CQ_ENTRIES;
9741 }
9742 p->cq_entries = roundup_pow_of_two(p->cq_entries);
9743 if (p->cq_entries < p->sq_entries)
9744 return -EINVAL;
9745 } else {
9746 p->cq_entries = 2 * p->sq_entries;
9747 }
9748
9749 user = get_uid(current_user());
9750
9751 ctx = io_ring_ctx_alloc(p);
9752 if (!ctx) {
9753 free_uid(user);
9754 return -ENOMEM;
9755 }
9756 ctx->compat = in_compat_syscall();
9757 ctx->limit_mem = !capable(CAP_IPC_LOCK);
9758 ctx->user = user;
9759 ctx->creds = get_current_cred();
9760 #ifdef CONFIG_AUDIT
9761 ctx->loginuid = current->loginuid;
9762 ctx->sessionid = current->sessionid;
9763 #endif
9764 ctx->sqo_task = get_task_struct(current);
9765
9766 /*
9767 * This is just grabbed for accounting purposes. When a process exits,
9768 * the mm is exited and dropped before the files, hence we need to hang
9769 * on to this mm purely for the purposes of being able to unaccount
9770 * memory (locked/pinned vm). It's not used for anything else.
9771 */
9772 mmgrab(current->mm);
9773 ctx->mm_account = current->mm;
9774
9775 #ifdef CONFIG_BLK_CGROUP
9776 /*
9777 * The sq thread will belong to the original cgroup it was inited in.
9778 * If the cgroup goes offline (e.g. disabling the io controller), then
9779 * issued bios will be associated with the closest cgroup later in the
9780 * block layer.
9781 */
9782 rcu_read_lock();
9783 ctx->sqo_blkcg_css = blkcg_css();
9784 ret = css_tryget_online(ctx->sqo_blkcg_css);
9785 rcu_read_unlock();
9786 if (!ret) {
9787 /* don't init against a dying cgroup, have the user try again */
9788 ctx->sqo_blkcg_css = NULL;
9789 ret = -ENODEV;
9790 goto err;
9791 }
9792 #endif
9793 ret = io_allocate_scq_urings(ctx, p);
9794 if (ret)
9795 goto err;
9796
9797 ret = io_sq_offload_create(ctx, p);
9798 if (ret)
9799 goto err;
9800
9801 if (!(p->flags & IORING_SETUP_R_DISABLED))
9802 io_sq_offload_start(ctx);
9803
9804 memset(&p->sq_off, 0, sizeof(p->sq_off));
9805 p->sq_off.head = offsetof(struct io_rings, sq.head);
9806 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
9807 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
9808 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
9809 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
9810 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
9811 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
9812
9813 memset(&p->cq_off, 0, sizeof(p->cq_off));
9814 p->cq_off.head = offsetof(struct io_rings, cq.head);
9815 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
9816 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
9817 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
9818 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
9819 p->cq_off.cqes = offsetof(struct io_rings, cqes);
9820 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
9821
9822 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
9823 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
9824 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
9825 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
9826 IORING_FEAT_EXT_ARG;
9827
9828 if (copy_to_user(params, p, sizeof(*p))) {
9829 ret = -EFAULT;
9830 goto err;
9831 }
9832
9833 file = io_uring_get_file(ctx);
9834 if (IS_ERR(file)) {
9835 ret = PTR_ERR(file);
9836 goto err;
9837 }
9838
9839 /*
9840 * Install ring fd as the very last thing, so we don't risk someone
9841 * having closed it before we finish setup
9842 */
9843 ret = io_uring_install_fd(ctx, file);
9844 if (ret < 0) {
9845 io_disable_sqo_submit(ctx);
9846 /* fput will clean it up */
9847 fput(file);
9848 return ret;
9849 }
9850
9851 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
9852 return ret;
9853 err:
9854 io_disable_sqo_submit(ctx);
9855 io_ring_ctx_wait_and_kill(ctx);
9856 return ret;
9857 }
9858
9859 /*
9860 * Sets up an aio uring context, and returns the fd. Applications asks for a
9861 * ring size, we return the actual sq/cq ring sizes (among other things) in the
9862 * params structure passed in.
9863 */
9864 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
9865 {
9866 struct io_uring_params p;
9867 int i;
9868
9869 if (copy_from_user(&p, params, sizeof(p)))
9870 return -EFAULT;
9871 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
9872 if (p.resv[i])
9873 return -EINVAL;
9874 }
9875
9876 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
9877 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
9878 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
9879 IORING_SETUP_R_DISABLED))
9880 return -EINVAL;
9881
9882 return io_uring_create(entries, &p, params);
9883 }
9884
9885 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
9886 struct io_uring_params __user *, params)
9887 {
9888 return io_uring_setup(entries, params);
9889 }
9890
9891 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
9892 {
9893 struct io_uring_probe *p;
9894 size_t size;
9895 int i, ret;
9896
9897 size = struct_size(p, ops, nr_args);
9898 if (size == SIZE_MAX)
9899 return -EOVERFLOW;
9900 p = kzalloc(size, GFP_KERNEL);
9901 if (!p)
9902 return -ENOMEM;
9903
9904 ret = -EFAULT;
9905 if (copy_from_user(p, arg, size))
9906 goto out;
9907 ret = -EINVAL;
9908 if (memchr_inv(p, 0, size))
9909 goto out;
9910
9911 p->last_op = IORING_OP_LAST - 1;
9912 if (nr_args > IORING_OP_LAST)
9913 nr_args = IORING_OP_LAST;
9914
9915 for (i = 0; i < nr_args; i++) {
9916 p->ops[i].op = i;
9917 if (!io_op_defs[i].not_supported)
9918 p->ops[i].flags = IO_URING_OP_SUPPORTED;
9919 }
9920 p->ops_len = i;
9921
9922 ret = 0;
9923 if (copy_to_user(arg, p, size))
9924 ret = -EFAULT;
9925 out:
9926 kfree(p);
9927 return ret;
9928 }
9929
9930 static int io_register_personality(struct io_ring_ctx *ctx)
9931 {
9932 struct io_identity *id;
9933 int ret;
9934
9935 id = kmalloc(sizeof(*id), GFP_KERNEL);
9936 if (unlikely(!id))
9937 return -ENOMEM;
9938
9939 io_init_identity(id);
9940 id->creds = get_current_cred();
9941
9942 ret = idr_alloc_cyclic(&ctx->personality_idr, id, 1, USHRT_MAX, GFP_KERNEL);
9943 if (ret < 0) {
9944 put_cred(id->creds);
9945 kfree(id);
9946 }
9947 return ret;
9948 }
9949
9950 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
9951 unsigned int nr_args)
9952 {
9953 struct io_uring_restriction *res;
9954 size_t size;
9955 int i, ret;
9956
9957 /* Restrictions allowed only if rings started disabled */
9958 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
9959 return -EBADFD;
9960
9961 /* We allow only a single restrictions registration */
9962 if (ctx->restrictions.registered)
9963 return -EBUSY;
9964
9965 if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
9966 return -EINVAL;
9967
9968 size = array_size(nr_args, sizeof(*res));
9969 if (size == SIZE_MAX)
9970 return -EOVERFLOW;
9971
9972 res = memdup_user(arg, size);
9973 if (IS_ERR(res))
9974 return PTR_ERR(res);
9975
9976 ret = 0;
9977
9978 for (i = 0; i < nr_args; i++) {
9979 switch (res[i].opcode) {
9980 case IORING_RESTRICTION_REGISTER_OP:
9981 if (res[i].register_op >= IORING_REGISTER_LAST) {
9982 ret = -EINVAL;
9983 goto out;
9984 }
9985
9986 __set_bit(res[i].register_op,
9987 ctx->restrictions.register_op);
9988 break;
9989 case IORING_RESTRICTION_SQE_OP:
9990 if (res[i].sqe_op >= IORING_OP_LAST) {
9991 ret = -EINVAL;
9992 goto out;
9993 }
9994
9995 __set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
9996 break;
9997 case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
9998 ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
9999 break;
10000 case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10001 ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10002 break;
10003 default:
10004 ret = -EINVAL;
10005 goto out;
10006 }
10007 }
10008
10009 out:
10010 /* Reset all restrictions if an error happened */
10011 if (ret != 0)
10012 memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10013 else
10014 ctx->restrictions.registered = true;
10015
10016 kfree(res);
10017 return ret;
10018 }
10019
10020 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10021 {
10022 if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10023 return -EBADFD;
10024
10025 if (ctx->restrictions.registered)
10026 ctx->restricted = 1;
10027
10028 ctx->flags &= ~IORING_SETUP_R_DISABLED;
10029
10030 io_sq_offload_start(ctx);
10031
10032 return 0;
10033 }
10034
10035 static bool io_register_op_must_quiesce(int op)
10036 {
10037 switch (op) {
10038 case IORING_UNREGISTER_FILES:
10039 case IORING_REGISTER_FILES_UPDATE:
10040 case IORING_REGISTER_PROBE:
10041 case IORING_REGISTER_PERSONALITY:
10042 case IORING_UNREGISTER_PERSONALITY:
10043 return false;
10044 default:
10045 return true;
10046 }
10047 }
10048
10049 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10050 void __user *arg, unsigned nr_args)
10051 __releases(ctx->uring_lock)
10052 __acquires(ctx->uring_lock)
10053 {
10054 int ret;
10055
10056 /*
10057 * We're inside the ring mutex, if the ref is already dying, then
10058 * someone else killed the ctx or is already going through
10059 * io_uring_register().
10060 */
10061 if (percpu_ref_is_dying(&ctx->refs))
10062 return -ENXIO;
10063
10064 if (io_register_op_must_quiesce(opcode)) {
10065 percpu_ref_kill(&ctx->refs);
10066
10067 /*
10068 * Drop uring mutex before waiting for references to exit. If
10069 * another thread is currently inside io_uring_enter() it might
10070 * need to grab the uring_lock to make progress. If we hold it
10071 * here across the drain wait, then we can deadlock. It's safe
10072 * to drop the mutex here, since no new references will come in
10073 * after we've killed the percpu ref.
10074 */
10075 mutex_unlock(&ctx->uring_lock);
10076 do {
10077 ret = wait_for_completion_interruptible(&ctx->ref_comp);
10078 if (!ret)
10079 break;
10080 ret = io_run_task_work_sig();
10081 if (ret < 0)
10082 break;
10083 } while (1);
10084
10085 mutex_lock(&ctx->uring_lock);
10086
10087 if (ret && io_refs_resurrect(&ctx->refs, &ctx->ref_comp))
10088 return ret;
10089 }
10090
10091 if (ctx->restricted) {
10092 if (opcode >= IORING_REGISTER_LAST) {
10093 ret = -EINVAL;
10094 goto out;
10095 }
10096
10097 if (!test_bit(opcode, ctx->restrictions.register_op)) {
10098 ret = -EACCES;
10099 goto out;
10100 }
10101 }
10102
10103 switch (opcode) {
10104 case IORING_REGISTER_BUFFERS:
10105 ret = io_sqe_buffers_register(ctx, arg, nr_args);
10106 break;
10107 case IORING_UNREGISTER_BUFFERS:
10108 ret = -EINVAL;
10109 if (arg || nr_args)
10110 break;
10111 ret = io_sqe_buffers_unregister(ctx);
10112 break;
10113 case IORING_REGISTER_FILES:
10114 ret = io_sqe_files_register(ctx, arg, nr_args);
10115 break;
10116 case IORING_UNREGISTER_FILES:
10117 ret = -EINVAL;
10118 if (arg || nr_args)
10119 break;
10120 ret = io_sqe_files_unregister(ctx);
10121 break;
10122 case IORING_REGISTER_FILES_UPDATE:
10123 ret = io_sqe_files_update(ctx, arg, nr_args);
10124 break;
10125 case IORING_REGISTER_EVENTFD:
10126 case IORING_REGISTER_EVENTFD_ASYNC:
10127 ret = -EINVAL;
10128 if (nr_args != 1)
10129 break;
10130 ret = io_eventfd_register(ctx, arg);
10131 if (ret)
10132 break;
10133 if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10134 ctx->eventfd_async = 1;
10135 else
10136 ctx->eventfd_async = 0;
10137 break;
10138 case IORING_UNREGISTER_EVENTFD:
10139 ret = -EINVAL;
10140 if (arg || nr_args)
10141 break;
10142 ret = io_eventfd_unregister(ctx);
10143 break;
10144 case IORING_REGISTER_PROBE:
10145 ret = -EINVAL;
10146 if (!arg || nr_args > 256)
10147 break;
10148 ret = io_probe(ctx, arg, nr_args);
10149 break;
10150 case IORING_REGISTER_PERSONALITY:
10151 ret = -EINVAL;
10152 if (arg || nr_args)
10153 break;
10154 ret = io_register_personality(ctx);
10155 break;
10156 case IORING_UNREGISTER_PERSONALITY:
10157 ret = -EINVAL;
10158 if (arg)
10159 break;
10160 ret = io_unregister_personality(ctx, nr_args);
10161 break;
10162 case IORING_REGISTER_ENABLE_RINGS:
10163 ret = -EINVAL;
10164 if (arg || nr_args)
10165 break;
10166 ret = io_register_enable_rings(ctx);
10167 break;
10168 case IORING_REGISTER_RESTRICTIONS:
10169 ret = io_register_restrictions(ctx, arg, nr_args);
10170 break;
10171 default:
10172 ret = -EINVAL;
10173 break;
10174 }
10175
10176 out:
10177 if (io_register_op_must_quiesce(opcode)) {
10178 /* bring the ctx back to life */
10179 percpu_ref_reinit(&ctx->refs);
10180 reinit_completion(&ctx->ref_comp);
10181 }
10182 return ret;
10183 }
10184
10185 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10186 void __user *, arg, unsigned int, nr_args)
10187 {
10188 struct io_ring_ctx *ctx;
10189 long ret = -EBADF;
10190 struct fd f;
10191
10192 f = fdget(fd);
10193 if (!f.file)
10194 return -EBADF;
10195
10196 ret = -EOPNOTSUPP;
10197 if (f.file->f_op != &io_uring_fops)
10198 goto out_fput;
10199
10200 ctx = f.file->private_data;
10201
10202 io_run_task_work();
10203
10204 mutex_lock(&ctx->uring_lock);
10205 ret = __io_uring_register(ctx, opcode, arg, nr_args);
10206 mutex_unlock(&ctx->uring_lock);
10207 trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10208 ctx->cq_ev_fd != NULL, ret);
10209 out_fput:
10210 fdput(f);
10211 return ret;
10212 }
10213
10214 static int __init io_uring_init(void)
10215 {
10216 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10217 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10218 BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10219 } while (0)
10220
10221 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10222 __BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10223 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10224 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
10225 BUILD_BUG_SQE_ELEM(1, __u8, flags);
10226 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
10227 BUILD_BUG_SQE_ELEM(4, __s32, fd);
10228 BUILD_BUG_SQE_ELEM(8, __u64, off);
10229 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
10230 BUILD_BUG_SQE_ELEM(16, __u64, addr);
10231 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
10232 BUILD_BUG_SQE_ELEM(24, __u32, len);
10233 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
10234 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
10235 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10236 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
10237 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
10238 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
10239 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
10240 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
10241 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
10242 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
10243 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
10244 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
10245 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
10246 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
10247 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
10248 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
10249 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
10250 BUILD_BUG_SQE_ELEM(42, __u16, personality);
10251 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
10252
10253 BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
10254 BUILD_BUG_ON(__REQ_F_LAST_BIT >= 8 * sizeof(int));
10255 req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
10256 SLAB_ACCOUNT);
10257 return 0;
10258 };
10259 __initcall(io_uring_init);